II Semester M Sc Mathematics

Advanced Abstract Algebra

MCQ

1. A field E is an extension field of a field F if
A) $E=F$
B) $F \leq E$
C) $E \leq F$
D) None of these
2. Which of the following is an example for transcendental number?
A) $\sqrt{2}$
B) π
C) i
D) 2
3. Find the dimension of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}.
A) 2
B) 3
C) 5
D) 1
4. Find the dimension of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.
A) 1
B) 4
C) ∞
D) 2
5. Select the number which is not an element of $\mathbb{Q}(\sqrt{2})$.
A) 1
B) 4
C) $\sqrt[3]{2}$
D) 2
6. Which of these are not constructible numbers?
A) $\sqrt{2}$
B) π
C) $\sqrt{3}$
D) 4
7. Find an algebraic element over \mathbb{Q}.
A) $\sqrt{2}$
B) π
C) e
D) $\pi+1$
8. Let E be a finite extension of degree n over a finite field F. If F has q elements, then E has \qquad elements.
A) q
B) $n q$
C) $n+q$
D) q^{n}
9. Find a generator of \mathbb{Z}_{11}^{*}.
A) 2
B) 4
C) 5
D) 3
10. Which of the following angle is not constructible?
A) 72
B) 20
C) 36
D) 18
11. If E is a finite extension of a field F, then $[E: F]=1$ if and only if
A) $E=F$
B) $F \leq E$
C) $E \leq F$
D) None of these
12. An extension field E of F is called algebraic if
A) Some elements of E is algebraic over F
B) E and F are same
C) Every element of E is algebraic over F
D) E is a subfield of F
13. If a field F is algebraically closed, then every polynomial $f(x)$ of positive degree over F
A) does not have a zero in F
B) has at least one zero in F
C) is irreducible over F
D) cannot decide
14. If \mathbb{C} is the field of complex numbers, then
A) algebraic closure of \mathbb{C} is \mathbb{C} itself
B) algebraic closure of \mathbb{C} does not exist
C) algebraic closure of \mathbb{C} is countable
D) none of these
15. The algebraic closure of the field of real numbers \mathbb{R} is
A) \mathbb{R}
B) \mathbb{C}
C) \mathbb{Q}
D) does not exist
16. The degree of $\mathbb{Q}(\sqrt{3}+\sqrt{2})$ over \mathbb{Q} is
A) 1
B) 2
C) 3
D) 4
17. If $E=\mathbb{Q}(\sqrt{2}, \sqrt{5})$ and $F=\mathbb{Q}(\sqrt{2}+\sqrt{5})$, then
A) $E=F$
B) $F \leq E$
C) $E \leq F$
D) E and F are not comparable
18. The degree of $\mathbb{Q}(\sqrt{19})$ over \mathbb{Q} is
A) 1
B) 2
C) 3
D) 0
19. If $E=\mathbb{Q}(\sqrt{2})$ and $F=\mathbb{Q}(\sqrt{2}+\sqrt{5})$, then
A) E is proper subfield of F
B) F is proper subfield of E
C) E is a vector space over F
D) E and F are not comparable
20. The multiplicative group of nonzero elements of a finite field is
A) non abelian
B) non cyclic
C) cyclic
D) not defined
21. If $[E: F]=n$ and $[K: E]=m$, then $[K: F]$ is
A) m^{n}
B) n^{m}
C) $m+n$
D) $m n$
22. Find $\operatorname{deg}(\sqrt{2}, \mathbb{Q})$.
A) 1
B) 2
C) 3
D) 0
23. Find $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$.
A) 1
B) 2
C) 3
D) 0
24. Find $[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}]$.
A) 6
B) 4
C) 2
D) 8
25. Find the number of primitive $8^{\text {th }}$ root of unity in $G F(9)$.
A) 1
B) 2
C) 3
D) 4
26. Find the number of primitive $15^{\text {th }}$ root of unity in $G F(31)$.
A) 1
B) 2
C) 3
D) 8
27. Which of the following is a PID?
A) $\mathbb{Z} \times \mathbb{Z}$
B) $\mathbb{Z}[x]$
C) \mathbb{Z}
D) $\mathbb{Z}[\sqrt{-5}]$
28. Which of the following statement is true?
A) $\mathbb{Z}[x]$ is a PID
B) $\mathbb{Z}[\sqrt{-3}]$ is a UFD
C) $\mathbb{Z}[\mathrm{i}]$ is a Euclidean domain
D) $\mathbb{Q}[x]$ is not a Euclidean domain
29. Which of the following polynomial is primitive in $\mathbb{Z}[x]$?
A) $4 x^{2}+6 x+2$
B) $6 \mathrm{x}^{2}+2 \mathrm{x}+3$
C) $3 x^{3}+6 x^{2}-9 x+3$
D) $2 x^{2}+12 x+14$
30. Which of the following statement is not true?
A) If D is a UFD, then $D[x]$ is a UFD
B) Every PID is a UFD
C) \mathbb{Z} is a UFD
D) Every PID is a Euclidean domain
31. If D is a UFD, then which of the following statement is true?
A) $D[x]$ is not a UFD
B) Product of two primitive polynomials in $\mathrm{D}[\mathrm{x}]$ is primitive
C) D is a PID
D) D is a Euclidean domain
32. Which of the following element is an irreducible of the indicated domain?
A) 14 in \mathbb{Z}
B) $2 x-10$ in $\mathbb{Z}[x]$
C) $2 x-10$ in $\mathbb{Q}[x]$
D) $x^{2}-x-6$ in $\mathbb{Q}[x]$
33. Let D be a Euclidean domain. Then which of the following statement is true?
A) D is not a PID
B) D is a PID, but not a UFD
C) D is a PID
D) D is a UFD, but not a PID
34. The gcd of 49349 and 15555 in \mathbb{Z} is
A) 62
B) 51
C) 52
D) 61
35. Which of the following statement is true?
A) There exists a Euclidean domain, which is not a PID
B) Every PID is a Euclidean domain
C) If v is a Euclidean norm on a Euclidean domain D, then $v(1) \geq v$ (a) for nonzero $a \in D$
D) If v is a Euclidean norm on a Euclidean domain D, then $v(a)=v(1)$ for a unit $a \in D$
36. Which of the following is a UFD but not a PID?
A) $\mathbb{R}[x]$
B) $\mathbb{C}[x]$
C) $\mathbb{Q}[x]$
D) $\mathbb{Z}[x]$
37. Let N be the norm function on $\mathbb{Z}[i]$. Then which of the following is not true?
A) $N(\alpha) \geq 0$
B) $\mathrm{N}(\alpha)<0$
C) $\mathrm{N}(\alpha)=0$ if and only if $\alpha=0$
D) $N(\alpha \beta)=N(\alpha) N(\beta)$
38. Which one of the following is the factorization of the Gaussian integer $4+3 \mathrm{i}$ into a product of irreducibles in $\mathbb{Z}[\mathrm{i}]$?
A) $(1+2 i)(1-2 i)$
B) $(1+2 i)(2-i)$
C) $(1+2 i)(2+i)$
D) $(1-2 i)(2-i)$
39. The gcd of $8+6 \mathrm{i}$ and $5-15 \mathrm{i}$ in $\mathbb{Z}[\mathrm{i}]$ is
A) $7-\mathrm{i}$
B) $5+\mathrm{i}$
C) $7+i$
D) $5-\mathrm{i}$
40. Which of the following statement is not true?
A) $\mathbb{Z}[i]$ is a PID
B) $\mathbb{Z}[i]$ is a Euclidean Domain
C) $\mathbb{Z}[i]$ is an integral domain
D) Every complex number is a Gaussian integer
41. Which of the following statement is true about $\mathbb{Z}[\sqrt{-5}]$?
A) $\mathbb{Z}[\sqrt{-5}]$ is an integral domain
B) $\mathbb{Z}[\sqrt{-5}]$ is a unique factorization domain
C) $\mathbb{Z}[\sqrt{-5}]$ is a principal ideal domain
D) $\mathbb{Z}[\sqrt{-5}]$ is a Euclidean domain
42. Let p be an odd prime in \mathbb{Z}. Then $\mathrm{p}=\mathrm{a}^{2}+\mathrm{b}^{2}$ for integers a and b in \mathbb{Z} if and only if
A) $\mathrm{p} \equiv 1(\bmod 4)$
B) $p \equiv 2(\bmod 4)$
C) $\mathrm{p} \equiv 3(\bmod 4)$
D) $\mathrm{p} \equiv 0(\bmod 4)$
43. Let D be an integral domain with a multiplicative norm N . Then which of the following is true?
A) $\mathrm{N}(1)<1$
B) $|\mathrm{N}(\mathrm{u})|=1$ for every unit $\mathrm{u} \in \mathrm{D}$
C) $\mathrm{N}(1)>1$
D) There exists a unit $u \in D$ such that $|N(u)| \neq 1$
44. Which of the following is a multiplicative norm on $\mathbb{Z}[\sqrt{-5}]$?
A) $\mathrm{N}(\mathrm{a}+\mathrm{b} \sqrt{-5})=\mathrm{a}^{2}+5 \mathrm{~b}^{2}$
B) $\mathrm{N}(\mathrm{a}+\mathrm{b} \sqrt{-5})=\mathrm{a}^{2}-5 \mathrm{~b}^{2}$
C) $N(a+b \sqrt{-5})=a^{2}+\sqrt{5} b^{2}$
D) $N(a+b \sqrt{-5})=a^{2}-\sqrt{5} b^{2}$
45. Which of the following is an irreducible in $\mathbb{Z}[i]$?
A) $2-4 \mathrm{i}$
B) 5
C) $1-2 \mathrm{i}$
D) 2
46. Let p be an odd prime in \mathbb{Z}. Then p is irreducible in $\mathbb{Z}[i]$ if and only if
A) $p \equiv 1(\bmod 4)$
B) $\mathrm{p} \equiv 2(\bmod 4)$
C) $\mathrm{p} \equiv 3(\bmod 4)$
D) $\mathrm{p} \equiv 0(\bmod 4)$
47. Let $R=\mathbb{Z}[\sqrt{-5}]$ and $\alpha=3+\sqrt{-5}$, then which of the following is true?
A) α is a prime
B) α is an irreducible
C) R is a UFD
D) R is not an integral domain
48. Which one of the given functions ϑ is not a Euclidean norm for the given integral domain
A) $\vartheta(n)=n^{2}$ for nonzero $n \in \mathbb{Z}$
B) $\vartheta(f(x))=($ degree of $f(x))$ for nonzero $f(x) \in \mathbb{Z}[x]$
C) $\vartheta(\mathrm{f}(\mathrm{x}))=($ the absolute value of the coefficient of the highest degree nonzero term of $f(x)$) for nonzero $f(x) \in \mathbb{Z}[x]$
D) $\vartheta(\mathrm{n})=|\mathrm{n}|$ for nonzero $\mathrm{n} \in \mathbb{Z}$
49. The content of the polynomial $18 x^{2}-12 x+48$ in $\mathbb{Z}[x]$ is
A) 2
B) 3
C) 6
D) 12
50. Which of the following statement is not true?
A) In a PID, every nonzero element that is not a unit is a product of irreducibles.
B) An ideal $<\mathrm{p}\rangle$ in a PID is maximal if and only if p is an irreducible
C) In a PID, if an irreducible p divides $a b$, then either $p \mid a$ or $p \mid b$
D) If D is a PID, then $D[x]$ is a PID
51. Find all conjugates of $\sqrt{2}$ over \mathbb{Q} in the field \mathbb{C}.
A) 1 and $\sqrt{2}$
B) $-\sqrt{2}$ and $\sqrt{2}$
C) 1 and $-\sqrt{2}$
D) $1, \sqrt{2}$ and $-\sqrt{2}$
52. Find all conjugates of $3+\sqrt{2}$ over \mathbb{Q} in the field \mathbb{C}.
A) $3-\sqrt{2}$ only
B) 1 and $3-\sqrt{2}$
C) $3-\sqrt{2}$ and $3+\sqrt{2}$
D) $3+\sqrt{2}$ only
53. Find all conjugates of $\sqrt{3}+\sqrt{2}$ over \mathbb{Q} in the field \mathbb{C}.
A) $\sqrt{3}+\sqrt{2}$ and $\sqrt{3}-\sqrt{2}$
B) $\sqrt{3}-\sqrt{2}$ and $-\sqrt{3}-\sqrt{2}$
C) $\sqrt{3}-\sqrt{2}$ and $-\sqrt{3}+\sqrt{2}$
D) $\sqrt{3}+\sqrt{2}, \sqrt{3}-\sqrt{2},-\sqrt{3}+\sqrt{2}$ and $-\sqrt{3}-\sqrt{2}$
54. Find all conjugates of $i+\sqrt{2}$ over \mathbb{Q} in the field \mathbb{C}.
A) $i+\sqrt{2}$ and $i-\sqrt{2}$
B) $i+\sqrt{2}$ and $-i+\sqrt{2}$
C) $\mathrm{i}+\sqrt{2}, \mathrm{i}-\sqrt{2},-\mathrm{i}-\sqrt{2}$ and $-\mathrm{i}+\sqrt{2}$
D) $i-\sqrt{2}$ and $-i+\sqrt{2}$
55. Find all conjugates of $i+\sqrt{2}$ over \mathbb{R} in the field \mathbb{C}.
A) $\mathrm{i}+\sqrt{2}$ and $\mathrm{i}-\sqrt{2}$
B) $i+\sqrt{2}$ and $-i+\sqrt{2}$
C) $\mathrm{i}+\sqrt{2}, \mathrm{i}-\sqrt{2},-\mathrm{i}-\sqrt{2}$ and $-\mathrm{i}+\sqrt{2}$
D) $i-\sqrt{2}$ and $-i+\sqrt{2}$
56. Find all conjugates of $\sqrt{1+\sqrt{2}}$ over $\mathbb{Q}(\sqrt{2})$ in the field \mathbb{C}.
A) $\sqrt{1+\sqrt{2}}$ and $-\sqrt{1+\sqrt{2}}$
B) $\sqrt{1+\sqrt{2}}$ and $\sqrt{1-\sqrt{2}}$
C) $-\sqrt{1+\sqrt{2}}$ and $\sqrt{1-\sqrt{2}}$
D) $\sqrt{1+\sqrt{2}},-\sqrt{1+\sqrt{2}}$ and $\sqrt{1-\sqrt{2}}$
57. Consider the conjugation isomorphism $\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}:(\mathrm{Q}(\sqrt{5}, \sqrt{3}))(\sqrt{2}) \rightarrow(\mathrm{Q}$ $(\sqrt{5}, \sqrt{3}))(-\sqrt{2})$. Then the value of $\Gamma_{2}(\sqrt{3})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is
A) $\sqrt{3}$
B) $-\sqrt{3}$
C) $\sqrt{2}$
D) $\sqrt{5}$
58. Consider the conjugation isomorphism $\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}:(\mathbb{Q}(\sqrt{5}, \sqrt{3}))(\sqrt{2}) \rightarrow(\mathbb{Q}$ $(\sqrt{5}, \sqrt{3}))(-\sqrt{2})$. Then the value of $\Gamma_{2}(\sqrt{2}+\sqrt{5})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is
A) $\sqrt{2}+\sqrt{5}$
B) $\sqrt{2}-\sqrt{5}$
C) $-\sqrt{2}+\sqrt{5}$
D) $-\sqrt{2}-\sqrt{5}$
59. Consider the following conjugation isomorphisms
$\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}:(\mathbb{Q}(\sqrt{5}, \sqrt{3}))(\sqrt{2}) \rightarrow(\mathbb{Q}(\sqrt{5}, \sqrt{3}))(-\sqrt{2})$
$\Gamma_{3}=\Psi_{\sqrt{3},-\sqrt{3}}:(\mathbb{Q}(\sqrt{2}, \sqrt{5}))(\sqrt{3}) \rightarrow(\mathbb{Q}(\sqrt{2}, \sqrt{5}))(-\sqrt{3})$.
Then the value of $\left(\Gamma_{3} \Gamma_{2}\right)(\sqrt{2}+3 \sqrt{5})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is
A) $-\sqrt{2}+3 \sqrt{5}$
B) $\sqrt{2}+3 \sqrt{5}$
C) $\sqrt{2}-3 \sqrt{5}$
D) $-\sqrt{2}-3 \sqrt{5}$
60. Consider the automorphism $\Gamma_{3}=\Psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of Γ_{3} is
A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
B) $\mathbb{Q}(\sqrt{2}, \sqrt{5})$
C) $\mathbb{Q}(\sqrt{3}, \sqrt{5})$
D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
61. Consider the automorphism $\Gamma_{3}=\Psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of the automorphism $\Gamma_{3}{ }^{2}$ is
A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
B) $\mathbb{Q}(\sqrt{2}, \sqrt{5})$
C) $\mathbb{Q}(\sqrt{5}, \sqrt{3})$
D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
62. Consider the automorphisms $\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}$ and $\Gamma_{3}=\Psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of $\left\{\Gamma_{2}, \Gamma_{3}\right\}$ is
A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
B) $\mathbb{Q}(\sqrt{5})$
C) $\mathbb{Q}(\sqrt{3})$
D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
63. Consider automorphisms $\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}$ and $\Gamma_{5}=\Psi_{\sqrt{5},-\sqrt{5}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of the automorphism $\Gamma_{5} \Gamma_{2}$ is
A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
B) $\mathbb{Q}(\sqrt{3}, \sqrt{10})$
C) $\mathbb{Q}(\sqrt{5}, \sqrt{10})$
D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
64. Consider automorphisms $\Gamma_{2}=\Psi_{\sqrt{2},-\sqrt{2}}, \Gamma_{3}=\Psi_{\sqrt{3},-\sqrt{3}}$ and $\Gamma_{5}=\Psi_{\sqrt{5},-\sqrt{5}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of the automorphism $\Gamma_{5} \Gamma_{3} \Gamma_{2}$ is
A) $\mathbb{Q}(\sqrt{6}, \sqrt{10})$
B) $\mathbb{Q}(\sqrt{3}, \sqrt{10})$
C) $\mathbb{Q}(\sqrt{5}, \sqrt{10})$
D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
65. Let F be a finite field of characteristic p . Then the Frobenius automorphism $\sigma_{\mathrm{p}}: \mathrm{F} \rightarrow$ F is defined as
A) $\sigma_{p}(a)=a^{p}$ for $a \in F$
B) $\sigma_{p}(a)=a^{p}-a$ for $a \in F$
C) $\sigma_{p}(a)=a^{2}$ for $a \in F$
D) $\sigma_{p}(a)=p a$ for $a \in F$
66. Let E be a finite extension of a field F . Then the number of isomorphisms of E onto a subfield of \bar{F} leaving F fixed is called
A) the dimension $[E: F]$ of E over F
B) the index $\{\mathrm{E}: \mathrm{F}\}$ of E over F
C) the cardinality of E over F
D) none of the above
67. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $x^{p}-1$, for a prime p is
A) p
B) $\mathrm{p}-1$
C) p^{2}
D) p !
68. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $x^{3}-1$ in $\mathbb{Q}[x]$ is
A) 1
B) 2
C) 3
D) 0
69. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $x^{2}+3$ in $\mathbb{Q}[x]$ is
A) 0
B) 1
C) 2
D) None of the above
70. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $x^{4}-1$ in $\mathbb{Q}[x]$ is
A) 3
B) 1
C) 2
D) 4
71. The splitting field of the polynomial $x^{4}-1$ in $\mathbb{Q}[x]$ is
A) \mathbb{Q}
B) $\mathbb{Q}(\sqrt{2})$
C) $\mathbb{Q}(\sqrt{3})$
D) $\mathbb{Q}(i)$
72. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $\left(x^{2}-2\right)\left(x^{2}-3\right)$ in $\mathrm{Q}[\mathrm{x}]$ is
A) 1
B) 2
C) 3
D) 4
73. The splitting field of the polynomial $\left(x^{2}-2\right)\left(x^{2}-3\right)$ in $\mathbb{Q}[x]$ is
A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
B) $\mathbb{Q}(\sqrt{2})$
C) $\mathbb{Q}(\sqrt{3})$
D) \mathbb{Q}
74. The splitting field of the polynomial $x^{3}-2$ in $\mathbb{Q}[x]$ is
A) $\mathbb{Q}(\sqrt[3]{2}, i \sqrt{3})$
B) $\mathbb{Q}(\sqrt[3]{2})$
C) $\mathbb{Q}(\sqrt[3]{2}, i, \sqrt{3})$
D) $\mathbb{Q}(\sqrt{2})$
75. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial $\left(x^{2}-2\right)\left(x^{3}-2\right)$ in $\mathbb{Q}[x]$ is
A) 1
B) 6
C) 12
D) 2
76. The order of $\mathrm{G}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$ is
A) 1
B) 2
C) 3
D) 6
77. The order of $\mathrm{G}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$ is
A) 1
B) 2
C) 4
D) 6
78. Let F be a field and \bar{F} be the algebraic closure of F . If $\alpha \in \bar{F}$, then $\{\mathrm{F}(\alpha): \mathrm{F}\}$ is equal to
A) $[F(\alpha): F]$
B) $\operatorname{deg}(\alpha, F)$
C) the number of distinct zeros of $\operatorname{irr}(\alpha, F)$
D) can be infinite
79. Let $\mathrm{f}(\mathrm{x})$ be irreducible in $\mathbb{R}[x]$. If $\alpha \in \mathbb{C}$ is a zero of $\mathrm{f}(\mathrm{x})$, then the multiplicity of α is
A) always one
B) can be two
C) can be three
D) can be any positive integer
80. Let E be an extension of a field F such that $[E: F]=10$. Then which of the following is not a possible value for $\{\mathrm{E}: \mathrm{F}\}$?
A) 1
B) 2
C) 3
D) 5
81. Let E be an extension of a field F such that $[E: F]=12$. Then which of the following is not a possible value for $\{\mathrm{E}: \mathrm{F}\}$?
A) 1
B) 2
C) 3
D) 5
82. The number of subgroups of the Galois group of $G F\left(p^{n}\right)$ over \mathbb{Z}_{p} is
A) n
B) 2 n
C) $\phi(\mathrm{n})$
D) $d(n)$
83. The number of subgroups of the Galois group of $\operatorname{GF}\left(2^{5}\right)$ over \mathbb{Z}_{2} is
A) 2
B) 3
C) 4
D) 5
84. The number of subgroups of the Galois group of $\operatorname{GF}\left(2^{6}\right)$ over \mathbb{Z}_{2} is
A) 2
B) 3
C) 4
D) 5
85. If E is a finite separable extension of F , then which of the following is not true?
A) $\{\mathrm{E}: \mathrm{F}\} \neq[\mathrm{E}: \mathrm{F}]$
B) Each α in E is separable over F
C) For every α in $\mathrm{E}, \operatorname{irr}(\alpha, \mathrm{F})$ has all zeros of multiplicity one
D) There exists α in E such that $E=F(\alpha)$
86. Which of the following is not a perfect field?
A) \mathbb{Q}
B) \mathbb{Z}_{101}
C) $\mathbb{Z}_{5}(\mathrm{x})$
D) \mathbb{R}
87. Which of the following is not a perfect field?
A) \mathbb{C}
B) \mathbb{Z}_{17}
C) $\mathbb{Z}_{7}(x)$
D) \mathbb{R}
88. $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ is same as which one of the following?
A) $\mathbb{Q}(\sqrt{6})$
B) $\mathbb{Q}(\sqrt{2})$
C) $\mathbb{Q}(\sqrt[3]{2})$
D) $\mathbb{Q}\left(2^{\frac{1}{6}}\right)$
89. Which of the following is a primitive $4^{\text {th }}$ root of unity in \mathbb{C} ?
A) -1
B) 1
C) i
D) $\frac{-1+i \sqrt{3}}{2}$
90. Which of the following is a primitive $3^{\text {rd }}$ root of unity in \mathbb{C} ?
A) 1
B) i
C) $\frac{-1+i \sqrt{3}}{2}$
D) $\frac{1+i}{\sqrt{2}}$
91. Which of the following is a primitive $8^{\text {th }}$ root of unity in \mathbb{C} ?
A) i
B) $1+i$
C) $\frac{-1+i \sqrt{3}}{2}$
D) $\frac{1+i}{\sqrt{2}}$
92. The order of the Galois group of the $\mathrm{n}^{\text {th }}$ cyclotomic extension of \mathbb{Q} is
A) n
B) $\pi(\mathrm{n})$
C) $\phi(n)$
D) $d(n)$
93. The order of the Galois group of the $10^{\text {th }}$ cyclotomic extension of \mathbb{Q} is
A) 10 !
B) 10
C) 5
D) 4
94. The order of the Galois group of the $p^{\text {th }}$ cyclotomic extension of \mathbb{Q}, for a prime p is
A) $\mathrm{p}-1$
B) p
C) $\mathrm{p}+1$
D) p^{2}
95. The order of the Galois group of the $5^{\text {th }}$ cyclotomic extension of \mathbb{Q} is
A) 5
B) 2
C) 4
D) $5!$
96. The Galois group of the $p^{\text {th }}$ cyclotomic extension of \mathbb{Q}, for a prime p is isomorphic to
A) \mathbb{Z}_{p}
B) $\mathbb{Z}_{p} \backslash\{0\}$
C) $\mathbb{Z}_{\mathrm{p}-1}$
D) $\mathbb{Z}_{\mathrm{p}-1} \backslash\{0\}$
97. The Galois group of the $5^{\text {th }}$ cyclotomic extension of \mathbb{Q} is isomorphic to
A) \mathbb{Z}_{4}
B) $\mathbb{Z}_{4} \backslash\{0\}$
C) \mathbb{Z}_{5}
D) $\mathbb{Z}_{5} \backslash\{0\}$
98. The number of intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ including both \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is
A) 2
B) 3
C) 4
D) 5
99. Let K be the splitting field of $x^{3}-2$ over \mathbb{Q}. Then the order of $G(K / \mathbb{Q})$ is
A) 2
B) 3
C) 4
D) 6
100. The Galois group of the $5^{\text {th }}$ cyclotomic extension of \mathbb{Q} is
A) nonabelian
B) abelian, but not cyclic
C) cyclic
D) isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
