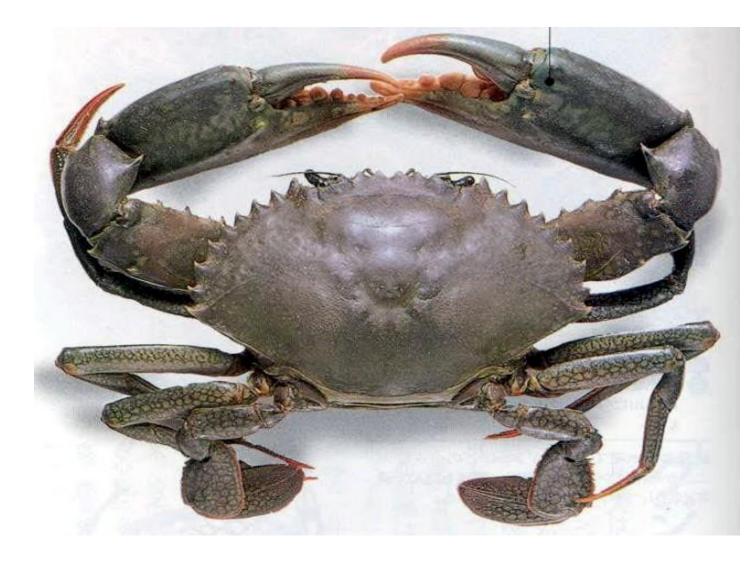
Studying Mangrove Crab, Shrimps, Prawns and Oysters Farming Potential in the MMR Mangroves: Economic Sustainability for Ecosystem Maintenance

Submitted By:


TerraNero Enterprises 607, A7, Runwal Plaza, Vartak Nagar, Thane (W), 400606

> www.terranero.com contact.terranero@gmail.com



Submitted to

MMR Environment Improvement Society (MMR-EIS) of the Mumbai Metropolitan Region Development Authority (MMRDA)



| MMR           | Mumbai Metropolitan Region                                           |
|---------------|----------------------------------------------------------------------|
| MMRDA         | Mumbai Metropolitan Region Development Authority                     |
| MMREIS        | Mumbai Metropolitan Region Environment Improvement Society           |
| UNDP          | United Nations Development Program                                   |
| GAA           | GlobalAquaculture Alliance                                           |
|               |                                                                      |
| Figure 1      | Mumbai Metropolitan Region                                           |
| Figure 2      | Mangrove Ecosystem                                                   |
| Figure 3      | Mangrove Crab (Scylla serrata)                                       |
| Figure 4      | Mangrove Crab Life Cycle                                             |
| Figure 5      | Mangrove Crab Aquaculture Pen                                        |
| Figure 6      | Oyster Aquaculture - Setting up the Ren                              |
| Figure 7      | Oyster Aquaculture - Local Sindhudurg Women at Work                  |
| Figure 8      | Local Ratnagiri Women Displaying Harvested Oysters                   |
| Figure 9      | Sites Visited in the MMR: Google Earth Image                         |
| Figure 10a-m  | Sites visited in the MMR: Site Pictures                              |
| Figure 11     | Social Interaction at Uttan                                          |
| Figure 12     | Second-level Social Interaction at Ghansoli                          |
| Figure 13     | Second-level Social Interaction at Alibaug                           |
| Table 1       | Literature Review                                                    |
| Table 2       | Water Quality Parameters                                             |
| Table 3       | Mangrove Species Richness                                            |
| Table 4a      | Water Quality Parameters (Season 1)                                  |
| Table 4b      | Water Quality Parameters                                             |
| Table 5       | Heavy Metal in Water                                                 |
| Table 6       | Heavy Metal in Sediment                                              |
| Table 7       | Social Interaction                                                   |
| Table 8       | Details of the Second Round of Socio-economic Studies                |
| Table 9       | Site Rating Scale                                                    |
| Supplementary | Avian Species Richness                                               |
| Table 1       | 1                                                                    |
| Supplementary | Phytoplankton, Zooplankton and Benthic Biodiversity Species Richness |
| Tables 2-4    |                                                                      |
| Supplementary | Site Rating Scale                                                    |
| Tables 5-15   |                                                                      |
| Supplementary | References of phytoplankton as indicators                            |
| Table 16      |                                                                      |
| Supplementary | Secondary data                                                       |
| Table 17      |                                                                      |
| Supplementary | Secondary data on water quality of MMR region                        |
| table 18      | Secondary data on water quanty of ministregion                       |
|               |                                                                      |

List of Acronyms, Figures, and Tables

#### **Chapter 1 Background**

| 1.1 Scope of Work & Timeline            | 5 |
|-----------------------------------------|---|
| 1.2 Study Area Details                  | 5 |
| 1.3 Mangrove Ecosystem: An Introduction | 6 |

## **Chapter 2 Literature Review**

| 2.1 Literature Review            | .8  |
|----------------------------------|-----|
| 2.2 Key Species - Mangrove Crabs | ,9  |
| 2.3 Oyster Aquaculture           | .14 |

### **Chapter 3 Methods**

| 3.1 Biodiversity                |  |
|---------------------------------|--|
| 3.2 Water Sampling and Analysis |  |
| 3.3 Sites Visited               |  |

## Chapter 4 Results, Discussion and Conclusion

| 4.1 Biodiversity                                 | 29 |
|--------------------------------------------------|----|
| 4.2 Water Quality                                | 30 |
| 4.3 Sediment Quality                             | 34 |
| 4.4 Social Interaction                           | 35 |
| 4.5 Discussion: Most Suitable Site Rating System | 38 |
| 4.6 Conclusion and Future Outlook                |    |

| Supplementary | 7 Tables | 40 |
|---------------|----------|----|
|---------------|----------|----|

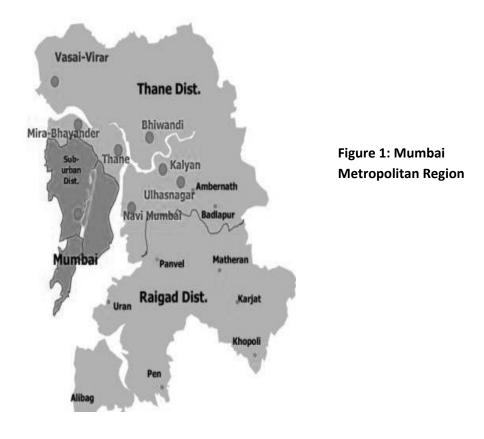
#### Chapter 1

#### Background

#### **1.1 Scope of Work and Timeline**

The following scope was fixed prior to the commencement of the study, with the ultimate objective of creating a feasible case study of co-existence of economic development and environment conservation.

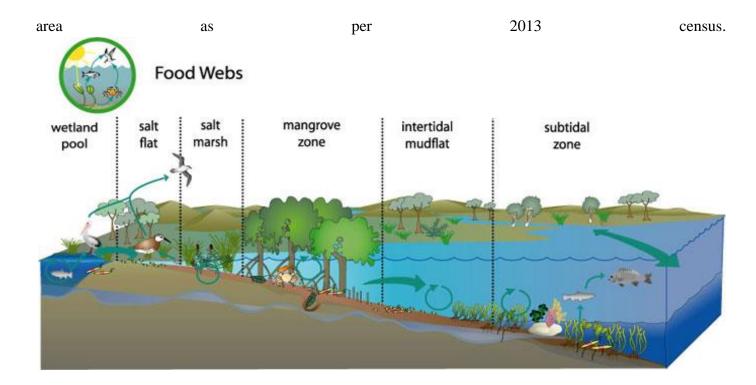
- Secondary data collection Complete
- Water and sediment sampling and analysis of the selected locations for season 1 Complete
- Biodiversity survey of the selected locations for season 1 Complete
- Socio-economic survey of the selected location for season 1 –Complete
- Water and sediment sampling and analysis of the selected locations for season 2 Complete
- Biodiversity survey of the selected locations for season 2 Complete
- Socio-economic survey of the selected location for season 2 Partially Complete


Also completed - Visit to Mangrove Crab Aquaculture Pen - Vengurla, Sindhudurg

Training for Oyster Aquaculture from UNDP - Mochemad, Sindhudurg

*Timeline* -3 *months* (Phase I) + 2 months (Phase II)

#### **1.2 Study area Details**


Mangrove crab farming potential in the MMR(Mumbai Metropolitan Region). The MMR extends over an area of 4,355 km<sup>2</sup> covering Mumbai, Thane and part of Raigad districts.



#### 1.3 Mangrove Ecosystem: An Introduction

Saline water, freshwater, and land meet at mangrove ecosystems. They are among the most productive and complex ecosystems on the planet. They are absolutely vital for the safety of coastal areas. Mangroves are indeed the "protectors of shore-line" as by being present at the land-water interface they act as natural warriers to storms and tsunamis. They, therefore, prevent severe losses to life and property along the estuarine and coastal areas.

In coastal areas, mangroves play a diverse role ashydrophytic trees, vines, ferns shrubs and plants growing in brackish to saline tidal water along the tropical and subtropical coast. Mangroves are native species to tropical and subtropical regions with approximately 70 identified species worldwide. They have ability to grow where no other trees can, thereby making significant contributors that benefit the coastal ecology. India covers about 4,628 sq km areas of Mangroves of which 0.14 % of the country's total geographical



Mangrove ecosystems represent natural capital capable of producing a wide range of products and resources for coastal environments and their related communities with society as a whole. In these value is determined by the markets through exchange and quantified in terms of price. Many of the wild species such as Fishes, Shellfishes, Avian, Reptilian, Mammalian and Planktonic diversity are supported by Nusery provided in Mangroves. Also, commercial fish and crustaceansare supported by mangrove ecosystems, sustaining the local abundance of fish and shellfish populations. The coastal water quality is maintained by Mangroves with the help of nutrientretention and cycling, and rhizofiltration of pollutants, preventing their seaward flow.

Mangrove conservation and management cannot be a one-time activity – it has to be a continuous exercise. This, in turn, implies that there must be a continuous financial activity that must be linked with the ecosystem conservation and management activity so that the entire project becomes sustainable. The broad term "aquaculture" refers to the breeding, rearing, and harvesting of animals and plants in all types of water environments including ponds, rivers, lakes, and the ocean.

The species found in brackish water includemangrovecrabs, shrimps, prawns, oysters, mussels, clams, mullet fish, cobia fish etc., which can be aqua-cultured to protect the existing mangroves on one hand and enhance the value of mangroves by enhanced supply of seafood.

One such activity can be the aquaculture of economically significant brackish water fauna. A few positive impacts of aquaculture on biodiversity are:

- cultured seafood can reduce pressure on overexploited wild stocks
- stocked organisms may enhance depleted stocks

Mangrove protection by aqua-culturists is a win-win situation. It is possible to have sustainable aquaculture farms and sustainable mangrove ecosystem in the same vicinity through enlightened management methods and dedication by the aqua-culturists towards environmental stewardship.

#### Chapter 2

#### **Literature Review**

#### 2.1 Literature Review

In Google Scholar, keywords such as 'sustainable aquaculture,' 'mangrove crab aquaculture,' 'mud crab aquaculture,' 'prawn aquaculture,' 'shrimp aquaculture,' 'oyster aquaculture,' 'mangrove and mangrove crab,' 'prawn farming and mangrove,' 'shrimp farming and mangrove,' and 'oyster aquaculture and mangrove' were searched for. Relevant publications from peer-reviewed journals were downloaded and analyzed.

In Table 1 below, we have provided a detailed analysis of published literature on the basis of which marine and brackish water species aquaculture is recommended for concurrent mangrove ecosystem maintenance.

| S.No. | Citation                                                       | Major Finding                                |
|-------|----------------------------------------------------------------|----------------------------------------------|
| 1.    | Alongi, D. M. (2002). Present state and future of the world's  | Estimating benthic biodiversity is very      |
|       | mangrove forests. Environmental conservation, 29(03), 331-     | important for prevention of mangrove         |
|       | 349.                                                           | exploitation from aquaculture                |
| 2.    | Rönnbäck, P. (1999). The ecological basis for economic value   | The life-support functions of mangrove       |
|       | of seafood production supported by mangrove                    | ecosystems set the framework for             |
|       | ecosystems. Ecological Economics,29(2), 235-252.               | sustainable aquaculture                      |
| 3.    | Kaloo, F. J., Hood, A., & Obwogi, J. (2015). Financial Effects | Mangrove depletion has strongly negative     |
|       | of Depletion of Mangrove Forest on the Performance of Micro    | economic effects; sustainable economic and   |
|       | Finance Community Based Organizations-The Case Studyof         | ecological benefits will come through proper |
|       | Wajomvu Community in Kenyan Coast.                             | mangrove management                          |
| 4.    | Boyd, C. E., & Clay, J. W. (1998). Shrimp aquaculture and the  |                                              |
|       | environment. Scientific American, 278(6), 58-65.               |                                              |
| 5.    | Primavera, J. H. (2005). Mangroves, fishponds, and the quest   |                                              |
|       | for sustainability. Science, 310(5745), 57-59.                 |                                              |
| 6.    | Barraclough, S. L., & Finger-Stich, A. (1996). Some ecological |                                              |
|       | and social implications of commercial shrimp farming in Asia.  |                                              |
|       | UNRISD.                                                        |                                              |
| 7.    | Primavera, J. H. (1997). Socio-economic impacts of shrimp      | Shrimp farming is responsible for mangrove   |
|       | culture.Aquaculture research, 28(10), 815-827.                 | loss                                         |
| 8.    | Martinez-Alier, J. (2001). Ecological conflicts and valuation: |                                              |
|       | mangroves versus shrimps in the late 1990s. Environment and    |                                              |
|       | planning C: Government and Policy, 19(5), 713-728.             |                                              |
| 9.    | Gujja, B., & Finger-Stich, A. (1996). What Price Prawn?:       |                                              |
|       | Shrimp Aquaculture's Impact in Asia. Environment: Science      |                                              |
|       | and Policy for Sustainable Development, 38(7), 12-39.          |                                              |
| 10.   | Gunawardena, M., & Rowan, J. S. (2005). Economic valuation     |                                              |
|       | of a mangrove ecosystem threatened by shrimp aquaculture in    |                                              |
|       | Sri Lanka. Environmental Management, 36(4), 535-550.           |                                              |

#### **Table 1: Literature Review**

| Table 2. Contu. | Table | 2: | Contd. |
|-----------------|-------|----|--------|
|-----------------|-------|----|--------|

| S.No. | Citation                                                    | Major Finding                         |
|-------|-------------------------------------------------------------|---------------------------------------|
| 11.   | Stokstad, E. (2010). Down on the shrimp                     |                                       |
|       | farm. Science, 328(5985), 1504-1505.                        | Acid sulphate soils in mangroves      |
| 12.   | Johnston, Danielle, et al. "Shrimp yields and harvest       | reduces shrimp yields                 |
|       | characteristics of mixed shrimp-mangrove forestry farms in  |                                       |
|       | southern Vietnam: factors affecting                         |                                       |
|       | production." Aquaculture 188.3 (2000): 263-284.             |                                       |
| 13.   | Primavera, J. H., Binas, J. B., Samonte-Tan, G. P., Lebata, | Mangrove Crab aquaculture in pens     |
|       | M. J. J., Alava, V. R., Walton, M., & LeVay, L. (2010).     | minimizes negative impact on          |
|       | Mud crab pen culture: replacement of fish feed requirement  | mangrove ecosystem                    |
|       | and impacts on mangrove community structure. Aquaculture    |                                       |
|       | <i>Research</i> , <i>41</i> (8), 1211-1220.                 |                                       |
| 14.   | Mwaluma, J. (2002). Pen culture of the mud crab Scylla      |                                       |
|       | serrata in Mtwapa mangrove system, Kenya. Western Indian    |                                       |
|       | Ocean Journal of Marine Science, 1(2), 127-133.             |                                       |
| 15.   | Triño, Avelino T., and Eduard M. Rodriguez. "Pen culture    | Aquasilviculture of mangroves and     |
|       | of mud crab Scylla serrata in tidal flats reforested with   | mangrove crabs is economically and    |
|       | mangrove trees." Aquaculture 211.1 (2002): 125-134.         | environmentally feasible              |
| 16.   | Bagarinao, T. U., & Primavera, J. H. (2005). Code of        | Mangrove Crab fattening or grow-      |
|       | practice for sustainable use of mangrove ecosystems         | out in pens, polyculture with fish,   |
|       | for. <i>Ecosystems</i> , 9, 1-4.                            | and oyster rafts are advisable within |
|       |                                                             | mangroves. Seaweed longlines also     |
|       |                                                             | do not harm the mangrove              |
|       |                                                             | ecosystem.                            |
|       |                                                             | This study also highlights that       |
|       |                                                             | mangrove ecosystems are harmed        |
|       |                                                             | by shrimp farming                     |

Hence, from the literature review, it emerges that **<u>prawn and shrimp aquaculture have not been</u> <u>recommended</u> for mangrove ecosystem – mangrove crab and oyster culture have been advised through pen and raft culture methods, respectively.</u>** 

It must be noted here that <u>a supreme court order has forbidden setting up of prawn and shrimp</u> <u>aquaculture</u> farms in and around the mangroves because of their negative impact on the mangrove ecosystem. We have incorporated this report as **Annexure I**.

# During our recent discussion with other mangrove crab aquaculturists, the following issues were raised against mangrove crab aquaculture –

a. Year-on-year purchase of crablings from RGCA is a cost burden, and there is loss of crablets' lives during the transport. Hence, efforts should be taken to ensure maximum survival of crablets by reducing the transportation time, perhaps through the setting up of a regional breeding center, if feasible.

b. The feed given to the mangrove crab is not exactly trash fish, but actual trawler fishing may be carried out for this purpose – this is environmentally unsustainable. To combat this, strong awareness drives on negative environmental impacts, and research on low-cost alternatives will be given high priority.

#### 2.2 Key species - Mangrove crabs

Crabs requiring mangrove for the completion of their life cycles and exist among mangroves, and are ecologically significant in several ways.

As for this project, we had considered Mangrove Crab/Mangrove Crab/Black crab (*Scylla serrata*) because of its commercial importance and high association with Mangroves. To take out commercial output from *Scylla serrata* one has conserve mangrove first.

The species of our interest is *Scylla serrata* commonly called as Mud Crab/ Mangrove Crab/ Black Crab is spread across Africa, Asia and Australia, and are of economicn importance.Shell colour can vary from deep, mottled green to very dark black brown. In aquaculture, this species is of high demand and price, high flesh content, and rapid growth. Also they can tolerate high levels of nitrite and ammonia. They play crucial role as an most limiting factor in closed aquaculture systems.

#### Life Cycle Details

Mangrovecrabs (*Scylla serrata*) are economically significant seafood species that essentially require mangrove and estuarine ecosystems for survival (**Figures 2**).



Figure 3: Mangrove Crab (Scylla serrata)

Details of the mangrove crab life cycle have been depicted in Figure 4.

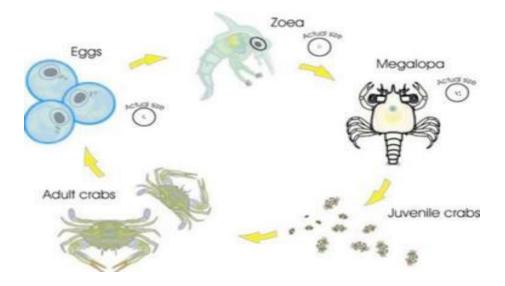



Figure 4: Mangrove Crab Life Cycle

Compared to Prawn and Shrimp, Mangrove crabs are steadierwith climatic changes and physico-chemical parameters. In Prawns and Shrimps very high stocking densities require high control over pond/tank management practices and are high-risk strategies, Growth rate is also slow. Also, prawns and shrimps have less resistance power towards diseases and viral infections compared to mangrove crabs.

In a clear example of over-harvesting damaging environmental as well as economic interests, aquaculture returns have either levelled off or actually declined in the Philippines.(Garcia 2000. Indonesia's mangrove-destructive tambak farming is of particular concern as the communities surrounding this area depend on the many ecosystem services provided by mangroves. Indonesian Governmenthas been attempting to stop tambak farming and restore the Tanjung Panjang's mangrovesbut it continues to be a challenge(Corbin, J., 2013). Brackish water pond culture has been a major factor in mangrove loss in Southeast Asia, and hence, it is necessary to support eco-friendly technologies likemangrove crabs *Scylla serrata* culture in mangrove pens are required (Jurgenne 2009). The species of Mangrove crabs is strongly associated to mangrove, there is no harm in saying that Mangrove crabs are bio-indicators of healthy mangrove ecosystems. Aquaculture of mangrove crabs will indirectly support conservation strategy of mangroves.

Mangrove crabs can be a potential financially profitable source of export and earning foreign exchange, as perthe Marine Products Export Development Authority (MPEDA), which has already initiated mangrove crab aquacuture in the Sindhudurg district in Maharasthra involving local fishermen.

Mangrove crabs, raised in mangroves along the coast, have a good demand in Japan, Thailand, China and other countries.

An adult mangrove crab weighs around a kg and fetches around INR 300 to 400 in local markets. Male crabsare larger than female ones. In countries abroad, the costcan be around INR 1,000 and above in the international market.



Figure 6: Mangrove Crab Aquaculture Pen

#### 2.3 Oyster Aquaculture

Oysters are highly esteemed seafood and considered a delicacy in the USA, Europe, Japan and elsewhere. Even in India, demand for oyster is on the rise. It is one of the most widely and traditionally cultivated species worldwide. Even in the 1<sup>st</sup> Century BC, the Romans developed simple methods of collecting oyster seeds and growing them for food. The Japanese developed 'Habitat culture technique,' i.e., culture in nets fixed to bamboo poles during the 17th century, and at the turn of the 20th century they evolved off-bottom culture, especially hanging methods.

Oysters are filter feeders, hence they puify water. Also, they help remove nitrogen by accelerating denitrification. In addition, they improve water clarity.Oysters naturally grow in brackish water. Three methods of oyster cultivation are commonly used. In each case, oysters are cultivated to the size of "spat," which is the point in their life cycle at which they attach themselves to a substrate. The substrate is known as a "cultch" (Myer 1948).

Oyster aquaculture can become a financially beneficial project, especially when undertaken by women, yielding up to INR 32000 per annum. Currently, oysters are being sold at INR 2-5/piece. Also, as per CMFRI, there is relatively higher demand than supply for oysters.

Shape, size, color and other shell characteristics, anatomical features and breeding habits are the criteria on which oyster classification is based. *Crassostrea madrasensis* is the chief species recorded in India. It tolerates a wide variation in salinity and inhabits backwaters, creeks, bays and lagoons and occurs from the intertidal region up to 17m depth. Other cultured species are *Crassostrea gryphoides, Crassostrea rivularis,* and *Saccostrea cucullata*.

#### Food and Feeding Habits

The food consists of organic detritus and phytoplankton such as diatoms and nanoplankton. The food particles are entrapped in the mucus of the gills and are passed in the water currents towards the mouth by the rapid beating gill cilia (fine hairs). The four labial palps sort the food before it enters the mouth. The unwanted food particles are rejected as pseudofeces.

#### Reproduction

In the genus *Crassostrea*sexes are separate, with external fertilization. Temperature, food availability and salinity are important factors affecting gonad maturation. An adult female of size 80-90mm can produce 10 to 15 million eggs at a time.

#### Farming Methods

#### Rack Method

It is also called the Ren Method. Racks can be 1-2.5m deep and come in several variations. For instance, the single beam rack has posts driven into the estuary bottom, across the tops of which a beam has been

attached. Another variant is the crossbeam rack which consists of a cross bar placed atop single posts and two long beams attached to the ends of the cross beams.



Figure 7: Oyster Aquaculture - Setting up the Ren



Figure 8: Local Ratnagiri Women Displaying Harvested Oysters

#### Farm Management

It is vital that the farm is monitored at regular intervals, especially the ren structure, high mortality rates can occur if the rens fall down. Also, crabs, fishes, starfishes, polychaetes and gastropods are the predators of oysters while barnacles are the foulers that compete for the food with the oysters.

#### Post Harvest Processes

#### **Depuration**

Oysters being filter feeders tend to accumulate microorganisms in their body. Of particular concern are the common pathogenic species like *Vibrio, Salmonella* and *Escherichia*. Through the process of depuration, the oysters are cleansed off the pollutant load they may be carrying. For this, oysters are kept under clean flowing seawater for 24 hours so that their contaminants are expelled. At the end, the oysters are kept in 3 ppm chlorinated seawater for an hour, and then rinsed again in filtered seawater before transport/storage/direct marketing.

#### Transport and Storage

Oyster kept under moist and cool conditions can survive for many days, though it is best they reach the consumer within 1-3 days.Wet gunny bags are suitable for oyster transport.



Figure 9: Oyster Aquaculture - Local Sindhudurg Women at Work

The principles by Global Aquaculture Alliance (GAA) mangrove code are:

1] Construction of new farms or expansion of existing farms should not alter the mangrove ecosystem.

2] The farms should be operated in such a manner to prevent damage to mangrove

3] A monitoring program should be in place to verify mangroves are not damaged, but are rather conserved.

4] The abandoned farms, if any, should be replanted by mangroves.

http://gaalliance.org/

#### Chapter 3

#### Methods

#### **3.1 Biodiversity**

- A. Biotic diversity (Flora and Faunna) were studied.Various types of flora and fauna studies were made during monitoring the place. Amongst flora, Mangrove diversity was studied with the help of line transects and quadrant method with Associate plants, Trees, Shurbs, Climbers and Grasses nearby in the vicinity of the area.
- (A) The Faunal studied were made by various sub methods. The Sampling of Phytoplankton, Zooplankton and Benthic organisms were collected(A,B.C).
  - Sediment Sampling for Benthic Invertebrates:- A plastic scoop was used to sample the benthic invertebrates using USEPA protocol (LG406). Briefly, the sediment sample scooped out from a 1 sq m area was mixed with water till a slurry-like consistency was achieved. This was followed by sample concentration, i.e., filtration through a 500µm mesh. The residue was fixed with 4% (v/v) formalin (final volume of formalin 5-10% v/v of sample). For identification, the fixed benthic organisms were viewed under the 20X lens of a stereo microscope.
  - Sampling for Phytoplankton:- It has been demonstrated that wide-mouthed, bottle-type samplers are more efficient for phytoplankton sampling (Kuparinen et al. 2009). Hence, instead of a rosette sampler, a large bottle type sampler was used; rest of the sampling protocol was as per USEPA LG400. Briefly, samples were collected till the euphotic depth, which can be defined as the depth to which photosynthesisoccurs in an aquatic ecosystem. A Secchi disk was used to calculate the euphotic depth. The limit of visibility is approximately the region of transmission of 5% sunlight (Reid, 1961). The euphotic zone is usually three times the Secchi Disk depth (Welch, 1948). Samples were mixed and preserved with Lugol's iodine (final concentration 1% v/v) and viewed under the 40X lens in a compound microscope.
  - Sampling for Zooplankton:- Zooplankton was sampled, concentrated and stained as per NIO Field Manual (2004), using a zooplankton net (75µm). The net was dipped slowly in water and raised. It was rinsed thoroughly and the sample was concentrated. It was fixed first with 4-5% formalin (1 part formalin and 9 parts sample). Few drops of Rose Bengal solution was used for sample staining. Zooplankton were viewed under a 20X lens in a stereo microscope.
  - Avian diversity, Mammals and Herpetofunal diversity with other Macro faunal diversity were carried out by the Visual Encounter Method.

#### **3.2 Water Sampling and Analysis**

The parameters measured and the significance of each has been described in Table 2:

| Table 2: | Water | Quality | Parameters |
|----------|-------|---------|------------|
|----------|-------|---------|------------|

| Sr.<br>No. | Water<br>Quality<br>Parameter | Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Measurement<br>Method                      |
|------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1          | Temperature                   | Temperature is a very significant water quality parameter with<br>profound impacts on other water quality parameters and, most<br>importantly, aquatic life. Fish are rather sensitive to water<br>temperature and a change of even 1-3 degrees C in water<br>temperature can disrupt their pattern. Temperature of water is<br>affected strongly by the color of water, temperature of effluents<br>entering the water body, depth of water and amount of shade<br>provided by nearby vegetation. | Field<br>thermometer                       |
| 2          | pH                            | The pH scale varies from 0-7, with neutral solutions having balanced concentration of $H^+$ and $OH^-$ ions.                                                                                                                                                                                                                                                                                                                                                                                       | pH strips; Hand-<br>held meter             |
| 3          | Dissolved<br>Oxygen           | Dissolved oxygen (DO) is oxygen that is dissolved in water.It<br>comes into water through photosynthesis of aquatic plants and<br>algae and also through natural or artifical tumbling/mixing of<br>water.If water is too warm, there may not be enough oxygen in<br>it. Oxygen levels can also be reduced through agricultural run-<br>off rich in nitrates and phosphates.                                                                                                                       | Chemical<br>titration; Hand-<br>held meter |
| 4          | Salinity                      | Salinity is the saltiness or dissolved salt content of a body<br>of water. It is an important parameter affecting the biological<br>processes within water. Importantly, it helps decide the<br>mangrove species that will exist along a brackish water body.                                                                                                                                                                                                                                      | Hand-held meter                            |
| 5          | Alkalinity                    | Alkalinity is a total measure of the substances in water that<br>have "acid-neutralizing" ability. Alkalinity is important for fish<br>and aquatic life because it protects or buffers against pH<br>changes. The main sources of natural alkalinity are rocks, rich<br>in carbonate, bicarbonate, and hydroxide compounds. Borates,<br>silicates, and phosphates also contribute to alkalinity.                                                                                                   | Chemical<br>titration                      |

#### Table 2 Contd.

| 6 | Total Suspended     | The most frequent causes of high TSS are plankton and         | Gravimetry         |
|---|---------------------|---------------------------------------------------------------|--------------------|
| 0 | 1                   |                                                               | Oravinieu y        |
|   | Solids              | soil erosion from logging, mining, and dredging               |                    |
|   |                     | operations and also the inputs from sewage and                |                    |
|   |                     | industrial operations. Large amounts of suspended             |                    |
|   |                     | matter may clog the gills of fish and kill them directly.     |                    |
| 7 | Chloride            | Chloride, in the form of the Cl- ion, is one of the major     | Chemical titration |
|   |                     | inorganic anions. Dissociation of saltslike NaCl and          |                    |
|   |                     | CaCl <sub>2</sub> , and is an important parameter in tidally- |                    |
|   |                     | influenced water bodies.                                      |                    |
| 8 | Calcium-            | Hardness is a measure of the quantity of divalent ions        | Chemical titration |
|   | Magnesium           | (usually $Ca^{2+}$ and $Mg^{2+}$ )                            |                    |
|   | Hardness            |                                                               |                    |
| 9 | Heavy MetalsCu,     |                                                               | Atomic Absorption  |
|   | Ni, Cd, Zn, Hg, Cr, |                                                               | Spectrophotometry  |
|   | Fe, Pb, Mn, Al, Co, |                                                               | •                  |
|   | Ba                  |                                                               |                    |

For social survey, we followed the method of convenience sampling, which as the name suggests consists of interviewing/surveying easy-to-reach people. It is a non-probability sampling method (Farrokhi and Mahmoudi-Hamidabad, 2012). It is highly suitable for our particular case considering that our target population is not readily available for questioning and the entire nature of the exercise depended on the voluntary nature of the interviewee. We accompanied convenience sampling with observations of the site.

#### 3.3 Sites Visited

The details of the sites visited have been provided below in Figures 9-10(a-m).



Figure 9: Sites Visited in the MMR



Figure 10a: Dombivali



Figure 10b: Thane (beyond the railway station, Thane east)



Figure 10 c: Bhandup (near the pumping station)



Figure 10d: Vasai (near the jetty)



Figure 10e: Gorai (near Gorai jetty)



Figure 10f: Uttan

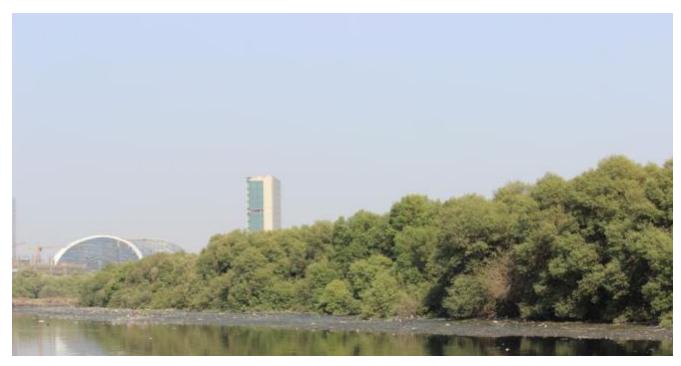



Figure 10g: Bandra (near Sion-Bandra link road)



Figure 10h: Diva Airoli



Figure 10i: Vashi (near Mr. Subhash Sutar's residence)



Figure 10j: Ghansoli (near the jetty, Sector 15)



Figure 10k: Mankhurd



Figure 10I: Uran



Figure 10m: Alibaug (near Revas jetty)

#### **Chapter 4**

#### **Results, Discussion and Conclusion**

#### 4.1 Biodiversity

| Locations | Species             |                          |                    |                         |                      |  |  |  |  |  |
|-----------|---------------------|--------------------------|--------------------|-------------------------|----------------------|--|--|--|--|--|
| -         | Avicennia<br>marina | Avicennia<br>officinalis | Sonneratia<br>alba | Acanthus<br>ilicifolius | Salvadora<br>persica |  |  |  |  |  |
| Gorai     | Y                   | Y                        | Y                  | Y                       | Y                    |  |  |  |  |  |
| Uttan     | Y                   |                          |                    | Y                       | Y                    |  |  |  |  |  |
| Vasai     | Y                   |                          | Y                  | Y                       |                      |  |  |  |  |  |
| Thane     | Y                   |                          | Y                  | Y                       | Y                    |  |  |  |  |  |
| Bhandup   | Y                   |                          | Y                  | Y                       | Y                    |  |  |  |  |  |
| Ghansoli  | Y                   |                          | Y                  | Y                       | Y                    |  |  |  |  |  |
| Mankhurd  | Y                   |                          | Y                  | Y                       | Y                    |  |  |  |  |  |
| Alibaug   | Y                   | Y                        | Y                  | Y                       | Y                    |  |  |  |  |  |
| Uran      | Y                   | Y                        |                    |                         |                      |  |  |  |  |  |
| Dombivali | Y                   | Y                        | Y                  | Y                       | Y                    |  |  |  |  |  |

#### **Table 3: Mangrove Species Richness**

From species richness point of view, Gorai, Alibaug and Dombivali showed the presence of 5 mangrove species. Thane, Bhandup, Ghansoli, and Mankhurd had 4 species while Uttan and Vasai showed the presence of 3 species. Uran had only 2 species.

The avian species richness table has been appended as Supplementary Table 1. The sites of Bhandup, Alibaug and Vasai showed the highest avian species richness with 64, 55 and 54 species sighted. Mankhurd and Uttan had the lowest count with 11 and 15 species only. In Uran, Thane and Dombivali, 49, 47 and 42 bird species were sighted.

In the second season (monsoon), relatively fewer birds (32 species) were sighted. Alibag and Bhandup had the highest sighting (20 and 19 each) while Mankhurd and Uttan had the lowest (4 each).

The phytoplankton, zooplankton and benthic diversity has been provided in Supplementary Tables 2, 3 and 4. The sites of Alibaug, Uran, Bhandup and Diva Airoli largest number of phytoplankton species were reported, while Gorai, Dombivali and Uttan had the lowest species richness. *Skeletonema, Oscillatoria* and *Nitzschia* were the most common species.56 phytoplankton species were observed

In terms of zooplankton as well, Alibaug, Uran and Vasai showed high diversity while Dombivali and Gorai showed poor diversity. Benthic diversity was also high in Uran and Alibaug.

| Station   | Indicator                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------|
| Dombivali | Presence of <i>Nitzchia</i> indicate polluted water                                           |
| Thane     | Presence of Nitzchia & Euglena (pollution indicator)as well as                                |
|           | <i>Synedra &amp; Pinnularia</i> (indicators of clean water)indicates slightly polluted waters |
| Bhandup   | Presence of Nitzchia (pollution indicator) as well as Synedra                                 |
|           | (indicators of clean water)indicates slightly polluted waters                                 |
| Airoli    | Presence of <i>Nitzchia &amp; Euglena</i> indicate polluted waters ; co-presence              |
|           | of Synedra & Cyclotella indicates slightly polluted waters                                    |
| Ghansoli  | Presence of Oscillatoria, Thalassiosira indicate organic pollution                            |
| Mankhurd  | Presence of Nitzchia indicates polluted waters                                                |
| Vashi     | Presence of Nitzchia indicates polluted waters                                                |
| Vasai     | Presence of Ankistrodesmus &Navicula indicate clean water                                     |
| Gorai     | Presence of Nitzchia indicates polluted waters                                                |
| Uttan     | Presence of Nitzchia indicates polluted waters                                                |
| Uran      | Presence of Nitzchia indicates polluted waters                                                |
| Alibaug   | Presence of Navicula indicates clean water                                                    |

## Good correlation was observed between phytoplankton diversity and water quality, as may be observed from the table below:

N.B. The detailed references of phytoplankton as indicators has been provided in Supplementary Tables 16

|               | Color &    |      |             | Salinity       |                 |                 | Suspended  | Oil &    | Floating     |
|---------------|------------|------|-------------|----------------|-----------------|-----------------|------------|----------|--------------|
| SITES         | Odor       |      | <b>D.O.</b> | (g/L)          | Hardness        | Alkalinity      | Solids     | Grease   | Matter       |
|               |            | pН   | (mg/L)      |                | ( <b>mg/L</b> ) | ( <b>mg/L</b> ) | (mg/L)     | (mg/L)   |              |
| Ghansoli      | ND         | 7.7  | 5.1         | 11             | 7272            | 40              | 13         | ND       | ND           |
| Bhandup       | ND         | 7.5  | 6           | 18             | 10909           | 48              | 20         | ND       | ND           |
| Airoli Diva   | ND         | 7.2  | 6           | 21             | 6363            | 60              | 14         | ND       | ND           |
| Vashi         | ND         | 7.9  | 3.1         | 23             | 7000            | 40              | 35         | ND       | ND           |
| Mankhurd      | ND         | 7.1  | 4           | 11             | 7000            | 30              | 15         | ND       | ND           |
| Thane         | ND         | 7.8  | 4           | 17             | 6800            | 44              | 20         | ND       | ND           |
| Vasai         | ND         | 8.1  | 4           | 15             | 7300            | 48              | 20         | ND       | ND           |
| Gorai         | ND         | 8    | 0.4         | 13             | 11000           | 44              | 21         | ND       | ND           |
| Uttan         | ND         | 7.9  | 2.4         | 12             | 12500           | 44              | 17         | ND       | ND           |
| Uran          | ND         | 7.8  | 4           | 23             | 10000           | 44              | 20         | ND       | ND           |
| Alibag        | ND         | 7.5  | 4           | 21             | 11000           | 40              | 11         | ND       | ND           |
| Dombivali     | ND         | 7.1  | 1.6         | 21             | 4000            | 40              | 18         | ND       | ND           |
| MPCB          |            |      |             |                |                 |                 |            |          |              |
| Coastal       | No         |      |             |                |                 |                 | None from  |          | Nothing      |
| Water         | noticeable |      |             |                |                 |                 | sewage or  |          | obnoxious or |
| Standards     | color or   |      |             |                |                 |                 | industrial | 01 7     | detrimental  |
| (SW I)        | offensive  |      |             |                |                 |                 | waste      | 0.1 mg/L | for use      |
| (~~~~_)       | odor       | 6.5- |             |                |                 |                 | origin     |          | purpose      |
|               |            | 8.5  | 5mg/L       |                |                 |                 |            |          |              |
| Mud Crab      |            |      |             |                |                 |                 |            |          |              |
| Aquaculture - |            |      |             |                |                 |                 |            |          |              |
| A Practical   |            |      |             | 10             |                 |                 |            |          |              |
| Manual        |            | 7.5- |             | 10-<br>25 - /I |                 |                 |            |          |              |
|               |            | 9.0  | >5mg/L      | 25g/L          | >2000mg/L       | >80mg/L         |            |          |              |

## Table 4a: Water Quality Parameters – Season I (Post-monsoon, Dec 2015-Jan 2016)

| SITES                                              | Color &<br>Odor                                   | рН          | D.O.<br>(mg/L) | Salinity<br>(g/L) | Hardness<br>(mg/L) | Alkalinity<br>(mg/L) | Suspended<br>Solids<br>(mg/L)                           | Oil &<br>Grease<br>(mg/L) | Floating<br>Matter                                           |
|----------------------------------------------------|---------------------------------------------------|-------------|----------------|-------------------|--------------------|----------------------|---------------------------------------------------------|---------------------------|--------------------------------------------------------------|
| Ghansoli                                           | ND                                                | 7.2         | 4.4            | 8                 | 5000               | 40                   | 35                                                      | ND                        | ND                                                           |
| Bhandup                                            | ND                                                | 7.3         | 5.4            | 12                | 8600               | 38                   | 30                                                      | ND                        | ND                                                           |
| Airoli Diva                                        | ND                                                | 7.1         | 5              | 14                | 5400               | 50                   | 20                                                      | ND                        | ND                                                           |
| Vashi                                              | ND                                                | 7.1         | 4.3            | 12                | 5600               | 30                   | 50                                                      | ND                        | ND                                                           |
| Mankhurd                                           | ND                                                | 7.2         | 3.2            | 6                 | 6200               | 30                   | 25                                                      | ND                        | ND                                                           |
| Thane                                              | ND                                                | 7           | 4.4            | 11                | 5780               | 50                   | 39                                                      | ND                        | ND                                                           |
| Vasai                                              | ND                                                | 7.3         | 4.1            | 12                | 6555               | 50                   | 35                                                      | ND                        | ND                                                           |
| Gorai                                              | ND                                                | 7.4         | 1.0            | 7                 | 8000               | 45                   | 45                                                      | ND                        | ND                                                           |
| Uttan                                              | ND                                                | 7.3         | 3.4            | 6                 | 8000               | 50                   | 29                                                      | ND                        | ND                                                           |
| Uran                                               | ND                                                | 7.3         | 5              | 12                | 7000               | 50                   | 40                                                      | ND                        | ND                                                           |
| Alibag                                             | ND                                                | 7           | 3              | 11                | 8000               | 50                   | 25                                                      | ND                        | ND                                                           |
| Dombivali                                          | ND                                                | 7.2         | 2.5            | 11                | 7000               | 45                   | 41                                                      | ND                        | ND                                                           |
| МРСВ                                               |                                                   |             |                |                   |                    |                      |                                                         |                           |                                                              |
| Coastal<br>Water<br>Standards<br>(SW I)            | No<br>noticeable<br>color or<br>offensive<br>odor | 6.5-<br>8.5 | 5mg/L          |                   |                    |                      | None from<br>sewage or<br>industrial<br>waste<br>origin | 0.1 mg/L                  | Nothing<br>obnoxious or<br>detrimental<br>for use<br>purpose |
| Mud Crab<br>Aquaculture -<br>A Practical<br>Manual |                                                   | 7.5-<br>9.0 | >5mg/L         | 10-<br>25g/L      | >2000mg/L          | >80mg/L              |                                                         |                           |                                                              |

## Table 4b: Water Quality Parameters – Season II (Monsoon, Aug 2016-Sept 2016)

#### Table 5: Heavy Metal in Water

| Location/Heavy Metal                          | Cd      | Cr | Cu               | Fe          | Mn     |
|-----------------------------------------------|---------|----|------------------|-------------|--------|
| Unon                                          | ND      | ND | 0.0707           | 2 (042      | 0.4540 |
| Uran                                          | ND      | ND | 0.0797           | 3.6943      | 0.4549 |
| Alibag (Rewas)                                | ND      | ND | 0.0713           | 1.7996      | ND     |
| Ghansoli                                      | ND      | ND | 0.0506           | 1.5490      | ND     |
| Mankhurd                                      | ND      | ND | 0.0757           | 1.9039      | ND     |
| Thane                                         | ND      | ND | 0.0567           | 2.5986      | ND     |
| Saatpul (Dombivali)                           | ND      | ND | 0.0545           | 3.6562      | ND     |
| Gorai                                         | ND      | ND | 0.0640           | 4.1164      | ND     |
| Vasai                                         | ND      | ND | 0.0372           | 0.3480      | ND     |
| Uttan                                         | ND      | ND | 0.0422           | 1.4698      | ND     |
| LIMITS<br>MPCB Coastal Water Standards (SW I) | 0.1mg/L |    |                  |             |        |
| Govindasamy and Azariah (1999)                |         |    | 0.092-0.240 mg/l |             |        |
| Armstrong (1957)                              |         |    |                  | Up to 3mg/L |        |

\*All units in ppm

As evident from the Tables above, heavy metals were either not detected, or were not present in significant quantities.

Water quality was within the range, in both the seasons, as far as the pH was concerned, but Dissolved Oxygen was low in all sites except Ghansoli, Bhandup, Alibaug and Uran. Hardness of each site was as required by the mangrove crab, though alkalinity was low in all the sites.

| Location/Heav   | As  | Cd   | Cr     | Cu     | Fe      | Hg   | Mn     | Pb    | V     | Zn     |
|-----------------|-----|------|--------|--------|---------|------|--------|-------|-------|--------|
| y Metal         |     |      |        |        |         | C    |        |       |       |        |
| Uran            | ND  | ND   | 94.0   | 8.04   | 65783.0 | ND   | 915.0  | ND    | 93.0  | 69.0   |
| Alibag          | 0.2 | ND   | 80.00  | 103.0  | 67298.0 | ND   | 878.38 | 3.12  | 130.0 | 74.0   |
|                 | 5   |      |        |        |         |      |        |       |       |        |
| Ghansoli        | ND  | ND   | 111.00 | 128.25 | 82597.0 | ND   | 1510.0 | 4.0   | 97.0  | 149.25 |
| Mankhurd        | 1.8 | 0.4  | 50.02* | 47.19  | 18765.4 | ND   | 600.71 | 5.38  | 46.43 | 54.47  |
|                 | 3   | 1    |        |        |         |      |        |       |       |        |
| Thane           | 2.2 | 0.5  | 65.14  | 59.46  | 16824.1 | ND   | 384.31 | 5.99  | 53.0  | 79.90  |
|                 | 3   | 7    |        |        |         |      |        |       |       |        |
| Dombivali       | 0.8 | 0.3  | 48.39* | 40.24  | 20708.5 | ND   | 285.14 | 4.61  | 39.73 | 54.08  |
|                 | 2   | 3    |        |        |         |      |        |       |       |        |
| Gorai           | 3.4 | 0.4  | 62.04  | 62.10  | 16950.2 | ND   | 449.38 | 11.86 | 51.82 | 66.99  |
|                 | 0   | 3    |        |        |         |      |        |       |       |        |
| Vasai           | 6.8 | 0.5  | 45.62* | 86.04  | 16883.3 | ND   | 435.35 | 13.97 | 63.5  | 98.94  |
|                 | 3   | 2    |        |        |         |      |        |       |       |        |
| Uttan           | 3.2 | 0.4  | 60.86  | 51.10  | 17760.4 | ND   | 537.33 | 4.61  | 61.95 | 57.68  |
|                 | 1   | 7    |        |        |         |      |        |       |       |        |
| LIMITS          | 7.2 | 0.7- | 52.3-  | 18.7-  |         | 0.13 |        | 30.2- |       | 124.0- |
| Canadian        | 4-  | 4.2  | 160.0  | 108.0  |         | -    |        | 112.0 |       | 271.0  |
| Sediment        | 41. |      |        |        |         | 0.07 |        |       |       |        |
| Quality         | 6   |      |        |        |         |      |        |       |       |        |
| Guidelines (for |     |      |        |        |         |      |        |       |       |        |
| marine)         |     |      |        |        |         |      |        |       |       |        |

#### Table 6: Heavy Metal in Sediment

All Units in ppm

Compared to the Canadian Sediment Quality Guidelines, all heavy metals (except Fe, Mn and V for which no standards were found), all the MMR sites were safe but for Ghansoli, that showed higher content of Copper.

### **4.4 Social Interaction**

| Sites                   | Social                  |            |  |
|-------------------------|-------------------------|------------|--|
| Sites                   | Interaction             | Contact    |  |
| Ghansoli                | Dilip Patil             | 9867906464 |  |
| Bhandup pumping station | Koli samaj memb         | ers        |  |
| Airoli Diva             | Police                  |            |  |
| Vashi                   | Subhash Sutar           | 9322737670 |  |
| Mankhurd                | Koli samaj members      |            |  |
| Thane                   | Kubal Sir               |            |  |
|                         | Mr Stalin               |            |  |
| Bhandup                 | Vanshakti               | 7303293087 |  |
| Vasai                   | Jayram Phatak           | 9322195381 |  |
| Gorai                   | Koli samaj members      |            |  |
| Uttan                   | Saltpan worker          |            |  |
| Uran                    | Awra koli samaj members |            |  |
| Alibaug                 | Mr. Patil               |            |  |
| Dombivali               | Koli samaj members      |            |  |

#### **Table 7: Social Interaction**



**Figure 11: Social Interaction at Uttan** 

The very basics of social interaction were carried out. While in many sites, the locals interacted with did not share their contact numbers and name, in a few cases, the contacted lead appeared interested enough to do so. At the Diva Airoli site, we could not interact with locals.

In the second phase of the study, the social interaction was taken to a higher scale at the following locations:

- Alibaug
- Ghansoli
- Vasai
- Gorai Gorai Machhimar Sanstha
- Thane

Herein, we held meetings with the members of the local *koli samaj/machhimar sanstha* etc., except in the case of Alibaug where we could not find a formal association but a loose cluster of 11 families. We approached each association with a questionnaire, and ended up having a focus group study with their representatives. The questionnaire inquired of them

- a. their current mangrove crab harvesting practices,
- b. the threats they were perceiving to the mangrove ecosystem around them
- c. their current levels of ecological literacy
- d. their willingness to attend our awareness sessions
- e. their willingness to keep the mangroves safe and clean

The unfilled questionnaire has been appended as **Annexure II**. Basic demographic data was obtained from the Central Marine Fishery Research Institute (CMFRI), Mumbai Research Centre, who conduct year-onyear socio-economic survey of the local fishermen communities as part of their routine studies. **Annexure III** includes the entire publication.

In Table 8 below, details of the interaction have been provided:

| Table 8: Details of the Second Round of Socio-economic Studies |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

| Site     | Name of Organization     | Contact               | Remarks                                       |
|----------|--------------------------|-----------------------|-----------------------------------------------|
|          |                          | <b>Person/Details</b> |                                               |
| Ghansoli | Mariaayi Machhimar       | Dilip                 | Extremely willing to getting                  |
|          | Sahakari Sanstha (has    | Patil/9867906464      | trained/voluntarily shared information of     |
|          | 13 villages' – Ghansoli- | Mr. Harish Rajaram    | threats of sewage discharge in their waters   |
|          | Vashi – fishermen as     | Sutar (Head)          | and complained of reducing fish               |
|          | members)                 |                       | catch/ecological literacy high/willing to     |
|          |                          |                       | take up cleanliness and safety of the         |
|          |                          |                       | mangroves                                     |
| Thane    | No organization;         | Unwilling to share    | They do not harvest mangrove crab and are     |
|          | residents of a local     | name/number           | not interested in learning the rearing of the |

|         | housing society of <i>kolis</i><br>that they were unwilling<br>to reveal the name of |                                                                                                         | same                                                                                                                                |
|---------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Gorai   | Sagardip Fishermen<br>Society                                                        | Manori<br>Peter/9930152528                                                                              | Unwilling to work with mangrove crabs, as<br>they had once attempted it before<br>(privately) and failed. Not very co-<br>operative |
| Vasai   | Versova Fishermen<br>Society                                                         | Dilip Mathak<br>/9765590858 and<br>9168067171                                                           | Willing to be trained; willing to take care<br>of mangroves; ecological literacy average                                            |
| Alibaug | No organization; a loose<br>cluster of 11 families                                   | Vishwas Shantaram<br>Mhatre/8698453148<br>Prahlad<br>Patil/8554871346<br>Shantaram<br>Mhatre/8888342001 | Willing to be trained; willing to take care<br>of mangroves; ecological literacy good                                               |



Figure 12: Second-level interaction at Ghansoli



Figure 13: Second-level interaction at Alibaug

We are planning to hold awareness sessions with fishermen of Vasai, Ghansoli and Alibaug to gain further insights into the social structure as well as making our objectives and activities clearer to the villagers. The awareness session materials (sourced from MPEDA and the Mangrove cell) have been provided as **Annexure IV**.

#### 4.5 Discussion: Most Suitable Site Rating System

In the present study, we have attempted to create a simple Yes/No 0/1 type binary rating system based on locally relevant parameters.5 Factors were selected – Mangroves Under Threat, Biodiversity, Social Acceptance, Proximity to Source of Pollution and Physical & Legal Feasibility. Under each factor, 4 variables were named. The same have been defined in **Table 9**.

| Mangrove Under<br>Threat*                                                     | Biodiversity                                                                                             | Social<br>Acceptance                   | Proximity<br>to Source<br>of<br>Pollution                                     | Physical and<br>Legal Feasibility |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|
| Open defecation                                                               | Richness of<br>mangrove diversity                                                                        | Willingness<br>to get trained<br>by us | Presence<br>of<br>industry/sl<br>um/both/a<br>ny other<br>pollution<br>source | Government<br>Permissions         |
| Over harvesting                                                               | Richness of<br>crab/oyster<br>diversity                                                                  | Willingness<br>to protect<br>mangroves | Water<br>quality                                                              | Accessibility by<br>road/boat     |
| Criminal activities<br>like corpse<br>disposal/illegal<br>brewing/sand mining | Richness of aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Annual<br>income of<br>target group    | Sediment<br>quality                                                           | Proximity to<br>market            |
| Cutting of trees                                                              | Richness of Bird<br>Biodiversity in<br>entire mangrove<br>patch                                          | Education<br>level of<br>target group  | Solid<br>waste<br>content                                                     | Density of<br>mangroves           |

 Table 9: Site Rating Scale

The fundamentals of formulating the factors and variables have been derived from the work of Buitrago et al. (2005).

#### 4.6 Conclusions and Future Outlook

Based on the above discussion, the sites of Alibaug and Goraiwere selected for further establishment of the mangrove crab and oyster aquaculture.

The arguments in the favor of Alibaug -

- Conducive social atmosphere
- Healthy biodiversity
- Good water and sediment quality
- Easy accessibility (through ferry route) with Mumbai

The arguments in the favor of Gorai -

- Fair to medium biodiversity
- Poor water and sediment quality an attribute that requires further investigation of sources and their control
- Easy accessibility
- Perceived threats to the ecosystem, which need to be ascertained

#### Challenges in Gorai -

We need to conduct awareness workshops with the Gorai target group so as to make them more conducive to the idea.

In the second phase of this project, we have the following objectives:

- 1. Holding at least two workshops (and more, if deemed necessary) with the target groups identified in Phase I
- 2. Crab meat quality testing from the two target areas
- 3. Obtaining relevant permissions
- 4. Getting the target group fishermen trained with the co-operation of MPEDA
- 5. Setting up the mangrove crab aquaculture pen and initiation of operations
- 6. Hand-holding and trouble-shooting help till one harvest has been made

### Supplementary Tables

| Table No | Table Title                                      |
|----------|--------------------------------------------------|
| 1        | Avian Species Richness                           |
| 2        | Phytoplankton                                    |
| 3        | Zooplankton                                      |
| 4        | Benthic Organisms                                |
| 5        | Site Rating Scale: Dombivali                     |
| 6        | Site Rating Scale: Thane                         |
| 7        | Site Rating Scale:Bhandup                        |
| 8        | Site Rating Scale: Diva Gaothan (Airoli)         |
| 9        | Site Rating Scale: Ghansoli                      |
| 10       | Site Rating Scale: Mankhurd                      |
| 11       | Site Rating Scale: Vasai                         |
| 12       | Site Rating Scale: Gorai                         |
| 13       | Site Rating Scale: Uttan                         |
| 14       | Site Rating Scale: Uran                          |
| 15       | Site Rating Scale: Alibaug                       |
| 16       | <b>References of phytoplantons as indicators</b> |
| 17       | Secondary data                                   |
| 18       | Secondary data on water quality of MMR region    |

| Sr no. | Avian species                | Dombivali  | Thane      | Bhandup              | Airoli   | Ghansoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mankhurd   | Vasai      | Gorai                 | Uttan      | Uran       | Alibaug               |
|--------|------------------------------|------------|------------|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------|------------|------------|-----------------------|
| 1      | Osprey                       |            |            |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            |            | ~                     |
| 2      | Black kite                   | <b>V V</b> | <b>~ ~</b> | <b>v</b>             | ~ ~      | <b>V V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~          | <b>~ /</b> | <b>v</b>              | <b>v</b>   | <b>v</b>   | <b>~ ~</b>            |
| 3      | Oriental honey buzzard       |            |            |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            | ~          | ~                     |
| 4      | Brahminy Kite                | V          | ~          | <ul> <li></li> </ul> | V        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          | ~                     |            | ~          | ~                     |
| 5      | Eurasian Marsh Harrier       | ~          |            | <b>~ ~</b>           |          | <ul> <li>Image: A second s</li></ul> |            | ~ ~        | <ul> <li>✓</li> </ul> |            | ~          | ~                     |
| 6      | White bellied sea eagle      |            |            |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            | ~          | <b>~ ~</b>            |
| 7      | Greater spotted eagle        |            |            |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            | ~          | <b>v</b>              |
| 8      | Shikra                       | <b>v</b>   |            | <b>~ /</b>           | <b>v</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>v</b>   |            | <b>v</b>              |            |            |                       |
| 9      | Cattle egret                 | <b>~ ~</b> | ~~         | <b>~ ~</b>           | ~        | <b>~ ~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b>            | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b>            |
| 10     | Greater egret                |            | ~          | <b>v</b>             |          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~          |            | ~                     |            |            | ~                     |
| 11     | Little egret                 |            |            |                      | ~        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |                       |            | <b>v</b>   |                       |
| 12     | Western reef Egret           |            | ~          | <b>v</b>             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          | ~                     |            | ~          |                       |
| 13     | Intermediate egret           | ~          |            |                      | ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       |            |            |                       |
| 14     | Grey heron                   |            |            | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          | ~                     | ~          |            | ~                     |
| 15     | Purple heron                 |            |            | ~                    |          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ~          |                       |            |            | <ul> <li>✓</li> </ul> |
| 16     | Indian pond heron            | <b>V V</b> | ~~         | <ul> <li></li> </ul> | ~        | <ul> <li></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | <b>~ /</b> | ~ ~                   | ~          | ~          | ~                     |
| 17     | Little heron                 | ~          |            | ~                    |          | <ul> <li></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ~          |                       |            |            | ~                     |
| 18     | Black Crowned Night<br>Heron |            |            | v                    | ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            | ~          |                       |
| 19     | Greater Flamingo             |            |            | <b>v</b>             | ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       |            |            |                       |
| 20     | Lesser Flamingo              |            | ~          |                      | ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            | ~                     |            | ~          | ~                     |
| 21     | Little Cormorant             | ~          | ~          | <ul> <li></li> </ul> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       |            | <b>v</b>   | ~                     |
| 22     | Indian Cormorant             |            |            |                      | ~        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       |            | ~          | <ul> <li>✓</li> </ul> |
| 23     | Glossy Ibis                  |            |            | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       | ~          |            |                       |
| 24     | Oriental white ibis          | ~          | ~          | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       | ~          |            | ~                     |
| 25     | Eurasian spoonbill           |            |            |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            |            | ~                     |
| 26     | Painted Stork                | V          |            | <b>~</b>             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            |            |                       |
| 27     | Asian openbill stork         | ~          |            | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       |            |            |                       |
| 28     | Woolly Neck Stork            |            |            | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                       |            |            |                       |
| 29     | Rosy Starling                | ~          | ~          | ~                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ~          |                       | ~          |            | ~                     |

### Supplementary Table 1: Avian Species Richness (Black ticks indicate Winter report; red ticks indicate Monsoon report)

Supplementary Table 1 Contd.

| Sr no. | Avian species             | Dombivali  | Thane      | Bhandup    | Airoli     | Ghansoli | Mankhurd | Vasai | Gorai                 | Uttan    | Uran                  | Alibaug               |
|--------|---------------------------|------------|------------|------------|------------|----------|----------|-------|-----------------------|----------|-----------------------|-----------------------|
| 30     | Asian Pied starling       | ~          | ~          | <b>v</b>   |            | ~        |          | ~     |                       |          |                       | <b>v</b>              |
| 31     | Common Myna               | <b>~ ~</b> | ~          | ~          | <b>v</b>   | ~        | ~        |       | ~                     |          | ~                     | <b>~ ~</b>            |
| 32     | Brahminy Starling         |            | ~          | <b>v</b>   |            | ~        |          |       |                       |          | ~                     |                       |
| 33     | Dusky Martine             |            |            | <b>v</b>   | ~          | ~        |          |       |                       |          | ~                     |                       |
| 34     | Barn Swallow              |            | ~          |            |            | ~        |          |       |                       |          |                       |                       |
| 35     | Wire Tailed Swallow       | <b>v</b>   | ~          | <b>v</b>   |            |          | ~        |       |                       |          |                       | <ul> <li>✓</li> </ul> |
| 36     | Red Rumped swallow        |            |            | <b>~ ~</b> |            | ~        |          | ~     |                       |          | <b>v</b>              |                       |
| 37     | Red Whiskered Bulbul      | <b>v</b>   | ~          | <b>v</b>   |            | ~        |          | ~     |                       | ~        | ~                     | <b>v</b>              |
| 38     | Red Vented Bulbul         | <b>v</b>   |            | <b>v</b>   | <b>~ ~</b> |          |          | ~     | ~                     |          |                       | <b>VV</b>             |
| 39     | White Eared Bulbul        | <b>v</b>   | <b>~ ~</b> | <b>v</b>   |            | <b>v</b> |          | ~     |                       |          | ~                     | <b>~ ~</b>            |
| 40     | Gray Wagtail              |            |            | <b>v</b>   |            |          |          | ~     | ~                     |          |                       | <b>v</b>              |
| 41     | Citrine Wagtail           | <b>v</b>   | ~          |            |            |          |          | ~     | ~                     | ~        | ~                     |                       |
| 42     | Yellow Wagtail            |            | ~          | <b>v</b>   |            |          |          |       |                       |          | ~                     | <b>~ ~</b>            |
| 43     | Paddyfield Pipit          | <b>v</b>   | ~          | <b>v</b>   |            | ~        |          | ~     | ~                     | ~        | ~                     |                       |
| 44     | Baya Weaver               |            |            | <b>~ ~</b> |            |          |          |       | <ul> <li>✓</li> </ul> |          | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |
| 46     | House Sparow              | <b>VV</b>  | ~          | <b>V V</b> | ~          |          | ~        | ~     |                       | ~        | <b>~ ~</b>            | <b>~ ~</b>            |
| 48     | Scaly Breasted Munia      |            | ~          | <b>~ ~</b> |            |          |          |       | <b>v</b>              |          | ~                     |                       |
| 49     | Red Avadavat              |            |            | <b>v</b>   |            |          |          |       |                       |          |                       |                       |
| 50     | Ashy Prinia               | <b>V V</b> | ~          | <b>VV</b>  | <b>v</b>   |          |          | ~     | <b>v</b>              |          | ~                     | <b>v</b>              |
| 51     | Plain Prinia              |            | ~          | ~          |            |          |          |       |                       |          | ~                     |                       |
| 52     | Blyth's Reed Warbler      |            | ~          | <b>v</b>   |            |          |          |       |                       |          |                       | <b>v</b>              |
| 53     | Clamorous Reed<br>Warbler |            |            | ~          |            |          |          |       |                       |          |                       |                       |
| 54     | Common Tailor Bird        | <b>VV</b>  | ~          | <b>V V</b> |            |          |          | ~     | <b>v</b>              | <b>v</b> | ~                     | <b>~ ~</b>            |
| 55     | Crimson-backed sunbird    |            |            |            |            |          |          |       |                       |          |                       | <b>v</b>              |
| 56     | Purple rumped sunbird     |            |            | <b>v</b>   |            |          |          | ~     |                       |          |                       | <b>v</b>              |

# Supplementary Table 1 Contd.

| Sr no. | Avian species                | Dombivali  | Thane      | Bhandup               | Airoli     | Ghansoli   | Mankhurd | Vasai      | Gorai                 | Uttan      | Uran | Alibaug    |
|--------|------------------------------|------------|------------|-----------------------|------------|------------|----------|------------|-----------------------|------------|------|------------|
| 57     | Purple Sunbird               |            |            | <b>v</b>              |            |            |          |            |                       |            | ~    |            |
| 58     | Lesser Whistling Duck        | <b>v</b>   | ~          | <b>v</b>              |            |            |          | ~          |                       |            | ~    | <b>v</b>   |
| 59     | Garganey                     | <b>v</b>   |            | <b>v</b>              |            |            |          |            |                       |            | ~    | <b>v</b>   |
| 60     | <b>Copper Smith Barbet</b>   | <b>v</b>   | ~          | <b>v</b>              |            |            |          | ~          |                       |            |      | <b>v</b>   |
| 61     | Common Hoopoe                |            | ~          |                       |            |            |          | ~          |                       |            | ~    | <b>v</b>   |
| 62     | Indian Roller                | <b>v</b>   |            |                       |            |            |          | ~~         |                       |            | ~    | <b>v</b>   |
| 63     | Common Kingfisher            | <b>v</b>   | ~          | <b>v</b>              | ~          | ~          |          | ~          | <b>v</b>              |            | ~    | <b>v</b>   |
| 64     | White Breasted<br>Kingfisher | ~          | <b>~ ~</b> | ~                     |            |            |          | ~~         | ~                     |            | ~    | ~          |
| 65     | Green Bea Eater              |            |            | ~                     |            |            |          | ~          |                       |            | ~    |            |
| 66     | <b>Blue Tailed Bee Eater</b> | <b>v</b>   | ~          |                       |            |            |          | ~          |                       |            |      |            |
| 67     | Common Hawk<br>Cuckoo        |            | ~          |                       |            |            |          |            |                       |            | ~    | ~          |
| 68     | Asian Koel                   | <b>v</b>   | ~          |                       |            |            |          | ~          |                       |            | ~    |            |
| 69     | Greater Coucal               | <b>v</b>   | ~          | ~                     |            |            |          | ~          |                       |            | ~    |            |
| 70     | <b>Alexandrine Parakeet</b>  |            | ~          | <b>v</b>              |            |            |          | ~          | <ul> <li>✓</li> </ul> |            | ~    | <b>~ ~</b> |
| 71     | <b>Rose Ringed Parakeet</b>  |            |            | <ul> <li>✓</li> </ul> | ~          | <b>v</b>   |          | ~          |                       |            |      | <b>v</b>   |
| 72     | Rock Pigeon                  | <b>V V</b> | ~ ~        | <b>V V</b>            | <b>V V</b> | <b>V V</b> | <b>v</b> | <b>~ ~</b> | <b>~ ~</b>            | <b>~ ~</b> | ~~   | <b>~ ~</b> |
| 73     | Laughing Dove                |            |            |                       |            |            |          | ~          |                       |            |      |            |
| 74     | Spotted Dove                 |            |            | <b>v</b>              |            |            |          |            |                       |            |      | <b>v</b>   |
| 75     | White Breasted waterhen      |            | ~~         | ~~                    | ~          | ~          |          | ~          | ~                     |            | ~    | ~          |
| 78     | <b>Common Sand Piper</b>     | <b>v</b>   | ~          | <b>~ ~</b>            | ~          | <b>v</b>   |          |            | <b>v</b>              |            | ~ ~  | <b>~ ~</b> |
| 79     | Wood Sandpiper               | ~          | ~          |                       | ~          |            |          | ~          | ~                     |            | ~    | ~          |
| 80     | Lesser Sand plover           |            |            | ~                     | ~          |            |          |            |                       |            |      | ~          |
| 81     | Red Wattled lapwing          | ~          |            | ~                     |            |            |          | ~          |                       |            |      |            |
| 82     | Pallas's Gull                |            | ~          |                       | ~          |            |          |            |                       |            | ~    | ~          |
| 83     | Brown Headed Gull            |            |            |                       |            |            |          | ~          |                       |            |      | <b>v</b>   |

| SupplementaryTable 1 Contd | • |
|----------------------------|---|
|----------------------------|---|

| Sr no.    | Avian species          | Dombivali  | Thane      | Bhandup    | Airoli     | Ghansoli   | Mankhurd  | Vasai      | Gorai      | Uttan      | Uran       | Alibaug    |
|-----------|------------------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|
| 84        | Black Headed Gull      |            | ~          | <b>v</b>   |            |            | ~         | ~          |            |            | ~          | <b>v</b>   |
| 85        | Heuglin's Gull         |            |            |            | ~          |            | ~         |            |            |            |            |            |
| 86        | Slender Billed Gull    |            |            |            |            |            | ~         |            |            |            | ~          | <b>v</b>   |
| 87        | Long Tailed Shrike     | <b>v</b>   | ~          | <b>v</b>   |            | ~          |           | ~          |            | ~          |            |            |
| 88        | House Crow             | <b>V V</b> | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b> | <b>VV</b> | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b> | <b>~ ~</b> | <b>V V</b> |
| 89        | Large billed Crow      |            | ~          |            |            |            |           | ~          |            |            |            | ~          |
| 90        | White throated fantail | <b>v</b>   |            | <b>v</b>   |            |            |           | ~          |            |            |            |            |
| 91        | Black Drongo           | <b>v</b>   | <b>~ ~</b> | <b>~ ~</b> | <b>v</b>   | <b>VV</b>  |           | <b>~ ~</b> |            |            | <b>v</b>   | <b>v</b>   |
| 92        | Oriental Magpie robin  | <b>v</b>   | <b>~ ~</b> | <b>VV</b>  |            | <b>v</b>   |           | ~          | <b>v</b>   | ~          | ~          | <b>v</b>   |
| 93        | Gull Billed Tern       |            |            |            | ~          |            |           |            |            |            | ~          | ~          |
| 94        | Caspian Tern           | <b>v</b>   |            |            |            |            |           |            |            |            | ~          | ~          |
| 96        | Whiskered Tern         | <b>v</b>   |            |            |            |            | ~         |            |            |            | ~          |            |
| <b>98</b> | House Swift            |            |            | <b>v</b>   |            |            |           | ~          |            |            |            | <b>v</b>   |

| Taxon          | Dombivali | Thane        | Bhandup      | Diva-        | Ghansoli     | Mankhurd     | Vashi        | Vasai        | Gorai        | Uttan        | Uran         | Alibaug      |
|----------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                |           |              |              | Airoli       |              |              | <u> </u>     |              |              |              |              |              |
| Nitzschia      | ✓         | ✓            | ✓            | ✓            |              | ✓            | ✓            |              | ✓            | ✓            | ✓            |              |
| Thalassiosira  | ✓         |              | ✓            | ✓            | ✓            | ✓            |              |              |              | ✓            |              |              |
| Skeletonema    | ✓         |              | <b>√</b>     | ✓            | ✓            | ✓            | ✓            | ✓            |              | ✓            | ✓            | ✓            |
| Cyclotella     | ✓         |              | ✓            | ✓            |              | ✓            |              |              |              | ✓            | ✓            | ✓            |
| Peridinium     | ✓         |              |              | ✓            |              |              | ✓            | ✓            |              |              |              | ✓            |
| Melosira       |           |              | ✓            |              | ✓            |              |              |              |              |              | ✓            | ✓            |
| Volvox         |           |              |              |              | $\checkmark$ |              |              |              |              |              |              |              |
| Spirulina      |           | $\checkmark$ |              |              | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Actinostrum    |           |              | <b>~</b>     | $\checkmark$ | $\checkmark$ |              |              |              |              |              |              |              |
| Oscillatoria   |           |              | <b>~</b>     | $\checkmark$ |
| Pediastrum     |           |              |              |              | $\checkmark$ |              |              |              |              |              |              |              |
| Fragilaria     |           |              | $\checkmark$ |              | $\checkmark$ |              |              |              |              |              |              | $\checkmark$ |
| Scenedesmus    |           | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              |              | ✓            |              |              |              |              |
| Zygnema        |           |              |              | $\checkmark$ | $\checkmark$ |              |              |              |              |              |              |              |
| Cosinodiscus   |           |              | $\checkmark$ | ✓            |              |              | ✓            | ✓            |              | ✓            | ✓            | ✓            |
| Pleurosigma    |           | ✓            | $\checkmark$ | ✓            |              | $\checkmark$ |              |              |              |              |              | ✓            |
| Gyrosigma      |           |              | $\checkmark$ | ✓            |              |              | ✓            | ✓            |              |              |              | ✓            |
| Leptocylindrus |           |              | ✓            | ✓            |              |              | ✓            | ✓            |              |              | ✓            | ✓            |
| Synedra        |           | ✓            | ✓            | ✓            |              |              |              |              |              |              |              |              |
| Cymbella       |           |              | ✓            | ✓            |              |              | ✓            | ✓            |              |              |              |              |
| Euglena        |           | ✓            |              | ✓            |              |              |              |              |              |              |              |              |
| Biddulphia     |           |              | ✓            | ✓            |              | ✓            |              |              | ✓            |              | ✓            | ✓            |
| Anabaena       |           |              |              | ✓            |              |              |              | ✓            |              |              |              |              |
| Planktonella   |           |              |              | ✓            |              |              |              |              |              |              |              | ✓            |
| Gloeothece     |           |              |              | ✓            |              |              |              |              | ✓            |              |              |              |
| Phaeocystis    |           |              |              |              |              | ✓            |              | ✓            |              |              | ✓            |              |
| Thalassiothrix |           |              |              |              |              | ✓            | ✓            |              |              |              | ✓            | ✓            |
| Rhizosolenia   |           |              |              |              |              | ✓            | ✓            | ✓            |              |              |              | ✓            |

#### Supplementary Table 2 Contd.

| Taxon          | Dombivali | Thane | Bhandup  |        | Ghansoli | Mankhurd | Vashi | Vasai | Gorai | Uttan | Uran         | Alibaug      |
|----------------|-----------|-------|----------|--------|----------|----------|-------|-------|-------|-------|--------------|--------------|
|                |           |       |          | Airoli |          |          |       |       |       |       |              |              |
| Hernidiscus    |           |       | <b>√</b> |        |          |          |       |       |       |       |              |              |
| Prorocentrum   |           |       | ✓        |        |          |          |       |       |       |       | ✓            | ✓            |
| Denticula      |           |       | ✓        |        |          |          |       |       |       |       |              |              |
| Bacteriastrum  |           |       | ✓        |        |          |          |       |       |       |       | ✓            | ✓            |
| Surirella      |           |       | ✓        |        |          |          |       |       |       |       | ✓            | ✓            |
| Chaetoceros    |           |       | ✓        |        |          |          |       |       |       |       |              | $\checkmark$ |
| Triceratium    |           |       | ✓        |        |          |          |       |       |       |       | $\checkmark$ | $\checkmark$ |
| Nodularia      |           | ✓     |          |        |          |          |       |       |       |       | ✓            | ✓            |
| Dinophysis     |           | ✓     |          |        |          |          |       |       |       |       |              |              |
| Pondoria       |           | ✓     |          |        |          |          |       |       |       |       |              |              |
| Chlorogonium   |           | ✓     |          |        |          |          |       |       |       |       |              |              |
| Pinnularia     |           | ✓     |          |        |          |          |       |       |       |       |              |              |
| Tropidoneis    |           | ✓     |          |        |          |          |       |       |       |       |              |              |
| Navicula       |           |       |          |        |          |          |       | ✓     |       | ✓     |              | $\checkmark$ |
| Ankistrodesmus |           |       |          |        |          |          |       | ✓     |       |       |              |              |
| Eucampia       |           |       |          |        |          |          |       | ✓     |       |       | ✓            |              |
| Rhabdonema     |           |       |          |        |          |          |       |       | ✓     |       | ✓            |              |
| Gonyaulax      |           |       |          |        |          |          |       |       |       |       |              |              |
| Denti?         |           |       |          |        |          |          |       |       |       |       | ✓            |              |
| Amphora        |           |       |          |        |          |          |       |       |       |       | ✓            | $\checkmark$ |
| Camphylodiscus |           |       |          |        |          |          |       |       |       |       | ✓            |              |
| Ditylum        |           |       |          |        |          |          |       |       |       |       | ✓            |              |
| Ceratium       |           |       |          |        |          |          |       |       |       |       |              | $\checkmark$ |
| Trichodesmium  |           |       |          |        |          |          |       |       |       |       |              | ✓            |
| Dictyota       |           |       |          |        |          |          |       |       |       |       |              | ✓            |
| Hemidiscus     |           |       |          |        |          |          |       |       |       |       |              | ✓            |
| Cocclithus     |           |       |          |        |          |          |       |       |       |       |              | ✓            |
| Thalassionema  |           |       |          |        |          |          |       |       |       |       |              | ✓            |

Supplementary Table 3: Zooplankton

| Taxon        | Dombivali    | Thane        | Bhandup      | Diva-        | Ghansoli     | Mankhurd     | Vashi        | Vasai        | Gorai        | Uttan        | Uran         | Alibaug      |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|              |              |              |              | Airoli       |              |              |              |              |              |              |              |              |
| Insect larva | $\checkmark$ |
| Rotifera     |              |              |              | ✓            | $\checkmark$ |              |              | ✓            |              | $\checkmark$ | ✓            | $\checkmark$ |
| Fish egg     |              |              | ✓            |              | $\checkmark$ |              |              | ✓            | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| Fish larva   |              | ✓            |              |              |              | $\checkmark$ | ✓            | ✓            | ✓            | ✓            | ✓            | $\checkmark$ |
| Chironomus   |              |              |              |              | ✓            |              |              |              |              |              |              |              |
| larva        |              |              |              |              |              |              |              |              |              |              |              |              |
| Copepod      |              | ✓            | ✓            | ✓            | $\checkmark$ | $\checkmark$ | ✓            | ✓            | ✓            | ✓            | $\checkmark$ | ✓            |
| Decapoda     |              | ✓            | ✓            | ✓            |              |              | ✓            | ✓            |              |              | ✓            | ✓            |
| Amphipoda    |              | ✓            | ✓            |              |              |              |              |              |              |              | ✓            | ✓            |
| Gastropoda   |              |              |              | ✓            |              | ✓            |              | ✓            |              |              | ✓            | ✓            |
| Cladocera    |              |              |              |              |              |              |              |              |              |              |              | ✓            |
| Lucifer      |              |              |              |              |              |              |              |              |              |              |              | ✓            |
| species      |              |              |              |              |              |              |              |              |              |              |              |              |
| Ctenophora   |              |              |              |              |              |              |              |              |              |              |              | ✓            |
| Crustacean   |              |              |              |              |              |              |              |              |              |              |              | ✓            |
| egg          |              |              |              |              |              |              |              |              |              |              |              |              |

| Taxon        | Dombivali | Thane | Bhandup | Diva-<br>Airoli | Ghansoli | Mankhurd | Vashi | Vasai | Gorai | Uttan | Uran | Alibaug |
|--------------|-----------|-------|---------|-----------------|----------|----------|-------|-------|-------|-------|------|---------|
| Oligochaeta  | ✓         |       |         |                 | ✓        |          |       | ✓     |       | ✓     |      |         |
| Insect larva | ✓         | ✓     | ✓       | ✓               | ✓        | ✓        | ✓     |       | ✓     | ✓     | ✓    | ✓       |
| Fish larva   |           | ✓     |         |                 |          |          |       |       |       |       |      | ✓       |
| Gastropoda   |           | ✓     |         | ✓               | ✓        | ✓        | ✓     | ✓     |       |       | ✓    | ✓       |
| Polychaeta   |           | ✓     | ✓       | ✓               | ✓        | ✓        | ✓     | ✓     | ✓     | ✓     | ✓    | ✓       |
| Bivalves     |           |       |         |                 | ✓        | ✓        | ✓     | ✓     |       |       | ✓    | ✓       |
| Fish egg     |           |       |         | ✓               |          | ✓        |       |       |       |       | ✓    |         |
| Ostracod     |           | ✓     |         | ✓               |          |          |       |       |       |       |      | ✓       |
| Crustacean   |           |       |         |                 |          | ✓        |       |       |       |       |      |         |
| egg          |           |       |         |                 |          |          |       |       |       |       |      |         |
| Amphipods    |           |       |         |                 |          |          | ✓     |       |       |       |      |         |
| Pelecypods   |           |       |         |                 |          |          |       | ✓     |       |       |      | ✓       |
| Oreasteridae |           |       |         |                 |          |          |       |       |       |       |      | ✓       |

#### Supplementary Table 4: Benthic Organisms

|   |                                                                                     |   |                                                                                                             |                                | Dombiv                                    | ali                              |                                                                 |                                      |                               |   |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------|---|
|   | Mangrove Under<br>Threat                                                            |   | Biodiver                                                                                                    | Biodiversity Social Acceptance |                                           | Proximity to Source<br>Pollution | of                                                              | Physical and<br>Legal<br>Feasibility |                               |   |
| 1 | Open<br>defecation                                                                  | N | Richness of<br>mangrove<br>diversity                                                                        | Y                              | Willingness<br>to get<br>trained by<br>us | N                                | Presence of<br>industry/slum/both/any<br>other pollution source | Y                                    | Government<br>Permissions     | N |
| 2 | Over<br>harvesting                                                                  | Ν | Richness of<br>crab/oyster<br>diversity                                                                     | Ν                              | Willingness<br>to protect<br>mangroves    | N                                | Water quality                                                   | N                                    | Accessibility<br>by road/boat | Y |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Ν                              | Annual<br>income of<br>target<br>group    | Not<br>ascertained               | Sediment quality                                                | Y                                    | Proximity to<br>market        | Ν |
| 4 | Cutting of<br>trees                                                                 | Y | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y                              | Education<br>level of<br>target<br>group  | Not<br>ascertained               | Solid waste content                                             | N                                    | Density of<br>mangroves       | Y |

#### Supplementary Table 5: Site Rating Scale: Dombivali

#### Supplementary Table 6: Site Rating Scale: Thane

|   |                                                                                     |   |                                                                                                             |   |                                           | Thane              |                                                                 |    |                                   |                      |  |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|---|-------------------------------------------|--------------------|-----------------------------------------------------------------|----|-----------------------------------|----------------------|--|
|   | Mangrove Under<br>Threat                                                            |   |                                                                                                             |   | Social Acceptance                         |                    | Proximity to Source<br>Pollution                                | of | Physical and Legal<br>Feasibility |                      |  |
| 1 | Open defecation                                                                     | Y | Richness of<br>mangrove<br>diversity                                                                        | Y | Willingness<br>to get<br>trained by<br>us | Y                  | Presence of<br>industry/slum/both/any<br>other pollution source | Y  | Government<br>Permissions         | To be<br>ascertained |  |
| 2 | Over harvesting                                                                     | Y | Richness of<br>crab/oyster<br>diversity                                                                     | Y | Willingness<br>to protect<br>mangroves    | Y                  | Water quality                                                   | N  | Accessibility<br>by road/boat     | Y                    |  |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | N | Annual<br>income of<br>target<br>group    | Not<br>ascertained | Sediment quality                                                | Y  | Proximity to<br>market            | Y                    |  |
| 4 | Cutting of trees                                                                    | Y | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y | Education<br>level of<br>target<br>group  | Not<br>ascertained | Solid waste content                                             | N  | Density of mangroves              | Y                    |  |

|   |                                                                                     |   |                                                                                                             |   | Bhandu                                    | р        |                                                                 |    |                                      |   |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|---|-------------------------------------------|----------|-----------------------------------------------------------------|----|--------------------------------------|---|
|   | Mangrove Under<br>Threat                                                            |   | e e                                                                                                         |   | Social Ac                                 | ceptance | Proximity to Source of Pollution                                | of | Physical and<br>Legal<br>Feasibility |   |
| 1 | Open<br>defecation                                                                  | N | Richness of<br>mangrove<br>diversity                                                                        | Y | Willingness<br>to get<br>trained by<br>us | Y        | Presence of<br>industry/slum/both/any<br>other pollution source | N  | Government<br>Permissions            | Y |
| 2 | Over<br>harvesting                                                                  | N | Richness of<br>crab/oyster<br>diversity                                                                     | Y | Willingness<br>to protect<br>mangroves    | Y        | Water quality                                                   | Y  | Accessibility<br>by road/boat        | Y |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Y | Annual<br>income of<br>target<br>group    | Medium   | Sediment quality                                                | Y  | Proximity to<br>market               | Y |
| 4 | Cutting of<br>trees                                                                 | N | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y | Education<br>level of<br>target<br>group  | Medium   | Solid waste content                                             | N  | Density of<br>mangroves              | Y |

#### Supplementary Table 7: Site Rating Scale: Bhandup

#### Supplementary Table 8 Site Rating Scale: Diva Gaothan (Airoli)

|   |                                                                                     |   |                                                                                                             |   | Diva Gaothar                              | n (Airoli)         |                                                                 |    |                                      |   |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|---|-------------------------------------------|--------------------|-----------------------------------------------------------------|----|--------------------------------------|---|
|   | Mangrove Under<br>Threat                                                            |   | Biodiversity                                                                                                |   | y Social Acceptance                       |                    | Proximity to Source<br>Pollution                                | of | Physical and<br>Legal<br>Feasibility |   |
| 1 | Open<br>defecation                                                                  | N | Richness of<br>mangrove<br>diversity                                                                        | Y | Willingness<br>to get<br>trained by<br>us | N                  | Presence of<br>industry/slum/both/any<br>other pollution source | Y  | Government<br>Permissions            | N |
| 2 | Over<br>harvesting                                                                  | N | Richness of<br>crab/oyster<br>diversity                                                                     | Y | Willingness<br>to protect<br>mangroves    | N                  | Water quality                                                   |    | Accessibility<br>by road/boat        | N |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Y | Annual<br>income of<br>target<br>group    | Not<br>ascertained | Sediment quality                                                |    | Proximity to<br>market               | N |
| 4 | Cutting of<br>trees                                                                 | Y | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y | Education<br>level of<br>target<br>group  | Not<br>ascertained | Solid waste content                                             | N  | Density of<br>mangroves              | Y |

|   |                                                                                     |   |                                                                                                             |     | G                                         | hansoli  |                                                                 |    |                                  |                      |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------|-----------------------------------------------------------------|----|----------------------------------|----------------------|
|   | Mangrove Under<br>Threat                                                            |   | Biodivers                                                                                                   | ity | Social Ac                                 | ceptance | Proximity to Source<br>Pollution                                | of | -                                | and Legal<br>bility  |
| 1 | Open<br>defecation                                                                  | N | Richness of<br>mangrove<br>diversity                                                                        | Y   | Willingness<br>to get<br>trained by<br>us | Y        | Presence of<br>industry/slum/both/any<br>other pollution source | N  | Government<br>Permissions        | To be<br>ascertained |
| 2 | Over<br>harvesting                                                                  | N | Richness of<br>crab/oyster<br>diversity                                                                     | Y   | Willingness<br>to protect<br>mangroves    | Y        | Water quality                                                   | Y  | Accessibility<br>by<br>road/boat | Y                    |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | N | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Y   | Annual<br>income of<br>target<br>group    | Medium   | Sediment quality                                                | N  | Proximity to<br>market           | Y                    |
| 4 | Cutting of<br>trees                                                                 | Y | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y   | Education<br>level of<br>target<br>group  | Medium   | Solid waste content                                             | N  | Density of<br>mangroves          | Y                    |

|   |                                                                                     |    |                                                                                                             |     | Μ                                         | lankhurd           |                                                                 |    |                                  |                          |
|---|-------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|--------------------|-----------------------------------------------------------------|----|----------------------------------|--------------------------|
|   | Mangrove Und<br>Threat                                                              | er | Biodiversi                                                                                                  | ity | Social A                                  | cceptance          | Proximity to Source of Pollution                                | of | Physical a<br>Feasil             | 0                        |
| 1 | Open<br>defecation                                                                  | N  | Richness of<br>mangrove<br>diversity                                                                        | Y   | Willingness<br>to get<br>trained by<br>us | N                  | Presence of<br>industry/slum/both/any<br>other pollution source | N  | Government<br>Permissions        | N                        |
| 2 | Over<br>harvesting                                                                  | Ν  | Richness of<br>crab/oyster<br>diversity                                                                     | Y   | Willingness<br>to protect<br>mangroves    | N                  | Water quality                                                   | N  | Accessibility<br>by<br>road/boat | Y                        |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | N  | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | N   | Annual<br>income of<br>target<br>group    | Not<br>ascertained | Sediment quality                                                | Y  | Proximity to<br>market           | N                        |
| 4 | Cutting of<br>trees                                                                 | N  | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y   | Education<br>level of<br>target<br>group  | Not<br>ascertained | Solid waste content                                             | N  | Density of<br>mangroves          | Yet to be<br>ascertained |

#### Supplementary Table 10: Site Rating Scale: Mankhurd

| Supplementary | y Table 11 | : Site Rating | g Scale: Vasai |
|---------------|------------|---------------|----------------|
|---------------|------------|---------------|----------------|

|   |                                                                                     |   |                                                                                                             |                                | Vasai                                     |                                     |                                                                 |                                      |                               |   |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------|---|
|   | Mangrove Under<br>Threat                                                            |   | Biodive                                                                                                     | Biodiversity Social Acceptance |                                           | Proximity to Source of<br>Pollution |                                                                 | Physical and<br>Legal<br>Feasibility |                               |   |
| 1 | Open<br>defecation                                                                  | Y | Richness of<br>mangrove<br>diversity                                                                        | Y                              | Willingness<br>to get<br>trained by<br>us | Y                                   | Presence of<br>industry/slum/both/any<br>other pollution source | N                                    | Government<br>Permissions     | N |
| 2 | Over<br>harvesting                                                                  | N | Richness of<br>crab/oyster<br>diversity                                                                     | Y                              | Willingness<br>to protect<br>mangroves    | Y                                   | Water quality                                                   | N                                    | Accessibility<br>by road/boat | Y |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Y                              | Annual<br>income of<br>target<br>group    | Medium                              | Sediment quality                                                | Y                                    | Proximity to<br>market        | Y |
| 4 | Cutting of<br>trees                                                                 | Y | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y                              | Education<br>level of<br>target<br>group  | Medium                              | Solid waste content                                             | N                                    | Density of<br>mangroves       | Y |

| Supplementary | 7 Table | 12: Site | <b>Rating S</b> | cale: Gorai |
|---------------|---------|----------|-----------------|-------------|
|---------------|---------|----------|-----------------|-------------|

|   |                                                                                     |   |                                                                                                             |                                | Gorai                                     |                                  |                                                                 |                                      |                               |   |
|---|-------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------|---|
|   | Mangrove Under<br>Threat                                                            |   | Biodive                                                                                                     | Biodiversity Social Acceptance |                                           | Proximity to Source<br>Pollution | of                                                              | Physical and<br>Legal<br>Feasibility |                               |   |
| 1 | Open<br>defecation                                                                  | Y | Richness of<br>mangrove<br>diversity                                                                        | Y                              | Willingness<br>to get<br>trained by<br>us | N                                | Presence of<br>industry/slum/both/any<br>other pollution source | N                                    | To be<br>ascertained          | Y |
| 2 | Over<br>harvesting                                                                  | N | Richness of<br>crab/oyster<br>diversity                                                                     | Y                              | Willingness<br>to protect<br>mangroves    | Y                                | Water quality                                                   | N                                    | Accessibility<br>by road/boat | Y |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | N | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Low                            | Annual<br>income of<br>target<br>group    | Medium                           | Sediment quality                                                | Y                                    | Proximity to<br>market        | Y |
| 4 | Cutting of<br>trees                                                                 | Ν | · · · · · · · · · · · · · · · · · · ·                                                                       | Y                              | Education<br>level of<br>target<br>group  | Medium                           | Solid waste content                                             | N                                    | Density of<br>mangroves       | Y |

|   |                                                                                     |     |                                                                                                             |   | Utt                                       | an                 |                                                                 |   |                               |                                   |  |
|---|-------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------|---|-------------------------------------------|--------------------|-----------------------------------------------------------------|---|-------------------------------|-----------------------------------|--|
|   | Mangrove Und<br>Threat                                                              | ler | Biodiversity                                                                                                |   | Social Acceptance                         |                    | Proximity to Source of<br>Pollution                             |   | v                             | Physical and<br>Legal Feasibility |  |
| 1 | Open<br>defecation                                                                  | Y   | Richness of<br>mangrove<br>diversity                                                                        | N | Willingness<br>to get<br>trained by<br>us | Y                  | Presence of<br>industry/slum/both/any<br>other pollution source | Y | Government<br>Permissions     | Ň                                 |  |
| 2 | Over<br>harvesting                                                                  | Y   | Richness of<br>crab/oyster<br>diversity                                                                     | N | Willingness<br>to protect<br>mangroves    | Y                  | Water quality                                                   | N | Accessibility<br>by road/boat | Y                                 |  |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | Y   | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | N | Annual<br>income of<br>target<br>group    | Not<br>ascertained | Sediment quality                                                | Y | Proximity to<br>market        | Y                                 |  |
| 4 | Cutting of<br>trees                                                                 | Y   | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | N | Education<br>level of<br>target<br>group  | Not<br>ascertained | Solid waste content                                             | Ν | Density of<br>mangroves       | Y                                 |  |

#### Supplementary Table 13: Site Rating Scale: Uttan

|   | Uran                                                                                |    |                                                                                                             |                     |                                           |          |                                                                 |   |                                   |                      |
|---|-------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|----------|-----------------------------------------------------------------|---|-----------------------------------|----------------------|
|   | Mangrove Und<br>Threat                                                              | er | Biodiversity                                                                                                | y Social Acceptance |                                           | ceptance | Proximity to Source of<br>Pollution                             |   | Physical and Legal<br>Feasibility |                      |
| 1 | Open<br>defecation                                                                  | N  | Richness of<br>mangrove<br>diversity                                                                        | N                   | Willingness<br>to get<br>trained by<br>us | Y        | Presence of<br>industry/slum/both/any<br>other pollution source | N | Government<br>Permissions         | To be<br>ascertained |
| 2 | Over<br>harvesting                                                                  | Ν  | Richness of<br>crab/oyster<br>diversity                                                                     | Y                   | Willingness<br>to protect<br>mangroves    | Y        | Water quality                                                   | Y | Accessibility<br>by road/boat     | Y                    |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | N  | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | Y                   | Annual<br>income of<br>target<br>group    | Medium   | Sediment quality                                                | Y | Proximity to<br>market            | Y                    |
| 4 | Cutting of<br>trees                                                                 | N  | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y                   | Education<br>level of<br>target<br>group  | Medium   | Solid waste content                                             | N | Density of<br>mangroves           | Y                    |

#### Supplementary Table 14: Site Rating Scale: Uran

|   | Alibaug                                                                             |    |                                                                                                             |    |                                           |         |                                                                 |    |                                  |                      |
|---|-------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------|----|-------------------------------------------|---------|-----------------------------------------------------------------|----|----------------------------------|----------------------|
|   | Mangrove Und<br>Threat                                                              | er | Biodiversi                                                                                                  | ty | Social Acce                               | eptance | Proximity to Source<br>Pollution                                | of | Physical a<br>Feasi              | 0                    |
| 1 | Open<br>defecation                                                                  | Ν  | Richness of<br>mangrove<br>diversity                                                                        | Y  | Willingness<br>to get<br>trained by<br>us | Y       | Presence of<br>industry/slum/both/any<br>other pollution source | N  | Government<br>Permissions        | To be<br>ascertained |
| 2 | Over<br>harvesting                                                                  | N  | Richness of<br>crab/oyster<br>diversity                                                                     | Y  | Willingness<br>to protect<br>mangroves    | Y       | Water quality                                                   | Y  | Accessibility<br>by<br>road/boat | Y                    |
| 3 | Criminal<br>activities like<br>corpse<br>disposal/illegal<br>brewing/sand<br>mining | N  | Richness of<br>aquatic<br>diversity (fish,<br>aquatic birds,<br>phytoplankton,<br>benthos &<br>zooplankton) | N  | Annual<br>income of<br>target<br>group    | Low     | Sediment quality                                                | Y  | Proximity to<br>market           | Y                    |
| 4 | Cutting of<br>trees                                                                 | N  | Richness of<br>Bird<br>Biodiversity in<br>entire<br>mangrove<br>patch                                       | Y  | Education<br>level of<br>target<br>group  | Low     | Solid waste content                                             | N  | Density of<br>mangroves          | Y                    |

#### Supplementary Table 15: Site Rating Scale: Alibaug

### Supplementary Table 16: References of phytoplanktons as indicators

| Sr. no.         | Taxon          | Citation                                       | Water quality                                 |  |
|-----------------|----------------|------------------------------------------------|-----------------------------------------------|--|
| 1 Nitzschia     |                | (Baruah 2016, and reference therein, Kelly and | Pollution indicator                           |  |
|                 |                | Whitton 1995)                                  |                                               |  |
| 2 Thalassiosira |                | Xivanand N. Verlecar, Somshekhar R. Desai,     | Indicator of polluted water                   |  |
|                 |                | Anupam Sarkar And S. G. Dalal, 1998            |                                               |  |
| 3               | Skeletonema    | Andres Jaanus and et. al, 2009                 | Indicator of water with high concentration of |  |
|                 |                |                                                | inorganic compounds and nitrogen              |  |
| 4               | Cyclotella     | (Baruah 2016, and references there in)         | Indicator of clean water                      |  |
| 5               | Peridinium     | Palmer M.C., 1977.                             | Dominate in nutrient rich waters              |  |
| 6               | Melosira       | American Public Health Association,            | Indicator of clean water                      |  |
|                 |                | Washington, D.C., 1989.                        |                                               |  |
| 7               | Spirulina      | Tahir Atici, 2016                              | Indicator of Fresh water                      |  |
| 8               | Oscillatoria   | (Baruah 2016, and references therein, Singh    | Indicator of pollution                        |  |
|                 |                | 2013)                                          |                                               |  |
| 9               | Pediastrum     | Peera pornpisal, Y., Suphan, S., Ngearnpat,    | Indicator of fresh water                      |  |
|                 |                | N. et al. Biologia (2008)                      |                                               |  |
| 10              | Fragilaria     | H. van Dam & A. Mertens, 1993                  | Indicator of polluted water                   |  |
| 11              | Scenedesmus    | Nandan and Aher (2005)                         | Found in organically polluted waters          |  |
| 12              | Zygnema        | Tahir Atici, 2016                              | Indicator of freshwater                       |  |
| 13              | Cosinodiscus   | I.C. Onyema,2016                               | Indicator of marine water                     |  |
| 14              | Pleurosigma    | I.C. Onyema,2016                               | Indicator of high nutritional level           |  |
| 15              | Gyrosigma      | Robert A short,1978                            | Indicator of freshwater                       |  |
| 16              | Leptocylindrus | Xivanand N. Verlecar, Somshekhar R. Desai,     | Indicator of polluted water                   |  |
|                 |                | Anupam Sarkar And S. G. Dalal, 1998            |                                               |  |
| 17              | Synedra        | (Baruah 2016, and references there in)         | Indicator of clean water                      |  |
| 18              | Cymbella       | Tahir Atici, 2016                              | Indicator of freshwater                       |  |
| 19              | Euglena        | (Baruah 2016, and references there in)         | Indicator of polluted water                   |  |
| 20              | Anabaena       | (Baruah 2016, and references there in)         | Indicator of polluted water                   |  |
| 21              | Phaeocystis    | C. Lancelot and et. al., 1963                  | Indicator of polluted water                   |  |
| 22              | Rhizosolenia   | Xivanand N. Verlecar, Somshekhar R. Desai,     | Indicator of polluted water                   |  |
|                 |                | Anupam Sarkar And S. G. Dalal, 1998            | -                                             |  |
| 23              | Prorocentrum   | (Cynthia Heil and et. Al, 2005)                | Indicator of polluting water                  |  |
| 24              | Surirella      | Malebo D. Matlala,2010                         | Indicator of polluted water                   |  |

| 25 | Chaetoceros    | Xivanand N. Verlecar, Somshekhar R. Desai,      | Indicator of polluted water     |
|----|----------------|-------------------------------------------------|---------------------------------|
|    |                | Anupam Sarkar And S. G. Dalal, 1998             |                                 |
| 26 | Dinophysis     | Subrat naik,2009                                | Indicator of pollution          |
| 27 | Chlorogonium   | Soler, A., Saez, J., Llorens, M., Martinez, I., | Indicator of pollution          |
|    |                | Torrella, F., & Berna, L. M. (1991).            |                                 |
| 28 | Pinnularia     | (Baruah 2016, and references there in)          | Indicator of clean water        |
| 29 | Navicula       | (Baruah 2016, and references there in)          | Indicator of clean water        |
| 30 | Ankistrodesmus | (Baruah 2016, and references there in)          | Indicator of clean water        |
| 31 | Amphora        | I.C. Onyema,2016                                | Indicator of poor water quality |
| 32 | Trichodesmium  | Subrat naik,2009                                | Indicator of polluted water     |
| 33 | Hemidiscus     | I.C. Onyema, 2016                               | Indicator of brackish water     |
| 34 | Thalassionema  | Abhishek Mukherjee, Subhajit Das,               | Mangroves Impoverished water    |
|    |                | Sabyasachi Chakraborty and                      |                                 |
|    |                | Tarun Kumar De, 2015                            |                                 |

| <b>Table 17:</b> | Secondary | data |
|------------------|-----------|------|
|------------------|-----------|------|

| Flora  |                                            |                                                 |
|--------|--------------------------------------------|-------------------------------------------------|
| Sr.    | Year and Citation                          | Findings                                        |
| No.    |                                            |                                                 |
| 1      | Passenger Water Transport System- Bandra   | Avicennia sp. were found along Gorai creek      |
|        | to Borivali- EIA report                    |                                                 |
| Fauna  | :                                          |                                                 |
| Sr.    | Year and Citation                          | Findings                                        |
| No.    |                                            |                                                 |
| 1      | Pawar, P. R. (2012). Species diversity of  | A total of 56 species of birds representing 11  |
|        | birds in mangroves of Uran (Raigad), Navi  | orders, 29 families and 46 genera were recorded |
|        | Mumbai, Maharashtra, West coast of         | from the mangroves of Uran coast.               |
|        | India. Journal of Experimental             |                                                 |
|        | Sciences, 2(10).                           |                                                 |
| 2      | Prefesibility report- Mumbai coastal road  | List of various fauna, avifauna, mammals,       |
|        | project.                                   | reptiles is provided.                           |
| Phytop | plankton-Zooplankton-Benthos:              |                                                 |
| Sr.    | Year and Citation                          | Findings                                        |
| no.    |                                            |                                                 |
| 1      | JiyalalRam, M. J., Ram, A., Rokade, M.     | Thalassiosira gravid and Skeletonema costatum   |
|        | A., Karangutkar, S. H., Yengal, B., Dalvi, | were majorly observed in marine environment.    |
|        |                                            |                                                 |

|   | S., & Gajbhiye, S. N. (2013).               |                                                    |
|---|---------------------------------------------|----------------------------------------------------|
|   | Phytoplankton dynamic responses to oil      |                                                    |
|   | spill in Mumbai Harbour.                    |                                                    |
| 2 | Passenger Water Transport System-           | Distribution of various phytoplanktons,            |
|   | Bandra to Borivali- EIA report              | zooplanktons and benthos along Bandra, Juhu,       |
|   |                                             | Versova creek, Gorai creek, Marve creek,           |
| 3 | Shahi, N., Godhe, A., Mallik, S. K.,        | A total of 230 taxa were recorded from both sites. |
|   | Härnström, K., & Nayak, B. B. (2015).       | Phytoplankton were dominated by diatoms (131       |
|   | The relationship between variation of       | taxa)followed by dinoflagellates (82 taxa) and     |
|   | phytoplankton species composition and       | marine flagellates (17 taxa).                      |
|   | physico-chemical parameters in northern     |                                                    |
|   | coastal waters of Mumbai, India.            |                                                    |
| 4 | Schuytema, G. S., Nebeker, A. V., &         | Salinity tolerance of Daphnia                      |
|   | Stutzman, T. W. (1997). Salinity            |                                                    |
|   | tolerance of Daphnia magna and potential    |                                                    |
|   | use for estuarine sediment toxicity         |                                                    |
|   | tests. Archives of environmental            |                                                    |
|   | contamination and toxicology, 33(2), 194-   |                                                    |
|   | 198.                                        |                                                    |
|   | Latta, L. C., Weider, L. J., Colbourne, J.  |                                                    |
|   | K., & Pfrender, M. E. (2012). The           |                                                    |
|   | evolution of salinity tolerance in Daphnia: |                                                    |
|   | a functional genomics approach. Ecology     |                                                    |
|   | Letters, 15(8), 794-802.                    |                                                    |

| 5. | Gaonkar, C.A., V. Krishnamurthy, and      | Copepod species such as Canthocalanus sp.,            |
|----|-------------------------------------------|-------------------------------------------------------|
|    | A.C. Anil (2010). Changes in the          | Paracalanus arabiensis, Cosmocalanus sp.,             |
|    | abundance and composition of              | Euterpina acutifrons, Nannocalanus minor and          |
|    | zooplankton from the ports of Mumbai,     | Tortanus sp. not reported in the earlier studies were |
|    | India. Environ Monit Assess. 168:179-     | observed during their investigation.                  |
|    | 194                                       |                                                       |
| 6. | Biju, A., & Panampunnayil, S. U. (2010).  | In Bhayander salt pan the mysids Mesopodopsis         |
|    | Mysids (Crustacea) from the salt pans of  | orientalis and Indomysis nybini                       |
|    | Mumbai, India, with a description of a    |                                                       |
|    | new species. Marine Biology               |                                                       |
|    | Research, 6(6), 556-569.                  |                                                       |
| 7  | Markande, A. R., Mikaelyan, A., Nayak,    | Neanthes chilkaensis inhabits in gorai region         |
|    | B. B., Patel, K. D., Vachharajani, N. B., |                                                       |
|    | Vennila, A., & Purushothaman, C. S.       |                                                       |
|    | (2014). Analysis of midgut bacterial      |                                                       |
|    | community structure of Neanthes           |                                                       |
|    | chilkaensis from polluted mudflats of     |                                                       |
|    | Gorai, Mumbai, India. Advances in         |                                                       |
|    | Microbiology, 4(13), 906.                 |                                                       |
| 9  | Jayalakshmy, K. V. (2013). Ecology and    | Fabrea salina, Pseudodiaptomus pankajus, Acartia      |
|    | Distribution of Copepods from the Salt    | sarojus, Bestiolina similis, Acartia southwelli,      |
|    | Pan Ecosystems of Mumbai, West Coast      | Oithona sp., O. similis, O. hebes and Mesochra sp.    |
|    | of India. Journal of Marine Biology &     | were observed in Bhayander region                     |
|    | Oceanography.                             |                                                       |

| 10 | Stephen, R., Jayalakshmy, K. V., Nair, V. | Acartia spinicauda, Paracalanus aculeatus,         |
|----|-------------------------------------------|----------------------------------------------------|
|    | R., Gajbhiye, S. N., & Jacob, B. (2014).  | Acrocalanus sp., Centropages tenuiremis, Tortanus  |
|    | Deterioration in the biodiversity of      | forcipatus, Acartia spinicauda, Tortanus           |
|    | copepods in sewage laiden creeks of       | forcipatus, Bestiolina similis, Pseudodiaptomus    |
|    | Mumbai coast, west coast of India: A      | bowmani, Canthocalanus pauper and Bestiolina       |
|    | statistical approach.                     | similis were found in Versova and mahim creek      |
| 11 | Gajbhiye, S. N., Nair, V. R., & Desai, B. | Acartia spinicauda, Acrocalamus similis, A.        |
|    | N. (1984). Diurnal variation of           | gracilis, Euchaeta concinna, Eucalanus subcrassus  |
|    | zooplankton in Malad creek, Bombay.       | and Paracalanus crassirostris, P. aculeatus,       |
|    |                                           | Canthocalanus pauper, Acrocalanus inermis, A.      |
|    |                                           | monachus, Labidocera pectinata, Acartia pacifica,  |
|    |                                           | A. plumosa, A. centura, Acartia sp. were found in  |
|    |                                           | malad creek.                                       |
| 12 | Mandal, S., & Harkantra, S. N. (2013).    | P. pinnata, Cossura coasta, N. indica , N.         |
|    | Changes in the soft-bottom macrobenthic   | glandicincta, Cirriformia chrysoderma,             |
|    | diversity and community structure from    | Goniadopsis longicirrata, Dendronereides           |
|    | the ports of Mumbai,                      | heteropoda, Nephtys polybranchia,                  |
|    | India. Environmental monitoring and       | Kinbergonuphis investigatoris were found near      |
|    | assessment, 185(1), 653-672.              | Mumbai port.                                       |
| 13 | Ingole, B. S., Gaonkar, U. V., Deshmukh,  | Coscinodiscus sp., Thalassiosira sp., larval forms |
|    | A., Mukherjee, I., Sivadas, S. K., &      | of polychaete and fish, Paraprionospio pinnata     |
|    | Gophane, A. (2014). Macrobenthic          | were observed in the region of west coast.         |
|    | community structure of coastal Arabian    |                                                    |
|    | Sea during the Fall intermonsoon.         |                                                    |

| Sr. no. | Citation                                             | Findings                                                        |
|---------|------------------------------------------------------|-----------------------------------------------------------------|
| 1       | Vijay, R., Khobragade, P. J., Sohony, R. A.,         | Hydrodynamic and water quality                                  |
|         | Kumar, R., & Wate, S. R. (2014). Hydrodynamic        | simulations of Thane Creek confirms the                         |
|         | and water quality simulation of Thane creek,         | impact of sewage discharges on creek                            |
|         | Mumbai: an impact of sewage discharges.              | water quality.                                                  |
| 2       | Mishra, S., Bhalke, S., Saradhi, I. V., Suseela, B., | Trace metals and organometals were                              |
|         | Tripathi, R. M., Pandit, G. G., & Puranik, V. D.     | estimated in different types of marine                          |
|         | (2007). Trace metals and organometals in             | organisms (fish, bivalve, crab and prawn)                       |
|         | selected marine species and preliminary risk         | collected from the Trans-Thane Creek area,                      |
|         | assessment to human beings in Thane Creek            | Mumbai.                                                         |
|         | area, Mumbai. Chemosphere, 69(6), 972-978.           |                                                                 |
| 3       | Pawar, P. R. (2013). Monitoring of impact of         | Water quality from mangroves of Uran is                         |
|         | anthropogenic inputs on water quality of             | deteriorating due to industrial pollution.                      |
|         | mangrove ecosystem of Uran, Navi Mumbai,             | High concentration of O- PO <sub>4</sub> NO <sub>3</sub> –N and |
|         | west coast of India. Marine pollution                | silicates are found in higher concentration                     |
|         | bulletin, 75(1), 291-300.                            |                                                                 |
| 4       | Gupta, I., Salunkhe, A., Rohra, N., & Kumar, R.      | Uttan creek, Ulhas creek and Vashi creek                        |
|         | (2013). Chemometrics data analysis of marine         | are moderately polluted.                                        |
|         | water quality in Maharashtra, west coast of India.   |                                                                 |
| 5       | Singare, P. U., Trivedi, M. P., & Mishra, R. M.      | Vasai creek is polluted due to increase in                      |
|         | (2011). Assessing the physico-chemical               | industrialization                                               |
|         | parameters of sediment ecosystem of Vasai creek      |                                                                 |
|         | at Mumbai, India. Marine Science, 1(1), 22-29.       |                                                                 |

Supplementary table 18: Secondary data on water quality of MMR region

| 6 | Singare, P. U., Trivedi, M. P., & Ravindra, M. | The results of the study indicates that the  |
|---|------------------------------------------------|----------------------------------------------|
|   | (2012). Sediment heavy metal contaminants in   | concentration level of most of the toxic     |
|   | Vasai Creek of Mumbai: pollution               | heavy metals like Al, As, Cd, Cr, Hg, Ni,    |
|   | impacts. American Journal of Chemistry, 2(3),  | Pb, Sr and Mn for the assessment year        |
|   | 171-180.                                       | 2010-11 were higher than that obtained for   |
|   |                                                | the year 2009-10 by the factor of 1.0 to 2.5 |
|   |                                                | μg/g. I                                      |

# Case study:

| Sr. No. | Citation                                    | Findings                                                       |
|---------|---------------------------------------------|----------------------------------------------------------------|
| 1       | Binh, C. T., Phillips, M. J., & Demaine, H. | An economic analysis, based solely on the economic returns     |
|         | (1997). Integrated shrimp-mangrove farming  | from shrimp culture showed that the farming systems with a     |
|         | systems in the Mekong delta of              | mangrove coverage of 30-50% of the pond area gave the          |
|         | Vietnam. Aquaculture Research, 28(8), 599-  | highest annual economic returns. The results demonstrate a     |
|         | 610.                                        | better economic return to farmers who maintain mangroves in    |
|         |                                             | their farming systems.                                         |
| 2       | Primavera, J. (2006). Overcoming the        | Recommendation for protection of mangroves includes            |
|         | impacts of aquaculture on the coastal       | Holistic Integrated Coastal Zone Management based on           |
|         | zone. Ocean & Coastal Management, 49(9),    | stakeholder needs, mechanisms for conflict resolution,         |
|         | 531-545.                                    | assimilative capacity of the environment, protection of        |
|         |                                             | community resources, and rehabilitation of degraded habitats,  |
|         |                                             | to improvements in the aquaculture sector pertaining to        |
|         |                                             | management of feed, water, and effluents.                      |
| 3       | Rönnbäck, P. (1999). The ecological basis   | The life-support functions of mangrove ecosystems also set     |
|         | for economic value of seafood production    | the framework for sustainable aquaculture in these             |
|         | supported by mangrove                       | environments. Estimates of the annual market value of capture  |
|         | ecosystems. Ecological Economics, 29(2),    | fisheries supported by mangroves ranges from US\$750 to 16     |
|         | 235-252.                                    | 750 per hectare, which illustrates the potential support value |
|         |                                             | of mangroves. The value of mangroves in seafood production     |
|         |                                             | would further increase by additional research on subsistence   |
|         |                                             | fisheries, biophysical support to other ecosystems, and the    |
|         |                                             | mechanisms which sustain aquaculture production.               |

#### **References:-**

- Alongi, D. M. (2002). Present state and future of the world's mangrove forests. *Environmental conservation*, 29(03), 331-349.
- Armstrong, F. A. J. (1957). The iron content of sea water. *Journal of the Marine Biological* Association of the United Kingdom, 36(03), 509-517.
- Bagarinao, T. U., & Primavera, J. H. (2005). Code of practice for sustainable use of mangrove ecosystems for. ecosystems, 9, 1-4.
- Barraclough, S. L., & Finger-Stich, A. (1996). Some ecological and social implications of commercial shrimp farming in Asia. UNRISD.

Biju, A., & Panampunnayil, S. U. (2010). Mysids (Crustacea) from the salt pans of Mumbai, India, with a description of a new species. *Marine Biology Research*, *6*(6), 556-569.

- Boyd, C. E., & Clay, J. W. (1998). Shrimp aquaculture and the environment. Scientific American, 278(6), 58-65.
- Buitrago, J., Rada, M., Hernández, H., & Buitrago, E. (2005). A single-use site selection technique, using GIS, for aquaculture planning: choosing locations for mangrove oyster raft culture in Margarita Island, Venezuela. *Environmental Management*, 35(5), 544-556.
- Farrokhi, F., & Mahmoudi-Hamidabad, A. (2012). Rethinking convenience sampling: Defining quality criteria. *Theory and practice in language studies*, 2(4), 784.
- Gajbhiye, S. N., Nair, V. R., & Desai, B. N. (1984). Diurnal variation of zooplankton in Malad creek, Bombay.
- Gaonkar, C.A., V. Krishnamurthy, and A.C. Anil (2010). Changes in the abundance and composition of zooplankton from the ports of Mumbai, India. Environ Monit Assess. 168:179–194
- Govindasamy, C., & Azariah, J. (1999). Seasonal variation of heavy metals in coastal water of the Coromandel coast, Bay of Bengal, India. *Indian journal of marine sciences*, 28(3), 249-256.
- Gujja, B., & Finger-Stich, A. (1996). What Price Prawn?: Shrimp Aquaculture's Impact in Asia. *Environment: Science and Policy for Sustainable Development*, *38*(7), 12-39.
- Higginbotham, James Arnold (1997-01-01). *Piscinae: Artificial Fishponds in Roman Italy*. UNC Press Books. ISBN 9780807823293.
- Ingole, B. S., Gaonkar, U. V., Deshmukh, A., Mukherjee, I., Sivadas, S. K., & Gophane, A. (2014). Macrobenthic community structure of coastal Arabian Sea during the Fall intermonsoon.

- Jayalakshmy, K. V. (2013). Ecology and Distribution of Copepods from the Salt Pan Ecosystems of Mumbai, West Coast of India. *Journal of Marine Biology & Oceanography*.
- JiyalalRam, M. J., Ram, A., Rokade, M. A., Karangutkar, S. H., Yengal, B., Dalvi, S., & Gajbhiye, S. N. (2013). Phytoplankton dynamic responses to oil spill in Mumbai Harbour.
- Kaloo, F. J., Hood, A., & Obwogi, J. (2015). Financial Effects of Depletion of Mangrove Forest on the Performance of Micro Finance Community Based Organizations-The Case Study of Wajomvu Community in Kenyan Coast.
- Latta, L. C., Weider, L. J., Colbourne, J. K., & Pfrender, M. E. (2012). The evolution of salinity tolerance in Daphnia: a functional genomics approach. *Ecology Letters*, *15*(8), 794-802.
- Mandal, S., & Harkantra, S. N. (2013). Changes in the soft-bottom macrobenthic diversity and community structure from the ports of Mumbai, India. *Environmental monitoring and* assessment, 185(1), 653-672.
- Markande, A. R., Mikaelyan, A., Nayak, B. B., Patel, K. D., Vachharajani, N. B., Vennila, A., & Purushothaman, C. S. (2014). Analysis of midgut bacterial community structure of Neanthes chilkaensis from polluted mudflats of Gorai, Mumbai, India. *Advances in Microbiology*, 4(13), 906.
- Martinez-Alier, J. (2001). Ecological conflicts and valuation: mangroves versus shrimps in the late 1990s. *Environment and planning C: Government and Policy*, *19*(5), 713-728.
- Mwaluma, J. (2002). Pen culture of the mud crab Scylla serrata in Mtwapa mangrove system, Kenya. *Western Indian Ocean Journal of Marine Science*, 1(2), 127-133.
- Myer, Rolla (Oct–Dec 1948), "Oyster Terms in the Puget Sound Region", *American Speech (The American Dialect Society)* **23** (3/4): 296–298, doi:10.2307/486938
- "Oyster Farming in Louisiana" (PDF). Louisiana State University. Retrieved2012-10-01.Korea-Us Aquaculture". Retrieved 2008-08-08
- Passenger Water Transport System- Bandra to Borivali- EIA report
- Primavera, J. H. (2005). Mangroves, fishponds, and the quest for sustainability. Science, 310(5745), 57-59.
- Primavera, J. H., Binas, J. B., Samonte-Tan, G. P., Lebata, M. J. J., Alava, V. R., Walton, M., & LeVay, L. (2010). Mud crab pen culture: replacement of fish feed requirement and impacts on mangrove community structure. Aquaculture Research, 41(8), 1211-1220.
- Rönnbäck, P. (1999). The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics,29(2), 235-252.

Schuytema, G. S., Nebeker, A. V., & Stutzman, T. W. (1997). Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests. *Archives of environmental contamination and toxicology*, *33*(2), 194-198.

- Shahi, N., Godhe, A., Mallik, S. K., Härnström, K., & Nayak, B. B. (2015). The relationship between variation of phytoplankton species composition and physico-chemical parameters in northern coastal waters of Mumbai, India.
- Stephen, R., Jayalakshmy, K. V., Nair, V. R., Gajbhiye, S. N., & Jacob, B. (2014). Deterioration in the biodiversity of copepods in sewage laiden creeks of Mumbai coast, west coast of India: A statistical approach.
- Stokstad, E. (2010). Down on the shrimp farm. Science, 328(5985), 1504-1505.
- Thi *et al.* (2014) report that the use of rakes to illegally collect breeding aquatic organisms (fish, shrimp, clam, etc.) for livelihood threatens the aerial root system and propagules of pioneer mangrove species, especially *Avicennia* sp.
- Triño, Avelino T., and Eduard M. Rodriguez. "Pen culture of mud crab Scylla serrata in tidal flats reforested with mangrove trees." *Aquaculture* 211.1 (2002): 125-134.

http://mpcb.gov.in/images/pdf/CoastalwaterStandards.pdf http://www.fao.org/3/a-ba0110e.pdf