MA 137 - Calculus 1 with Life Science Applications Difference Equations: Stability (Section 5.6)

Department of Mathematics
University of Kentucky
November 16, 2018

Fixed Points (三 Equilibria)

In Chapter 2, we were able to analyze difference equations only numerically (except for equations describing exponential growth, which we were able to solve).

We saw that fixed points (or equilibria) played a special role.
A fixed point \widehat{x} satisfies the equation

$$
\widehat{x}=f(\widehat{x})
$$

and has the property that if $x_{0}=\hat{x}$, then $x_{t}=\hat{x}$ for $t=1,2,3, \ldots$.
We also saw in a number of applications that, under certain conditions, x_{t} converged to the fixed point as $t \rightarrow \infty$ even if $x_{0} \neq \widehat{x}$.

However, back in Chapter 2, we were not able to predict when such behavior would occur.

First-Order Recursions (Review)

In Chapter 2 we saw that an important biological application of sequences consists of models of seasonally breeding populations with nonoverlapping generations where the population size at one generation depends only on the population size of the previous generation.

The discrete exponential growth model fits into this category.
To this end, we introduced first-order recursions $[\equiv$ difference equations or iterated maps] by setting

$$
x_{t+1}=f\left(x_{t}\right), \quad t=0,1,2, \ldots
$$

where $f(x)$ is a function (\equiv updating function) that describes the density dependence of the population dynamics.

The name difference equation comes from writing the dynamics in the form

$$
\frac{x_{t+1}-x_{t}}{(t+1)-t}=g\left(x_{t}\right)
$$

[where $g(x)=f(x)-x$], which allows us to track population size changes from one time step to the next.
The name iterated map refers to the recursive definition.

http://www.ms.uky.edu/-ma137
Difference Equations: Stability
1:Theory Examples 1:
(Neuhauser, Example \# 1, p. 257)

Find the equilibria of the recursive sequence

$$
x_{t+1}=\frac{1}{4}-\frac{5}{4} x_{t}^{2}, \quad t=0,1,2, \ldots
$$

What happens to x_{t} as $t \rightarrow \infty$ if $x_{0}=-0.9$?
(You could use for example an Excel spreadsheet.)

Exponential Growth

Exponential growth in discrete time is given by the recursion

$$
N_{t+1}=R N_{t}, \quad t=0,1,2, \ldots
$$

where N_{t} is the population size at time t and $R>0$ is the growth rate.
We assume throughout that $N_{0} \geq 0$, which implies that $N_{t} \geq 0$.
The fixed point of our recursion can be found by solving $N=R N$.
The only solution of this equation is $\widehat{N}=0$, unless $R=1$.
If $R=1$, then the population size never changes, regardless of N_{0}.
What happens if we start with $N_{0}>0$ and $R \neq 1$?
In Chapter 2, we found that

$$
N_{t}=N_{0} R^{t}
$$

is a solution of our recursion. Using this fact, we concluded that

$$
N_{t} \longrightarrow \begin{cases}0 & \text { if } 0<R<1 \\ \infty & \text { if } R>1\end{cases}
$$

as $t \rightarrow \infty$.

http://www.ms.uky.edu/-ma137	Lecture 37
Difference Equations: Stability	Theory Examples

We can interpret the behavior of N_{t} as follows:
If $0<R<1$ and $N_{0}>0$, then N_{t} will return to the equilibrium $\widehat{N}=0$;
if $R \geq 1$ and $N_{0}>0$, then N_{t} will not return to the equilibrium $\widehat{N}=0$ (more precisely, if $R=1, N_{t}$ will stay at N_{0}; if $R>1, N_{t}$ will go to ∞).

Terminology

We say that $\widehat{N}=0$ is stable if $0<R<1$ and unstable if $R>1$.
The case $R=1$ is called neutral, since, no matter what the value of N_{0} is, $N_{t}=N_{0}$ for $t=1,2,3, \ldots$

Cobwebbing

We can determine graphically whether a fixed point is stable or unstable.
The fixed points of exponential growth recursive sequence are found graphically where the graphs of $N_{t+1}=R N_{t}$ and $N_{t+1}=N_{t}$ intersect. We see that the two graphs intersect where $N_{t}=0$ only when $R \neq 1$.

We can use the two graphs on the left to follow successive population sizes. Start at N_{0} on the horizontal axis. Since $N_{1}=R N_{0}$, we find N_{1} on the vertical axis, as shown by the solid vertical and horizontal line segments. Using the line $N_{t+1}=N_{t}$, we can locate N_{1} on the horizontal axis by the dotted horizontal and vertical line segments. Using the line $N_{t+1}=R N_{t}$ again, we can find N_{2} on the vertical axis, as shown in the figure by the broken horizontal and vertical line segments. Using the line $N_{t+1}=N_{t}$ once more, we can locate N_{2} on the horizontal axis and then repeat the preceding steps to find N_{3} on the vertical axis, and so on.

This procedure is called cobwebbing

In the figure on the left, $R>1$, and we see that if $N_{0}>0$, then N_{t} will not converge to the fixed point $\widehat{N}=0$, but instead will move away from 0 (and, in fact, will go to infinity as t tends to infinity).

In the figure on the right, $0<R<1$, we see that if $N_{0}>0$, then N_{t} will return to the fixed point $\widehat{N}=0$.

General Case

Stability Criterion

The general form of a first-order recursion is

$$
x_{t+1}=f\left(x_{t}\right), \quad t=0,1,2, \ldots
$$

We assume that the function f is differentiable in its domain.

- To find fixed points algebraically, we solve $x=f(x)$.
- To find them graphically, we look for points of intersection of the graphs of $x_{t+1}=f\left(x_{t}\right)$ and $x_{t+1}=x_{t}$.
The graphs in the picture intersect more than once, which means that there are multiple equilibria. We can use the cobwebbing procedure from the previous subsection to graphically investigate the behavior of the difference equation for different initial values.

Two cases are shown in the picture, one starting at $x_{0,1}$ and the other at $x_{0,2}$. We see that x_{t} converges to different values, depending on the initial value.

We look at the linearization of $f(x)$ about the equilibrium \widehat{x} and investigated how a small perturbation affects the future of the solution. We denote a small perturbation at time t by z_{t} and write

$$
\begin{gathered}
x_{t}=\hat{x}+z_{t} \\
x_{t+1}=f\left(x_{t}\right)=f\left(\hat{x}+z_{t}\right)
\end{gathered}
$$

Then
Now, the linear approximation of $f\left(\widehat{x}+z_{t}\right)$ at \widehat{x} is $L\left(\hat{x}+z_{t}\right)=f(\hat{x})+f^{\prime}(\hat{x}) z_{t}$. Taking this into account, we can approximate $x_{t+1}\left[=\widehat{x}+z_{t+1}\right]$ by

$$
\widehat{x}+z_{t+1} \approx f(\widehat{x})+f^{\prime}(\widehat{x}) z_{t}
$$

Since $f(\widehat{x})=\widehat{x}(\hat{x}$ is an equilibrium $)$, we find that

$$
z_{t+1} \approx f^{\prime}(\widehat{x}) z_{t}
$$

This approximation reminds of the equation $y_{t+1}=R y_{t}$ for exponential growth, where we identify y_{t} with z_{t} and R with $f^{\prime}(\widehat{x})$. Since the solution of $y_{t+1}=R y_{t}$ is $y_{t}=y_{0} R^{t}$ and $R^{t} \rightarrow 0$ as $t \rightarrow \infty$ for $|R|<1$, we obtain the criterion $\left|f^{\prime}(\widehat{x})\right|<1$ for local stability. That is, if $\left|f^{\prime}(\widehat{x})\right|<1$, then the perturbation z_{t} will converge to $\hat{z}=0$ or, equivalently, $x_{t} \rightarrow \widehat{x}$ as $t \rightarrow \infty$.

To determine the stability of an equilibrium - that is, whether it is stable or unstable - we will start at a value that is different from the equilibrium and check whether the solution will return to the equilibrium. We allow only initial values that are close to the equilibrium (we call it a small perturbation). The reason for looking only at small perturbations is that if there are multiple equilibria and if we start too far away from the equilibrium of interest, we might end up at a different equilibrium, not because the equilibrium of interest is unstable, but simply because we are drawn to another equilibrium.
If we are concerned only with small perturbations, we can approximate the function $f(x)$ by its linearization at the equilibrium \widehat{x}. Since the slope of the tangent-line approximation of $f(x)$ at \hat{x} is given by $f^{\prime}(\hat{x})$, we are led to the following criterion,

Theorem (Stability Criterion)

An equilibrium \widehat{x} of $x_{t+1}=f\left(x_{t}\right)$ is locally stable if $\left|f^{\prime}(\widehat{x})\right|<1$.

Use the stability criterion to characterize the stability of the equilibria of

$$
x_{t+1}=\frac{1}{4}-\frac{5}{4} x_{t}^{2}, \quad t=0,1,2, \ldots
$$

Geometric Considerations

Example 2: (Neuhauser, Example \# 2, p. 257)

We know from the Stability Criterion that when the slope of the tangent line to f at the equilibrium \hat{x} is between -1 and $1, x_{t}$ converges to the equilibrium \widehat{x}.
The solution x_{t} approaches the equilibrium in a spiral (thus exhibiting oscillatory behavior) when the slope of the tangent line at the equilibrium is negative, whereas it approaches it in one direction (thus exhibiting nonoscillatory behavior) when the slope of the tangent line at the equilibrium is positive.

(a) Stable spinil
http://www.ms.uky.edu/-ma137
Difference Equations: Stability

Use the stability criterion to characterize the stability of the equilibria of

$$
x_{t+1}=\frac{x_{t}}{0.1+x_{t}}, \quad t=0,1,2, \ldots
$$

Example 3: (Neuhauser, Example \# 4, p. 259)

Denote by N_{t} the size of a population at time $t, t=0,1,2, \ldots$ Find all equilibria and determine their stability for the discrete logistic growth sequence

$$
N_{t+1}=N_{t}\left[1+R\left(1-\frac{N_{t}}{K}\right)\right]
$$

where we assume that the parameters R and K are both positive.

