II Semester M Sc Mathematics

Advanced Abstract Algebra

MCQ

1. A field *E* is an extension field of a field *F* if A) E = FB) $F \leq E$ C) $E \leq F$ D) None of these 2. Which of the following is an example for transcendental number? A) $\sqrt{2}$ B) π C) *i* D) 2 3. Find the dimension of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} . B) 3 C) 5 A) 2 D) 1 4. Find the dimension of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} . A) 1 **B**) 4 C) ∞ D) 2 5. Select the number which is not an element of $\mathbb{Q}(\sqrt{2})$. C) $\sqrt[3]{2}$ A) 1 B) 4 D) 2 6. Which of these are not constructible numbers? C) $\sqrt{3}$ A) $\sqrt{2}$ B) π D) 4 7. Find an algebraic element over \mathbb{Q} . A) $\sqrt{2}$ B) *π* C) e D) $\pi + 1$ 8. Let *E* be a finite extension of degree n over a finite field *F*. If *F* has qelements, then *E* has elements. D) *q*^{*n*} A) *q* B) ng C) n + q9. Find a generator of \mathbb{Z}_{11}^* . B) 4 C) 5 D) 3 A) 2 10. Which of the following angle is not constructible? B) 20 C) 36 A) 72 D) 18 11. If E is a finite extension of a field F, then [E:F] = 1 if and only if A) E = FB) $F \leq E$ C) $E \leq F$ D) None of these 12. An extension field E of F is called algebraic if A) Some elements of *E* is algebraic over *F* B) *E* and *F* are same D) E is a subfield of F C) Every element of *E* is algebraic over *F* 13. If a field F is algebraically closed, then every polynomial f(x) of positive degree over F A) does not have a zero in FB) has at least one zero in FC) is irreducible over FD) cannot decide

 14. If C is the field of complex numbers, then A) algebraic closure of C is C itself B) algebraic closure of C does not exist C) algebraic closure of C is countable D) none of these 					
15. The algebraic closure of the field of real numbers \mathbb{R} is A) \mathbb{R} B) \mathbb{C} C) \mathbb{Q} D) does not exist					
16. The degree o A) 1			D) 4		
17. If $E = \mathbb{Q}(\sqrt{2} A)$ A) $E = F$				re not comparable	
18. The degree o A) 1	f $\mathbb{Q}(\sqrt{19})$ over B) 2		D) 0		
19. If $E = \mathbb{Q}(\sqrt{2})$ and $F = \mathbb{Q}(\sqrt{2} + \sqrt{5})$, then A) <i>E</i> is proper subfield of <i>F</i> B) <i>F</i> is proper subfield of <i>E</i> C) <i>E</i> is a vector space over <i>F</i> D) <i>E</i> and <i>F</i> are not comparable					
20. The multiplicative group of nonzero elements of a finite field isA) non abelianB) non cyclicC) cyclicD) not defined					
21. If $[E:F] = n$ and $[K:E] = m$, then $[K:F]$ is A) m^n B) n^m C) $m + n$ D) mn					
22. Find deg(√2 A) 1		C) 3	D) 0		
23. Find $[\mathbb{Q}(\sqrt[3]{2})]$ A) 1		C) 3	D) 0		
24. Find [ℚ (√2, A) 6	$\begin{array}{c} \sqrt{3},\sqrt{5} \): \mathbb{Q}].\\ B) \ 4 \end{array}$	C) 2	D) 8		
25. Find the number of primitive 8^{th} root of unity in <i>GF</i> (9). A) 1 B) 2 C) 3 D) 4					
26. Find the number of primitive 15^{th} root of unity in $GF(31)$.A) 1B) 2C) 3D) 8					
27. Which of the following is a PID? A) $\mathbb{Z} \times \mathbb{Z}$ B) $\mathbb{Z}[x]$ C) \mathbb{Z} D) $\mathbb{Z}[\sqrt{-5}]$					

28. Which of the following statement is true?					
A) $\mathbb{Z}[\mathbf{x}]$ is a PID	B) ℤ[-	B) $\mathbb{Z}[\sqrt{-3}]$ is a UFD			
C) $\mathbb{Z}[i]$ is a Euclidean domain	ain D) $\mathbb{Q}[z]$	x] is not a Euclidean domain			
29. Which of the following pol	29. Which of the following polynomial is primitive in $\mathbb{Z}[x]$?				
A) $4x^2 + 6x + 2$	B) 6x ²	+2x+3			
C) $3x^3 + 6x^2 - 9x + 3$	D) 2 x	$x^{2} + 12x + 14$			
30. Which of the following stat	tement is not true	?			
A) If D is a UFD, then $D[x]$		B) Every PID is a UFD			
C) Z is a UFD	1	D) Every PID is a Euclidean domain			
-,					
31. If D is a UFD, then which o	-				
		primitive polynomials in D[x] is primitive			
C) D is a PID D) D is a Euclidea	n domain			
32. Which of the following ele	ment is an irredu	cible of the indicated domain?			
A) 14 in Z	B) 2x – 10 in	$\mathbb{Z}[\mathbf{x}]$			
C) $2x - 10$ in $\mathbb{Q}[x]$	D) $x^2 - x - 6$	δ in $\mathbb{Q}[\mathbf{x}]$			
33. Let D be a Fuclidean doma	in Then which o	f the following statement is true?			
A) D is not a PID		but not a UFD			
C) D is a PID	· · · · · · · · · · · · · · · · · · ·	but not a PID			
C) D IS a FID	D) D is a UFL				
34. The gcd of 49349 and 15555 in \mathbb{Z} is					
A) 62 B) 51	C) 52	D) 61			
35. Which of the following star	tement is true?				
A) There exists a Euclidean domain, which is not a PID					
B) Every PID is a Euclidean domain					
C) If v is a Euclidean norm on a Euclidean domain D, then $v(1) \ge v(a)$ for nonzero					
a∈D					
D) If v is a Euclidean norm	on a Euclidean o	lomain D, then $v(a) = v(1)$ for a unit			
a ∈ D					
26 Which of the following is a	UED but not a I	2172			
36. Which of the following is a					
A) $\mathbb{R}[x]$ B) $\mathbb{C}[x]$	C) $\mathbb{Q}[x]$	D) $\mathbb{Z}[x]$			
37. Let N be the norm function	on $\mathbb{Z}[i]$. Then w	hich of the following is not true?			
A) $N(\alpha) \ge 0$		B) $N(\alpha) < 0$			
C) $N(\alpha) = 0$ if and only if	$\alpha = 0$	D) $N(\alpha\beta) = N(\alpha) N(\beta)$			

 38. Which one of the following is the factorization of the Gaussian integer 4 + 3i into a product of irreducibles in Z[i]? A) (1 + 2i)(1 - 2i) B) (1 + 2i)(2 - i) C) (1 + 2i)(2 + i) D) (1 - 2i)(2 - i)
C) $(1+2i)(2+i)$ D) $(1-2i)(2-i)$
39. The gcd of $8 + 6i$ and $5 - 15i$ in $\mathbb{Z}[i]$ is A) $7 - i$ B) $5 + i$ C) $7 + i$ D) $5 - i$
40. Which of the following statement is not true?
A) $\mathbb{Z}[i]$ is a PID B) $\mathbb{Z}[i]$ is a Euclidean Domain
C) Z[i] is an integral domain D) Every complex number is a Gaussian integer
41. Which of the following statement is true about $\mathbb{Z}[\sqrt{-5}]$?
A) $\mathbb{Z}[\sqrt{-5}]$ is an integral domain B) $\mathbb{Z}[\sqrt{-5}]$ is a unique factorization domain
C) $\mathbb{Z}[\sqrt{-5}]$ is a principal ideal domain D) $\mathbb{Z}[\sqrt{-5}]$ is a Euclidean domain
42. Let p be an odd prime in \mathbb{Z} . Then $p = a^2 + b^2$ for integers a and b in \mathbb{Z} if and only if
A) $p \equiv 1 \pmod{4}$ B) $p \equiv 2 \pmod{4}$ C) $p \equiv 3 \pmod{4}$ D) $p \equiv 0 \pmod{4}$
C) $p = 5(1100 4)$ D) $p = 0(1100 4)$
43. Let D be an integral domain with a multiplicative norm N. Then which of the
following is true?
A) $N(1) < 1$ B) $ N(u) = 1$ for every unit $u \in D$
C) $N(1) > 1$ D) There exists a unit $u \in D$ such that $ N(u) \neq 1$
44. Which of the following is a multiplicative norm on $\mathbb{Z}[\sqrt{-5}]$?
A) $N(a + b\sqrt{-5}) = a^2 + 5b^2$ B) $N(a + b\sqrt{-5}) = a^2 - 5b^2$
C) $N(a + b\sqrt{-5}) = a^2 + \sqrt{5}b^2$ D) $N(a + b\sqrt{-5}) = a^2 - \sqrt{5}b^2$
45. Which of the following is an irreducible in Z[i]?
A) 2 – 4i B) 5 C) 1 – 2i D) 2
46. Let p be an odd prime in \mathbb{Z} . Then p is irreducible in $\mathbb{Z}[i]$ if and only if
A) $p \equiv 1 \pmod{4}$ B) $p \equiv 2 \pmod{4}$ C) $p \equiv 3 \pmod{4}$ D) $p \equiv 0 \pmod{4}$
C) $p \equiv 3 \pmod{4}$ D) $p \equiv 0 \pmod{4}$
47. Let $R = \mathbb{Z}[\sqrt{-5}]$ and $\alpha = 3 + \sqrt{-5}$, then which of the following is true?
A) α is a prime B) α is an irreducible
C) R is a UFD D) R is not an integral domain

- 48. Which one of the given functions ϑ is not a Euclidean norm for the given integral domain
 - A) $\vartheta(n) = n^2$ for nonzero $n \in \mathbb{Z}$
 - B) $\vartheta(f(x)) = (\text{degree of } f(x)) \text{ for nonzero } f(x) \in \mathbb{Z}[x]$
 - C) $\vartheta(f(x)) = (\text{the absolute value of the coefficient of the highest degree nonzero term of } f(x))$ for nonzero $f(x) \in \mathbb{Z}[x]$
 - D) $\vartheta(n) = |n|$ for nonzero $n \in \mathbb{Z}$
- 49. The content of the polynomial $18x^2 12x + 48$ in $\mathbb{Z}[x]$ is A) 2 B) 3 C) 6 D) 12
- 50. Which of the following statement is not true?
 - A) In a PID, every nonzero element that is not a unit is a product of irreducibles.
 - B) An ideal in a PID is maximal if and only if p is an irreducible
 - C) In a PID, if an irreducible p divides ab, then either p | a or p | b
 - D) If D is a PID, then D[x] is a PID
- 51. Find all conjugates of $\sqrt{2}$ over \mathbb{Q} in the field \mathbb{C} .A) 1 and $\sqrt{2}$ B) $-\sqrt{2}$ and $\sqrt{2}$ C) 1 and $-\sqrt{2}$ D) 1, $\sqrt{2}$ and $-\sqrt{2}$
- 52. Find all conjugates of $3 + \sqrt{2}$ over \mathbb{Q} in the field \mathbb{C} . A) $3 - \sqrt{2}$ only B) 1 and $3 - \sqrt{2}$ C) $3 - \sqrt{2}$ and $3 + \sqrt{2}$ D) $3 + \sqrt{2}$ only
- 53. Find all conjugates of $\sqrt{3} + \sqrt{2}$ over \mathbb{Q} in the field \mathbb{C} . A) $\sqrt{3} + \sqrt{2}$ and $\sqrt{3} - \sqrt{2}$ B) $\sqrt{3} - \sqrt{2}$ and $-\sqrt{3} - \sqrt{2}$ C) $\sqrt{3} - \sqrt{2}$ and $-\sqrt{3} + \sqrt{2}$ D) $\sqrt{3} + \sqrt{2}$, $\sqrt{3} - \sqrt{2}$, $-\sqrt{3} + \sqrt{2}$ and $-\sqrt{3} - \sqrt{2}$
- 54. Find all conjugates of $i + \sqrt{2}$ over \mathbb{Q} in the field \mathbb{C} .A) $i + \sqrt{2}$ and $i \sqrt{2}$ B) $i + \sqrt{2}$ and $-i + \sqrt{2}$ C) $i + \sqrt{2}$, $i \sqrt{2}$, $-i \sqrt{2}$ and $-i + \sqrt{2}$ D) $i \sqrt{2}$ and $-i + \sqrt{2}$
- 55. Find all conjugates of $i + \sqrt{2}$ over \mathbb{R} in the field \mathbb{C} .A) $i + \sqrt{2}$ and $i \sqrt{2}$ B) $i + \sqrt{2}$ and $-i + \sqrt{2}$ C) $i + \sqrt{2}$, $i \sqrt{2}$, $-i \sqrt{2}$ and $-i + \sqrt{2}$ D) $i \sqrt{2}$ and $-i + \sqrt{2}$

56. Find all conjugates of $\sqrt{1 + \sqrt{2}}$ over $\mathbb{Q}(\sqrt{2})$ in the field \mathbb{C} . A) $\sqrt{1 + \sqrt{2}}$ and $-\sqrt{1 + \sqrt{2}}$ B) $\sqrt{1 + \sqrt{2}}$ and $\sqrt{1 - \sqrt{2}}$ C) $-\sqrt{1 + \sqrt{2}}$ and $\sqrt{1 - \sqrt{2}}$ D) $\sqrt{1 + \sqrt{2}}$, $-\sqrt{1 + \sqrt{2}}$ and $\sqrt{1 - \sqrt{2}}$ 57. Consider the conjugation isomorphism $\Gamma_2 = \Psi_{\sqrt{2}, -\sqrt{2}} : (Q(\sqrt{5}, \sqrt{3}))(\sqrt{2}) \rightarrow (Q(\sqrt{5}, \sqrt{3}))(-\sqrt{2})$. Then the value of $\Gamma_2(\sqrt{3})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is A) $\sqrt{3}$ B) $-\sqrt{3}$ C) $\sqrt{2}$ D) $\sqrt{5}$

58. Consider the conjugation isomorphism $\Gamma_2 = \Psi_{\sqrt{2}, -\sqrt{2}} : (\mathbb{Q} (\sqrt{5}, \sqrt{3})) (\sqrt{2}) \rightarrow (\mathbb{Q} (\sqrt{5}, \sqrt{3})) (-\sqrt{2})$. Then the value of $\Gamma_2(\sqrt{2} + \sqrt{5})$ in $\mathbb{Q} (\sqrt{2}, \sqrt{3}, \sqrt{5})$ is A) $\sqrt{2} + \sqrt{5}$ B) $\sqrt{2} - \sqrt{5}$ C) $-\sqrt{2} + \sqrt{5}$ D) $-\sqrt{2} - \sqrt{5}$

- 59. Consider the following conjugation isomorphisms $\Gamma_{2} = \Psi_{\sqrt{2}, -\sqrt{2}} : (\mathbb{Q} (\sqrt{5}, \sqrt{3})) (\sqrt{2}) \rightarrow (\mathbb{Q} (\sqrt{5}, \sqrt{3})) (-\sqrt{2})$ $\Gamma_{3} = \Psi_{\sqrt{3}, -\sqrt{3}} : (\mathbb{Q} (\sqrt{2}, \sqrt{5})) (\sqrt{3}) \rightarrow (\mathbb{Q} (\sqrt{2}, \sqrt{5})) (-\sqrt{3}).$ Then the value of $(\Gamma_{3} \Gamma_{2}) (\sqrt{2} + 3\sqrt{5})$ in $\mathbb{Q} (\sqrt{2}, \sqrt{3}, \sqrt{5})$ is A) $-\sqrt{2} + 3\sqrt{5}$ B) $\sqrt{2} + 3\sqrt{5}$ C) $\sqrt{2} - 3\sqrt{5}$ D) $-\sqrt{2} - 3\sqrt{5}$
- 60. Consider the automorphism $\Gamma_3 = \Psi_{\sqrt{3}, -\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of Γ_3 is A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ B) $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ C) $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$

61. Consider the automorphism $\Gamma_3 = \Psi_{\sqrt{3}, -\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of the automorphism Γ_3^2 is A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ B) $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ C) $\mathbb{Q}(\sqrt{5}, \sqrt{3})$ D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$

62. Consider the automorphisms $\Gamma_2 = \Psi_{\sqrt{2}, -\sqrt{2}}$ and $\Gamma_3 = \Psi_{\sqrt{3}, -\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of { Γ_2, Γ_3 } is A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ B) $\mathbb{Q}(\sqrt{5})$ C) $\mathbb{Q}(\sqrt{3})$ D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$

63. Consider automorphisms $\Gamma_2 = \Psi_{\sqrt{2}, -\sqrt{2}}$ and $\Gamma_5 = \Psi_{\sqrt{5}, -\sqrt{5}}$ of \mathbb{Q} ($\sqrt{2}, \sqrt{3}, \sqrt{5}$). Then the fixed field of the automorphism $\Gamma_5 \Gamma_2$ is A) \mathbb{Q} ($\sqrt{2}, \sqrt{3}$) B) \mathbb{Q} ($\sqrt{3}, \sqrt{10}$) C) \mathbb{Q} ($\sqrt{5}, \sqrt{10}$) D) \mathbb{Q} ($\sqrt{2}, \sqrt{3}, \sqrt{5}$)

64. Consider automorphisms $\Gamma_2 = \Psi_{\sqrt{2}, -\sqrt{2}}$, $\Gamma_3 = \Psi_{\sqrt{3}, -\sqrt{3}}$ and $\Gamma_5 = \Psi_{\sqrt{5}, -\sqrt{5}}$ of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Then the fixed field of the automorphism $\Gamma_5 \Gamma_3 \Gamma_2$ is A) $\mathbb{Q}(\sqrt{6}, \sqrt{10})$ B) $\mathbb{Q}(\sqrt{3}, \sqrt{10})$ C) $\mathbb{Q}(\sqrt{5}, \sqrt{10})$ D) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$

65. Let F be a finite field of characteristic p. Then the Frobenius automorphism $\sigma_p : F \rightarrow F$ is defined as A) $\sigma_p(a) = a^p$ for $a \in F$ B) $\sigma_p(a) = a^p - a$ for $a \in F$ C) $\sigma_p(a) = a^2$ for $a \in F$ D) $\sigma_p(a) = pa$ for $a \in F$

 66. Let E be a finite extension of a field F. Then subfield of F leaving F fixed is called A) the dimension [E : F] of E over F C) the cardinality of E over F 	-				
67. The degree (over \mathbb{Q}) of the splitting field over p is					
A) p B) p - 1	C) p^2 D) p!				
68. The degree (over Q) of the splitting field over A) 11B) 2C) 3					
69. The degree (over ℚ) of the splitting field over A) 0 B) 1 C) 2	er \mathbb{Q} of the polynomial $x^2 + 3$ in \mathbb{Q} [x] is D) None of the above				
70. The degree (over Q) of the splitting field over A) 3 B) 1 C) 2					
71. The splitting field of the polynomial $x^4 - 1$ is A) Q B) $\mathbb{Q}(\sqrt{2})$ C) $\mathbb{Q}(\sqrt{2})$	-				
 72. The degree (over Q) of the splitting field over in Q[x] is A) 1 B) 2 C) 3 					
73. The splitting field of the polynomial ($x^2 - 2$ A) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ B) $\mathbb{Q}(\sqrt{2})$					
74. The splitting field of the polynomial $x^3 - 2$ in \mathbb{Q} [x] is A) $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ B) $\mathbb{Q}(\sqrt[3]{2})$ C) $\mathbb{Q}(\sqrt[3]{2}, i, \sqrt{3})$ D) $\mathbb{Q}(\sqrt{2})$					
75. The degree (over \mathbb{Q}) of the splitting field over \mathbb{Q} of the polynomial (x ² - 2) (x ³ - 2) in \mathbb{Q} [x] is					
A) 1 B) 6	C) 12 D) 2				
76. The order of $G(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$ is A) 1 B) 2 C) 3	D) 6				
77. The order of $G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ is A) 1 B) 2 C) 4 D) 6					
78. Let F be a field and \overline{F} be the algebraic closure of F. If $\alpha \in \overline{F}$, then {F(α) : F} is equal to					
to A) $[F(\alpha):F]$	B) $deg(\alpha, F)$				
C) the number of distinct zeros of $irr(\alpha, F)$ D) can be infinite					

C) can be th	A) always one C) can be three		 ∈ C is a zero of f(x), then the multiplicity of α is B) can be two D) can be any positive integer 		
	extension of a f ible value for {		t $[E : F] = 10$. Then which of the following		
A) 1	B) 2	C) 3	D) 5		
	extension of a f ible value for {		t $[E : F] = 12$. Then which of the following		
A) 1	B) 2	C) 3	D) 5		
82. The number	of subgroups o	f the Galois gr	pup of $GF(p^n)$ over \mathbb{Z}_p is		
A) n	B) 2n	C) $\phi(n)$	D) $d(n)$		
83. The number	of subgroups of	f the Galois or	pup of $GF(2^5)$ over \mathbb{Z}_2 is		
A) 2	B) 3	C) 4	D) 5		
	,	,	, 		
		-	pup of $GF(2^6)$ over \mathbb{Z}_2 is		
A) 2	B) 3	C) 4	D) 5		
85. IT E is a finit	e separable ext	ension of F, the	en which of the following is not true?		
 A) {E : F} = B) Each α in C) For every 	≠ [E : F] n E is separable	over F F) has all zeros	en which of the following is not true? of multiplicity one		
 A) {E : F} = B) Each α in C) For every D) There ex 	≠ [E : F] n E is separable y α in E, irr(α, I ists α in E such	Fover F F) has all zeros that $E = F(\alpha)$	of multiplicity one		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the 	≠ [E : F] n E is separable y α in E, irr(α, I ists α in E such	over F F) has all zeros that E = F(α) ot a perfect fie	of multiplicity one		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 	 [E : F] n E is separable y α in E, irr(α, I ists α in E such e following is n B) Z₁₀₁ 	Fover F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$	of multiplicity one d? D) R		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the 	 [E : F] n E is separable y α in E, irr(α, I ists α in E such e following is n B) Z₁₀₁ 	over F F) has all zeros that $E = F(\alpha)$ ot a perfect fiel C) $\mathbb{Z}_5(x)$ ot a perfect fiel	of multiplicity one ld? D) R ld?		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 	 ≠ [E : F] n E is separable y α in E, irr(α, I ists α in E such e following is n B) Z₁₀₁ e following is n B) Z₁₇ 	F over F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$	of multiplicity one d? D) R d? D) R		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in 	 ≠ [E : F] n E is separable y α in E, irr(α, I ists α in E such e following is n B) Z₁₀₁ e following is n B) Z₁₇ 	Fover F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the fo	of multiplicity one d? D) R d? D) R llowing?		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in 	 ≠ [E : F] n E is separable y α in E, irr(α, I ists α in E such e following is n B) Z₁₀₁ e following is n B) Z₁₇ 	Fover F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the fo	of multiplicity one d? D) R d? D) R llowing?		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in A) Q(√6) 	$\neq [E : F]$ n E is separable y α in E, irr(α , I ists α in E such e following is n B) \mathbb{Z}_{101} e following is n B) \mathbb{Z}_{17} is same as whic B) $\mathbb{Q}(\sqrt{2})$	F over F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the for C) $\mathbb{Q}(\sqrt[3]{2})$	of multiplicity one d? D) R d? D) R llowing?		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in A) Q(√6) 89. Which of the 	$\neq [E : F]$ n E is separable y α in E, irr(α , I ists α in E such e following is n B) \mathbb{Z}_{101} e following is n B) \mathbb{Z}_{17} is same as whic B) $\mathbb{Q}(\sqrt{2})$	over F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the for C) $\mathbb{Q}(\sqrt[3]{2})$ primitive 4 th reference	of multiplicity one d? D) \mathbb{R} d? D) \mathbb{R} llowing? D) $\mathbb{Q}(2^{\frac{1}{5}})$ bot of unity in \mathbb{C} ?		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in A) Q(√6) 89. Which of the A) -1 	$\neq [E : F]$ n E is separable y α in E, irr(α , H ists α in E such e following is n B) \mathbb{Z}_{101} e following is n B) \mathbb{Z}_{17} is same as whic B) $\mathbb{Q}(\sqrt{2})$ e following is a B) 1	Fover F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the for C) $\mathbb{Q}(\sqrt[3]{2})$ primitive 4 th re C) i	of multiplicity one d? D) \mathbb{R} d? D) \mathbb{R} llowing? D) $\mathbb{Q}(2^{\frac{1}{6}})$ pot of unity in \mathbb{C} ? D) $\frac{-1+i\sqrt{3}}{2}$		
 A) {E : F} = B) Each α in C) For every D) There ex 86. Which of the A) Q 87. Which of the A) C 88. Q(√2, ³√2) in A) Q(√6) 89. Which of the A) -1 90. Which of the 	$\neq [E : F]$ n E is separable y α in E, irr(α , H ists α in E such e following is n B) \mathbb{Z}_{101} e following is n B) \mathbb{Z}_{17} is same as whic B) $\mathbb{Q}(\sqrt{2})$ e following is a B) 1	over F F) has all zeros that $E = F(\alpha)$ ot a perfect field C) $\mathbb{Z}_5(x)$ ot a perfect field C) $\mathbb{Z}_7(x)$ h one of the for C) $\mathbb{Q}(\sqrt[3]{2})$ primitive 4 th reformed C) i	of multiplicity one d? D) \mathbb{R} d? D) \mathbb{R} llowing? D) $\mathbb{Q}(2^{\frac{1}{6}})$ pot of unity in \mathbb{C} ? D) $\frac{-1+i\sqrt{3}}{2}$ pot of unity in \mathbb{C} ?		

91. Which of the following is a primitive 8^{th} root of unity in \mathbb{C} ?

A) i	B) 1+ i	C) $\frac{-1+i\sqrt{3}}{2}$	D) $\frac{1+i}{\sqrt{2}}$
------	---------	-----------------------------	---------------------------

- 92. The order of the Galois group of the n^{th} cyclotomic extension of \mathbb{Q} is A) n B) $\pi(n)$ C) $\phi(n)$ D) d(n)
- 93. The order of the Galois group of the 10th cyclotomic extension of Q is
 A) 10!
 B) 10
 C) 5
 D) 4
- 94. The order of the Galois group of the p^{th} cyclotomic extension of \mathbb{Q} , for a prime p is A) p-1 B) p C) p+1 D) p^2
- 95. The order of the Galois group of the 5th cyclotomic extension of \mathbb{Q} is A) 5 B) 2 C) 4 D) 5!
- 96. The Galois group of the pth cyclotomic extension of \mathbb{Q} , for a prime p is isomorphic to A) \mathbb{Z}_p B) $\mathbb{Z}_p \setminus \{0\}$ C) \mathbb{Z}_{p-1} D) $\mathbb{Z}_{p-1} \setminus \{0\}$
- 97. The Galois group of the 5th cyclotomic extension of \mathbb{Q} is isomorphic to A) \mathbb{Z}_4 B) $\mathbb{Z}_4 \setminus \{0\}$ C) \mathbb{Z}_5 D) $\mathbb{Z}_5 \setminus \{0\}$

98. The number of intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ including both \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is A) 2 B) 3 C) 4 D) 5

- 99. Let K be the splitting field of $x^3 2$ over \mathbb{Q} . Then the order of G(K/ \mathbb{Q}) is A) 2 B) 3 C) 4 D) 6
- 100.The Galois group of the 5^{th} cyclotomic extension of \mathbb{Q} isA) nonabelianB) abelian, but not cyclicC) cyclicD) isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$