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Abstract— We consider a temporal logic EF + F−1 for un-
ranked, unordered finite trees. The logic has two operators:
EFϕ, which says “in some proper descendant ϕ holds”, and
F−1ϕ, which says “in some proper ancestor ϕ holds”. We present
an algorithm for deciding if a regular language of unranked
finite trees can be expressed in EF + F−1. The algorithm uses a
characterization expressed in terms of forest algebras.

I. INTRODUCTION

We say a logic has a decidable characterization if the
following decision problem is decidable: “given as input a
finite automaton, decide if the recognized language can be
defined using a formula of the logic”. Representing the input
language by a finite automaton is a reasonable choice, since
many known logics (over words or trees) are captured by finite
automata.

This type of problem has been successfully studied for word
languages. Arguably best known is the result of McNaughton,
Papert and Schützenberger [10], [7], which says that the
following three conditions on a regular word language L are
equivalent: a) L can be defined in first-order logic; b) L can
be defined using a star-free expression; and c) the syntactic
semigroup of L does not contain a non-trivial group. Since
condition c) can be effectively tested, the above theorem
gives a decidable characterization of first-order logic. This
result demonstrates two important features of work in this
field: a decidable characterization not only gives us a better
understanding of the logic in question, but it often reveals
unexpected connections with algebraic concepts. During sev-
eral decades of research, decidable characterizations have
been found for fragments of first-order logic with restricted
quantification and a large group of temporal logics, see [8]
and [13] for references.

For trees, however, much less is known. No decidable
characterization has been found for what is probably the
most important tree logic, first-order logic with the descendant
relation, despite some attempts [9], [5], [2]. Similarly open are
chain logic [12] and the temporal logics CTL and PDL. How-
ever, there has been some recent progress. In [4], decidable
characterizations were presented for the temporal logics EF
and EX + EF; while Benedikt and Segoufin [1] characterized
tree languages definable in first-order logic with the successor
relation (but without the descendant relation).

In this paper, we continue the line of research started in [4],
by focusing on a temporal logic for trees. We consider a logic
called EF+F−1. This logic has two operators: EFϕ, which says
“in some proper descendant ϕ holds”, and F−1ϕ, which says
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“in some proper ancestor ϕ holds”. Thanks to the backward
modality, EF + F−1 is more expressive than EF alone. For
instance, the formula

EF(a ∧ ¬F−1¬b)
is true in a tree where some node has label a, but all of its
ancestors have label b. This is a property reminiscent of CTL,
and cannot be expressed by only using EF.

The main result in this paper is Theorem V.1, which gives a
decidable characterization of languages definable in EF+F−1.
Before we present this result, in Section II we try to justify
the choice of the logic EF + F−1. In Section III we present
the algebraic formalism that will be used in the proofs. The
rest of the paper is devoted to proving the main result.

I would like to thank Luc Segoufin. We spent a lot of
time together trying to understand the expressive power of
EF + F−1; without his input this paper would not have been
possible.

II. WHY TWO-WAY UNARY TEMPORAL LOGIC

There are two reasons to consider EF+F−1. The first reason
is that, over words, this logic corresponds to an important and
well-studied class of regular languages. The second reason is
that over trees, the logic is related to XML. We go over these
reasons in Sections II-A and II-B respectively.

A. The word analogy

There is a very robust class of regular word languages that
has several equivalent descriptions:

1) Word languages that can be defined in the temporal logic
F + F−1. Here Fϕ means “in some future position ϕ”
and F−1ϕ means “in some past position ϕ”.

2) Word languages that can be defined by a first-order
formula with two variables and the left-to-right ordering
of positions (but without the successor relation).

3) Word languages that can be defined by a first-order
formula (with many variables, the left-to-right ordering,
but without the successor) with a ∀∗∃∗ quantifier prefix,
and also by one with an ∃∗∀∗ quantifier prefix.

4) Word languages whose syntactic semigroup belongs to
the semigroup variety DA.

5) Languages described by finite disjoint unions of unam-
biguous products (a form of regular expression).

6) Word languages that can be recognized by “turtle au-
tomata”, a type of deterministic two-way word automa-
ton.

An important corollary of property 4 is that membership of a
regular language in the above class is decidable: it suffices to



check if the syntactic semigroup of the language satisfies the
DA equation.

Some of the above classes have fairly natural tree coun-
terparts, some don’t. (We consider unranked, unordered finite
trees here.)

The three logically defined classes – items 1, 2 and 3 – can
be extended to trees as follows. A natural counterpart of class 1
is the logic EF + F−1 considered in this paper. The classes 2
and 3 can be used to define tree languages if the order is
interpreted as the ancestor/descendant ordering of tree nodes.
(One could also consider variants where two partial orders
of nodes are available instead of one: the descendant/ancestor
order and also the left-to-right ordering of siblings. We keep
to the simpler case, where siblings are unordered.)

We will not talk about classes 5 and 6: it is not clear
what unambiguous expressions are for trees, nor do we have a
notion of turtle automata. We will come back to the algebraic
description in item 4 later on in the paper.

The logically defined classes diverge for trees:
• Two-variable logic is strictly stronger than the temporal

logic. The translation from temporal to two-variable logic
is fairly obvious. For the converse, the problem is that
x �≤ y∧y �≤ x cannot be expressed in the temporal logic.
For instance, the language: “there are two a’s” can be
defined by a two-variable formula, but cannot be defined
in the temporal logic. This is because the temporal logic
is bisimulation invariant, and cannot see the difference
between one child with a and two children with a. (Note
however, that the language “there are two a’s below some
b” cannot be defined in two-variable logic.)

• As we will show at the end of this paper, the intersection
of ∀∗∃∗ and ∃∗∀∗ is incomparable with both the two-
variable and the temporal logic.

Why do we consider the temporal logic in the paper and
not the other two logics? The short answer is: because we
can. Giving decidable characterizations for the other two logics
seems to be more complicated, and we leave it as future work.

B. XPath

XPath is a formalism used to describe paths and nodes in
unranked trees. There is a strong connection between XPath
and two-variable logics

A path is seen as a binary relation P (x, y), which connects
its source x with its target y. The basic idea in XPath is that
one starts with atomic paths, called axes, such as “x is a de-
scendant of y”, or “x is a successor of y”, and then constructs
longer paths using mechanisms such as concatenation or
iteration. Marx [6] has shown that a fragment of XPath called
Core XPath (basically, iteration is not allowed) has exactly the
same expressive power as two-variable first-order logic. Note
however, that the axes considered by Marx include successor
and next-child, which go beyond the fragments considered in
this paper. When the only axis allowed is “descendant”, Core
XPath has exactly the same power as “our” logic EF+F−1. A
decidable characterization for Core XPath with the other axes
is left as future work.

III. BASIC DEFINITIONS

A. Trees and forests

We work with unranked finite labeled trees. We assume that
an alphabet (A,B) contains two types of labels: one set of
labels A that can be used in the leaves, and another set of
labels B that can be used in inner nodes (i.e. not leaves). This
division is convenient for the algebraic framework we use in
general, and for the induction proof in this paper in particular.
Trees are defined as follows: every leaf label a ∈ A is a tree;
if t1, . . . , tn are trees and b ∈ B then b(t1 + · · ·+ tn) is a tree.
We denote trees using letters s, t. A forest is a sequence of
trees; we denote forests using vector notation s, t. As above,
we concatenate forests using +. In particular every forest is
of the form t = t1 + · · · + tn, for some trees t1, . . . , tn. We
do not allow empty forests, so n ≥ 1. A context is a forest
where exactly one leaf is labeled by a special label ∗; this
leaf is interpreted as a hole. We denote contexts by p, q. The
main path in a context consists of the ancestors of the hole.
A forest t can be substituted in place of the hole of a context
p, the resulting forest is denoted p(t), or sometimes pt. There
is a natural composition operation on contexts: the context pq
is the unique context such that (pq)t = p(qt) holds for all
forests t. We do allow the empty context, denoted by ∗; this
is the context where the only node in the context is the hole ∗.
The empty context satisfies ∗t = t. Nodes of trees, forests and
contexts are defined the usual way. We will mostly order nodes
using the descendant order.

The reader will notice that the trees and forests we defined
are sibling-ordered (i.e. s+t is not the same as t+s). However,
properties definable in our logic EF + F−1 are going to be
invariant under this order.

B. The logic

The logic EF + F−1 is defined as follows:

• Every label – both inner node label and leaf label – is a
formula; this formula holds in nodes with that label.

• Formulas are closed under boolean combinations, includ-
ing negation.

• If ϕ is a formula, then EFϕ is also a formula; it is true
in a node x if there is some proper descendant y > x
where ϕ is true. Likewise for F−1ϕ, but this time y must
be a proper ancestor y < x.

C. Forest algebra

To represent languages of trees, we will be using forest
algebra. We feel that using forest algebra instead of au-
tomata simplifies a lot of the combinatorics used in our
characterization. Furthermore, when using forest algebra, the
key properties from Theorem V.1 can be stated in terms of
equations.

Here we only sketch out the definitions and basic properties;
the reader is referred to [3] for more details. The algebras
described in [3] differ slightly from those used here—mainly
in that we allow empty contexts—but all the results carry over
into this setting.
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A forest algebra is to regular languages of unranked trees
as a semigroup is to regular languages of words. Formally,
a forest algebra is an algebra with two sorts (H,V ), along
with some operations that satisfy a number axioms. While
defining the operations and axioms, we will illustrate them on
an important example, called the free forest algebra, where
H is the set of all nonempty forests, and V is the set of all,
possibly empty, contexts.

The operations in forest algebra are defined below. (Ele-
ments of H will be denoted by h, g, f and elements of V will
be denoted by v, w, u.)

• A composition operation + on H . This operation is re-
quired to be associative, i.e. h+(g+f) = (h+g)+f . This
makes H a semigroup, called the horizontal semigroup,
and justifies the notation h + g + f . In the free forest
algebra, + is forest concatenation.

• A composition operation · on V . Again, this is required
to be associative. We omit the · symbol, writing vw
instead of v · w. Furthermore, we require there to be
a neutral element ∗ ∈ V , i.e. an element satisfying
v∗ = ∗v = v for all v ∈ V . In particular, V is a monoid,
called the vertical monoid. In the free forest algebra, · is
context composition, while ∗ is the empty context. For
context composition we use multiplicative notation, and
sometimes omit the · symbol.

• A (left) action V → H → H . The result of this action is
denoted by vh ∈ H . The action must satisfy: (vw)h =
v(wh), which justifies the notation vwh. In the free forest
algebra, the left action is substituting a forest into a
context. There is an extensionality requirement: each two
different v, w ∈ V must induce different functions.

• An operation f0 : H × V → V . This operation must
satisfy f0(h, v)g = h+ vg for all g ∈ H . Thanks to this
axiom, we can without ambiguity write h + v to denote
the element f0(h, v). In the free forest algebra, h + v
is the context obtained from v by prepending the forest
h (next to the root, not the hole). In a similar way we
define v+h. In [3], the operation corresponding to f0 was
defined differently; here we can have a simpler definition
thanks to the empty context.

As demonstrated above, the free forest algebra is a forest
algebra, which is denoted by (A,B)Δ. (This notion depends
on the leaf labels A and inner node labels B). When describing
a forest algebra, we usually only give names to the carrier sets
H and V , leaving the operations implicit.

Let (H,V ) and (G,W ) be two forest algebras. A forest
algebra morphism

α : (H,V ) → (G,W )

is defined as in universal algebra: it is a pair of functions

α = (αH , αV ) αH : H → G αV : V →W

that preserve all operations in the signature, eg.

αH(h+ g) = αH(h) + αH(g) αH(vh) = αV (v)αH(h)
αV (vw) = αV (v)αV (w) αV (∗) = ∗

and likewise for h+v and v+h. To avoid clutter, we omit the
subscripts, and write α(h) instead of αH(h), likewise for v.

The point of forest algebras is to recognize forest languages.
Let L be a set of forests over labels (A,B) and let (H,V ) be
a finite forest algebra. We say a morphism

α : (A,B)Δ → (H,V )

recognizes a forest language L if membership t ∈ L depends
only on the value α(t). The following result shows that
recognizable forest languages are exactly the regular forest
languages (as defined by, say, finite automata):

Theorem III.1 ([3])
A forest language is regular if and only if it is recognized by
a finite forest algebra.

Note that in the above, we define recognition for languages of
forests, and not languages of trees, as in the logic EF + F−1.
We will deal with this discrepancy in Section IV.

The syntactic forest algebra of a forest language L is a
canonical forest algebra that recognizes the language. It is
defined using a Myhill-Nerode equivalence over forests and
contexts:

• Two forests s, t are considered equivalent if

ps ∈ L iff pt ∈ L

holds for every context p.
• Two contexts p, q are considered equivalent if for every

forest t, the forests pt and qt are equivalent in the above
sense.

It turns out that the above defined equivalences are a forest
algebra congruence; therefore a quotient forest algebra can
be defined, where elements of H are equivalence classes of
forests, and elements of V are equivalence classes of contexts.
This quotient forest algebra is called the syntactic forest alge-
bra of L. The morphism, which to each forest (resp. context)
assigns its equivalence class is called the syntactic morphism.
The syntactic morphism recognizes L, furthermore it is op-
timal in the sense that any morphism recognizing L can be
uniquely extended to the syntactic morphism. In particular,
the syntactic forest algebra is a morphic image of any forest
algebra recognizing L.

IV. TREE-DEFINABLE VS FOREST-DEFINABLE

A tree language L is tree-definable if there is a formula of
EF+F−1 that is true exactly (in the root of) trees in L. In this
paper, it will sometimes be convenient to talk about EF+F−1

formulas defining properties of forests (and not only trees). We
say a forest language L is forest-definable if L is a boolean
combination of languages of the form “some tree in the forest
satisfies ϕ”, with ϕ a formula of EF + F−1. Such a boolean
combination will be called a forest formula. For instance, the
following property of a forest t1 + · · ·+ tn is forest-definable:
all trees t1, . . . , tn contain a leaf with label a, and at least one
of these trees has root label b.
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Note that any nonempty tree language violates the following
property (which is true for forest-definable languages)

t+ t ∈ L iff t ∈ L ,

for the simple reason that t + t is not a tree. Therefore no
nonempty tree language is forest-definable. For similar rea-
sons, no nonempty forest-definable language is tree-definable.
The following Proposition relates the two concepts:

Proposition IV.1 Let L be a tree language over (A,B). The
following conditions are equivalent:

• L is tree-definable.
• For each inner node label b ∈ B, the forest language

{t : bt ∈ L} is forest-definable.

In this paper, we will present a decidable characterization
for forest-definable languages. Thanks to the above result, this
will also give us a decidable characterization of tree-definable
languages.

We only do bottom-up implication in the above proposition;
the bottom-up can be shown using standard techniques.

Lemma IV.2 Let L be a forest-definable language and let b ∈
B be an inner node label. The tree language {bt : t ∈ L} is
tree-definable.

Proof
The key observation is that if K is a language tree-definable
in EF + F−1, then the following tree language:

XK = {b(t1 + · · · + tn) : b ∈ B,∃i. ti ∈ K}

is also tree-definable. Once we demonstrate how to write a
formula for XK, the statement of the lemma immediately
follows.

Note that definability of the language XK does not mean we
can add the successor operator to the logic. This is because XK
uses the successor only at the root. For instance, the property
“some node at depth 4 has the same label as its parent” is
tree-definable, contrary to the property “some node has the
same label as its parent”.

We now proceed to show the formula for the language XK.
Let ϕ be the formula defining K. We define ϕ̂ to be the
formula obtained from ϕ by replacing every subformula ψ
by ψ∧F−1true. This way, quantification in ϕ̂ is relativized to
non-root nodes. Finally, the formula for XX is

EF
(
(F−1true) ∧ (¬F−1F−1true) ∧ ϕ̂)

.

The above formula nondeterministically picks a successor x of
the root, and then tests if ϕ̂ holds in x. Since ϕ̂ is relativized
to non-root nodes, evaluation of ϕ̂ will never leave the subtree
of x. �

V. THE EQUATIONS AND THE MAIN RESULT

In this section we state our main result, the decidable
characterization of the logic EF + F−1.

Before we state the theorem, we define a relation � over
contexts in a forest algebra. The idea is that u � w holds if u
can be obtained from w by removing forests that are siblings
of the main path (recall that the main path contains ancestors
of the hole). Let (H,V ) be a forest algebra. For u,w ∈ V ,
we write u � w if u,w can be decomposed as

u = v0v1 · · · vn w = v0(h1 + v1) · · · (hn + vn)

for some v0, . . . , vn ∈ V and h1, . . . , hn ∈ H . (In general this
relation need not be transitive.)

Theorem V.1
A language is forest-definable in EF + F−1 if and only if its
syntactic algebra satisfies the following equations:

h+ h = h g + h = h+ g (1)

(vw)ω = (vw)ωw(vw)ω . (2)

(u1w1)ω(u2w2)ω = (u1w1)ωu1w2(u2w2)ω

for u1 � u2, w1 � w2 .
(3)

The equations in (1) say that the algebra is bisimulation
invariant. The equation (2) says that the vertical monoid
belongs to the variety DA (although the commonly used
equation is different). Only the last equation is new.

The exponent ω in properties (2) and (3) stands for “for
almost all n”. In particular, equation (2) should be read as:

∃m∀n ≥ m (vw)n = (vw)nw(vw)n .

Before we prove this theorem, we present an important
corollary:

Corollary V.2 It is decidable if a language is forest-definable
(resp. tree-definable) in EF + F−1.

Proof
To determine if a language is tree-definable, we calculate the
languages {t : bt ∈ L} and reduce to the characterization of
forest-definable language thanks to Proposition IV.1. There-
fore, we focus on deciding if a language is forest-definable.

We begin by finding the syntactic forest algebra. The
syntactic forest algebra can be effectively calculated based on
any representation of the tree language, be it a tree automaton,
or a formula of some rich logic, such as MSO. In general,
the syntactic forest algebra can be exponentially larger than a
nondeterministic tree automaton, not to mention a formula of
MSO.

Once the syntactic forest algebra has been calculated, the
properties (1), (2) and (3) can be verified in polynomial time
(with respect to the algebra). The exponent ω is not a problem;
using standard semigroup arguments one can show that testing
for ω = |V |! is enough, and the factorial powers can be
computed using fast multiplication. The relation � over V can
be computed using a fix-point algorithm. �
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The decidability result could be easily extended to lan-
guages of contexts. Unary queries, i.e. pairs consisting of a
forest and a node, are left as future work.

The rest of this paper is devoted to showing Theorem V.1.
The “only if” implication in the above theorem is proved in
Section VI using a standard Ehrenfeucht-Fraisse approach. The
difficult part is the proof of the “if” implication, which is found
in Section VII.

In the following fact, we show that property (3) in Theo-
rem V.1 is not redundant. In a similar way one can prove that
neither (1) nor (2) are redundant.

Fact V.3 There exists a forest algebra satisfying properties (1)
and (2) but not (3).

Proof
Consider the syntactic forest algebra of the following lan-
guage:

All inner nodes are labeled by b, leaves are labeled
by a or a′. If a node has a successor with label a,
then it has an ancestor with a successor with label a′.

The syntactic forest algebra of this language satisfies proper-
ties (1) and (2); but it does not satisfy (3), as witnessed by:

(bb)ω((b+ a′)(b+ a))ω �= (bb)ωb(b+ a)((b+ a′)(b+ a))ω .

�

VI. CORRECTNESS

In this section we show that any forest-definable language
satisfies the equations from Theorem V.1. Validity of (1) can
easily be shown. We omit the proof of (2) for two reasons:
first, it is the same as in the word case; and second, it follows
along similar lines as the proof of (3).

The rest of this section is devoted to showing the validity
of equation (3). Let L be a language definable by an EF+F−1

formula ϕ. We need to show that the syntactic algebra of L
satisfies equation (3). Recall that elements of the syntactic
algebra are equivalence classes of the Myhill-Nerode equiva-
lence relation. Therefore, in order to show the validity of (3),
we have to show that for all contexts

p1 � p2 q1 � q2 ,
every context p and every nonempty forest t, the following
equivalence holds for almost all k ∈ N:

s0 = p(p1q1)k(p2q2)kt |= ϕ
if and only if

s1 = p(p1q1)kp1q2(p2q2)kt |= ϕ
(4)

holds. To keep the notation simple, we will only consider the
case when

• The context p is empty.
• The forest t is a single node a
• The contexts p1, p2, q1, q2 are

p1 = b1 · · · bn p2 = b1(∗ + a1) · · · bn(∗ + an)
q1 = bn+1 · · · bm p2 = bn+1(∗ + an+1) · · · (bm(∗ + am)
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Fig. 1. The trees s0 and s1

for some n < m and b1, . . . , bm ∈ B, a1, . . . , am ∈ A.
• The labels a1, . . . , am, b1, . . . , bm and a are all distinct.

The trees s0 and s1 are shown in Figure 1. The general case
can be shown in exactly the same manner.

Our proof uses a fairly standard Ehrenfeucht-Fraisse game
technique. We first define the game and show that it corre-
sponds to the logic EF + F−1 over trees. Then, using this
correspondence, we show in Lemma VI.2 that (4) holds once
k is larger than the size of the formula ϕ.

We now proceed to define the Ehrenfeucht-Fraisse game.
The game is played over two trees s0, s1 and consists of k
consecutive rounds. There are two players, Spoiler and Dupli-
cator. The aim of Spoiler is to show that the trees s0, s1 are
different, while the aim of Duplicator is to show that they are
similar. At the beginning of each round, a pebble x0 is placed
in a node of s0 and a pebble x1 is placed in a node of s1.
(At the beginning of the first round both pebbles are in the
respective roots.)

A round is played as follows. If the labels of x0, x1 are
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different, then player Spoiler is declared the winner and the
game is terminated. Otherwise, Spoiler chooses one of the
trees si ∈ s0, s1. He can then chose the type of move he
makes:

• A descendant move. In a descendant move, Spoiler picks
a new pebble position x′i > xi that is a proper descendant
of the old pebble position. Duplicator must respond by
picking a new pebble position x′1−i > x1−i in the other
tree. If either player cannot find such a node, he loses
and the game is terminated.

• An ancestor move. This is similar as above, except that
a proper ancestor must be chosen.

If Duplicator successfully responds to Spoiler’s move, the
game continues on to the next round, with the pebbles updated
to the new positions x′0, x

′
1. If Duplicator has not lost after the

last round, he is declared the winner.
The following lemma is standard. The size of a formula is

the nesting depth of the operators EF and F−1.

Lemma VI.1 If Duplicator can win the k-round game over
trees s0, s1 then these trees cannot be distinguished by any
EF + F−1 formula of size k.

In the following lemma we show that (4) holds, under the
assumptions on p, p1, p2, q1, q2, t stated previously:

Lemma VI.2 Duplicator can survive the k-round game over

s0 = (p1q1)k(p2q2)kt

s1 = (p1q1)kp1q2(p2q2)kt

Proof
In each of the trees s0, s1, the main path is the one leading
to the a = t. The projection of a node onto the main path
is its closest ancestor (not necessarily proper) that is on the
main path. Duplicator plays so as to preserve the following
invariant:

Assume there are l ≤ k rounds left. Let x0, x1 be the
pebble positions, and let y0, y1 be their projections
onto the main paths. The labels of x0, x1 are the
same (this implies that the labels of y0, y1 are the
same). Moreover, we have

• The subtrees of y0, y1 are the same; or
• The prefixes of y0, y1 are the same; or
• Both the prefixes and suffixes contain at least l

copies of b1, . . . , bm.

�

VII. COMPLETENESS

This section is devoted to showing the more difficult impli-
cation in Theorem V.1. We will show:

Proposition VII.1 Any forest language recognized by an al-
gebra satisfying (1), (2) and (3) can be forest-defined.

The above statement immediately implies the more difficult
“if” part of V.1. Indeed, if L is recognized by an algebra
satisfying (1), (2) and (3), then its syntactic algebra satisfies
these equations. This is because the syntactic algebra is a
morphic image of any algebra recognizing the language, and
equations are preserved by morphic images.

If α is a morphism, then the type under α of a forest t is
simply the value α(t). If the morphism α is clear, we omit
the qualifier “under α”. We will use the name types to refer to
elements of H . Let X ⊆ H be a set of types. We say a forest
t is X-trimmed if the only subtrees of t that have a type in X
are leaves. We say a tree language L is tree-definable modulo
X if there is a formula ϕ such that

t |= ϕ iff t ∈ L

holds for all X-trimmed trees. In a similar fashion, we define
forest-definable modulo X .

We will show a slightly more general result, which refers
to parameters that can be used in an induction:

Proposition VII.2 Let α : (A,B)Δ → (H,V ) be a mor-
phism, with (H,V ) satisfying equations (1), (2) and (3). Let
X ⊆ H be a set of types, and let v ∈ V . For each h ∈ H the
following forest language is forest-definable modulo X

{t : v(α(t)) = h} (5)

Clearly Proposition VII.1 follows from the above result,
taking X = ∅ , v to be the empty context, and doing a
disjunction over all h ∈ α(L). The rest of Section VII is
devoted to a proof of Proposition VII.2. The proof is by
induction on several parameters:

• The size of H .
• The size of H \X .
• The depth of v with respect to ≥R (see below).
• The size of B, i.e. the number of inner node labels.

The order of these parameters is important: first we try to
minimize H , then the other three parameters.

We would like to remark here that these parameters are
properties of the whole morphism α, and not just its target
(H,V ). The notion of non-leaf types is dependent on α, as is
being X-trimmed.

We say a morphism α into (H,V ) is leaf saturated if for
every h ∈ H , there is a representative leaf label a with
α(a) = h. In the rest of this paper, we will only consider
such morphisms. Any morphism can be extended to one that
is leaf saturated, without affecting the target forest algebra.

In VII-A, we define the concept of forest component, and
the preorder ≥R. Then in Section VII-B, we lay out our proof
strategy.

A. Green’s relations for trees

We consider several preorders defined on H and V .
The preorders on V are obtained by simply treating V as

a monoid and using Green’s relations. As in any monoid, we
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can define the following two relations on V :

v ≤R w ⇐⇒ v = wu for some u ∈ V

v ≤L w ⇐⇒ v = uw for some u ∈ V

(The perhaps counterintuitive direction of the order is tradi-
tional. The notation is supposed to suggest that more things
can be reached from w than from v.) Both relations can
easily be shown to be preorders (i.e. transitive and reflexive).
Therefore, each induces an equivalence relation on V , these
are called respectively ∼L and ∼R. Equivalence classes of
these equivalence relations are called L-components and R-
components respectively. For our purposes, ≤R will turn out
to be more important than ≤L.

The preorder over H will need some interaction with V .
We say a forest g is reachable from a forest h, if there is
some context u such that g = uh. We write this as g �
h. By composing contexts, this is a preorder. The induced
equivalence relation is denoted ∼ and its equivalence classes
are called (forest) components. Moreover g+ h � g holds for
all g, h ∈ H; since g + h = (h+ ∗)g.

The pre-order � has a “least” element. That is, the type
h = h1 + · · · + hn that contains all types from H can be
reached from any type of hi ∈ H , via a context of the form

h1 + · · · + hi−1 + ∗ + hi+1 + · · · + hn .

Note that in general, there may be more than one such least
type; that is there may be some other types that are reachable
from h. However, they all share the following property:

Lemma VII.3 Let g ∈ H be a least type of H . There is a
context that gives g for all arguments f ∈ H .

Proof
Let h be the concatenation of all types from H , as defined
previously. By assumption on g, there is some context v ∈ V
such that g = vh. We claim that context v(h+ ∗) gives g for
all arguments f ∈ H . Since h contains all forests from H ,
by (1), we have f + h = h for all f ∈ H . In particular,

v(h+ ∗)f = v(h+ f) = vh = g .

�

B. Proof strategy

In our proof of Proposition VII.2, we consider three possible
cases. First, in Section VII-D, we see what happens if H \X
contains more than one forest component (i.e. at least two
nonequivalent elements). Then, in Section VII-E, we see what
happens when some inner node label b ∈ B has the property
that vb is strictly smaller than v in the preorder ≤R, in which
case we say that the label b does not preserve v. Finally, in
Section VII-F, we show that if neither of the above holds,
then vf = vg holds for all f, g ∈ H and hence the formula
ϕ in Proposition VII.2 need not depend on the forest t (it is
either “true” or “false” depending on v and h). Section VII-F
essentially corresponds to the induction base.

First however, we present a concatenation principle that
will be used in Sections VII-D and VII-E. This principle is a
generalization of the techniques used in Lemma IV.2.

C. A concatenation principle

We first present the principle for words, to give the ap-
propriate intuition. A problem with F + F−1 over words is
that it is not closed under concatenation. For instance, the
languages aa and (a + b)∗ are both F + F−1 definable, but
the language (a + b)∗aa(a + b)∗ is not. We claim however,
that the concatenation LK is definable if the place in a word
where L and K meet can be uniquely determined in F+F−1:

Lemma VII.4 (Concatenation for words) Let L,K be two
F + F−1 definable word languages and let ϕ be a F + F−1

formula with the semantic property that in every word, ϕ holds
in at most one word position. The following word language is
also definable in F + F−1:

{a1 . . . an : a1 · · · ai ∈ L, ai+1 · · · an ∈ K, a1 · · · an, i |= ϕ}
Proof
The same relativization as used in the proof of Lemma IV.2.
We relativize the formula for L to positions where ϕ ∨ Fϕ
holds, and we relativize the formula for L to positions where
F−1ϕ holds. �

For trees, the situation is more complicated. First of all,
there are two notions of concatenation: for forests and for
contexts. We are interested in generalizing Lemma VII.4 to
concatenation of contexts. In our generalization though, we
may need to substitute many trees simultaneously. This leads
to a slightly less appealing definition, which follows.

A formula is called antichain if in every tree, the set of
nodes where it holds forms an antichain (not necessarily max-
imal). Recall that an antichain is a set of nodes incomparable
with respect to the descendant relation. This is a semantic
property, and may not be apparent just by looking at the
syntax of the formula. For instance, the first two formulas
are antichain, while the third is not:

• The node is a leaf: ¬EFtrue.
• The node is a minimal occurrence of b: b ∧ ¬F−1b.
• The node has label b.

Using antichain formulas, we define our notion of concate-
nation. The ingredients are as follows:

• An antichain formula ϕ.
• Disjoint tree languages L1, . . . , Ln over (A,B).
• Leaf labels a1, . . . , an ∈ A.

Let t be a tree over (A,B). We define the tree

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an]

as follows. For each node x of t where the antichain formula
ϕ holds, we determine the unique i such the tree language Li

contains the subtree of x. If such an i exists, we remove the
subtree of x (including x), and replace x by a leaf labeled
with ai. Since ϕ is antichain, this can be done simultaneously
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for all x. Note that the formula ϕ may depend also on ancestors
of x, while the languages Li only talk about the subtree of x.

Lemma VII.5 (Antichain concatenation for trees) Let ϕ,
L1, . . . , Ln and a1, . . . , an be as above. For a tree-definable
language K, the following tree language is tree-definable:

{t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ K} .
Proof
Relativization. �

The point of this lemma is that the languages Li are taken
out of their context inside the tree t. For instance Li can say
something like: “the root has label b and a child with label b”,

Li = EF(b ∧ F−1b ∧ ¬F−1F−1true) ,

while in general the property “a node in the tree that has label
b and a child with label b” cannot be expressed in EF + F−1.

The above lemma also holds when K is forest-definable, in
which case the language is forest-definable.

We now proceed to the proof of Proposition VII.2. As we
said before, we consider three cases.

D. There is more than one forest component in H \X
For the rest of Section VII-D, we fix some type g �∈ X . Let

G ⊆ H be the forest component of g. We pick g so that no
type in G can be reached from a type in X \ G. Intuitively
speaking, types from G are close to the leaves. The essential
idea is that we will add G to X , by squashing each subtree
of type g to a single leaf with the g written in its label. This
is done by applying the antichain concatenation lemma.

Let W ⊆ V be the set of contexts that preserve G,
i.e. contexts w such that holds wg ∼ g for some g ∈ G. The
following lemma shows that thanks to equation (2), “some” in
the above definition can equivalently be replaced by “all”.

Lemma VII.6 Let g ∼ h ∈ H and v ∈ V . If vg ∼ g then
vh ∼ g.

Proof
Indeed, assume that vg ∼ g and g ∼ h hold. In this case we
can find contexts u,w such that uvg = h and wh = g. But
then we have wuvg = g. In particular, we have (wuv)ωg = g.
Using equation (2), we get

g = (wuv)ωg = (wuv)ωuv(wuv)ωg = (wuv)ωh ,

which shows g can be reached from vh. Since vh can be
reached from g by assumption on h being reached from g, we
obtain the desired g ∼ vh. �

Let F ⊆ H be the set of those types f from which a type
in G can be reached. In particular, we have

G ⊆ F ⊆ H .

Note all types in F \ X are from G by choice of G.
Furthermore, the inclusion F ⊆ H is proper, since H \ X
contains more than one forest component by assumption. The

inclusion G ⊆ F may also be proper, however all types in the
difference F \G are from X .

We say f ∈ H is a bad brother if f + g �∈ G holds for all
g ∈ G. We say f ∈ H is a good brother if f + g ∈ G holds
for all g ∈ G. Note that by definition of F , all good brothers
are in F . An easy observation is that f is a good brother if
and only if f + ∗ belongs to W . By Lemma VII.6, we see
that every type in H is either a good brother or a bad brother.
(In particular, all types of G are good brothers, since they
can’t be bad brothers by g + g = g.) Furthermore, since W
is closed under context composition, good brothers are closed
under forest concatenation +.

A twig is a tree of depth exactly two, i.e. a root and some
leaves. A twig node is a node whose subtree is a twig.

Lemma VII.7 There is an formula ψ such that in any X-
trimmed tree, ψ holds in nodes with a subtree of type in G.

Lemma VII.8 For each g ∈ G, the set of trees with type g
is tree-definable modulo X .

The general idea is that (G,W ) is a (smaller) forest algebra,
and therefore the induction assumption can be applied to
languages recognized by (G,W ). However, thanks to bad
brothers and such, (G,W ) does not recognize the language
in the lemma.

We will now use Lemmas VII.7 and VII.8 along with the
concatenation principle to conclude the case considered in this
section. The idea is that we add all types from G to X .

Let h, v be as in the statement of Proposition VII.2. We
need to show that the language

L = {t : v(α(t)) = h}
is forest-definable modulo X . By induction assumption, we
know that this language is forest-definable modulo X ∪G. In
other words, there is some forest-definable set of forests K that
agrees with L over (X ∪ G)-trimmed forests. To describe L
modulo X , we will use the antichain concatenation principle.

Let ψ be the formula from Lemma VII.7. Let

ϕ = ψ ∧ ¬F−1ψ .

This formulas holds in a node whose subtree has a type
in G, and the node is closest to the root for this property.
Thanks to the last clause, ϕ is an antichain formula. Let
G = {g1, . . . , gn}. By assumption that α is leaf saturated,
for each gi there is a leaf label ai ∈ A with α(ai) = gi. For
each gi, let Li be the set of trees with type gi. Thanks to
Lemma VII.8, each Li is tree-definable modulo X .

It is easy to see that squashing a subtree with type gi into a
single leaf with label ai does not change the type of the whole
tree. More precisely, a forest t has the same value as

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] .

Furthermore, the above forest is (X ∪ G)-trimmed, at least
as long as t was X-trimmed. It follows that over X-trimmed
forests, L agrees with

{t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ K} ,
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which is forest-definable thanks to the antichain concatenation
principle.

E. For some b ∈ B, we have vα(b) >R v

Let C ⊆ B be the set of those labels b that satisfy vα(b) ∼R
v, i.e. those labels that preserve v. In this section we show that
if C is a proper subset of B, then the induction assumption
can be applied.

Using the same technique as in Lemma VII.6, we can show:

Lemma VII.9 If v ∼R w and vu ∼R v then wu ∼R v.

Consider now the following equivalence relation:

h ≡v+ g ⇐⇒ uh = ug for all u <R v.

Lemma VII.10 Each equivalence class of ≡v+ is forest-
definable modulo X .

Proof
By induction assumption; the third parameter is decreased. �

Lemma VII.11 Let t be a forest and let x be a node with
a label outside C. For any subforest below x, replacing the
subforest with an ≡v+ equivalent one does not change the
value of vα(t).

Lemmas VII.10 and VII.11, together with the concatenation
principle complete the proof of the case in this section. The
idea is that for each minimal node x with a label outside C, we
can use Lemma VII.10 to calculate the ≡v+-equivalence class
of its subtree. By Lemma VII.11, this is enough to determine
the value of vα(t).

F. The induction base

In this section, we assume that the techniques from the
previous two sections cannot be applied. That is:

• All types of H \X are in a single forest component.
• For all b ∈ B, we have vα(b) ∼R v.

We will show

vf = vg for all f, g ∈ H \X . (6)

Before we do this, we show how this completes the proof of
Proposition VII.2. For every h ∈ H , we need to show that

L = {t : v(α(t)) = h}
is forest definable modulo X . By (6), there is some h0 ∈ H
be such that vf = h0 holds for all f ∈ H \X .

• If an X-trimmed forest t contains an inner node label –
which can easily be tested by the logic – then α(t) must
be in the single forest component H \ X . In particular,
vα(t) = h0. So in this case, ϕ is either “true” or “false”
depending on whether h0 = h or not.

• Otherwise, the forest t is the concatenation of some leaves
a1 + · · · + an. In this case, the type of

vα(a1 + · · · + an)

can be calculated based on the set of leaf labels in t.
The rest of this section is devoted to showing (6).
The following Lemma is the key step in our proof (6). It

says that not only any two types h, g ∈ H \X can be reached
from each other (which follows from the assumption on there
being one forest component), but they can also be reached
from each other by only using contexts without any branching.
Furthermore, the context that goes from g to h can be chosen
independently of g. However, all these statements are relative
to contexts w ∼R v.

Lemma VII.12 Let h ∈ H \X . There are inner node labels
b1, . . . , bn ∈ B such that wh = wα(b1 · · · bn)g holds for all
w ∼R v and all g ∈ H \X .

Proof
Let g ∈ H \X . By Lemma VII.3, there are some ug, uh ∈ V
such that g = ugf and h = uhf for all f ∈ H . We assume
that these contexts are of the form:

uh = (f1 + α(b1)) · · · (fn + α(bn))
ug = (fn+1 + α(bn+1)) · · · (fm + α(bm))

for some n ≤ m and f1, . . . , fm ∈ H and b1, . . . , bm ∈ B. (In
general, some of the fi may be empty; but the proof follows
the same lines.) Let us denote α(bi) by vi. We will show that

wh = wv1 · · · vng

holds for any w ∼R v. Since b1, . . . , bn were chosen indepen-
dently of g, this will establish the statement of the Lemma.

By definition, we have

v1 · · · vn � uh vn+1 · · · vm � ug (7)

Let now w ∈ V be such that v ∼R w. By assumption on
w and Lemma VII.9, we have

wv1 · · · vm ∼R w .

In particular, there is some w ∈ V such that

wv1 · · · vmw = w .

By iterating the above ω times, and appending h, we get

wh = w(v1 · · · vmw)ωh .

Since uhf = h for all f , the above can be rewritten as

w(v1 · · · vmv)ω(uhugv)ωh .

Using the property from equation (3), we get

w(v1 · · · vmw)ω(uhugw)ωh =
w(v1 · · · vmw)ωv1 · · · vnugw(uhugv)ωh =

= w(v1 · · · vmw)ωv1 · · · vng = wv1 · · · vng ,

which concludes the proof of the lemma. �
We now use the above Lemma to conclude the proof of (6).

Indeed, let f, g be in H \X . By the above lemma, there are
b1, . . . , bm ∈ B such that

f = wα(b1 · · · bn)h g = wα(bn+1 · · · bm)h
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holds for all w ∼R v and all h ∈ H \X . Let vi = α(bi). By
assumption on the equivalence class of v and by Lemma VII.9,
there must be some v ∈ V such that

vv1 · · · vmv = v .

But then we have

vf = v(v1 · · · vmv)ωf =
v(v1 · · · vmv)ωvn+1 · · · vmv(v1 · · · vmv)ωf =

v(v1 · · · vmv)ωg = vg .

The second equality follows from (2).

VIII. ONE QUANTIFIER ALTERNATION

In [11], it was shown that over words, F+F−1 has the same
expressive power as Σ2 ∩ Π2, where

• Σ2 are word properties definable by a first-order formula
with quantifier prefix ∃∗∀∗; the signature contains label
tests and the left-to-right order on word positions.

• Π2 are complements of Σ2.

Both classes Σ2,Π2 can be extended to trees (using the
descendant order on tree nodes). We show here that the result
from [11] fails for trees:

Proposition VIII.1 Over trees, the classes EF+F−1 and Σ2∩
Π2 are incomparable.

The inequality

EF + F−1 � Σ2 ∩ Π2

is witnessed by the language “three nodes with label a”, which
cannot be defined in EF + F−1 by virtue of (1). To show the
remaining inequality

EF + F−1 � Σ2 ∩ Π2 ,

we will demonstrate in Lemma VIII.2 an invariant of Σ2 that
is not satisfied by the property “all successors of the root have
label a”.

Let s, t be two trees. An embedding of s in t is an injective
function that assigns nodes of s to nodes of t, and preserves
the labels and vertical order. If n ∈ N and s is a tree, we use
ns to denote the n-fold concatenation of s.

Lemma VIII.2 Let ϕ be a formula of the form

∃x1 . . . xi∀y1 . . . yjψ(x1 . . . xi, y1 . . . yj) ,

with ϕ quantifier-free. Let n > i + j, and let a be an inner
node label. If t embeds in s, and a(ns) satisfies ϕ, then so
does a(ns+ t).

Proof
Assume then that a(ns) satisfies ϕ. We need to show that
a(ns)+ t does too. For x1, . . . , xi, we pick the same nodes in
a(ns)+t as the nodes in a(ns) that witnessed a(ns) |= ϕ. We
need to show that for any assignment of the nodes y1, . . . , yj in
a(ns)+t that makes ψ false, we also can find an assignment in

a(ns) that makes ψ false. The key point is that any assignment
of x1, . . . , xi, y1, . . . , yj in a(ns) + t must leave at least one
copy of s without any variables; this copy can be used in
a(ns) to simulate t via the embedding. �

IX. CLOSING REMARKS

The main contribution of this paper is a characterization of
languages definable in EF+F−1, which is expressed in terms
of equations that must be satisfied in the syntactic algebra. A
corollary of this characterization is an algorithm for deciding
if a given regular language can be expressed in EF + F−1.

As mentioned in the introduction, there are many open
problems waiting to be solved in this field. Of those closely
related to EF + F−1, the following look interesting:

• What are the equations for two-variable first-order logic
with the descendant relation? The question boils down to:
what equation should replace idempotency h + h = h?
Here is one candidate: v(h+ h) + vh = vh+ vh.

• What are the equations for an extension of EF + F−1,
where we allow operators of the form EFkϕ, with the
meaning: “the current node has k incomparable descen-
dants were ϕ holds”. This seems to be a reasonable
extension of EF + F−1 that is capable of counting.

It is conceivable that a modification of the techniques devel-
oped in this paper can be sufficient to solve the above two
logics. For other logics mentioned in this paper, such as full
first-order logic, or even variants of EF+F−1 with horizontal
order, new techniques need to be developed.

REFERENCES

[1] M. Benedikt and L. Segoufin. Regular languages definable in FO. In
Symposium on Theoretical Aspects of Computer Science, volume 3404
of Lecture Notes in Computer Science, pages 327 – 339, 2005.
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