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ABsTRACT. In this paper, for functions without compact supports, we established
Carleman estimates for the two-dimensional non-stationary Lamé system with the
stress boundary condition. Using this estimate, we proved the uniqueness and the
stability for the inverse problem of determination of coefficients for the Lamé system

by a single measurement.

61. Introduction and the main results.

In this paper, we establish Carleman estimates for the two-dimensional non-stationary

Lamé system with stress boundary condition:

P(z,D)u = (Pi(z, D)u, Py(x, D)u)T

=p<%>§—;§  u@Au — (u(F) + AF)Vadivu
—(divu)VzA(T) — (Vzu + (Vzu) ) Vau(@) =f in Q= (0,T) x Q, -
1.1

T
2 2
B(z, D)u = anajl,z:n]aﬂ =g on (0,7) x 09,
j=1 j=1
~ ou - ou ,
T.,2) = —(T,2) = = — = 1.2
u(,3) = 4 (17) = u(0,7) = 5(0,3) =0, (1.2

Key words and phrases. Carleman estimate, Lamé system, pseudoconvexity, Lopatinskii de-

terminant, inverse problems.
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where u = (uy,u2)?, £ = (f1, f)T are the vector functions, u? denotes the trans-
pose of the vector u,  is a bounded domain in R? with 0Q € C3, 2 = (20,2),7 =

(w1, 22), (n1,n2)T is the unit outward normal vector to 9Q and

- i ~ [Ou; 0O
ok = A7)0 kdivu + p(z) <3—z; + a—?) .
j

The boundary condition in (1.2) describes the surface stress. In (1.1), the coeffi-

cients p, u, A € C?(Q) are assumed to satisfy
p(@) >0, w@ >0, wp@+A7)>0, 7. (1.3)

Physically A and p are the Lamé coefficients of the isotropic medium occupying
domain €2, and p is the density.

A Carleman estimate is an inequality for solutions to a partial differential equa-
tion with weighted L?-norm and is a strong tool for proving the uniqueness in
the Cauchy problem or the unique continuation for a partial differential equation
with non-analytic coefficients. Moreover Carleman estimates have been applied es-
sentially to estimation of energy of solutions (e.g., [KK]) and to inverse problems
of determining coefficients by boundary observations (e.g., [Buk], [K] as initiaing
works).

As a pioneering work, we refer to Carleman [Ca] which proved a Carleman es-
timate to apply it for proving the uniqueness in the Cauchy problem for a two-
dimensional elliptic equation. Since [Cal, the theory of Carleman estimates has
been studied extensively. We refer to Héormander [Ho| in the case where the symbol
of a partial differential equation is isotropic and functions under consideration have

compact supports (that is, they and their derivatives of suitable orders vanish on
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the boundary of a domain). Later Carleman estimates for functions with compact
supports have been obtained for partial differential operators with anisotropic sym-
bols by Isakov ([Is2], [Is3]). Moreover for functions without compact supports, see
[Ta).

Our main task of establishing a Carleman estimate for (1.1) - (1.2) is difficult
twofold: Firstly, in (1.1) the highest order derivatives are coupled and secondly
(1.2) contains a boundary condition of the non-Dirichlet type.

First difficulty: As for Carleman estimates for strongly coupled systems, there
are not many works. In fact, all the above-mentioned papers discuss single partial
differential equations. As long as the unique continuation is concerned, to our
best knowledge, the most general result for such systems of partial differential
equations is Calderén’s uniqueness theorem (see e.g., [E|, [Zui]). However, the
non-stationary Lamé system does not satisfy all conditions of that theorem. More
precisely, the eigenvalues of the matrix associated with the principal symbol of the
Lamé system change the multiplicities and at some points of cotangent bundle, they
are not smooth, which break the assumptions in Caledrén’s uniqueness theorem.
On the other hand, for solving the unique continuation, the Lamé system can be
decoupled (modulo low order terms) for example by introducing a new function
divu and applying to the new system the technique developed for the scalar partial
differential equations (see e.g., [EINT]). This method produces a Carleman estimate
for the Lamé system, but the displacement function u is required to have a compact
support, so that method does not work for (1.1) and (1.2) if u does not have a
compact support. In [IY4] and [IY7], we have established Carleman estimates for

the Dirichlet case where the stress boundary condition in (1.2) is replaced by u = g
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on (0,7) x 0€2. It is known that there are two types of the interior waves for the
Lamé system: the longitudinal wave with the velocity M’% and the transverse
wave with the velocity \/% . Thus a weight function in the Carleman estimate is
assumed to be pseudoconvex with respect to the two symbols (see Condition 1.1).

Second difficulty: The essential difference between the stress boundary condition
and the Dirichlet boundary condition which was studied by the authors in [IY7],
is that the stress boundary condition requires us to deal with the new phenomena
- the Rayleigh boundary waves. In order to treat the boundary waves, we have to
assume additionally that a weight function is strictly pseudoconvex with respect to
the pseudodifferential operator whose principal symbol is given by the Lopatinskii
determinant (see Condition 1.2). Furthermore, from the practical point of view
(e.g., in view of the seismology), the stress boundary condition is very important
and well describes the reality such as the surface wave, so that the associated inverse
problems and energy estimation are highly requested to be studied.

Under Conditions 1.1 and 1.2, we state our main results - Carleman estimates
(Theorem 1.1 and Corollaries 1.1 and 1.2). Among applications of the Carle-
man estimates obtained in this paper, we mention the sharp unique continua-
tion/conditional stability results for the Cauchy problem for (1.1), the exact con-
trollability of the Lamé system with locally distributed or boundary control, and
applications to the inverse problems. However, in this paper, we will discuss only
one application to an inverse problem. That is, in Section 5, using the Carleman es-
timate, we establish the uniqueness and conditional stability results for the inverse
problem of determining the three coefficients p, A, pu.

In this paper, we exclusively consider the two-dimensional case, and the higher
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dimensional case is more difficult. Really, as is shown in [Y], in the case where the
spatial dimension is greater than 2, the Lopatinskii determinant equals zero at some
point, so that we cannot satisfy Condition 1.2 which is crucial for the Carleman
estimate.

Among related papers, we refer to Bellassoued [B1] - [B3], Dehman and Rob-
biano [DR], and Imanuvilov and Yamamoto [IY6], where Carleman estimates for
the stationary Lamé system were obtained. Also see Weck [W] for the unique
continuation for the stationary Lamé system.

Throughout this paper, we use:

Notations. é; = (1,0), e, = (0,1), 7 = (n1,n2), ¢ = (g, z1,2) = (z0, ),
T = (z1,72), ¥y = (Yo,y1,92), ¥ = (Wo,v1), & = (£0,€1,62), & = (£0,€1), Oy, =
by = 2L 00 = b, = 2L bujar = 020y b = 00,00,0, V = (0200, 00,)
or V = (Oyy, 0y, ,0y,) if there is no fear of confusion. (Otherwise we will add the
subscript « or y.) Vi = (0p,,0s,), divu = 0p,u1 + Og,us for u = (ug,u)?,
D, = l% + 50y, ¢, D' = (Dy,,Dy,), D = (Dy,,Dy,,Dy,), Vy = (9y,,0y,),
D' = (Dy,,Dy,), Dy, = l% a = (o, a1, a2), aj € NU{0}, 0% = 920021992,

¢ = (s,&1,&), ¢ = (s,&0,&1). For a domain @ in the z— space, HY*(Q) is the

Sobolev space of scalar-valued functions equipped with the norm

2

lallzmey = | Y s*20gullleq) |

la|<m
HY(Q) = HY¥(Q) x --- x H»*(Q) is the corresponding space of vector-valued
functions u. For a domain €2 in the z-space, we will similarly define the Sobolev
spaces HY%(Q2) and HY#(Q). Let [A4, B] = AB — BA, and let ¢(§) be a nonnegative

function such that €(6) — +0 as § — +0. By O(d1), we denote the conic neigh-
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bourhood of the point ¢*: O(31) = {¢;

¢ %
g1 — ¢

<or}, Bsly) = {wsly—v7| < 9}
is the ball centred at y* with radius §. £(X7, X2) is the space of linear operators
from a normed space X; to a normed space X, Fy is the £ X k unit matrix.

The first main purpose is to establish Carleman estimates for system (1.1) - (1.2)
for u having no compact supports. Let w C €2 be an arbitrarily fixed open set which
is not necessarily connected. Denote by 7 and ¢, the outward unit normal vector and
the unit counterclockwise oriented tangential vector on 0€2, and we set % =Vzu-n
and % = Vzu - t. By Q, we denote the cylindrical domain Q,, = (0,7) x w. We

set

pi(x,€) = p(@)&5 — n(@)(E +€3),  p2(z,8) = p(@)&5 — (A(@) + 20(2)) (&7 + &3)-

For arbitrary smooth functions ¢(z, &) and ¢ (x, £), we define the Poisson bracket
by {4, v} = Z?:o (5—5_% — g—ig—gj). We assume that the coefficients u, A, p and
), w satisfy the following conditions:

Condition 1.1. There exists a function v € C*(Q) such that (i), (ii) and (1.6)
hold:
(i)
{pw, {Pr, ¥}z, §) >0, VEk e {1,2} (1.4)
if¢ e R3\ {0} and x € Q \ Q,, satisfy px(z,&) =< Vepk, Vi) >= 0.
(i1)
1 ) .

2—2'3{pk($’£ — 18V (2)), pr(z, &+ isVyp(z))} > 0 (1.5)

if¢ € R3\ {0}, s>0and x € Q\ Q. satisfy p(z, &+ isVz1(x))

=< Vﬁpk('xv 6 + ZSVM/)(fE))v vmw >=0.
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On the lateral boundary we assume

9

p1(z, V) <0, Voe (0,T)x (00 dw), 95 < 0 on (0,7) x (002 \ dw),
% #0 onl0,T] x (00 Ow). (1.6)

Using ¢ in Condition 1.1, we introduce the function ¢(x) by
o(x) = V@ >, (1.7)

where the parameter 7 will be fixed below. In order to deal with surface waves, we
additionally need Condition 1.2 on the function ¢. We formulate that assumptions
below as (1.23), and for the statement, we need boundary differential operators by
means of a new local coordinate.

For an arbitrarily fixed point (x9,29) € 9Q, we set 71 = 1 —29 and T = x5 — 1.
We consider (1.1) and (1.2) in the new coordinates (z1,%3). Since (1.1) and (1.2)
are invariant with respect to the translation by the constant vector (z9,z9), we
use the same notations z1,zs instead of 7, 75. Therefore we may assume that
(0,0) € 092 and that locally near (0,0), the boundary 0f2 is given by an equation
zo — l(z1) = 0, where £ = £(x1) is a C3-function. Moreover, since the function
i = Ou(wy, O~17) satisfies system (1.1) and (1.2) with £ = Of(zo, O~'%F) for any
orthogonal matrix O, we may assume that

roy= L

= L =0

We make the change of variables y = (yo,y1,y2) = Y(z) = (zo,x1, 22 — £(27)).
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Then we reduce equations (1.1) to

3211,1 8211,1 32u1 3211,1
Pi(y,D)u= p—0p — — 2 1+ | (y1))?
1(y, )u P 398 { 8y% ¢ (y1)391392 +( * |£ (y1)| ) 8y§ }
8u 0 ou 1 0 8u1
+ / — — (A + d1vu——£'>+ A+ —(dwu——é')ﬂ'
i () Gt = (g (diva = S0 ) + ok -
+Ki(y,D)u=fi  ing, (1.8)
82uz 3 8211,2 3ZUQ
Py (y,D)u = 14|/ A puiiints
(0 D)u = 912 {3 ()t + 1+ ) 5 |
) -
+pl (yl)% — (A +p <d1vu — —E’) + Ko(y, D)u = fo in G,
2

(1.9)

where we set

G={y;492>0,y € Y((0,T) x B-(0,0))}

with some ¢ > 0, and we keep the same notations P;, P», u,f after the change of
variables, and K ;(y, D) are first order differential operators with C'-coefficients.
We set P(yaD) = (Pl(yaD)7P2(yaD))

The stress boundary condition in (1.2) has the form

ouq ouq , 3UQ> <3U1 duy / > }
Mag—Ft 7O+ +2p| 57—+ (4
" { <3y1 Y2 =6) Y2 a dy1 Y2 (=6)

Here we use the same notations ni,ny after the change of the variables.

We can solve system (1.10) and (1.11) with respect to (8“1 6“2> in the form:

Oy2 ’ Oy
g Bt N N
bw ) = Al | om | +Aln)g, A0) = 0,00 0 )°
Oy2 dy1 >\+2“

y € 09, (1.12)
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and A(y;) is a C? matrix-valued function. By A; and Ay, we denote the first rows
of the matrices A and A respectively, and the second by A5 and :4\;: Aj = (aj1,aj52)
and A; = (aj1,a52), j = 1,2.

After the change of variables, the functions z; = rotu = 0,,us — 0z,u1 and

z9 = divu have the form

311,1

. 3UQ 3u2 ’ _ oduy . _ ’
3y27 ZZ(y) - ) + 12 (yl)

z1(y) = 5= = 5=(y1)

- 0y1 Y2

Using (1.12), we can transform them as follows:

Ous ou ou ~ _

rotu =z =_—_=_/ A — — A — 7 A —A
1(y) i (y1) 2(91)8y1 1(?41)8y1 (y1)A2(y1)g — A1(y1)8
=b11(y1, D/)Uq + b12(y1, D/)Uz + 61(y1)g, y € 03, (1.13)

where

bi1(y1,&) = i(—€'(y1)a21(y1)—a11(y1))&1,  bi2(y1, &) = i(1—aze(y1)l (y1)—a12(y1))éi-
(1.14)

For the function z;(y), we have

_ Ouy ou , Ju

divu(y) = 22(y) = s

+A5(y1)g — A1 (y1)gl (1) = bar(y1, D Yug + baa(y1, D')us + Ca(y1)g, Vy € G,
(1.15)

where

ba1(y1,8) = i(§1+a (y1)61—L (y1)a11(y1)é1),  baz(y1,§) = i(aza(y1)é1—a12(y1)61¢ (v1)),
(1.16)

and CN'j are C? matrix-valued functions.
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Denote

pﬂ(yv S, 607 517 62) - _p(é() + i33y0¢)2

+B1(§1 + isDy, ¢)” — 20 (€1 + isDy, §) (&2 + 50y, §) + (§2 + 50y, )| G ],

(1.17)
where |G| =1+ (¢(y1))?, B € {, A+ 2u} and s is a positive parameter.
The roots of pg = 0 with respect to the variable £, are
FI:Bt(ya 5750751) = _i88y2¢+a:ﬁt(y737507£1)7 (118)

aﬁ(y, $,€0,€1) = (&t is<|9g|¢)£ (1) /75y, 5, 60,61, (1.19)

(p(€o + 150y, $) — B(&1 + 150y, ¢)*) |G| + B(&1 + is0y, §)*(¢')?
pIGI '

(Y. 8,0, &1) =
(1.20)

Henceforth, fixing ¢* € R3 such that [(*| = 1 arbitrarily, and set y* = (yo,0,0)
and v = (y*, (*). Suppose that |rg(vy)| > 25 > 0. In [IY7], it was shown that there

exists dg(0) > 0 such that for all 6,01 € (0, dp), there exists a constant Cy > 0 such

that for one of the roots of the polynomial (1.17), which we denote by I's, we have

_Iml—‘g (y7 8750751) > 5017 vy € B5(y0707 0)7 (8750751) < 0(61) (121)
Set
/ AN Bll(y/7S7D/) 812( /7S7D/)
B(y , 8, D ) = (321(?/, S,D/) 822(y/7 S,D/) , Y€y, (1'22)
where

Bll(yla S, D/) = _PDZO - ,LLZCV: (yla 07 S, D/)bll(yb D/)

_()‘ + 2:“){ZDy1 - ()‘ + 2:“’) (iDyl - gl(yl)iai_-{au(y/a 0,s, D'))}bz1(y1, D/)v
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Biz(y', s, D) = =(A+2p){iDy, — (A + 2)(iDy, — £ (y1)ic} 5, (y', 0,5, D")) }ba2(y1, D')

—picf (y',0,5, D")b12(y1, D'),

Bai(y',s,D") = —(A + 2,u)z'ozj\'+2u(y', 0,5, D")ba1(y1,D")

+N(2Dy1 - él(yl)za: (y/7 07 S, D/))bll(yb D/)a

Bas(y',s,D") = _PDzZ/o -2+ 2p)ia;\r+2u(y',0, s, D")ba2(y1, D')

+,U(2Dy1 - gl(yl)za;—r (y/7 07 S, D/))bIZ(yla D/)

Now we formulate a condition which allow us to observe the surface waves. For
this purpose, we use the operator B which was introduced in the local coordinates.
For an arbitrary point 2° = (29, 29, #3) € [0, T]x (09 \ w), we rotate and translate
such that after the rotation and the translation, the normal vector to the boundary

at 2% is (0,0, —1). Then by Y(z), we denote the transform involved with the rotation

and the translation. Now we are ready to state the condition:

Condition 1.2. Let x € [0,T] x (02 \ w) be an arbitrary point and y = Y (x). We

assume that

1

1 3detl§’(y',87§07§1) adetB(y/a87§07£1)
Im—
Z 3yj 363

S

>0 (1.23)
j=0

for any (ya 5750751) € {(y7 5750751) € 8g X S27 det B(y/787£07£1) - 07 s > 07 Yo S

(07T)7 ImFg(yla 07 3750751)/5 Z 07 Vﬁ € {Nv A + 2”}7 50 # 0}
Now, under Conditions 1.1 and 1.2, we are ready to state our Carleman estimates:

Theorem 1.1. We assume (1.3), Conditions 1.1 and 1.2. Let f € HY(Q), g €

H2 (0Q) and let the function ¢ be given by (1.7). Then there exists 7 > 0 such
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that for any ™ > 7, we can choose so(7) > 0 such that for any solution u €

HY(Q)NL2(0,T; H%(2)) to problem (1.1) - (1.2), the following estimate holds true:

3u
s¢ s¢
(ue , —ﬁe >

2
<O {18 gy + e oy + [ D0 s oRuPe b | L s > sa(n),
Qu q|=0 (1.24)

2

2
/ Z 34_2|a||8§u|2628¢d$ + s
Q

|a|=0

H?*(0Q)xH " (0Q)

where the constant C' = C(7) > 0 is independent of s.

Assume in addition that

2o ®(0,-) >0 and 0., ¢(T, ) <0 on ). (1.25)

Then we can show Carleman estimates whose right hand sides are estimated in

L?(Q) and H71(Q)

Corollary 1.1. We assume (1.3), (1.25), Conditions 1.1 and 1.2. Let f € L?(Q),
g = 0 and let the function ¢ be given by (1.7). Then there exists T > 0 such that
for any T > T, we can choose so(7) > 0 such that for any solution u € H(Q) to

problem (1.1) - (1.2), the following estimate holds true:
lue* |3 ) < CUIE I () + lue([frre g Vs = so(7).

Here C' = C(1) > 0 is independent of s.

Corollary 1.2. We assume (1.3), (1.25), Conditions 1.1 and 1.2. Let f =f_; +
S0 Oa,£; where fo,f1, £, € HY(Q), f_1 € H™Y(Q), suppf_; C Q, g = 0, and let
the function ¢ be given by (1.7). Then there exists T > 0 such that for any ™ > T,

we can choose so(7) > 0 such that for any solution u € H'(Q) to problem (1.1) -
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(1.2), the following estimate holds true:

2
Z||fjes¢”i2(Q)+/Q u|2e2*%dz | |

[ 1aPets < 0 [ Eae s gy +
Q = .

Vs > so(T).
Here C' = C(1) > 0 is independent of s.

The proofs of Corollaries 1.1 and 1.2 are similar to the proof of Theorems 2.2
and 2.3 in [IY7], and we omit them. As for parabolic operators, an H ~!-Carleman
estimate is proved in [IY5] on the basis of [Im1].

Condition 1.1 is a usual condition for the pseudoconvexity, while the realization of
Condition 1.2 requires us extra calculations. Next we try to find a simple sufficient
condition which implies Condition 1.2.

For any fixed x € 02, we define a cubic polynomial by

Ht) = 1% — 12 <sﬁ> (5)+t<24‘;2 16 )> () — (W) @),

p p P?(A+2u p3(A+2p)

(1.26)
Then we can directly verify that H'(f) > 0 if t < 0, H(0) < 0, H (%) =4 >0
and H" (2—’;) = 0. Therefore we can prove that H(t) = 0 possesses a unique simple
root ¢ in the interval (0, (%) (5)) for any = € 09, and by C = C(z) we denote the

root. Moreover the rest real roots are greater than (%) (z) if there exists other real

roots.

Remark. By means of the Cardano formula, we can give C = C(x) explicitly. We
set

~ 7 1643
I VA G VN L
' PT pP(A+2m)
= 16pP(A+p)
ST +2)
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That is, H(t) = t> + ait? + ast + az. Moreover we put

~3 ~ o~
~ a1 a1a as ~ 1 — ~ 2
1 o7 6 + 9 2 9( az —ai’),

S 2 ~3 o~
bs =b1 +by , by =sign(by)|be]>.

Then we have:
3 ~ 0
C:—ﬂ—2b4cosh —
3 3

if I;;;, > 0 and b; < 0 where 6 solves the equation cosh 6 =

TR 0
C= —%1 — 9b, sinh <§>

if sz > 0 where 6 solves the equation sinh § = bfiig.
4

o

1
3 .
4

l

=

If I;; < 0 and I;;, < 0, then we define C by the one of the three zeros of the

polynomial H which belongs to the interval [0, u/p]: t; = —%} — 2by cos (g), ty =
—%1 + 2(;1 cos (% — g), t3 = —‘%1 + 2(3:1 cos (% + %), where 6 solves the equation
cosf = l%—lg,.

In terms of C(Z), we can state one sufficient condition:

Proposition 1.1. Let ¢ € C%(Q), and

0y (0) %+ V@ o (2) £0 (1.27)

for any x € (0,T) x (02 \ Ow). Then there exists 7o > 0 such that Condition 1.2

holds for ¢ = €™ if T > 1.
In this section, first we give

Proof of Proposition 1.1.
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For this, it suffices to prove : Let 1 € C?(Q) satisfy 0y, # 0 on Q, and for
(29,29) € 90\ Ow, let the local coordinate §y = (y1,y2) be introduced by the local

representation o = £(x1) of 0. We assume

Oy, (y") £ /C(0,0)0y, 9 (y*) # 0.

for any (29,29) € 0Q\ 0w and yo € (0,T). Then there exists 79 > 0 such that
Condition 1.2 holds for the function ¢ = €™ if T > 7.
We recall that y* = (y0,0,0). The principal symbol of the operator B at the

point y* is

2pf o, (Y5, ¢ —pC + 2uCt

where ' = (s,&o,&1) and zj =& + ispy, (y*). Obviously
det B(y*, (') = p° <—C§ + 2;(%) +apPaf o (v5 aft (v )G (1.28)
We study the structure of the set

+(v* (! + *
V= {CI € R?\{0}; det B(y™, (') = O,Imw >0, Az 0}_

S

(1.29)

Then

Lemma 1.1. Let (1.3) hold true and let 0,9 (y*) # 0. Then
U CWUUW,, dist (\Ifl,\lfz) > 0,

where U1 = {(' = (5,&0,&1) € S?; & + is¢y, (y*) = 0} and Uy = {¢’ € S?%; & +

4ok + * !
isdy, (y*) = B/C(EL +isgy, (y*)), Im 2D > oy Be2aV0) s gy

s
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Proof. We can directly see from the definition that dist (¥;, V) > 0. Taking into

account that (o (y*,¢"))? = %Zg — (2, we obtain
o N 4
ve{cestr@a=(g-24a)

3 (=) [ A 20~
e (- 5) (3 20) <o)

We fix p and by ty = t2(A(0,0),1(0,0)) and t3 = t3(A(0,0), (0,0)) we denote

the roots of H(t) with z = (0,0) which are distinct from C(0,0). Then we have

1(0,0)

to, b3 >
p(0,0)

if they are real.
Therefore, noting that F(C2,¢2) = (2¢(H(t) with (2 = ¢(2, we have only to

prove that Zg = th% for 5 = 2,3 are impossible, that is,

det B(y*,¢") # 0

if (o +isdy, (¥%)2 = t;(& +isdy, (y)%, Vi€ {2,3}.
(1.30)

Moreover we have only the two cases: t3,t3 € R or to,t3 € R.
~ N2~ 2
First we consider the case of ty,t3 € R. Really (Cg — 2%(%) = (t (tj — 2%)
and

af (y*.¢") = \/G(tip/n— 1) = sign(dy, (v*))Cn/tip/n — 1,

where we used the fact that t;jp/p—1>0.If t;p/(A+2p) —1 > 0, then

O‘;rzu(y*a ¢') = sign(oy, (y*))& tip/(A+2p) —1

and we have det B(y*, (') = (4 {p2 (tj — 2%)2 + 43 /tip/pn— W/tip/ (A +2p) — 1} +
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0.If tjp/(A+2p) —1 < 0, then a;\r_l_zu(y*, ¢ = sign(gl)izl\/—tjp/()\ +2p) + 1 and

det B(y*, (")

2
=t {p2 <tj - 2%) + 4p”isign(&1)sign(dy, (y*)x/tjp/u - 1\/—tjp/(/\ +2p) + 1} # 0.

Next we will consider the case of t; ¢ R, j = 2,3. We set pg = p(0,0). Henceforth

in place of H(t) defined by (1.26), we consider

8b 24 163 166%(a + b
t< - ) _16%a+b) (1.31)

HO=0 =t R Ber )~ e
for all (a,b) € R? such that a,b > 0. We note that if we set a = A(0,0) and
b = 1(0,0), then this coincides with H(t) by (1.26). Moreover, without fear of
confusion, by t2 = t2(a, b) and t3 = t3(a,b), we may denote the roots which are not

in the interval [0, p%] of H(t) defined by (1.31). We set z = (20, 21) € C? and for

~2 ~2
factorizing of F((y ,(1 ) with A =a, p = b and p = pg, we introduce two functions

b \Z 2
W (z) = ( _ 2—z%) £ 20t (@0} (),
Po Po

and af (z) = 25 — 23 with B € {a + 2b,b}. Henceforth we set

Domo%L = {z = (20, 21); @zg —2id ]R+}.

s

For z € Dom ag, we take the complex root %Ozg —2? in such a way that

Imag(z) > 0. We set DomH+ = DomH~ = Doma;” N Dom a:+2b' It is suf-

ficient to prove
H™ (29 (A(0,0), 4(0,0),21)) =0,  Vj € {2,3} (1.32)

if

Z(j)(a, b,z1) = (f/tj(a,b)z1,21) € DomH™* for j € {2,3}, z1 € C.
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In fact, if (1.32) will be proved, then we have (1.30). Because assume contrarily
* . .2 244(0,0) ~2 .

that det B(y*,¢’) = 0. Then, in terms of (1.28), we obtain (o = =*,==(; , which

~2 ~2
contradicts that (o =1t;¢1 , j = 2,3 where t; Z R.

Proof of (1.32). Let d2 > 0 be an arbitrary but fixed number. We introduce the

sets
I1; = {(a,b); a,b > 02, there exists z; € C with |z1| = 1 such that
7-[+(z(j)(a,b,z1)) =0forj=2orj=3}
and
IIo = {(a,b); a,b > 02,
HT (29 (a,b,21)) #0 for any z; € C with |z;] = 1 and any j € {2,3}

such that z)(a,b, z1) € DomH™*}.

It suffices to prove that II; = (). Let (a,b) € II5. Such a point exists because
there exist ag, by such that t;(ag,by) € R for j = 2,3 and then we have already
shown that det B(y*,(’) # 0, so that (ag,bp) € Ilz in terms of (1.28) and the
definition of H*.

Assume contrarily that the set II; # (0. Then dist ((a,b),II;) > 0. There

exist sequences {(an,bn)}oe; C II; and {z1,}52,; € C such that |z;,| = 1,

~

1imn->00(a’nabn) = (aa )a hmn—)oo Z1n = /Z\lv

dist (@, D), (@,0)) = dist (@, ), II,)

and H*(z71,,) = 0 where we set

Zjln = (:IZ\/ tj1 (ana bn)zl,na zl,n)y

for some j; € {2,3} and some 21, € C with |21 ,| = 1.
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Let us show that there exists z; € Csuch that |2;| =1 and z = (+/¢;, (a, b)z1, %) €
DomH*. Really if z = (1/t;, (@,0)%1,%1) € DomH*+, then we can take Z = 7. On
the other hand if Z ¢ DomH®*, then

z ¢ Dom o%L or z¢ Dom oz;_zg.

Let us assume for example that

EgZDoma{.

Then \/tjl (a,/l;)po//b\— 1 = re?® and \/tjl (5,/1)\),00/(5%— 2/b\) —1 = roet®. Since the
imaginary part of ¢;, is not zero, we have 0o # 0 (mod 27). Then either

~

HFHE) =0 for B e {ba+2b} withz = (R/t; (@,0)71, 7), 7 = e = P00,

or

-~ —

HTZ) =0 for B e {ba+2b} withz = (R/t;,(@,0)71,71), 7 = e > @) tim

In the first case, we set 27 = ez #+9) and in the second case, z; = ez (#+00)+ir

On the other hand, we have

~ ~ o~

(@,D), @) = {(@,b) + (1 — €)(@,0); 0 < e < 1} C IL. (1.33)

In fact, noting that {(a,b); a,b > d2} is convex and is contained in II; U I, we

~ o~

see that [(a,b), (a,b)) C II; UIl;. Assume contrarily that there exists (a*, b*) € II;

~ ~ ~

such that (a*,b*) is in the open segment ((a, b), (@,b)). Then dist ((a, b), (a*,b*)) <

~ ~ ~

dist ((a, b), (@, b)) = dist ((a, b), I1;), which is a contradiction. Thus we have proved

~ o~

that [(a,b), (a,b)) C .
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We set (ae,b.) = €(a,b) + (1 — e)(a,b). Then, for sufficiently small £ > 0, we

have

z. = (£/t5(ae, be)z1,21) € DomHT.

Then, by (1.33), we have lim._, o H (z.) = H (z) = 0. Moreover by the choice
of z, we have H¥(z). Hence H*(z) = 0. This implies that ¢, (EL\,A) = z—f and this
is impossible because the left hand side is not real and the right hand side is real.
Thus we have a contradiction. ll

Now we proceed to completion of

Proof of Proposition 1.1. Let C € [0, 1/ p| be the zero of the polynomial H. By

Lemma 1.2 for any ¢’ € S?, the set of all the possible solutions to the equation

det B(y*,{’) =0, Im

F+ * o~
#20’ VB € A+ 2ulb, & # 0

is given by the formula

€o + ishy, (¥°) £VC(0) (&1 + isgy, (y*)) = 0.

Let (&5, s*) € S! be an arbitrary but fixed point. Let 2, = {5 +is*¢,, (y*) with some
£y # 0 and 2§ = & +1is% ¢y, (y*) satisfy 25 = +/Cz} and %Imf‘g(y*, s*,25,27) >0
for B € {p, A+ 2u}. For fixed s and yo, we consider det B as a function of y;
and two complex variables zp,z1: J(Y', 20,21) = det B(y', s, 20, 21). Applying the
implicit function theorem, we see that there exists a function ¢(y’,z;) which is
defined in a neighbourhood of (y*, z7) and analytic in z; such that (v, q(y', 21), 21)

is a solution to the equation J(y’, zp, z1) = 0. Note that

g(y*, 1) = B/Ca1. (1.34)
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Set r(y', z) = 20 — q(¥', z1). Since

det B(yla S, 507 gl)
T(ylv 607 61)

det B(y', s,&0,&1) = 7(y', €0, &1) X r(y', €0, 61)7 (', 5,60, 61),

and 7 is smooth and not equal to zero, Condition 1.2 is equivalent to

Ir(y', €0, &1) Or(y', €0, &1)
Im-~ Z 0&x oY >0

Computing the left hand side of this inequality, we obtain

2131 19r(y0,0,0) 9r(y0,0,¢)
s O Yk

=lm ;{iSQSyoyo (¥") — yo (0,0, C1) i\/Eisq5y0y1 ¥")
M(is¢y0y1 (y*) — Gy, (yov 0, Cl) q:\/EiS¢ylyl (y*))}

* E3 1
:¢y0y0 (y ) i\/Eq5y0y1 (y ) + C¢y1y1( ) Im — (Qyo (y07 0, Cl) :t\/_qM (y07 0, gl))
By the implicit function theorem, g, (yo,0,¢1) = —% = my (§5+is by, (¥*)),
29 \Y»%0 121

k = 0,1, where a number my depends on the sign in formula (1.34). Using this

formula we obtain

Im lmﬁr(yo, 07 C)

s 0 oYk
:b/Ewyoyl (y*) + Cwylyl - (mowyo (y*) i\/Emlwyl (y*)))

= TH(T(Pyo (¥") 2VCYy, (%)) + Yyoyo (¥*)

Obviously under condition (1.27), for all sufficiently large 7 > 0, inequality (1.23)
holds true at the point y*. The proof of Proposition 1.1 is complete. H

Now we start the proof of Theorem 1.1. Our proof is based on decoupling of
the Lamé system into the scalar hyperbolic equations for rot u and divu. Then,

applying to these equations the standard procedure (e.g., [H6]) for obtaining a
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Carleman estimate, and finally we carefully analyze the boundary integrals, which

appear in the previous step by means of the microlocalization technique.

First we show that it suffices to consider only the case where the support of

displacement u is located in a small neightbourhood of the point y*.

Lemma 1.2. Under conditions of Theorem 1.1 it suffices to prove (1.24) under the

assumption that

suppu C Bs(y™), (1.35)

where § > 0 is an arbitrary small number and y* is an arbitrary point in ().

Proof of Lemma 1.2. Let us consider the finite covering of the domain @ by

balls Bs(y7). Let e € C5°(B25(0)) be a non-negative function such that e|p, () =1

and e(z) <1 for all z € By5(0) \ Bs5(0)and let e € C5°(B24(0)) be a non-negative
function such that e|g, () =1 and e(z) < 1 for all x € Bas(0) \ Bg;s(0). We set
8

ej(z) = e(r—yj) and €;(z) = e(x —y}). For the function e;u we have the following

boundary condition

B(z,D)eju = —[e;, Bjlu + ¢;g. (1.36)

Let (z) = ¢(z) + e(ej(z) — 1), ¢j(x) = e™i(@) and € € (0,1). The function

1; satisfies Conditions 1.1 and Condition 1.2 for all sufficiently small e. Applying
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Carleman estimate (1.24) to the equation P(x, D)eju = e;f — [e;, P]u, we have

/ Z st 2|a||8°‘ 2e%Pdg + s || [ ue®?, Ou e?
3n

@ jal=0

2

H2*(0Q)xH?*(0Q)

9 2
—CZ/ Z 4— 2|a||3aue |2 250 dy + s ( ¢>e], 1_1,6] s¢> , )
; Bs(y])| |=0 o1 H2'°(0Q)xH?2°(8Q))
4-2|al|qa 2 2s¢ sp; , Ou :
_C’Z Z |0guej|*e**Pide + s ||| ue®¥ie;, ——e;e’? .
Bas(v:) oo o HE(0Q)xH* (9Q)

<C (Ilfes¢ll?q1,s(Q) + sllge™ .- o) + 5 D lllej Bla, D)ue™ i . ag)
j

+Z|| e;, Plue ¢J||H15(Q)+/ Z 4=2lal| goy|2e 25¢dm> Vs > so. (1.37)

@ Jal=0

Note that [[e;, Plue*® |[f.. oy = |[ej, Plue® ¢jHHLS(BQ(;(y;f)\BQS(y;))' Moreover

thanks to our choice of the functions v;, we have ¢;(z) < ¢(z) for all z €

Bas5(y;) \ B35(y})- Therefore increasing so if necessary, we have

Z lej, Plue®®7 |3, (@) < / Z 4=2lal|gon|2e25 P du, Vs > sp.

J |a| 0
Hence the second term at the right hand side of (1.37) can be absorbed into the

left hand side, so that we obtain (1.24). Thus the proof of Lemma 1.2 is complete.

Lemma 1.3. Let the hypotheses of Theorem 1.1 be fulfilled then

/ Z 2eljoraPe? P dr < Cl{||fes¢||H15(Q)
Q

|ae|=0

0 divua 2
e

on

L2((0,T) x 8)

2
0 rofues¢
on

+s

L2((0,T)x8<)

+3||(d1'V‘1)65¢||%{1 5((0,T)x0%2) T 3||(fOtu)€S¢||%{1,s((o,T)xaQ)

/ Z st gou|2e 25¢d$} Vs > so(7), (1.38)
Q

“ la|=0

where the constant Cy > 0 is independent of s.

In order to prove this lemma, we need the following proposition.
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Proposition 1.2. There exists T > 1 such that for any T > T exist so(7) that for

any function u € H2(Q)

2
1
/ s Z |82imju|2+S|v$’u|2+83|u|2 e**?du
Q

ij=1

SCz{II(rotu) el @) + II(divw)e*? |13 )

ou
- s¢
(e 58)

The proof of this proposition is similar to the proof of Proposition 1.3 which is

2

, ) +/ (5|Vgul® + 33|u|2)628¢dx}, Vs > so(T).
Hi0Qxut*(0Q)  Ja. (1.39)

presented later, and we will omit the proof of Proposition 1.2.

Proof of Lemma 1.3. Without loss of generality, we may assume that p = 1.
Otherwise we introduce new coefficients 3 = p/p, A1 = A/p. It is known that the

functions rot u and div u satisfy the equations
3§gr0t u— pArotu=m; inQ, 3£gdivu — (A4 2p)Adiva =mg in@, (1.40)

mq = Kirotu + Kodivu+ Kiu+rotf, mo = Kzrotu+ Ksdivu + Kou + divf,

where K are first order differential operators with L°°- coeflicients.
Thanks to the pseudoconvexity Condition 1.1 on the weight function 1 there

exists 7 such that for all 7 > 7 we have (see e.g., [Tal)

s]|(Vrot u)es¢||%2(Q) + s||(Vdiv u)es¢||iz(Q) + 57|(rot u)es¢||%2(Q) + 53| (div u)es¢||2L2(Q)

0 div u 2

e5?
on

2
0 rot u
+ s H e5?

SCs{er”II%Ls(Q) ts i

L2((0,T)x0%) L2((0,T) x 8)

+3||(divu)es¢||12LI1,S((0,T)><89) + SH(rOtu)es¢||12LI1,S((0,T)><89)

2
+ Z S4—2|a||8wau|2623¢dx}, vs Z 50(7—), (1.41)
Qu |a|=0
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where the constant C3 > 0 is independent of s.

Using (1.39) and (1.41), we estimate the norm 37, _o o 0.0, ) || (050?32 o)
via the right hand side of inequality (1.41). Next using this estimate and equa-
tion (1.1), we obtain the estimate for the norm ||(823u)es¢||%2@) via the right
hand side of (1.39). Finally we obtain the estimate for ||(8§Omj u)es¢||%2(Q) and
32| (D, u)es¢||i2(Q) using the interpolation arguments. Therefore combining these
estimates with (1.41) we obtain (1.38). The proof of Lemma 1.3 is complete. H

If y* € Q, then we take 0 > 0 sufficiently small and we can assume Bs(y*)N0Q =
(). In that case all the boundary integrals at the right hand side of (1.38) are zero and
we have (1.24). Therefore, thanks to Lemma 1.2, we have to concentrate on the case
y* € 0Q. From now on without loss of generality, we assume that y* = (y§,0,0).
We need to estimate the boundary integrals at the right hand side of (1.38). In
order to do that, it is convenient to use a weight function ¢ such that ¢|aq = @|sq
and ¢(z) < ¢(x) for all z in a neighbourhood of 0Q. We construct such a function
¢ locally near the boundary 0€:

o) = e, P(a) = p(e) — =ti(@) + NE(z). (142
where N > 0 is a large positive parameter and £; € C3(Q) satisfies

ﬂl(a:') >0 Vo' e Q, £1|89 =0, Vﬂﬂag 75 0.

Denote Qn = {2’ € Q|0 < dist(z,09) < §=}. Obviously for any fixed € > 0, there

exists Nog > 0 such that
o(z) < ¢(x), Vo €[0,T] x Qn, N € (Ny, 00). (1.43)

We have the following analogue of Proposition 1.2 for the weight function ¢.
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Proposition 1.3. There exist 7 > 1 and Ny > 1 such that for any T > T, there

exists so(1, N) > 0 such that for any function u € H?(Q) satisfying (1.8) and (1.9),

we have
Nllue*||f2.. () < Ci (N“f@wHiz(Q) + s[|wllfp . q)
2
ou\ .,
+N‘<u,f>e¢ , §>so(r,N),N>N;
or HZ*(0Q)xH?*(0Q)

and Cy is independent of N, s.

We give the proof of this proposition in Appendix I.
Our goal is to prove an analogue of (1.24) for the weight function ¢ instead of

¢. We make the additional assumption
suppu C Bs(y*) NG = [0,1/N?] x R?. (1.44)

Thanks to Lemma 1.2 we can work with the variable y instead of z. By (1.8)

and (1.9) on the boundary 0G, we have

3211,1 <82’LL1 8211,1 > 3U1 3 . 8u1
- — 2/ + " (1) =— — (A + —<d - )
ay% /1’ 3y% (yl) ay13y2 /1’ (yl) 3y2 ( /1’) yl vu ay2 (yl)
+(A+ p) Oy (1)
s 0y10y2 n
82u1 8211,2 32u1 =~
= 1+ |02 — ' "2 — Ki(y,D 1.4
St 1+ 1055 = G2 O+ + O+ ) 5P = Ka(y, D (1.45)

and

3ZUQ <3ZUQ 3211,2 ) 3u2 32u1

g Uz Y ol ()22 (A

oz~ "\ oy? (yl)ayla?h . (y1)3y2 (At n) dy10Y>
8211,2 32u1

dys  Oy3

=fa+ u(1+ €' Ouz | (A + ) (

3y§ E') — K5 (y, D)u.

(1.46)
By (1.12) we know that

Oouy ou ~ Ous ou ~
8—y2 = <A1(yl)7 a—y1>+(A1(y1)7g)7 8—y2 = <A2(y1)’ a—y1>+(A2(y1)’g)' (1'47)
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Hence

0%u 0%u , du 0~
L (A1<y1>, —2) ; (A1<y1>, —) + 2 (A g),
3y1 Y1

0y20y1 0 oY1
0%us ( 32u> ( ou ) 0 ~
=(A ,— | + [ AL ,— |+ —(A ,g).
3y23y1 Z(yl) ay% Z(yl) ayl 3y1 ( Z(yl) g) (148)

Using these equations we may transform (1.45) and (1.46) to

Bi(y',D)u= %2—;%1 —p {%2—;%1 —20'(y1) ((Al(y1)7 %) (A' (1), g;))}
) (1) ) - 0+ 5 - e f (st 58+ (s, o))

O+ (A, g ) ) + o {(aa00.53) + (0 52 ) o)

et {00, 22 + (0. 2))

32 32 32 .
-1 24 )l + (A + ) =1 0']? + K1 (y, D)u + K.

=f1+u(l+ |¢')?) 042
2

dys  Oy3

(1.49)

and

By(y',D')u = %2—;82 — {%2:%2 = 2'(y1) ((Az(yl)a %) + <A’2(y1), %))}
_ﬂW@Q<Aﬂm)2;)—(X+M{<Aﬂm%g%>+<A(M)3;)}

2

0%u 0“u 82u
2 2 2

(1.50)

Set

, . Bu(y,é) B12(y7§)
B(y ’5) o <Bgl(y 5) BZZ(y 6)) ,
pt 200 (A ) ()
Q) = < O+ @) (1) (A+m@+uW@ﬁP>'

In terms of the new notations, we may rewrite (1.49) and (1.50) as

82

92 +Q +Q Kg, ye€og. (1.51)

B(y',D')=Q 'B(y,D')u =
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Note by (1.12) that the principal symbol of the operator B is given by

By(y*. ) = <{—’53+(“2u—*£1—;‘?)§%}/u 0 )
| 0 (€2 -2 /(A+2u) )
(1.52)

and we note that
o _ [ M 0
In the y-coordinate, equations (1.40) for rot u and divu have the form
Pu(y, D)z1 =Dgz1 — (D321 — 28/ (y1) D1 D221 + (1 + |€(y1)[*) D3 21)

—/J,iﬂ"(yl)Dzzl =ma, (153)

Pri2u(y, D)za =D§zo — (A + 2p) (D322 — 20 (y1) D1 Dazo + (1 + £/ (y1)|?) D3 22)
—()\ + 2#)?]”(3]1)1)222 = ms. (154)

After the change of the coordinates, we use the same letters mq,mgy as in (1.40).
We consider a finite covering of the unit sphere S? = {(s, &g, £1);8% + &2+ &3 =

1}. That is, 82 ¢ UXCI (s, ¢0,&1) € S%|¢ — ¢X| < 61} where (& € S2, and by

{xv(Q) }1<v<k(s,) we denote the corresponding partition of unity: Zf:((il) xv(¢) =1

for any ¢ € S? and supp x,, C {¢ € S?;|¢ — ¢*| < 61}. Henceforth we extend y, to

the set {(;|¢| > 1} as the homogeneous function of the order zero in C*°(R3) such

<a}.

PM,S(ya SaD) = Pu(yaD)v P)\~|—2u,s(y7 SvD) = P)\—I—Zu(yaD)'

that

¢

supp x» C O(d1) = {C; "

Moreover we set

Under some condition, we can factorize the operator Pg , as a product of two first

order pseudodifferential operators.
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Proposition 1.4. Let 8 € {u, A + 2u} and |rg(y, ()| > 5 > 0 for all (y,¢) €
Bs(y*) x O(261). Then we can factorize the operator Pg s into the product of two

first order pseudodifferential operators:

Py sxv (s, D)V =B|G|(Dy, —T5(y,s,D"))(Dy, — T4 (y,5,D"))xu(s, D)V

+T3V, (1.55)
where suppV C Bs(y*) NG and
Tg € L(L*(0,1; HY*(R*)) — L*(0,1; L*(R?))).
Let us consider the equation

(Dy, — Iy (y,s,D"))xu(s,D")V =q, Vl],=1=0, supp V C Bs(y*)Nng.

For solutions of this problem we have an a priori estimate:

Proposition 1.5. Let 8 € {u, A + 2u} and |rg(y, ()| > 5 > 0 for all (y,¢) €

Bs(y*) x O(2d1). Then there exists a constant Cs > 0 independent of N such that

IVsxu (s, D)V |y,=ollz2(r2) < Csllallz2(g)- (1.56)

The proofs of Proposition 1.4 and 1.5 can be found for example in [IY7]. Next

we consider the equation
(Dyz _Fg(yv S,D/))XV(S,D/)U) =9, w|yz=1 =0, supp V C B(s(y*)ﬁg.

Proposition 1.6. Let 8 € {u, A + 2u} and |rg(y, ()| > 5 > 0 for all (y,¢) €
Bs(y*) x O(61), s* # 0,&8 # 0 and suppx, C O(d1). Then for sufficiently small

0,01 there exists a constant C's > 0 independent of N such that

1 3
I (s, D'l 1) < Ci (ﬁngums(g) T st ||qu('70)||L2(ag)> s
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For the proof of this proposition, we can use the exactly same arguments as in
[IP], and we give it in Appendix II for completeness.

Let 8 > 0 and w = w(y) satisfy a scalar second order hyperbolic equation

o O B . )
Pgsw=¢q ing, a—y2|y2:1/Nz = W|y,—1/v2 =0, suppw C Bs(y*) x R".

Let Pj _ be the formally adjoint operator to Ppg s, where 8 € [, A+2p]. Set Ly g =

Ps s +P;
2

PB,S—Pé‘,S

5 . One can easily check that the principal part of the

and L_,ﬁ =

operator L_ g is given by formula

~ ow
L_”gw = _28()03;0 3—3/0

ow ow ow

ow
et / et et / 2 e
+ {28% i 250’ (y1) <<py2 o0 + 0y, 3y2> +25(1+ (£'(y1))") Py, 91s } :

Obviously L4 gw+L_ gw = q. For almost all s € R' the following equality holds

true:

Eﬁ+||L—,ﬂﬁlliz(g)+||L+,ﬁ@||iz(g)+Re/g([LH%L—,ﬂ]@,ﬂ?)dy: lallzz gy, (1.58)

where

Eﬂ = /ag ﬁﬂ(ya V‘:Ov (07 _17 0))(Sﬁﬂ(yv VZT),W) — sgpg(y, V¢)|w|2)dy0dy1

+Re [ By, V5, ~e) T sdundyn (1.59)
oG
and
5ﬁ(9757§) = fogo - 5(5151 - gl(yl)(élé + 5251) + (1 + |£l(y1)|2)£2§2)-

We note that ¢y, |ag = ¢y, |ag for k € {0,1}. Therefore on 0G the function V¢

is independent of N and |Vé(y') — Vo(y')| < C;A/N where the constant C7 is
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independent of N. In particular, for all sufficiently large N, we have (1.6). It is

convenient for us to rewrite (1.58) in the form

2p =55 + 55,

ow ow ow ow
5 = Re / . 28ﬁ(y*)—w{(ﬁ(Y*)3—Zsoy1 5) + B 5,00 (¥") = 5 <y*>>}dyody1
ow

Y2 Yo
. . ’ o (| 00
+/yFOSB(y )wyz(y){‘a—yo —B(y)(a—y1 )

—5(py, (") = B9y, ) + ¢}, (y*)))I@IQ}dyodyl-

0y

where €(6) — 0 as 0 — +0. It is known (see e.g., [Im2]) that there exists a parameter

gL
0y

Then
2

: (1.60)
L2(G)x H'*(G)

23] < e(0)s

7 > 1 such that for any 7 > 7 there exists so(7) such that

1 ~ 1 ~ o~
- s36) + 14,8132 ) + (L., L 51, B) 2(9)

+Cs5/|Wl| L2 (9 |0y, @ L2(ag) > Cosl|Wl|3r10(gy Vs > s0(7), (1.61)
where Cy > 0 is independent of s. Combining (1.58) and (1.61), we arrive at

1 - 1 - ~
ZHL—,ﬂquHi%g) + Z||L+,[3qu||iz(g) + C"5)">°||qu||fql,s(g) +Xp

< Cro(llgll2gy + sl1@llz290) 10, @ L2 (0g) + 1@ 1|71 (agy)s s > s0(7).  (1.62)

We argue microlocally to obtain the Carleman estimate for the function y, (ue®?).
In Section 2, we consider the case where the support of the function y, is in a
neighbourhood of ¢* such that r,(y*,(*) = 0. The case ryy2,(y*,¢*) = 0 is dis-

cussed in Section 3. In Section 4, we consider the case of r,(y*,(*) # 0 and
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Tat2u(Y*,C*) # 0. Hence all the possible cases are covered. Finally, for completing
the proof of Theorem 1.1, we combine all these microlocal estimates.

The rest part of this paper is organized as follows.
Section 2. Case r, =0
Section 3. Case ryyz, =0
Section 4. Case 7, # 0 and ry42, # 0

Section 5. Application to an inverse problem.

§2. Case r, = 0.
In this section we treat the case where supp x, C O(61) and r,(y) = 0 for v =

(y*,(*) € 9G x S3. Throughout this paper, we use the following notations:

z = (21,22) = (rotu,divu), u= (ug,u2), v = (v1,0v2).

Henceforth v(s, &', y2) is the Fourier transform of v(s,yo,y1,y2) with respect to
Yo, Y1, and we set w, = (w1, wa,) = xu (s, D" )w.

This section is devoted to the proof of the following lemma.

Lemma 2.1. Let v = (y*,(*) € 9G x S be a point such that r,(y) = 0 and

supp X, C O(d1). Then for all sufficiently small §; > 0, we have

(V Ovy a%,,)
vV ay2 Y ay%

< C(Ivlre a0y + 1VIFrze ) + 1Ee* e gy + 5118 fn . agy)-  (2:1)

2 2
N Z S4—2|a|||8yaVy||i2(g) + s
|a|=0

H2:5(3G) xH1:#(8G) x L2 (9G)

Proof. There exists a constant C; > 0 such that

165 — %0l (y") — uly™)Es + nly™)s*el, (v")|

§0151(|fo|2 + |61|2 + 82), V(¢ e 0((51) (2.2)
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We remind that by (1.58)-(1.61) there exist constants Cq, C'5 > 0 such that

CQSH’U)LV |%’1,5(g) —f— El(il)

2

<Cs)| P swn][3a(g) + €(6)s

3w17,j w
8y2 » Wl

where €(6) — 0 as § — +0. Note that El(}) can be written in the form

L2(8G)x H' = (8G)

4 /8 oy Vo ()€ )€ ) + 5y ) ()

Ty 4 Js 4 s (2.4)
If 7342, (y) =0, then

0y (¥*) =0, @, (y*)=0, &=¢6=0, s*=1
By (1.6) this is impossible.
Therefore r542,(7) # 0 and the factorization (1.55) holds true. We set V)\ﬁrz“ =

(Dyz - F+

X2, (U5 5, D))ws . Then

Pxi2u(y, s, D)wa,y = (A4 2p)|G|(Dy, — F;_|_2N(y, S, D/))VA_:QM + Txt2pW2,0,
where Th 2, € L(HY(G), L*(G)). Therefore Proposition 1.5 immediately yields

“(Dyz - Fi_—i-Zu (ya 5, D/))w27y|y2:0||L2(8g)

§C4(’|P)\+2u,sw2,u

129y + IWll (a5 (g))2)- (2.5)

Now we have to estimate Ef}). First we note that

071 _ Q%uy Puy O%uy , B 0*u , ou
0n ™ oo~ o oy T\ g ) Ry,

0 ~ 82u1 8211,2
+—(As(y1), g) — - ? (1), 2.6
gy, Ae(0)8) = 5 = 52 ) (2.6)
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0z9 0%uy Puy  O%uy 0*u , ou
lyo=0 = - =4 — A —
|y2=0 + 02 012 (y1) 1(y1), 02 + { A1(v1), o0

0ya 0y10y»

0 ~ 82U2 8211,1
+ (A1 (1), &) + —2 — 20 (y1). 2.7
g, ). 8) + 5 = Gt ) 2.7

We may rewrite (2.6) and (2.7) as

9z, -
e®¥ < 0y2 > = —A(yl)DZ%v — A'(y1)Dy, v+ K(y',s,D")ge’? — I(yl)Div.

dza
8y2

where we used the notations

Aw = ()t =Lyl ) A= (gm0,

a;; are the elements of the matrix A introduced in (1.12) and K (y', s, D) stands

for some first order differential operator. Therefore

9z1 ~ ~
I~ tes? <% > = —I_lA(yl)D?/%v—I_lA'(yl)Dy1v+I_1K(y', s, D")ge®? —DZQV.
0y

(2.8)

Using the definition of the operator F;\r+2u(y, s, D'), we have

023 s
Y2

(o) (5260 ) = 00/, 0) = Do sl

i}, o, (Y, 0,5, D) (b21(y1, Dy, Jv1,u+b22(y1, Dy, Jv2,0+ X0, ba1+baa]v+x, Co (y1)gf(3w))-
2.9

Here we recall that by; and bgy are defined by (1.16). Substituting (2.9) into (2.8),
we can obtain

DZ2V,/ =f— iI7'Dy,wy &1 + R(y', s, D')v, (2.10)

where we recall that €3 = (1,0), and we set

3 s ey, lwn )

<iVN (ylv 0) + iai—{-m‘(y/v 0,s, D/)C2 (yl)gestp - [XV? 3903/2]7112 + [Xua ba1 + b22]V
+[xv, —I_lA(yl)D?/1 — I_lg’(yl)Dyl]v +xo I 'K(y', s,D)ge*?,
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R(y',s,D")v,

0 0
=7t . . 5
( _Za;\:_zu (y/7 07 S, D/)b21(y17 Dy1) _Za;\:_zu (yla 07 S, D/)b22 (yb Dy1) > M

—I7'A(y1)D; vy, — I7'A'(y1)Dy, vo,

wy, = (W1, Way), vy = (V1,0,02,0), v, = xu(s,D")v.

By (1.51) and (2.10), we obtain

X (5, D")B(y', D')v = x,, (5, D")fe*? + x, Q" K ge**

+(f— il 'Dy, w1 & + Ry, 5, D')v,). (2.11)
Next we note that

det (B(y*,&" +is*Vo(y*)) — R(y", 5%, £)) = p? (] +is"py, (v*)". (212)

Really
~ 2}(\)\+u) 0
B(y*,&" +is*V(y*) = (& +is" oy, (v)? | 2 4y |- (213)
0 — o5
I
Moreover

0 0
( —iai_+2u (y*7 S*a 5*)521(}’*, 5* + ZS*V(P(}’*)) —iai_+2u (y*7 3*7 6*)1)22 (y*a 5* + ZS*V(p(y*)) >

0 0
= (ssnen B 2 i )

and
A 0
o = (5 )@ i)
Thus
iom 0
® ok ok +2p * . % *\\ 2
R(y™, s™, =1 .. +1 ) . 2.14
(y*, s*,&) (251gn(§f)2 peen 1)(61 $" @y, (¥7)) (2.14)
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In terms of (2.13) and (2.14), we easily obtain (2.12). Set
S(y',5,60,&1) = By, &' +isVye(y)) — R(y', 5,£).
Let S(y’, s, D") be the corresponding pseudodifferential operator:
xv (s, D")S(y',s,D")v =1, + Yo Q 1 Kge®® + (f' — iI_lewl,,,é'l).
Then
S(y', 5, D"y + [xu, By, D)]v = £, + x, Q' Kge*? + (f — il "Dy, w1 ,€1). (2.15)
Since we can direcly verify that S(y*, s*,£*) # 0, we have

(V Ovy 32%)
vV ay2 Y ay%

<Cs(s[[fe”? |22 (06) + sllge”® 1. ag) + 511V I (og)

2
S

H2:5(3G) xH1:# (8G) x L2 (9G)

+J1+ V(- 0)[1£20))- (2.16)

Note by (2.2) that for any € > 0 there exists d1(€) > 0 such that

< ov, 82V,,>
Vo, 5> 2
Oy2 0y ) llm2.« (o)1« (09)xL2(99)

+Co5(||ge* I (ag) + 1V II311 .+ (0g))- (2.17)

2
J3 < es

In order to estimate the term Jy, we consider two cases. First we assume that
s* # 0. Then by (1.18)-(1.20) and r,(y) = 0, for given € > 0, there exists dy such

that if 0 € (0,dp), then

610y, (V") = Soyo (¥ ) < €€, V€ € O(01). (2.18)

By this inequality, we obtain

< ov, 82V,,>
Vo, 5> 2
Oy2~ 0y ) llm2.« (o)1« (09)xL2(99)

+C75(||ge”® |31 (ag) + VI (a6))- (2.19)

2
Jos < e€s
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Second let us assume that s* = 0. We solve equation (2.15) with respect to the

variable v,:
Vy = S(yla S, D/)_l(_[XVa B(y7 D)]V
+x,Q  Kge®? + £, + (f — il 'Dy,w: 1)), (2.20)

where the principal symbol of the operator S(y',s, D')~! is the inverse matrix to

the matrix S(y’, s,&o,&1). Therefore on 0G we have

HY)eu (Y7 =~ ou (v7)
=i(1(Y") Py, () Dyy = @y (y*) Dyo ) (b11 + b12) (91, D)
xSy’ 5, D") (= Ixv, By, D)V + £, + x,Q ' Kge?
+(f — il Dy, w,E1)). (2.21)
By M we denote the pseudodifferential operator with the symbol
My, 5,&) = i(u(y*) ey, (7)1 — g0 (y)€0)b1 (Y1, & +isV'0)S(y', 5,€) 7 T Viey.

Since b11(y*,&¢’) = 0 and b1a(y*, &) = 2i&;, we have Re M(y*, s*,£5,¢7) = 0.

Therefore, by Garding’s inequality, we see

Y2

(V Ovy 32%)
V> 3y2 b ay%

On the other hand

ow =
Re/ (1304 (V) Bys — 240 (¥9)Dy,) (011 + b12) (91, D)S(y', 5, D) 11wy, dS
ag

2
> —€

(2.22)

H2:5(3G) xH1:#(3G) x L2 (9G)

slIRe(u(y™) ey, (¥) Oy, — yo (¥")Oyo ) (b11 + b12) (31, D)
xS(y', s, D) (=[x, B(y, D) — QD2 ]v
+H + QT Kge™ + iV, (4, 0) 22 ag)

§08(||PA+2u,sw2,u||%2(g) + 3||V||%11,s(ag) + 3||f€w||%2(ag) + 3||g€w||%11,s(ag%)- )
2.23
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Here we recall that e; = (0,1). Inequalities (2.22) and (2.23) imply

< ov, 82V,,>
Vo, 5> 2
Oy2~ 0y ) llm2.« (o)1« (09)xL2(99)

+Co(s[|VIIErr.e ag) + Ife*[[rr.e g) + sllge™[lErr.e ag))- (2.24)

2

Jo < es

By (2.16), (2.17), (2.19) and (2.24), there exist constants C7o > 0 and Cy; > 0 such

that

2

ov, 0%*v
»() > o L, —Z v
e Ty’ Oy3

—Cua(slIVlIE e (ag) + €™ 1. (o) + sllge™llEnr .« ag))- (2.25)

H?2:5(8G)xH!:¢(8G)xL2(8G)

By (2.3), (2.4) and (2.25), we obtain

< ov, 82v,,>
vV? a Y a9
Y2 8y§

<C12(sVI[frr.e (ag) + Ife*lErr. o) + sllge™IIEar.e ag))- (2.26)

2
s||w17,,||12ql,s(g) +s

H25(0G)x H!-# (0G) x L2 (8G)

By (1.61) and (1.62) with 8 = A + 2, we have

sllwa s gy < Cra(slIVIIEe agy + I1Fe? 51 gy + 5llge™ [F1s agy)- (2:27)

Therefore combining (2.26) and (2.27), we obtain

< ov,, 32v,,>
Vv, 5>
Y2 8y§

SCM(SHVH%{LS([)Q) + ||f€w”%{1,s(g) + SngwH%{l,s(ag))-

2

s||w,,||%11,s(g) +s

H25(0G)x H!-#(8G) x L2(8G)

This inequality and Proposition 1.3 imply (2.1). Thus the proof of Lemma 2.1 is

complete. H

§3. Case ryyz, = 0.

In this section, we wil prove
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Lemma 3.1. Let v = (y*,(*) € 0G x S® be a point such that ry42,(y) = 0 and

supp x, C O(d1). Then for all sufficiently small §; > 0, estimate (2.1) holds true.

Proof. By (1.19) and (1.20), there exist o > 0 and C; > 0 such that for all
91 € (0,9p) we have

<02 +5%), Ve (3.1)

We note that if r,(7) = 0, then {§ = &F =0, s* =1 and ¢, (y*) = ¢, (y*) = 0.
By (1.6) this is impossible. Therefore 7,(v) # 0 must be true. Then there exists a

constant Cs > 0 such that
—Im T} (y,¢) > Cas,  V(y,¢) € Bs(y*) x O(61),

provided that |6] + [d1] is sufficiently small. We set V:f = (D, — ' (y, s, D'))wy .

Then we can represent P, , as
Pu,s(y, S, D)wlﬂj = IU’|G|(D?J2 o F; (y? 8, D/))V;j_ + T;itwlyw

where TF € L(H'*(G), L*(G)). This decomposition and Proposition 1.5 immedi-

ately imply

H\/E(Dyz - F;:i: (ya 5, D/))wl,u|y2:0”L2(8g)

<C3([| Py 5w

[2(g) + ||WllH15(9))- (3.2)

We consider the following two cases.
Case A. Assume that

s* = 0.
Then by decreasing the parameter d;, we can assume that for some constant Cy > 0

£2 4 52 < 0482, V¢ € O(61). (3.3)
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We consider two subcases. First we assume that

Jim Imr,(y*,¢)/|s| # 0.

Then, since s* = 0, we see that Rer,(y*,(*) > 0. Set I = sign lim¢_,¢« Im7,(y*,¢)/|s|-

For all (y,() € Bs(y*) x O(01), we have

F:(y*, ¢*) =L /Rer,(y*, ¢*).
Therefore

L™, )y )y, (yF)ET — 040 (¥%)E5) > 0

Taking the parameters 6 > 0 and 0; > 0 sufficiently small, we obtain

Re Tf (y, O ((y*) @y, (¥")é1 — 04 (¥)0) > 0, Y(y,¢) € Bs(y*) x O(61). (3.4)

Let us estimate E,(}) by (2.4). We have

8w1,,< owy v )
Jo = Re 2s * ’ *) — : *) ) dX
s=Re | 20ty TR (ly) TR, () = T )

. ow,
25 irf ,s,D’w,,( oy (F*) — = Ouo *)dZ
p(y™)il; (y Jwiw | #(y*) oy Y (y*) g Y (y*)

=Re

8’(1)]_ v 3w1 v
he 25 ZV+ 0 < i : 1 *) = ’ 0 * >d2
oo puly (O ™) =5, =0 (V1) = 5= 0u (v7)
—Re /;g 23/11 y1 ‘Pyl( ) DyO QOyO( ))F (y7 s D )wl L1 de
+ * a,u}l,l/ % 3w1,u .
+Re [ 2sp(y*)iV, (-, 0)| p(y*) 5o P (y*) — G P (y*) | dX. (3.5)
¢ Y1 Yo

By (3.4), (3.5) and Garding’s inequality, we obtain

(o)
y Wi,v
9Y2 L2(8G)x H' % (dG)

—C6(0,01) (|1 PuswivllLz gy + 1V () (3.6)

2
J2 Z —056((5, 51)
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Second we assume that
: *
lim Imr,(y*,¢)/|s| = 0.
¢—¢

Then p&i @y, (¥*) — 5@y, (v*) = 0. Hence also in this subcase, we have (3.6).

Now we estimate J3. By (1.18)-(1.20) there exists a constant C7 > 0 such that

166 —5705, (v ) —(A+2u) (v )i+ (A21) (v*) 5% 0y, (v*)| < Crdr (§5+E1+5%), V¢ € O(6r),
which yields

& — w(y")& — 202 (v*) + *uly*) ey, (v*)
=(A+ ) ) (E = s%0r, (y") + (65 — A+ 2u) (y)ET — 5% (v") + s (A + 2p) (y ") 0l (v"))

>(A+ ) () (EF = 5%y, (v7)) — Crou(€5 + €7 + 7).
Therefore, since s* = 0, for all sufficiently small §;, there exists C's > 0 such that
& — uly el — sl (y") + s*u(y ™), (v*) > Cs(&5 + €5 + 7). (3.7)

By (3.6), (3.7) and (2.1), there exists a constant Cg > 0 such that

3’[1)1
1 v
E,E) > Cy H( 902 7w1,u>

2

L2(8G)x H:# (9G)
~C(8,01) ([ Puswil|Z2(g) + IVI[En e g))- (3.8)

Inequalities (3.8) and (1.62) imply

awl,y w
3y2 » Wlv

Next we need the estimate for (

2

s < Cro([Ife™ |32 gy + VIIEr20(g))- (3.9)

L2(G)x H'*(G)

v ov, 8% v,
1] ayza 8:11%

). We may rewrite equations (1.45)

and (1.46) as

_Dzovl - ()‘ + 2/1’) (iDyl - ié,(yl)Dyz)wQ + /l'iDyzwl + kl (ya D)V = fles(pv (310)
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—Djovg — (A +2p)iDy, wy — p(iDy, — ' (y1)iDy,)wy + Ky(y,D)v = f2e*?, (3.11)
where K 1 and K o are first order differential operators. Furthermore, setting
a1 = f1e*? — piDy, w1 — Ki(y, D)v,
G2 = f2e*? — p(iDy, — £'(11)iDy, )wr — Kz (y, D)v,
we rewrite (3.10) and (3.11) as
—Dzovl — (A +2p)(iDy, — ' (y1)Dy,)we = @1 (3.12)

and

—Dzovz — (A +2p)iDy, we = qa. (3.13)

Using (3.13) we get rid of the term D,,w, in (3.12):

— D7 v1 — (A + 2p)iDy, (b21(y1, D")v1 + baz(y1,D")vz) — £ (y1) D}, v

=q1 + il (y1)g2 + K3g. (3.14)

Here K3 is a first order differential operator. Using (1.13), we can obtain

Dy, b11(y1, Dy, Jv1 + Dy, b12(y1, Dy, vz = Dy, w1y, =0 + Ksg. (3.15)
Set
K(y', D) = <—D§0 — (A +2p)iDy, b21(y1, D) —(A 4 20)iDy, baa(y1, D) — £'(y1)D
’ Dyl bll(ylv Dyl) Dyl b1z (yb Dyl)

By (3.14) and (3.15), we have

K(y',D')v = m,

where m = (¢1 + i (y1)q2, Dy, w1|y,=0 + K3g). Therefore

’C(y/v D/)Vv = XV(SvD/)m - [XV(SvD/)vK]Va
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and since det KC(y',0,&*) # 0, we have

v, = K71y, D) (x.(s,D")m — [x,(s,D"),K]v) + T(y', 5, D")v,.

Hence

2
S

( ov, 82v,,>
Vvs 5y 9
Y Y2 39%
<Cui <3||V||%{1,s(ag) + ||f€w||%{1,s(g) + 3||g€w||%{1,s(ag)

ow 2
( 1’”,w1,,,> . (3.16)
Y2 L2(8G)x H'»# (9G)

By (1.62) with 8 = A+ 2u and 8 = 2u, we obtain

< ov, 82v,,>
Vv, 3 2
dyz ~ Oyj
<Cr2(s]|Vl[freagy + Wl gy + £ [[frr. gy + sllge™ (i (ag))- -
3.17

H2:5(9G)xH1#(3G) x L2 (9G)

+s

2

5||Wu||%{1,s(g) +s

H2.(0G)x H!#(8G) x L2(8G)

Applying Proposition 1.3 we obtain (2.1).
Case B. Assume that s* # 0. If 6; > 0 is small enough, then there exists a

constant Ci3 > 0 such that
€0y, (v) = (A + 20)€10y, ()12 < 0TC13(JE0 17 + 57). (3.18)
By (1.60) and (1.62), there exist constants C14 > 0 and C5 > 0 such that

1
2o, + Cuasllwa 3. g) < Cus(| Paropswll3eg)

8@02,,/ w
ay2 » W2 v

2

|V I[F2.0 g)) + € (3.19)

L2(8G)x H'.*(dG) '
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Note that E(l) can be written in the form

A2p
(1) 2/ % * 8@02,,/ 2 3 2/ %\ 3 * 2
Xtou = . $(A+20)°(y")py. (v7) o | TF (A4 20)*(y") @, (Y )ws, ¢ dX
(9’(1)2 v 8w2 v 8w2 v
+Re/ 2s(A+ 2 *—’{/\+2 * * - * 2 }dE
. ( 1) (y") O ( 1) (y*) Py, (¥*) I Pyo (¥*) o
- SO 205 )0 (7E — 4 20)(57)€] — %3, 5)
+52 (A +20) (y*) @y, (v*)} W2, |dS
=Ji + Jo + J3. (3.20)
By (3.15) and (3.18), we have
T T an,V 2
|Ja + J3| < Clge(61) p) , W2,y ) (3.21)
Y2 L2(8G)x H':*(9G)

where €(d1) — 0 as 6; — 0. By (3.21) we obtain from (3.20) that there exists a

constant Ci7 > 0 such that

8w2,,,
Y2

St 2 Cir /ag {(S(A +20)*(y) iy, (v")
E)
3y2 y W2 v

In terms of (1.9), we can represent

2
+ 83\ + 2p)2(y*)g022 (v")|wa,. 2} dx

—€

(3.22)

L2(8G)x H'-5 (8G) '

DZOUQ,V — 2,uD22/1 voy + Tsvy, + Tev + T7(fes¢, ges¢)

=(A+2p)Dy, w2, + X0 (8, D) (f26°%), (3.23)

where we have estimates: Note that

|T5v0 L2 (ag) < €(0)]|Ve 2.2 (a0), | T6vy|lL2(ag) < Cusllvullar« (ag),

1T (fe*?, ge*?) ||L2(ag) < Casll(fe*?, ge*?)[|L2 (ag) xH1+ (99)
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where ¢(0) — +0 as 6 — +0. Hence, since

(& + ioye (%) s™)% = 2u(y™) (& + iy, (y*)s™)? # 0,

from (3.1) and (3.23) we obtain

ows
V502 s ag) < Ci {\V e |
< ov, 82v,,> 2
Vus a3
0y 33/2

Thanks to (1.12), (1.15) and the fact that & + is* ¢y, (y*) # 0, we have

+ H\/EVH%{Ls(ag) + |V§f2€w||%2(ag)}

L2(89)

+es (3.24)

H25(0G)x H!-#(8G) x L2 (8G)

3||U1,u||%12,s(ag)

3’[1)2,,, 2 s s
<Ciq 5|5 + [[VI[1.e ag) + [1Fe* 1 gy + 5llge™ 1. ag)
Y2 lir2(ag)
ov, 9%, |’
+€(d,01)s (v,,,L,—V2 . (3.25)
dy2 Oy3 H?25(0G)xH':#(0G)x L?(9G)

Consequently (3.24), (3.25), (1.12), (1.8) and (1.9) imply

( ov, 82v,,>
vV? a9 a9
Y2 8y§

+5||V||%11,s(ag) + ersw“%{l,s(g) + SngwH%{l,s(ag)}- (3.26)

2
8w1,,,

Y2

S

2
< C9 s
H2:5(9G) x H1:# (8G) x L2 (9G) L2(8G)

By (3.22) and (3.26)

2

0

A2p Z > 0218

(V Ovy a%,,)
vV ay2 Y ay%

—021(S||V||%11,s(ag) + ||f€w||%11,s(g) + 3||g€w||%11,s(ag))-

H2:5(3G) xH1:# (8G) x L2 (dG)

2

Hence, from this inequality and (3.19) with 8 = A 4+ 2u, we obtain
S +S||w27y||?q'1,s(g)

( ov, 82V,/>
Vo, ’
0o 8y§ H2:°(8G) xHL5(8G) xL2(8G)

<C2(s|VI[fr.e(ag) + Ife*IErr.e gy + sllge™|IErr.e ag))- (3.27)
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By (3.27) and (1.62) with 8 = pu, we have

( ov, 82v,,>
VV? a9 a9
Y2 8y§

§C23(3HVH%{1,s(ag) + ||f€w”%{1,s(g) + SngwH%{l,s(ag))-

2
S

+ SHWV“%_ILS(Q)
H?25(0G)xH*(8G) x L2(dG)

Finally using Proposition 1.3, we obtain (2.1). The proof of Lemma 3.1 is com-

plete. H

84. Case r, # 0 and 7549, # 0.

In this section, we consider the case where
(", ¢ # 0 and |ragou(y™, ¢7)[ # 0. (4.1)
We have
Lemma 4.1. Let (4.1) hold at v = (y*,(*) and let supp x,, C O(d1) where 9y is a

sufficiently small positive number. If (* € Wy, then we have

1 S
1vulle2.g) < Cl{s—_(Hf@ Pl gy + [[vIlEr(6))

1
4

1 1
+s1 ||gew||H1,s(ag) + S_%“V“HQ’S(Q)} (4-2)

and
ov,
H <V”’ 8—> H 3 . < Ci(lIvllar -+ ag) + [[Wllar= (g)
Y2/ ll|g3°(0g)xHZ °(8G)
+Hfe  lare ) +V5llge™ ure ag) ) (4.3)
If * ¢ Vo, then estimate (2.1) hold true.

Proof. Thanks to (4.1) and Proposition 1.4, decomposition (1.55) holds true for

B = p and B = A + 2u. Therefore we have

(Dy, =T (y, 5, D)) wiplys=0 = V.7 (-, 0), (4.4)
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(Dy, — F;\L+2u(yv $, D)) w2 ply,=0 = V)j—zu('v 0). (4.5)

By Proposition 1.5 we have the a priori estimate:

V[V 0122 00) V6l Vi, (5 0) 1720

<Co(|Paropswallz2(g) + | Puswillze gy + Wl g))- (4.6)
By (1.13) and (1.15), we rewrite (1.51) in the form:
B(y',s,D')v, =q, ¥y €0g, (4.7)
where we recall that the operator B(y’, s, D') is defined by (1.22) and we set
q = Ti(ge™) + T2(f(y', 0)e™) + G(y') (V5 (,0), Vil s, (+ 0)), (4.8)

Ty € LHY$(0G),L%(0G)), T> € L((L?*(9G))?, (L*(0G))?) and G(y') is a C* matrix-
valued function.

Now we consider the following three cases.

Case A. det B(y) # 0 and (* ¢ ¥. Here we recall that the sets ¥, Uy and U,
are defined by (1.29) and Lemma 1.1. In that case, there exists a parametrix of the

operator B(y', s, D') which we denote by B~1(y’, s, D'), and we have

(Ul,I/7 UZ,I/) - B_l(yla S, D/)(Vlj_('a 0) — 1, V}I:_Qu,('a 0) - q2) + K(Ul,lh UZ,I/)? (49)

where

K € L(L*(0G), H>*(0G)).

By (4.6) and (4.9)

[0l + [Basaul < Ca(llfe™ I gy + [VIIFLe(g) + sllge™ . g))- (4.10)
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Inequalities (1.62) and (4.10) yield (2.1).
If det B(y) = 0 and ¢* ¢ ¥ then either F?“('y) < 0 or FX%(’y) < 0. In the first

case we have the estimate

1(b11+b12) (g1, 5, D) v llee(6) < CalllPrsapswallLz gy HIPuswi L2 ) H Wi« o)

and in the second case we have the additional estimate:
[(b21+b22) (y1, 8, D)V |lmrs gy < C4(||P>\+2u,sw2||%2(g)+||P ,swl||%2(g)+||w||%11,s(g))-

We combine one of these estimates with (4.7) to obtain (4.10). Then, by (4.10) and
(1.62), we obtain (2.1). Now we consider the case where (* € U.

In order to treat this case, we will use the Calderon method. First we introduce
the new variables U = (U, Us,Us, Uy), where (Uy,Us) = A(s,D')v, (Us,Uy) =
D,, v, and A is the pseudodifferential operator with the symbol (s? + &7 + &2 + 1)%.

Then problem (1.8) - (1.9) can be written in the form:
D, U=M(y,s,DVU+F inR>x[0,1], By, s, D)U(y)|y,=0 = ge’?, (4.11)

where F' = (0, P(y, D)v) and we set D = (Dy,,Dy,,Dy,), Dy, = 5= + is0y,¢
and M (y,s,D') is the matrix pseudodifferential operator whose principal symbol
M, (y, ) is given by formula (see [Y]):

B 0 A1 Es .
Ml(ya C) - <A_1M21A1_1 A_1M22> - ZS(pyzE4a

where Ay = (|, M1 (y, &' +isVy0) = ((§o+ispy, )2 — u(& +ispy, )?) Ea— (A+ )00,
My (y, &) = —(A + p)(0TG + GTO) — 2u0GTEy, A = (A + p)GTG + p|G2Es,
Gly) = (=0 (11),1), 0 = (€1 + i5¢y,,0). Hence and henceforth, 97 denotes the

transpose of the vector 0. For the stress boundary conditions, we have

B(y', s, D")U = (B1(y',5,D"),Ba(y', 5, D)) U = ge®?,
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where
AGTG + udT G + pfGT By
NN S, ’

Case B. det B(y) = 0 and ¢* € Us,.

IB1 (y/7 S, 5/) =

B, (y', s, D') = A.

We introduce the matrix symbol K(y', s, o, &1) by formula

ro 1 By (y',¢)  —Bi2(y', Q)
My, 0 = 14+s2+€2462 <—le(y’,C) Baa(y', €) ) (4.12)

Applying the pseudodifferential operator IC(y', s, D') to equation (4.7), so that
K(y',s,D"B(y',s,D")v, = K(y',s,D')q. (4.13)

The principal symbol of the operator K(y’, s, D")B(y’, s, D) is given by the formula
K(y',¢)B(y',¢) = det B(y',()E4/|¢|?. Note that if (* € ¥ and s* # 0, then Im

a, (v) <0and Im aj,,,(7) < 0. Hence we may rewrite estimate (4.6) in the form

0 M2 + 02
A A ST
§C5(||PA+2u,sw2||i2(g) + ||Pu,sw1||i2(g) + ||W||%11,s(g))- (4.14)

Thanks to (4.8), (4.14) and Condition 1.2, we have estimate (4.3).
Now we need to show that estimate (4.2) holds true. By ¢* € U5, the matrix
M, () has four distinct eigenvalues given by (1.18)-(1.20). Following [T], in terms

of the change of variables W = S~1(y, s, D')U, we can transform system (4.11) to

Dy, W = M(y,s,D')W +T(y,s,D')W +F, (4.15)

where

IF||z2ry;m12 00)) < Ce(||P(y, D)V|latsg) + [ VIL2r1;H 2 (06)))- (4.16)
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Here the matrix M has the form

T o - (Mew.Q) 0 _(Tipuw,0) 0
M(y7C) - < +0 M_(y,C)>’ M:I:(yag) - ( At 0 Fl:i:(y7<-)>7

and the operator T'(y,s,D’) € L>(0,1; L(H*(G),H»*(G))). We represent the

symbol S in the form S = (s7, s}, s, s5 ). Here

st =((0+ 0%y 2, DA, a0, (0 + 035, GIATY)),

s5 =((af (&1 +ispy, — afl)), —(&1 +ispy, — aXl)?)AT?,

aEAT k(& +ispy, —atl), —(& +ispy, — afl)?)AT?),

are the eigenvectors of the matrix M;(y,(), ¢ € S2, which corresponds to the
eigenvalues Ff+2u and Fljf.
Now using the standard arguments (see e.g., §4 of Chapter 7 in [Ku]), we can

estimate the last two components of W as follows

(W3, Wa)[lur.+(g) < Cr(I1P(y, D)vllLz(g) + [ViImre(g)), (4.17)

where the constant C7 is independent of N.

Now we need the estimate for the first two components of vector W. Henceforth
we set j(B) =2if f=pand j(B) =1if B = A+ 2pu.

There are two possibilities (i) and (ii):

(i) ImF[}L(V) > 0 for any B € {p, A+ 2u}.

Then, by the same argument (see e.g., [Ku], pp. 241-247), we have

IWi)llarsg) < Cs(|P(y, D)vllLe gy + [IWies) (- O)lmr/2.5 (agy + IVIIEL:(6))-

(4.18)
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Combining this inequality with a priori estimate (4.3), we have

Wiyl o) < Co(||P(y, D)VllL2(gy + [[VIlateag) + llge*? [|ur.- (ag)

1
+ﬁ(||w||H1’S(g) +1fe* |l o)) + [[VIE1e6)).  (4.19)

(11) There exists B € {p, A+ 2u} such that ImFg’ (v) = 0.

Applying Proposition 1.6, we obtain

1
([1P(y, D)vller.eg) + IVIE25(g)) + 87 [|Wj(s) (-, 0) ]

1
Wi llms(g) < Cro <_ H%’5(89)> '

NE

Combining this inequality with a priori estimate (4.3), we have

1 L
Wi llarsg) < Cll{ﬁ(HP(y, D)v|as(g) + [[VIa25(g)) + 57[|8e°? |11+ (89)
Lt (v b Wl + =l lse(o)) (4.20)
S v 1,s — 1,s — 1,s . .
H!:s(9G) \/g H!:s(G) \/g H!:s(G)

In view of (4.17), (4.18) and (4.20), we obtain (4.2).
Case C. det B(y) =0 and ¢* € ¥;.

In that case we have

£y =0, 5@y (y") =0. (4.21)
Then we can assume that
ImI}(y) = ImDY,,, () > 0. (4.22)
In fact, if
Im I} () = Iml'Y,, ,(7) <0, (4.23)

then the situation is simple because we have the decomposition

Pg s(y, 8, D)wjs),, = BIG|(Dy, — T (y, s, D/))Vgi + T wis) v
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where T € L(H"*(G),L*(G)), B € {pm, A+ 2u}, j(B) =1 for B = p and j(B) = 2
for 5 = XA + 2u. This decomposition, (4.23) and Proposition 1.5 imply
Vs(Dy, =I5 (y, 5, D"))w;(s) wlys=o0ll 2 (69) < Cra(l|Pa.swjg)ullL2@)+IVIIEz2(g))-
(4.24)
Obviously
VI 0) =V (50) = (e (¥, 0,5,D)

—a, (¥',0,5,D")((b11(y1, Dy,) + bia(y1, Dy, )) vy + C1(y1)ge™®) on 9G.

and

V)\—:—Zu('7 0) - )\_—1-2“('7 0) - (a;\l_+2u(y/? 07 S, D/)

—04;4_2“(9/7 0,5, D"))((b21(y1, Dy,) + baa(y1, Dy, )) vy + 6’2(y1)g68¢) on 0G.

Since ag (y*, C*)—CYE (y*,¢*) = 2/ru(y*, (*) # 0 and the determinant of the matrix

< Tu(y*, C)b1n (¥ ", € +is* 0y, (%)) 2/ru(y*, ¢*)bia(y™, £ +is* oy, (y*))>
2/ (Y%, C)b21 (¥", 6% + 05"y, (¥7))  2/Tu(y*, C*)b2a(y™, &% +is™py, (¥7))

is not equal to zero, by (4.22) and Garding’s inequality, we obtain

( ov,, 32v,,>
Vo, =7,
Y2 3y§ H2:5(8G)xH1:s(0G)x L2(8G)

<Cu3([|fe™ |31 gy + sll8e™ [ (agy + IVIIFrz.s (gy)- (4.25)

2

S

In terms of (4.25) and (1.62), we obtain (2.1).
The matrix M () has only two eigenvalues given by (1.18)-(1.20). Moreover it
is known that the Jordan form of the matrix M;(y) has two Jordan blocks of the

form:
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Following [T], in terms of the change of variables W = S~1(y,s, D')U, we can

transform system (4.11) to the form

D,,W = M(y,s,D')W +T(y,s,D')W +F, (4.26)

B(y', s, D)W = ge*?, (4.27)

where

|F(| 21,110 (9g)) < Cra(||P(y, D)v]lare(g) + |Vl L2111+ (96)))-

and the principal symbol of the operator B is defined by formula

B(y',s,&) =By, s, ¢Sy, 0,5, ). (4.28)

Here the matrix M has the form

Vo) = (Me@, O 0 (T2 00 min(v.0)
M(yag) - ( +0 M—(?J,C)) ) M:l:(y7<) - < + 0 Fl:i:(yvg) > y

and the operator T'(y, s, D') € L>(0,1; L(H"*(G), H»*(G))). We describe the con-
struction of the pseudodifferential operator S. We write the symbol S in the form
S = (st 57,57). Here st = (0 + 0f 5, GAT " ok, , (6 + 0, G)ATY)) are
the eigenvectors of the matrix M;(y, () on the sphere ¢ € S% which corresponds to
the eigenvalue Ff 4o, and the vectors sét are given by

1

33‘3 = Eisi, Fy=— (Z - Ml(ya g))_ld%
2 Cct

where C* are a small circles oriented counterclockwise and centered at Fff (), and
s solves the equation M(y)s* — [ (y)s* = st. By (4.22) the circles C* can

be taken such that the disks bounded by these circles do not intersect. Note that
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the vectors s;-t € C%*(Bs x Os,) are homogeneous functions of the order zero in

(s,€0,&1). Now, similarly to (4.18), we can estimate the last two components of W

as follows

|(W3, Wa)|| < Ci5(||P(y, D)v||gr.s gy + [VIE2:5(6)) (4.29)

H2*(99)

where the constant C15 is independent of N. Now we need to estimate the first two
components of the vector W on 0G. We can decompose the boundary operator

B(y,s,D') = (B*(y',s,D'), B~ (y',s,D')) such that
Bt (y', s, D')(Wy, W) = =B~ (¢/, 5, D) (W3, Wy) + ge*?, (4.30)

where B+ (y,¢) = (IE%l (y,¢), A)S+(y, ), B, is the principal symbol of the boundary

operator B and S, = (s7, s3).

At the point v the vectors s, so are given explicitly by

= (& +is"py, (y"), isign(&7) (&7 +is™py, (¥7)))

’ (€1)% + (s7)?

. (A +3u)(y*) ision(E*
TN ROy D

) = (~ sign(&h) (€ +is"py, (y*>>,ﬁ> |

st(v)=1[¢ ! isign(&7) (&7 + 8™ NS+
2 (7) (9 (T)ZHS*)Q{ gn (&) (€1 +is™py, (¥ ))<+n}>-

Therefore
_ 2WilE] +is* oy (y)? el +is"ey (v) )
detB+ = % - v % . * 'yl* *
™ <2u<sl+zs P (y7))?  —pi A2 + 5™y, (7))
3 92X +4p

=(&1 +i5%0y, (¥")) 1 # 0. (4.31)

A+
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By (4.28)-(4.31) and Garding’s inequality, we obtain
( ov, 82v,,>‘
Vs a9 a o

dy2~ Oy;

By (4.10), (1.62) and Proposition 1.3 we obtain (2.1). B

Vs

< Cis([|P(y, D)v|arsg)+vIa2.2(g))-
H2:5(8G) x H1:# (8G) x L2 (8G)

(4.32)

Now we will proceed

Proof of Theorem 1.1. Microlocally we obtain two types of estimates: If (* € W,,
then we have estimate (4.2), while if (* ¢ Ws, then we have estimate (2.1). By
OW,y(d2), we denote the dp-neighbourhood of the set ¥y in S2. We take the param-
eter & sufficiently small. From the covering of the set OW,(1285) by balls of radius

492, we take the finite subcovering {Bys, ((;) }jer,, ¢ € ¥2. Let {xu }ver, be a par-

tition of unity associated with this subcovering. For the set S2\ OWU2(302), we take
the finite covering by balls of radius . Let {x, },ecx, be a partition of unity associ-

ated with this subcovering. We extend the functions x, as a homogeneous functions

of order zero to a function in C*°(R?). Since Wy C OV4(12402) U S? \ OV5(365), it

follows from (4.2) and (2.1) that

||V||%-12,S(g) < C117 Z ||XVV||%_12,5(Q)
U€T1UT2

1 1 s
< C’17{ (N + S—%> 1Py, D)Vl gy + sllge™ [, (a0)

~

2

11 S

N <N N s_l> 3 34—2'a'||83VHi2(g)}7 VN > N,s > s9(N). (4.33)
=0

Fixing the parameters N and sg (N) sufficiently large, we obtain

V(3. gy < Crs(I1P(y, D)V gy + sllge* e ag))s Vs > so. (4.34)
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Combination of (4.34) with estimates (4.3) and (2.1), yields

< ov, 82v,,>
VV) a5 ) a9 92
Y2 39%

2

s
H2.5(8G)x H':* (9G) x L2 (8G)
§019(||P(y,D)v||%{1,s(g) + 3||ges¢||%{1,s(ag))a Vv e Ty (4.35)
and
S“V”Hf{%”(ag) < 019(||P(y,D)v||%{1,s(g) + 3||ges¢||%{1,s(ag))a Vv e Ty (4.36)

Estimates (4.35) and (4.36) yield

3||ues¢||f{g,5(8g) < Coo(P(y, D)Vl gy + sllge* Irr.- (ag))s (4.37)

where we used ¢ = ¢ on 0f).

We note that estimate (4.37) is obtained under additional assumption (1.35).
Now we will get rid of (1.35). For this, we consider the function fu instead of the
function u, where 6 is a smooth cut-off function such that 0]sg = 1 and 9|QN\Q% =

1. Then it suffices to modify (4.37) and prove

1
s¢p |12 s |12 5|12 s |12
SHue ¢||H%5(ag) S 021 <||f6 ¢||H1’S(g) + Sng ¢||H1’S(ag) + g||ue ¢||H2,s(g)> 5 Vs Z S0,
(4.38)
where we used the fact that p(x) < ¢(z) in Qn \ Qn/2. Next by Lemma 4.1 we note
that the analogue of the estimate (4.3) and (4.2) holds true for the weight function

¢ instead of ¢:
sy |12 sp\ |12
sllxw (ue®®) |[g2.0 g) + slxo (ue )||Hg,s(ag)

<O ([[ue|[Fze gy + 1™ e gy + sll8e”Ifrre 0g))s V¥ € T )
4.39
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Let x_1 and x_» be C*-functions on the sphere S? such that y_1 € C§°(OW¥5(224,)),
X_2 € C3°(S%\ O¥5(362)) and X-1low,(135,) = 1, X—2|s2\0w,(85,) = 1. Hence we
have |[x_1(C)] + |x—2(¢)| > 1 for all ¢ € S?. We extend the functions x_; and y_»
as homogeneous functions of order zero to functions in C*°(R3). By (1.8) and (1.9),

we have

A7'P(y,D)x_1v + [x_1, A" P(y,D)]v = x_1 A" fe*?. (4.40)

Note that we can estimate
Ix=1, A7 P(y, D)]v]lzre(g) < Cas([lue®®|lg2.e gy + ||fe?||lgr.c(g))- (4.41)

Hence applying estimate (4.39) and (4.41) to (4.40), we obtain.

sllx—1(s, D) (ue™®)|fg2.- g)

<Cos(|[ue*?||fiz.e gy + I 1Fre gy + sllge®® [fa ag))- (4.42)
Setting ﬁg,s(y, s, D) = mPg,s(y, s, D), we have
Brs (5 D)X 201 + [x_2, P (o )
,s\Y, S, X—2W X—2,Lp,s|]W1 = X— q
8 AT e AT w1+ 0 )
and
Prsaps (45, D)X 23 + [x_3, Pryaps ( 1 )
2 2p,s\Y, S, X—2W2 X=2, x42pu,s]W2 = X =2 qz .
ins ins (A4 2p) (L + [£'(y1)[?)

By (1.62) we have

Vslx—2 Wz (g) < Cz5{||f€s¢||ﬂl,s(g) +Vsllge |[urs (a0)
X =2, Pu,slwillLz(gy + lx—2, Patop,slwallL(g)

+\/§ X—-2 (g—w7 W)
Y2

}. (4.43)
L2(8G)xH!:*(9G)
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Thanks to the estimates

1x=2: Pus]willz2(g) + lx=2, Prrop,swzllz2(g) < Cas([1fe[[e1.e (g) + [IWler(q))

and
ow
X-2 a—7w
Y2 L2(8G)xH! 5 (dG)
1
<Cs {ﬁ 1£e°? || g2 gy + |lue®®||mrs ag) + [[x—2ue®®||m2.5(ag) },
we obtain

Vslx-2Wlmre(g) < Cor(1fe*®llmre (o) +v/sllge™ |l ag) + [1(1 — x—2)Wl[1.(g)
Ws(l[ue? [l ag) + [[x-2ue? (1220 (30))). (4.44)

Estimating the last term at the right hand side of (4.44), we obtain

Vs|Ix—2Wllmre(g) < Cos(|[fe®?|lirs (o) +/sl|ge |l (ag) + | (1 — X—Z)WHHT(Q)))-
4.45

Since X_1|supp(1—x_,) = 1 by (4.39), we have

1(1=x—2)Wllmre(g) < [Ix—1Wllme(g) < Cagllx—1(ue®®)[|l2.e (g) + [[ue*||mre(g))

1 s s
< Cs (ﬁ”ue ¢HH2’5(9) + [|ue ¢HH1’5(9)> :

Hence, using this estimate, we obtain from (4.45)

Vs|[Wllaie(g) < Ca <||f€s¢||H1,s(g) +Vsllge*? |« (ag)

1
+ﬁ]|ues¢]|ﬁz,s(g) + Hu€s¢||H1,s(g)> . (446)

Applying Proposition 1.2, we obtain

2

> s> 1110% (ue?)||L2 () < Csa <\/5||W||H1qs(g)

|a|:07a:(03a13a2)

NG <u, %) e*?
mn

2

, . + [[ue®®|lg e (g) |- (4.47)
H2°(8G)xH2°(dG)
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In view of equations (1.8) and (1.9), we can estimate 92 (ue®?):

2

107, (ue*®)||2(g) < Css > s> 11)10% (ue?) |2 g + IIfe*(|L2 g
|a|:07a:(07a17a2)
(4.48)
Hence (4.38) and (4.46) - (4.48) yield
[ue?||gz gy < C34{||fes¢”H1s5(g) +Vslge* [l e (a0)
1 s¢ s¢
+ﬁ||u€ lh2.2(g) + lue®®{|mre(g) - (4.49)

Estimate (4.49) implies (1.24). Thus the proof of Theorem 1.1 is complete. B

65. Determination of the density and the Lamé coefficients by a single
measurement.

As one important application of our Carleman estimate, in this section, we will
solve an inverse problem of determining p, A, x with a single measurement, which is
an open problem. We start with the introduction of notations. By L, ,, we denote

the stationary part of the Lamé operator P:

(Lawv)(7) = p(@)Av(T) + (1u(7) + A(@)) Vz(div v (z))

+(div v(Z))VzA(Z) + (Vav + (Vav) D) Vzu(@), 7€ Q.

We assume (1.3) for p, A\, u. By u=u(\, u, p, p,q,n)(z), we denote the sufficiently

smooth solution to
p(@)(97,u)(z) = (Lx yu)(z), = €Q, (5.1)

(B(z, D)u)(z) = n(x), z € (0,T) x 09, (5.2)

u(T/27 5) = p(f), (3m0u)(T/2, 5) = q(i)a T €, (5'3)
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where the functions n, p and q are suitably given functions in order that we can
prove the unique existence of a sufficiently smooth solution to (5.1) - (5.3). For
concise exposition, we do not describe conditions on 7, p, q for the well-posedness
of the initial/boundary value problem (5.1) - (5.3), which can be executed by Lions
and Magenes [LM].

Let w C €2 be a suitably given subdomain. In this section, we consider

Inverse Problem. Let p;,q;,7n;, 1 < j < N, be appropriately given. One have

to determine A(z), u(x), p(z), T € Q, by

u()‘a W, P, pj7q]777])($)7 T e Qw = (07T) X W. (54)

In our formulation of the inverse problem, we exclusively take a finite number
of observations (i.e., N' < 00), especially N' = 1, and ours is different from the
formulation by infinitely many boundary observations, that is, the Dirichlet-to-
Neumann map (e.g., Rachele [Ral).

For the formulation with a finite number of observations, we refer to Bukhgeim
and Klibanov [BuK] as the first paper which used a Carleman estimate and estab-
lished the uniqueness for similar inverse problems for scalar partial differential equa-
tions. See also Baudouin and Puel [BP], Bukhgeim [Bu], Bukhgeim, Cheng, Isakov
and Yamamoto [BCIY], Imanuvilov and Yamamoto [IY1], [IY2], [IY3], Isakov [Is1],
[Is2], [Is3], Isakov and Yamamoto [IsY], Khaidarov [Kh1], [Kh2], Klibanov [K],
Klibanov and Timonov [KT], Puel and Yamamoto [PY1], [PY2], Yamamoto [Ya].

For inverse problems for the Lamé system with the Dirichlet boundary condi-
tion, we refer to Ikehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov and

Yamamoto [IIY], Imanuvilov and Yamamoto [IY7], Isakov [Is1] where for determi-
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nation of some (or all) of p, A, u, one measures the boundary stress on the whole
boundary 0€2 over a time interval (0,7") ([INY], [Is1]) or win (0,7T) X w where w is a
suitable subdomain ([IIY]). In particular, as long as the Dirichlet case is concerned,
in [IY7], the conditional stability in determining p, A, u in the case of N' =1, is
proved.

On the other hand, the stress boundary condition is important also from the
physical viewpoint and is more difficult mathematically: when we can observe solu-
tions only on a subboundary or in a subdomain (which is quite practical), the previ-
ously know Carleman estimates are not applicable, since they require the Dirichlet
boundary conditions on (0,7") x 9€2. Thus there are no results on the inverse prob-
lems for the Lamé system equipped by the free stress boundary condition with data
on a subboundary or in a subdomain, although such a formulation is important.

The purpose of this section is prove the uniqueness and the conditional stability
for this inverse problem with a single choice of initial data (i.e., N' = 1.) Our
argument here is similar to [IY3] and the key machinery is the Carleman estimate
given in Corollary 1.1.

In order to formulate our main result, we will introduce notations and an admis-
sible set of unknown parameters A, p, p. Henceforth we set (z,y) = 2521 xjy; for
T = (z1,22) and § = (y1,y2), and #(Z) denotes the tangential vector on 9 which

is oriented counterclockwise. Let a subdomain w C 2 satisfy

dw D {F € 09Q; (( —7),A(T)) > 0}

—

Uz e 0% (- p),t(@)) <eo} =T (5.5)

with some 9 > 0 and some 7 ¢ .
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Remark 1. In comparison with the condition on w in the Dirichlet case ([IY7]),
we have to choose a larger set w in general. In fact, in the Dirichlet case for the

Lamé system, it is sufficient that w satisfies
ow > (& € 00 (& — ), (@) > 0}, (5.5)

while dw must include the second component of the right hand side of (5.5) in
the free-stress case. As a consequence, for example, in the case where €2 is not
simply connected whose boundary 02 is divided into disjoint closed curves I'y, ..., I'y,
condition (5.5) requires that dw NT'; should contain relatively open subsets for all
j €{1,...,£}. Accordingly for the inverse problem, we have to choose larger T than
in the Dirichlet case, as is seen from (5.12) where 6 is smaller in view of the extra
third constraint in (5.9). We note that condition (5.5) is one sufficient condition
for Condition 1.2, but it is very difficult to sharpen the geometric condition on w

and replace (5.5) by (5.5)".

Remark 2. Under condition (5.5) on w, we can prove the observability inequality
for the wave equation with constant coefficients for sufficiently large T' (e.g., [BLR],
[Li]). Moreover, if % > 0 on  and M’%, £ satisfy (5.7) below, and T' > 0
is sufficiently large, then by means of Corollary 1.1, we can prove the observability

inequality for (5.1) with B(z, D)u =0 on (0,T") x 0f.

Denote

d = (sup |7 — g|? — inf |7 — g]?)%. (5.6)
7€Q TEQ

Next we define an admissible set of unknown coefficients A, p, p. We introduce the
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conditions:

5(5‘:)291>07 565,

VaB(@), (T — 7 -
18llcs gy < Mo, ( 5(;2(;“3 y))gl—eo, ieQ\w (5.7)

for any fixed constants My > 0 and 0 < 6y < 1, 0; > 0. For real-valued functions

ag, by, RZ-valued functions a, b,  on 992 and p, q in 2, we set

W = W(M07M17907917927a07b07a7 b) = {()‘7 ,u/ap) € (03(5))3,
A=ag,p=0by,VA=a,Vu=Db on 0,

72M()\+ ) >0y >0 onQ,

p(3A +4p)
A+2u p .
P) ’ ; Satley (57)7 ||u()‘7 K, P, P, 4q, 77)||W7°°(Q) < M1}7 (58)
where the constants M; and 03 > 0 are given. We choose 6 > 0 such that
(5.9)

0+ ——VvV0 < 00 0 f — —0d dv o 05.
+ \/E\/_< 001, 1561%\(0@ Y| >0, dVO<eoy/by

Here we note that since § ¢ €, such 6 > 0 exists.

Let (A, i, p) be an arbitrary element of W.

Now we are ready to state
Theorem 5.1. We assume that the functions p = (p1,p2)T and q = (q1,q2)T

satisfy

(Lxup)(@) (divp(@))E2 (Vzp —7) g
<(L>\,uq)(f) (divq(z))Es  (Vzq B ) +0, V7 € Q,
(5.10)

(Lxup)(Z) Vzp(T) + (Vzp(@)T  (divp)(z —7) = cq
det( Vool®) + (Voal#)T (divq)@_@)#o,v cq, (5.11)
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and

2
T > %d. (5.12)

Then there exist constants k = K(W,w,Q, T, A, u, p) € (0,1) and C = C(W,w,Q, T, A, 1, p) >

0 such that

||X — M) + 6= pllar @ + 10— olle2 @)

4
<C |10k (u(X, i, p, Py, ) — (A 7 5, Py )l g
k=1

for any (X, o, p) € W.

Our stability and uniqueness result requires only one measurement: N’ = 1, but
the conditions on the initial values p, q are restrictive and we have to choose p and

q satisfying (5.10) and (5.11).

Example of 2, p, q meeting (5.10) - (5.11). We assume that A, y are positive

constants. If we take

p(Z) = <($1 B yl)o(@ B y2)> and q(7) = ((@ —Oyz)2> ,

then (5.10) and (5.11) are satisfied.

We set

T

2
p(x) =z —y> —0 (fﬂo - 5) , p@) =P = (20,7)€Q  (5.13)

with parameter 7 > 0.

First we show

Lemma 5.1. Let (A, p, p) € W and let us assume (5.9). Then there exists €1 > 0,

depending on 0, 0y, 01, 02, My, d, such that the following property holds: For any
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T e (\2/05 \Z/Q + 61) if we choose T > 0 sufficiently large, then the function 1) given
by (5.13) satisfies Conditions 1.1 and 1.2 in Q = (0,T) x Q with Q. Therefore the
conclusion of Corollaries 1.1 and 1.2 hold true and the constants C(7), T and so(7)

in the Carleman estimates can be taken uniformly in (A, p, p) € W.

Proof. The second and the third conditions in (1.6) are directly verified by means
of (5.5). Conditions (1.4) and (1.5) can be verified by the same way as in Imanuvilov
and Yamamoto [IY3], for example. Next we have to verify the first condition in
(1.6). Without loss of generality, we may assume that 7' = \/— + &, where € > 0 is

sufficiently small. Let g = H% or = %. Then it suffices to verify
~(0(z0 — T/2))* + B(@)|T — g|* > 0
for z € [0,T] x (02 \ Ow). In fact, by means of (5.7) and (5.9), we have

T 2
4B(z)|z — g|* — 467 <x0 — —) > 46, inf |z —y|* —0(6T?)
2 TEQ\w

>46, ~igf\ 7 — 7> —0(2d + V)2 > 0
TE w

because € > 0 is sufficiently small.
Finally we have to verify (1.27), which is written by means of the original -

coordinate by

a¢( )if‘%’”( ) # z€[0,T] x (0Q\ 0w). (5.14)

8.1'0

Here C € (0, %) is the root of a cubic equation in ¢:

Bty =18 — 12 <8—“> (E)+t<2i§2— 16,2 )>(5)

P P2(A +2u

16p°(A+3p) 3247 =
+< PPN+ 2p) P’ >( -
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We will give a lower bound of C. Henceforth we fix Z € Q arbitrarily. We have

- 16 2442 1643
h’(t):?)tz——“‘t+< A )
p p p*(A +2p)

and, noting that (8“ h <3—‘p‘)) is the apex of the parabola defined by ﬁ’(t), by (1.3),

we can directly see that

B ()| = 7' (0
. [1(0)] = e { 70,

ol

_8L3)\+4p
o2 A2
Since h(C) = 0, in terms of (1.3) and the mean value theorem, we can choose
te (0, %) such that
16 (A +p) = =N T = 8P (BA 4+ 4p)
— [1(0)| = [2(0) — R(C)| = [’ (B)|C < C
0Nt o) [7(0)] = [h(0) = A(C)] = [P ($)IC < T 20
Hence
2 _
S 2T g 0T (5.15)
p(3A +4p)

by the condition in (5.8). Therefore, applying (5.15) in (5.14), by (5.5) we have

9
3330

22@80 — 0T = 2(\/@80 - \/éd) - 081

o (a) £ VE L 1) 2 2VEI(@ - .80 - 20~

for x € [0,T] x (022 \ Ow). Consequently, for sufficiently small e; > 0, we have

2L ()£ Ve @) >

3:5‘0

for x € [0,T] x (022 \ Ow). Thus (1.27) holds, so that Condition 1.2 is satisfied by

Proposition 1.1.
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The uniformity of the constants Cy(7), 7 and so(7) follows similarly to [IIY].
Thus the proof of Lemma 5.1 is complete.

Next we prove a Carleman estimate for a first order partial differential operator
(Pog)(z ZPO,] (2),
where pg ; € C1(Q), 1 =1,2.
Lemma 5.2. We assume
pr )., 6(T/2,%) #£0, TeQ. (5.16)

Then there exists a constant 7o > 0 such that for all T > 7¢, there exist sy =

so(1) > 0 and Cy = C1(so, 10,2, w) > 0 such that

< Ci||(Pog)e

5%||ge
for all s > sp and g € HZ(RQ).

Proof. For simplicity, we set Pog = h, ¢o(Z) = ¢(T/2,7) and w = e*?0g, Qow =

e*?0 Py(e~*%ow). By Lemma 3.3 (see [IY7]) we have
/ lg|2e®%0dz < CY s 2/ |Pog|?e®$%0dz (5.17)
for all sufficiently large s > 0. Next we observe

P (amkg mkp(),j m]g)(:f), k= 1, 2.

”M“

By 0., 9 € H}(2), we can apply Lemma 3.3 from [[Y7] again, so that we have

82/ |V’g|2628¢0d5
Q

2
2

§C3/ |V’h|2623¢0d5—|— 03/ Z(@mkpo’j)(%)(atjg)(%) e25¢0 7
Q

Q|5

SC:/),/ |V/(Pog)|2ezs¢°d%+C§/ V' g|2e?5%0dz.
Q Q



V. YU, IMANUVILOV AND M. YANMAMOL1U
Consequently we can absorb the second term at the right hand side into the left

hand side, so that we can obtain
sz/ IV'g|?e*Pdr < C’g/ V' (Pyg)|?e®*?dz. (5.18)
Q Q

Since 9, (ge?°) = (04, 9)e*?° +5(dz, Po)ge®??, there exist constants Cy, C) > 0 such

that

C’4/ (52|92 + |V'g|?)e?*%0dz < ||ges¢°||12ql,s(9)
Q

<G [ (Plal? + Vg P)ers* .
Q

Thus estimates (5.17) and (5.18) are equivalent to the conclusion of the lemma,
and the proof is complete. H

Now we proceed to

Proof of Theorem 5.1. The proof is similar to Imanuvilov and Yamamoto [IY7],
and the main difference is the application of the L2-Carleman estimate (Corollary

1.1). Henceforth, for simplicity, we set

u = u()\7 m, p,P,9q, 7)), v = u()‘a/jv 5,1),(1, ’r’)

and
y=u-v, f=p—p g=A-X h=p—[
Then
pozy = Lyzy+Gu inQ (5.19)
and

T _ T -
y <§,$> = 05,y <§,x> =0, T e (5.20)
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and
B(x,D)y =0 in (0,7) x 0S. (5.21)
Here we set
Gu(z) = —fO,u(@) + (g + 1) (@) Vz(divu)(z) + h(Z)Au(z)
+(divu)(z)Vz9(z) + (Vzu(z) + (Vzu(z)) D) VA(T). (5.22)
By (5.12), we have the inequality % > d?. Therefore, by (5.6) and definition
(5.13) of the function ¢, we have

¢(T/275) > dla ¢(0a§) = ¢(T7 5) < dlv T € ﬁ

with d; = exp(Tinfzeq |7 — 9]?). Thus, for given € > 0, we can choose a sufficiently

small 6 = d(g) > 0 such that

b) > dy —e, x€[€—5,§+6]xﬁ (5.23)
and
p(x) <dy —2¢, x€([0,26]U[T —25,T]) x Q. (5.24)

In order to apply Lemma 5.1, it is necessary to introduce a cut-off function y
satisfying 0 < x <1, x € C*°(R) and

0, wo€l0,0]U[T —46,T]

5.25
1, o €[26,T —24). (5.25)

x(zo) = {
Henceforth C'; > 0 denotes generic constants depending on sq, 7, My, My, 0, 01,

0z, m, Q2 T, y, w, x and p, q, €, 4, but independent of s > sg.

Setting z; = X&%Oy, Zo = X@goy and z3 = X@;%Oy, we have

;

pO3,20 = L5 ;22 + XG(95,1) + 2p(02,X) 03,y + P92, X) 05, ¥, (5.26)

p02,23 = L3 73 + XG (08, 0) + 25(00, )05,y + P02, )08,y i Q.
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Henceforth we set

'S

&= Z ||(3£OY)€S¢||%{1£(QW)-

=0

Noting u € W"(Q), in view of (5.25) and Lemma 5.1, we can apply Corollary

1.1 to (5.26), so that

4
D 1@ y)xe* e g
j=2
<Cs {IIfe*? 122y + g™ 132(q) + 192 gy + I1he™ 22y + | (VR 32 }
5 4
+C5 > N0 X) (@, 3)e* 1320y + Cs D (02,03, 3)e* 32 () + CsE
j=3 Jj=2

<Co {IIfe** 1320y + llge* B oy + 1(T)e 3 + he" 22 + (V) B}

+Ce2(h=2e) L OsE (5.27)

for all large s > 0.

On the other hand, it follows from (5.24) and (5.25) that

182,%)(T/2, )T/ 2P|y g
) .
= [ 5 (P29 o, e D o) d
T/2
:/ 2((820y)es¢,(8§0y)es¢)H1,s(Q)x2dx
0
T/2

T/2
ey / A1 (02,5) ey 8)e|2gs. cy o + / Ory ) (D2, 9)€°% 201y 0

T
SC?/O sX*(193,3)e°? e ) + 107,3)e|[Frr.« ) ) dwo + Cre (=2,
Therefore (5.27) yields

102, 3)(T/2,2)e*? 2D |3 . o

<Cys / (FP + 912 + Vg% + [ + [VA2)e2*Pde + Cyse®@~29) 4 Cys€
Q (5.28)
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for all large s > 0. Similarly we can estimate ]|(8§’0y)(T/2,%)es¢(T/2’5)||%{1,S(Q) to

obtaln
102, 9)(T/2, D) #T2D|2, o+ [[(02,9)(T/2, B)e*? T2, o)
<Cys / (F17 + g + |h + Vgl + | VA?)e*da
Q
+Cyse?( 41728 | CysE (5.29)

for all large s > 0.

On the other hand, by (5.19), (5.20) and u,v € W">(Q), we have

T T T T
PO,y <5f> = Gu <55> . P05y <5%> = GOyyu <55> : (5.30)

Then, setting

et di) _ o T c2 d2\ _ o T
% <d1 61> = Vzp + (Vmp) ) (d 62> = Vzq+ (qu) , (5.31)
Gn\ - T _ .
<G11> = p(92,y) <§a > — (g + h)Vz(divp) — hAp,
21

\ <g;§> = P(05,y) <Z7~> — (9 +h)Vz(divq) — hAq,

we rewrite (5.30) as

a11 b1 0 f G11 — Clamlh — dlamzh
a1 0 bl o G21 — dl&clh — 6181;2}1,
a12 bz 0 gmlg o G12 — cﬁmlh — d28$2h (532)
a29 0 b2 w29 G22 — dzamlh — 623332}1,

Because linear system (5.32) possesses a solution (f,0s,9,0.,9), the coefficient

matrix must satisfy

a1 b1 0 G11 — Clamlh — dlamzh
det a1 0 b1 G21 - dlf)wlh - 613w2h _ 07
a12 bz 0 G12 — Czamlh — dza;mh

a99 0 b2 G22 — dzamlh — 628m2h
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that is,
a1 bl 0 C1 a1 bl 0 dl
a1 0 b1 dy a1 0 b1 e
(0, h)det dig by 0 e + (0z, h)det ais by O do
aza 0 by da azg 0 by e

air b 0 Gny
az1 0 by G
aiz by 0 Gip |’
a2 0 by Gao

—det (5.33)

by the linearity of the determinant. Under condition (5.11), taking into consider-
ation that h = p — 1 € H3(Q2) by the definition of W and considering (5.35) as a
first order partial differential operator in h, we apply Lemma 5.2, so that

a1 b1 0 Gnp 2

et T2 |3 gy < Cao [den | 920 B B3 ootz

azz 0 bz Ga HL(Q)

<Cu([(d2,y)(T/2, ')esqs(T/Z")H%{l,s(Q) + 103, y)(T/2, )T/ frie (@)
+C'11(||g€s¢(T/2")||%IL5(Q) + ||h65¢(T/27')||12LI1,S(Q)), (5.34)
in view of (5.31). We rewrite (5.30) as
ain c1 dp ¥ G11 — 0104, 9
a1 di e 0. hl = G21 — 0104,9
a2 co ds ((;clh G12 — 020z, 9
aze dz e w2 G2z — b20z,9
and, using (5.12), we can similarly deduce
52’|9€s¢(T/2")||?11,s(Q)
<Cra(02,¥)(T/2,)e*? T2 Bea ) + 11(03,9)(T/2, )" T2 1 2 )
+Cr2([lge* ™G0 gy + Crallhe®? T2 30 ) (5.35)

for all large s > 0. In (5.34) and (5.35), for sufficiently large s > 0, we can absorb

the third and the fourth terms at the right hand sides into the left hand sides, so
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that we have

52 (|lges?T/>7) He @) + |he# 72 2e @)
<Cua(|1(07,9)(T/2, ) T2 . gy + 105, ¥)(T/2, )" T2 1. )
(5.36)
On the other hand, by (5.32), we have
1 —blamlg + Gll — Clamlh — d18m2h
_;L)\,,up _ —b18m2g + G21 — dlamlh — 618m2h
_%LA,Mq —bzf)wlg + G12 — Czamlh — dﬁmh
—bzf)mg + Gag — dzawlh — 623w2h
on 2. Since, in view of (5.11), we have
1 ~ 1 - L=
‘(;LA,up> (Z)] + ‘ <;L>\,uq> ()| >0, 7€,
we can solve the above equation in f, and
2 J—
f@)] < Cu [ V9@ + [VR@)|+ Y [Gr@]], Tel.
jk=1
Therefore (5.36) yields
82/ |f(%)|2623¢(T/2,?E)d%
Q
§C1582(||965¢(T/2")||fql,s(sz) + ||h65¢(T/2")||12ql,s(Q))
+C15([1(02,9)(T/2, )21 gy + (03, ¥)(T/2,)e* T2 31 )
<Cis(|107,9)(T/2,)e*? T2 . gy + (05, ¥)(T/2,-)e*? /%) I?{Ls(g)g ;
5.37

for all large s > 0.

Consequently, substituting (5.36) and (5.37) into (5.29) and using ¢(T'/2,z) >

¢(z0, ) for (xo,x) € Q, we obtain

[ 5P+ lgP + g + I8P + [Vh2) 24T/
Q

CiT
S

<

/(|f|2_|_ |g|2+ |Vg|2+ |h|2_|_ |Vh|2)€28¢(T/2’5)d%—|- %GZS(M—ZE) + %S
Q
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for all large s > 0. Taking s > 0 sufficiently large and noting e25¢(T/2:) > ¢2sd1 for

z € (, we obtain
/ (IF12+ 19 + |Vg|* + |h]* + |VA[*)dT < Crge™ % + C1ge®*>€
Q

for all large s > sg: a constant which is dependent on 7, but independent of s.

Therefore, setting Ca; = C19e2%°¢20 | we have
/(|f|2 + 1912 +1Vg® + |h]? + [VA[*)dT < Crge™ + Coe® € (5.38)
Q

for all s > sg.

Now we choose s > 0 such that

6230205 _ 6—486,

that is,

1
=————1In€.
y 4€+2020 o

Here we may assume that £ < 1 and so s > 0. Then it follows from (5.38) that

5P +16f? + 02 + ¥gl? + V)i
Q

<2CETHI0

The proof of Theorem 5.1 is complete. B

Appendix I. Proof of Proposition 1.3.

Proof of Proposition 1.3. It suffices to prove the estimate for an arbitrary but

fixed xo € [0,T]. That is, we should establish the following estimate: There exist
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7 > 1 and Ny > 1 such that for any 7 > 7 and N > Ny, there exists so(7, N) > 0

such that

2
1 ~
N[ Y102 0 ul + splVaul? + %0l | e vda
v \ %7 jk=1

<Ci(ll(rotu) e*? || () + I (diva)e*® |7 g, ),

Yu € (Hy(Qn))%, Vs > so(1, N), suppu C BsNQy, (1)

where the constant C; is independent of N.

First we choose Ny > 0 sufficiently large such that
Vg@b(a:) # 0, Vz € Qn, T € (O,T)

The existence of such Ny follows from condition (1.6).

Denote rotu = g—:ﬁ - g—;; =y, and divu = w. Let rot*v = (68—;2, —%). Using
the well-known formula rot*rot = —A + Vzdiv, we obtain
—Azu=—rot*y — Vzw in Qy, ulgg, =0.
The function u = ue®? satisfies the equation
Liu+ Lou=gq, in Qp, ulsg, =0, (2)

where Liu = —Azu — s?|Vze|?u, Lyu = 2s Zizl Uy, 0z, + s(Azp)u and ¢ =
(—rot*y — Vzw)e®¥. Taking the L? norms of the right and the left hand sides of

equation (2), we obtain

IEA8IEe ) + 1E28]IEe () + 2(LnT, Lotz () = (145 llE2 0
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After integrations, we will arrive at the formula:

2

(L1, Lya)r2 (o, :/Q {25 Z Uy, Up, P, + 5°(div(I Va0’ Vae) — [Vael?Aze) [ul?
N k,j=1

__Z 0 Am90|~|2} _/ <(31;1”L2u> d0'—|—3/
o0

T / (V. i1)5%| Vool G[2do. 3)
o

du
on

(VEQO, ﬁ)do-

Denote 91 () = ¢(x) — €1 (x). Then

2
le(|V5(,0|2V5(,0) - |V5¢|2A5(,0 =2 Z Pz Pz; Prrz;
k,j=1

—23 Z (D01 + 2NL10, £1)2 (D, 91 + 2N 10, £1)?
k,j=1

+T ( kal + 2N€13mk£1)(3m]/¢)1 —|— 2N£13m]£1)( TR wl + 2N(3wk£1)3 él —|— 2N£18§k$ )

Since (Vz91,Vz€1) > 0 on 012, there exists a constant Cy > 0 independent of

N, T, s, such that
div(|Vz0*Vze) — [Vap?Aze > 20°74 Vi |* + CoNT2 0 + 0*0(7%).  (4)
On the other hand

2
Z ivl:vjﬁ:vk(pmj:nk - TZ(VEﬁy v5¢)290+7— Z ﬁmjﬁmk (wmj:vk

k=1 k=1
+N£132 )QO—FNT(V@'G, Vgﬁl)zgo. (5)

T;Tk

Note that there exists a constant C3 > 0, independent of N, such that

Cs
INGOZ o il co@m) < (6)

By (3)-(6) we obtain

10120, + 122020, +/Q (20374 Va1 |* + CLNT3 0P [0)2d7
N

ou
on

2
_STC4/ Q0|Vgﬁ|2df S ||qs||i2(QN) + 05 <S||ﬁ||%{ls(89) + s ) .
O L209)/) (7)
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Multiplying equation (2) by sNpu and integrating by parts, we obtain
~2 2 ~2 3,3 2 ~2 SNV o] o
sNo[Vzul” + s"NAzpp[al” — s°¢"|[Vap|[a|” — —~divelu|” ¢ dz
QN
ou _ N - .
+/ {— <—2,3Ncpu> + <32<,0N+ S—) (Vg(p,ﬁ)|u|2} do :/ gssNpudz.
Next we note that
Az = (Vs |>r? + 7Az1 + 27 N|Val1|* + 2r N1 Azl )@ > CoTN o,
This inequality and (8) imply
- 1 - - -
/ <$N<P|V5u|2 + 532N(A5<ﬂ)90|u|2 - 53903|V590|2|u|2> dx
QN

ou |
: (9)
L2(8Q)>

o7

§C6||QS||2L2(QN) + Ce (3“6”%11’5(89) t+s

In view of (7) and (9), we obtain

~ ~ 1 (D
||L1u||%2(QN) + HL211’|%2(QN) -*-/;2 <§()03T4|V§’¢1|4 + CZNT3()03> |u|2dl'
N

du

+sN [ |Vzu?dE < Crllgsl|Z2 0y + Cs <3||ﬁ||%{1,s(asz) tsllom

QN

2 )
L2(092)/ (10)

Let u = u; + uy where

—Agﬁl = Llﬁ in QNO ﬁl|8QN0 = u, —AgﬁQ = 82|V5g0|26 in QNO ﬁz|agN0 = 0.
By standard a priori estimates for the Laplace operator we have

i) < ColllLatllez @y + [[8ll g3 o0)) (11)

VN S0 e
T a1 ) < C1ov/N 157 Vel ). (12)
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where Cy, C19 > 0 are independent of N. Taking so(7, N) > N, we obtain (1) from

(9)-(12):

2
N Z 34_2|a|||(3au)68¢||%2(c3)

|a|:0)a:(a03a1 )0)

ou ||’
<Cn {IlwlliZ(Q) + 82 [ Ul o) + 57 || 5o + N2 , }
O || L2 (50) L2(0,T;H? (99)) (13)
By (1.8) and (1.9), we estimate the norm of 92 u:
NH(agou)eS(bHi?(Q) S CIZ{HWH%Q(Q) + 82||iv1||%_11,s(3Q)
+S2 @ 2 _|_NHﬁH2 ) +N||fesgoH22 (14)
071 || 1,2 (a0 L2(0,T;H3 (09)) L2(Q) (-

Finally we note

Ns?|[(Onow)e™|f2q) < Cra(NI|(97,w)e* [z ) + s Nlue™||f2(g).  (15)

and
ou\ ||?
N||0a;0ll72 () < Cra (NHaa%kﬁHiz(Q) + 102,172 o) + ‘ <67 %> N N ) :
HZ (0Q)xH?2 (9Q)
(16)

Thus the proof of Proposition 1.3 is complete. Il
Appendix II. Proof of Proposition 1.6.
Let us consider the following problem

L*p = —i—f‘+’*(y s,D')Y)p=x,w ingG (1)

3y2 g » 9 v )

where 5 € {p, A+ 2u} and Fg’* is the operator which is formally adjoint to F[}L.

We have
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Lemma 1. There exist constants C; > 0 and sg > 0 such that for every s > s,

there exists p satisfying (1) and

s [J p2dy + /5 p(y', 0)Pdy’ < C /g xow[dy. 2)

Gn{y2=0}

Proof. For € > 0, let us consider the functional:

1 || Op . , 2
—||=— +T}% D)p+ xv 3
2¢ H3y2 i (y, s, D)p + xpw (3)

1
Je(p) = §||Pe||%2(g) +
L2(9)

Notice that there exists p such that J¢(p) is finite and, for example, we can set

p = 0. We consider the minimization problem

i 4
min Je (p), (4)
where
9 , ,
v={pe 20 LT s Dt e KO
2

There exists a minimizing sequence {p, }52; such that p, € U and

lim Je(pn) = I}g(f} Je(p)' (6)

— 00

Then ||pn||%2(g) and ||g% + F;’*(y, $,D")pp + qu||%2(g) are bounded. Therefore

2

3" (y, s, D")pn is bounded in L2(0, 1; H~'(R?)) and 32= is bounded in L*(0, 1; H~'(R?)).

Therefore We can extract a subsequence, still denoted by {p,, }°2 ; such that

Pn — pe in L?(G) weakly,

Opn, Ope 2 12
_— = L7(0,1; H (R weakly,
L I (0,1 H7 () weakly
apn —+,% !/ 8]96 —+,% /
+F ’ 7S7D n+ I/w_\ +F ’ 7S7D e+ W
5, L0 (y )Pn + X 9y, L8 (y )pe + X

in L2(0,1; H'(R?)) weakly. (7)
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On the other hand, as ‘ 1895: + Fg’*(y, s, D")p,, + XVwHIﬂ(g) remains bounded, we
have

3])17, +,% / ap(—: +,% /

Ds L8 (Y, 8, D')pp + xpw oy, T8 (y, 8, D')pe + xpw

weakly in L?(G). Then p. is a minimizer of J,, that is, p. € U and

Je(pe) = ggg} Je(p). (8)

Writing the first order optimality conditions, we have for every r € H(G):

< Jl(pe),r >=0. (9)
Let us define ¢. by
1 8pe +,* /
e = — 2" (y, s, D')pe . 10
o= 2 (S 4 1 s Dt (10

In view of (9), for every r € H*(G), we see:

0
/pjdy + / qe (—r +15" (y 5, D’)T) dy = 0. (11)
g g Y2

Then q. satisfies the following problem

0q. + / :
33/2 - F[B (yv S, D )QE = Pe 11 g, (12)
qe(y',0) =0, ¢.(y',1) =0, y' € R®. (13)

Denote Ly = 5(-T'} — F;*) and Ly = 22 + %(FZ* —T'}). Then we can rewrite

1 90
2 Oya

(12) and (13) as follows.
Lge = (L1 + La)ge = pe in G, qe(y',0) =0, ¢.(y',1) =0, y € R*.  (14)
There exist constants Cy > 0 and sy > 0 such that

1L1qel|Z2 gy + 1 L2gellZ2 gy + 3/g lgel*dy < Callpel|72(gy, Vs > so. (15)
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Notice that Lig. € L*(G) implies . € L*(0, 1; H*(R?)), which implies §% € L*(G)

from (12). Now it follows from definition (10) of ¢. that p. satisfies

Ope
0ya

+ 157" (y, 5, D")pe = eqe — xpw, (16)

which can be written as

Ope

Lo — L1)p. =
(L2 — L1)p 05

+ F;’*(y, s, D")pe = €qe — xpw. (17)

Multiplying (17) by ¢. in L*(G) and using the boundary conditions for g., we obtain

_/ps(Ll + Ls)gcdy = 6/ |qe?dy — / XvWedy, (18)
g g g

so that

/|pe|2dy+€/ |qe|2dy=/xyw¢dy
g g g

and

3 3
[ Ioday < ( / Ixuwl2dy> ( / |q€|2dy)
g g g

Therefore we obtain the first estimate on p,

< — Xvw| dy Pel"dy | .
NV Ipd

(19)

S/g Ipe2dy < C4/g IXvw|?dy. (20)

Let us now notice from (12) and (13) that we have

pe(y’,0) =
Let 0 = 0(y2) € C*°[0,1] such that 0 <0 <1, #(0) =1 and 6(1) = 0. We have

00 00 .
(Ll + L2)(QQE) — 9(L1 + LZ)(QE) + de = 9]95 + ge 11 ga (21)
33/2 3y2
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d(0q.)

(9q6)(y/7 0) =0, (9q6)(y/7 1) =0, Dys

(y',1)=0, y € R% (22)

Now we apply the operator (Ly — L1) to the first equation, so that

(L — L) (Ly + L1)(0g.) = (L — L) (9p2) + (L — L) (%q)

00 00 0%0
—0(Ly — L1)(p.) + —pe + —(Ls — L1)qe + —=q.. 23
(Ly — L1)(pe) Dua" 3y2( o — Li1)q o3¢ (23)

Then we have

00
Lg(QQE) - L%(QQE) + [L27 Ll](QQE) = efge — Ow + —pe

Y2
00 0%0
—(Ls — L1)qe + —5qe. 24
g L2~ Tte F 550 (24)

We now multiply this equation by Ls(6g.) scalary in L?(G) and afterwards take the
real part. Henceforth we give the computations of the successive terms. We can

calculate the first term as follows.

(L3(0ge), L2(04¢)) 12(g) = <3in (L2(0g0)), LZ(GQE)> £2(9)

1 «
—5((]__‘;(?;, S, D/) - F;, (y7 S, D/))LQ(QQE)v L2(9q€))L2(g)

= — [[L2(0¢e)(0) |22 (g2) — (L2(0ge), L5(04e)) L2 o)
2
|

(0) - (L2(QQE)7L§(QQE))L2(Q)' (25)

Oy2 " Iz re)

Therefore we have

dg. |7

Y2

Re (L3(000) L2(0a))220) = = | 52 O

L2(R2) .

Now for the second term

2Re (L%(9q6)7 L2(0q€))L2(g) = (L%(QQE)v LZ(GQE))LZ(Q) + (L2(0q6)7 L%QQE)LZ(Q)
= — (L2L3(0qc), (0ge)) 12(g) + (L1L2(0qc), (Bge)) L2 (g) + %(Lf(Oqe), (09c)) L2(g)
=(L1[L1, L2](0qc), (04e)) r2(g) + ([L1, L2]L1(0ge), (04e)) r2(g)

=2Re ([Ll,LQ](gqe),Ll(gqe))LZ(g). (27)
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(Notice that ([Ll, Lg]’u,, ’U)Lz(g) = (’U,, [Ll, Lg]’l})LZ(g).)
We have already seen that

[L1, Le] = K(y2), (28)
where K € C([0,1]; L(H'(R?), L?(R?))) is an operator which is independent of s, 7.
Therefore
[Re (L1(04c), L2(0g:) 126yl < lI5(0ae)ll120) | L1(0ge)l| 120
+Cs110qcll 2 (0,1;51 @2)) |1 L1(0g6) | 22(g) + i”Ll(QQE)H%%g)- (29)
We already know from (15) that
1L1(0ge)l| 22 (g) < [1L14ellL2(g) < CollpellL2(g) (30)
and from the definition of L,
106el|L20,1;m1 ®2)) < 1gelln20,1;81 (®2)) < CrllL1gellz2(g) + sllgell L2 (g)- (31)
Using again (15), we obtain
IRe (LT (0ge), L2(0ge)) r2(g)| < CS\/§||P6||%2(Q) + CS“]%“%?(Q)? (32)
so that we have
Re (L1(0qc), L2(04e)) 120y < CV/sllpellz2(o) (33)
for s > sp. Concerning the third term, we have
Re ([L2, L1](09¢), L2(0ge)) L2(9)| < [[[L2, L1](0e) || L2(g) | L2 (0cqe) | L2y (34)
Using the form of [Ly, L1] we obtain

IRe ([L2, L1])(04e), La(04c)) 12 (g) |

<[|s(0qe)ll2(g) 1 L2(0ge)l 2 (g) + CollOgell L2 (0,151 m2)) [ L2(0ge) | 22 (g) .
35
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and, since Lo (fqe) = 0L2qe + g—iqe, from (15) and (31) we have

[Re ([L2, L1](04c), L2(04e)) 12(g)| < C'10\/§||Pe||?:2(g) + ClO“Pe“%z(g)

§C11\/§||Pe||%2(g) (36)

for s > sg.

On the other hand, for the right hand side of (24), we have

00 00 0%0 )
Re [ 0. — Opw + —p. + — (Ly — L1)qe + —=qe, La(0q.
( Ge = Opw+ 5 3y2( 2 — L1)q o3¢ 2(0qc) o)

<Chz¢l|gellz2(6)IPellz2(g) + CrzllxvwllL2(g)lIpell L2 (g) + CrzllpelZ2(g)-

Therefore we obtain

00 00 0%0 )
Re [ 0. — Opw + —p. + — (Ly — L1)qe + —= e, La(0q.
( Ge = Opw+ 5 3y2( 2 — L1)q o3¢ 2(04c) o)

<Ci3|lpll72(gy + Crsllxvwl L2 (g)lIPel L2 g)- (37)

Putting together (28), (33), (36) and (37), we obtain the following estimate:

2

(0) < 014\/§||p6||%2(g) + Cl4||qu||L2(g)||p€||L2(g)' (38)

L2(Gn{y2=0})

H 0qe
3y2

Now combining (15), (20) and (38), we can easily obtain

S/ Ipe|®dy + /s 1pe(0,y)|?dy’ < 015/ Ix,w|?dy, (39)
g g

Gn{y2=0}
which is estimate (2) for p..
Now p. and g—z; + FZ’*(y, s, D")p. are bounded in L?(G) uniformly in e. After

extraction of a subsequence (still denoted by p.), we can assume that

pe —p in L*(G) weakly,

op. _ op
Y2 0y

in L?(0,1; H~Y(R?)) weakly, (40)
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so that

pe(0) = p(0) in H Z(R?) weakly.

Since p.(0) remains bounded in L?(RR?), we also have p.(0) — p(0) weakly in L2(GN

{y2 = 0}). By (15) and (40), we easily see that p satisfies

*x 8 +,* / - .
Lp—(_a—yZ_Fﬁ (yvsvD))P—qu lnga

which is (1), and from (39) we see that

s / p2dy + /5 / p(y', 0)Pdy’ < C / xw|?dy
g GN{y>=0} g

which is (2). The proof of Lemma 1 is now complete. B

We take the scalar product of equation (1) and the function x,w in L*(G)
Ixvwl| 226y = (9:P)12(0) + (P, 0), xpw (-, 0)) L2 (r2)
Applying estimate (2) to this equality, we have
2 1 1
Ixvwllz2(gy < Cie ﬁllgllm(g)llxuwllm(g) + S—%quw('a0)||L2(R2)||qu||L2(g) :
Therefore
Vsllxvwllrzg) < Crr(llgllrzg) + s* [xvw(, 0)z2e)), Vs > s0.  (41)

Since |s — |(€o,&1)|| is small on supp x,, we obtain

1 3
[XvwlL2 (0,1, ®2)) < Chs <ﬁ||g||H1,s(g) + s1|x,w(:, 0)||L2(R2)> :
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