
Auto-Detect: Data-Driven Error Detection in Tables
Zhipeng Huang∗

University of Hong Kong
zphuang@cs.hku.hk

Yeye He
Microsoft Research

yeyehe@microsoft.com

ABSTRACT
Given a single column of values, existing approaches typically
employ regex-like rules to detect errors by finding anomalous values
inconsistent with others. Such techniques make local decisions
based only on values in the given input column, without considering
a more global notion of compatibility that can be inferred from large
corpora of clean tables.

We proposeAuto-Detect, a statistics-based technique that lever-
ages co-occurrence statistics from large corpora for error detection,
which is a significant departure from existing rule-based methods.
Our approach can automatically detect incompatible values, by
leveraging an ensemble of judiciously selected generalization lan-
guages, each of which uses different generalizations and is sensitive
to different types of errors. Errors so detected are based on global
statistics, which is robust and aligns well with human intuition of
errors. We test Auto-Detect on a large set of public Wikipedia
tables, as well as proprietary enterprise Excel files. While both of
these test sets are supposed to be of high-quality, Auto-Detect
makes surprising discoveries of over tens of thousands of errors in
both cases, which are manually verified to be of high precision (over
0.98). Our labeled benchmark set on Wikipedia tables is released
for future research1.

ACM Reference Format:
Zhipeng Huang and Yeye He. 2018. Auto-Detect: Data-Driven Error Detec-
tion in Tables. In SIGMOD’18: 2018 International Conference on Management
of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3183713.3196889

1 INTRODUCTION
Data errors in relational tables are ubiquitous, and are much more
common than what most would expect or believe. Some studies
report striking numbers such as 90% of large spreadsheets (with
more than 150 rows) have errors [28, 47]. Even in professionally-
produced spreadsheets (by firms like KPMG), recent studies suggest
that as much as 24% spreadsheets have errors [48]. It is estimated
that the average cell error rate is between 1% to 5% [47, 49]. Further-
more, not only are errors in spreadsheets common, they have also
led to numerous “horror-stories” for enterprises, with embarrassing

∗Work done at Microsoft Research.
1Data is released at https://github.com/zphuangHKUCS/Auto-Detect-released-data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196889

news headlines and substantial financial losses, as evidenced by the
growing list of incidents compiled by EuSpRIG [6].

Commercial offerings. Simple versions of error detection are
offered as features in various commercial systems. We discuss a few
representatives here; more discussions can be found in Appendix A.

Microsoft Excel [1]. Excel pre-defines a set of 9 simple error check-
ing rules, among which the well-known ones are “Number stored as
text”, and “Formulas inconsistent with other formulas in the region”
(when a contiguous region of cells all share the same formula yet
one cell in the region uses a different formula).

Trifacta [8]. Trifacta recognizes around 10 built-in “data types”
(IP-address, phone-numbers, email, etc.) based on predefined pat-
terns [9]. Values in a column not conforming to patterns associated
with a data-type are flagged as errors. In addition, Trifacta offers
a rich set of visual-histograms (e.g., distribution of string lengths)
for values in a column, which help users identify potential qual-
ity issues. Similar functionalities are also available in systems like
Paxata [3] and Talend [7].

OpenRefine/GoogleRefine [2]. OpenRefine does not detect errors
directly but provides a text clustering feature that groups together
similar values in a column, so that users can see whether simi-
lar values may be misspelled variations of canonical values (e.g.,
“Mississippi” and the misspelled “Missisippi” are clustered together).

Existing research in the literature. While existing commer-
cial offerings in the space of error detection are mostly limited
to manually-defined rules (partly to ensure high accuracy), in the
literature a variety of techniques have been proposed for automatic
error detection that broadly fall into two groups.

Single-column methods. Single-column approaches detect errors
only based on values within an input column. An influential method
in this category was proposed in Potter’s Wheel [50], which uses
minimum description length (MDL) [13] to summarize values in
each column into suitable patterns. Data values not conforming to
the inferred patterns can be recognized as outliers/errors.

Multi-column methods. When certain multi-column data quality
rules (e.g. function-dependencies and other types of first-order
logic) are provided (either defined or inferred), such rules can be
used to detect non-conforming values. A long and fruitful line of
work has been devoted to this area (e.g., [15, 23, 27, 51]).

Design considerations. As general context, this work on error
detection is conducted in the context of a self-service data prepara-
tion project and in collaboration with a commercial data preparation
system, which targets the broad audience of end-users such as data
scientists and business analysts. The overarching goal is to democ-
ratize data preparation by making it “self-service” and accessible to
users beyond developers and IT staff. We note that this is in line
with a general industry trend reported by Gartner [5].

https://doi.org/10.1145/3183713.3196889
https://github.com/zphuangHKUCS/Auto-Detect-released-data
https://doi.org/10.1145/3183713.3196889

(a) Extra dot (b) Mixed dates (c) Inconsistent weights (d) Score placeholder

(e) Song lengths (f) Parenthesis (g) Scores (h) Mixed dates

Figure 1: Sample errors (in dashed rectangles) that are detected from realWikipedia tables (data retrieved on 08/21/2017). There
is an estimated 300K such errors in Wikipedia tables, based on a sample of manually labeled tables (Section 4.3).

(a) Extra space (b) Mixed phones

Figure 2: A sample of errors detected from real Excel spread-
sheets crawled from a large enterprise.

Since the system in question targets a broad audience of non-
technical users (who may not be familiar with functional depen-
dencies and other types of quality rules), there are a few desiderata
for error-detection.

First, the detection needs to be automatic and works out-of-box
for end-users, much like standard spell-checkers in Microsoft Word
or Google Docs, as opposed to requiring non-technical users to
understand and define rules with first-order logic. We would like
it to work like a “spell-checker for data” without needing users to
understand or invoke it.

Second, since we aim to automatically detect errors, sometimes
without users asking for it, this sets a very high bar in terms of
precision, as users would quickly lose confidence if the system keeps
generating spurious alerts. Therefore, in this work we make high
precision (e.g., over 0.95) a primary focus. Note that good recall may
also be important in certain scenarios, such as when users want to
spend more time on their high-value data sets, and are willing to
go down a ranked list to inspect less confident predictions.

Third, although our approach is data-driven and uses large table
corpora, the memory footprint of our algorithm needs to be modest,
as in some cases error-detection will be performed client-only on
user machines, which typically have limited memories.

Data errors considered. In this workwe focus on single-column
error detection, as it is widely applicable, covering a surprisingly
large number and variety of real errors. Figure 1 and Figure 2 show

a small sample of real errors discovered using Auto-Detect on
Wikipedia tables and Excel spreadsheet tables (crawled from a large
enterprise), respectively.

It is not hard to see quality problems marked by red rectangles
in the context of other values in the columns. Although humans
can still understand these tables perfectly fine (Wikipedia tables
are after all, mainly intended for human eyeball consumption and
are thus “good enough” in that sense), such inconsistencies can
post serious challenges for machines. Specifically, programs and
queries that process such data are often built with assumptions of
how data is expected to be formatted, without accounting for all
possible inconsistencies. For example, given the table in Figure 1(b),
an aggregate query that groups-by month will try to extract the
month field by splitting dates using “.” (the expected date format).
Inconsistent values (such as the one with “/”) can lead to exceptions
or even spurious results, polluting downstream pipelines.

Global vs. local reasoning. Given these considerations, the
single-column approach from Potter’s Wheel [50] seems like a
natural choice, as it finds common patterns from values in a column
based on MDL, and can then predict values not consistent with
patterns as errors. However, we find that this approach falls short
in terms of both precision and recall. While we will give a deeper
analysis later, the key reason lies in the fact that it only leverages
local information of values in the input column, without considering
a more global notion of compatibility.

Consider, for example, a column Col-1 with values { “0”, “1”, “2”,
. . . , “999”, “1,000” }. Note that since the last value has a separator “,”
in an MDL sense the most efficient way to represent these values is
to use \d{1-3}, and treat “1,000” as an outlier for separate encoding.
The last value would thus be predicted as incompatible and flagged
as a potential error, which however is incorrect. Similarly, for a
column with mostly integers but a few floating-point numbers such
as Col-2 = { “0”, “1”, “2”, . . . , “99”, “1.99” }, the last floating number
“1.99” will again be incorrectly treated as an outlier/error based on
the MDL principle. We find data columns like these to very common

in the wild (from the web table corpora we find 2.2 million and
1.8 million columns with mixed patterns as described in Col-1 and
Col-2, respectively). Since there are many similar scenarios like
these, predictions produced based on local MDL would be incorrect
more often than acceptable.

The flip side of this is MDL’s inability to detect true errors. For
instance, given a column Col-3 with 50%-50% mix of two sets of
incompatible date values { “2011-01-01”, “2011-01-02”, . . . } and {
“2011/01/01”, “2011/01/02”, . . . }, potentially collected from two data
sources. From an MDL’s perspective these values are best captured
using two patterns \d{4}-\d{2}-\d{2} and \d{4}/\d{2}/\d{2}, and as
such a local MDL approach would not find errors. In reality people
would intuitively regard the two date formats as incompatible and
a possible quality issue.

It is interesting to note that if we change the mixture of the two
formats in Col-3 to 99%-1%, MDL would then predict the values in
the 1% bucket to be outliers/errors. This mental exercise underlines
the key weakness of the MDL-based approach – conceptually, data
compatibility/incompatibility is a global notion, irrespective of local
value distribution within a specific column. However, MDL is by
definition designed to capture representational efficiency, which is
inherently a local notion that changes with intra-column distribu-
tion. Although MDL works reasonably well in the absence of global
information, it does not always align well with humans intuition
of data compatibility.

Potter’s Wheel is one example local approach. There are a large
number of local error-detection techniques in the literature [11, 32,
40, 45, 54], many of which measure pattern-distance between val-
ues using standard pattern generalizations. Such pattern-level dis-
tance is again local and often a poor indicator of compatibility/data-
quality, for values like “1,000,000” and “100” can be syntactically
dissimilar (and thus predicted as errors by local approaches), but
semantically compatible when their co-occurrence in columns is
analyzed more globally across all existing tables.

Motivated by these observations, and the fact that large table cor-
pora are now readily available, we propose to predict single-column
data quality issues by reasoning about data compatibility more glob-
ally across large table corpora, denoted by C. We formulate this
as an optimization problem of selecting a set of generalization lan-
guages based on statistics in C, whose ensemble can best predict
errors, subject to memory and precision requirements.

Consider the Col-1 above again. Intuitively, using global statistics
from C, we can observe that numbers with separators “,” (i.e., those
over 1000) do co-occur oftenwith numbers containing no separators
(those under 1000) in same columns, and from that we can conclude
that values in Col-1 are not that unusual/suspicious. Similarly in Col-
2 since we can observe that integers and floating-point numbers
also co-occur frequently in same columns, this case is unlikely
an error despite a skewed local distribution. Finally, in the case
of Col-3, because we do not see the pattern \d{4}-\d{2}-\d{2} and
\d{4}/\d{2}/\d{2} co-occur often in same columns of C (most date
columns are either in one format or the other, but are rarely mixed
together), we can reliably predict this as a compatibility error.

We evaluate the proposed Auto-Detect approach by testing it
on a large number of real Wikipedia tables and enterprise Excel
tables. While both are supposed to be of high-quality, our approach
detects over tens of thousands of errors with over 0.98 precision in

both cases, a surprisingly large number considering the fact that
these tables are supposed to be clean.

2 PROBLEM STATEMENT
In this section, we will first introduce a few preliminaries before
defining our problem.

2.1 Preliminary: Tables and Compatibility
In this work we propose a novel statistics-based error detection using
large table corpora. Specifically, we use a corpus with over 100M
web tables, extracted from Bing’s index [18]. Since we focus on
single-column error detection, we extract over 350M columns from
these tables with some simple pruning. In addition, we obtain Excel
spreadsheets from the web and extract around 1.4M spreadsheet
columns.

In order to assess the quality of the table corpora, we sample
uniformly at random 1000 table columns from Wikipedia tables
and general Web tables, respectively, and manually label each col-
umn as either “dirty”, when any quality issue can be identified; or
“clean” otherwise. Our evaluation shows that 93.1% of the sampled
Web tables are clean, while 97.8% Wikipedia tables are clean. This
suggests that the data is reasonably clean and may be leveraged as
training corpora for error detection.

Let C = {Ci } be the set of columns extracted from table corpora,
where each column Ci = {vj } consists of a set of values. Since C
is generally clean, the global intra-column co-occurrence of any
two given values (v1, v2) across all columns in C provides reliable
statistical evidence of their compatibility. Intuitively, the more v1
and v2 co-occur in columns of C, the more compatible they should
be.

We use a statistical measure called point-wise mutual information
(PMI) [25] based on information theory to quantify compatibility.
Let c(v) = |{C | C ∈ C,v ∈ C}| be the number of columns with
value v , and c(v1,v2) = |{C | C ∈ C,v1 ∈ C,v2 ∈ C}| be the
number of columns with bothv1 andv2. We can define p(v) = c(v)

|C |
be the probability of seeing the valuev in a column, and p(v1,v2) =
c(v1,v2)
|C | be the probability of seeing both v1 and v2 in the same

column. PMI can be defined as follows:
PMI(v1,v2) = log

p(v1,v2)

p(v1)p(v2)
(1)

PMI takes the range of (−∞,∞). Note that if v1 and v2 are
co-occurring completely randomly by chances, then p(v1,v2) =

p(v1)p(v2), and thus p(v1,v2)
p(v1)p(v2)

= 1, making PMI(v1,v2) = 0 for no
correlation. If v1 and v2 are positively correlated and co-occurring
more often, then PMI(v1,v2) > 0; otherwise PMI(v1,v2) < 0.

PMI can be normalized into [−1, 1] usingNormalized PMI (NPMI);

NPMI(v1,v2) =
PMI(v1,v2)
− logp(v1,v2)

(2)

Example 1. Let v1 = “2011”, and v2 = “2012”. Suppose we
have |C| = 100M columns, and suppose c(v1) = 1M, c(v2) =
2M, c(v1,v2) = 500K , respectively. We can compute p(v1) = 0.01,
p(v2) = 0.02 and p(v1,v2) = 0.005, from which we calculate
NPMI(v1,v2) = 0.60 > 0, indicating a strong statistical co-occurrence.
Intuitively, this suggests that the two values are highly compatible
in same columns.

Let v1 = “2011”, and v3 = “January-01”, we can run a sim-
ilar computation to find that NPMI(v1,v3) = −0.47 < 0, with

Figure 3: A generalization tree

c(v1) = 1M, c(v3) = 2M,, and c(v1,v3) = 10. In this case, because
v1,v3 co-occur highly infrequently relative to their individual fre-
quency/popularity in C, the pair can be regarded as incompatible.
It would be suspicious if they do co-occur in same columns.

2.2 Generalization For Error Detection
While NPMI is clearly promising for identifying incompatible val-
ues, applying it directly onC is actually problematic because of data
sparsity. For example, given two values “1918-01-01” and “2018-12-
31”, intuitively they are perfectly compatible since these dates have
the same format “\d{4}-\d{2}-\d{2}”. However, despite a large C, it
oftentimes still could not fully capture all possible co-occurrence of
compatible values. In this case the two values may never co-occur
in the same column inC, making NPMI = −1, and thus an incorrect
prediction that the pair is incompatible.

Our observation is that generalizing values into patterns and
abstracting away specific values (e.g., “1918” vs. “2018”) can over-
come data sparsity, because in this example the resulting patterns
for both will be the same “\d{4}-\d{2}-\d{2}”. Since pattern-level
co-occurrence is more reliable in general, our idea is to generalize
values into patterns before using Equation 2 to measure the patterns
compatibility. As we will see, there exists a large variety of possible
generalizations, and a key challenge is to judiciously select the best
combination of such generalizations for the best overall prediction.

Generalization. Given an English alphabet Σ = {αi }, Figure 3
shows one common generalization tree as example2. Such general-
ization trees can be defined as follows.

Definition 1. Generalization Tree. A tree H is a generaliza-
tion tree defined over an alphabet Σ, if each of its leaf nodes cor-
responds to a character α ∈ Σ, and each of its intermediate nodes
represents the union of characters in all its children nodes.

Given this one generalization treeH in Figure 3, there are already
a variety of ways to generalize a singlev using H , because different
characters can be generalized into nodes at different levels in H .
We define each such generalization as a generalization language.

Definition 2. Generalization Language. Given a generaliza-
tion tree H defined over alphabet Σ, a generalization language
L : Σ→ H maps each character to a tree node.

Given a value v = α1α2 · · ·αt and a generalization language L,
we can generalize v by applying the mapping L on each character
of v , to produce:

L(v) = L(α1)L(α2) · · · L(αt) (3)

2We focus on the English alphabet in this work, but generalization trees can be
produced similarly for other languages.

Example 2. L1 and L2 are two example generalization languages,
each of which corresponds to a “cut” of the tree shown in Figure 3.

L1(α) =

{
α , if α is a symbol
\A, otherwise (4)

L2(α) =

\L, if α ∈ {a, · · · , z,A, · · · ,Z }
\D, if α ∈ {0, · · · , 9}
\S, if α is a symbol

(5)

Given two values v1 =“2011-01-01” and v2 = “2011.01.02” in the
same column, using L1 we have

L1(v1) = “\A[4]-\A[2]-\A[2]”
L1(v2) = “\A[4].\A[2].\A[2]”

where “\A[4]” denotes four consecutive “\A” (the root node of the
tree). Computing a PMI-based statistics like in Example 1 but this
time at the pattern-level, we can find out that NPMI(L1(v1),L1(v2)) =
−0.5, suggesting that the two patterns seldomly co-occur in C, and
thus likely incompatible.

Using L2 on the other hand, produces the indistinguishable
L2(v1) = L2(v2) = “\D[4]\S\D[2]\S\D[2]”, suggesting that L2 is
ineffective in detecting this incompatibility.

Now consider a different pair of valuesv3 =“2014-01” andv4 =“July-
01”, using L1 we have L1(v3) = L1(v4) = “\A[4]-\A[2]”, which
would not be able to detect this incompatibility. In comparison, L2
produces

L2(v3) = “\D[4]\S\D[2]”
L2(v4) = “\L[4]\S\D[2]”

Pattern-level co-occurrence reveals that NPMI(L2(v3),L2(v4)) =
−0.6, suggesting that they are incompatible. For this particular
example, L2 turns out to be a better choice over L1.

Note that in this example for simplicity we only analyze one
value pair. When given a columnC , we can output all incompatible
pairs {(vi ,vj)|vi ,vj ∈ C,NPMI(L(vi),L(vj)) ≤ θ }, or just the most
incompatible one for users to inspect.

Example 2 shows that different languages are often complemen-
tary in detecting different types of incompatibility, since they are
designed to generalize different. This suggests that we need to
combine the predictive power of different generalization languages.

It is worth noting that different generalization language from a
given H makes trade-offs in a number of dimensions:

(1) Sensitivity vs. robustness. Intuitively, the more a language
generalizes, the more robust it becomes (to combat data sparsity),
but at the cost of becoming less sensitive. For example, consider a
trivial language Lleaf that does not generalize at all (i.e., keep all
characters at the leaf level). Lleaf is more “sensitive” in detecting
issues, but when data is sparse this can also lead to false-positive
predictions (e.g., detecting “1918-01-01” and “2018-12-31” as incom-
patible like we discussed earlier). On the other extreme, consider a
language Lroot that generalizes everything to the root node. Lroot is
very robust to data sparsity but also becomes “insensitive” to true
issues. Naturally, we want to find languages with the right balance
of sensitivity and robustness from H , which is partly determined
by the amount of training corpus C available (the less data we have
in C, the more we may need to generalize).

(2) Space consumption. Apparently, different languages consume
different amounts of spaces. Lleaf, for example, requires over 100GB

of memory for co-occurrence statistics. The more a language gen-
eralizes into higher up nodes in H , the less space it requires. As we
discussed earlier, since Auto-Detect needs to be client-only, the
statistics it relies on need to have a small memory footprint (paging
from disks would not be interactive and thus not an option). In
practice, Auto-Detect is given a memory budget of M that can
vary across different scenarios.

The hierarchy H in Figure 3 gives rise to a total of 452310333
(or 6 × 1051) possible generalization languages. In practice, we can
impose restrictions to require certain classes of characters like
[A-Z] to always generalize to the same level. There are still 144
candidate languages with such restrictions. Denote the space of
candidate languages by L. As discussed above, individually these
languages have different sensitivity/robustness (corresponding to a
precision/recall trade-off), and require different amounts of spaces.
Furthermore, when multiple languages are used, they can have
varying degrees of redundancy/complementarity. A key challenge
is to carefully select the best subset of languages in L for the best
error-detection. We formally define the problem as follows.

Definition 3. Data-driven Single-column Error-Detection.
Given a table corpus C, a generalization tree H , a set of candidate
languages L induced by H , and test columns T as input; select
L′ ⊂ L that use corpus statistics derived from C to detect as many
compatibility errors as possible in T, subject to a memory budget
ofM (e.g. 200MB), and a precision requirement of P (e.g., 0.95).

Note that the problem in Definition 3 is a general statement that
can be instantiated differently, as we will see in the next section.

3 AUTO-DETECT
In this section, we study instantiations of the the problem in Defi-
nition 3. Note that it leaves two aspects open: (1) how to quantify
precision on a test set T to meet the precision requirement P , and
(2) how to aggregate results from a selected set of languages L′.

3.1 Distant-supervision: generate training data
One approach to measure precision is to quantify precision using
hand-labeled test columns T, on which the system will run in the
future to predict errors. However, it is often difficult if not impossi-
ble to anticipate what T would look like in the future, and even if
we have T, labeling it is expensive and do not scale well.

To overcome these issues, instead of relying on supervised meth-
ods and human labelers to measure precision, we resort to an un-
supervised approach, known as distant-supervision in the litera-
ture [46], which has been used in a variety of scenarios such as
relation-extraction [46], sentiment analysis [29], and knowledge-
base completion [53]. Such techniques build a large amount of
training data cheaply, where individual label may not be perfect,
but in aggregate the vast amount of training data can often lead to
better models compared to a small amount of hand-labeled training
data. We apply the general principle here – by automatically build-
ing large scale training data with labels, we can estimate precision
results of different languages in L and make informed decisions to
select L′.

Specifically, we use distant-supervision to automatically construct
test case as follows. We select columns C+ ⊂ C whose values are
verified to be statistically compatible using NPMI scores. From
these, we sample a column C1 ∈ C+ and take a value u ∈ C1,

T+ T−

t+1 t+2 t+3 t+4 t+5 t−6 t−7 t−8 t−9 t−10
L1 0.5 0.5 -0.7 0.4 0.5 -0.5 0.9 -0.6 -0.7 0.2
L2 0.5 0.5 0.4 -0.8 0.5 0.9 -0.6 0.2 -0.7 -0.7
L3 0.4 0.5 0.5 0.6 0.5 -0.6 -0.6 -0.7 -0.5 0.9

Table 1: Generated training examples, where t+i = (ui ,vi ,+),
t−i = (ui ,vi ,−). Scores are produced based on NPMI after gen-
eralization in Lj is performed.

and mix u with another column C2 ∈ C+ to produce a synthetic
column C ′2 = C2 ∪ {u}. This will, with high likelihood, make C ′2
a “dirty” column in which u is the sole value incompatible with
others (we detect if u and C2 are too “similar” and drop such cases).
For any C ′2 = C2 ∪ {u}, we can generate a pair of incompatible
value (u,v,−), using any v ∈ C2, where the negative sign indicates
the label of the pair. Repeating this process will generate a set of
dirty columns C−, and training examples T− = {(u,v,−)}, all of
which are incompatible pairs. Similarly we can generate compatible
pairs from C+ as T+ = {(v1,v2,+)|v1,v2 ∈ C,C ∈ C+}. Using
T = T+ ∪ T− as labeled test cases, we can now effectively “run”
each language L ∈ L on T and estimate the precision of L using the
labels in T.

We describe details of this data generation step in Appendix F.
We generate a total of over 100M examples in T. Similar to the
rationale used in distant-supervision, we hope the large amount of
(imperfect) training data would in aggregate enable good language
selections.

Example 3. Table 1 shows an example T, where T+ = {t+1 , · · · t
+
5 }

(compatible examples) and T− = {t−6 , · · · t
−
10} (incompatible ones).

We have t+i = (ui ,vi ,+), and t−i = (ui ,vi ,−), corresponding to a
pair of values and their label.

From Example 2, the incompatible examples may be generated as
t−6 = (“2011-01-01”, “2011.01.02”, -), and t

−
7 = (“2014-01”, “July-01”, -),

etc., where the value pairs are sampled from different columns inC+.
On the other hand, the compatible examples are generated as t+1 =
(“2011-01-01”, “2012-12-31”, +), t+2 = (“July-01”, “September-20”, +),
etc., and are sampled from the same columns in C+.

Given the training corpus T = T+ ∪ T−, we can now estimate
precision results for different languages. Specifically, for a given
language Lk , and for each example t = {u,v, ·} ∈ T, we can gener-
alize valuesu,v using language Lk , and compute the corresponding
NPMI score, henceforth written as sk (u,v) = NPMI(Lk (u),Lk (v))
for simplicity. Note that this is just like Example 1 but calculated
based on patterns generalized using Lk . Table 1 shows example
scores for all training examples for three different languages.

For a specific choice of score threshold θ for Lk , all examples
with scores below θ can be predicted as possible errors. We can
then estimate the precision of Lk on T, by simply computing the
ratio of the number of correctly predicted examples to the total
number of predictions (those with scores lower than θ). In Table 1,
for instance, if we use threshold θ = −0.5 for L1, then {t+3 , t

−
6 , t
−
8 ,

t−9 } will be predicted as errors. From the ground-truth labels we
can see that three such predictions are correct (those with “-”) and
one is incorrect, thus resulting in a precision of 3

4 = 0.75.

3.2 Aggregate predictions from languages
Suppose we have a set of languages L′, for any t ∈ T, each language
Lk ∈ L′ produces a different score and a prediction. The next

question is how to aggregate these individual scores in a principled
way, to produce an optimized prediction for (u,v).

Because languages are designed to generalize differently, each
language will be sensitive to different types of errors. As we illus-
trated in Example 2 for instance, the L1 shown in Figure 3 will
generalize all non-punctuation to the root node while keeping sym-
bols as is. Therefore it will be sensitive to incompatible punctuation,
but not issues in letters and digits. As a result, t−6 = (“2011-01-01”,
“2011.01.02”, -) in Table 1 can be detected by L1, but not t−7 = (“2014-
01”, “July-01”, -). On the other hand, L2 in Figure 3 can detect t−7
but not t−6 .

Naive aggregation such as average-scores (Avgsk (u,v)) ormajority-
voting is conceptually inadequate (and indeed lead to sub-optimal
experimental results), because for the first case of t−6 we should
completely ignore the prediction of L2, while in the second case of
t−7 we should ignore the prediction of L1. Observing the comple-
mentarity of L1 and L2, intuitively an effective approach is to select
both languages from L (for better coverage). Then to predict a pair
of values as incompatible we only need one language to be confi-
dent about its incompatibility (with a low sk (u,v) score), regardless
of predictions from other languages (even if they all predict the pair
as perfectly compatible). Intuitively this is because each language
is designed to be sensitive to different types of errors, and naturally
has “blind spots” for certain issues that their generalizations are
not designed to detect.

Dynamic-threshold (DT) aggregation. This intuition inspires
a first aggregation approach specifically designed for the character-
istics of generalization languages that we call dynamic-threshold. In
this approach, we dynamically determine a separate threshold ®θk
for each Lk , and predict all cases below ®θk as incompatible, which
can be written as:

Hk (T, ®θk) = {(u,v)|(u,v) ∈ T, sk (u,v) ≤ ®θk }
We can define Hk (T+, ®θk) and Hk (T−, ®θk) similarly. A natural way
to aggregate resultsHk across all languages is to union their predic-
tions, because as discussed a confident prediction of incompatibility
from one language is often sufficient, because other languages may
be designed to generalize differently and thus insensitive to this
error in question.

This produces a first instantiation of Definition 3, which uses
auto-generated T from distant-supervision, and dynamic-threshold
(DT) aggregation. For a given set of L′ and their associated thresh-
olds ®θ , precision and recall can be calculated using the labels in T,
defined as:

P(L′, ®θ) =
|
⋃
Lk ∈L′ Hk (T−, ®θk)|

|
⋃
Lk ∈L Hk (T, ®θk)|

R(L′, ®θ) =
|
⋃
Lk ∈L′ Hk (T−, ®θk)|

|T− |

Definition 4. Error-Detection with DT aggregation. Given
a corpus of table columns C, a generalization tree H , and a set of
candidate languages L induced byH , select L′ = {Lk } ⊂ L and their
corresponding threshold scores ®θk , such that the DT aggregation
can detect as many compatibility errors as possible on the training
set T, subject to a memory budget ofM , and a precision requirement

of P . Formally,
maximize L′⊆L

®θ ∈[−1,1]|L′ |
R(L′, ®θ)

s .t .
∑
Li ∈L′

size(Li) ≤ M

P(L′, ®θ) ≥ P

(6)

It can be shown that this problem is not only NP-hard but also
hard to approximate, intuitively because there are too many degrees
of freedom (i.e., both L′ and ®θ).

Theorem 1. The problem in Definition 4 is NP-hard and cannot
be approximated within a factor of 2(logn)

δ
for some δ , unless

3SAT ∈ DTIME(2n
3
4 +ϵ
).

This hardness result is obtained using a reduction from the dens-
est k-subhypergraph problem (a proof can be found in Appendix C).

With this negative result, we are unlikely to get algorithms with
good approximation guarantees. In light of this, we propose a more
tractable formulation that optimizes L′ using predetermined ®θ .

Static-threshold (ST) aggregation. Instead of allowing each
language Lk ∈ L′ to pick a separate threshold θk , and optimize the
union of the predictions in L′ to maximize recall while maintaining
a precision P , we can instead require each language Lk ∈ L′ to be
of at least precision P on T. This is equivalent to finding a ®θk such
that:

Pk (®θk) =
|Hk (T−, ®θk)|

|Hk (T, ®θk)|
≥ P (7)

Note that because labeled examples in T is generated in Sec-
tion 3.1, given a precision requirement P , we can compute the ®θk
required for each language Lk as

argmax ®θk , s.t. Pk (θ ′) ≥ P , ∀θ ′ < ®θk (8)
With this, we can uniquely determine ®θk for a fixed P . We write

Hk (T−, ®θk) as H−k for short to denote the set of incompatible exam-
ples covered by Lk (and likewise H+k), when the context of P and
®θk is clear.
Example 4. Continue with Example 3 and Table 1. Suppose we

are given a precision requirement P = 0.75. Based on Equation (8),
for L1 we can get ®θ1 = −0.5, because with this threshold we have
H+1 = {t

+
3 } and H

−
1 = {t

−
6 , t
−
8 , t
−
9 }, producing a precision result of

P1(®θ1) =
|H+1 |

|H+1 |+ |H
−
1 |
= 3

4 = 0.75.
Similarly, from Table 2, we can compute that for L2, the desired

threshold is ®θ2 = −0.6, for which the H+2 = {t
+
4 }, H

−
2 = {t

−
7 , t
−
9 ,

t−10} and the resulting precision is 0.75. Finally for L3 the ®θ3 can
be computed as −0.5, where H+3 = ∅, H

−
3 = {t

−
6 , t
−
7 , t
−
8 , t
−
9 } for a

precision of 1.

Now that ®θk for each language Lk is individually determined, in
the optimization problem we can focus on selecting a subset L′ ⊂ L
that maximizes the coverage on T−.

Definition 5. Error-Detection with ST aggregation. Given
a corpus of table columns C, a generalization tree H , and a set of
candidate languages L induced by H , select L′ = {Lk } ⊂ L, where
each Lk has a precision requirement of P , such that the union can

Algorithm 1 Greedy algorithm for Auto-Detect
1: G ← ∅, curr_size ← 0, LC ← L
2: while LC , ∅ do
3: L′C ← {L|L ∈ LC , size(L) + curr_size ≤ M}

4: L∗ ← argmaxLi ∈L′C
|
⋃
Lj ∈G H−j ∪ H−i |− |

⋃
Lj ∈G H−j |

size(Li)
5: G ← G ∪ {L∗}
6: curr_size ← curr_size + size(L∗)
7: LC ← L′C − L

∗

8: Lk ← argmaxLi ∈L,size(Li)≤M |H
−
i |

9: if |
⋃
Lj ∈G H−j | ≥ |H

−
k | then

10: return G
11: else
12: return {Lk }

detect as many compatibility errors as possible on the training set
T, subject to a memory budget ofM . Formally,

maximize L′⊂L R(L′, ®θ)

s .t .
∑
Li ∈L′

size(Li) ≤ M

Pk (®θk) ≥ P

(9)

Theorem 2. The problem defined in Definition 5 is NP-hard.
A proof of this can be found in Appendix D.
Approximation Algorithm for ST-aggregation. Despite its

hardness, the problem of ST-aggregation is more tractable than DT-
aggregation. We use the greedy algorithm in Algorithm 1 inspired
by [39], which has a constant approximation ratio. The first part of
this algorithm (line 2-7) iteratively find a languageL∗ from the candi-
date set LC , whose addition into the current selected set of candidate
language G, will result in the biggest incremental gain, defined as
the coverage of new incompatibility cases divided by language size,

written as L∗ = argmaxLi ∈L′C
|
⋃
Lj ∈G H−j ∪ H−i |− |

⋃
Lj ∈G H−j |

size(Li)
. We it-

eratively expand the candidate set G using L∗, until no further
candidates can be added without violating the memory constraint.
At the end of this, we additionally compute the best single language
Lk = argmaxLi ∈L,size(Li)≤M |H

−
i | (line 8). Finally, we compare the

coverage of Lk and G, and return the better option as the result L′
(line 9-12).

Lemma 3. The procedure in Algorithm 1 has an approximation ra-
tio of 1

2 (1−
1
e), for the optimization problem described in Definition 5.

A proof of this can be found in Appendix E, which leverages
techniques for the budgeted maximum coverage problem [39].

Example 5. Continue with Example 4 and Table 2, suppose the
memory size constraint M = 500MB, precision requirement P =
0.75, we can compute the thresholds ®θk and their coverage H+k as
in Example 4.

Using Algorithm 1, we first pick L1 into G because it has the
largest

|H−k |
size(Lk)

. In the second round, we can only pick L2 into
G because if L3 is selected the memory budget would be violated
(200+ 400 > 500). We now haveG = {L1,L2} as our first candidate
solution, which covers all five cases in T−. Then, we pick the best
singleton language as a second candidate solution, which in this

size θk H−k H+k Pk
L1 200MB -0.5 {t−6 , t

−
8 , t
−
9 } {t+3 } 0.75

L2 300MB -0.6 {t−7 , t
−
9 , t
−
10} {t+4 } 0.75

L3 400MB -0.5 {t−6 , t
−
7 , t
−
8 , t
−
9 } ∅ 1.0

Table 2: Example of language selection
case would be {L3}, because it has the best coverage (4 cases in T−).
We can compare the two candidates and use {L1,L2} as it outper-
forms {L3}. This procedure guarantees a 1

2 (1 −
1
e)-approximation

discussed in Lemma 3.

Once a set of languages L′ is selected, given a new pair of values
(v1,v2), we can predict them as incompatible if and only if:

∃Lk ∈ L′, sk (v1,v2) ≤ ®θk
3.3 Statistical Smoothing of Rare Events
Recall that we use Equation 2 to compute NPMI as the compatibility
of two patterns L(v1) and L(v2). Such computation is known to be
reliable when we have seen enough data with large occurrence
count of c(L(v1)) and c(L(v2)). However, due to data sparsity, in
some cases c(L(v1)), c(L(v2)) and c(L(v1),L(v2)) all→ 0. In such
case NPMI scores computed will fluctuate substantially with small
changes of c(L(v1),L(v2)).

One approach is to “smooth out” co-occurrence counts using a
technique known as smoothing in the NLP community [20]. We
use the Jelinek-Mercer smoothing [58], which computes a weighted
sum of the observed c(L(v1),L(v2)) and its expectation assuming
independence E(L(v1),L(v2)) =

c(p1)·c(p2)
N , where N is the total

number of columns.

ĉ(L(v1),L(v2)) = (1− f) · c(L(v1),L(v2))+ f · E(L(v1),L(v2)) (10)
where f is the smoothing factor between 0 and 1. Our experiments
suggest that smoothed computation of compatibility substantially
improves quality results.

3.4 Sketch-based Memory Optimization
As discussed in Section 2, for each language L, in order to com-
pute NPMI between two patterns L(v1),L(v2), we need to maintain
two types of statistics in memory: (i) the occurrence count of pat-
tern L(v1) and L(v2) in C, respectively, and (ii) the co-occurrence
count of L(v1) and L(v2) in same columns in C. Note that storing
co-occurrence counts in (ii) for all pairs with non-zero values as
dictionary entries (L(v1),L(v2)) → Cnt12) is clearly expensive, be-
cause for many candidate languages there exist hundreds of millions
of such pairs.

Storing these co-occurrence counts as dictionaries for each lan-
guage often requires hundreds of MB and multiple GB. We find
that a configuration with a good combination of languages for
high recall often require a substantial memory budget (e.g., 4 GB),
which may still be too heavyweight as this feature is intended for
client-side. To further optimize the memory requirement, we use a
probabilistic counting method called count-min (CM) sketch [26],
initially developed for estimating item frequencies in streaming
data using sub-linear space.

Recall that CM sketches maintain a two dimensional array M
withw columns and d rows (wherewd is substantially smaller than
the total number of items for space reduction). Each row i ∈ [w]
is associated with a hash function hi from a family of pairwise

independent H . When a key-value pair (k,v) arrives, we increment
the entry at row i , column position hi (k), written asM[i,hi (k)], by
v , for all row i ∈ [w]. At query time, the estimated for a key k is

v̂(k) = miniM[i,hi (k)]
It can be shown that withw = ⌈e/ϵ⌉ and d = ⌈ln1/δ⌉, we can guar-
antee v̂(k) ≤ v(k)+ϵN with probability 1−δ , whereN =

∑
k ∈K v(k)

is the total item values. In other words, with high probability v̂(k)
will not overestimate its true value v(k) by too much.

We adapt CM sketch to improve space required for storing co-
occurrence. Specifically, we show empirically that the co-occurrence
counts in real table corpus follows a power-law, which allows a
sharper bound of accuracy to be used.

Applying CM sketches to compress co-occurrence dictionaries
drastically reduces memory sizes used by language, often by orders
of magnitude (e.g., from 4GB to 40MB), without much impact on
counting accuracy or precision/recall loss in error detection, as we
will verify in our experiments.

4 EXPERIMENTS
4.1 Datasets
We use five different table corpora in our experiments for training
and testing. We use training to refer to the process of deriving
co-occurrence statistics with that corpus, which is then used to
optimize Auto-Detect for selecting languages L′ and caliberating
θk as described in Section 3; and we use testing to refer to executing
L′ on the corpus to predict errors.

This will test how well Auto-Detect generalizes across tables
with different characteristics, and more specifically training on one
corpus (e.g., public web tables) and testing in a very different corpus
(e.g., proprietary enterprise spreadsheets), which is clearly more
challenging and useful than training and testing on disjoint subset
of the same corpus.
•WEB is a set of over 350M table columns from web tables, which
are extracted from Bing’s index.
•WIKI is a subset of WEB within the wikipedia.org domain, with
a total of around 30M table columns. As one could expect, WIKI
is of high quality since these Wikipedia pages are collaboratively
edited by millions of users3, which often ensures a high standard of
quality. We use 100K randomly sampledWIKI columns as a difficult
test corpus to see if we can identify quality issues from these tables
(they are obviously excluded fromWEB when used for training).
• Pub-XLS is a corpus of public spreadsheet files (e.g., .xls and .xlsx)
crawled from the web, with a total of 1.4M columns.
• Ent-XLS is a corpus of proprietary spreadsheet files crawled
from a large enterprise, with 3.2M columns. These are sophisticated
commercial-grade spreadsheets with complex designs and formulas.
Like WIKI we expect it to be of high quality, so we also sample
100K columns as a testing corpus.
• CSV is a collection of 26 public available spreadsheet files that
we compiled from online sources (e.g., tutorials, demos and online
courses) that are known to have quality issues. These were used as
demos by various data cleaning systems. We hand-labeled quality
problems in these files that result in a total of 441 test columns.

We use WEB and Pub-XLS as training corpora, because (1) they
are large corpora with reasonably clean tables, and (2) these tables

3https://en.wikipedia.org/wiki/Wikipedia:Who_writes_Wikipedia

Train Test
name WEB Pub-XLS WIKI Ent-XLS CSV
#col 350M 1.4M 100K 100K 441

Table 3: Summary of table corpora used.
are publicly available so Auto-Detect can be replicated by others.
Furthermore, because these corpora already cover a diverse variety
of content, we can reasonably hope that Auto-Detect trained on
these corpora can generalize and work well across different testing
corpora (WIKI, Ent-XLS and CSV). Table 3 provides a summary of
the statistics of these training/testing corpora.

The partially-labeledWIKI data set, as well as raw results of all
algorithms compared in this work, are now released and publicly
available4. A key reason why we choose to release this benchmark
data is to address the general lack of large-scale benchmarks for
error-detection in the current literature. We hope this data will help
reproducibility and facilitate future research.

4.2 Methods Compared
• Fixed-Regex (F-Regex). Commercial systems such as Trifacta
and PowerBI employ predefined regex to first detect data types of
a given column. Values not consistent with known regex will be
marked as potential errors. For example, a regex for email may be
“.*@.*\..*”, and values not consistent with this regex will be predicted
as errors. For this approach we use regex patterns of a commercial
system. Errors are ranked by confidence to produce precision/recall,
where the confidence is defined as the percentage of values in the
same column that are actually consistent with known regex.
• Potter’s Wheel (PWheel) [50]. Potter’s Wheel is a pioneering
system for interactive data cleaning. One of its novel features is
the ability to generate suitable patterns for values in a column
using the MDL principal. Values not consistent with the produced
patterns can be predicted as outliers/errors. We implement the
approach reported in [50]. Similar to F-Regex, errors are ranked by
the percentage of values consistent with inferred patterns.
• dBoost [45]. dBoost is a type-specific method for known types
using predefined expansion rules. For example, observing that date
time can be stored as integers, all integer columns can then be
interpreted as dates and expanded into fields such as year, month,
day, day-of-week, etc. Distributions of these derived fields can then
be analyzed to find outliers that may be errors. We use the default
setting reported in [45], i.e., with θ = 0.8 and ϵ = 0.05. Predictions
are ranked by their levels of deviation for precision/recall.
• Linear [11]. Linear is a linear-complexity framework proposed
in the data mining community for detecting “exception sets” that
are anomalous from input data. The framework can be instantiated
with different functions to measure “dissimilarity” for a set of val-
ues, and we use a hand-tuned dissimilarity function suggested in
the original paper defined over regular expression patterns. This
method scans over all values, and iteratively broadens the regex
pattern to accommodate values it encounters, while computing
dissimilarity scores for each step. Predicted errors are ranked by
the dissimilarity score for precision/recall.
•Linear-Pattern (LinearP).Observing that Linear performs poorly
because its generalization is too coarse-grained, we additionally
test a modified method called LinearP that first transforms values

4Data is released at https://github.com/zphuangHKUCS/Auto-Detect-released-data.

https://en.wikipedia.org/wiki/Wikipedia:Who_writes_Wikipedia
https://github.com/zphuangHKUCS/Auto-Detect-released-data

0.0

0.2

0.4

0.6

0.8

1.0

100 200 500 1000

p
re

ci
si

o
n
@

k

k

(a) WIKI

Auto-Detect
Linear

LinearP

F-Regex
PWheel
dBoost

CDM
LSA

SVDD

DBOD
LOF

Union

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50

p
re

ci
si

o
n
@

k

k

(b) CSV

Figure 4: Quality results using manually labeled ground truth

k v1 v2
1 1935/1982/2011 2000
2 2009 27-11-2009
3 1999 2013.
4 1963 1983.
5 2008 2009.
6 1865. 1874
7 1976 198.
8 1,87 5875 CR
9 ITF $50.000 WTA International
10 August 16, 1983 1985

Table 4: Top-10 predictions of incom-
patible values in WIKI

using our generalization tree (using \D, \L, etc.) before running
Linear. This indeed substantially improves the quality of Linear as
we will see in our experiments.
•Compression-based dissimilarity measure (CDM) [38]. This
approach proposes an interesting and parameter-free way to mea-
sure distance between two strings by leveraging off-the-shelf com-
pression algorithms. Observing that data size after compression
often correlates well with data redundancy, the distance between
two strings x and y is defined as CDM(x ,y) = c(xy)

c(x)+c(y) , where
c(x) is the size of x after compression, and c(xy) is the size of x
concatenated with y after compression. We use standard general-
ization to convert values into patterns, and invoke the standard
zip compression to compute the CDM distance, which is used to
produce a ranked list of outliers as proposed in [38].
• Local search algorithm (LSA) [32]. Utilizing the observation
that entropy often describes the regularity and consistency of a set
of values, the LSA approach uses an optimization based formulation
for outlier detection, by defining outliers as the subset of values
whose removal leads to the largest reduction in entropy. We use
the LSA procedure on patterns generated from input values to find
the most likely errors, ranked by their reduction in entropy.
• Support vector data description (SVDD) [54]. SVDD is an out-
lier detection method inspired by SVM. Under a suitable definition
of distance between values, SVDD assigns a cost for describing
values that fall in a “ball” of certain center and radius, as well as
a cost for describing values that are outside of the “ball”, which
are effectively outliers. The ball with minimum description cost is
used and values outside of the ball are predicted outliers. We use an
alignment-like definition of patterns distance [22], and rank errors
by their distance to the ball center.
• Distance-based outlier detection (DBOD) [40]. DBOD is an
efficient method to find outliers in large databases. A value v is
an outlier in DBOD if the distance to its closest neighbor v ′ is
over some threshold D, i.e., minv ′,v dist(v,v ′) > D. We use the
same pattern distance as in SVDD, and rank the outliers by their
corresponding distance.
• Local outlier factor (LOF) [16]. This approach defines an LOF
score for the degree to which a data point v may be classified as
an outlier based on the density of data points in v’s neighborhood.
We rank predictions based on their LOF scores.
• Union. This is an approach that unions predictions from all
ten baseline methods. Predictions are taken from each method at

given precision levels (based on ground truth labels) to produce an
aggregate prediction.
• Auto-Detect. This is the method proposed in this work. By de-
fault, we use bothWEB and Pub-XLS for training, and smoothing
factor f = 0.1. As discussed we rank prediction (vi ,vj) ∈ C by the
maximum estimated precision maxvi ,vj ∈C,Lk ∈L′ Pk (sk (vi ,vj)).

4.3 Manual Evaluation of Prediction Quality
To be sure about the precision of the errors automatically detected
by each system, we first ask a human judge to manually inspect
top-K results of each method, and provide a true/false/not-sure
label for each predicted error. Our quality metric is Precision@K =
true-errors@K

K , which is simply the precision at position K.
For the WIKI data set, we run each method on 100K columns

sampled from WIKI to produce predicted errors ranked by confi-
dence. For each method, from the top-1000 predictions, we manu-
ally label 100 predictions sampled from each of the range: [0-100],
[100-200], [200-500] and [500-1000], respectively, and calculate the
corresponding result for Precision@K .

Figure 4(a) shows the results on WIKI. We can see that Auto-
Detect has a very high precision of over 0.98 across the top-1000
results. Most predicted errors indeed make intuitive sense, as was
shown in Figure 2. Given that there are a total of 30M columns
inWIKI, and our sub-sample of 100K produces at least 980 errors,
we can extrapolate using two-tailed t-distribution to infer that if
we were to label all predictions from Auto-Detect, we will find
294K ± 24K true errors in WIKI (99% confidence interval). The fact
that we can detect around three-hundred thousand errors inWIKI
is both surprising and encouraging – we initially expectWIKI to
be squeaky clean, but the sheer number of errors detected shows
the ubiquity of data quality issues and the effectiveness of Auto-
Detect.

PWheel performs better than F-Regex and dBoost, because PWheel
can generate specific patterns based on input values, which is more
flexible that can better handle diverse input data compared to F-
Regex and dBoost, both of which require rigid and predefined
patterns. Union achieves a good performance overall, but is not as
good as PWheel.

Table 4 shows the top-10 predictions by Auto-Detect on WIKI.
Most of these value pairs are indeed incompatible, for example an
extra dot at the end of numbers are predicted to be highly unlikely
(in comparison, a dot in the middle of numbers are often floating-
point numbers that frequently co-occur with integer numbers, thus
not predicted as errors at all).

For the CSV data set there is a total of 441 test columns, we man-
ually label results produced by each method and report a complete
quality evaluation, again using Precision@K .

Figure 4(b) shows the results. We can see that Auto-Detect
again outperforms alternative methods. F-Regex performs better
compared to other methods on this test set, because a large fraction
of test columns in CSV can be captured by F-Regex’s predefined
regex patterns (e.g., date formats).

4.4 Auto-Evaluation of Prediction Quality
Because labeling data manually across all methods is expensive
and cannot scale to a large number of analysis we would like to
perform (relatively recall, precision at lower K, etc.). In order to
facilitate large scale evaluations, we design an automatic evaluation.
Specifically, we programmatically generate test cases by sampling a
“dirty” valuevd from columnC1 andmixing it with a “clean” column
C2 to produce a test columnC2 ∪ {vd }, where the goal is to predict
vd as a likely error. We manually design and tune a compatibility
score to make sure that vd is indeed inconsistent with C2 (more
details in Appendix F). We manually inspect a large number of test
cases so generated to ensure that they are indeed correct. While
such an automatic-evaluation is never perfect, we find the results
to correlate well with those using manually labeled ground truth.

For both WIKI and Ent-XLS, we generate 5K dirty test cases this
way, and mixing them with clean 5K, 25K, and 50K clean columns
(with a dirty/clean ratios of 1:1, 1:5 and 1:10, respectively). We again
use Precision@K to measure quality. To avoid cluttered plots with
a large number of lines to compare with, henceforth we only report
results of seven best-performing methods, i.e., Auto-Detect, F-
Regex, PWheel, dBoost, SVDD, DBOD and LOF, and omit other
baselines.

Figure 5 shows the results on WIKI. As expected, as k increases
and as the dirty/clean ratio decreases, the precision of all meth-
ods drop. Auto-Detect achieves high precision consistently when
varying the dirty/clean ratio. When the ratio is 1:1, the precision of
Auto-Detect is close to 100% even with k ≤ 1000, suggesting that
20% of true errors are discovered. When k = 5000, Auto-Detect
still maintains a relatively high precision of 0.82, which in this set-
ting translates to a recall of 0.82. We find such results encouraging.
Among other methods compared, F-Regex, PWheel and dBoost
perform better, but the performance gaps with Auto-Detect become
increasingly as the dirty/clean ratio decreases, suggesting that these
methods are not as performant for more difficult test cases (with
relatively few errors).

Figure 6 shows a similar comparison but using test cases gener-
ated from Ent-XLS. Like in the previous experiment using WIKI,
Auto-Detect also maintains a very high precision at k ≤ 1000.
For high recall (k = 5000), its precision drops faster compared to
that on WIKI. We find part of the difference can be attributed to
table-extraction errors in parsing .xlsx files, which often involves
tables with complex structures such as pivot tables, and thus cre-
ates noisy test-cases when evaluated automatically. We observe
that dBoost performs better than other methods on this test set,
primarily because Ent-XLS contains many numeric columns, and
dBoost is better at leveraging numeric statistics (e.g., variance and
frequency) to detect potential errors.

4.5 Sensitivity to Training Corpora
To test the effect of using different training corpora, we compare
the performance of using WIKI and WEB for training, respectively,
and using test cases from Ent-XLS for evaluation (with dirty:clean
ratio of 1:10). Results in Figure 8(c) show that using WEB achieves
better quality than usingWIKI. We believe this is because theWEB
corpus is an order of magnitude larger thanWIKI (350M columns
vs. 30M), thus likely covering more diverse content and producing
more robust statistics. We find it interesting that the benefit of
using the “bigger” WEB data outweighs the smaller but slightly
more clean WIKI data.

4.6 Sensitivity to Memory Budget
We test Auto-Detect with different memory budgets ofM = 1MB,
4MB, 16MB, 64MB, 256MB, 1GB and 4GB, respectively. It turns out
that whenM is between 1MB and 256MB, the same set of languages
are selected, so we only report three data points for 1MB, 1GB and
4GB, where two, five and seven languages are selected, respectively.

Figure 7 shows the corresponding quality on Ent-XLS. We can
see that as expected, Auto-Detect performs better with more
memory since more languages can be selected. Interestingly, with
even minimum memory (1 MB), the precision is still over 0.93 with
a relative recall of 0.1 (k = 500), which is surprisingly good. The
quality gap of using different memory becomes more significant
for larger K , indicating that in order to achieve both high precision
and good recall, a larger amount of memory may be necessary.

4.7 Impact of Count-Min Sketch
We test the impact of using CM sketch on error-detection quality.
Specifically, we test the quality of Auto-Detect while requiring
CM sketch to compress the co-occurrence data to 1%, 10% and 100%
of its original size (the last one corresponds to no sketch).

Figure 8(a) shows the results on Ent-XLS (with a dirty/clean
ratio of 1:10). As expected, precision suffers with more substantial
compression, but the quality gap is surprisingly small, which is
very encouraging and shows the effectiveness of the CM sketch.
This means we can effectively maintain the same level of precision
with only 1% of the memory budget (35 MB). We further note that
compared to Figure 7(c), using 35 MB memory and CM sketches
Auto-Detect already achieves better quality than using 1 GB of
memory but without sketches.

4.8 Sensitivity to Aggregation Function
We compare Auto-Detect the following aggregation methods,
using the same languages selected by Auto-Detect:
• AvgNPMI uses the ensemble of average NPMI values from dif-
ferent languages Li , or avgi si (v1,v2), as the confidence score to
rank predictions for (v1,v2).
•MinNPMI instead uses the minimal NPMI values from different
languages, or mini si (v1,v2).
• Majority Voting (MV) simply counts the 0/1 votes from each
language Li . The vote for Li is 1 if its NPMI value si is over the
threshold determined for a certain precision target P (e.g., P = 0.95),
and 0 otherwise.
• Weighted Majority Voting (WMV) is the same as Majority
Voting except that it assigns a weight to the vote from Li based on
the magnitude of the NPMI score.

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(a) 1:1

Auto-Detect
F-Pattern

PWheel
dBoost

SVDD
DBOD

LOF

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(b) 1:5

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(c) 1:10

Figure 5: precision@k onWIKI

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(a) 1:1

Auto-Detect
F-Regex

PWheel
dBoost

SVDD
DBOD

LOF

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(b) 1:5

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(c) 1:10

Figure 6: precision@k on Ent-XLS

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(a) 1:1

1MB 1GB 4GB

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(b) 1:5

0.0
0.2
0.4
0.6
0.8
1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k

(c) 1:10

Figure 7: precision@k v.s. memory on Ent-XLS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k
100% 10% 1%

(a) Count Min Sketch

0.4

0.6

0.8

1.0

50 100 500 1000 5000

pr
ec

is
io

n@
k

k
Auto-Detect

AvgNPMI
MinNPMI

MV
WMV

BestOne

(b) Aggregation Functions

0.0

0.2

0.4

0.6

0.8

1.0

50 100 500 1000 5000

p
re

ci
si

o
n

@
k

k
WIKI WEB

(c) Vary training corpora

Figure 8: precision@k with different configurations on Ent-XLS

• BestOne. In addition to aggregation, We also compare with the
best performing single language (which requires over 5Gb memory
and actually violates the memory constraint).

Figure 8(b) shows the results on Ent-XLS. We can see that Auto-
Detect significantly outperforms all standard aggregationmethods,
suggesting that our optimization-based formulation with union-
aggregation has substantial quality advantages. MV is the least
effective aggregation, because it counts each vote equally and not
taking into account that languages by design have narrow “focuses”
on different types of quality issues. The WMV approach mitigates
that issue to some extent. AvgNPMI and MinNPMI also have in-
ferior quality results, because NPMI scores cannot be compared
directly between different languages, but should be calibrated with
techniques such as distant-supervision as discussed in Section 3.2.

5 RELATEDWORKS
Error detection has been extensively studied in the literature. Recent
surveys of the area can be found in [10, 19].

Multi-column error detection using rules. Leveraging rela-
tionship between multiple columns to detect potential data qual-
ity problems is a well-studied topic. Discovering and enforcing
various sub-classes of first order logic such as functional depen-
dencies [37, 44, 57], conditional functional dependencies [15], nu-
meric functional dependencies [27], denial constraints [23], as well
as holistic inference [51] have been studied. Multi-column error-
detection is an important class orthogonal to the focus of this work.

Single-column error detection. Existing systems such as Tri-
facta [9], Power BI [4] and Talend [7] all have predefined regex-like
patterns to recognize common data types (e.g., IP addresses, emails,
etc.). When most values in an input column conform to known pat-
terns while a small fraction of values do not, the non-conforming
ones can be flagged as errors (Appendix A gives more details).

In addition to using coarse-grained regex patterns, Auto-Type [56]
provides an alternative that leverages fine-grained, type-specific
logic to ensure more precise type detection and error prediction.

Excel [1] also uses a small set of simple rules (e.g., whether
formulas in neighboring cells are consistent) to automatically flag
potentially erroneously cells (Appendix A).

Potter’s Wheel [50] proposes a novel method to use patterns
to summarize values in a column based on minimum description
length (MDL). Data values not captured by patterns are likely out-
liers. As discussed earlier, this method uses only local information
and makes no consideration of data compatibility at a global scale.
Similar techniques developed in other contexts (e.g., [14, 43]) also
suffer from the same limitation.

The authors in [45] propose a dBoost method to detect errors
using predefined expansion rules for known types. For example, ob-
serving that date time can be stored as integers, all integer columns
can then be interpreted as dates and expanded into fields such as
year, month, day, day-of-week, etc., over which distributions can
be analyzed to find outliers that may be errors.

For categorical values such as popular entities in known domains,
approaches like [24, 55] are developed to leverage knowledge bases
and mapping tables to discover values not belonging to well-known
concepts (e.g., “WA” and “Washington” may be mixed in the same
column but actually belong to different knowledge base concepts
or mapping relationships). While such techniques are powerful,

they would mainly cover popular entities in known concepts, but
not the large variety errors as illustrated in Figure 1 and Figure 2.
These techniques are thus orthogonal to the focus of this work.

Detect formula errors. Another common type of errors in
spreadsheets is formula errors, analogous to “code smells” studied
in programming language community. Techniques such as [21, 52]
are proposed that exploit contiguity of formulas in neighboring
cells to detect formula inconsistency as potential errors.

Numeric error detection. Finding outliers/errors in numerical
data has also been studied. For example, Hellerstein [34] proposes to
use the metric of MAD (median absolute deviation), which is from
robust statistics and analogous to standard deviation to detect out-
liers in numeric data. Multi-column correlation between numerical
attributes have also been considered in [34] to find outliers.

Outlier detection. There is a large body of work on outlier
detection [11, 19, 30, 33, 34, 36, 38], which differ in assumptions
such as data distribution, data types, and application scenarios.

Our view is that a key difference between outlier detection and
error detection studied in this work, is that outlier detection heavily
relies on the local data distribution to find data points that deviate
from the mass. Outerlies, as such, are only a statement about de-
viations in the context of a local distribution and not necessarily
an indicator of data quality. For example, an CEO’s salary may be
many standard deviations away from all employees’ in a company,
which however is not a data error. Errors that are automatically
detected, on the other hand, should be a global property of the data
in question and not a function of the local data distribution. For
instance, the example of Col-3 discussed in the introduction with
two different date formats should be recognized as errors regardless
of the exact ratios of the mixtures (99%-1%; or 50%-50%).

For more in-depth discussions on this related topic of outlier
detection, we refer readers to surveys like [19, 36].

Application-driven error correction.Recent approaches such
as BoostClean [41] and ActiveClean [42] have also explored the
interesting area of addressing data errors that have largest impact
on specific applications like machine learning.

Corpus-driven applications in data integration.Web tables
are known to be a rich source of structured data that have enabled
a variety of data-driven approaches in data integration. Example
scenarios include schema exploration [17], table segmentation [22],
auto-join [31], as well as error-detection studied in this work.

6 CONCLUSION AND FUTUREWORK
We propose Auto-Detect that leverages corpus statistics to per-
form single-column error detection. Experiments suggest thatAuto-
Detect can find high-quality errors from supposedly cleanWikipedia
tables, and Excel files. Interesting directions of future work include
detecting errors in semantic data values as well as other types of
multi-column errors.

Figure 9: Excel menu with 9 default error detection rules.

Figure 10: Excel automatically detects one type of error:
“number stored as text”.
A COMMERCIAL OFFERINGS
A.1 Rule-based Error Detection
Microsoft Excel [1] provides a limited list of 9 simple predefined
error checking rules, as shown in Figure 9. The most commonly-
known errors among these are “Formulas inconsistent with other
formulas in the region” (when formula in a cell is different from its
neighboring cells); and “Number stored as text” (when a number is
stored as text while others in the column are stored as numbers). The
list also contains rules such as “Cells containing years represented
as 2 digits”.

As can be seen, the number of scenarios covered by these 9 simple
rules is quite limited. Manually extending the list to additional rules
is expensive and poses manageability issues.

Excel also supports customized data validation rules, which users
can define and enforce on individual data columns (e.g., certain
columns in a spreadsheet can only have numeric data; Excel should
raise errors if non-numeric data are entered into such columns).
While such manually-defined rules are customizable which is nice,
it does impose a burden on users to declare validation rules, which is
analogous to declaring database schemas, but is even more onerous.

A.2 Type-specific Error Detection
Trifacta has a list of around 10 built-in “data types” [9] such as
IP addresses and emails that they can recognize using regex-like
patterns. The list of supported data types can be seen in Figure 11.
Values in a column not conforming to type-specific regex patterns
are flagged as errors at the top of each data column, as can be seen
in Figure 12. Similar functionality is also available in systems like
Power BI [4] and Talend [7].

Trifacta additionally produces a rich set of visualizations of distri-
butions such as numeric value distribution, frequency distribution,

Figure 11: Trifacta’s predefined list of types (with corre-
sponding regex detection).

Figure 12: Trifacta detects erroneous values with types.

Figure 13: Trifacta visualizes rich column value distribution
for users to identify outliers and error.
and string length distribution, etc., as shown in Figure 13. Such
features help users to explore data and discover potential quality
issues (e.g., values whose string lengths are significantly larger
compared to other values in the same column).

A.3 OpenRefine/GoogleRefine
OpenRefine does not proactively detect errors but provides a text
clustering feature that allows users to group similar values in the
same columns together, so that users can see what values are highly
similar and decide whether these are near-duplicates due to typos
or misspellings. For example, Figure 14 shows results from column
clustering, where similar values like “U.S.” and “US”, “USA” and
“U.S.A.” are grouped together, so that users can decide whether to
collapse these clusters of values into a canonical representation.

Figure 14: OpenRefine cluster values for duplicates.

Figure 15: OpenRefine produces visual histograms for value
distributions in a column, for easy identification of errors.

Figure 16: Inconsistent values can be corrected using user-
defined transformations in OpenRefine.

Similar to Trifacta, OpenRefine produces visual histograms of
data distributions within single columns, to allow users to find data
quality issues more easily. In the example shown in the left part
of Figure 15, users can explore distribution of numeric values in a
column to see if there are outliers. He or she can also filter down
to black cells or non-numeric cells to determine if such cells are
erroneous.

Once cells with quality problems are identified, users can pro-
gram transformation rules to correct such problems, as shown in
Figure 16.

B COMPATIBILITY SCORE CALCULATION
After selecting a set of languages L′, we can not only predict
whether two values are compatible or not, but also compute a
score to measure the level of compatibility, considering the NPMI
scores sk (v1,v2) given by each language Lk ∈ L′ jointly.

Recall that during language selection, we have estimated the
precision of a language Lk with NPMI threshold θk as Pk (θk) by
Equation 7. Naturally, we can consider the confidence of predicting
(v1,v2) as incompatible by language Lk as Pk (sk (v1,v2)).

Instead of a straightforward idea, which is to use the average
confidence Pk (sk (v1,v2)) among all languages Lk ∈ L as the final
prediction of compatibility, we propose using the max confidence
value, i.e.,

Q(r1, r2) = maxk Pk (sk (v1,v2)) (11)
Using max confidence has two main advantages:
• Trust the most confident language. As discuss in Section 2.2,

different languages have different focuses, some on digits and some
on symbols. The language gives a strongly negative score only
when the two values are highly incompatible and that happens to
be that language’s focus. Thus using max confidence can put our
trust to the one with most confidence.
• No assumption of independence between languages. Com-

pared with average confidence, max confidence does not assume
independence between languages. Consider an extreme case where
we have selected many languages focusing on digits and only one
on symbols. If two values are incompatible w.r.t. symbols, using
average confidence cannot detect this.

In our experiments (refer to Figure 8(b)), we show that max confi-
dence outperforms other alternatives, including average confidence
and two NPMI-based aggregations.

C PROOF OF THEOREM 1
Proof. We prove the hardness of this problem using a reduction

from densest k-subhypergraph (DkH) problem [12]. Recall that in
DkH, we are given a hypergraph H (V ,E) and the task is to pick a
set of k nodes such that the sub-hypergraph induced by the nodes
has the maximum weight on hyper-edges. DkH is known to be
NP-hard and inapproximable [12].

We show a reduction from DkH. For any given problem in DkH,
we construct a problem in DT-aggregation as follows. For each
vertex v ∈ V we construct an incorrect prediction p−(v). For each
hyper-edge ei ∈ E, we construct a language Li whose ranked list
of predictions has at the top: p−(ei) = {p−(u)|u ∈ V (ei)}, where
V (ei) is the set of vertices incident on ei . This corresponds to a
set of |V (ei)| incorrect predictions. We then construct a correct
prediction p+(ei) and place it below p−(ei). The “cost” of selecting
Li is now |p−(ei)| incorrect predictions, and the “gain” is |p+(ei)|
correct predictions. For a given DkH problem, we now have a DT-
aggregation problem of selecting languages L′ ⊂ L, with a budget
of at most k mis-predictions, or | ∪Li ∈L′ p

−(ei)| ≤ k , and a goal
of maximizing correct predictions. By giving a unit-size to each
language, we can use memory-budgetM to control the total number
of languages selected. Specifically, we generate a set of decision-
version of DT-aggregation with precision threshold P = M

M+k (to
force no more than k mis-predictions will be selected). If we were
able to solve DT-aggregation, then we would have in turn solved

DkH. Since DkH is NP-hard and inapproximibility as shown in [12],
we obtain a similar hardness result for DT-aggregation. �

D PROOF OF THEOREM 2
Proof. We show the hardness of the problem in Definition 5

using a reduction from the budgeted maximum coverage (BMC)
problem [35]. Recall that in BMC, we have a universe of elementsU ,
a set of sets {Si |Si ⊆ U }, where each Si has a cost c(Si), and a gain
function д(Si) =

∑
e ∈Si д(e), where д(e) is the gain of an element

e ∈ U . For any instance of the BMC problem, we can generate
a ST-aggregation problem as follows. We generate a language Li
for each Si , and an example t− ∈ T− for each e ∈ U . We set the
incompatibility casesHi (T)− covered by Li to be ∪t−j for all ej ∈ Si ,
and naturally set the size of each language size(Li) = c(Si). We
then have an ST-aggregation problem direct corresponding to BMC.
Suppose we can efficiently solve ST-aggregation, this makes BMC
solvable which contradicts with its hardness. ST-aggregation is
therefore NP-hard. �

E PROOF OF LEMMA 3
Proof. We show that for every problem of ST-aggregation, we

can construct a budgetedmaximum coverage (BMC) problem. Specif-
ically, we create an element e ∈ U in BMC for each example t− ∈ T−,
and set д(e) = 1. Furthermore, we create a set Si for each language
Li , that consists of elements ej for each t−j ∈ H

−
i (T). We can now

invoke BMC to solve ST-aggregation.
The authors in [39] develop a greedy algorithm for BMC that

inspires our algorithm 1. We use a similar argument as their Lemma
3 in [39] to show the 1

2 (1 −
1
e) approximation ratio. �

F AUTO-GEN TEST CASES
First, we need to find columns C+ ⊂ C that are semantically com-
patible, from which we can take pairs of values in C+ to generate
T+. In order to find compatible columns, we use a set of crude gener-
alization rules, denoted asG(), that generalize characters by classes,
into digits, upper-case letters, lower-case letters, respective, while
leaving all symbols and punctuation untouched. We can applyG()
to all columns in C to obtain global co-occurrence statistics, from
which we can compute a crude measure of compatibility for any
pair of values (u,v), based on the NPMI score of their generalized
patterns (G(u),G(v)).

We then use statistical compatibility of NPMI(G(u),G(v)) to find
C+, by ensuring that any pairs of values u,v in the same column
has NPMI score over a manually-tuned threshold (0). This thresh-
old is chosen to ensures almost all such C+ selected are indeed
compatible. With C+, we can then generate positive examples as
T+ = {(v1,v2,+)|v1,v2 ∈ C,C ∈ C+}.

To generate C−, we sample a column C1 ∈ C+, take a value
u ∈ C1, and mix u with another column C2 ∈ C+ to produce a
synthetic column C ′2 = C2 ∪ {u}. This will, with high likelihood,
makeC ′2 a “dirty” column in which u is the sole value incompatible
with others. Occasionally, u may actually be compatible with C2
by co-incidence (e.g., they share the same pattern). Using the same
generalization G, we prune out all cases C ′2 = C2 ∪ {u}, if there
existsv ∈ C2 such that NPMI(G(v),G(u)) ≥ −0.3. Recall that a high

NPMI indicates that the two patterns may statistically be positively-
correlated and thus has some chance to be compatible. We manually
verify that this heuristic prunes out almost all columns C ′2 that
are indeed compatible (and thus should be not used as negative
examples). We can then generate T− as {(u,v,−)|u ∈ C1,v ∈ C2}.

G OTHER EXPERIMENTS

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n@
k

k

Auto-Detect

(a) Varying f

0.0

0.2

0.4

0.6

0.8

1.0

-1 -0.5 0 0.5 1

C
D

F

NPMI

L1
L2

(b) NPMI distribution of two languages

Figure 17: Additional Experiments

G.1 Sensitivity to Smoothing
We test the sensitivity of quality to the smoothing factor f . We vary
f from 0 to 1, and plot Precision@K with K = 1000 on Ent-XLS
(results on other data sets are similar). Figure 17(a) shows that using
smoothing can indeed improve result quality (f = 0 corresponds to
no smoothing). We find that quality is the best and relatively stable
in the range of [0.1, 0.3].

G.2 NPMI Distribution Analysis
Figure 17(b) shows the cumulative distribution function of NPMI
values given by two generalization languages as we are performing
NPMI calibration in Section 3.2. We can see that i) around 60% of
value pairs have NPMI scores equaling 1.0. This is because many
values within the same column have the identical formats, thus
leading to the same pattern representation under the same gener-
alization language. ii) L1 tends to gives larger NPMI scores than
L2, and the NPMI distribution of L2 is steeper at the range of [-0.2,
0.3]. iii) It is not meaningful to directly perform aggregation based
on NPMI scores, given the fact that their distributions are quite
different from each other.

G.3 Efficiency Analysis
We also test the efficiency of these methods. All experiments are
run on a Windows Server 2012 R2 machine with Intel(R) Xeon CPU
E5-2670 2.6GHz and 115GB memory. Since Auto-Detect is used as
an interactive feature, we do require it to respond in sub-seconds.

Table 5 shows the execution time comparison, averaged over
test cases from the Ent-XLS dataset. We can see that while Linear
is the most expensive method, all other approaches are relatively
efficient. For high throughput over a set of columns in a user table,
parallel execution of error detection on individual columns can be
easily achieved.

We note that another mode of invoking Auto-Detect is to
execute error-detection tasks in the background, and pop-up notifi-
cations when we find quality issues. Such scenarios have a lower
requirement on latency and can be executed whenever the client is
more idle.

Method F-Regex PWheel dBoost Linear Auto-Detect
time(s) 0.11 0.21 0.16 1.67 0.29

Table 5: Average running time per column (in seconds).
REFERENCES
[1] Microsoft excel error checking rules. https://excelribbon.tips.net/T006221_

Changing_Error_Checking_Rules.html.
[2] Openrefine (formerly googlerefine). http://openrefine.org/.
[3] Paxata data preparation. https://www.paxata.com/.
[4] Power bi. https://docs.microsoft.com/en-us/power-bi/desktop-data-types.
[5] Self-service data preparation, worldwide, 2016. https://www.gartner.com/doc/

3204817/forecast-snapshot-selfservice-data-preparation.
[6] Spreadsheet mistakes - news stories, compiled by european spreadsheet risk

interest group EuSpRiG. http://www.eusprig.org/horror-stories.htm.
[7] Talend data services platform studio user guide: Semantic discovery. https://help.

talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/_u0D0oqWxesgBDSihDgbYA.
[8] Trifacta. https://www.trifacta.com/.
[9] Trifacta built-in data types. https://docs.trifacta.com/display/PE/Supported+

Data+Types.
[10] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,

M. Stonebraker, and N. Tang. Detecting data errors: Where are we and what
needs to be done? Proceedings of the VLDB Endowment, 9(12):993–1004, 2016.

[11] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection
in large databases. In KDD, pages 164–169, 1996.

[12] A. Arulselvan. A note on the set union knapsack problem. Discrete Applied
Mathematics, 169:214–218, 2014.

[13] A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in
coding and modeling. IEEE Transactions on Information Theory, 44(6):2743–2760,
1998.

[14] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise dtds from
xml data. In Proceedings of the 32nd international conference on Very large data
bases, pages 115–126. VLDB Endowment, 2006.

[15] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, pages 746–755. IEEE, 2007.

[16] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-
based local outliers. In ACM sigmod record, volume 29, pages 93–104. ACM,
2000.

[17] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring
the power of tables on the web. Proceedings of the VLDB Endowment, 1(1):538–549,
2008.

[18] K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam, Y. He, and W. Redmond. Data
services leveraging bing’s data assets. IEEE Data Eng. Bull., 39(3):15–28, 2016.

[19] V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A survey. ACM
Computing Surveys, 2007.

[20] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th annual meeting on Association
for Computational Linguistics, pages 310–318. Association for Computational
Linguistics, 1996.

[21] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu. Custodes: automatic spreadsheet cell
clustering and smell detection using strong and weak features. In Proceedings of
the 38th International Conference on Software Engineering, pages 464–475. ACM,
2016.

[22] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction by global
record alignment. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pages 1713–1728. ACM, 2015.

[23] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. Proceedings of
the VLDB Endowment, 6(13):1498–1509, 2013.

[24] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara:
A data cleaning system powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1247–1261. ACM, 2015.

[25] K. W. Church and P. Hanks. Word association norms, mutual information, and
lexicography. Computational linguistics, 16(1):22–29, 1990.

[26] G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[27] G. Fan, W. Fan, and F. Geerts. Detecting errors in numeric attributes. In Interna-
tional Conference on Web-Age Information Management, pages 125–137. Springer,
2014.

[28] D. Freeman. How to make spreadsheets error-proof. Journal of Accountancy,
181(5):75, 1996.

[29] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford, 1(2009):12, 2009.

[30] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for temporal data:
A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–2267,

2014.
[31] Y. He, K. Ganjam, and X. Chu. Sema-join: joining semantically-related tables

using big table corpora. Proceedings of the VLDB Endowment, 8(12):1358–1369,
2015.

[32] Z. He, S. Deng, and X. Xu. An optimization model for outlier detection in
categorical data. In International Conference on Intelligent Computing, pages
400–409. Springer, 2005.

[33] Z. He, S. Deng, and X. Xu. An optimization model for outlier detection in
categorical data. Advances in Intelligent Computing, pages 400–409, 2005.

[34] J. M. Hellerstein. Quantitative data cleaning for large databases. United Nations
Economic Commission for Europe (UNECE), 2008.

[35] D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex
cover, independent set, and related problems. In Approximation algorithms for
NP-hard problems, pages 94–143. PWS Publishing Co., 1996.

[36] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
intelligence review, 22(2):85–126, 2004.

[37] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords: automatic
discovery of correlations and soft functional dependencies. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of data, pages
647–658. ACM, 2004.

[38] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data
mining. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 206–215. ACM, 2004.

[39] S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999.

[40] E. M. Knox and R. T. Ng. Algorithms for mining distance based outliers in large
datasets. In Proceedings of the International Conference on Very Large Data Bases,
pages 392–403. Citeseer, 1998.

[41] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu. Boostclean: Automated error
detection and repair for machine learning. Technical report, 2017.

[42] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. Activeclean: inter-
active data cleaning for statistical modeling. Proceedings of the VLDB Endowment,
9(12):948–959, 2016.

[43] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Jagadish. Regular
expression learning for information extraction. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 21–30. Association
for Computational Linguistics, 2008.

[44] S. Lopes, J.-M. Petit, and L. Lakhal. Functional and approximate dependency
mining: database and fca points of view. Journal of Experimental & Theoretical
Artificial Intelligence, 14(2-3):93–114, 2002.

[45] Z. Mariet, R. Harding, S. Madden, et al. Outlier detection in heterogeneous
datasets using automatic tuple expansion. MIT Technical Report, 2016.

[46] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation
extraction without labeled data. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011.
Association for Computational Linguistics, 2009.

[47] R. R. Panko. What we know about spreadsheet errors. Journal of Organizational
and End User Computing (JOEUC), 10(2):15–21, 1998.

[48] R. R. Panko. Spreadsheet errors: What we know. what we think we can do. 2008.
[49] S. G. Powell, K. R. Baker, and B. Lawson. Errors in operational spreadsheets: A

review of the state of the art. In System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on, pages 1–8. IEEE, 2009.

[50] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning
system. In VLDB, volume 1, pages 381–390, 2001.

[51] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference. Proceedings of the VLDB Endowment, 10(11):1190–1201,
2017.

[52] R. Singh, B. Livshits, and B. Zorn. Melford: Using neural networks to find
spreadsheet errors. MSR technical report.

[53] M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A. X. Chang, V. I. Spitkovsky,
and C. D. Manning. A simple distant supervision approach for the tac-kbp slot
filling task. In TAC, 2010.

[54] D. M. Tax and R. P. Duin. Support vector data description. Machine learning,
54(1):45–66, 2004.

[55] Y. Wang and Y. He. Synthesizing mapping relationships using table corpus. In
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 1117–1132. ACM, 2017.

[56] C. Yan and Y. He. Synthesizing type-detection logic using open-source code. In
SIGMOD, 2018.

[57] Y. Yu and J. Heflin. Extending functional dependency to detect abnormal data in
rdf graphs. In International Semantic Web Conference, pages 794–809. Springer,
2011.

[58] C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to ad hoc information retrieval. In ACM SIGIR Forum, volume 51, pages
268–276. ACM, 2017.

https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
http://openrefine.org/
https://www.paxata.com/
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation
http://www.eusprig.org/horror-stories.htm
https://help.talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/_u0D0oqWxesgBDSihDgbYA
https://help.talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/_u0D0oqWxesgBDSihDgbYA
https://www.trifacta.com/
https://docs.trifacta.com/display/PE/Supported+Data+Types
https://docs.trifacta.com/display/PE/Supported+Data+Types

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Preliminary: Tables and Compatibility
	2.2 Generalization For Error Detection

	3 Auto-Detect
	3.1 Distant-supervision: generate training data
	3.2 Aggregate predictions from languages
	3.3 Statistical Smoothing of Rare Events
	3.4 Sketch-based Memory Optimization

	4 Experiments
	4.1 Datasets
	4.2 Methods Compared
	4.3 Manual Evaluation of Prediction Quality
	4.4 Auto-Evaluation of Prediction Quality
	4.5 Sensitivity to Training Corpora
	4.6 Sensitivity to Memory Budget
	4.7 Impact of Count-Min Sketch
	4.8 Sensitivity to Aggregation Function

	5 Related Works
	6 Conclusion and Future Work
	A Commercial Offerings
	A.1 Rule-based Error Detection
	A.2 Type-specific Error Detection
	A.3 OpenRefine/GoogleRefine

	B Compatibility Score Calculation
	C Proof of Theorem 1
	D Proof of Theorem 2
	E Proof of Lemma 3
	F Auto-gen test cases
	G Other Experiments
	G.1 Sensitivity to Smoothing
	G.2 NPMI Distribution Analysis
	G.3 Efficiency Analysis

	References

