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Abstract 

In this paper, we demonstrate the use of a “Challenge Dataset”: a small, site-specific, manually curated 
dataset – enriched with uncommon, risk-exposing, and clinically important edge cases – that can facilitate 
pre-deployment evaluation and identification of clinically relevant AI performance deficits. The five 
major steps of the Challenge Dataset process are described in detail, including defining use cases, edge 
case selection, dataset size determination, dataset compilation, and model evaluation. Evaluating 
performance of four chest X-ray classifiers (one third-party developer model and three models trained on 
open-source datasets) on a small, manually curated dataset (410 images), we observe a generalization gap 
of 20.7% (13.5% - 29.1%) for sensitivity and 10.5% (4.3% - 18.3%) for specificity compared to 
developer-reported values. Performance decreases further when evaluated against edge cases (critical 
findings: 43.4% [27.4% - 59.8%]; unusual findings: 45.9% [23.1% - 68.7%]; solitary findings 45.9% 
[23.1% - 68.7%]). Expert manual audit revealed examples of critical model failure (e.g., missed 
pneumomediastinum) with potential for patient harm. As a measure of effort, we find that the minimum 
required number of Challenge Dataset cases is about 1% of the annual total for our site (approximately 
400 of 40,000). Overall, we find that the Challenge Dataset process provides a method for local pre-
deployment evaluation of medical imaging AI models, allowing imaging providers to identify both 
deficits in model generalizability and specific points of failure prior to clinical deployment.  
 

 

1. Introduction 

Academic institutions and private companies alike are developing AI models designed to interpret 
medical images, many of which have reported performance that claims to rival or exceed human 
radiologists.[1,2] However, a growing body of literature suggests that many clinical AI applications fail to 
generalize in new settings.[3–6] Moreover, healthcare institutions considering deployment of these tools 
cannot simply assume that the safety of marketed AI models has been verified by regulatory scientists. In 
some jurisdictions, certain types of predictive software are exempted from such oversight.[7] 
Additionally, regulatory approval generally implies efficacy - performance under ideal conditions - rather 
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than effectiveness or robustness in the real world. This poses a challenge for intuitions looking to safely 
adopt AI models, who must operate under a “buyer beware” environment.  
 

2. Background 

2.1. Internal validation 

The process of creating an AI model involves splitting a dataset into subsets: one to train the model, and 
another to validate its performance. However, when models are trained and validated using images from 
the same source – termed internal validation – the resultant models are vulnerable to biases present in that 
data that may hamper generalization.[8] One example is sampling bias, such as when medical image 
datasets from one institution are not representative of the imaging modalities, patient demographics, 
disease prevalences, and disease state definitions that are present elsewhere.[9,10] Further, bias may be 
introduced through design choices that may fail to externally generalize, such as site-specific or imprecise 
labeling of training and validation data,[10] and biases in the local diagnosis and management of 
diseases.[11] The use of internal validation alone masks these biases, as they are likely to be present in 
local validation sets but may not reflect the general population. Internal validation therefore often 
produces unrealistic performance estimates.[8,12,13]  
 
2.2. External validation 

External validation involves testing a model on data from differing geography, institutions, or practice 
settings.[8] Numerous literature and lay press examples of classical statistical[4,5] and machine learning 
models[3,13] show a gap in performance, or “generalization gap”, between internal and external 
validation. As an extreme example, a deep learning COVID-19 chest X-ray classifier trained on one open-
source dataset lost 30 points of AUC when validated on a second dataset.[4] As a result, guidelines such 
as TRIPOD recommend external validation for predictive model evaluation.[12] Despite this, only 5% of 
predictive models in the literature report external validation in the abstract or title.[8] 
 
2.3. Local validation 

While third-party external validation data may shed light on the overall generalizability of a model, it is 
not necessarily a good predictor of the performance that each healthcare institution will observe upon 
clinical deployment.[14] In light of the challenges surrounding the deployment of externally-developed 
models, emerging best practice involves the step of pre-deployment local evaluation.[15,16] Larger 
academic institutions with sufficient resources may have teams of data scientists with easy access to AI 
test environments to evaluate a model on local data. However, most healthcare institutions or imaging 
facilities likely do not have the resources to curate a large local dataset to evaluate performance. Thus, 
most sites are currently forced to (i) rely on testing data from external scientists or vendors, (ii) forgo 
local pre-deployment evaluation, or (iii) abandon the idea of adopting AI models.  
 
2.4. Edge case testing 

In software engineering, edge case testing is a process that involves using extreme, unusual, or otherwise 
challenging inputs to better validate the behaviour of software. For example, Zhao and Peng (2017)[17] 
describe an approach for reducing the time and cost involved in validating the reliability of autonomous 
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vehicles by up to 99.9% by “statistically increas[ing] the number of critical driving events” in the 
evaluation process. In the field of medical imaging, where validating a diagnostic model may require tens 
of thousands of labeled medical images, edge case testing may provide significant time and cost benefits.  
 
Furthermore, most medical imaging AI models are trained and validated on datasets composed of a fixed 
number of classes representing observations/diagnoses (e.g., CheXpert[18] contains 14). However, these 
broad classes frequently contain clinically important subgroups of findings that are not reflected in the 
labelling schema, leading to hidden performance deficits.[19] They also reflect only a small subset of the 
full gamut of pathologies encountered in practice, excluding many of the uncommon but important 
findings present in the “long tail” of imaging findings.[20] Enriching datasets with edge cases may 
therefore help identify performance deficits that would be missed by most datasets designed through 
random selection.  
 
2.5. Contributions and Significance 

This paper i) describes the method for local curation of a site-specific, edge case-enriched external 
validation dataset (Challenge Dataset) against which outside models can be evaluated to ensure safety 
(Section: “Materials and Methods”) and ii) demonstrates the use of the Challenge Dataset to evaluate 4 
chest X-ray classifiers (Section: “Results”). We also estimate the time required to compile a dataset 
prospectively to demonstrate its feasibility at most imaging centers. 
 

3. Method: Creating a Challenge Dataset 

3.0. Challenge Dataset Framework 

The approach to creating a Challenge Dataset can be outlined in five steps: 
1. Determine the intended use of the AI model. 
2. Identify a set of applicable edge cases. 
3. Determine how many images are needed for each edge case category, given expected model 
performance and minimum safety requirements. 
4. Compile the dataset and assign ground truth labels. 
5. Evaluate the proposed model against the dataset by performing both (a) statistical analysis and 
(b) manual expert audit of discrepant cases. 
 

3.1. Step 1: Setting and use cases 

The first step in creating a Challenge Dataset is to explicitly decide the intended use of the AI model. This 
oft-overlooked step includes specifically defining the setting, population, and task being performed (e.g., 
screening, triage, detection, grading, measurement, diagnosis, prognosis, etc.).[21–23] For radiology, the 
American College of Radiology – Data Science Institute provides a guide for considering the intended use 
case.[24]    
 
3.2. Step 2: Edge case category selection 

Next, to help ensure safe deployment, edge cases should be selected to identify potential gaps in 
performance overlooked by overall performance measures. Larson et al. (2021)[21] provide an excellent 
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summary of 12 performance elements against which diagnostic models should be evaluated. This includes 
robust performance against changes in image quality (reliability), modalities and patient populations 
(applicability), settings (determinism), irrelevant image information (non-distractibility) and elements that 
promote user trust (fail-safe mechanisms, transparent logic, transparent confidence, ability to be 
audited/monitored, and an intuitive user interface). In general, it is also useful to include a category 
consisting of a random selection of images with which to assess the overall generalizability of the model.  
 
There can be no comprehensive nor prescriptive list of edge cases when constructing a Challenge Dataset. 
While most institutions will have great overlap in their selected edge cases, different use-cases and 
settings will warrant different edge case testing. For example, the edge cases considered by an oncology 
center may be much more specialized than those considered by a community practice.  
 
3.3. Step 3: Dataset size determination 

Having defined the relevant edge cases, the next step is to determine the size of the Challenge Dataset, 
both overall and for each edge case category. Larger datasets allow for a more precise evaluation of AI 
models but are more expensive to curate and label. Therefore, determining the minimum required number 
of images is essential. To help quantify the number of images required, we turn to methods from the 
external validation of diagnostic models in epidemiology.[25,26]  
 
More specifically, to calculate the number of images required (i.e., the sample size) for our diagnostic 
test, we use the equations developed found in Appendix 1 of Flahault et al. (2005) and implemented by 
Matthias Kohl.[27] First, we need to set the minimal acceptable lower confidence limit – the lowest 
performance acceptable to users for a reported Sensitivity (Se) or Specificity (Sp). As defined by Flahault 
et al. (2005), traditionally the 1−α lower confidence limit for Se (or Sp) can be thought of as the lowest 
value of Se (or Sp) that is not rejected by a one-sided test of significance level α of the null hypothesis Se 
= Semeasured (or Sp = Spmeasured) against the alternative hypothesis Se > Semeasured (or Sp > Spmeasured). 
 
     To arrive at the number of images required, using the formulas developed by Flahault et al. (2005), we 
need: (i) prevalence of the positive class, (ii) expected Se or Sp, (iii) desired power, (iv) significance 
(taken to be α = 0.05) and (v) the minimal acceptable lower confidence limit. For an implementation, we 
use the power.diagnostic.test function in the MKmisc package which converts these inputs into required 
sample sizes.  In Table 1 we simulate the required sample size for differing expected performances and 
minimal acceptable lower confidence limits given the assumptions stated above by varying the expected 
(i.e., reported sensitivity) and minimal acceptable lower confidence limit but holding all other inputs to 
the function constant. For an example of how to estimate these variables and determine the required 
dataset size, please see Step 3 of Results.  
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Reported 
sensitivity 

Minimal acceptable lower confidence limit 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.60 639        

0.65 165 617       

0.70 73 157 569      

0.75 42 71 146 530     

0.80 26 39 62 130 463    

0.85 18 24 35 57 117 398   

0.90 12 17 20 33 50 94 304  

0.95 9 10 12 19 23 37 68 203 

Table 1: Number of positive cases (or controls) for expected sensitivity (or specificity) ranging from 0.60 
to 0.95 to guarantee a minimal acceptable lower confidence limit (ranging from 0.55 to 0.90). Put simply, 
how many images do you need to have tested to be confident that your model’s performance is below its 

expected values. For this example, we assume a prevalence of 50%, and choose a power of 0.8 and 
significance level of 0.05. Created using the R (version 4.1.2) package MKmisc (version 1.8). For an 

example, refer to Step 3 of Results. 
 
3.4. Step 4: Dataset compilation 

3.4.1 Step 4a: Collect cases: 

Once the number of images per edge case has been determined, the next step is to compile the Challenge 
Dataset. A fully manual approach would ask radiologists to prospectively flag cases in their Picture 
Archive and Communication System (PACS) over a period of time (collected in a database or 
spreadsheet), which can then be used for AI pre-deployment evaluation. This process can be expedited 
and facilitated at sites with access to software with report search functionality or a robust “teaching files” 
case list. Relevant examinations can then be extracted as DICOM images to a Challenge Dataset folder 
for analysis by local clinicians or analysts in collaboration with the developer/vendor.[28] Since the use of 
this data is for quality improvement, anonymization may not be required from a research ethics 
perspective; however, this is best governed by local policies. 
 
3.4.2. Step 4b: Determine ground truth: 

Finally, ground truth labels must be linked to each Challenge Dataset image. The nature of these labels 
depends on the possible outputs of the model being evaluated. A binary classifier, for instance, would 
require binary labels (e.g., “normal” vs “abnormal”).  
 
Various methods can be applied to generate these labels. Ideally, ground truth labels can be added by 
radiologists at the time that the edge case images are flagged or added to a case list. Otherwise, labels 
may be retroactively generated by either analyzing the images or the original report text. Review of report 
text is likely a more economical approach, but this choice introduces a trade-off for error; non-

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22280619doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22280619


standardized radiology reports often omit findings deemed irrelevant or use inconsistent and imprecise 
language.[10,29]  
 
3.5. Step 5: Model evaluation 

The final step is to run the Challenge Dataset images through the AI model and compare model output 
with the locally collected ground-truth labels.  
  
3.5.1. Step 5a: Quantitative evaluation: 

Quantitative evaluation involves calculating classification metrics such as sensitivity (recall), specificity, 
positive predictive value (precision), and negative predictive value. In the case of the “random images” 
subgroup, used to gauge the overall generalizability of the model, each of these metrics can be calculated 
and compared to the reported performance. For subgroups that contain only abnormal images (i.e., 
selected examples of complex, rare, or critical findings), only the sensitivity of the model can be 
calculated.  
 
It is important to calculate confidence intervals for these values. See Dunnigan, 2008[30] for an example 
of a very common method for calculating binomial confidence intervals (Clopper-Pearson intervals).  
  
3.5.2. Step 5b: Expert audit: 

Expert audit refers to a structured audit of examples of model failure by a trained radiologist.[16,31,32] 
This should involve a detailed review of false positive and false negative cases focusing on identifying i) 
examples of critical failure that may indicate a patient safety concern, and ii) persistent patterns of failure.  
 

4. Results: Application of Framework 

4.1. Step 1: Setting and use cases 

We consider the deployment of a binary chest X-ray model developed by a third party for use by 
radiologists for triage of chest X-rays in outpatients, inpatients, and emergency department patients. The 
AI model predicts whether there are any abnormalities in an X-ray image; patients with any abnormality 
would be triaged for radiologist interpretation before those without. Our study was conducted at Trillium 
Health Partners, a multi-site community health system in Mississauga, Ontario serving over 1 million 
patients per year. The candidate model being evaluated was developed by a third party and deployed in an 
evaluation environment at our institution. The software analyses posteroanterior DICOM chest X-ray 
images for 10 lung parenchymal, pleural and mediastinal pathologies, and returns a binary output, heat 
map, and a confidence score. Validation data provided by the third party reports an overall sensitivity of 
0.96 and a specificity of 0.93. 
 
4.2. Step 2: Edge case category selection 

For our specific use case, we concentrate our edge cases on ensuring the robustness and safety of the 
model. We identified 6 categories of edge cases that are valuable for evaluating specific performance 
elements outlined by Larson et al. (2021).[21] Table 2 introduces our categories and explains the 
rationale for their use. We recommend that local experts identify scenarios in which models may perform 
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unexpectedly, such that their edge cases will either help detect potential performance deficits or provide 
confidence that model adoption will not introduce risk to patients. 

 
4.3. Step 3: Dataset size determination 

To determine the number of images needed per edge case category, we estimated the following variables: 
• Prevalence of abnormalities in our patient cohort: this is estimated to be 50% (from prior work 
at Trillium Health Partners). 
• Predicted model performance: this is reported to be approximately 95% both for sensitivity and 
for specificity (on reported internal validation). 
•  Minimal acceptable lower confidence limit: for our use case we decided to have multiple 
minimal acceptable limits for different categories of images. For the general case (i.e., “Random 
Images”), we selected a value of >0.85 (i.e., able to detect a small drop in performance by having 
a tight bound). For “Critical Findings” and “Spurious Correlates” (which are likely more difficult 
than the average case) we chose >0.80 (i.e., a slightly lower confidence limit). For “Unusual 
Findings” and “Solitary Findings”, we accepted a larger drop in performance; an even looser 
bound on the lower confidence limit of >0.70 was chosen. For “Poor Quality” images, the lower 
confidence limit was further reduced to >0.6, as these images could easily be reported by humans 
as unreliable. Different scenarios and use cases may require different lower confidence 
limits. 

 
Based on these estimates, and using the values in Table 1, we would need to collect at least 136 (68*2) 
images for the “Random Images” category to differentiate between a model performing with the stated 
performance and one performing below our minimal confidence limit. For “Poor Quality” images we 
would need 20 images in total (10 positive and 10 negative). 
 
All other categories contain only positively labeled (i.e., abnormal) images and are thus only used to 
evaluate AI models for sensitivity. For “Critical Findings” and “Spurious Correlates” we would need to 
curate 40 images per category. For “Unusual Findings” and “Solitary Findings” we would need to curate 
19 images per category.  
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Edge Case 
Category 

Number of Images Properties and Reasoning 

Random images 250 studies To test the overall generalizability and 
applicability to local images. 

Poor quality 40 studies (20 normal, 20 
abnormal) 

Included images noted to be of low quality in 
radiology reports to test for non-distractibility 
and reliability. 

Critical findings 40 studies (20 random critical 
findings, 20 select urgent 
critical findings) 

Selected “critical findings” labelled by the 
radiologist in the report text to test safety and 
accuracy. 

Unusual findings 20 studies Selected studies containing unusual or 
uncommon findings from the “long tail” of 
observations / diagnoses to test the awareness 
of limitations and fail-safe features of the 
model as well as safety and accuracy. 

Solitary findings 20 studies Selected studies with only a single finding in 
them to test for safety and accuracy. 

Spurious correlates 40 pneumothorax images (20 
with chest tubes and 20 
without) 

Selected 40 pneumothorax studies to evaluate 
for non-distractibility (association between 
chest tube and pneumothorax) 

Table 2: Composition of each of the six categories of images included in the dataset, as well as the 
specific AI performance elements they are meant to assess. A total of 250 random images and 160 curated 

images were acquired. See Appendix A for details.  
 
4.4. Step 4: Dataset compilation 

To compile our dataset, we used Structured Query Language (SQL) to search radiologist reports stored in 
our local PACS database (Sectra Data Warehouse, Sectra, Sweden). For the Random Images category, 
binary ground truth labels were generated by manual review of the original report text, and were verified 
by a board-certified radiologist. Edge case images were also confirmed through a manual review of 
images by a board-certified radiologist in our PACS. For examples of search terms and details on case-
selection strategy, please see Appendix A. 
 
4.5. Step 5: Evaluation of third-party developer AI model 

4.5.1. Step 5a: Quantitative evaluation: 

In this section, we use the Challenge Dataset to evaluate the performance of the model and to compare it 
to the performance reported by the developer. To get a better understanding of model performance 
relative to existing literature, we also evaluate the performance of 3 chest X-ray classifiers that were 
trained on open-source datasets on the same set of images as a reference point. More specifically, we 
evaluate models trained on CheXpert,[18] MIMIC-CXR,[33] and ChestXray14 (termed ”NIH” in our 
results).[34] Full details regarding the implementation of these models is provided in Appendix B. 
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The results of this analysis can be found in Figure 1. 95% confidence intervals were calculated using the 
Clopper-Pearson method.[30] The first observation is that using a random selection of 250 cases, the 
developer model does not achieve its reported performance (sensitivity 75.2% [95% CI 66.8% - 82.4%] 
versus 95.9; specificity 82.9% [95% CI 75.1% - 89.1%] versus 93.4%). The models trained on open-
sourced data also demonstrate a generalization gap, showing substantially lower performance than 
reported. 
 

 
Figure 1: Generalization gap for multiple chest X-ray models. Sensitivity of all four models (one third- 

party developer and three models trained on open-sourced data for reference) for a subset of the edge 
cases. The red line indicates the performance of the developer’s model. 95% confidence intervals were 

calculated using the Clopper-Pearson method.[29] The observed performance of the third-party 
developer’s model is lower than reported, with the generalization gap decreasing further when tested 

against edge cases. All results are provided in Appendix D. 
 
Examining the performance of models on our curated edge cases we observe that the generalization gap 
widens further for all models. Sensitivity for images with critical findings, unusual findings, and solitary 
findings is only 50-52.5%. This pattern holds across models. The fact that different models, trained on 
different data sets with different architectures, demonstrate similar performance deficits when applied to 
our edge cases warrants further investigation. 
 
4.5.2. Step 5b: Expert audit: 

Our expert audit (performed by 1 radiologist author with 6 years of independent practice experience) 
compared chest radiographs, radiology reports, and AI predictions for images in the Challenge Dataset. 
We observed cases with clear implications for clinical deployment. The most striking, presented in 
Figure 2, is that all models failed to detect an obvious case of pneumomediastinum — a finding that can 
indicate a surgical emergency.  
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Figure 2: Posteroanterior radiograph in a patient with pneumomediastinum. All models fail to detect this 

potential surgical emergency. A failure of this magnitude may warrant further edge case testing, 
retraining, or alteration of deployment plans. 

 
An error of this magnitude might warrant model retraining or redesign. Other examples of missed 
findings (dextrocardia, bone sclerosis, suboptimal inspiration) may be communicated to users to help 
them understand the limitations of model performance. In our use case, users would recognize that such 
cases may or may not be triaged correctly. Finally, some insights may engender confidence and trust in 
users of the AI model. For instance, the third-party model successfully detected a very small 
pneumothorax (while 2/3 of other models failed to detect it), and correctly identified a potential new 
diagnosis of lung cancer (case 6). The full list of results is provided in Table 3; the example radiographs 
with accompanying implications for deployment are provided in Appendix C. 
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 Results 

Case 3rd-party CheXpert NIH MIMIC-CXR 

1. Very small 
pneumothorax 

TP TP 
Pneumothorax 

FN FN 

2. Dextrocardia TP FN FN FN 

3. Sickle cell disease TP TP 
Lung opacity 

TP 
Cardiomegaly 

FN 

4. Pneumomediastinum FN FN FN FN 

5. Suboptimal inspiration FP FP 
Uncertain 

FP 
Cardiomegaly 

FP 
Airspace opacity 

6. Right lower lobe mass 
and bilateral mediastinal 
adenopathy 

TP TP 
Lung lesion 

Enlarged 
cardiomediastinum 

TP 
Mass 

Nodule 

FN 
Lung lesion 

Airspace opacity 
No finding 

Table 3: Summary of select example cases from expert audit. For each case, we present the results of the 
four AI models (TP: true positive, FN: false negative, FP: false positive). Positive results are presented 

with relevant positive classes for CheXpert, NIH, and MIMIC; the third-party developer software version 
tested does not provide results by class. 

 
4.6 Feasibility 

Part of our goal in creating this evaluation process was to enable any site, large or small, to be able to 
collect requisite images for a local Challenge Dataset. Assuming a site does not routinely archive its 
medical images and associated reports, it would be necessary to gather images prospectively. As 
described above, the simplest method is likely for radiologists to flag suitable studies as they are 
encountered during the delivery of routine care. We assessed the timescale required to create the 
Challenge Dataset this way (Figure 3). In our example, at our institution, over 80% of the 410 images 
could be collected over a 6-month period, and 96% of this dataset would be created over 1 year. The 
remaining 4% (from “Poor Quality”, “Critical Findings”, and “Unusual Findings” categories) could be 
obtained from 3 years of data. 
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Figure 3: Plot showing the simulated cumulative percentage of a Challenge Dataset collected over time at 

our institution. This represents the time required to prospectively gather a Challenge Dataset at our 
institution if radiologists were to collect cases from routine care. 

 
Based on our site volume (approximately 40,000 studies per year) and the size of our dataset 
(approximately 400 cases), a simple 1%/year rule of thumb emerges, which can be used to estimate the 
rate at which the dataset can be accumulated. For example, a facility that performs 100,000 studies per 
year would accumulate 1000 cases for a Challenge Dataset each year (or 400 cases in 5 months). This 
observation has not yet been validated at other sites. 

 

5. Discussion 

Pre-deployment evaluation using the Challenge Dataset process described in this work can help bridge the 
implementation gap in healthcare AI[35] by allowing clinical users to practically and safely manage the 
deployment of existing AI tools in a number of ways. First and foremost, the Challenge Dataset can be 
applied easily at any site; imaging providers both large and small can use this approach for cost-effective 
pre-deployment evaluation to facilitate AI deployment. While more mature sites may employ natural 
language processing tools to rapidly identify and label a Challenge Dataset at scale, a less well-resourced 
provider can use a simple spreadsheet to collect data at opportune moments during the course of routine 
care over a few months. 
 
An additional benefit of curating a Challenge Dataset is that it enables efficiently structured expert audits 
that can be repeated for many models. Rather than asking experts to explore model performance by 
randomly sampling images, identifying edge cases a priori helps experts minimize audit time and 
maximize the information gained from such audits. 
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Furthermore, insights from Challenge Dataset pre-deployment evaluation can be used by local providers 
to govern the deployment of AI. For example, poor performance with Spurious Correlates in the setting of 
chest tubes may lead a provider to decide to “turn off” a model for ICU and inpatients, where the error 
would be most common. Similarly, gaps in performance identified during pre-deployment Challenge 
Dataset evaluation can become targets for ongoing monitoring. In our case, for instance, a cross-
disciplinary group of clinicians, data scientists, and developers monitoring the deployment of our third-
party developer’s model may closely examine its performance in cases with pneumomediastinum, 
especially as the model is improved. These risks can be summarized and communicated to users in model 
fact cards.[36] 
 
Another important benefit is that elucidating points of failure can mitigate automation bias. Automation 
bias — the tendency of humans to rely on automated cues rather than their own judgement — can lead to 
errors in decision-making.[37,38] For instance, radiologists reading mammography with the assistance of 
an error-prone computerized detection system were more likely to miss concerning findings than 
radiologists using no detection system.[39,40] Pre-deployment evaluation with Challenge Datasets can 
help to reduce the effects of automation bias by providing radiologists with contextual information 
regarding model failure rates, as well as exposing them to specific examples of model failure (e.g., under 
detection of solitary findings). Informing users about automation failure behaviour of a system ahead of 
use has been shown to reduce automation bias.[41,42] More work is required to demonstrate the effect of 
Challenge Datasets on radiologist performance. 
 
Finally, identifying gaps in performance can raise the level of all future model development and general 
research. Results from Challenge Dataset evaluations can be published and shared with model developers 
and other researchers to identify common patterns of failure. These insights can be fed back to improve 
dataset curation, labeling schema, model development, and software packaging to raise the global quality 
of healthcare machine learning model development. 
 

6. Limitations 

There are a number of limitations to this work. First, while we sought to create a process that is replicable, 

manually gathering and labeling hundreds of medical images may be onerous for some institutions. 
Software tools to facilitate this process should be considered for future work. 
 
Second, while Challenge Dataset pre-deployment evaluation enables institutions to minimize their image-
gathering efforts, smaller datasets result in larger confidence intervals, which may limit the detection of 
small but significant differences in model performance. For this reason, the Challenge Dataset cannot 
replace the use of larger datasets for external validation of model performance. It is best used in 
conjunction with other available data in order to provide a local and manually labeled point of 
comparison. If potential issues are identified, the smaller size and site-specific nature of the dataset helps 
to facilitate the review of specific points of failure that can help guide further investigation. 
 
Finally, our selected edge case categories for our proof-of-concept dataset are not comprehensive. For 
example, we did not seek to stratify performance based on ethnicity, as this data is not routinely collected 
at our institution, though we would encourage others to do so. Furthermore, for our use-case (triaging), 
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we were primarily concerned with sensitivity, and as such did not gather negative edge cases (apart from 
negative “Poor Quality” cases) to identify deficits in model specificity. 
 

7. Conclusion 

Ensuring safe and effective machine learning deployment in healthcare requires rigorous independent pre-
deployment external validation. When not performed, models fail to generalize, creating risk for 
healthcare providers looking to deploy third-party models in their practice. Inspired by edge case testing 
in automated vehicle safety validation, we show how a small, curated “Challenge Dataset” made up of 
site-specific and manually labeled images – and artificially enriched with edge cases that can be used to 
accelerate the evaluation of AI models – can be used to gain clinically meaningful insights into the local 
performance and critical failure modes of a diagnostic AI model. We also find that creating similar 
datasets is feasible for most institutions. We hope that the use of the Challenge Dataset approach can 
enable widespread local validation of medical imaging AI models, enabling safer model deployment and 
providing feedback to AI developers to globally improve model quality and performance. 
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Appendix A: Case Selection 

To collect images for the “Random Images” category, the most recent 250 posteroanterior chest X-rays in 
the database were selected. For poor quality, uncertain findings, unusual findings, and spurious correlates, 
specific search terms were used to isolate images with the desired findings or characteristics. These search 
terms are outlined in Appendix Table 1 below. For critical findings, the most recent 20 studies performed 
on Emergency Department patients with the flag “critical finding” in the report were selected. To further 
enrich the critical findings with less common cases we supplemented this category with an additional 20 
images containing select important conditions. In the case of the solitary finding category, images with 
solitary findings were identified through a manual review of the report text and confirmed by a board-
certified radiologist (author). In all categories, more recent images were preferentially selected. 
 

Category Search terms 

Random images N/A 

Poor quality Quality, suboptimal, rotat%, clothing, motion 

Critical findings Critical finding, pneumothorax, 
pneumomediastinum, metast%, lesion 

Uncertain findings Possible, equivocal, borderline, early, subtle 

Unusual findings Unusual, herniation, situs inversus, congenital, 
avascular necrosis, foreign body, bullet, 
pneumonectomy, mastectomy, aneurysm 

Solitary findings N/A 

Spurious correlates Pneumothorax, tube 

Appendix Table 1: Examples of search terms used to compile different edge case categories 
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Appendix B: Classifier Training 

In this work we made use of four different chest X-ray classifiers. The first classifier, and motivation for 
developing the Challenge Dataset, is a classifier developed by a third party. The third-party developer 
model was provided as an “out-of-the-box” system; authors did not have access to training or model 
changes. 
 
To serve as benchmarks, we evaluated three other models trained on open-source datasets: MIMIC-CXR 
(Johnson et al., 2019), CheXpert (Irvin et al., 2019), and Chest-Xray14 (referred to as NIH) (Wang et al., 
2017). A separate classifier was trained on each of the three datasets. The trained classifiers were 
constructed to perform multi-class classification on each dataset’s available schema. The predictions were 
then aggregated into a positive and negative class label to mimic the training set-up of the third-party 
model. 
 
To train the classification models, we made use of the publicly open-sourced code of Seyyed-Kalantari et 
al. (2020) which can be found online at https://github.com/LalehSeyyed/CheXclusion. We made no 
modifications to the neural architecture or the hyperparameters of the models described in the associated 
paper and were able to replicate the same results. We intentionally trained on outside data only to allow 
for external validation using local data. 

 

Appendix C: Manual Audit Review 

This appendix provides example images from the manual audit of Challenge Dataset cases performed by 
a board-certified radiologist (author) comparing model predictions to ground truth images/reports. For 
each example, we present the patient demographics, X-ray image, results from each algorithm and a 
comment on implications for deployment. These images were selected to help readers understand the 
powerful and practical insights that can be gleaned from pre-deployment evaluation with a locally curated 
dataset. 
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Case 1: 

 
Appendix Figure 1: Very small pneumothorax 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

TP TP FN FN 

 
Implications: 
Two algorithms (NIH, MIMIC) do not detect the finding. If either of these algorithms were deployed, 
users would need to know that a normal flag does not exclude a small pneumothorax. 
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Case 2:  

 
Appendix Figure 2: Dextrocardia 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

TP FN FN FN 

 
Implications: 
Three algorithms ignore this rare variant and predict a normal examination; one algorithm classifies this 
as abnormal. This inconsistency points to challenges with labeling schema which are inconsistent and 
ignore the “long tail” of possible observations. Depending which algorithm was deployed, users would 
have to be aware that dextrocardia may or may not be characterized as an abnormality. 
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Case 3:  

 
Appendix Figure 3: Sickle cell disease 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

TP TP 
“Lung opacity” 

TP 
“Cardiomegaly” 

FN 

 
Implications: 
One algorithm does not detect an abnormality. One detects cardiomegaly. One detects (false positive) 
lung opacity. None of the algorithms detect the classic finding of diffuse bony sclerosis; bone 
abnormalities are not within most x-ray algorithm annotation schemas. If deployed, users would need to 
understand these limitations, which would not be intuitive to most clinical users. 
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Case 4: 

 
Appendix Figure 4: Pneumomediastinum. 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

FN FN FN FN 

 
Implications: 
All algorithms fail to detect this potential surgical emergency. A failure of this magnitude may warrant 
further edge case testing, retraining, or alteration of deployment plans. 
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Case 5:  

 
Appendix Figure 5: Suboptimal inspiration 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

FP FP 
“Uncertain” 

FP 
“Cardiomegaly” 

FP 
“Airspace opacity” 

 
Implications: 
Findings are varied for this “poor quality” case. CheXpert “uncertain” flag is likely the most intuitive 
result to present to an end user in this scenario. 
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Case 6:  

 
Appendix Figure 6: Right lower lobe mass and bilateral mediastinal adenopathy 

Results: 

Third-Party CheXpert NIH MIMIC-CXR 

TP TP 
“Lung lesion” 
“Enlarged 
cardiomediastinum” 

TP 
“Mass” 
“Nodule” 

FN 
“Lung lesion” 
“Airspace opacity” 
“No finding” 

 
Implications: 
All algorithms detect the lung abnormality, building user trust. Only 1 model detects the marked 
mediastinal lymphadenopathy. Curiously, MIMIC also triggers the “no finding” class, which leads to a 
FN interpretation in our deployment – a potential source of confusion for users and deployment team. 
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Appendix D: Model Performance Tables 

Category Sensitivity / 
Recall 

Specificity PPV / Precision NPV 

Random Images 75.2  
(66.8 - 82.4) 

82.9 
(75.1 - 89.1) 

81.4 
(74.6 - 86.8) 

76.7 
(70.7 - 81.8) 

Poor Quality 80.0 
(56.3 - 94.3) 

75.0 
(50.9 - 91.3) 

76.2 
(59.2 - 87.6) 

79.0 
(60.1 - 90.3) 

Critical Findings 52.5 
(36.1 - 68.5) 

- - - 

Unusual Findings 50 
(27.2 - 72.8) 

- - - 

Solitary Findings 50 
(27.2 - 72.8) 

- - - 

Spurious Correlates 
(with tube) 

60.0 
(36.0 - 80.9) 

- - - 

Spurious Correlates 
(without tube) 

60.0 
(36.0 - 80.9) 

- - - 

Appendix Table 2: Performance of the third-party developer provided model when evaluated on the 
curated Challenge Dataset. Reported sensitivity: 95.9. Reported specificity:  93.4. 95% confidence 

intervals provided in brackets determined by the Clopper-Pearson method (Dunnigan, 2008) 
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Category Sensitivity / 
Recall 

Specificity PPV / Precision NPV 

Random Images 70.9 
(62.2 - 78.6) 

87.0 
(79.7 - 92.4) 

84.5 
(77.3 - 89.7) 

74.9 
(69.3 - 79.8) 

Poor Quality 70.0 
(45.7 - 88.1) 

65.0 
(40.8 - 84.6) 

66.7 
(50.8 - 79.5) 

68.4 
(50.8 - 82.0) 

Critical Findings 50.0 
(33.8 - 66.2) 

- - - 

Unusual Findings 35.0 
(15.4 - 59.2) 

- - - 

Solitary Findings 30.0 
(11.9 - 54.3) 

- - - 

Spurious Correlates 
(with tube) 

75.0 
(50.9 - 91.3) 

- - - 

Spurious Correlates 
(without tube) 

65.0 
(40.8 - 84.6) 

- - - 

Appendix Table 3: Performance of the CheXpert model when evaluated on the curated Challenge 
Dataset.  95% confidence intervals provided in brackets determined by the Clopper-Pearson method 

(Dunnigan, 2008) 
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Category Sensitivity / 
Recall 

Specificity PPV / Precision NPV 

Random Images 52.8 
(43.7 - 61.7) 

95.1 
(89.7 - 98.2) 

91.5 
(83.0 - 96.0) 

66.8 
(62.5 - 70.8) 

Poor Quality 60.0 
(36.0 - 80.9) 

85.0 
(62.1 - 96.8) 

80.0 
(57.0 - 92.3) 

68.0 
(54.6 - 78.9) 

Critical Findings 37.5 
(22.7 - 54.2) 

- - - 

Unusual Findings 25.0 
(8.7 - 49.1) 

- - - 

Solitary Findings 15.0 
(3.21 - 37.9) 

- - - 

Spurious Correlates 
(with tube) 

70.0 
(45.7 - 88.1) 

- - - 

Spurious Correlates 
(without tube) 

50.0 
(27.2 - 72.8) 

- - - 

Appendix Table 4: Performance of the MIMIC-CXR model when evaluated on the curated Challenge 
Dataset. 95% confidence intervals provided in brackets determined by the Clopper-Pearson method 

(Dunnigan, 2008) 
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Category Sensitivity / 
Recall 

Specificity PPV / Precision NPV 

Random Images 64.6 
(55.6 - 72.8) 

88.6 
(81.6 - 93.6) 

85.0 
(77.3 - 90.4) 

71.4 
(66.2 - 76.1) 

Poor Quality 80.0 
(56.3 - 94.3) 

75.0 
(50.9 - 91.3) 

76.2 
(59.2 - 87.6) 

79.0 
(60.1 - 90.3) 

Critical Findings 45.0 
(29.3 - 61.5) 

- - - 

Unusual Findings 30.0 
(11.9 - 54.3) 

- - - 

Solitary Findings 35.0 
(15.4 - 59.2) 

- - - 

Spurious Correlates 
(with tube) 

50.0 
(27.2 - 72.8) 

- - - 

Spurious Correlates 
(without tube) 

60.0 
(36.0 - 80.9) 

- - - 

Appendix Table 5: Performance of the NIH model when evaluated on the curated Challenge Dataset.  
95% confidence intervals provided in brackets determined by the Clopper-Pearson method (Dunnigan, 

2008) 
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