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Asexual reproduction is expected to reduce the adaptive potential
to novel or changing environmental conditions, restricting or
altering the ecological niche of asexual lineages. Asexual lineages
of plants and animals are typically polyploid, an attribute that may
influence their genetic variation, plasticity, adaptive potential, and
niche breadth. The genus Boechera (Brassicaceae) represents an
ideal model to test the relative ecological and biogeographic im-
pacts of reproductive mode and ploidy because it is composed of
diploid sexual and both diploid and polyploid asexual (i.e., apomic-
tic) lineages. Here, we demonstrate a strong association between a
transcriptionally conserved allele and apomictic seed formation. We
then use this allele as a proxy apomixis marker in 1,649 accessions to
demonstrate that apomixis is likely to be a common feature across
the Boechera phylogeny. Phylogeographic analyses of these data
demonstrate (i) species-specific niche differentiation in sexuals,
(ii) extensive niche conservation between differing reproductive
modes of the same species, (iii) ploidy-specific niche differentiation
within and among species, and (iv) occasional niche drift between
apomicts and their sexual ancestors. We conclude that ploidy is a
substantially stronger and more common driver of niche divergence
within and across Boechera species although variation in both traits
may not necessarily lead to niche evolution on the species scale.

Boechera | UPGRADE2 | APOLLO | geographic parthenogenesis |
niche conservation

Sexual reproduction offers several evolutionary advantages
over asexuality, including accelerated adaptation to variation
in environments (1), competitors (2), and parasites (3). As such,
evolutionary transitions from sexual to asexual reproduction or
outcrossing to selfing may have a strong impact on an organism’s
ecological distribution and adaptive potential (4, 5). Because
reproductive-mode divergence can occur on short temporal scales
(6), comparisons between closely related taxa that differ in re-
productive mode offer unique opportunities to study the adaptive
significance of sexuality at micro- (i.e., population) (7) and mac-
roevolutionary (i.e., species) (8) levels.

Apomixis, the asexual formation of seeds via meiotically un-
reduced gametes, is rare among angiosperm genera (~1.1%) (9).
It is nonetheless an evolutionarily important trait capable of
fixing the entire genome as one linkage group across generations,
conferring potential fitness advantages associated with the now-
fixed genotype, such as yield, in ecological (10) and agricultural
settings (11). Apomicts seem to have evolved from sexual an-
cestors independently in several distantly related taxa (12) and
can experience advantages, such as reduced or no allocation to
male function (in hermaphroditic taxa) (13) and reproductive
assurance (sensu ref. 14), which together enhance their colo-
nizing abilities (15). These advantages may be tempered by dis-
advantages imparted by the absence of recombination, such as
increased deleterious mutation accumulation (16) and poor re-
sponses to selection imposed by changing environments (17).

www.pnas.org/cgi/doi/10.1073/pnas.1423447112

Comparisons between asexuals and their sexual ancestors shed
light upon the processes contributing to the evolution and
maintenance of apomixis. Both novel mutations (i.e., gain-of-
function mutation; sensu ref. 18), and/or hybridization (19) have
been proposed to induce apomixis although recurrent hybrid-
ization may obscure origin and age estimations of natural apo-
mictic lineages [e.g., Boechera (20) and Taraxacum (21); but see
ref. 22]. One explanation for the success of apomicts in mixed
reproductive systems follows from the fact that many of them
display strong evidence for niche differentiation from their sex-
ual progenitors, a pattern termed “geographic parthenogenesis”
(GP) (23, 24). The ubiquity of GP has led to the hypothesis that
niche differentiation, rather than niche conservation, governs the
ecology of apomictic lineages (ref. 25; but see ref. 26). GP could
be explained by (i) an escape from competition between sexuals
and apomicts occupying similar niches (27-29), (ii) selection for
asexual genotypes with wider ecological tolerance compared with
sexuals (“general purpose” genotype model) (30), and (iii) niche
partitioning between sexual parents and their hybrid apomictic
progeny, the latter of which have a fixed subset of genetic vari-
ation from the sexuals (“frozen-niche variation” model) (31).
Despite substantial evidence for GP, the factors responsible for
this pattern are poorly understood. For example, because GP is
commonly observed in diploid sexual-polyploid asexual com-
plexes (25, 32), it is speculated that ploidy could be the primary
source of GP rather than reproductive mode (14, 25, 33).
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The North-American genus Boechera (Brassicaceae) is an
ideal system to study the ecological and evolutionary dynamics of
reproductive-mode divergence. The genus is monoecious, and, in
addition to broad ecological ranges and high intra- and interspecies
diversity (34), Boechera possesses three reproductive-mode classes:
diploid sexuals versus triploid and diploid pseudogamous apomicts
(35). A number of lines of evidence demonstrate that the switch
from sex to apomixis has occurred multiple times during the evo-
lution of Boechera (36-38). As such, Boechera offers replicated
events of sexual-apomictic transitions within a ploidy level and
enables comparisons between reproductive modes without the
confounding effects of variable ploidy.

Here, we document the associations between reproductive-
mode variation and the extensive ecological and physiological
diversity of Boechera to test two hypotheses: (i) Apomixis is a
recent evolutionary development arising only in a related subset
of haplotypes, and (ii) niche evolution is an intrinsic factor of
reproductive-mode divergence (i.e., geographic parthenogenesis)
and not a covariate of ploidy variation. To assess these hypoth-
eses, we examine the phylogeographic distribution of APOLLO
(apomixis-linked locus) (39) and UPGRADE? (unreduced pollen
grain development) (40), two alleles whose expression is highly
correlated with apomeiotic egg and pollen formation in Boechera,
respectively, to infer the ecological niches of 1,649 single samples
from different populations per species of diploid sexual and
apomictic Boechera. Our data provide phylogeographic evidence
for multiple origins of apomictic cytotypes in Boechera and sup-
port a frozen-niche variation model for diploid apomixis niche
evolution. Importantly, we provide statistical evidence that ploidy
variation, both within and among species, is a stronger driver of
niche evolution than reproductive mode.

Results

A Molecular Marker Predicts Apomixis in Boechera. We used the
flow cytometric seed screen (FCSS) (41) to functionally infer
reproductive mode in 275 Boechera accessions from 22 species
(Dataset S1). Each plant was additionally genotyped for the
presence or absence of apomixis-specific alleles (hereafter “al-
lele class”) of two genes associated with apomeiotic pollen
(UPGRADE?2) (40) and egg cell formation (APOLLO) (39) (Fig.
S1). FCSS revealed that apomixis-specific alleles were nearly
fixed among plants determined to be apomictic (UPGRADE?2,
96.06%; APOLLO, 98.39%, respectively). Sexuals were virtually
free from the apomictic APOLLO allele (frequency, 2.27%)
whereas 34.48% of sexuals had the apomictic UPGRADE? allele.
The tighter association of the apomictic APOLLO allele with
apomixis (logistic regression model; predictor variable = APOLLO,
covariates = FCSS and taxon data, n = 256, ¢® = 2835.48, ;(2 =
306.49, P < 0.0001) (Dataset S1), relative to the apomictic
UPGRADE? allele (logistic regression model; predictor variable =
UPGRADE, covariates = FCSS and taxon data, n = 272, eP=
60.48, > = 139.59, P < 0.0001) (Dataset S1), led us to use the
APOLLO polymorphism as a proxy marker for apomixis.

Broad Phylogenetic Distribution of Apomixis. We genotyped the
APOLLO and UPGRADE? allele classes in 1,374 additional her-
baria accessions, representing 84 of the 111 accepted Boechera
species and nine species of four closely related genera (Dataset S1
and Table S1). A subset of 1,010 accessions were previously geno-
typed for several chloroplast markers (20). The chloroplast DNA
(cpDNA) haplotypes were used to determine the phylogenetic
distribution of APOLLO and UPGRADE?2 allele classes on a genus-
wide scale (n = 1,649) because true species-specific cpDNA-
haplotype lineages are rare (i.e., in total, seven maternal phylo-
genetic lineages) due to haplotype sharing among species (20).
On a genus-wide scale, apomixis, as defined by the presence of
the apomictic APOLLO allele, was found in all cpDNA-haplo-
type lineages and in 49.31% of all Boechera cpDNA haplotypes
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(Dataset S1). Apomixis frequencies did not vary between the
major cpDNA-haplotype lineages (two-tailed Fisher’s exact tests
between cpDNA-haplotype lineages I, II, and III; VI and VII
were excluded because n < 5 accessions; P > 0.071) (Dataset S1),
except for lineages IV and V, where apomixis frequencies were
strongly reduced compared with 49.31% average apomixis fre-
quency (two-tailed Fisher’s exact test; lineage IV, 1 of 13 ac-
cessions, P = 0.0033; lineage V, 2 of 21 accessions, P = 0.0002)
(Dataset S1).

Of the 31 Boechera species characterized by more than 10
accessions, 29 species contained both apomictic and sexual in-
dividuals (Table S1). There was wide variation in the frequency
of apomictic individuals across species (range, 0-100%; median,
42.55%) (Fig. 1A4). For example, Boechera retrofracta and Boechera
divaricarpa, both large groups with wide geographic distributions,
were characterized by both reproductive modes (61.96%, and
77.45% apomixis, respectively) (Fig. 14 and Table S1). By con-
trast, Boechera stricta, with the widest distribution of any species
(42), was predominantly sexual with a few apomicts (n = 214,
83.71% sexual) (Fig. 14 and Table S1). As seen previously (43),
our data also show that hybrids, such as B. stricta X B. retrofracta
and B. stricta X Boechera spatifolia, have the highest frequencies
of apomixis (n = 11, 93.33% and n = 15, 100%, respectively)
(Fig. 14 and Table S1).

UPGRADE2 and APOLLO Are Linked and Geographically Dispersed.
The apomixis-specific alleles of UPGRADE2 and APOLLO
were detected in 41.73% and 46.15% of the tested accessions,
respectively (Dataset S1). For the purpose of this paper, we use
the term “linkage” to describe cooccurrence or coabsence of the
apomictic UPGRADE?2 and APOLLO alleles in single indivi-
duals, as determined through PCR. In that light, 77.08% of all
accessions (n = 1,584) demonstrated linkage of both allele classes
(i.e., both apo-alleles cooccurred or were coabsent in an individual).
The number of accessions demonstrating linkage between both
allele classes varied from 39.39% to 100% among species (Fig. 1B
and Dataset S1).

Individuals carrying the oldest cpDNA haplotypes AA, AB,
and AC, which are represented by suprahaplotype S8 (~0.7-2
million y) (44) (Fig. 2), had either none, both, or one of the
apomixis-related APOLLO and UPGRADE? alleles. There was
no evidence for overrepresentation of either allele class in an-
cient or recent cpDNA-haplotype carriers (4POLLO, * = 0.499;
UPGRADE2, ©* = 0.281) (Table S2). We also found that all
cpDNA haplotypes associated with the apomixis-specific alleles
of one or both loci are interconnected in the phylogenetic net-
work (Fig. 2).

The apomictic alleles of APOLLO and UPGRADE?2 were each
observed only in a single accession of Boechera sister genera
(APOLLO, Cusickiella quadricostata; UPGRADE?2, Polyctenium
fremontii) (Dataset S1 and Table S1). In contrast to the apo-
mictic APOLLO allele, the apomictic UPGRADE? allele was not
detected in any of the genera in neighboring clades (Table Sl
and GenBank nucleotide collection search, www.ncbi.nlm.nih.
gov/genbank/, release 205.0). However, the two apomictic alleles
were never linked in outgroups of the Boechera phylogeny.

Sexual and Apomictic Boechera Do Not Differ in Genus-Wide Geo-
graphic Range. We used a constrained correspondence analysis
(CCA) to compare the geographic distribution of both allele classes
of the proxy apomixis marker APOLLO within and across species.
Statistical differences among groups were determined by 10,000
permutations. First, tests of geographic divergence conducted
by partitioning ecological-niche differentiation among accessions
showed no significant differences between sexual and apomictic
Boechera on a genus-wide scale (n = 1,595, Py, = 0.549) (Fig. 3
and Table 1). Both allele classes of APOLLO spanned nearly the
entire geographic distribution of the total sample, which has a
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Fig. 1. Frequency of (A) apomixis inferred from the presence of the female-
apomeiosis marker allele of APOLLO and (B) linkage of male- and female-
apomeiosis marker alleles across Boechera species. Here, the term “linkage”
refers to the cooccurrence or coabsence of both apomictic alleles from the
UPGRADE2 and APOLLO genes per individual accession.

latitude range from 31°34’N to 72°46’N and a longitude range
from —50°28°'W to —151°22’W. Thereby, sexuals ranged from
31°34’N, —91°12°W to 72°46’N, —56°10’W, and apomicts ranged
from 32°2'N, —115°54'W to 69°40°’N, —50°28'W (Fig. 3, Fig. S2,
and Table S3).

To determine the ecological niche of each APOLLO allele
class, we assessed the values of 19 bioclimatic variables (www.
worldclim.org/) and elevation for each accession. Random forest
classification was used to select variables based on their impor-
tance for each model (Table 1). On the genus-wide scale, there
was no signature of ecological-niche differentiation between
sexuals and apomicts (PP, = 0.159) (Figs. 3 and 4 4 and C and
Table 1), with both reproductive modes typically found in tem-
perate conifer forests and desert/xeric shrublands (82.96% and
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84.87% respectively) (Fig. 3, Dataset S1, and Table S4). Sexuals
and apomicts were found in similar mean annual temperatures
(apomicts, lower quartile = 2 °C, upper quartile = 6 °C; sexuals,
lower quartile = 2 °C, upper quartile = 7 °C), annual pre-
cipitation (apomicts, 356-603 mm, sexuals, 336-643 mm), and
elevation (apomicts, 1,402-2,520 m; sexuals, 1,126-2,469 m)
(Fig. 3 and Table S3). No geographic differentiation was found
between ploidy classes across the entire sample (Pgyy = 0.687)
(Table 1). However, diploid genotypes had climatic distributions
that were different from those of triploids (PP.., = 0.014) (Table 1).

Comparisons between reproductive mode and ploidy class
independently revealed genus-wide evidence of ecological-niche
differentiation between sexual and apomictic genotypes, in-
dependent of ploidy (PPec, = 0.013) (Table 1). Within apomicts,
diploids and triploids displayed different ecological distributions
(PPeco = 0.037) (Fig. 4 B and D and Table 1). Combined, these
results point to a weak, but significant, pattern of GP for both
ploidy and reproductive mode across Boechera.

Ploidy and Reproduction Independently Influence Niche Partitioning
in Boechera. Lack of niche differentiation at the genus level could
be an artifact of among-species apomixis-independent divergence
(Fig. 3). Alternatively, niche conservation may reflect extended
periods of sympatry between sexuals and apomicts, as observed
for other agamic complexes (e.g., Taraxacum officinale) (45). We
thus tested the effect of both reproductive mode and ploidy sep-
arately on within-species niche variation. Across the 84 Boechera
species, we had sufficient replication within each of the three
ploidy classes and two reproductive modes to conduct within-
species tests for 7 and 18 species, respectively.

There was no evidence for significant geographic divergence
for 6 of 7 species at the ploidy level, and for 15 of 18 species at
the reproductive-mode level (Table 1). This pattern was bol-
stered by a paired Student’s ¢ test demonstrating that the geo-
graphic range areas of sexuals and apomicts within species were
similar (r2 = 0.83, P < 0.0001; paired ¢ test, df = 18, P = 0.342)
(Table S3). We did detect geographic divergence between apo-
micts and sexuals in three species (B. crandallii, Py, = 0.0002;
B. retrofracta, P, = 0.0001; and B. stricta, Pyp,e = 0.0003) (Fig. 3,
Table 1, and Fig. S3). Differences between ploidy levels were
observed only in B. retrofracta (Pgpa, = 0.0001) (Table 1).

A combined CCA using niche models for each ploidy class or
each reproductive-mode class per species in addition to spatial
distribution as a covariate revealed significant local niche dif-
ferentiation between sexuals and apomicts in 2 of 18 species
(e.g., B. retrofracta) (Fig. 5 A and C and Table 1). A within-
species test of the independent effects of allele and ploidy classes
in 57 diploid sexual and 27 diploid apomictic B. retrofracta ac-
cessions confirmed niche differentiation between reproductive
modes in diploids (PP, = 0.0002) (Fig. 5 A and C and Table 1).
Additionally, comparisons between apomictic accessions also
revealed significant niche differentiation between ploidy levels
(PPeco = 0.0049) (Fig. 5 B and D, Fig. S4, and Table 1). On the
species level (i.e., for B. retrofracta), apomictic diploids had a
wider ecological-niche distribution compared with apomictic
polyploids whereas, at the genus-wide scale, the trend was opposite
(Fig. S4). This observation points to varying directions of niche
differentiation among species. Overall, local niche differentiation
with ploidy as cofactor (4 of 7 species) (Table 1) occurred signifi-
cantly more frequently than with reproductive-mode divergence
(2 of 18 species, Fisher’s exact test, P = 0.032) (Table 1).

Discussion

APOLLO and UPGRADE2 Are Linked and Conserved in Apomicts. We
used quantitative analyses of the penetrance of apomictic seed
formation and a large-scale screening of apomictic seed forma-
tion in a variety of Boechera taxa (Dataset S1) to demonstrate
that presence of the female apomeiosis-linked allele of the
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range of chloroplast haplotype diversity of sexual Boechera accessions. Haplotype node sectors indicate the frequency of accessions carrying the male and the

female apomeiosis alleles versus those lacking one or both alleles.

APOLLO gene (39) can be used as a proxy marker for apomixis.
A parallel analysis of the same samples for the presence of the
male-apomeiosis allele UPGRADE? (40) demonstrated a weaker
positive correlation with apomictic seed production (Dataset
S1). These results imply segregation between the UPGRADE?
and APOLLO alleles and are consistent with the fact that not all
apomictic genotypes produce unreduced pollen (40, 46). For
example, APOLLO and UPGRADE? are unlinked in some ac-
cessions of Boechera microphylla (31.82%) (Fig. 1B), which could
explain the absence of unreduced pollen in some apomictic ac-
cessions (47).

We used the apomeiosis-linked APOLLO allele to screen for
the potential for apomictic seed production in a large number of
herbarium accessions (n = 1,373; taken from ref. 20) for which
no seed material existed. These results demonstrated that
(i) some taxa that were previously classified as purely sexual [e.g.,
B. stricta (48) and B. crandallii (49)] are likely to contain apo-
micts (Fig. 14 and Table S1) and (ii ) taxa formerly considered as
purely apomictic [e.g., B. divaricarpa (37, 48)] are likely to be
characterized by both sexual and apomictic members (Fig. 14
and Table S1). Our demonstration that the majority of tested
taxa (93.55% of the 31 Boechera species with n > 10 accessions)
(Table S1) contain both sexual and apomictic members is con-
sistent with recent taxonomic reassessments of Boechera, whereby
morphological differences between sexual and hybrid apomictic
members of a species are considered as significant characters for
taxon subdivision (see the Flora of North America (Vol. 7) web-
site, floranorthamerica.org/). Nonetheless, our data imply that
morphological divergence has not yet been accompanied by niche
differentiation (as measured here) between apomicts and sexuals
in the majority of tested species (88.89%) (Table 1). Considering
the already established complex influences of adaptation, hy-
bridization, and polyploidy on the morphological evolution of
Boechera, for example with previously observed variability in
relative levels of meiotically reduced and unreduced pollen even
among obligate apomicts (40), it is not surprising that our ability
to resolve ploidy and/or reproduction-associated effects relied
upon species-level rather than genus-level comparisons.
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The high frequency of phylogenetically and geographically
distant taxa in which the apomixis-specific alleles of APOLLO or
UPGRADE? were linked in a subset of their individuals (96.43%)
(Dataset S1), in conjunction with their conserved polymorphisms
and complex DNA sequences (39, 40) and the fact that each allele
was discovered in an independent experiment (39, 40), implies
that each allele is part of, or is tightly linked to, the genetic net-
works leading to apomeiotic egg and pollen formation.

The cooccurrence of apomixis-specific alleles of both the
APOLLO and UPGRADE? genes across the majority of Boechera
taxa (Table S1) is indicative of either their independent origins,
followed by complementation through hybridization, or common
ancestry with regard to their origin. Our data more strongly sup-
port the former by the fact that the 5 UTR polymorphism that
defines the apomictic APOLLO allele predates the origin of the
genus Boechera (39). In contrast to the apomictic APOLLO
allele, the apomictic UPGRADE? allele was only found in two
single accessions among 2 of 14 species tested, belonging to a
more broadly defined genus Boechera (e.g., Boechera laevigata)
(50) or closely related genera (i.e., Cusickiella) while not being
detected in distant plant taxa (e.g., Arabidopsis and Brassica)
(Dataset S1, Table S1, and GenBank nucleotide collection, www.
ncbi.nlm.nih.gov/genbank/, release 205.0).

Similar Haplotype Diversity in Sexuals and Apomicts Mirrors Reticulate
Spread of Apomixis Alleles. Hybridization can be considered as a
potential inducer of apomixis (19). Intra- and interspecific gene
flow from apomicts to sexuals via apomictic pollen is possible (48)
and likely facilitated the horizontal transfer of apomixis across
Boechera (43, 51). Nevertheless, in Boechera, hybridization and
apomixis are closely (47) but not exclusively (43) associated. Thus,
if hybridization per se is not the induction mechanism of apomixis
in Boechera, our data together imply that (i) APOLLO and
UPGRADE? arose independently of one another in different
Boechera species/populations and (ii) these apomixis alleles
were brought together via hybridization between plants carrying
APOLLO and/or UPGRADE?2, which facilitated the transfer of
both alleles into different sexual genetic backgrounds (i.e., spe-
cies), leading to the reticulate phylogeographic pattern shown
here (Figs. 2-4, Table 1, Fig. S3, and Tables S3 and S4).
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Widespread hybridization (44, 48) reflects similar apomixis
frequencies across the major cpDNA-haplotype lineages (lineage
I = 54.26%, lineage II = 47.74%, and lineage III = 50.64% apo-
mixis) (Figs. 1B and 2 and Tables S2 and S4), corroborates previous
findings of high genotypic diversity in other agamic complexes (e.g.,
T. officinale) (52), and is furthermore supported by a computational
study (53). It remains unclear whether the observed phylogenetic
and geographic cooccurrence of apomixis-specific alleles is due to
multiple independent introgressions of both alleles, or a single in-
trogression event involving both alleles followed by dispersion of
the linked alleles via hybridization throughout the genus.

Niche Conservation Between Reproductive Modes, Isolation-By-
Ploidy, and Occasional Niche Drift Between Apomicts and Their
Sexual Ancestors. Seen from a genus-wide level, apomicts and
sexuals share similar habitats and climatic limits (Figs. 3 and 4 4
and C and Table 1), an observation that could be explained by
the spread of apomixis into different sexual backgrounds in an
“infectious” fashion (sensu ref. 54). A dynamic equilibrium be-
tween generation and neutral loss of asexual lineages (55) could
thus have led to the broad niche conservation and lack of GP in

Mau et al.

Boechera, in contrast to other agamic complexes (e.g., Ranun-
culus auricomus complex) (56).

Despite the decreased statistical power of species-level anal-
yses due to our inability to infer and test multiple populations
per species from the herbarium dataset, these analyses were still
able to resolve divergent patterns. Species-specific niche occu-
pation (Fig. 3, Fig. S3, and Table S3) reflects the divergence and
adaptation processes that characterize the evolutionary success
of Boechera (34). However, there is also significant local adap-
tation within Boechera species [e.g., B. stricta (57) and B. spati-
folia (58)] that seems to be associated with reproductive mode,
which covaried with niche occupation in 2 of 18 species with n >
5 accessions per reproductive mode (Fig. 54 and C and Table 1).
Importantly, these niche differences were present despite iden-
tical ploidy levels (see B. retrofracta and Boechera williamsii)
(Table 1).

Niche conservation between reproductive modes in the majority
of the tested species (88.89%) (Table 1) could have a number of
explanations. First, an ancestral and independently derived apo-
mictic lineage may have evolved to occupy a similar niche as a
particular sexual species (i.e., evolutionary convergence). This

PNAS | Published online April 20, 2015 | E2361

wv
=]
=
-
wv
<
=
o

EVOLUTION


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423447112/-/DCSupplemental/pnas.201423447SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423447112/-/DCSupplemental/pnas.201423447SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423447112/-/DCSupplemental/pnas.201423447SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423447112/-/DCSupplemental/pnas.201423447SI.pdf?targetid=nameddest=ST3

L T

/

1\

=y

Table 1. Widespread niche conservation between reproductive modes, and isolation-by-ploidy niche differentiation within and among

species of Boechera

Subset Sex Apo Variables selected* Fipat'  Pspat Feco' Poco? PPoco’ o

Subset “reproduction”
All accessions” 869 726 Bio10, elevation 0.32 0.5498 0.59 0.1615 0.1593 0.0500
All 2x7 269 125 Bio2, bio6, bio8, bio9, bio11, 2.86 0.0789 2.94 0.0145 0.0129 0.0250

bio12, bio19, elevation

All 3x7 22 101 Bio14, bio16 0.02 0.8647 2.00 0.2398 0.2405 0.0250
Boechera collinsii 8 9  Bio3, elevation 1.94 0.1613 0.51 0.3015 0.3086 0.0026
Boechera crandallii 26 7 Bio3, bio16 17.74 0.0002 6.34 0.0177 0.0200 0.0026
Boechera divaricarpa” 46 158 Bio4, biol14, bio18 0.39 0.5236 1.79 0.1579 0.1554 0.0026
Boechera fendleri 8 8 Bio3, bio9 0.27 0.5884 245 0.1330 0.1324 0.0026
Boechera lemmonii 23 7 Bio2, bio5, bio7, elevation 2.04 0.1618 3.50 0.0080 0.0093 0.0026
Boechera lyallii 14 5 Bio8, bio18 0.67 0.4204 0.05 0.8187 0.8164 0.0026
Boechera microphylla 8 27  Biob6, bio11 1.08 0.3161 5.82 0.0108 0.0105 0.0026
Boechera pal/idifolia“ 16 19  Bio5, bio8 0.10 0.7508 1.94 0.1662 0.1647 0.0026
Boechera pauciflora 6 18 Bio4, bio9, bio10 132 0.2665 142 0.2516 0.2503 0.0026
Boechera pendulocarpa 32 8 Bio16, elevation 8.57 0.0074 2.92 0.0799 0.0719 0.0026
Boechera perennans” 20 11 Bio3, bio18 0.11  0.7428 0.53 0.5492 0.5456 0.0026
Boechera pinetorum'" 20 57 Bio3, bio14, bio17 0.38 0.5571 1.27 0.2539 0.2582 0.0026
Boechera puberula’ 30 17  Bio5, bio9 0.49 0.4937 1.82 0.1619 0.1627 0.0026
Boechera retrofracta (all)" 97 158 Bio2, bio3, elevation 34.22 0.0001 2435 0.0001 0.0001 0.0026
Boechera retrofracta (2x)7 30 27 Bio2, bio3, elevation 7.25 0.0074 14.30 0.0001 0.0002 0.0026
Boechera sparsiflora® 25 20 Biob5, bio8, bio12, bio18, bio19 0.67 0.4087 0.68 0.5215 0.5189 0.0026
Boechera spatifolia 8 11 Bio15, bio19 1.97 0.1453 8.14 0.0131 0.0113 0.0026
Boechera stricta’ 182 32 Bio16, bio18 14.05 0.0003 0.16 0.8313 0.8291 0.0026
Boechera williamsii 8 15 Bio2, elevation 5.18 0.0199 14.67 0.0010 0.0008 0.0026

Subset “ploidy” 2x 3x
AllT 414 123  Bio3, bio4, bio5, bio11, bio15, bio18 0.15 0.6877 0.30 0.5885 0.0144 0.0500
SexT 269 22  Biol, bio11, bio14 0.49 0.4668 6.97 0.0052 0.0177 0.0250
Apo" 125 101 Bio4, bio18 0.08 0.7725 0.06 0.8132 0.0379 0.0250
Boechera collinsii 3 3  Bio4, bio6 7.84 0.0974 31.10 0.0129 0.0108 0.0063
Boechera divaricarpa 3 35 Bio4, bio9, bio19 3.10 0.0748 2.87 0.0968 0.0063 0.0063
Boechera lignifera 4 3  Bio7, bio8 0.07 0.8595 12.18 0.0285 0.0293 0.0063
Boechera pallidifolia 22 3  Bio2, bio17 0.43 0.4872 11.58 0.0008 0.0009 0.0063
Boechera retrofracta 57 35 Bio3, elevation 16.82 0.0001 17.85 0.0001 0.0001 0.0063
Boechera retrofracta (apo)” 27 35 Bio3, elevation 5.71 0.0217 5.13 0.0043 0.0049 0.0063
Boechera spatifolia 16 3 Bio4, bio18 1.21  0.3187 0.63 0.3567 0.3462 0.0063
Boechera stricta x spatifolia (apo) 10 5 Bio4, bio5 0.62 0.6798 51.04 0.0001 0.0001 0.0063

*Bio1, annual mean temperature; bio2, mean monthly temperature range; bio3, isothermality; bio4, temperature seasonality; bio5, maximum temperature of
warmest month; bio6, minimum temperature of coldest month; bio7, temperature annual range; bio8, mean temperature of wettest quarter; bio9, mean
temperature of driest quarter; bio10, mean temperature of warmest quarter; bio11, mean temperature of coldest quarter; bio12, annual precipitation; bio13,
precipitation of wettest month; bio14, precipitation of driest month; bio15, precipitation seasonality; bio16, precipitation of wettest quarter; bio17, pre-
cipitation of driest quarter; bio18, precipitation of warmest quarter; bio19, precipitation of coldest quarter.

TPost hoc permutation test for CCA on geographic distances to detect differences in spatial patterns between each sample group. Significant differences are

shown in bold.

*Post hoc permutation test for CCA on ecological variables (bio1 to 19, elevation) without (Pec,) and with spatial covariate (partial Peco). Significant values are

shown in bold.

SBonferroni corrected threshold for partial P values assuming a* ~ o/M with M = number of independent tests.

Maxent ecological-niche model available in Figs. 4 and 5 and Figs. $3 and S4.

scenario is unlikely considering (i) multiple lines of evidence for
repeated separate transitions from sex to apomixis in Boechera
(36-38), (ii) that cpDNA haplotypes are distributed across mul-
tiple habitats, (iii) that cpDNA haplotypes are partially shared
by sexual and apomictic accessions (24.63%, n = 203) (Tables
S3 and S4), and (iv) that sexuals and apomicts display a simi-
lar range of genetic diversity as a reflection of their phyloge-
netic relationships (i.e., cpDNA haplotypes per individual) (Table
S4) (59). Therefore, a more parsimonious scenario is favored
whereby introgression of apomixis factors into different sexual
backgrounds is accompanied by the establishment of indepen-
dent apomixis lineages. Considering this, the observed niche
conservation between sexual and apomictic conspecifics could be
explained by the apomictic lineages being too young to have di-
verged (i.e., recently induced) (60) or that niche differentiation
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is not possible due to genetic constraints: for example, a ge-
netic bottleneck having stronger effects on sexuals versus
apomicts due to inbreeding (61).

Stronger patterns of GP in other agamic complexes could re-
flect the fact that apomicts in most other plant species are
polyploids (reviewed in ref. 56; but see ref. 62) whereas diploid
apomixis is relatively frequent in Boechera (i.e., apomixis fre-
quency in diploids, 31.33%, n = 399; and in polyploids, 81.40%,
n = 129) (Dataset S1). Ploidy variation, rather than repro-
ductive-mode divergence, seems to be the common driver of
niche differentiation (Table 1) although we cannot yet infer
which specific aspect of polyploidy (e.g., genetic composition,
genome size, or deleterious allele masking, etc.) accounts for the
observed differences in niche occupation between diploids and
polyploids. Reproductive isolation-by-ploidy between mostly diploid
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Fig. 4. Lack of niche differentiation on genus-wide level. Across all Boechera

species, there is no evidence of an association between niche differentiation
and reproductive-mode divergence (A and C), but significant evidence be-
tween diploids and triploids (B and D). Strong differentiation between tetra-
ploidy and all other ploidy levels is observed although this result is based on
only six observations. The Upper panels show Maxent predictive ecological
models of Boechera accessions. Habitat suitability is represented using differ-
ent colors from low (green) to high (red). Strength of distribution differences is
displayed for the surplus of apomicts or polyploids (shades of green) and the
surplus of sexuals or diploids (shades of red). The Lower panels depict con-
strained discriminant function score distributions, where dashed ellipses rep-
resent 50% normal intervals and solid black vectors represent the scaled
direction and effect of the labeled explanatory variables.

sexuals and polyploid apomicts in other agamic complexes is
enhanced by reduced fertility in their hybrid progeny (48), re-
duced levels of backcrossing (e.g., in the R. auricomus complex)
(63), and enhanced colonizing abilities for disturbed areas and
species-range edges due to altered ecological tolerances (60, 64),
processes that would equally explain the more common pattern
of ploidy-driven niche divergence within and across Boechera
species. Our inability to identify geographic range size variation
between reproductive modes (Table S3), or through divergence
between geographic distance (i.e., latitude levels) and niche
specificity (Table 1), underlines the importance of multiparametric
analyses for tests of GP between reproductive groups.

Conclusions

Here, we present, to our knowledge, the first evidence of isolation-
by-ploidy and reproductive mode as independent forces of species-
specific niche differentiation in an agamic complex. Together with
species-specific habitat variation (Fig. 3 and Table S3), isolation-
by-ploidy has a more ubiquitous effect than reproductive mode on
niche differentiation across Boechera (Table 1). Niche conserva-
tion between reproductive modes within species is the most dis-
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tinctive pattern observed (Table 1), and therefore we reject our
initial hypothesis of niche evolution as an intrinsic factor of
reproductive-mode divergence.

Our data alternatively support an extended frozen niche var-
iation model to explain habitat differences between sexuals and
apomicts. This model implies that niche occupation by apomicts
reflects a subset of that of their parental sexual taxa, whereby
apomictic progeny adopt the adaptive peak of sexuals to their
ecological niche (31).

This extended model hinges upon multiple origins of the
apomictic phenotype from different sexual backgrounds in
Boechera. Introgression of apomixis alleles from apomictic dip-
loids into different diploid sexual genotypes (43, 48) may have
facilitated the enormous genetic diversity characteristic of apo-
mictic Boechera (Table S4) (see also ref. 43). Our data demon-
strate that apomictic Boechera for the most part drift into new
niches by virtue of ploidy variation although evidence for occa-
sional ploidy-independent niche drift was also found (e.g., Fig. 5
A and C, Table 1, and Fig. S3).

Therefore, the evolutionary success of apomictic Boechera
seems to have been driven by a number of processes. First, we
hypothesize that the ongoing hybridization-driven spread of apo-
mixis alleles in an infectious manner into different sexual genetic
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Fig. 5. Additive effects of ploidy and reproductive mode for niche parti-
tioning in B. retrofracta. Within B. retrofracta, significant differentiation
among reproductive mode (A and C) and, to a much stronger degree, ploidy
(B and D) is observed. The Upper panels show Maxent predictive ecological
models of different accessions. Habitat suitability is represented by different
colors from low (green) to high (red). Strength of distribution differences is
displayed for the surplus of apomicts or polyploids (shades of green) and the
surplus of sexuals or diploids (shades of red). The Lower panels depict con-
strained discriminant function score distributions, where dashed ellipses
represent 50% normal intervals and solid black vectors represent the scaled
direction and effect of the labeled explanatory variables.
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backgrounds has led to the establishment of apomixis in different
niches. In a second step, we believe that recurrent polyploidy
mediated by the production of meiotically unreduced gametes has,
through a yet-unknown mechanism, enabled polyploid apomicts to
diverge into novel niches. In addition, ploidy-independent niche
differentiation arising after reproductive-mode transition further
complicates the signature of natural selection in wild populations.
In this regard, analyses of comprehensive data matrices have en-
abled us to disentangle at least some determinants of niche dif-
ferentiation in a mixed reproductive mode and have led us to
question whether geographic parthenogenesis in plants is an ex-
ception rather than the rule.
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S| Materials and Methods

Genetic Resources. Here, we analyzed 1,649 accessions (i.e., single
samples from different populations per species) obtained from
three pools of seed families: (i) 200 accessions of 11 Boechera
taxa (Dataset S1), (i) 75 accessions of 18 Boechera taxa (1), and
(iii) 1,374 accessions of all available taxa, which covers 84 of the
currently accepted 111 Boechera taxa. All seven major Boechera
cpDNA-haplotype lineages (Boechera taxa of the three pools
partially overlap) (Dataset S1) (2) were represented in the
Boechera samples. In addition, nine taxa of neighboring genera
of the tribe Boecheraea were included for all analyses (2, 3). We
used a three-step approach to infer the reproductive mode of
each genotype. First, accessions from seed pool i were grown in a
common garden at the Leibniz Institute of Plant Genetics and
Crop Plant Research (IPK) plant growth facility, and DNA was
extracted using the Agencourt Chloropure DNA extraction kit
(Beckman Coulter). Reproductive mode was determined by the
flow cytometric seed screen (1, 4) of 10-24 seeds from each plant
(Dataset S1). Diploids producing >50% seeds with diploid [2C =
(1Cmaternal) + (1Cpaternal)] embryos and triploid [3C =
(2Cmaternal) + (1Cpaternal)] endosperm were defined as sexual
whereas those producing >50% seeds with any deviation from
this particular embryo—endosperm ratio were defined as apo-
mictic (1, 5, 6), providing us with “sexual” and “apomictic” re-
productive-mode classes. Second, using Boechera accessions
from seed pools i and ii, we conducted a PCR-based analysis for
the presence/absence of the candidate marker gene for either
male (UPGRADE?) (7) or female apomeiosis (4POLLO) (8).
Third, we used dried herbarium material from which seeds could
not be collected (pool iii) to perform a PCR-based screen for the
presence/absence of either UPGRADE?2 or APOLLO. Plant ma-
terial representing 1,373 accessions for DNA analysis was obtained
from herbarium accessions from Heidelberg University [Heidel-
berg Botanic Garden and Herbarium (HEID), Heidelberg; Marcus
Koch, Department of Biodiversity and Plant Systematics; taxo-
nomic information according to ref. 3; Dataset S1].

Processing and Analysis of DNA Sequences. PCR primers for a 645-bp
fragment of the male-apomeiosis marker gene UPGRADE?2
(“PClpoll-L”, 5'-CTTTTCCGTTGACTTTCCGACAAAT-3’; and
“PClpoll-R”, 5-TCGATCAATCTCATTCGGGATCTAT-3) (7)
and of a 234-bp fragment spanning the apomixis-specific 5' UTR
polymorphism of the female-apomeiosis marker gene APOLLO
(“Lara5-F”, 5'-CCTCATCGTACCGTTGCTTCTCTC-3’; and
“TSP1-R”, 5'-GATAGCCCCAAACTCCAAAATCGC-3') (8)
were designed with Primer3 v0.4.0 (Fig. S1). PCR was performed
in a volume of 10 pL, using 10 pM of each primer, 2.0 mM
MgCl,, and 0.5 U of BioTaq polymerase (Bioline). The house-
keeping gene ACTIN2 was used as external template control
(“RTAct2T7-L”, 5'-GTTCCACCACTGAGCACAATGTTACC-3';
and “RTAct2T7-R”, 5'-AGTCTTGTTCCAGCCCTCTTTTG-
TG-3’). The amplifications were run on a Mastercycler EP Gra-
dient S (Eppendorf) under the following conditions: 5 min initial
denaturation at 95 °C; 32 cycles of amplification with 30 s at 95 °C,
30 s at 60 °C, and 1 min at 72 °C; and 10 min of final elongation at
72 °C. PCR success was verified with agarose gel electrophoresis.

Phylogenetic Distribution of UPGRADE2 and APOLLO. (Supra) cpDNA-
haplotype designations based on #rmL-F sequence data (EU154066—
EU154341; GenBank Nucleotide database, www.ncbi.nlm.nih.
gov/nuccore) of 1,010 investigated accessions are available from
ref. 2 (i.e., haplotypes collapsed into suprahaplotypes when shar-
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ing the same base order with exception for pseudogene-rich re-
gions). Network reconstruction was conducted using the TCS 1.21
software with a connection limit of 95% (9) according to the
parsimony analysis in ref. 2. Classification of accessions from
lineages IV and V (Southeast United States) to either Boechera or
to the closely related Borodinia is an ongoing debate (10, 11) and
led to exclusion of 38 accessions from lineages IV and V from
statistical analyses. Only taxa with a statistically valuable number
of accessions (n > 10) were used for statistical analyses using SPSS
v20 (LEAD Technologies).

Niche Variation Models. The nearly total association between
APOLLO presence and the apomixis phenotype (see Results)
and the hypothesized association with unreduced egg formation
(8) led us to use the presence of APOLLO as a surrogate for
labeling a herbarium sample as apomictic. Sample coordinates of
97% (n = 1,595) of the 1,649 successfully screened Boechera
accessions were taken from refs. 2 and 12. We used DIVA GIS
v7.5 (www.diva-gis.org/) to calculate the geographic range area
for species with at least five accessions in each of the two re-
productive classes. For the geographic range of each repro-
ductive class per species, we created a minimum convex polygon,
clipped these polygons to North America (i.e., excluding acces-
sions in Greenland), removed oceanic coverage, and calculated
the area of each polygon in square kilometers (13). We used
minimum convex polygons to estimate species-specific repro-
ductive-mode geographic range because this approach provides a
way to consistently calculate range across taxa. Calculations of
species-specific niche models for apomicts and sexuals were
performed with Maxent version 3.3.3 (default settings, replicates =
15, random seed, training set = 80%, test set = 20%, regulari-
zation multiplier = 1; convergence threshold = 0.00001, maxi-
mum iterations = 5,000) (14). For reasons of model stability only
species with at least 10 observations in each reproductive-mode
class were considered for Maxent niche models using the 2.5 arc-
minute (~5 km?) climate and elevation grids including all cli-
matic layers (n = 19) from the WorldClim database (15). Maxent
generated a threshold-independent, continuous output for cli-
matic suitability range (0-1) of each sample subset based upon
its biogeographic abundance. The model performance was then
evaluated using the receiver operating characteristic (ROC)
analysis (16) with the area under ROC curve (AUC) index (17).
An AUC value of 0.5 indicates that the performance of the
model meets randomness whereas values closer to 1.0 indicate
better model performance. Map reconstructions were performed
with DIVA GIS v7.5 (www.diva-gis.org/).

To statistically evaluate the true ecological distance between
apomictic and sexual accessions under different constraining
variables (ploidy and geographic distance) separately, species
with at least five observations per reproductive-mode class and at
least three observations for each ploidy class were used in a
stepwise constrained correspondence analysis (CCA) (18) using
the R programming environment version 3.1.1 (19) and the
vegan package version 2.0-10 (20). To prevent over-fitting,
bioclimatic variables with minor importance for each separate
ecological-niche model were removed by a random-forest back-
ward-elimination analysis of all 19 bioclimatic variables and el-
evation using the varSelRF package version 0.7-3 (21). Random
forest generates multiple classification trees from bootstrap
samples. Each time, a subset of the sample [i.e., out-of-bag
(OOB) samples] is used to calculate an estimate of the classifi-
cation error along the addition of trees to the forest. The se-
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lected variables are those that yield the smallest OOB error rates
using standard parameters (ntree = 5,000, mtryFactor = 1) (21).
The selected bioclimatic variables with clear biological significance
(i.e., smallest OOB error rate) were added sequentially (first to
last) to the CCA, which was performed with and without geo-
graphic distance as a partial constraint. Permutation tests for
CCA (number of permutations = 10,000; implemented as
anova function in ref. 20) under a reduced model were applied
to calculate the significance of relationships between (i) eco-
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A

1000 bp
APOLLOcds
10 20 30 4 50 ] 70 80 a0 100 220 230 240
ll | TN FEETE FRATE FRATY FRAT ST
BacS- «lagassaaccteatcgtacoyttgottototoaayattagattttttttioogtasaaagagyagy--------- a--topatty-ctitaaaacccacca  ctettgcgattitgyagtttyygyctatct
A001b — ITCGTACCGTTGCTTCTCTCAAGTTTAGATTTTTTT  *CCGTARARAGAGGAGGTGGCCCGTGAAGTTTATTCCCTTTARRACCCACCA.  CTTTTGCGATTTTGGAGTTTGGGGCTATCT
§385h — FCGTACCGTTGCTTCTCTCAAGTTTAGATTTTTTTT CCOTARATAGAGGAGG 222222 *TCANTTGACTTTARAGCCCACCA.  CTTTTGCGATTTTGGAGTTTGGGGCTATCT
ICCTCATCOTACCGTTECTTCTCTCR _f_ IGCGATTTTGGAGTTTEGG6CTATCY
LarasF APOLLOTSPL-R

B

1000 bp
PGRADE2

1750 1760 1770 1780 1790 1800 1810 1820 1830 2440 2450 2460 2470 2480

Pl I T P P PP FUTTE FETE FTUT PPUTE SRl FEeed FEUTl FERTS SEUTd PRl SRRt Py /A PTEe ST SRTey FUwwd FRRTi ArRwd fewd reens feevd|

Assenbly2 = CTCGGAAACGCTCTTTTCCGTCGACTTTTCGACAATATTTTCGTAGGARTCATTGCTTTTCTTGTAGTGARAGTA---GAGGA ~ AATTCGAATAAGCAGAAGATCAATAGATCCCGAATGAGATTGATCGAT
ES524 2 — CTCGGAMACGCTCTTTTCCGTTGACTTTCCGACAARTATTTTAGTCGGARTCATTGATTTTCTTGTAGTGARAGTAGAGGAGGA  AATTCGAATAAGCAGAAGATCAKTAGATCCCGAATGAGATTGATCGAT
ES612 1 — GGTGCAATCAAARTATATGGCGATTTTACTARAGACAGGTTCATTCGGTARACAAACAGARCATGTCCAGATAGTAGAGGAGGA  AATCCGARTAGGCAGAAGATCAATCGATCCCGAATGAGATTGATCGAT
ICTTTTCCOTTGACTTTCCGACARAT? 1 | KTAGATCCCGARTGAGATTGATCGAM
PClpoll L PClpoll R

Fig. S1. Structure of apomixis marker genes APOLLO (A) and UPGRADE2 (B). Red pins on sequence structure denote priming sites of primers used for PCR-
based screen of apomixis-specific sequence polymorphism (red arrows). Bac5 and Assembly 2 denote different genomic BAC DNA sites from the same apomictic
individual; A001b and ES524_2 denote the genomic DNA sequence of both factors, respectively, in apomictic accessions (i.e. apo allele); and S385h and ES612_1
denote the genomic DNA sequence of both factors, respectively, in sexual accessions (i.e. sex allele) (1, 2).

1. Mau M, et al. (2013) The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. Plant Physiol
163(4):1640-1659.

2. Corral JM, et al. (2013) A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic boechera species. Plant Physiol
163(4):1660-1672.
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Fig. S2. Geographic distribution of Boechera accessions with and without apomictic alleles of the marker genes. The PCR-based screen shows similar dis-
tributional ranges of Boechera accessions with APOLLO (A) and with UPGRADE2 (B) compared with accessions lacking APOLLO (C) or UPGRADE?2 (D). (Scale
bars: 1,000 km).
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B. retrofracta (2x

Fig. S3. Maxent predictive ecological-niche models for single Boechera species. Partial geographic divergences between reproductive modes on species level
were observed. Statistical analysis revealed that most of the ecological divergence between sexuals and apomicts on species level is not statistically significant.
Only Boechera retrofracta and Boechera williamsii (Table 1) show true geographic parthenogenesis (i.e. without interfering ploidy variation). Habitat suit-
ability is represented using different colors from low (green) to high (red). Strength of distribution differences is displayed for the surplus of apomicts (shades
of green) and the surplus of sexuals (shades of red).
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All species
apomicts only)

B. retrofracta
apomicts only)

Suitability Polyploidy Divergence Diploidy
0 0 0

Logistic Output 002040
[ - -

Fig. S4. Maxent predictive ecological-niche models for single Boechera species with ploidy as constraining variable. Statistically significant niche differenti-
ation was observed between diploids and polyploids at genus-wide level and at species level. Habitat suitability is represented using different colors from low
(green) to high (red). Strength of distribution differences is displayed for the surplus of apomicts (shades of green) and the surplus of sexuals (shades of red).
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Table S2. Frequencies of sexual and apomictic Boechera across recent and ancient coDNA haplotypes

UPGRADE2 APOLLO

cpDNA Noncarriers, Carriers, Noncarriers, Carriers, Noncarriers, Carriers, Noncarriers, Carriers,
haplotype Age, Mya N N % % Ratio N N % % Ratio
AB 0.7-2 2 2 0.010 0.012 0.8 3 1 0.018 0.005 3.5

B 0.7-1 8 12 0.039 0.072 0.5 6 14 0.035 0.071 0.5
BR 0.35-1 1 2 0.005 0.012 0.4 1 2 0.006 0.010 0.6
AH 0.35-1 48 46 0.236 0.277 0.9 38 54 0.224 0.274 0.8
BU 0.25-0.7 19 19 0.094 0.114 0.8 18 20 0.106 0.102 1.0
AS 0.25-0.7 87 49 0.429 0.295 1.5 70 66 0.412 0.335 1.2
cG 0.12-0.3 12 21 0.059 0.127 0.5 13 20 0.076 0.102 0.8
BY Tip 26 15 0.128 0.090 1.4 21 20 0.124 0.102 1.2

Total no. — 203 166 1.000 1.000 — 170 197 1.000 1.000 —

I — — — — — 0.281 — — — — 0.499

The age estimations corresponding to the various cpDNA haplotypes were calculated in ref. 1. Mya, million years ago; Tip, coDNA haplotypes at the tip of a
strict consensus phylogenetic tree that is assembled from 10,000 maximum parsimonious trees.

1. Dobes CH, Mitchell-Olds T, Koch MA (2004) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. x
divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13(2):349-370.
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Table S4. Comparison of genetic diversity (number of coDNA
haplotypes per number of individuals) among sexual and
apomictic accessions per species illustrating variation between
reproductive mode on species level and similar distribution
ranges across species

L T

No. of No. of Genetic
individuals genotypes diversity
Taxa Apo Sex Apo Sex Apo Sex
" B. collinsii 8 5 1 3 0.13 0.60
“ B. divaricarpa 144 40 28 13 0.19 0.33
B. lemmonii 7 17 5 6 0.71 0.35
B. microphylla 20 5 9 4 0.45 0.80
B. pauciflora 12 6 7 6 0.58 1.00
B. pendulocarpa 7 26 4 12 0.57 0.46
B. perennans 8 10 4 4 0.50 0.40
B. pinetorum 52 15 18 10 0.35 0.67
B. puberula 14 23 6 7 0.43 0.30
B. retrofracta 109 67 27 20 0.25 0.30
B. sparsiflora 16 18 8 9 0.69 0.50
B. stricta 24 133 8 29 0.33 0.22
Mean — — — — 0.43 0.49
SE — — — — 0.05 0.07
Student’s t test (P) — — — — 0.478 0.478

Other Supporting Information Files
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