MPN Horizons

New Drugs - Myelofibrosis

Ruben A. Mesa, MD Executive Director, Mays Cancer Center Mays Family Foundation Distinguished University Presidential Chair mesar@uthscsa.edu Twitter: @mpdrc

Consulting: Novartis, La Jolla, Samus, Sierra Oncology, Blueprint, Abbvie, BMS, Genentech, Roche, Geron

Research Support: Incyte, Celgene, CTI, Promedior, Genentech, Abbvie, Imago

Off Label Use: Hydroxyurea, PEG Interferon, ruxolitinib

New Drugs - MF

- Burden of Having MF
- JAK Inhibitors
- New Drugs Front Line
- New Drugs Second Line
- Future State

Assessing MPN Burden

WHO Diagnosis Does Not Tell Whole Story

Management of Myelofibrosis 2021

What is a treatment guideline?

New Drugs - MF

- Burden of Having MF
- JAK Inhibitors
- New Drugs Front Line
- New Drugs Second Line
- Future State

Results from the COMFORT studies demonstrated improvement of survival outcomes in patients treated with ruxolitinib

Real-world evidence demonstrated survival benefits of ruxolitinib in elderly patients with MF

Overall survival in patients with newly diagnosed intermediate- or high-risk MF (N=1399)

MF Survival ~ last Decade

Results: OS ~ Ruxolitinib

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History*

Masarova et. al. ASH 2020

JAK Inhibitor Landscape 2021

Fedratinib

INREBIC[®] (Fedratinib)

- Oral, JAK2-selective inhibitor recently approved in the US for treatment of intermediate-2 or high-risk primary or secondary (post-PV or post-ET) MF with platelet counts ≥50 × 10⁹/L³
- Fedratinib has higher inhibitory activity for JAK2 over JAK1, JAK3, and TYK2⁴
- Fedratinib was investigated for treatment of MF in JAK-inhibitor-naïve patients in the phase III JAKARTA trial, and in patients previously treated with RUX in the phase II JAKARTA2 trial
- JAKARTA and JAKARTA2 allowed enrollment of patients with platelet counts of \geq 50 × 10⁹/L at study entry

FEDRATINIB

JAK2 KINASE DOMAIN – Fedratinib Complex⁷

Jakafi (ruxolitinib) prescribing information. Incyte Corporation; 05/2019.
 Center for Drug Evaluation and Research. Clinical Pharmacology Genomics Group Review; 2011.
 INREBIC[®] (fedratinib) prescribing information. Celgene Corporation; 08/2019.
 Wernig et al. Cancer Cell. 2008;13:311–20.
 Pardanani et al. JAMA Oncol. 2015;1(5):643–51.

BL, baseline ET, essential thrombocythemia; JAK, Janus kinase; MF, myelofibrosis; MPN, myeloproliferative neoplasm; PV, polycythemia vera; RUX, ruxolitinib.

BMS Confidential. For Internal Use Only. Do Not Disseminate Outside of BMS

^{6.} Harrison et al. Lancet Haematol. 2017;4:e317-24. 7. Hantschel O. ACS Chem Biol. 2015;10(1):234-45.

Fedratinib in Myelofibrosis: JAKARTA and JAKARTA-2 Trials

Pardanani A, et al. JAMA Oncol. 2015;1(5):643–651; Harrison CN, et al. Lancet Haematol. 2017;4(7):317–324; Harrison CN, et al. ASCO 2019. Abstract 7057.

Fedratinib in Myelofibrosis: JAKARTA and JAKARTA-2 Trials

Phase 2 JAKARTA-2 Trial

Fedratinib vs placebo in patients with Int-2/high-risk MF resistant or intolerant to ruxolitinib

Pardanani A, et al. JAMA Oncol. 2015;1(5):643–651; Harrison CN, et al. Lancet Haematol. 2017;4(7):317–324; Harrison CN, et al. ASCO 2019. Abstract 7057.

Overall and progression-free survival in patients treated with fedratinib as first-line myelofibrosis therapy and after prior ruxolitinib: results from the JAKARTA and JAKARTA2 trials

<u>Claire Harrison</u>,¹ Jean-Jacques Kiladjian,² Srdan Verstovsek,³ Alessandro Vannucchi,⁴ Ruben Mesa,⁵ Andreas Reiter,⁶ Jun Zhang,⁷ Shelonitda Rose,⁷ and John Mascarenhas⁸

¹Guy's and St Thomas' Hospital, London, United Kingdom; ²Hôpital Saint-Louis and Université de Paris, Paris, France; ³The University of Texas MD Anderson Cancer Center, Houston, United States; ⁴AOU Careggi, University of Florence, Florence, Italy; ⁵Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, United States; ⁶Universitätsklinikum Mannheim, Mannheim, Germany; ⁷Bristol Myers Squibb, Princeton, United States; ⁸Icahn School of Medicine at Mount Sinai, New York, United States

Presentation S203

- FEDR 400 significantly reduced the risk of disease progression vs. PBO (P = 0.004)
 - Median PFS was 5.7 months longer in the FEDR 400 arm vs. PBO: 23.2 vs. 17.5 mo, respectively
 - 1-year PFS: FEDR 400 83%, PBO 67%
- 80 pts (42%) were still being followed for PFS at the time of clinical hold
 - Median follow-up: FEDR 400, 10.6 mo; PBO, 9.1 mo
- AML transformation was reported in 3 pts (3%) in the FEDR 400 arm and 2 pts (2%) in the PBO arm³

(2%) in the PBO arm^a ^aAML transformation was based on adverse event reporting, including the preferred terms of "Acute myeloid leukemia", "Acute leukemia", and "Transformation to acute myeloid leukemia". P value from log-rank test.

AML, acute myeloid leukemia; CI, confidence interval; HR, hazard ratio; FEDR, fedratinib; mo, months; PBO, placebo; PFS, progression-free survival; pts, patients.

JAKARTA: Overall survival (ITT)

- Median OS was not reached (NR) in the FEDR 400 [95%Cl, 23.7 mo - NR] or PBO [22.7 - NR] arm
 - 1-year OS rates: FEDR 400 mg, 92%; PBO, 86%
 - 18-mo OS rates: FEDR 400 mg, 87%; PBO, 80%
- ITT analysis; 74% of PBOrandomized pts crossed-over to FEDR after EOC6
- 139 pts (72%) were censored for OS at the time of clinical hold

- Median follow-up: FEDR 400 mg,

P value from 19:30 mps; PBO, 18.8 mo

CI, confidence interval; HR, hazard ratio; FEDR, fedratinib; mo, months; NR, not reached; OS, overall survival; PBO, placebo; pts, patients.

JAKARTA|JAKARTA2

- Median PFS was 13.3 mo
 - 1-year PFS rate was 59%
- 62 pts (64%) were still being followed for PFS at the time of clinical hold
 - Median follow-up: 5.6 mo
- 2 pts (2%) experienced transformation to AML during the JAKARTA2 Tx period^a

^aAML transformation was based on adverse event reporting, including the preferred terms of "*Acute myeloid leukemia*", "*Acute leukemia*", and "*Transformation to acute myeloid leukemia*". AML, acute myeloid leukemia; FEDR, fedratinib; mo, months; PFS, progression-free survival; pts, patients; Tx, treatment.

- Median OS was NR [95%CI, 17.1 - NR]
 - 1-year and 18-mo OS rates were
 84% and 67%, respectively
- 79 pts (81%) were censored for OS at the time of clinical hold
 - Median follow-up: 10.8 mo

FEDR, fedratinib; mo, months; NR, not reached; OS, overall survival; PBO, placebo; pts, patients.

Background: Momelotinib Inhibits JAK1, JAK2 and ACVR1

- Approved JAK inhibitors (JAKi) provide spleen and symptom improvements but are generally myelosuppressive and do not address transfusion dependence (TD)
- Momelotinib (MMB) is a potent JAK1, JAK2 and ACVR1/ALK2 inhibitor with clinical activity against anemia, symptoms and splenomegaly in MF, as demonstrated in the previously conducted Phase 3 SIMPLIFY-1 & -2 trials:
 - S1: MMB vs ruxolitinib (RUX) in JAKi-naïve patients (NCT01969838)
 - S2: MMB vs best available therapy (BAT; RUX in 88% of patients) in patients with prior RUX therapy (NCT02101268)
- Preclinical and clinical translational studies have demonstrated MMB's ability to address anemia and transfusion dependency is mechanistically linked to its differentiated suppression of ACVR1/ALK2-mediated hepcidin production*

Background: Transfusion Independence Response Rates for MMB vs RUX

 Previously published data demonstrate higher Week-24 (W24) transfusion independence response (TI-R) rates in the MMB arms of S1 (67% vs 49%) and S2 (43% vs 21%)

Background: SIMPLIFY-1 Week 24 TI Response Rate for MMB vs RUX by Baseline Characteristics

 The W24 TI-R rate in S1 was higher in patients randomized to MMB vs RUX, irrespective of the degree of baseline anemia, or the baseline PLT count or transfusion status (EHA 2021 poster EP1081)

Week 24 Transfusion Independence Response (TI-R): no RBC transfusion within \ge 12 weeks immediately prior to Week 24, with Hgb \ge 8 g/dL Transfusion Dependent (TD): \ge 4 units of RBCs or Hgb level, \le 8 g/dL in the 8 weeks prior to randomization Transfusion Independent (TI): absence of RBC transfusions and no Hgb < 8 g/dL in the 12 weeks prior to randomization Transfusion Requiring (TR): neither TD nor TI

SIMPLIFY-1: Robust Survival for JAKi-naïve Patients

Verstovsek et. al. ASH 2020

SIMPLIFY-2: Robust Survival for Prior-JAKi Treated Patients

Verstovsek et. al. ASH 2020

Transfusion Independence is Associated with Improved Overall Survival in Myelofibrosis Patients Receiving Momelotinib

Ruben Mesa^{*}, Stephen T. Oh, Aaron T. Gerds, Vikas Gupta, John Catalano, Francisco Cervantes, Timothy Devos, Marek Hus, Jean-Jacques Kiladjian, Ewa Lech-Maranda, Donal McLornan, Jeanne Palmer, Uwe Platzbecker, Jacek Treliński, Kazuya Shimoda, Rafe Donahue, Bryan Strouse, Mark Kowalski, Srdan Verstovsek *Mays Cancer Center, UT Health San Antonio, MD Anderson

- Momelotinib (MMB) is a JAK1, JAK2 and ACVR1/ALK2 inhibitor
- Previously published data from the SIMPLIFY-1 Ph3 study of MMB vs ruxolitinib in JAKi-naïve patients show higher Week-24 (W24) transfusion independence (TI) responder rates on MMB (67%) vs RUX (49%)
- Correlation between W24 TI response and overall survival observed with MMB is unique and supports the clinical relevance of TI in patients with myelofibrosis receiving MMB: **3-year survival in MMB TI responders was 80%** compared to 50% in MMB TI nonresponders

Ongoing Phase III Trial of Momelotinib in Patients With MF Momentum P3 Trial: Phase 3 Registration Trial Schema

A Randomized, Double-Blind, Phase 3 Study to Evaluate the Activity of Momelotinib (MMB) versus Danazol (DAN) in Symptomatic, Anemic Subjects with Primary Myelofibrosis (PMF), Post-Polycythemia Vera (PV) Myelofibrosis, or Post Essential Thrombocythemia (ET) Myelofibrosis who were Previously Treated with JAK Inhibitor Therapy

Danazol has been selected as an appropriate treatment comparator given its use to ameliorate anemia in myelofibrosis patients, as recommended by NCCN and ESMO guidelines.

Pacritinib (PAC): A Selective Inhibitor of JAK2 and IRAK1

- JAK1/2 inhibitors impair megakaryopoiesis while preserving thrombopoiesis, whereas JAK1 inhibition impairs both megakaryopoiesis and platelet release *in vitro* and can exacerbate thrombocytopenia in MF.^a
- Minimal JAK1 inhibition uniquely positions pacritinib for use in thrombocytopenic MF patients.

JAK and FLT3 Kinases IC ₅₀ (nM)				
Kinase	Pacritinib	Ruxolitinib	Fedratinib	
JAK1	1280	3.4	18	
JAK2	6.0	0.0	1.1	
<i>JAK2</i> V617F	9.4	NR	NR	
JAK3	18.3	2.0	74	
FLT3	14.8	>3000	13	

Non-Tyrosine Kinases of Interest IC ₅₀ (nM)			
Kinase	Pacritinib	Ruxolitinib	Fedratinib
CSF1R	39.5	>3000	220
IRAK1	13.6	290	620

Eurofins "KINOME*scan*" for <u>RUX</u> and <u>FED</u> J Exp Pharm publication for <u>PAC</u> Leukemia publication for <u>PAC</u> (JAK1)

IC₅₀, half-maximal inhibitory concentration; JAK, Janus kinase; TYK, tyrosine kinase; FLT, FMS-like tyrosine kinase; ITD, internal tandem duplication; CSF1R, colony stimulating factor 1 receptor; IRAK, interleukin-1 receptor-associated kinase

^aJadwiga J, et. al. *Blood* (2018) 132 (Supplement 1): 2559. Mascarenhas JO, et. al. *Haematologica.* 2017; 102(2):327. Singer et al. ASH, 2014, Abstract 1874.

JAK2 Independent Mechanism

- Inflammation propagated by signaling through NFκβ via the TLR/Myddosome pathway was identified as a JAK2-independent pathway in MF¹⁻³
- TLR signaling is constitutively active in primary MF², causing monocyte hyper-responsiveness to TLR ligands.⁴

- Animal models have shown that IRAK1 is a central regulator of this pathway, and its dysregulation leads to the emergence of a cytopenic MF-like phenotype⁵
- Controlling aberrant signaling and inflammation by inhibition of IRAK1 was shown to reverse the MF phenotype⁵⁻⁷

1. Fisher et al 2019, 133:29-43. 2. Lai HY et al. *Blood Adv* 2019. 3;122-130 3. Balka and De Nardo 2019. 4. Fleischman AG et al. *Blood*. 2013;122(21):4097. 5. Zhao et al. *PNAS* 2011. 6. Leimkühler et al. *Cell Stem Cell* 2020; 28:1-16. 7. Mager LF et al. *Journal Clin Investigation*. 2015.

Pacritinib Clinical Overview

Phase 3 Myelofibrosis Studies in First- and Second-Line Therapy

PET-MF, post-essential thrombocythemia MF; L, line; PMF, primary myelofibrosis; PPV-MF, post-polycythemia vera MF; QD, once daily; SVR, spleen volume reduction; TSS, Total Symptom Score

^aTSS, total symptom score by MPN-SAF 2.0; ^bBAT includes RUX (45%)

1. Mesa RA, et al. Lancet Haematol. 2017;4:e225-36 2. Mascarenhas et al. JAMA Onc. 2017.5818.

Pacritinib Demonstrates Spleen Reduction Independent of Allele Burden in PERSIST-1/-2¹

PAC superior to BAT in SVR-35% response for:

- **JAK negative 23%** vs 0%, P=0.03
- 4th AB quartile 21% vs 0%, P<0.001
- 3rd AB quartile 15% vs 0%, P=0.02

Pacritinib Demonstrated Efficacy in a Ruxolitinib-Naïve Moderate Thrombocytopenic Population (PERSIST-2)

Patients with Platelet Counts <100x10 ⁹ /L			
Endpoints	Pacritinib 200 mg BiD, (N=43)	BAT ^a (N=39)	<i>P</i> value vs BAT
≥ 35% SVR (ruxolitinib-naïve patients)	28%	3%	0.002
≥50% reduction in TSS (ruxolitinib-naïve patients)	33%	13%	0.04

82% (32 pts) of the BAT arm was on ruxolitinib

BAT, best available therapy. SVR, spleen volume reduction. P-value from Fisher Exact Test. ^aBAT includes RUX (45%) Harrison et al. EHA2017 Poster P701.

Efficacy with Severe Thrombocytopenia (SVR)

SVR response maintained in patients with severe thrombocytopenia

Spleen Volume Response: PERSIST-1/-2 Pooled Data				
	Pooled PAC (all doses)	Pooled PAC (400 mg QD)	PAC 200 mg BiD	Pooled BAT
Platelet count <50×10 ⁹ /	L			
≥35% SVR (%, n)	23% (24/104)	21% (15/73)	29% (9/31)	2% (1/48)
<i>P</i> value vs BAT	0.0007	0.0025	0.0059*	-
Overall Population				
≥35% SVR (%, nֳ) _P value compared to BAT fro	19% (69/369) om PERSIST-2	18% (53/295)	22% (16/74)	4% (7/179)

Mesa R et al. ASH 2019 (abstr 4195). Unpublished data

PERSIST-1: Platelet Stability in Patients with Severe Baseline Thrombocytopenia

PERSIST-1 CSR

PERSIST-2: Platelet Stability in Patients with Severe Baseline Thrombocytopenia

BAT includes RUX (45%) Mascarenhas et al. PERSIST-2 eFig7

PAC203: Platelet Count Stability Overall & in Patients With Severe Baseline Thrombocytopenia

Gerds A et al. Blood Advances. 2020;4:5825-5835.

PERSIST-1/-2: Hematologic Stability / Improvement

BAT in PERSIST-2 includes RUX (45%) Left: PERSIST-1 CSR. Right: PERSIST-2 CSR Fig 14.3.2.4.7

A selection of novel agents/targets being developed in MPN particularly MF

Selected Additional Single Agent Trials in Myelofibrosis

Agent	Drug Class	Phase
LCL-161	Smac-mimetic (IAP antagonist)	2
Alisertib	AURKA inhibitor	N/A
Tagraxofusp	CD123-targeting fusion protein	2
KRT-232	HDM2 inhibitor	2
Bomedemstat	LSD1 inhibitor	2
CPI-0610	BET inhibitor	2
Imetelstat	Telomerase inhibitor	2
PRM-151	Recombinant human pentraxin-2	2
Nivolumab/pembrolizumab	Anti-PD1 antibodies	2
Selinexor	SINE	2

Bose P, Verstovsek S. Leuk Lymphoma. 2020;61(8):1797-1809.

Selected JAKi-Based Rational Combinations

		Drug	Mechanism of Action	Phase
		Azacitidine	HMA	2
Accelerated/blasti	Decitabine	HMA	2	
c phase	Ļ	Luspatercept	Activin receptor ligand rap	2
		Danazol	Androgen	2
Cytopenia	Thalidomide	IMiD	2	
(ANEMIA)		Pomalidomide	IMiD	1/2
		PEG-IFNa-2a	-	1/2
		PU-H71	HSP90i	1/2
Higher Responses In Spleen and Symptoms	Itacitinib	JAK1i	2	
	Navitoclax	BCL-2/BCL-xL	2	
	4	Parsaclisib/umbralisib	ΡΙ3Κδί	2
		KRT-232	MDM2i	1/2
		CPI-0610	BETi	2
	Pevonedistat	NAEi	1	

Ongoing or planned Phase 3 studies in Myelofibrosis

Agent	Drug Class
Momelotinib	JAK1/2 inhibitor
Pacritinib	JAK2 inhibitor
Fedratinib	JAK2 inhibitor
KRT-232	HDM2 inhibitor
Navitoclax	BCL-xL inhibitor
CPI-0610	BET inhibitor
Imetelstat	Telomerase inhibitor
Luspatercept	Activin receptor ligand rap

New Drugs - MF

- Burden of Having MF
- JAK Inhibitors
- New Drugs Front Line
- New Drugs Second Line
- Future State

Mechanism of Potential Disease Modification in Myelofibrosis

Reduce Inflammation and Suppress Cells in the Bone Marrow That Drive MF (Megakaryocytes)

Mascarenhas et. al. ASH 2019

MANIFEST: Phase II Study of CPI-0610 in JAK Inhibitor-Naïve Patients

DIPSS: Dynamic International Prognostic Scoring System, TD = Transfusion Dependent; TI = Transfusion Independent; SVR = Spleen Volume Response; PLT: Platelet ClinicalTrials.gov Identifier: NCT02158858 for further details on study design and patient population

Preliminary data as of 17 October 2019

* Will follow Simon 2-stage design

MANIFEST: Spleen Volume Reduction at 12 Weeks

- 80% (12/15)¹ SVR35 response at 12-Wk
 - Median % Change at 12-Wk: -49.7% (range: -80.8%, -17%)
- The response was seen in a population that was high risk:
 - 86.7% of patients¹ DIPSS ≥Int-2
 - 80% of patients¹ Hgb < 10g/dL
 - 53.3% of patients¹ HMR positive
- Median Rux Dose²: 10mg BID
- In JAKi naïve patient population, the benchmark for SVR35 response is 28.5-41.9%³

¹ Evaluable patients: Patients received at least 12 week of treatment, have baseline and post-baseline SVR assessment at 12-Wk.

SVR35 Response: ≥35% Spleen Volume Reduction

TSS50 Response: ≥50% improvement in Total Symptom Score (MFSAF v.4)

HMR: Patient with ≥ 1 HMR mutation

² Rux dose for longest duration during 12 weeks

³ JAKAFI (ruxolitinib) [Package insert]

MANIFEST: Total Symptom Improvement at 12 Weeks

¹ Evaluable patients: Baseline and 12 Wk data available. One patient TSS non-evaluable due to missing baseline. TSS50 Response: ≥50% improvement in Total Symptom Score (MFSAF v4) SVR35 Response: ≥35% Spleen Volume Reduction HMR: Patient with ≥ 1 HMR mutation ² JAKAFI prescription label

- 71.4% (10/14) patients had TSS50 Response at 12-Wk
 - Median % Change at 12-Wk: -60.3% (range: -100%, 90%)
- In JAKi naïve patient population, the benchmark for TSS50 response is 45.9%²
- Patient had dose interruption due to AE; 41.7% reduction in TSS at Week 6 prior to dose interruption

Comparison for 1L MF Therapy

Verstovsek et. al. NEJM 2012 Pardanani et. al. JAMA Inc 2015 Mesa et. al. JCO 2017 Mesa et. al. Lancet Hematology 2017 Mascarenhas et. al. ASH 2020

New Drugs - MF

- Burden of Having MF
- JAK Inhibitors
- New Drugs Front Line
- New Drugs Second Line
- Future State

Navitoclax + Ruxolitinib: Study Design

Primary Endpoint: Evaluate navitoclax + ruxolitinib combination on spleen volume from baseline at week 24

Secondary Endpoints: Assess effect of navitoclax + ruxolitinib combination on

of 300 mg QD

- On the basis of individual tolerability and platelet count

BID, twice daily; QD, once daily.

Navitoclax Overcomes Ruxolitinib Resistance, Resulting in Splenomegaly Improvement for Most Patients

Patients (N=29)

Data cut-off: November 18, 2019.

Percentages calculated on the basis of efficacy analysis set (N = 30).

Baseline is defined as the last non-missing observation collected on or prior to the date of the first dose of any component of study treatment.

*Denotes patients with high molecular risk (defined by the presence of mutations within ASXL1, EZH2, IDH1/2, SRSF2, U2AF1).

- SVR₃₅ best on study: 43% (13/30)
- SVR₃₅ at week 24: 30% (9/30)
- 53% (16/30) of patients resolved palpable splenomegaly during study treatment
- 25% (8/32) of patients demonstrated reduction in bone marrow fibrosis (local assessment)
 - 13% (4/32) with 1 grade reduction
 - 13% (4/32) with 2 grade reduction

Navitoclax Overcomes Ruxolitinib Resistance, Resulting in Total Symptom Score Improvement for Most Patients

Patients (N=17)

- 65% (11/17) of patients experienced reduction in symptoms
- 35% (6/17) of patients experienced ≥50% reduction in symptoms
- Baseline median TSS: 12 (range, 0-30)
- Week 24 median TSS: 7 (range, 0-23)

Data cut-off: November 18, 2019.

N = number of patients with non-missing percentage change in TSS from baseline at week 24 (missing baseline TSS: n = 5; missing week 24 TSS: n = 7; baseline TSS = 0: n = 1).

Baseline is defined as the average value of the observation collected on or prior to the date of the first dose of any component of study treatment.

LSD1 Inhibition has Strong Therapeutic Rationale in MPNs

- LSD1 inhibition impairs function of both activated megakaryocytes and malignant stem cells
- Megakaryocytes produce cytokines and growth factors that drive myelofibrosis

LSD1 inhibition reduces production of megakaryocytes, growth factors and cytokines = symptom improvement Potential to extinguish self-renewal of malignant stem cells = potential to improve overall survival

Imetelstat: First-in-Class Telomerase Inhibitor

Imetelstat

- **Proprietary:** 13-mer thio-phosphoramidate oligonucleotide complementary to hTR, with covalently-bound lipid tail to increase cell permeability.
- Potent, first in class competitive inhibitor of telomerase: IC50 = 0.5-10 nM
- Target: selectively targets heme (MF) malignant stem and progenitor cell proliferation.^{1,2}

Imetelstat binds to RNA template

- Short telomere length (TL), high levels of telomerase activity (TA) and high expression of human telomerase reverse transcriptase (hTERT) correlated with higher risk, disease progression and shorter OS in patients with myeloid malignancies.³⁻⁵
- Nonclinical studies demonstrated that imetelstat reduces TA, hTERT expression level, and JAK2V617F⁺ hematopoietic progenitor cells in MF patient samples, indicative of mechanism based on-target activity.^{1,2}
- Cells with high levels of TA and hTERT and short TL, represent best target for treatment with telomerase inhibitor.

¹Wang, et al. *Blood Adv* 2018;2:2378-88.
²Mosoyan, et al. *Leukemia* 2017;31:2458-67.
³Briatore, et al. *Cancer Biol Ther* 2009;8:883-9.
⁴Kishtagari and Watts. *Ther Adv Hematol* 2017;8:317-26.
⁵Wang, et al. *Int J Lab Hematol* 2010;32:230-8.

Place video here

IMbark Phase 2 Imetelstat Data: Survival¹

Kaplan-Meier Curves (Unweighted) for Naive Comparison

Median overall survival:

1. Mascarenhas J et al. EHA 2020. Abstract EP1107;

2. Kuykendall AT et al. Ann Hematol. 2018;97(3):435-441;

3. Newberry KJ et al. Blood. 2017;130(9):1125-1131;

4. Spiegel JY et al. Blood Adv. 2017;1(20):1729-1738.

28.1 months (95% CI, 22.8-31.6) After discontinuation of ruxolitinib²⁻⁴:

Median overall survival is ~14-16 months.

Potential OS Improvement with 9.4 mg/kg Imetelstat Treatment in Patients with MF R/R to JAKi

Survival probability

+ Imetelstat 4.7 MG/KG + Imetelstat 9.4 MG/KG

	4.7 mg/kg (N = 48)	9.4 mg/kg (N = 59)
Number of events, n (%)	35 (72.9%)	36 (61.0%)
Number censored, n (%)	13 (27.1%)	23 (39.0%)
Median Overall Survival (months) (95% CI)	19.9 (17.1, 33.9)	28.1 (22.8, 31.6)
12-months survival rate % (95% CI)	78.6 (63.9, 87.9)	84.0 (71.6, 91.4)
24-months survival rate % (95% CI)	42.0 (27.4, 56.0)	57.9 (43.6, 69.7)

OS analysis was performed based on database lock in April 2020; median follow-up was 41.7 months (range 0.2, 49.2)

Similar results were observed when sensitivity analyses accounted for confounding factors of subsequent therapies, including hematopoietic stem cell transplantation and dose escalation from 4.7 mg/kg to 9.4 mg/kg

Mascarenhas et. al. ASH 2020

- This study reports the results of the ongoing open-label, phase 2 ACE-536-MF-001 trial evaluating luspatercept in subjects with MF and anemia, focusing on response in subjects requiring RBC transfusions (NCT03194542)
- Figure 1. ACE-536-MF-001 study design^a

- 79 subjects with MF and anemia had been enrolled by the data cutoff and were included in this updated analysis (March 29, 2020)
- The analyses presented here focus on response in subjects requiring RBC transfusions (Cohorts 2 and 3B); safety is reported for all 79 subjects on study

As of March 29, 2020, 16 (20%) subjects remain on treatment. ^aEnrolled subjects had primary or post-essential thrombocythemia/post-polycythemia vera myelofibrosis; ^bA stable daily dose of RUX for at least 16 weeks at enrollment; for the 3 subjects enrolled in the expansion cohort in Cohort 3B, subjects were receiving a stable RUX dose for 40 weeks; ^c6-12 RBC units/84 days prior to treatment; or 4-12 units/84 days for the 3 subjects enrolled in the expansion cohort in Cohort 3B; ^dIncluding 3 subjects enrolled in the expansion cohort; ^eThe starting dose was 1.33 mg/kg in the expansion cohort subjects. MF, myelofibrosis; RBC, red blood cell; RUX, ruxolitinib.

Comparison for 2L Therapy

Second Line MF Therapy

Pemmaraju et. al. ASH 2020 Verstovsek et. al. ASH 2020 Harrison et. al. ASH 2019 Verstovsek et. al. Mascarenhas et. al. Yacoub et. al. ASH 2020 Mascarenhas et. al. ASH 2020 Talpaz et. al ASH 2020

New Drugs - MF

- Burden of Having MF
- JAK Inhibitors
- New Drugs Front Line
- New Drugs Second Line
- Future State

Measuring treatment response in MF

Endpoints assessing disease modification

Savona MR. Leukemia Res 2014; 38:1004-1012; Harrison CN, et al. Ann Hematol 2020; 99:1177-1119; Gianelli U, et al. Mod Pathol 2012; 25:1193-1202; Tefferi A, et al. J Clin Oncol 2011; 29:1356-1363.

Non Pharmacological Approaches for MPN Burden Relief

National
Comprehensive
Cancer
Network®NCCN Guidelines Version 3.2019
Myelofibrosis
NCCN Evidence Blocks™

NCCN

NCCN Guidelines Index Table of Contents Discussion

Mays Cancer Center

UT Health MDAnderson San Antonio MDAnderson

MAYO CLINIC

7-6

