

Article Doi 10.5943/mycosphere/10/1/17

Morphological and phylogenetic studies of *Pleopunctum* gen. nov. (Phaeoseptaceae, Pleosporales) from China

Liu NG^{1,2,3,4,5}, Hyde KD^{4,5}, Bhat DJ⁶, Jumpathong J³ and Liu JK^{1*,2}

¹ School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China

² Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China

³ Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand

⁴ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

⁵ Mushroom Research Foundation, Chiang Rai 57100, Thailand

⁶No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India

Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of *Pleopunctum* gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17

Abstract

A new hyphomycete genus, *Pleopunctum*, is introduced to accommodate two new species, *P. ellipsoideum* sp. nov. (type species) and *P. pseudoellipsoideum* sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and *TEF1a* sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to *Lignosphaeria* and *Thyridaria macrostomoides*. Divergence time estimation based on LSU, SSU and *TEF1a* sequence data was performed to provide additional evidence for the establishment of Phaeoseptaceae, which diverged approximately 88 MYA.

Key words – 3 new taxa – Asexual morph – Divergence times – Dothideomycetes – Multi-genes – Taxonomy

Introduction

Hyphomycetes are the asexually reproducing part of the life cycle of ascomycetes and basidiomycetes (Seifert et al. 2011). They are a diverse group belonging to different classes, families and genera as shown by modern molecular phylogenetic analyses (Jeewon et al. 2003, Hyde et al. 2013, Maharachchikumbura et al. 2016, Dai et al. 2017, Doilom et al. 2017, Wijayawardene et al. 2017, Lu et al. 2018). Colonies of dematiaceous hyphomycetes on natural substrates are normally effuse, conspicuous, velvety and brown or black (Ellis 1971, 1976, Bhat 2010, Seifert et al. 2011, Luo et al. 2017). Punctiform colonies are common in dematiaceous hyphomycetes. Although punctiform colonies on natural substrates are similar when observed under the stereoscope, the morphology of conidia is quite diverse, and their phylogenetic affinities are rather intriguing. Historically, it has been uncommon to link hyphomycetes with their sexual morphs, since many asexual morphs have permanently lost the potential to produce a sexual morph (Seifert et al. 2011).

However, with the advent of DNA based methods, taxonomic placement of many hyphomycetes with or without sexual morphs has been possible (Tsui et al. 2006, Shenoy et al. 2007, Wang et al. 2007). This has shown that many morphologically similar hyphomycetous groups are polyphyletic (Shenoy et al. 2006, Pinnoi et al. 2007, Klaubauf et al. 2014, Lu et al. 2018).

The cheirosporous genus Dictyosporium Corda and their relatives are placed in Dictyosporiaceae (Boonmee et al. 2016, Yang et al. 2018). Both Hermatomyces Speg. and Lentimurispora N.G. Liu, Bhat & K.D. Hyde can produce cushion-like, lenticular conidia with dark brown central cells and subhyaline to pale brown peripheral cells. However, Hermatomyces belongs to Hermatomycetaceae (Hashimoto et al. 2017), while Lentimurispora is accommodated in Lentimurisporaceae (Liu et al. 2018). All of the families, Dictyosporiaceae, Hermatomycetaceae and Lentimurisporaceae belong to the Dothideomycetes. Yang et al. (2016) established the order Fuscosporellales in the subclass Hypocreomycetidae (Sordariomycetes) based on fungi isolated from freshwater. Two genera, Fuscosporella Jing Yang, Bhat & K.D. Hyde and Parafuscosporella Jing Yang, Bhat & K.D. Hyde form black, punctiform colonies with obpyriform conidia on submerged twigs. *Canalisporium* Nawawi & Kuthub. also resides in the subclass Hypocreomycetidae (Sordariomycetes). Unlike conidia of Fuscosporella and Parafuscosporella having a basal septum, Canalisporium produces muriform conidia (Goh et al. 1998, Sri-Indrasutdhi et al. 2010). Besides two largest classes of Ascomycota (Dothideomycetes and Sordariomycetes), punctiform colonies have also been reported from other classes. Aculeata W. Dong, H. Zhang & K.D. Hyde was recently introduced by Dong et al. (2018) in Herpotrichiellaceae (Eurotiomycetes). Conidia of Aculeata are olive to brown, vesiculate, cruciately septate, bearing densely packed, subulate, obtuse, brown to black spines (Dong et al. 2018). There are also some hyphomycetous genera treated as incertae sedis due to lack of molecular data. For example, Vanakripa Bhat, W.B. Kendr. & Nag Raj was introduced by Bhat & Kendrick (1993) with the type species V. gigaspora Bhat, Kendrick & Nag Raj. Since then, eight species were described in Vanakripa but none of them have DNA sequence data in public repositories (Tsui et al. 2003, Hu et al. 2010, Leão-Ferreira et al. 2013). This genus is now assigned as ascomycetes incertae sedis. The conidial morphology in Vanakripa is similar to those of Fuscosporella and Parafuscosporella, however, their conidiogenous cells are distinguishable.

While investigating dematiaceous hyphomycetes in China and Thailand, two interesting hyphomycetes with punctiform colonies were collected from decaying wood in China. Phylogenetic analyses based on the combined LSU, SSU, ITS and *TEF1a* sequence data indicated that these two taxa represent a new genus in Phaeoseptaceae (Pleosporales). Therefore, *Pleopunctum* gen. nov., is introduced to accommodate *P. ellipsoideum* and *P. pseudoellipsoideum* spp. nov. with detailed morphological studies and supported by multi-gene phylogenetic analyses. In addition, we also estimated the divergence time to further support the establishment of Phaeoseptaceae.

Materials & Methods

Collections and examination of specimens

Fresh samples of decaying wood were collected from Guizhou Province, China. The samples were processed and examined following the method described in Taylor & Hyde (2003). The samples were incubated in plastic boxes with sterile and moist tissue at 25–30 °C for 3 days, and then examined using a Motic SMZ 168 Series dissecting microscope. Fruiting bodies of the new taxa were mounted in a drop of water for microscopic studies and photomicrography. The species were examined with a Nikon ECLIPSE 80i compound microscope fitted with a Canon 600D digital camera. Measurements were performed using the Tarosoft (R) Image Frame Work software (Liu et al. 2010) and photo-plates were prepared using Adobe Photoshop CS3 software (Adobe Systems, USA).

Single conidium isolations were carried out following the method described in Chomnunti et al. (2014). Germinated conidia were individually transferred to potato dextrose agar (PDA) media plates and incubated at 25 °C. Dried specimens were deposited in the herbarium of Mae Fah Luang

University (MFLU), Chiang Rai, Thailand. Pure cultures were deposited in the Mae Fah Luang University Culture Collection (MFLUCC). Facesoffungi (FoF) numbers were acquired as in Jayasiri et al. (2015) and Index Fungorum numbers as in Index Fungorum (2019).

DNA extraction, PCR amplification and sequencing

A sterile scalpel was used to scrape fresh mycelia from pure cultures growing on PDA medium for one month at 25 °C. Genomic DNA was extracted using DNA Extraction Kit (Sangon Biotech, Shanghai, P.R. China) following the manufacture's protocol. Four different gene regions, the nuclear large subunit rDNA (28S, LSU), the nuclear small subunit rDNA (18S, SSU), internal transcribed spacer (ITS) and the translation elongation factor 1-alpha gene (*TEF1a*) were selected for study. Part of LSU locus was amplified with the primers LROR and LR5 (Vilgalys & Hester 1990), part of SSU with primers NS1 and NS4 (White et al. 1990), part of ITS with primers ITS5 and ITS4 (White et al. 1990), and part of *TEF1a* with primers 983F and 2218R (Rehner & Buckley 2005). Polymerase chain reaction (PCR) was carried out in 25 μ l reaction volume containing 12.5 μ l Taq PCR Master Mix (TIANGEN Co., P.R. China), 9.5 μ l ddH₂O, 1 μ l forward primer, 1 μ l reverse primer and 1 μ l DNA template. PCR conditions for LSU, SSU, ITS and *TEF1a* were as follows: 3 min at 94 °C (initial denaturation), followed by 40 cycles of 45 s at 94 °C (denaturation), 50 s at 56 °C (annealing), 1 min at 72 °C (extension), with a final extension of 10 min at 72 °C. Purified PCR products were sequenced by Sangon Biotech (Shanghai, P.R. China).

Phylogenetic analyses

Halotthiaceae, Fifty-five strains representing Amorosiaceae, Lentimurisporaceae, Lophiostomaceae, Phaeoseptaceae, Sporormiaceae and Teichosporaceae, along with the outgroup Lindgomyces ingoldianus KH100 (Table 1) in the order Pleosporales used for this study were obtained from GenBank baed on blast search results and other published studies (Mantle et al. 2006, Kruys & Wedin 2009, Mugambi & Huhndorf 2009, Zhang et al. 2013, Thambugala et al. 2015, Phukhamsakda et al. 2016a, Hyde et al. 2018, Liu et al. 2017, 2018). The multiple alignments were automatically performed by online MAFFT version 7 (Katoh & Standley 2013) and BioEdit (Hall 1999). Four genes were combined using BioEdit. Alignments were checked visually and optimized manually using AliView (Larsson 2014) where necessary. The final alignment was deposited in TreeBASE (submission ID: 24638). Sequences derived in this study were deposited in GenBank (Table 1).

Maximum likelihood analysis was performed using RAxML (Stamatakis 2006). The tree search included 1,000 non-parametric bootstrap replicates and the best scoring tree was selected from suboptimal trees under the GTRGAMMA substitution model. The resulting replicates were plotted on to the best scoring tree obtained previously.

Maximum parsimony analysis was performed with the heuristic search in PAUP v. 4.0b10 (Swofford 2002). Gaps in the alignment were treated as missing characters and all characters were unordered. Maxtrees were unlimited. Branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Clade stability was assessed using a bootstrap (BT) analysis with 1,000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis & Bull 1993).

Bayesian analyses were performed in MrBayes 3.2.6 (Ronquist et al. 2012). The program MrModeltest 2.2 (Nylander 2004) was used to determine the best nucleotide substitution model for each data partition. GTR+I+G substitution model with gamma rates and dirichlet base frequencies was decided for LSU, SSU, ITS and *TEF1a* sequences. The Markov Chain Monte Carlo (MCMC) sampling approach was used to calculate posterior probabilities (PP) (Rannala & Yang 1996). Bayesian analyses of four simultaneous Markov chains were run for 5,000,000 generations with trees sampled every 1,000th generations. The first 20% of trees, representing the burn-in phase of the analyses, were discarded and the remaining trees were used for calculating posterior probabilities (PP) in the majority rule consensus tree.

Fossil calibration, divergence time and evolutionary rate estimations

The fossil calibrations used in the analyses followed the methodology described in Phukhamsakda et al. (2016b). The related sequences in the class Dothideomycetes are listed in Table 2. Reliable fossils and one secondary calibration were selected for the divergence times estimations based on the phylogenetic analyses. The fossil *Metacapnodium succinum* (Metacapnodiaceae) was used to calibrate the minimum age of Capnodiales (normal distribution, mean = 100, SD = 150, providing 95% credibility interval of 346 MYA) (Rikkinen et al. 2003, Hongsanan et al. 2016, Pérez-Ortega et al. 2016, Phukhamsakda et al. 2016b, Samarakoon et al. 2019). The fossil *Margaretbarromyces dictyosporus* was used to calibrate the crown age of *Aigialus* (Aigialaceae) (gamma distribution, offset = 35, shape = 1.0, scale = 25, providing 95% credibility interval of 110 MYA) (Mindell et al. 2007, Phukhamsakda et al. 2016b). The split between Arthoniomycetes and Dothideomycetes was calibrated using the results from Phukhamsakda et al. (2016b) as the secondary calibration (normal distribution, mean = 300, SD = 50, providing 95% credibility interval of 382 MYA).

Evolutionary estimation was performed by BEAST 1.8.0 (Drummond et al. 2012). Aligned sequence data were partitioned separately for each LSU, SSU, *TEF1a* data set, and were loaded to prepare an XML file constructed with BEAUti v1.8.0. Clock and substitution models were set to be unlinked (independently estimated foreach gene partition), while the tree prior parameters were set to be linked across partitions (concatenation). We applied a lognormal relaxed clock (uncorrelated). The tree prior was shared by all tree models; this consisted of a birth/death in complete sampling tree prior and was used to model the speciation of nodes in the topology with uniform prior on probability of splits and extinctions. The analysis was performed for 100 million generations in BEAST v1.8.0, and sampling parameters every 1,000 generations. Tracer v1.6 (Rambaut et al. 2014) was used to check the effective sample sizes (ESS) (ESS>200). The first of 20% trees were discarded as a burn-in phase. The remaining trees were combined in LogCombiner v.1.8.0. A maximum clade creditability tree was generated by Tree Annotator v1.8.0.

Trees were visualized with FigTree v1.4.0 (Rambaut 2006) and the layout was edited using Adobe Illustrator CS6 software (Adobe Systems, USA).

Species	Strain numbers	LSU	SSU	ITS	TEF1a
Alpestrisphaeria terricola	SC-12	JX985750	JX985749	JN662930	
Amorosia littoralis	NN 6654	AM292055	AM292056	AM292047	
Angustimassarina populi	MFLUCC 13-0034	KP888642	KP899128	KP899137	KR075164
Bahusandhika indica	GUFCC 18001	KF460274		KF460273	
Berkleasmium micronesicum	BCC 8141	DQ280272	DQ280268	DQ280262	
Berkleasmium nigroapicale	BCC 8220	DQ280273	DQ280269	DQ280261	
Biappendiculispora japonica	MAFF 239452	AB619005	AB618686	LC001728	LC001744
Brunneoclavispora bambusae	MFLUCC 11-0177	KT426562		MG520957	
Capulatispora sagittiformis	JCM 15100	AB369267	AB618693	AB369268	LC001756
Coelodictyosporium pseudodictyosporium	MFLUCC 13-0451	KR025862		KR025858	
Decaisnella formosa	BCC 25617	GQ925847	GQ925834		GU479850
Decaisnella formosa	BCC 25616	GQ925846	GQ925833		GU479851
Exosporium stylobatum	CBS 160.30	JQ044447		JQ044428	
Forliomyces uniseptata	MFLUCC 15-0765	KU721762	KU721767	KU721772	

Table 1 Taxa used in in this study. The new taxa are indicated in bold.

Table 1 Continued.

Species	Strain numbers	LSU	SSU	ITS	TEF1a
Guttulispora crataegi	MFLUCC 13-0442	KP888639	KP899125	KP899134	KR075161
Halotthia posidoniae	BBH 22481	GU479786	GU479752		
Lentimurispora	MFLUCC 18-0497	MH179144	MH179160		MH188055
urniformis			WIII / / 100		WIII10005.
Lignosphaeria fusispora	MFLUCC 11-0377	KP888646		KP899140	
Lignosphaeria thailandica	MFLUCC 11-0376	KP888645		KP899139	
Lindgomyces ingoldianus	KH 100	AB521737	AB521720		
Lophiohelichrysum helichrysi	MFLUCC 15-0701	KT333436	KT333437	KT333435	KT427535
Lophiopoacea paramacrostoma	MFLUCC 11-0463	KP888636	KP899122		
Lophiostoma macrostomum	JCM 13544	AB619010	AB618691	JN942961	LC001751
Massarina corticola	CBS 154.93	FJ795448	FJ795491		
Mauritiana rhizophorae	BCC 28866	GU371824	GU371832		GU371817
Neolophiostoma pigmentatum	MFLUCC 10-0129	KT324588	KT324589	KT324587	KT324590
Neotrematosphaeria biappendiculata	KTC 1124	GU205227	GU205256		
Paucispora quadrispora	KH 448	LC001722	LC001720	LC001733	LC001754
Phaeoseptum aquaticum	CBS 123113	JN644072			
Phaeoseptum terricola	MFLUCC 10-0102	MH105779	MH105780	MH105778	MH10578
Platystomum	MFLUCC 13-0343	KP888643	KP899129		KR075165
compressum	WIFLUCC 13-0343	Kr 888043	KF 077127		KK075105
Pleopunctum ellipsoideum	MFLUCC 19-0390	MK804517	MK804514	MK804512	MK82851
Pleopunctum ellipsoideum Pleopunctum			MK804514		
ellipsoideum	MFLUCC 19-0390 MFLUCC 19-0391	MK804517 MK804518	MK804514	MK804512 MK804513	MK82851 MK82851
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata			MK804514 GU296187		
ellipsoideum Pleopunctum pseudoellipsoideum	MFLUCC 19-0391	MK804518			MK82851
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma	MFLUCC 19–0391 CBS 659.74	MK804518 GU301864	GU296187	MK804513	MK82851 GU349032 LC001761
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum	MFLUCC 19–0391 CBS 659.74 JCM 13534	MK804518 GU301864 AB619015 GQ925844 KP698414	GU296187 AB618697	MK804513	MK82851 GU349032 LC001761
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030	MK804518 GU301864 AB619015 GQ925844	GU296187 AB618697 GQ925831	MK804513 LC001735	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005	MK804518 GU301864 AB619015 GQ925844 KP698414	GU296187 AB618697 GQ925831 KP698415	MK804513 LC001735 KP698413	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765	GU296187 AB618697 GQ925831 KP698415	MK804513 LC001735 KP698413 KU721775	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729	GU296187 AB618697 GQ925831 KP698415	MK804513 LC001735 KP698413 KU721775 GQ203769	MK82851 GU349032
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194 CBS 52450	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194 CBS 52450 MFLUCC 12–0004	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046 KT426563	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora aurantiacinotata Teichospora	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194 CBS 52450 MFLUCC 12–0004 GKM 1238	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046 KT426563 GU385173	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026 MG520958	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum Pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora aurantiacinotata Teichospora austroafricana	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194 CBS 52450 MFLUCC 12–0004 GKM 1238 CBS 122674	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046 KT426563 GU385173 EU552116	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026 MG520958	MK82851 GU349032 LC001761 GU479857 KU727898
ellipsoideum Pleopunctum pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora aurantiacinotata Teichospora austroafricana Teichospora cruciformis	MFLUCC 19–0391 CBS 659.74 JCM 13534 BCC 22835 MFLUCC 14–0005 MFLUCC 15–0030 UPS:Dissing Gr.81.194 CBS 52450 MFLUCC 12–0004 GKM 1238 CBS 122674 SMH 5151	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046 KT426563 GU385173 EU552116 GU385211	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026 MG520958	MK82851 GU349032 LC001761 GU479857 KU727898
ellipsoideum Pleopunctum Pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora aurantiacinotata Teichospora austroafricana Teichospora cruciformis Teichospora kenyensis	MFLUCC 19–0391CBS 659.74JCM 13534BCC 22835MFLUCC 14–0005MFLUCC 15–0030UPS:DissingGr.81.194CBS 52450MFLUCC 12–0004GKM 1238CBS 122674SMH 5151GKML 100Na	MK804518 GU301864 AB619015 GQ925844 KP698414 KU721765 GQ203729 DQ468046 KT426563 GU385173 EU552116 GU385211 GU385189	GU296187 AB618697 GQ925831 KP698415 KU721770	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026 MG520958	MK82851 GU349032 LC001761 GU479857
ellipsoideum Pleopunctum Pseudoellipsoideum Preussia funiculata Pseudolophiostoma vitigenum Pseudoplatystomum scabridisporum Sigarispora ravennica Sparticola junci Sporormia fimetaria Sporormiella minima Sulcosporium thailandicum Teichospora aurantiacinotata Teichospora austroafricana Teichospora cruciformis Teichospora kenyensis Teichospora parva	MFLUCC 19–0391CBS 659.74JCM 13534BCC 22835MFLUCC 14–0005MFLUCC 15–0030UPS:DissingGr.81.194CBS 52450MFLUCC 12–0004GKM 1238CBS 122674SMH 5151GKML 100NaGKM 169N	MK804518GU301864AB619015GQ925844KP698414KU721765GQ203729DQ468046KT426563GU385173EU552116GU385189GU385165	GU296187 AB618697 GQ925831 KP698415 KU721770 KT426564	MK804513 LC001735 KP698413 KU721775 GQ203769 DQ468026 MG520958	MK82851 GU349032 LC001761 GU479857 KU727898 GU327766 GU327766

Table 1 Continued.

Species	Strain numbers	LSU	SSU	ITS	TEF1a
Teichospora uniseriata	ANM 909	GU385206			
Thyridaria macrostomoides	GKM 1033	GU385190			GU327776
Thyridaria macrostomoides	GKM 1159	GU385185			GU327778
Thyridaria macrostomoides	GKM 224N	GU385191			GU327777
Vaginatispora aquatica	MFLUCC 11-0083	KJ591576	KJ591575	KJ591577	
Westerdykella ornata	CBS 379.55	GU301880	GU296208	NR103587	GU349021

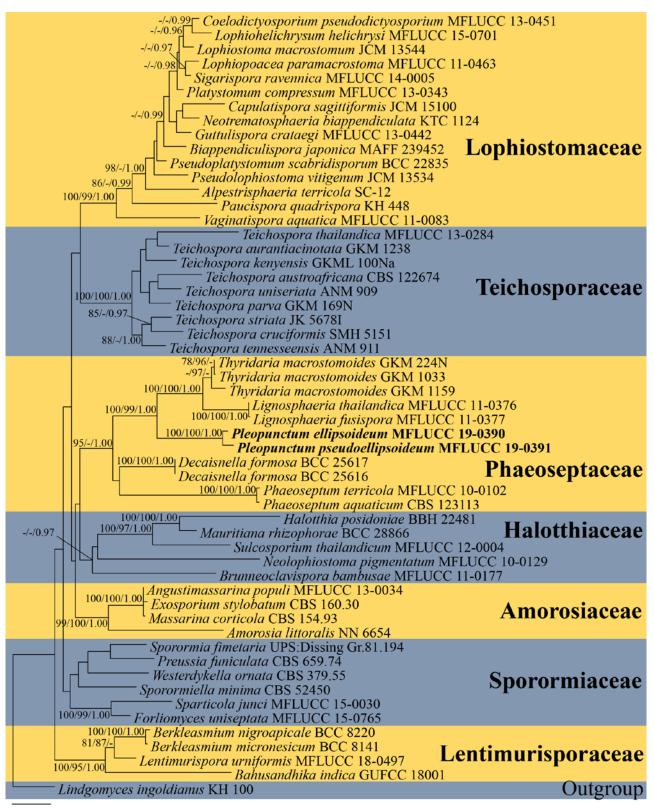
 Table 2 Taxa used for divergence time estimate in this study.

Species	Strain	LSU	SSU	TEF1a
Aigialus grandis	BCC 18419	GU479774	GU479738	GU479838
Aigialus mangrovei	BCC 33563	GU479776	GU479741	GU479840
Aigialus parvus	BCC 18403	GU479778	GU479744	GU479842
Aigialus rhizophorae	BCC 33572	GU479780	GU479745	GU479844
Aliquandostipite khaoyaiensis	CBS 118232	GU301796		GU349048
Amniculicola immersa	CBS 123083	FJ795498	GU456295	GU456273
Amorosia littoralis	NN 6654	AM292055	AM292056	
Angustimassarina populi	MFLUCC 13-0034	KP888642	KP899128	KR075164
Anteaglonium abbreviatum	GKM 219N	GQ221881		GQ221916
Anteaglonium parvulum	GKM 1029	GQ221878		GQ221915
Arthonia dispersa	UPSC 2583	AY571381	AY571379	
Ascochyta pisi	AFTOL-ID 1583	DQ678070	DQ678018	DQ677913
Ascocratera manglicola	BCC 09270	GU479782	GU479747	GU479846
Astrosphaeriella fusispora	MFLUCC 10-0555	KT955462	KT955443	KT955425
Bahusandhika indica	GUFCC 18001	KF460274		
Berkleasmium micronesicum	BCC 8141	DQ280272	DQ280268	
Berkleasmium nigroapicale	BCC 8220	DQ280273	DQ280269	
Bimuria novae-zelandiae	CBS 107.79	NG_058623	NG_061017	
Boeremia exigua	CBS 431.74	JX681074	EU754084	KY484687
Botryosphaeria dothidea	CBS 115476	NG_027577	DQ677998	DQ767637
Capnodium salicinum	CBS 131.34	DQ678050	DQ677997	
Caryospora minima		EU196550	EU196551	
Cladosporium cladosporioides	CBS 170.54	AY213694	DQ678004	
Coelodictyosporium pseudodictyosporium	MFLUCC 13-0451	KR025862		
Corynespora cassiicola	CBS 100822	GU301808	GU296144	GU349052
Corynespora smithii	CABI 5649b	GU323201		GU349018
Cyclothyriella rubronotata	CBS 141486	KX650544	KX650507	KX650519
Decaisnella formosa	BCC 25617	GQ925847	GQ925834	GU479850
Decaisnella formosa	BCC 25616	GQ925846	GQ925833	GU479851
Delitschia chaetomioides	SMH 3253.2	GU390656		GU327753
Delitschia winteri	CBS 225.62	DQ678077	DQ678026	DQ677922
Dendrographa leucophaea f. minor		AF279382	AF279381	
Dissoconium aciculare	CBS 204.89	GU214419	GU214523	
Exosporium stylobatum	CBS 160.30	JQ044447		
Gloniopsis calami	MFLUCC 15-0739	KX646363	KX669034	KX671965

Table 2 Continued.

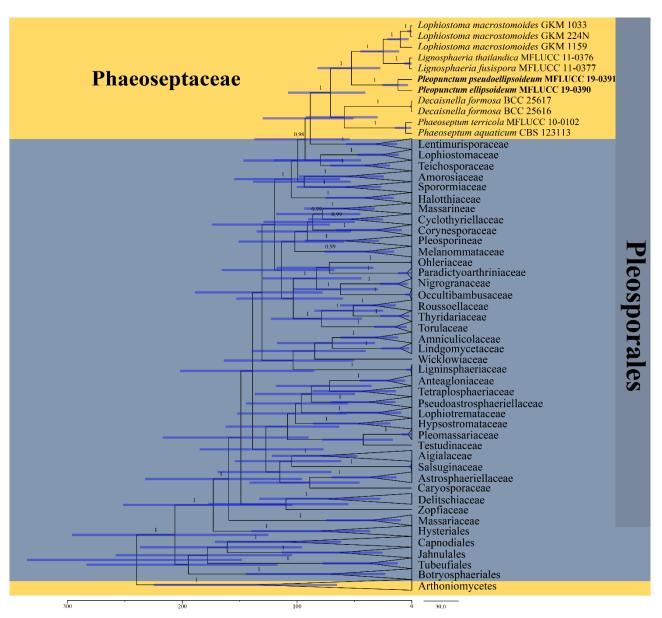
Species	Strain	LSU	SSU	TEF1a
Gloniopsis praelonga	CBS 112415	FJ161173	FJ161134	FJ161090
Guttulispora crataegi	MFLUCC 13-0442	KP888639	KP899125	KR075161
Halotthia posidoniae	BBH 22481	GU479786	GU479752	
Herpotrichia diffusa	CBS 250.62	DQ678071	DQ678019	DQ677915
Hypsostroma caimitalense	GKM 1165	GU385180		
Hypsostroma saxicola	SMH 5005	GU385181		
Hysterium angustatum	CBS 236.34	FJ161180	GU397359	FJ161096
Jahnula seychellensis	SS 2113	EF175665	EF175644	
Katumotoa bambusicola	KT 1517a	AB524595	AB524454	AB539108
Lentimurispora urniformis	MFLUCC 18-0497	Mh179144	MH179160	MH188055
Leptosphaeria doliolum	CBS 505.75	GQ387576	GQ387515	GU349069
Leptoxyphium cacuminum	MFLUCC 10-0049	JN832602	JN832587	
Ligninsphaeria jonesii	MFLUCC 15-0641	KU221037		
Ligninsphaeria jonesii	GZCC 15-0080	KU221038		
Lignosphaeria fusispora	MFLUCC 11-0377	KP888646		
Lignosphaeria thailandica	MFLUCC 11-0376	KP888645		
Lindgomyces ingoldianus	ATCC 200398	AB521736	AB521719	
Lindgomyces rotundatus	KT 1096	AB521740	AB521723	
Lophiostoma macrostomum	KT 508	AB619010	AB618691	LC001751
Lophiotrema lignicola	CBS 122364	GU301836	GU296166	GU349072
Lophiotrema nucula	CBS 627.86	GU301837	GU296167	GU349073
Massaria anomia	CBS 591.78	GU301839	GU296169	
Massaria inquinans	M 19	HQ599402	HQ599444	HQ599342
Massarina corticola	CBS 154.93	FJ795448	FJ795491	
Massarina eburnea	CBS 473.64	MH877786	GU296170	GU349040
Massariosphaeria phaeospora	CBS 611.86	GU301843	GU296173	
Mauritiana rhizophorae	BCC 28866	GU371824	GU371832	GU371817
Melanomma pulvis-pyrius	CBS 124080	GU456323	GU456302	GU456265
Murilentithecium clematidis	MFLUCC 14-0562	KM408759	NG_061185	KM454445
Murispora rubicunda	IFRD 2017	FJ795507	GU456308	GU456289
Neoastrosphaeriella krabiensis	MFLUCC 11-0025	JN846729	JN846739	
Neoroussoella bambusae	MFLUCC 11-0124	KJ474839		KJ474848
Neotrematosphaeria	KTC 1124	GU205227	GU205256	
biappendiculata				
Nigrograna fuscidula	CBS 141476	KX650547	KX650509	KX650522
Nigrograna mackinnonii	CBS 110022	GQ387614	GQ387553	KF407985
Occultibambusa bambusae	MFLUCC 13-0855	KU863112	KU872116	KU940193
Occultibambusa chiangraiensis	MFLUCC 16-0380	KX655546	KX655551	KX655561
Ohleria modesta	MGC	KX650562		KX650533
Ohleria modesta	OM	KX650563	KX650513	KX650534
Paradictyoarthrinium diffractum	MFLUCC 13-0466	KP744498	KP753960	
Paradictyoarthrinium hydei	MFLUCC 17-2512	MG747497	MH454349	
Phaeoseptum aquaticum	CBS 123113	JN644072		
Phaeoseptum terricola	MFLUCC 10-0102	MH105779	MH105780	MH105781
Phyllosticta capitalensis	CBS 226.77	KF206289	KF766300	
Piedraia hortae	CBS 480.64	GU214466	AY016349	
Pleomassaria siparia	CBS 279.74	DQ678078	DQ678027	DQ677923
Pleopunctum ellipsoideum	MFLUCC 19-0390	MK804517	MK804514	MK828510

Table 2 Continued.


Species	Strain	LSU	SSU	TEF1a
Pleopunctum pseudoellipsoideum	MFLUCC 19-0391	MK804518		MK828511
Pleospora herbarum	CBS 191.86	MH873624	GU238232	KC584731
Preussia funiculata	CBS 659.74	GU301864	GU296187	GU349032
Prosthemium orientale	MAFF 239509	AB553748	AB553641	
Pseudoastrosphaeriella bambusae	MFLUCC 11-0205	KT955475		KT955437
Pseudoastrosphaeriella thailandensis	MFLUCC 10-0553	KT955477	KT955456	KT955439
Psiloglonium araucanum	CBS 112412	FJ161172	FJ161133	FJ161089
Pteridiospora javanica	MFLUCC 11-0159	KJ742940	KJ739607	KJ739605
Racodium rupestre	L 346	EU048583	EU048575	
Racodium rupestre	L 424	EU048582	EU048577	
Rimora mangrovei	JK 5246A	GU301868	GU296193	
Roccella fuciformis	Tehler 8171	FJ638979		
Roussoella nitidula	MFLUCC 11-0634	KJ474842		KJ474851
Salsuginea ramicola	KT 2597.1	GU479800	GU479767	GU479861
Salsuginea ramicola	KT 2597.2	GU479801	GU479768	GU479862
Schismatomma decolorans	Ertz 5003 (BR)	NG_027622	NG_013155	
Scorias spongiosa	CBS 325.33	KF901821		
Sigarispora ravennica	MFLUCC 14-0005	KP698414	KP698415	
Sporormia fimetaria	UPS:Dissing Gr.81.194	GQ203729		
Teichospora parva	GKM 169N	GU385165		GU327768
Teichospora striata	JK 5678I	GU301813	GU296149	GU479852
Teichospora tennesseensis	ANM 911	GU385207		GU327769
Tetraplosphaeria sasicola	MAFF 239677	AB524631	AB524490	
Thyridaria acaciae	CBS 138873	KP004497		
Thyridaria broussonetiae	CBS 141481	KX650568	KX650515	KX650539
Thyridaria macrostomoides	GKM 1033	GU385190		GU327776
Thyridaria macrostomoides	GKM 1159	GU385185		GU327778
Thyridaria macrostomoides	GKM 224N	GU385191		GU327777
Torula herbarum	CBS 111855	KF443386	KF443391	KF443403
Torula hollandica	CBS 220.69	KF443384	KF443389	KF443401
Triplosphaeria maxima	MAFF 239682	AB524637	AB524496	
Tubeufia chiangmaiensis	MFLUCC 11-0514	KF301538	KF301543	KF301557
Tubeufia javanica	MFLUCC 12-0545	KJ880036	KJ880035	KJ880037
Verruculina enalia	BCC 18401	GU479802	GU479770	GU479863
Westerdykella ornata	CBS 379.55	GU301880	GU296208	GU349021
Wicklowia aquatica	F 76-2	GU045445	GU266232	
Zopfia rhizophila	CBS 207.26	DQ384104		

Results

Phylogenetic analyses


The manually adjusted LSU, SSU, ITS and $TEF1\alpha$ alignment comprised a total of 3,622 characters (1,037 for LSU, 1,010 for SSU, 630 for ITS and 945 for $TEF1\alpha$), including coded alignment gaps. Among them, 2,468 characters were constant, 353 variable characters were parsimony-uninformative, and number of parsimony-informative characters was 801. Four hundred fifty-seven equally most parsimonious trees (Tree length = 3741, CI = 0.458, RI = 0.605, RC =

0.277, HI = 0.542) were yielded from the heuristic search. Maximum parsimony, maximum likelihood and Bayesian analyses of the combined dataset inferred similar topologies, respectively.

0.03

Figure 1 – Maximum likelihood (RAxML) tree based on analysis of a combined dataset of LSU, SSU, ITS and *TEF1* α sequence data. Bootstrap support values for ML and MP greater than 75% and Bayesian posterior probabilities above than 0.95 are given near nodes, respectively. The tree is rooted with *Lindgomyces ingoldianus* (KH 100). The new taxa are indicated in bold.

Figure 2 – Maximum clade credibility (MCC) tree with divergence times estimates obtained from BEAST. Posterior probabilities for branch support greater than 0.95 are given. Bars correspond to the 95% highest posterior density intervals. The new taxa are indicated in bold.

The most likely tree ($-\ln = 22570.586787$) is presented (Fig. 1). The matrix had 1,462 distinct alignment patterns with 38.91% undetermined characters or gaps. The two *Pleopunctum* taxa clustered together with maximal support (ML-bs = 100%, MP-bs = 100%, PP = 1.00) in Phaeoseptaceae. *Pleopunctum* subclade is close to *Lignosphaeria* and *Thyridaria macrostomoides* with maximal support (ML-bs = 100%, MP-bs = 100%, PP = 1.00) in Phaeoseptaceae.

Neolophiostoma pigmentatum Boonmee & K.D. Hyde (strain MFLUCC 10–0129) was included in Phaeoseptaceae and formed a basal subclade in the phylogenetic analyses of combined LSU, SSU and *TEF1a* sequence data carried out by Hyde et al. (2018). However, in our analysis, *Neolophiostoma* belongs to Halotthiaceae. The monophyly of Phaeoseptaceae is well-supported by ML and Bayesian analyses, while Halotthiaceae is only supported by Bayesian analysis. Moreover, Halotthiaceae and Phaeoseptaceae clades had a sister relationship, but the monophyly of these two clades is not supported by ML, MP and Bayesian analyses. Among the seven families, the monophyly of Amorosiaceae, Lentimurisporaceae, Lophiostomaceae, Phaeoseptaceae and Teichosporaceae are well-supported.

Divergence time estimations

According to the divergence times estimates (Fig. 2), the crown age of Dothideomycetes (which comprised taxa in Botryosphaeriales, Capnodiales, Hysteriales, Jahnulales, Pleosporales and Tubeufiales) is around 206 MYA. The orders Hysteriales and Pleosporales diverged approximately 172 MYA. The crown age of Pleosporales is around 159 MYA. Among the Pleosporales families, Phaeoseptaceae diverged with Lentimurisporaceae approximately 88 MYA and the crown age of Phaeoseptaceae is around 71 MYA. Thus, the establishment of Phaeoseptaceae is supported and corresponds to previous studies (Liu et al. 2017, Zhang et al. 2019).

Taxonomy

Pleopunctum N.G. Liu, K.D. Hyde & J.K. Liu, gen. nov.

Index Fungorum: IF556522; Facesoffungi number: FoF 06113

Etymology – "Pleo-" an abbreviation of Pleosporales, the order in which this fungus is classified; "punctum" in reference to the punctiform colonies on natural substrate.

Saprobic on decaying wood in terrestrial habitats. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. *Colonies* on natural substrate sporodochial, superficial, brown, scattered, gregarious, punctiform. *Mycelium* immersed in the substratum, composed of septate, branched, subhyaline to greyish brown hyphae. *Conidiophores* macronematous, mononematous, cylindrical, branched, septate, medium brown, smooth-walled, thick-walled. *Conidiogenous cells* monoblastic, cylindrical, brown. *Conidia* acrogenous, solitary, muriform, constricted at septa, broadly oval to ellipsoidal, smooth-walled, pale brown when immature, broadly obtuse at apex and dark brown, truncate at base and paler brown when mature, often with a hyaline, elliptical to globose basal cell.

Type species – *Pleopunctum ellipticum*

Notes – *Pleopunctum* is the first hyphomycetous genus in Phaeoseptaceae. It contains two species, namely *P. ellipticum* and *P. pseudoellipticum*, and they formed a distinct subclade in Phaeoseptaceae in the phylogenetic tree. The sexual morph of *Pleopunctum* is unknown, and the asexual morph has a unique morphology compared to those phylogenetically related species. *Pleopunctum* is characterized by its macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. We hereby introduce the new genus based on the distinctiveness of morphology and multi-gene phylogeny.

Pleopunctum ellipsoid	<i>eum</i> N.G. Liu, K.	.D. Hyde & J.K	. Liu, sp. nov.	Fig. 3

Index Fungorum: IF556523; Facesoffungi number: FoF 06114 Etymology – in reference to the ellipsoidal conidia

Holotype – MFLU 19–0685

Saprobic on decaying wood. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. *Colonies* on natural substrate sporodochial, superficial, brown, scattered, gregarious, punctiform. *Mycelium* immersed in the substratum, composed of septate, branched, subhyaline to greyish brown hyphae. *Conidiophores* 1.5–3.5 µm wide ($\bar{x} = 2.5 \mu$ m, n = 15), macronematous, mononematous, cylindrical, branched, septate, medium brown, smooth-walled, thick-walled. *Conidiogenous cells* monoblastic, terminal, integrated, medium brown. *Conidia* 39–51 × 17–24 µm ($\bar{x} = 45 \times 20 \mu$ m, n = 30), acrogenous, solitary, muriform, constricted at septa, oval to ellipsoidal, smooth-walled, pale brown when immature, broadly obtuse at apex and dark brown, truncate at base and paler brown when mature, often with a hyaline, elliptical to globose basal cell, 8–20 × 8.5–18.5 µm ($\bar{x} = 13 \times 13 \mu$ m, n = 30).

Culture characteristics – Conidium germinated on water agar within 24 hours. Germ tubes produced from basal cell. Mycelia superficial, irregular circular, grey in the central cycle and pale grey in the outer circle from above. Dark brown in the central cycle and yellowish brown in the outer circle from below.

Material examined - CHINA, Guizhou Province, Guiyang, Guizhou Academy of Agricultural

Sciences, on decaying wood, 7 June 2018, N.G. Liu, NKY027 (MFLU 19–0685); ex-type living culture, MFLUCC 19–0390.

Pleopunctum pseudoellipsoideum N.G. Liu, K.D. Hyde & J.K. Liu, sp. nov.

Fig. 4

Index Fungorum: IF556524; Facesoffungi number: FoF 06115 Etymology – in reference to its similar mophology with *P. ellipticum*.

Holotype – MFLU 19–0686

Saprobic on decaying wood. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. *Colonies* on natural substrate sporodochial, superficial, black, scattered, gregarious, punctiform. *Mycelium* immersed in the substratum, composed of septate, branched hyphae. *Conidiophores* 1.5–4.5 µm wide ($\bar{x} = 3 \mu m$, n = 15), macronematous, mononematous, cylindrical, wider at the tip, septate, medium brown, smooth-walled, thick-walled. *Conidiogenous cells* monoblastic, terminal, integrated, medium brown. *Conidia* 39–59 × 19–28 µm ($\bar{x} = 50 \times 24 \mu m$, n = 30), acrogenous, solitary, muriform, constricted at septa, oval to ellipsoidal, smooth-walled, broadly obtuse at apex and dark brown, truncate at base and paler brown, often with a hyaline, elliptical to subglobose basal cell, $6.5-13.5 \times 11-15.5 \mu m$ ($\bar{x} = 11-13 \mu m$, n = 15).

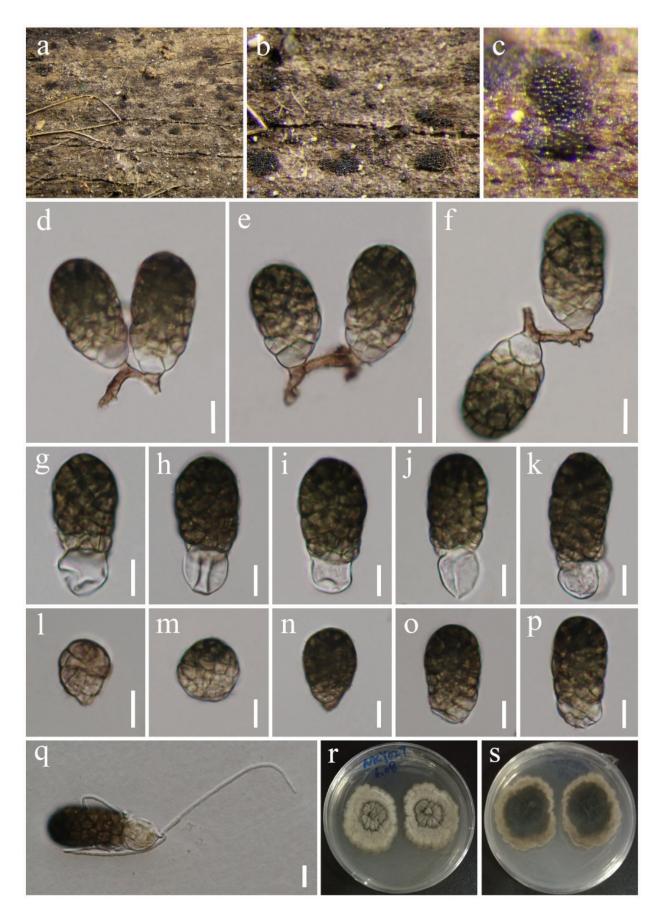
Culture characteristics – Conidium germinated on water agar within 24 hours. Germ tubes produced from basal cell. Mycelia superficial, irregular circular, grey in the center and greyish white near the edge from above. Dark brown in the center, becoming paler towards the edge from below.

Material examined – China, Guizhou Province, Zunyi, Wangcao, on decaying wood, 16 September 2018, N.G. Liu, KKS020 (MFLU 19–0686); ex-type living culture, MFLUCC 19–0391.

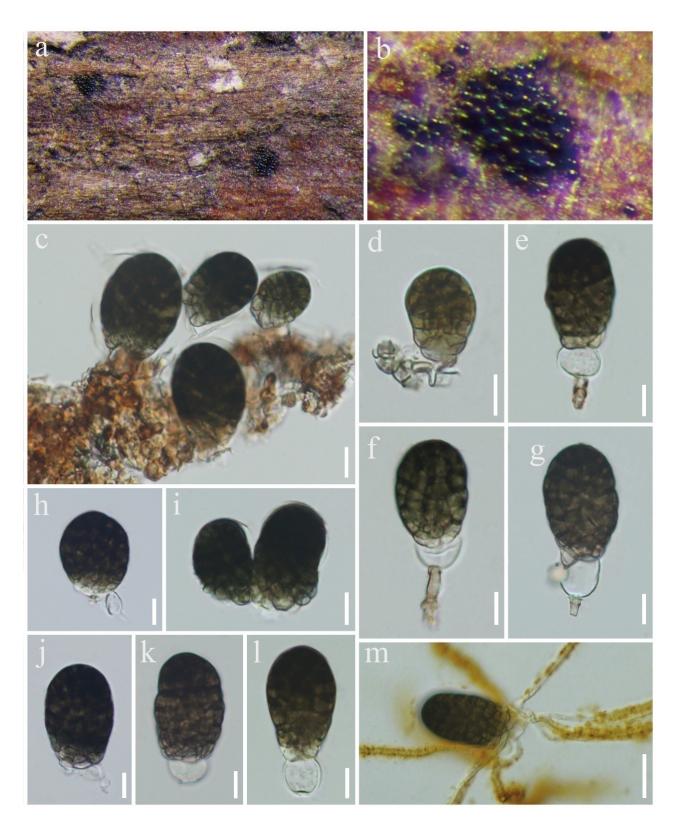
Notes – *Pleopunctum ellipsoideum* and *P. pseudoellipticum* are morphologically similar. They both have sporodochial conidiomata, mononematous, cylindrical conidiophores, monoblastic, terminal conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. The conidia size is also similar $(39-51 \times 17-24 \ \mu m vs. 39-59 \times 19-28 \ \mu m)$. However, ITS comparison between *P. ellipsoideum* and *P. pseudoellipsoideum* showed that there are 12 bp differences (including the gaps) in a total of 524 bp, and 30 bp differences in a total of 985 bp for *TEF1a* (Table 3). Therefore, we identify *P. ellipsoideum* and *P. pseudoellipsoideum* and *P. pseudoellipsoideum* as distinct species following the guidelines for species delineation in Jeewon & Hyde (2016).

Discussion

In our studies, *Pleopunctum ellipsoideum* and *P. pseudoellipsoideum* were collected from the same province but different cities in China. They are both saprobic on unidentified decaying woods. Based on phylogenetic analyses of combined LSU, SSU, ITS and *TEF1a* sequence data, *P. ellipsoideum* and *P. pseudoellipsoideum* formed a well-supported subclade and did not belong to any existing genera in Phaeoseptaceae. Moreover, although *P. ellipsoideum* and *P. pseudoellipsoideum* share similar morphology, they formed independent and distinct lineages with different branch lengths. Sufficient nucleotide differences are noted between *P. ellipsoideum* and *P. pseudoellipsoideum* in the ITS, LSU and *TEF1a* regions (Table 3). Therefore, we propose *Pleopunctum* as a new genus in Phaeoseptaceae and identify *P. ellipsoideum* and *P. pseudoellipsoideum* as different species.


Hyde et al. (2018) established the family Phaeoseptaceae to accommodate the genera *Lignosphaeria* Boonmee et al., *Neolophiostoma* Boonmee & K.D. Hyde and *Phaeoseptum* Ying Zhang, J. Fourn. & K.D. Hyde, along with putatively named species *Decaisnella formosa* Abdel-Wahab & E.B.G. Jones and *Thyridaria macrostomoides* (De Not.) M.E. Barr, based on LSU, SSU and *TEF1a* sequence data. Phaeoseptaceae is characterized by subglobose to globose ascomata with short papilla, bitunicate, long pedicellate, 8-spored asci with a small ocular chamber, and light brown, multi-septate ascospores (Hyde et al. 2018). No hyphomycetous asexual morphs were reported in this family. Thus, morphological comparison between *Pleopunctum* and other genera in Phaeoseptaceae is not available. The monotypic genus *Neolophiostoma* was introduced by

Ariyawansa et al. (2015) with the type species *N. pigmentatum* in the family Halotthiaceae. However, *Neolophiostoma* was transferred to Phaeoseptaceae by Hyde et al. (2018). In our analysis, *Neolophiostoma* remained within Halotthiaceae, although without good support, but agrees with Ariyawansa et al. (2015) based on LSU, SSU, *RPB2* sequence data; Hyde et al. (2016) based on LSU and SSU sequence data and Phukhamsakda et al. (2016a) based on LSU, SSU, *TEF1α* and *RPB2* sequence data.


Neolophiostoma resembles *Halotthia*, the type genus of Halotthiaceae, in having ostiolate ascomata, bitunicate, 8-spored and fissitunicate asci with an ocular chamber, but they differ in that *Neolophiostoma* has hyaline, 3–5-septate ascospores with a thin gelatinous sheath while *Halotthia* has brown, 1-septate ascospores. Therefore, *Neolophiostoma* probably belongs to Halotthiaceae or has its own family, but more collections and analyses are warranted to verify any taxonomic assumption. Our divergence time estimation shows that Phaeoseptaceae diverged with Lentimurisporaceae approximately 88 MYA, the establishment of the Phaeoseptaceae agrees well with ages (50–150 MYA) proposed by Hyde et al. (2017), with the genus *Neolophiostoma* excluded. Our work generated similar results with Liu et al. (2017) and Zhang et al. (2019). *Decaisnella* was introduced by Fabre (1879) based on *D. spectabilis* Fabre, and there are fourteen epithets listed in Index Fungorum (May 2019). However, sequence data are only available for *D. formosa*. Because of the lack of molecular sequence data of *D. spectabilis*, the phylogenetic placement of the genus *Decaisnella* requires further confirmation. *Thyridaria macrostomoides* was described by Barr (1990), until twenty year later, Mugambi & Huhndorf (2009) provided the DNA sequence data of *T. macrostomoides* from three newly obtained collections (GKM 1033, GKM 1159, GKM 224N) and placed them in Lophiostomaceae. Thambugala et al. (2015) restudied Lophiostomaceae and they excluded these three *T. macrostomoides* strains from Lophiostomaceae function (Hyde et al. 2013, Jaklitsch & VogImayr 2016). Therefore, these three *T. macrostomoides* scales they are distant from *T. broussonetiae*, and they probably can be recognized as a new genus, but we are not willing to introduce it in this study until we examine the type materials of *T. macrostomoides*.

Succion	ITS												LSU	ſ		TEF	Ία						
Species	12	15	45	91	143	144	145	338	339	359	462	525	85	101	160	8	12	33	42	150	153	171	186
P. ellipsoideum	С	G	Т	G	А	А	А	Т	С	С	А	_	С	G	С	Т	Т	Т	Т	Т	Т	G	Т
P. pseudoellipsoideum	Т	С	_	А	_	_	_	С	Т	Т	_	Т	Т	А	Т	С	С	С	С	С	С	Т	С
Spacing	TEF	Ία																					
Species	252	258	343	366	397	571	572	591	684	705	876	909	915	924	936	951	965	969	975	979	984	986	
P. ellipsoideum	С	С	Т	С	Т	Α	С	Т	Т	С	С	С	С	G	Т	С	G	Т	С	G	А	А	
P. pseudoellipsoideum	Т	Т	А	Т	А	G	Т	С	С	Т	Т	Т	Т	Т	С	Т	Т	С	Т	С	Т	С	

Table 3 Nucleotide differences in the ITS, LSU and *TEF1α* regions for *P. ellipsoideum* and *P. pseudoellipsoideum*. Numbers are in reference to the nucleotide position of DNA sequences (*P. ellipsoideum*) submitted in GenBank.

Figure 3 – *Pleopunctum ellipsoideum* (MFLU 19–0685, holotype). a–c Colonies on natural substrates. d–f Conidiophores and conidia. g–k Conidia with basal hyaline cells. l–p Conidia without basal hyaline cells. q Germinated conidium. r, s Colonies on PDA media. Scale bars: $d-q = 10 \mu m$

Figure 4 – *Pleopunctum pseudoellipsoideum* (MFLU 19–0686, holotype). a–b Colonies on natural substrates. c Conidia on substrate. d–g Conidiophores and conidia. h–l Conidia with or without basal hyaline cells. m Germinated conidium. Scale bars: $c-l = 10 \ \mu m$, $m = 20 \ \mu m$

Among the six phylogenetically close families in this study, only coelomycetous asexual morphs have been reported in Halotthiaceae, Lophiostomaceae and Teichosporaceae (Hyde et al. 2013, Thambugala et al. 2015). Amorosiaceae includes two genera, *Amorosia* Mantle & D. Hawksw. and *Angustimassarina* Thambugala, Kaz. Tanaka & K.D. Hyde, along two putative strains, *Exosporium stylobatum* CBS 160.30 and *Massarina corticola* CBS 154.93 (Thambugala et al. 2015).

al. 2015). Amorosia and Angustimassarina can produce chlamydospores in cultures, which are characterized by micronematous to semi-macronematous conidiophores, elongate-clavate conidia. However, Amorosia has 3-4-septate conidia with a distinct central pore in each septum, while Angustimassarina has 1-3-septate conidia (Mantle et al. 2006, Thambugala et al. 2015). *Exosporium* is a hyphomycetous genus with loosely aggregated conidiophores, terminal or lateral conidiogenous cells with prominent loci, and 5-distoseptate conidia (Crous et al. 2011). Lentimurisporaceae is a dematiaceous hyphomycetous family without known sexual morphs. The type genus *Lentimurispora* produces muriform, lenticular conidia with dark brown central cells and subhyaline to pale brown peripheral cells (Liu et al. 2018). Bahusandhika Subram. is a torula-like genus with fusiform, cylindrical or rhomboidal conidia formed simply or in branched chains. Berkleasmium Zobel has been shown to be not monophyletic (Pinnoi et al. 2007). Conidial morphology of *Berkleasmium* is oval to ellipsoidal, often with a protruding hilum instead of a hyaline, elliptical to globose basal cell (Ellis 1971, Bussaban et al. 2001). The genus Sparticola Phukhams., Ariyaw., Camporesi & K.D. Hyde in Sporormiaceae can form hyphomycetous asexual morph in culture which is characterized by semi-macronematous to macronematous, branched conidiophores, annellidic, doliform conidiogenous cells, and dictyosporous conidia with granules. Other genera in Sporormiaceae, such as Forliomyces Phukhams., Camporesi & K.D. Hyde, produce coelomycetous asexual morphs. Therefore, *Pleopunctum* has a unique asexual morph morphology in the family Phaeoseptaceae, as well as compared to its phylogenetically close families in Pleosporales.

Acknowledgements

This work was funded by the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou province (Grant No. U1812401). The Faculty of Agriculture, Natural Resources and Environment, Naresuan University is acknowledged for providing Ph.D. research scholarship to Ning-Guo Liu. Kevin D. Hyde would thank the Thailand Research grants entitled "Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion" (grant no: RDG6130001). We are grateful to Dr. Shaun Pennycook for providing advice on fungal nomenclature.

References

- Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B et al. 2015 Fungal diversity notes 111–252 taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75, 27–274.
- Barr ME. 1990 Melanommatales (Loculoascomycetes). North American Flora 13, 1–129.
- Bhat DJ. 2010 Fascinating microfungi (Hyphomycetes) of Western Ghats-India. Broadway Book Centre.
- Bhat DJ, Kendrick B. 1993 Twenty-five new conidial fungi from the Western Ghats and the Andaman Islands (India). Mycotaxon 49, 19–90.
- Boonmee S, D'souza MJ, Luo ZL, Pinruan U et al. 2016 Dictyosporiaceae fam. nov. Fungal Diversity 80, 457–482.
- Bussaban B, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD. 2001 A synopsis of the genus Berkleasmium with two new species and new records of Canalisporium caribense from Zingiberaceae in Thailand. Fungal Diversity 8, 73–85.
- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q et al. 2014 The sooty moulds. Fungal Diversity 66, 1–36.
- Crous PW, Summerell BA, Shivas RG, Romberg M et al. 2011 Fungal Planet description sheets: 92–106. Persoonia 27, 130–162.
- Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ et al. 2017 Bambusicolous fungi. Fungal Diversity 82, 1–105.
- Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S et al. 2017 Microfungi on *Tectona* grandis (teak) in Northern Thailand. Fungal Diversity 82, 107–182.

- Dong W, Hyde KD, Bhat DJ, Zhang H. 2018 Introducing Aculeata aquatica gen. et sp. nov., Minimelanolocus thailandensis sp. nov. and Thysanorea aquatica sp. nov. (Herpotrichiellaceae, Chaetothyriales) from freshwater in northern Thailand. Mycological Progress 17, 617–629.
- Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012 Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
- Ellis MB. 1971 Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England.
- Ellis MB. 1976 More Dematiaceous Hyphomycetes Commonwealth Mycological Institute, Kew, Surrey, England.
- Fabre JH. 1879 Essai sur les Sphériacées du Départment de Vaucluse. Annales des Sciences Naturelles Botanique ser. 6. 9, 66–118.
- Goh TK, Ho WH, Hyde KD, Whitton SR, Umali TE. 1998 New records and species of *Canalisporium* (Hyphomycetes), with a revision of the genus. Canadian Journal of Botany 76, 142–152.
- Hall TA. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series, pp 95–98.
- Hashimoto A, Matsumura M, Hirayama K, Tanaka K. 2017 Revision of Lophiotremataceae sensu lato (Pleosporales, Dothideomycetes): establishment of Aquasubmersaceae, Cryptocoryneaceae, Hermatomycetaceae fam. nov. Persoonia 39, 51–73.
- Hillis DM, Bull JJ. 1993 An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
- Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA et al. 2016 The evolution of fungal epiphytes. Mycosphere 7, 1690–1712.
- Hu DM, Cai L, Chen H, Bahkali AH, Hyde KD. 2010 Four new freshwater fungi associated with submerged wood from Southwest Asia. Sydowia 62, 191–203.
- Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S et al. 2018 Mycosphere notes 169–224. Mycosphere 9, 271–430.
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ et al. 2016 Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80, 1–270.
- Hyde KD, Jones EBG, Liu JK, Ariyawansa HA et al. 2013 Families of Dothideomycetes. Fungal Diversity 63, 1–313.
- Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC et al. 2017 The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity 84, 1–23.
- Jaklitsch WM, Voglmayr H. 2016 Hidden diversity in *Thyridaria* and a new circumscription of the Thyridariaceae. Studies in Mycology 85, 35–64.
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.
- Jeewon R, Hyde KD. 2016 Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7, 1669–1677.
- Jeewon R, Liew ECY, Hyde KD. 2003 Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycological Research 107, 1392–1402.
- Katoh K, Standley DM. 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
- Klaubauf S, Tharreau D, Fournier E, Groenewald JZ et al. 2014 Resolving the polyphyletic nature of *Pyricularia* (Pyriculariaceae). Studies in Mycology 79, 85–120.
- Kruys Å, Wedin M. 2009 Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi-gene phylogenies. Systematics and Biodiversity 7, 465–478.
- Larsson A. 2014 AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278.

- Leão-Ferreira SM, Pascholati Gusmão LF, Castañeda Ruiz RF. 2013 Conidial fungi from the semi-arid Caatinga biome of Brazil. Three new species and new records. Nova Hedwigia 96, 479–494.
- Liu JK, Chomnunti P, Cai L, Phookamsak R et al. 2010 Phylogeny and morphology of *Neodeightonia palmicola* sp. nov. from palms. Sydowia 62, 261–276.
- Liu JK, Hyde KD, Jeewon R, Phillips AJL et al. 2017 Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity 84, 75–99.
- Liu NG, Lin CG, Liu JK, Samarakoon MC et al. 2018 Lentimurisporaceae, a new pleosporalean family with divergence times estimates. Cryptogamie, Mycologie 39, 259–282.
- Lu YZ, Liu JK, Hyde KD, Jeewon R et al. 2018 A taxonomic reassessment of Tubeufiales based on multi-locus phylogeny and morphology. Fungal Diversity 92, 131–344.
- Luo ZL, Bhat DJ, Jeewon R, Boonmee S et al. 2017 Molecular phylogeny and morphological characterization of asexual fungi (Tubeufiaceae) from freshwater habitats in Yunnan, China. Cryptogamie, Mycologie 38, 27–53.
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al. 2016 Families of Sordariomycetes. Fungal Diversity 79, 1–317.
- Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM, Rassing BR. 2006 *Amorosia littoralis* gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycete from the littoral zone in the Bahamas. Mycological Research 110, 1371–1378.
- Mindell RA, Stockey RA, Beard G, Currah RS. 2007 Margaretbarromyces dictyosporus gen. sp. nov.: a permineralized corticolous ascomycete from the Eocene of Vancouver Island, British Columbia. Mycological Research 111, 680–684.
- Mugambi GK, Huhndorf SM. 2009 Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota). Studies in Mycology 64, 103–121.
- Nylander JA. 2004 MrModeltest v2, Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Pérez-Ortega S, Garrido-Benavent I, Grube M, Olmo R, de los Ríos A. 2016 Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Diversity 80, 285–300.
- Phukhamsakda C, Ariyawansa HA, Phillips AJL, Wanasinghe DN et al. 2016a Additions to Sporormiaceae: Introducing two novel genera, *Sparticola* and *Forliomyces*, from Spartium. Cryptogamie, Mycologie 37, 75–97.
- Phukhamsakda C, Hongsanan S, Ryberg M, Ariyawansa HA et al. 2016b The evolution of Massarineae with Longipedicellataceae fam. nov. Mycosphere 7, 1713–1731.
- Pinnoi A, Jeewon R, Sakayaroj J, Hyde KD, Jones EBG. 2007 *Berkleasmium crunisia* sp. nov. and its phylogenetic affinities to the Pleosporales based on 18S and 28S rDNA sequence analyses. Mycologia 99, 378–384.
- Rambaut A. 2006 FigTree. Tree figure drawing tool version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh.
- Rambaut A, Suchard M, Xie D, Drummond A. 2014 Tracer v1. 6. Available from: http://tree.bio.ed.ac.uk/software/tracer/
- Rannala B, Yang ZH. 1996 Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304–311.
- Rehner SA, Buckley E. 2005 A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97, 84–98.
- Rikkinen J, Dörfelt H, Schmidt AR, Wunderlich J. 2003 Sooty moulds from European Tertiary amber, with notes on the systematic position of *Rosaria* ('*Cyanobacteria*'). Mycological Research 107, 251–256.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61,

539-542.

- Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EHC et al. 2019 Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Diversity 96, 285–346.
- Seifert K, Morgan-Jones G, Gams W, Kendrick B. 2011 The genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre Utrecht.
- Shenoy BD, Jeewon R, Hyde KD. 2007 Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity 26, 1–54.
- Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD. 2006 Ribosomal and RPB2 DNA sequence analyses suggest that *Sporidesmium* and morphologically similar genera are polyphyletic. Mycological Research 110, 916–928.
- Sri-Indrasutdhi V, Boonyuen N, Suetrong S, Chuaseeharonnachai C et al. 2010 Wood-inhabiting freshwater fungi from Thailand: Ascothailandia grenadoidia gen. et sp. nov., Canalisporium grenadoidia sp. nov. with a key to Canalisporium species (Sordariomycetes, Ascomycota). Mycoscience 51, 411–420.
- Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
- Swofford DL. 2002 PAUP*: phylogenetic analysis using parsimony (and other methods), version 4.0 b10. Sunderland, Massachusetts: Sinauer Associates Google Scholar.
- Taylor JE, Hyde KD. 2003 Microfungi of tropical and temperate palms. Fungal Diversity Research Series 12, 1–459.
- Thambugala KM, Hyde KD, Tanaka K, Tian Q et al. 2015 Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74, 199–266.
- Tsui CKM, Berbee ML, Jeewon R, Hyde KD. 2006 Molecular phylogeny of *Dictyosporium* and allied genera inferred from ribosomal DNA. Fungal Diversity 21, 157–166.
- Tsui CKM, Goh TK, Hyde KD. 2003 Reflections on the genus *Vanakripa*, and a description of *V. ellipsoidea* sp. nov. Mycologia 95, 124–127.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172, 4238–4246.
- Wang HK, Aproot A, Crous PW, Hyde KD, Jeewon R. 2007 The polyphyletic nature of Pleosporales: an example from *Massariosphaeria* based on rDNA and RBP2 gene phylogenies. Fungal Biology 111, 1268–1276.
- White TJ, Bruns T, Lee SJWT, Taylor JW. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. California, Academic Press. pp. 315–322.
- Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL et al. 2017 Notes for genera: Ascomycota. Fungal Diversity 86, 1–594.
- Yang J, Liu JK, Hyde KD, Jones EBG, Liu ZY. 2018 New species in *Dictyosporium*, new combinations in *Dictyocheirospora* and an updated backbone tree for Dictyosporiaceae. MycoKeys 36, 83–105.
- Yang J, Maharachchikumbura SSN, Bhat DJ, Hyde KD et al. 2016 Fuscosporellales, a new order of aquatic and terrestrial Hypocreomycetidae (Sordariomycetes). Cryptogamie, Mycologie 37, 449–475.
- Zhang SN, Hyde KD, Jones EBG, Jeewon R et al. 2019 Striatiguttulaceae, a new pleosporalean family to accommodate *Longicorpus* and *Striatiguttula* gen. nov. from palms. MycoKeys 49, 99–129.
- Zhang Y, Fournier J, Phookamsak R, Bahkali AH, Hyde KD. 2013 Halotthiaceae fam. nov. (Pleosporales) accommodates the new genus *Phaeoseptum* and several other aquatic genera. Mycologia 105, 603–609.