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Abstract

From classical, Fräıssé-homogeneous, (≤ ω)-categorical theories over
finite relational languages, we construct intuitionistic theories that are
complete, prove negations of classical tautologies, and admit quantifier
elimination. We also determine the intuitionistic universal fragments
of these theories.

1 Introduction

It is often assumed that intuitionistic theories that admit quantifier elimi-
nation are either very close to the classical situation or are essentially non-
existent. We show that this is not the case. We present a straightforward
method that converts a broad class of classical theories that admit quantifier
elimination into intuitionistic ones.

Intuitionistic quantifier elimination has been studied before, see [11], [10],
and [1] for example. Smoryński in [11] and Bagheri in [1] focus on intu-
itionistic theories that are in some ways nearly classical. Instead, we expand

1Corresponding author.
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on the work in [10] and, in general, eliminate quantifiers in very intuitionis-

tic theories, which in our case are theories that prove the negation of certain
classical tautologies. Specifically, we start with a well known class of classical
theories over finite relational languages that admit quantifier elimination, are
Fräıssé-homogeneous, and are (≤ ω)-categorical. We call these theories JRS
theories, after Jaśkowski, Rabin and Scott, as explained in the next section.
We construct intuitionistic variations of the JRS theories and show these new
theories retain the properties of completeness (Theorem 3.1) and quantifier
elimination (Theorem 4.8), but in general are very intuitionistic. We show
that if the morphism structure of the canonical Kripke model is sufficiently
rich, then all formulas are equivalent to particularly simple quantifier-free
formulas (Theorem 4.9). Our techniques for proving intuitionistic quantifier
elimination are classical.

In Section 5, as part of a deeper investigation into the idea of an intuition-
istic model complete theory, we use the techniques and definitions of [6] to
find the intuitionistic universal fragment of an intuitionistic JRS theory (The-
orem 5.6). In the general intuitionistic case, quantifier-free formulas need not
be universal formulas, in a sense that will be explained in Section 5. In our
case, however, we show that all formulas are equivalent to quantifier-free,
universal formulas (Theorem 5.2).

The authors thank Asher Kach for his helpful suggestions.

2 Classical JRS Theories

We review a special family of classical theories that admit quantifier elim-
ination. We use the single turnstile ⊢ for “intuitionistically proves”; when
we wish to indicate a classical proof, we use the ⊢c notation. Similarly, we
write Th(·) for the intuitionistic theory generated by a set of formulas or a
structure, and Thc(·) for the classical theory. A theory Γ is consistent if
⊥ /∈ Γ.

2.1 What is a JRS Theory?

We consider languages L that have only finitely many predicates {Ri}i<r of
positive arity. We use ⊤, ⊥, ∧, ∨, →, =, ∃, and ∀ to form formulas of L.
Symbols ⊤ and ⊥ are nullary logical operators as well as atoms. Negation
¬ϕ is short for ϕ→ ⊥.

Given a tuple x = x0, x1, . . . , xn−1 of variables, the set At(x) of atoms
with all free variables from x, is finite. So the set At±(x) of atoms and
negated atoms over x is also finite. An At±(x)-type is a subset t ⊆ At±(x)
such that its conjunction

∧
t, also written πt or πt(x), is consistent. We

write t+ for the sub-collection of atoms in t. We define formula π+
t to be

the conjunction of atoms of t+, and σ−
t to be the disjunction of atoms whose

negations occur in t. So πt ↔ (π+
t ∧ ¬σ−

t ) is a tautology. Formula πt is
called an At±(x)-description. A maximal At±(x)-type is called a com-

plete At±(x)-type, and its corresponding formula πt a complete At±(x)-
description. Each atom of At(x) or its negation occurs in a complete
At±(x)-type. Given a model A and a ∈ A, a satisfies the complete At±(x)-
type tp

a
= (Thc(A) ∩ At±(a))[a/x], where Thc(A) is the theory of A over

the language L(A).
Suppose n ≥ 0. Up to isomorphism, a complete At±(x)-type t has a

unique smallest model. Specifically, At is the model formed from the variables
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{xi}i<n by taking equivalence classes modulo the equivalence relation xi ∼ xj
defined by (xi = xj) ∈ t. We write xi or ai for the equivalence class of xi.
Given a = a0, . . . , an−1 and atom δ(x), set At |= δ(a) if and only if δ(x) ∈ t.
So At |= πt(a). The size |At| of model At is called the level of t. We allow
the empty structure.

Let u be an At±(xxn)-type. Define d(u) = u ∩ At±(x). Then d(u) is
an At±(x)-type. If u is a complete At±(xxn)-type, then d(u) is a com-
plete At±(x)-type. Given a complete At±(xxn)-type u, define δu to be the
sentence

∀x(πd(u) → ∃xnπu).

We call such a sentence a JRS sentence. A (consistent) theory Γ over L is
called a JRS theory if for all xxn and complete At±(xxn)-types u that are
consistent with Γ (that is, Γ∪{∃xxnπu} is consistent, or Γ∀ 0 ∀xxn¬πu), we
have δu ∈ Γ.

As indicated by Bankston [2, page 962], this is not the first time that
JRS theories and sentences have been studied. Gaifman attributes these
sentences to Rabin and Scott, see [7, page 15], while Lynch attributes them
to Jaśkowski, see [9, page 94], hence our choice of name.

2.2 Classical Quantifier Elimination

The following are some well known facts about JRS theories.

Theorem 2.1. Let Γ be a JRS theory. Then, up to isomorphism, Γ has ex-

actly one model of size ≤ ω. Additionally, this model is Fräıssé homogeneous,

that is, isomorphisms between finite submodels extend to automorphisms.

Proof. The proof uses the axioms δu to complete a standard back and
forth construction to extend finite isomorphisms to automorphisms. ⊣

Recall that an existential formula is a primitive formula if its quantifier-
free part is a conjunction of atoms and negated atoms.

Theorem 2.2. Let Γ be a JRS theory, and let ∃xnϕ(xxn) be a primitive

formula. Then Γ ⊢c ∃xnϕ ↔
∨

s∈S πd(s), where S = {s : s is a complete

At±(xxn)-type consistent with Γ and Γ ⊢c πs → ϕ}. In particular, JRS
theories admit quantifier elimination.

Proof. Formula ∃xnϕ is equivalent to
∨

s∈S ∃xnπs, where an empty dis-
junction is identified with ⊥. Apply the JRS sentences of Γ: ∃xnϕ is equiv-
alent to

∨
s∈S πd(s). ⊣

By the techniques in [8], Henson shows that there are continuum many
JRS theories, even if the language has only one binary predicate. The work [2]
of Bankston and one of the authors offers other construction techniques for
JRS theories. Countable JRS theories can be built via certain types of games,
and can also be viewed as theories whose tree of finite substructures satisfies
certain properties, see [2, Theorem 5.7]. That is, given a theory Γ, form the
following rooted tree TΓ of types: for each x = x0, . . . , xn−1, take all complete
At±(x)-types of level n that are consistent with Γ (each such type essentially
contains

∧
i<j<n xi 6= xj). When we order these types by set inclusion, we

get a tree with the minimal type {⊤,¬⊥} as its root, and with finitely many
nodes at each level. Obviously, TΓ is uniquely determined by the universal
fragment Γ∀ of Γ.
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Given a universal theory Π, we define the JRS extension Γ of Π as the
theory axiomatizable by Π and all JRS sentences δu for which Π 0 ∀x¬πu.
For a given universal theory Π, the consistency of the JRS extension is nicely
expressible as a model-theoretic property on the collection of finite substruc-
tures At of Π. A class of models K has the amalgamation property if for
all models A, B, and C in K where A embeds in B and A embeds in C,
there is a model D in K such that B embeds in D, C embeds in D, and
this diagram commutes. If K includes the empty structure, then the amal-
gamation property immediately implies the joint embedding property. This
particularly applies to Theorem 2.3.

Theorem 2.3. The JRS extension Γ of a universal theory Π is consistent

if and only if the collection of models of the form At, for t ∈ TΠ, has the

amalgamation property. If Γ is consistent, then Γ∀ = Π.

Proof. First, suppose Γ is consistent. Let A be the unique (up to isomor-
phism) model of Γ of size ≤ ω. Consider finite models At, Au, and Av of Γ∀

and suppose that At embeds in both Au and Av. Without loss of generality,
we may assume that u and v are complete At±(xxn)-types and that t is a
complete At±(x)-type. For some a ∈ A, A satisfies πt(a), δu and δv, so we
have A |= ∃xπu(ax)∧∃xπv(ax). Fix a, b and c such that A |= πu(ab)∧πv(ac).
Let w = tp

abc. Then Aw is the amalgam of Au and Av over At.
Conversely, suppose that the collection of models of Π of the form At has

the amalgamation property. We sketch a construction of a model A of Γ as
the limit of an ω-chain of models of the form At. Suppose we have a model
At of size n. For each complete At±(xxn)-type u consistent with Π and for
all a ∈ At such that At |= πd(u)(a) there is an amalgam A(u,a) of At and
Au over Ad(u). As next model in the ω-chain, take the amalgam of all A(u,a)

over At. So Γ is consistent.
For the last claim, it suffices to show that every finite structure of Π

embeds into A, the unique largest model of size ≤ ω. Proceed by induction
on the number of free variables in complete types consistent with Π. If u is
a complete At±-type consistent with Π, then so is d(u). By the inductive
hypothesis, Ad(u) embeds into A. By the JRS axiom δu, Au also embeds into
A. ⊣

2.3 Classical Examples

We present some examples of JRS theories, and construction methods of new
JRS theories from old.

Example 2.4. Let L be any language with finitely many predicate sym-
bols of positive arity, and set Π to the minimal “empty” theory. Since all
finite structures are allowed, amalgamation is obvious. By Theorem 2.3, the
JRS extension of Π is consistent. This is an example of Burris’ “theory of
everything” [3].

Example 2.5. Let L be the minimal language (equality is the only relation).
Theory Γ = Γe is the theory of infinite sets, with Γ∀ the “empty” theory.
The tree TΓ has just one node t ⊇ {xi = xj → ⊥ : i < j < n} at each level
n.

Example 2.6. Let L be the language based on a new predicate x 6= y
for inequality. The theory of infinite sets Γ = Γne has universal fragment
axiomatizable by x 6= y ↔ (x = y → ⊥). This direct translation makes Γne

“as JRS as” Γe.

4



Given a theory Γ, we write ΓUH for the theory axiomatizable by its uni-
versal Horn fragment. Recall that models of ΓUH are, up to isomorphism,
submodels of products of models of Γ. If Γ is a JRS theory, then it is com-
panionable with few existential formulas, that is, for each x, there are
only finitely many inequivalent (over Γ) existential formulas with variables
from x. So ΓUH has a model companion (ΓUH)

∗ by Burris and Werner’s work
[4].

Example 2.7. It is a simple exercise to show that the theory of the random
graph Γg is a JRS theory such that (Γg)UH = (Γne)UH (where we identify the
single binary predicate R with the binary predicate 6=). Since Γg is model
complete, Γg = ((Γne)UH)

∗. Comparing this with Γe = ((Γe)UH)
∗ shows that

seemingly trivial changes to language may significantly affect the derived
universal Horn theories and their companions.

Example 2.8. Let L be the language based on x ≤ y. The theory Γlo of
dense linear order without endpoints is a well-known JRS theory.

Example 2.9. Let L be the language based on x ≤ y. Let Γp be the theory
of the random poset. Then it is a standard exercise to show Γp = ((Γlo)UH)

∗

(see [5, page 132], for example). Additionally, Γp = ((∆)UH)
∗ where ∆ is the

non-JRS but obviously model complete trivial theory of a two-node linear
order.

Note that (ΓUH)
∗ need not be a JRS theory, even if Γ is the JRS theory

of a finite model.

3 Intuitionistic Theories from JRS Theories

Given a (classical) JRS theory ΓJRS and its unique (up to isomorphism)
model AJRS of size ≤ ω, we construct the Kripke model AM as follows. We
follow notational conventions in [6]; our Kripke models are functors from
small categories to the category of L-structures and morphisms. The under-
lying category of AM consists of a single node with associated node structure
AJRS. We include all morphisms from AJRS to AJRS as arrows. Let ΓM be
the intuitionistic theory of AM .

We can choose AM to be countable and get the same theory ΓM . Instead
of including all morphisms, let A

′
M have single node structure AJRS and

include only a collection of morphisms closed under composition such that
every finite graph of an endomorphism of AJRS has a complete endomorphism
extension in the collection. A straightforward proof by induction on sentence
complexity shows that AM and A

′
M have the same intuitionistic theory ΓM .

So our Kripke model can be chosen countable - take a category of countably
many morphisms and a single countable object.

Theorem 3.1. ΓM is complete.

Proof. Let ϕ be an L-sentence. If AM  ϕ, then we are done. Otherwise,
AM 1 ϕ. But we have only one node, so AM  ¬ϕ. ⊣

Theorem 3.1 in no way implies that ΓM proves classical logic. For ex-
ample, if there is an endomorphism of AJRS which is not an embedding,
then for some Ri and some a we have AM 1 Ri(a) ∨ ¬Ri(a), so AM 

¬∀x(Ri(x) ∨ ¬Ri(x)). In [10], Ruitenburg introduces one concept of a very

intuitionistic theory to distinguish theories that are somehow even more “not
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classical”. The two theories in [10], involving equality and linear order, are
both examples of very intuitionistic theories. In general, suppose that instead
of just one non-embedding endomorphism, we have two endomorphisms f
and g, tuples a and b, and formulas ϕ and ψ such that AM  ϕ(fa) and
AM 1 ψ(fb), as well as AM 1 ϕ(ga) and AM  ψ(gb), as holds for the two
examples from [10]. Then ΓM ⊢ ¬∀xy((ϕ(x) → ψ(y)) ∨ (ψ(y) → ϕ(x))),
and therefore ΓM is a very intuitionistic theory.

However, if AJRS is such that every endomorphism is also an embedding,
then theory ΓM is not of new interest to us, since:

Theorem 3.2. If all endomorphisms of AJRS are embeddings, then ΓM =
ΓJRS, and so ΓM is a classical theory.

Proof. Since ΓJRS admits quantifier elimination, it is model complete.
Thus, all embeddings of ΓJRS models are elementary embeddings. Apply
Theorem A.1 in the Appendix. ⊣

The examples from [10], as well as the examples from Subsection 2.3
satisfy the following special condition: We say that a model A is morphism

homogeneous if whenever a, b ∈ A are such that tp+
a
⊆ tp+

b
then there is

an endomorphism f of A such that f(a) = b. A classical JRS theory ΓJRS is
morphism homogeneous if its unique countable model AJRS is. We show
in Theorem 4.9 that if AJRS is morphism homogeneous, then ΓM admits a
particularly elegant kind of quantifier elimination.

Example 3.3. Not all AJRS are morphism homogeneous. Let L be the
language with unary predicate P (x) and binary predicate x < y, and let ΓJRS

be the (classical) theory of the finite model AJRS with domain AJRS = {a, b}
such that AJRS |= ¬P (a) ∧ P (b) ∧ (a < b) and no other nontrivial atomic
sentences. We have that tp+a ⊆ tp+b (in fact, tp+b = tp+a ∪{P (x)}). However,
there is no morphism of AJRS taking a to b. That is, assume f is a morphism
such that f(a) = b. Then we must have AJRS |= f(a) < f(b). But this is not
true if f(a) = b, as AJRS |= ∀x ¬(b < x).

4 Intuitionistic Quantifier Elimination in ΓM

Recall that a theory has few (quantifier-free) formulas if for all x = x0, x1, ...,
xn−1 there are finitely many non-equivalent (quantifier-free) formulas with
all free variables from among x. All classical theories over the finite relational
language L have few quantifier-free formulas. So by quantifier elimination,
ΓJRS has few formulas. We show that the intuitionistic theory ΓM admits
quantifier elimination and also has few formulas. Our methods are classical.

Given a finite list of variables x = x0, x1, . . . , xn−1, we first consider the
complexity over ΓM of the collection of quantifier-free formulas with all free
variables from x. Let C(x) be the following Kripke model. As nodes for
the underlying category C(x) we take all complete At±(x)-types t that are
(classically) consistent with ΓJRS. We turn C(x) into a poset category as
follows. Given a pair of nodes t and u, we set t ≤ u exactly when there are
a ∈ AJRS and endomorphism f of AJRS such that t = tp

a
and u = tpf(a)

(that is, AJRS |= πt(a) ∧ πu(f(a))). So t ≤ u implies t+ ⊆ u+. To each node
t we associate finite classical model At. If t ≤ u, then the morphism sends
the equivalence class xi(t) of xi in At to the equivalence class xi(u) of xi in
Au. We write xi for the “global” element t 7→ xi(t) of C(x). The collection
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of nodes |C(x)| is finite. Note that AJRS is morphism homogeneous exactly
when t+ ⊆ u+ implies t ≤ u for every t and u in |C(x)|.

Lemma 4.1. Let ϕ(x) be quantifier-free, and a ∈ AJRS. Then AM  ϕ(a)
if and only if tp

a
 ϕ(x(tp

a
)).

Proof. We complete the proof by induction on the complexity of ϕ for
all elements a simultaneously. The case for atoms and the induction steps
for ∧ and ∨ are easy. Let ϕ equal ψ → θ.

Suppose AM  ψ(a) → θ(a). Let tp
a
≤ u such that u  ψ(x(u)). It

suffices to show that u  θ(x(u)). There is an endomorphism f such that
u = tpf(a). By the inductive hypothesis, AM  ψ(f(a)). By supposition,
AM  θ(f(a)). So again by the inductive hypothesis, u  θ(x(u)).

Conversely, suppose tp
a
 ψ(x(tp

a
)) → θ(x(tp

a
)). Let f be an endo-

morphism such that AM  ψ(f(a)). It suffices to show AM  θ(f(a)). By
the inductive hypothesis, tpf(a)  ψ(x(tpf(a))). By definition tp

a
≤ tpf(a)

so, by supposition, tpf(a)  θ(x(tpf(a))). Again by the inductive hypothesis,
AM  θ(f(a)). ⊣

To each quantifier-free ϕ(x) assign Jϕ(x)K = {t ∈ |C(x)| : t  ϕ(x(t))}.
We can rewrite Lemma 4.1 above as: AM  ϕ(a) exactly when tp

a
∈ Jϕ(x)K.

The sets Jϕ(x)K form a finite Heyting algebra of upward closed subsets of the
poset C(x) given by:

Jϕ ∧ ψK = JϕK ∩ JψK,
Jϕ ∨ ψK = JϕK ∪ JψK, and
JϕK ∩ JψK ⊆ JθK if and only if JϕK ⊆ Jψ → θK,

where we write JϕK as short for Jϕ(x)K, et cetera. Subsets of the form Jϕ(x)K
are definable. Upward closed subsets of C(x) form the open subsets of the
usual poset topology. So definable subsets are open. Below we show that
open subsets are definable.

Lemma 4.2. For all quantifier-free formulas ϕ(x) and ψ(x) we have ΓM ⊢
∀x(ϕ→ ψ) exactly when Jϕ(x)K ⊆ Jψ(x)K. Modulo provable equivalence over

ΓM , there are for each x only finitely many quantifier-free formulas with all

free variables from x.

Proof. Suppose that AM  ∀x(ϕ(x) → ψ(x)). Let t ∈ Jϕ(x)K. It
suffices to show t ∈ Jψ(x)K. There is a ∈ AJRS such that t = tp

a
. By

Lemma 4.1, AM  ϕ(a). By supposition, AM  ψ(a). Again by Lemma 4.1,
tp

a
∈ Jψ(x)K.
Conversely, suppose Jϕ(x)K ⊆ Jψ(x)K. Let a ∈ AJRS be such that AM 

ϕ(a). It suffices to show AM  ψ(a). By Lemma 4.1, tp
a
∈ Jϕ(x)K. By

supposition, tp
a
∈ Jψ(x)K. By Lemma 4.1 we get AM  ψ(a).

So JϕK = JψK exactly when ΓM ⊢ ∀x(ϕ ↔ ψ). The second claim now
follows, as |C(x)| is finite. ⊣

Given t ∈ |C(x)|, define t̂ = {u ∈ |C(x)| : t ≤ u} and ť = {u ∈ |C(x)| :
u � t}. So t̂ is the smallest open subset containing t, and ť is the largest
open subset not containing t. Clearly, t̂ ⊆ Jπ+

t (x)K

Lemma 4.3. Let t ∈ |C(x)|. Then ť = Jπ+
t (x) → σ−

t (x)K.
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Proof. Suppose s ≤ t. Then there are a ∈ AJRS and endomorphism f
such that s = tp

a
and t = tpf(a). So AM  π+

t (f(a)) and AM 1 σ−
t (f(a)).

So AM 1 π+
t (a) → σ−

t (a). By Lemma 4.1, s = tp
a
/∈ Jπ+

t (x) → σ−
t (x)K.

Conversely, suppose s � t. There is a ∈ AJRS such that s = tp
a
. It suffices

to show that AM  π+
t (a) → σ−

t (a). Let s ≤ u and let f be an endomorphism
such that u = tpf(a) and AM  π+

t (f(a)). Then by supposition, u 6= t and
therefore there is an atomic formula δ such that (¬δ) ∈ t and AM  δ(f(a)).
So AM  σ−

t (f(a)). ⊣

Let t ∈ |C(x)|. We write ρ−t or ρ−t (x) for

∧
u(π

+
u → σ−

u ),

where
∧

ranges over all u such that t+ ⊆ u+ but t 6≤ u. An empty conjunction
is identified with ⊤. We write ρ+t or ρ+t (x) for π

+
t ∧ ρ−t .

Lemma 4.4. Let t ∈ |C(x)|. Then t̂ = Jρ+t (x)K. So all open subsets of C(x)
are definable.

Proof. To show t̂ ⊆ Jρ+t (x)K, it suffices to show t ∈ Jρ+t (x)K. Obviously,
t ∈ Jπ+

t (x)K. Let u be such that t+ ⊆ u+ and t � u. Then, by Lemma 4.3,
t ∈ Jπ+

u (x) → σ−
u (x)K. And thus t ∈ Jρ+t (x)K.

Conversely, suppose v ∈ Jρ+t (x)K. There is a ∈ AJRS such that v = tp
a
.

Then AM  ρ+t (a). So AM  π+
t (a) and t+ ⊆ tp+

a
. Let u be such that

t+ ⊆ u+ and t � u. Then AM  π+
u (a) → σ−

u (a). By Lemma 4.3, tp
a
6= u.

Thus t ≤ tp
a
= v.

The second claim follows from the fact that all open sets are finite unions
of t̂’s. ⊣

An open subset U is called prime if whenever U is the union U = V ∪W
of two open subsets, then U = V or U =W . A prime open subset has depth
n if there is a sequence of prime open subsets U0 ⊆ U1 ⊆ . . . ⊆ Un such that
Ui 6= Ui+1 for all i and Un = U , but there is no longer sequence with these
properties. So the empty subset has depth 0. The following is now obvious.

Lemma 4.5. In C(x), each open subset equals a finite union of prime open

subsets. A nonempty open subset is prime if and only if it is of the form t̂,
for some t ∈ |C(x)|.

Proof. All open subsets in the poset topology are finite unions of sets of
the form t̂, so it suffices to prove that sets t̂ are prime. This is immediate
since t̂ ⊆ U is equivalent to t ∈ U . ⊣

Corollary 4.6. Over ΓM , every quantifier-free formula ϕ is equivalent to

formula
∨
{ρ+t : t ∈ JϕK}.

Proof. Immediate from Lemmas 4.5 and 4.4. ⊣

Lemma 4.7. For all formulas ϕ(xxn), and for all t ∈ C(xxn), ΓM includes

the sentence:

∀xxn(ϕ ∧ ρ+t → (σ−
t ∨ ∀xn(ρ

+
t → ϕ))).
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Proof. Fix ϕ, t ∈ C(xxn) and a, b ∈ AJRS and suppose AM  ϕ(ab) ∧
ρ+t (ab). If AM  σ−

t (ab) then we are done, so suppose not. Then t = tp
ab.

We need to show that for arbitrary c ∈ AJRS and endomorphism f , if AM 

ρ+t (f(a)c) then AM  ϕ(f(a)c). Fix such an element c and endomorphism f .
Then tpf(a)c ∈ t̂ by Lemma 4.4. So tp

ab ≤ tpf(a)c and there is a morphism
g such that tpg(ab) = tpf(a)c. By the first supposition, AM  ϕ(g(ab)). By
Fräıssé homogeneity, there is an automorphism h such that h(g(ab)) = f(a)c,
so AM  ϕ(f(a)c). ⊣

We are now ready to prove our main result:

Theorem 4.8. Theory ΓM admits quantifier elimination.

Proof. We eliminate quantifiers from formulas of the form ϕ∧θ where θ is
quantifier-free (we recover all formulas by letting θ be ⊤). By Corollary 4.6,
θ is equivalent to a formula of the form

∨
t∈S{ρ

+
t } for some set S ⊆ |C(x)|.

Thus, each ϕ ∧ θ is equivalent to
∨

t∈S{ϕ ∧ ρ+t }. So it suffices to eliminate

quantifiers from formulas of the form ϕ ∧ ρ+t , where t ∈ S. Fix such a
formula, and proceed by induction on the depth of Jρ+t K and the number of
free variables of ϕ.

Given ϕ∧ρ+t , if we have no free variables in ϕ, then by Theorem 3.1, ϕ∧ρ+t
is equivalent to a quantifier-free formula (namely ρ+t or ⊥). Otherwise, apply
Lemma 4.7. There are two cases.

In the first case, we get ϕ ∧ ρ+t ∧ σ−
t . As above, we use Corollary 4.6

to rewrite ϕ ∧ (ρ+t ∧ σ−
t ) as

∨
u∈R(ϕ ∧ ρ+u ) for some set R ⊆ |C(x)|. Since

∨
u∈R ρ

+
u → (ρ+t ∧ σ−

t ), each ρ+u implies ρ+t . By Lemma 4.2, for each u ∈

R, Jρ+u K ⊆ Jρ+t K. Likewise, since each ρ+u implies σ−
t , Jρ+u K ⊆ Jσ−

t K. By
Lemma 4.5, each Jρ+u K is prime, and therefore Jρ+u K ⊆ JδK for some atom δ
found in σ−

t . So Jρ+u K 6= Jρ+t K. By our inductive hypothesis on depth, each
ϕ ∧ ρ+u is equivalent to a quantifier-free formula, and therefore ϕ ∧ ρ+t is
equivalent to a quantifier-free formula.

In the second case, we get ϕ ∧ ρ+t ∧ ∀xn(ρ
+
t → ϕ), which is equivalent

to ∀xn(ρ
+
t → ϕ) ∧ ρ+t . By the inductive hypothesis on free variables, this is

equivalent to a quantifier-free formula. ⊣

As a corollary we get:

Theorem 4.9. Let ϕ(x) be a formula. Over ΓM , ϕ is equivalent to a disjunc-

tion of formulas ρ+t with t ∈ |C(x)|. If ΓJRS is morphism homogeneous, then

ϕ is equivalent to a disjunction of conjunctions of atoms π+
t , with t ∈ |C(x)|.

Proof. The first claim is immediate from Corollary 4.6 and Theorem 4.8.
If ΓJRS is morphism homogeneous, then for each t, ΓM ⊢ π+

t ↔ ρ+t . So every
quantifier-free formula ϕ is equivalent to

∨
{π+

t : t ∈ JϕK}, and therefore to a
disjunction of conjunctions of atoms. ⊣

As an illustration of Theorem 4.9 in the presence of morphism homogene-
ity, see the quantifier elimination results about the two theories in [10].

5 The Universal Fragment of ΓM

Every classical model complete theory is uniquely determined by its universal
fragment. Given the universal fragment, then one can recover the model
companion as the largest inductive theory preserving this universal fragment.
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As a start to a generalization of this process to intuitionistic theories, we find
the universal fragments of our intuitionistic theories that admit quantifier
elimination. We first need to explain what we mean by an intuitionistic
universal sentence. The definition is motivated by Theorem 5.1 below, see
also [6].

Recall that a Kripke model is essentially a functor A from a (small) cate-
gory A to the category of classical L-structures and morphisms. That is, to
each i in |A| we assign a classical structure Ai, and to each arrow f : i → j
in A we assign a morphism Af : Ai → Aj . We define “Kripke submodel”
by A ⊆ B if and only if A ⊆ B as categories, and all morphisms and node
structures of A are restrictions of the corresponding morphisms and node
structures of B. A sentence is universal if it can be built from the atoms
using the operations ∧, ∨, → and ∀, with the restriction that no implications
or universal quantifications occur in negative places.

Theorem 5.1. An intuitionistic theory ∆ is axiomatizable by universal sen-

tences if and only if its class of Kripke models is closed under Kripke sub-

models.

Proof. Immediate from [6, Theorem 4.1]. ⊣

Note that in the absence of Excluded Middle, not every quantifier-free
formula is equivalent to a universal formula. Therefore, the following is an
addition to Theorem 4.9:

Theorem 5.2. Let ϕ(x) be a formula. Over ΓM , ϕ is equivalent to a

quantifier-free universal formula.

Proof. This easily follows from Theorem 4.9 since each ρ+t is a universal
formula. ⊣

Next, we axiomatize the universal fragment of ΓM .

Lemma 5.3. Let t ∈ |C(x)|. Then ΓM includes universal sentence ∀x(π+
t →

(σ−
t ∨ ρ−t )).

Proof. Fix a ∈ AJRS and suppose that AM  π+
t (a). If AM  σ−

t (a),
we are done, so suppose AM 1 σ−

t (a). Then t = tp
a
. Suppose we have

endomorphism f and u ∈ C(x) such that t+ ⊆ u+, t � u, and AM 

π+
u (f(a)). Since t � u, u 6= tpf(a). So AM  σ−

u (f(a)). ⊣

Lemma 5.4. Let t /∈ |C(x)|. Then ΓM includes universal sentence ∀x(π+
t →

σ−
t ).

Proof. Fix a ∈ AJRS and suppose that AM  π+
t (a). Since AJRS 6|= πt(a),

we have AJRS |= σ−
t (a). So AM  σ−

t (a). ⊣

Note that the formulas ∀x(π+
t → σ−

t ) from Lemma 5.4 axiomatize the
universal fragment of the classical theory ΓJRS. Since these sentences are
geometric, the following well-known result applies:

Lemma 5.5. Let B be a Kripke model and ϕ a geometric sentence. Then

B  ϕ if and only if for each node k ∈ |B|, node structure Bk |= ϕ.

The schemas from Lemmas 5.3 and 5.4 suffice:
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Theorem 5.6. The axiom schemas

∀x(π+
t → σ−

t ) for all x and t /∈ |C(x)|, and

∀x(π+
t → (σ−

t ∨ ρ−t )) for all x and t ∈ |C(x)|

together axiomatize the universal fragment of ΓM .

Proof. Let ∆ be the set of all universal sentences described above. Let
B  ∆ be a Kripke model. By [12, Theorem 2.6.8], and because L is count-
able, we may suppose that B is a tree (poset) of height ω, and for all i ∈ |B|
the domain of the node structure Bi is at most countable. Let r ∈ |B| be
the root of B. We construct a rooted Kripke model D with root r such that
B ⊆ D and D  ΓM .

First we construct an intermediate rooted Kripke model C with C = B,
Bi ⊆ Ci

∼= AJRS for every i ∈ |C|, and Cf ↾ Bi = Bf for every f : i → j in
C. The construction is by induction on the height of C. Let Cr = AJRS. By
Lemmas 5.4 and 5.5, every node structure Bi is a model of (ΓJRS)∀. So up to
isomorphism, Bi ⊆ AJRS for every i ∈ |B|. So without loss of generality, we
may suppose that Br ⊆ Cr. Now suppose that Ci is defined for some i ∈ |C|,
with Bi ⊆ Ci

∼= AJRS. Let j ∈ |C| be any immediate successor of i, and let
f : i → j be the unique arrow from i to j in C. Without loss of generality,
we may suppose that Bj ⊆ Ci. We claim that there exists a Cj

∼= AJRS such
that Bj ⊆ Cj , and a morphism Cf : Ci → Cj such that Cf ↾ Bi = Bf .
Let L∗ be the language L extended by a new function symbol f∗, and let
Θ = Thc(Ci)∪{f

∗(b) = Bf(b) : b ∈ Bi}∪(Thc(Ci)∩At(Ci))[c/f
∗(c), c ∈ Ci],

where Thc(Ci) is the theory of the classical model Ci over the language L(Ci).
Let Θ0 be any finite subset of Θ. Then

Θ0 ⊆
Thc(Ci) ∪ {f∗(b) = Bf(b) : b ∈ b}∪
(Thc(Ci) ∩ At(Ci))[c/f

∗(c), c ∈ Ci],

for some finite b ⊆ Bi. Obviously, t = tp
b
is consistent with ΓJRS. Let

u = tpBf(b). Then, since Bf is a morphism, we have t+ ⊆ u+. Assume

t 6≤ u. Then B  ∀x(π+
t → (σ−

t ∨ (π+
u → σ−

u ))). Since i 
B π+

t (b), we have
i B σ−

t (b) ∨ (π+
u (b) → σ−

u (b)). Since Bi |= πt(b), we have i 6B δ(b), for
every ¬δ ∈ t. So i 6B σ−

t (b). So we must have i B π+
u (b) → σ−

u (b). Since
Bf is a morphism, we have j B π+

u (Bf(b)). By the definition of forcing,
j B σ−

u (Bf(b)). So j B δ(Bf(b)) for some ¬δ ∈ u. So Bj |= δ(Bf(b))
for some ¬δ ∈ u. Contradiction. So t ≤ u. So there is an endomorphism
f∗ : Ci → Ci such that f∗ ↾ b = Bf ↾ b. Let C

∗
i be the expansion of Ci

to L∗ where f∗ is interpreted as this endomorphism. Then C
∗
i |= Θ0. So by

compactness, Θ is consistent. Let C∗
j be a countable model of Θ, and let Cj

be the L-reduct of C∗
j . Then Ci � Cj , and f

∗ : Ci → Cj is a morphism such
that f∗ ↾ Bi = Bf . (Note that f∗ is a total function on Cj , but it is only a
morphism on Ci ⊆ Cj .) Set Cf = f∗. Since AJRS is the unique model of ΓJRS

of size less than or equal to ω, we have Cj
∼= AJRS. So the claim is proven.

This completes the construction of C. Clearly, B ⊆ C.
Let D be the extension of C generated by adding for each i ∈ |C| all

possible morphisms from Ci to itself. Then for all ϕ ∈ L(AJRS) we haveD  ϕ
if and only if AM  ϕ, by a straightforward induction on the complexity of
ϕ. So D  ΓM . Also B ⊆ D. So by Theorem 5.1, B forces the universal
fragment of ΓM . So ∆ axiomatizes the universal fragment of ΓM . ⊣
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A Appendix: Kripke Models of Classical Logic

It is well known that Kripke models satisfy classical logic exactly when all
morphisms between node structures are elementary embeddings. See [11,
page 110] for one direction. For the reader’s convenience, we include a full
proof. Recall that classical predicate logic CQC is axiomatizable over intu-
itionistic logic by the schema ∀x(ϕ(x) ∨ ¬ϕ(x)).

Theorem A.1. Let A be a Kripke model. Then the following are equivalent:

1. For all arrows f : k → m of A, morphism A(f) is an elementary

embedding. That is, for all L(Ak) sentences ϕ(a):

Ak |= ϕ(a) if and only if Am |= ϕ(a)f .

2. For all nodes k ∈ |A|, and every sentence ϕ in L:

CQC ⊢c ϕ implies k  ϕ.

3. For every node k and for every sentence ϕ(a) in L(Ak) we have:

Ak |= ϕ(a) if and only if k  ϕ(a).

Proof.

2 ⇒ 3: We proceed by induction on the complexity of sentences. 3 holds
for all atomic sentences, while the induction steps for existential statements,
conjunctions, and disjunctions all follow directly from the definitions.

Given a node k, suppose Ak |= ψ → θ, where 3 holds for ψ and θ.
If Ak |= ψ, then Ak |= θ. By the inductive hypothesis, k  θ, and so
k  ψ → θ. Otherwise, Ak 6|= ψ. Then by the inductive hypothesis, k 1 ψ.
By 2, k  ψ ∨ ¬ψ, so k  ¬ψ. So k  ψ → θ.

Now suppose that k  ψ → θ, where 3 holds for ψ and θ. If Ak |= ¬ψ,
then Ak |= ψ → θ trivially. Otherwise, Ak |= ψ. By the inductive hypothesis,
k  ψ, so k  θ. By the inductive hypothesis again, Ak |= θ. So Ak |= ψ → θ.

Suppose Ak |= ∀xψ(x), where 3 holds for ψ(a), for all a ∈ Ak. Then,
Ak |= ψ(a) for all a ∈ Ak. By the inductive hypothesis, k  ψ(a) for all
a ∈ Ak. Assume k 1 ∀xψ(x). Then there exists f : k → m where m 1 ψf (b),
for some b ∈ Am. By 2, m  ψf (b) ∨ ¬ψf (b), so m  ¬ψf (b). Therefore
m  ∃x¬ψf (x). Now, k  ∃x¬ψ(x) or k  ¬∃x¬ψ(x) (again by 2). The
latter cannot hold, since m  ∃x¬ψf (x), so k  ∃x¬ψ(x). So, k  ¬ψ(a) for
some a ∈ Ak, a contradiction. Thus, k  ∀xψ(x).

Finally, suppose k  ∀xψ(x). So k  ψ(a) for all a ∈ Ak. By the inductive
hypothesis, Ak |= ψ(a) for all a ∈ Ak. So Ak |= ∀xψ(x).

3 ⇒ 2: If CQC ⊢c ϕ, then B |= ϕ for all classical models B. Thus, given
a node k, and a sentence ϕ proven by CQC, we have Ak |= ϕ. By 3, k  ϕ,
proving 2.

3 ⇒ 1: Let f : k → m, and suppose Ak |= ϕ(a). By 3, k  ϕ(a), and so
m  ϕ(a)f . By 3 again, Am |= ϕ(a)f .

1 ⇒ 3: We again proceed by induction on the complexity of sentences.
By the definition of forcing, 3 always holds for atomic sentences, and the
inductive steps for conjunctions, disjunctions, and existential statements are
easy.

Suppose Ak |= ψ → θ. Let f : k → m be a morphism such that m  ψf .
By the inductive hypothesis, Am |= ψf . By 1, Am |= ψf → θf , hence
Am |= θf . By the inductive hypothesis, m  θf , so k  ψ → θ.
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Suppose k  ψ → θ. If Ak |= ψ then, by the inductive hypothesis,
k  ψ. Then k  θ, so by the inductive hypothesis again, Ak |= θ. Thus,
Ak |= ψ → θ.

Suppose Ak |= ∀xψ(x), with 3 holding for ψf (b), for all b ∈ Am, where
m is a node with morphism f : k → m. Given such an f , by 1 we have
Am |= ∀xψf (x). Then, for all a ∈ Am, Am |= ψf (a). By the inductive
hypothesis, for every a ∈ Am we have m  ψf (a). As f is arbitrary, we have
that k  ∀xψ(x).

Finally, suppose k  ∀xψ(x). Then for all a ∈ Ak we have k  ψ(a). By
the inductive hypothesis, Ak |= ψ(a) for all a ∈ Ak. So Ak |= ∀xψ(x). ⊣
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