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Abstract 
Fevers have been used as marker of disease state for hundreds of years and are 
frequently used to screen for infectious diseases during infectious disease outbreaks. 
However, body temperature and fevers have been shown to vary over the course of a 
day and across individuals by age, sex and other characteristics. The objective of this 
paper is to describe the individual variation in diurnal temperature patterns during 
episodes of febrile activity using a database of millions of recorded temperatures across 
the United States. We then model the probability of recording a fever during a single 
reading at given time for individuals who are experiencing a febrile episode. We find a 
wide variation in body temperatures over the course of a day and across individual 
characteristics. Similarly, the likelihood of recording a fever may vary widely by the time 
of day when the reading is taken and by an individual’s age or sex. These results 
suggest diurnal temperature variation and demographics should be considered when 
using body temperature to screen for disease, especially for diseases that are 
contagious. 

Background 
 

Fever has been a hallmark of disease for thousands of years. The relationship between fevers 
and the disease state was first described in Akkadian cuneiform inscriptions thousands of years 
prior to the first thermometer.1,2 The ancient Greeks described the correlation between 
temperature and pulse3, and given the ability to perform tactile measurements of warmth, the 
measurement of pulse was often used as a proxy for a fever. Galileo invented the thermoscope 
in the 1590s, and soon after, this device was used to determine normal and abnormal 
temperatures in humans4. In 1600s Santorio Santorio coined the term “thermometer”, and was 
also one of the first to appreciate the clinical value of temperature records.5 The invention of the 
mercury thermometer by Fahrenheit in 1714, allowed for more widespread measurements of 
fevers. Substantial thermometer measurements of humans were recorded by DeHaen in 1773, 
who noted diurnal fluctuations, and differences in readings among people of different ages and 
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with different diseases.4 Problems with variation and calibration of thermometers inhibited their 
widespread use for medical applications for almost a hundred years. However, in 1851, 
Wunderlich started his landmark work in thermometry taking and recording multiple temperature 
measurements for thousands of different patients in the hospital where he worked.6  

In Wunderlich’s comprehensive examination of thermometry, He established that temperatures 
change across the spectrum of ages.6 He is credited with establishing the normal temperature of 
a healthy adult as 37°C, or 98.6°F and in the process of his descriptive work, he established a 
clear diurnal pattern of temperatures and demonstrated that normal temperatures represent a 
range rather than an actual value. He established the notion of an objective fever measurement. 
He also showed that temperatures varied between mem and women and that older adults had 
lower temperatures than children.7 

While Wunderlich was not the first to describe the diurnal pattern of temperatures,4 his 
authoritative work demonstrated a clear pattern with lower temperatures in the morning that 
increase in the early evening, a pattern that has been replicated multiple times since. This 
diurnal pattern exists for healthy individuals as well as for subjects suffering from a wide range 
of infections. For example, a majority of patients with malaria,8,9 and other infections including 
tuberculosis, pneumonia, endocarditis and urinary tract infections10 have temperatures that peak 
in the evening.  

Specific patterns of fever, with a few exceptions, are not generally helpful for differentiating 
different infections from each other.10 Furthermore because fevers are part of an inflammatory 
response, they occur with non-infectious conditions including malignancies and autoimmune 
diseases and are also subject to diurnal patterns.10  However, the fact that diurnal patterns exist 
as part of an inflammatory response has great clinical and public health importance. Because of 
this diurnal temperature pattern, taking the temperature at the wrong time of day may decrease 
the likelihood of detecting a fever. Given that the detection of fevers is important for both clinical 
and public health purposes (e.g., screening of workers or travelers during an outbreak), it is 
important to understand how the diurnal temperature pattern effects the ability of screening 
programs to detect fevers.  

The purpose of this paper is to describe the diurnal variation in temperatures patterns using a 
large database of millions of recorded temperatures, and to build a model of temperature to 
determine the probability of detecting a fever during a febrile episode across different age 
groups, depending on the time of day. 

Methods 

Data 

We use temperature readings recorded from Kinsa Smart Thermometers. These 
thermometers connect to, and pair readings with, a smartphone application. The 
thermometer is commercially available across numerous retail locations and 
thermometers have also been made available to schools, parents and families with 
children through the Kinsa school program.11 There are hundreds of thousands of 
thermometers located across the United States.  We use temperatures recorded from 
01/27/2014 through 07/15/2019; these data have previously been shown to be highly 
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correlated with influenza-like-illness (ILI) activity, and temperature readings have been 
used to generate national, state and local forecasts of illness activity.12,13  

Constructing Illness Episodes 

We construct illness episodes by first grouping temperature readings into clusters of 
activity that are likely to represent a period of illness in a particular device user. In prior 
work, we demonstrated this approach for collapsing temperature readings recorded 
over a series of days, and these episodes were used to identify illness duration, 
household transmission events, and biphasic fever patterns (two febrile-illness episodes 
that occurred in short succession).12 Each of these illness patterns were also shown to 
be highly correlated with ILI activity. 

All readings recorded by the same user profile on a given device, that occur within a 
fixed interval of another reading are grouped into an episode. In this analysis, we use 24 
hours as the maximum time between readings to define an episode. Because some 
users may take recurrent readings on a regular basis (e.g., fertility planning), we 
exclude episodes that last longer than a typical illness (i.e., 7 days). Finally, we define 
illness episodes to be those episodes where at least one fever (temperature ≥ 100.4 F°) 
was recorded during the episode interval. The following analysis describes diurnal 
temperature patterns among readings in these identified illness episodes. We also 
conduct a sensitivity analysis where we consider 12, 36, 48 and 72 hours as the 
maximum time between readings in a given cluster. 

Constructing a representative healthcare workforce 

We analyze the likelihood of recording a fever during an illness episode at a given point 
in the day for a typical healthcare worker. To construct a representative healthcare 
workforce, we used the distribution of ages of workers employed in the healthcare 
sector from the Bureau of Labor Statistics (see: https://www.bls.gov/cps/cpsaat11b.pdf). 
The following table, Appendix Table 1, provides the proportion of healthcare workers in 
each corresponding age group. We scale fever readings by these proportions to 
generate a pattern of temperature taking representative of a typical healthcare worker, 
on average. 

Statistical Analysis 

To estimate mean temperature, we used a least-squares regression model with a 
sinusoidal time component, and interaction terms for age group and sex. Four sinusoids 
were used: sine and cosine terms with 12-hour periodicity, and sine and cosine terms 
with 24-hour periodicity. This was done to match the oscillating pattern observed in the 
descriptive plots, while enforcing periodicity. Each of these four terms was interacted 
with age group and sex, which were also interacted with each other. Note: that the 
baseline case for the model is a female in age group 0-15, which is reflected in the 
model coefficients. 

To estimate the probability of recording a fever during a given time period, we use a 
generalized linear model with a log-link and binomial distribution, along with the same 
sinusoidal component as the mean temperature model, interacted with age and sex. 
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Finally, we estimate both the mean temperature curve and the probability of recording a 
fever for a representative healthcare population. We weight parameter estimates using 
the breakdown of age-specific employment percentages from the BLS, and use the 
delta method to estimate the confidence interval around these estimates. 

Sensitivity analysis: We conduct a sensitivity analysis by exploring multiple ways to 
define an illness episode. Because illness episodes were defined by the time between 
readings and a registered fever, it may be the case that some of the non-febrile 
readings we include occurred just outside the illness period. Thus, we use the approach 
described above (based on a 24-hour window) to model mean temperature while using 
12, 36, 48 or 72 hours also alternative timeframes to define a period between recurrent 
readings that are included in a single episode of readings. We compare these models’ 
predictions to those obtained from the 24-hour period definition.  

Results 
There were 10,263,424 total temperature readings across the study period. After 
grouping readings into periods of multiple-day temperature taking, we identified a total 
of 1,856,988 episodes. Of these, a total of 540,870 episodes involving at least one 
febrile reading, and these episodes were comprised of a total of 3,653,518 
temperatures. Each fever episode had a mean and median of 6.75 and 4 readings, 
respectively. 

The diurnal temperature pattern 
There is a natural diurnal pattern in body temperatures that peaks in the evening 
(around 7-9 pm) and is lowest in the early morning (between 6-8 am). This pattern has 
been previously described in multiple investigations, and can be observed simply by 
computing the mean temperature during any given minute of the day. Figure 1 depicts 
this diurnal pattern by age group. Here each point represents the mean temperature of 
all readings recorded during a given hour of the day. The blue curve depicts the 
smoothed trend, using a loess curve. This diurnal pattern can be seen to vary by age 
and time of recording. In general, the mean temperature in the diurnal curve decreases 
with older ages. Appendix Figure 1 depicts the same trend as Figure 1, but in 
Appendix Figure 1 we have broken out the mean of all readings by each minute of the 
day. The distribution of temperatures recorded at any given time point (minute or hour) 
is approximately Gaussian. Appendix Figure 2 depicts histograms of temperature 
recorded for each hour of the day and Appendix Figure 3 depicts a kernel density of 
temperatures recorded each hour of the day. 

We can ask the question how likely are we to draw a fever reading (>100F) at any given 
hour during the day. Using the temperatures recorded for each age group, we compute 
the probability of recording a temperature >100.4F. We simply calculate the proportion 
of all temperature readings that were febrile during a given hour of the day for a specific 
age group. Figure 2 depicts this probability by hour for each of the age groups. 
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Modeling the diurnal pattern 

We use the sinusoidal model described above to estimate the mean diurnal pattern by 
time of day, while controlling for age and sex. The diurnal pattern for different age 
groups and by sex is depicted in Figure 3; the remaining model coefficients are given in 
Appendix Table 2. We see that, similar to the univariate descriptive plots for all 
demographics, temperature during an illness episode tends follow a cyclical pattern. 
Mean temperatures decrease until a certain point in the morning, hitting a trough, and 
then increasing until a certain point in the evening, hitting a peak. The overall curve 
tends to be lower for those in more advanced age groups, while for males age 16-55, 
mean temperature throughout the day tends to be higher than that of females. This 
does not appear to be the case for individuals younger than 16 or older than 55. 

Modelling probability of observing fever by time 

We use a similar approach as above to estimate the probability of observing a fever 
during a given time of the day. To estimate the probability of observing a fever we use a 
generalized linear model with a logit link and binomial distribution. In Figure 4, we have 
plotted fitted values for each time period by age group and sex using the sinusoidal time 
component described above. Consistent with the mean temperature model, the diurnal 
pattern varies in a cyclical form with the time of day. Depending on the particular age 
and sex of an individual, the probability of recording a fever during an illness episode 
may vary considerably by the time of the day. For example, a male individual over the 
age of 65 years has around a 30% chance of registering a fever at around 9:00 am but 
a 55% chance of registering a fever at 8:00 pm. 

Model coefficients for the fever-probability model are given below, in Appendix Table 3. 
We see that the probability predictions follow the same trends observed in the mean 
temperature model, with a trough in the morning and a peak in the evening. Those in 
advanced age groups also tend to have lower probability of a fever in general, while 
males ages 16-55 are slightly more likely to have a fever than females. 

Temperature in a healthcare workforce 

Using the estimates from the fever-probability model, in Table 3, we can construct the 
probability of drawing a fever during any given hour of the day for a representative 
healthcare worker population. We weight the coefficient estimates in Appendix Table 3 
by the proportion of each age group in the overall healthcare workforce, described in 
Table 1. Figure 5 depicts these weighted probability values for any given hour during 
the day. The probability of recording a fever from an illness during a given time of the 
day for a typical healthcare worker, ranges from around 36% at 9 am to around 54% at 
7 pm. 

Sensitivity analysis 

In order to analyze the sensitivity of our results to the way in which we define an illness 
episode, we perform a sensitivity analysis by varying the cutpoint to determine the end 
of an illness episode. To do so, we vary the cutpoint from 24 hours, and repeat both our 
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mean temperature analysis and fever probability analysis with cut-points of 12, 36, 48, 
and 72 hours. Model predictions for each of these cutpoints can be seen in Appendix 
Figures 4-7.  

While there are slight variations in the model predictions when varying the cut-point 
used to identify an illness episode, as seen below, there are no significant departures 
from the patterns observed and described for the 24-hour cut-point model. The general 
pattern remains consistent across sex and age groups, and the probability of drawing a 
fever is roughly the same across specifications. Thus, the findings are robust to different 
specifications of this cut-point. 

Discussion 
In this study, we used a large collection of thermometer readings from smart Bluetooth 
thermometers to demonstrate the variation in temperature readings among subjects during a 
febrile episode. We confirmed that temperature patterns follow a distinct diurnal pattern, and 
thus the likelihood of recording a fever (e.g., temperature >100°F), also varies. The likelihood 
not only varies by time, but also by age and sex. Given the widespread efforts for using fevers 
to screen populations for the presence of disease during public health emergencies (e.g., 
COVID-19 and SARS), our results have important public health and clinical implications 
because most temperatures are recorded only at a single point in time.   

The diurnal variation of temperature has been known for hundreds of years. However, most of 
these fever studies have been focused on hospitalized patients. While some have been focused 
on ambulatory populations (e.g., school children), our population is the largest non-hospitalized 
population to date. Our population covers a broad range of ages, geographic locations and 
illnesses. Despite the fact that the diurnal pattern of fevers exists, this is not widely appreciated 
in clinical, or especially public health practice. Furthermore, while prior work describes the 
diurnal patterns, our work provides population-based estimates of the probability, given a febrile 
episode, that an individual of a given age and sex may present with fever. 

Our results have three practical public health implications. First, temperature screenings 
have been used in workplace environments to help identify contagious individuals, 
especially during the 2020 COVID-19 pandemic but they were also used in prior public 
health emergencies. Our modeling results highlight the limitations of detecting a fever 
during febrile episodes for different populations, especially if screening is only 
performed in the morning. For example, when screening individuals over the age of 65, 
only 30% registered a fever in the early morning during a febrile episode. Accordingly, a 
fixed cutoff of, e.g., 100.4°F, and a single point in time (in the morning at the start of a 
work shift) may not be sufficient for detecting a fever. Screening at multiple times per 
day or outside of work hours might help to compensate for settings in which there is a 
lower probability of recording a fever. Indeed, recommendations for monitoring of 
temperature, in healthcare workers and patients, at multiple points in time already 
exist.14,15 Our results highlight the importance of these practices.  

A second implication of our results relates to recommendations for children returning to 
school and adults returning to work after being ill. Several public health departments 
recommend a 24-hour fever-free period before returning to school or work. We 
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demonstrate the importance of checking fevers in the evening to ensure that subjects 
are truly afebrile.  

Stressing the importance of afternoon and evening thermometer readings are also 
important in clinical settings. For example, following orthopedic surgeries involving 
hardware placement, patients are routinely instructed to take their temperature following 
discharge from the hospital. Evening readings may substantially increase the chances 
of documenting a fever and thus diagnosing a surgical site infection sooner. Finally, the 
recommendation for multiple readings, including evening readings, could be extended to 
all populations where checking temperature is an important part of helping to determine 
if a patient has an infection, necessitating further work-up. Such patients should be 
instructed to take their temperatures again, in the afternoon or evening, as the 
probability of detecting a fever will be higher.     

This study has a number of limitations. First, the febrile episodes we studied are 
constructed based on patterns of temperature taking activity. We cannot validate the 
true illness periods in the fevers we observe and some of the non-febrile episodes may 
actually reflect an illness. We also cannot identify the cause of any fevers recorded. 
However, prior work has shown these febrile episodes to be highly correlated with 
seasonal influenza activity, and our sensitivity analysis found no major differences 
among the different criteria we used to define febrile episodes. Second, because our 
data are anonymized, we cannot confirm that the demographic information entered by 
users is accurate or that the device is being used by the exact user whose profile is 
selected. We also cannot confirm if multiple user profiles have been created for a single 
individual being observed. Finally, our results may not be generalizable to the entire 
population. The user reported demographics are younger and have a greater 
percentage of female users than the general population. Also, users of Bluetooth 
thermometers may be more health conscious or more likely to have children. 

Conclusions 

Using millions of anonymously collected fever readings, this study demonstrated the 
wide variability in temperatures recorded during periods of febrile illness. Like a number 
of prior investigations, we found a consistent diurnal pattern in temperature readings. In 
general, older individuals recorded lower average temperatures throughout the day and 
temperature differences were observed between men and women for teenagers, young 
and middle-aged adults. Our results have practical implications for both clinical and 
public health practice and in any setting where fever is being used for screening 
purposes in both healthcare (e.g. clinics and hospitals) and non-healthcare (e.g., airport, 
workplace, school) settings.  
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