

Article

Doi 10.5943/mycosphere/10/1/20

Lignicolous freshwater fungi from China and Thailand: Multi-gene phylogeny reveals new species and new records in Lophiostomataceae

Bao DF^{1,2,3}, Su HY¹, Maharachchikumbura SSN⁴, Liu JK⁴, Nalumpang S³, Luo ZL^{1*} and Hyde KD²

¹College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, P.R. China
 ²Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
 ³Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
 ⁴School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China

Bao DF, Su HY, Maharachchikumbura SSN, Liu JK, Nalumpang S, Luo ZL, Hyde KD 2019 – Lignicolous freshwater fungi from China and Thailand: Multi-gene phylogeny reveals new species and new records in Lophiostomataceae. Mycosphere 10(1), 1080–1099, Doi 10.5943/mycosphere/10/1/20

Abstract

We are investigating the diversity of lignicolous freshwater fungi from China and Thailand. In this study, six collections of Lophiostomataceae-like taxa were made from freshwater habitats in China and Thailand, of which three are identified as existing species *Biappendiculispora japonica*, *Neovaginatispora fuckelii* and *Vaginatispora armatispora*. While, the other collections are recognized as new species, *Flabellascoma aquaticum* sp. nov., *F. fusiforme* sp. nov. and *Sigarispora clavata* sp. nov. and these are introduced herein based on the morphological characters and multigene phylogenetic analyses of combined LSU, SSU, ITS, TEF1- α and RPB2 sequence data. Detailed descriptions and illustrations of these six species are provided.

Key words – 3 new species – Dothideomycetes – Pleosporales – sexual morphs – phylogeny taxonomy

Introduction

Lignicolous freshwater fungi grow on submerged woody debris in freshwater streams, ponds, lakes and tree hollows (Hyde 1995, Wong et al. 1998, Ho et al. 2002). They play an important role in ecosystem functioning and nutrient recycling of woody material (Palmer et al. 1997, Wong et al. 1998, Hyde and Goh 1998, Bucher et al. 2004). Lignicolous freshwater fungi are highly diverse and probably sensitive to environmental change and global warming (Hyde et al. 2016). We are studying the diversity of lignicolous freshwater fungi along the north-south gradient in the Asian/Australasian region (Hyde et al. 2016). By collecting these data, we are contributing to the knowledge of biogeographical diversity of fungi in freshwater habitats.

The family Lophiostomataceae was previously reported as "Lophiostomeae" by Nitschke (1869). Subsequently, Saccardo (1883) formally established Lophiostomataceae and placed it in

Pleosporales. Species mostly occur as saprobes in terrestrial, freshwater and marine environments (Tibpromma et al. 2017, Hashimoto et al. 2018, Hyde et al. 2019). Their intergeneric relationships have been discussed by Kodsueb et al (2006) and Wang et al. (2007) and recently by Hashimoto et al. (2018). Members of this family are characterized by immersed to erumpent, carbonaceous to coriaceous ascomata with rounded or slit-like ostioles, mostly clavate asci and 1 to multi-septate, hyaline to dark brown ascospores with terminal appendages or mucilaginous sheaths (Hyde et al. 2013, 2017, Ariyawansa et al. 2015, Liu et al. 2015, Thambugala et al. 2015). Thambugala et al. (2015) revised the classification of this family, provided a backbone tree and accepted 16 genera. Wanasinghe et al. (2018) introduced a new genus, *Muritestudina* and Hashimoto et al. (2018) introduced seven genera in Lophiostomataceae. Presently, 24 genera are accepted in Lophiostomataceae (Wijayawardene et al. 2017, Hashimoto et al. 2018, Wanasinghe et al. 2018, Hyde et al. 2019).

During a survey of lignicolous freshwater fungi along the north-south gradient in the Asian/Australian region (Hyde et al. 2016), six lophiostomataceous lignicolous freshwater taxa were collected from Tibet and Yunnan provinces, China and southern Thailand. Three new species, *viz. Flabellascoma aquaticum*, *F. fusiforme* and *Sigarispora clavata* are introduced based on morphological characters and multi-gene phylogenetic analysis. Detailed descriptions and illustrations of the new species and records are also provided.

Materials & Methods

Isolation and morphological examination

Submerged decaying wood samples were collected from Tibet and Yunnan provinces, China and Sai khu waterfall, Thailand, and brought to the laboratory in plastic bags. The samples were incubated in plastic boxes lined with moistened tissue paper at room temperature for 1 week. Sample examination and morphological studies followed protocols outlined previously (Luo et al. 2018).

The fungal species present on the substrates were isolated using a single spore culture technique following the method described in Chomnunti et al. (2014). Germinating ascospores were transferred aseptically to fresh potato dextrose agar (PDA) media with antibiotics and incubated at room temperature for 2–4 weeks. Cultures were grown for 1–2 months and morphological characters such as colour, colony shape, texture and asexual morphs were recorded and checked after 30–60 days. The cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and Kunming Institute of Botany culture collection (KUMCC), herbarium specimens (dry wood with the fungi and slides) were deposited in Mae Fah Luang University (MFLU). Faces of fungi and Index Fungorum numbers were registered as detailed in Jayasiri et al. (2015) and in Index Fungorum (http://www.indexfungorum.org/names/nam-es.asp) respectively.

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from fungal mycelium grown on PDA or MEA at 25 °C using EZ geneTM Fungal gDNA Kits (GD2416) according to the manufacturer's instructions. The regions of large subunit rRNA (LSU), internal transcribed spacers (ITS), small subunit rRNA (SSU), translation elongation factor (TEF1- α) and RNA polymerase II subunit 2 (RPB2) were amplified using the primer pairs LR0R/LR7 (Vilgalys & Hester 1990), ITS5/ITS4, NS1/ NS4 (White et al. 1990), 983F/2218R and fRPB2-5F/fRPB2-7cR (Liu et al. 1999) respectively. The amplification reactions were performed in 25 µL of PCR mixtures containing 12.5 µl of 2×Power Taq PCR Master Mix (a premix and ready to use solution, including 0.1 Units/µl Taq DNA Polymerase, 500 µm dNTP

Mixture each (dATP, dCTP, dGTP, dTTP), 20 mM Tris-HCl pH 8.3, 100 Mm KCl, 3 mM MgCl₂, stabilizer and enhancer), 1 µl of each primer, 1 µl DNA template and 9.5 µl deionized water. The PCR profile for the ITS, LSU, SSU and TEF1-α gene regions as follows: initial denaturation for 94 °C for 3 minutes, followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 56 °C for 50 seconds, elongation at 72 °C for 1 minute and a final extension at 72 °C for 10 minutes. The RPB2 gene region was amplified with an initial denaturation of 95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 1 min, annealing at 54 °C for 40 seconds, elongation at 72 °C for 90 seconds, and the final extension at 72 °C for 10 min. Purification and sequencing of PCR products were carried out using the above-mentioned PCR primers at Beijing Tsingke Biological Engineering Technology and Services Co., Ltd. (Beijing, P.R. China)

Sequence alignment and phylogenetic analyses

Sequence data for relevant strains were downloaded from GenBank following recent publications (Table 1) (Thambugala et al. 2015, Hashimoto et al. 2018, Wanasinghe et al. 2018, Hyde et al. 2019). Consensus sequences were assembled using BioEdit and aligned using MAFFT v.7.110 online program (http://mafft.cbrc.jp/alignment/server/) (Katoh & Standley 2013) and manually edited using BioEdit v7.2.3 (Hall 1999). The phylogenetic analyses were performed using Randomized Accelerated Maximum Likelihood (RAxML) and Bayesian analyses. Phylogeny website tool "ALTER" (Glez-Peña et al. 2010) was used to convert the alignment fasta file to Phylip format and Maximum likelihood (ML) analysis was performed using the CIPRES Science Gateway v.3.3 (http:// www.phylo.org/portal2/; Miller et al. 2010) using RAxML v.8.2.8 as part of the "RAxML-HPC2 on XSEDE" tool (Stamatakis 2006, Stamatakis et al. 2008). All free model parameters were estimated by RAxML with ML estimates of 25 per site rate categories. The final ML search was conducted using the GTRGAMMA + I substitution model.

Bayesian analysis was performed by MrBayes v3.1.2 (Ronquist et al. 2012). The model of evolution was estimated by using MrModeltest 2.2 (Nylander 2004). Posterior probabilities (Rannala & Yang 1996) were performed by Markov Chain Monte Carlo Sampling (BMCMC) in MrBayes v. 3.1.2. Six simultaneous Markov Chains were run for 1 million generations and trees were sampled every 100th generation (resulting in 10,000 trees). The first 2,000 trees representing the burn-in phase of the analyses were discarded and the remaining 8,000 (post burning) trees used for calculating posterior probabilities (PP) in the majority rule consensus tree.

Taxa	Strain number	GenBank accession numbers				
		SSU	ITS	LSU	TEF1-α	RPB2
Alpestrisphaeria terricola	SC-12	JX985749	JN662930	JX985750	_	_
Alpestrisphaeria jonesii	GAAZ 54-1	KX687755	KX687757	KX687753	KX687759	_
Alpestrisphaeria jonesii	GAAZ 54-2	KX687756	KX687758	KX687754	KX687760	_
Biappendiculispora japonica	KT 573	AB618686	LC001728	AB619005	LC001744	_
Biappendiculispora japonica	KT 686-1P	AB618687	LC001729	AB619006	LC001745	_
Biappendiculispora japonica	MFLUCC 17-2450	MN304834	MN304829	MN328900	_	_
Capulatispora sagittiformis	KT 1934	AB618693	AB369268	AB369267	LC001756	_
Coelodictyosporium muriforme	MFLUCC 13-0351	KP899127	KP899136	KP888641	KR075163	_

Table 1 Isolates and sequences used in this study. The newly generated sequences are indicated in red and ex-type strains are indicated in bold.

Table 1 Continued.

Таха	Strain number	GenBank accession numbers					
		SSU	ITS	LSU	TEF1-α	RPB2	
Coelodictyosporium	MFLUCC 13-0451	_	KR025858	KR025862	_	_	
pseudodictyosporium	WIFLUCC 15-0451	_	KK023030	KK025002	_	_	
Crassiclypeus aquaticus	CBS 143641	LC312470	LC312499	LC312528	LC312557	LC312586	
Crassiclypeus aquaticus	CBS 143642	LC312471	LC312500	LC312529	LC312558	LC312587	
Dimorphiopsis brachystegiae	CPC 22679	-	KF777160	KF777213	_	_	
Flabellascoma minimum	CBS 143645	LC312474	LC312503	LC312532	LC312561	LC312590	
Flabellascoma minimum	CBS 143646	LC312475	LC312504	LC312533	LC312562	LC312591	
Flabellascoma aquaticum	KUMCC15-0258	MN304832	MN304827	MN274564	MN328898	MN328895	
Flabellascoma cycadicola	CBS 143644	LC312473	LC312502	LC312531	LC312560	LC312589	
Flabellascoma fusiforme	MFLUCC 18–1584	_	MN304830	MN274567	MN328902	_	
Guttulispora crataegi	MFLUCC 13-0442	KP899125	KP899134	KP888639	KR075161	-	
Guttulispora crataegi	MFLUCC 14-0993	KP899126	KP899135	KP888640	KR075162	_	
Lentistoma bipolare	CBS 143651	LC312483	LC312512	LC312541	LC312570	LC312599	
Lentistoma bipolare	CBS 143652	LC312484	LC312513	LC312542	LC312571	LC312600	
Leptoparies palmarum	CBS 143653	LC312485	LC312514	LC312543	LC312572	LC312601	
Lophiohelichrysum helichrysi	MFLUCC 15-0701	KT333437	KT333435	KT333436	KT427535	_	
Lophiopoacea paramacrostoma	MFLUCC 11-0463	KP899122	_	KP888636	_	_	
Lophiopoacea winteri	KT 740	AB618699	JN942969	AB619017	LC001763	JN993487	
Lophiopoacea winteri	KT 764	AB618700	JN942968	AB619018	LC001764	JN993488	
Lophiostoma caulium	CBS 623.86	GU296163	_	GU301833	_	GU371791	
Lophiostoma crenatum	CBS 629.86	DQ678017	_	DQ678069	DQ677912	DQ677965	
Lophiostoma heterosporum	CBS 644.86	AY016354	GQ203795	AY016369	DQ497609	DQ497615	
Lophiostoma macrostomoides	CBS 123097	FJ795482	_	FJ795439	GU456277	FJ795458	
Lophiostoma macrostomum	KT 635	AB521731	AB433275	AB433273	LC001752	JN993484	
Lophiostoma quadrinucleatum	GKM 1233	_	_	GU385184	GU327760	_	
Lophiostoma semiliberum	KT 828	AB618696	JN942970	AB619014	LC001759	JN993489	
Lophiostoma alpigenum	GKM 1091b	_	_	GU385193	GU327758	—	
Lophiostoma multiseptatum	JCM17668	AB618684	LC001726	AB619003	LC001742		
Neotrematosphaeria	VT 1104	011005056		GI 1005007			
biappendiculata	KT 1124	GU205256	_	GU205227	_	—	
Neotrematosphaeria	VT 075D	CT1205254		CT1205229			
biappendiculata	КТ 975Р	GU205254	-	GU205228	_	-	
Neovaginatispora fuckelii	MFLUCC 17–1334	MN304833	MN304828	MN274565	MN328899	MN328896	
Neovaginatispora fuckelii	CBS 101952	FJ795496	_	DQ399531	_	FJ795472	
Neovaginatispora fuckelii	KH 161	AB618689	LC001731	AB619008	LC001749	_	
Neovaginatispora fuckelii	KT 634	AB618690	LC001732	AB619009	LC001750	_	
Parapaucispora	KT 2227	I C100010	I C100021	I (1000)	LC100030		
pseudoarmatispora	KT 2237	LC100018	LC100021	LC100020	LC100030	_	
Paucispora quadrispora	KT 843	AB618692	LC001734	AB619011	LC001755	_	
Paucispora versicolor	KH 110	LC001721	AB918731	AB918732	LC001760	_	

Table 1 Continued.

Таха	Strain number	GenBank accession numbers					
		SSU	ITS	LSU	TEF1-α	RPB2	
Paucispora quadrispora	KH 448P	LC001720	LC001733	LC001722	LC001754	_	
Platystomum actinidiae	KT 521	JN941375	JN942963	JN941380	LC001747	JN993490	
Platystomum compressum	MFLUCC 13-0343	KP899129	_	KP888643	KR075165	_	
Platystomum crataegi	MFLUCC 14-0925	KT026113	KT026117	KT026109	KT026121	_	
Platystomum rosae	MFLUCC 15-0633	KT026115	-	KT026111	KT026119	_	
Platystomum salicicola	MFLUCC 15-0632	KT026114	KT026118	KT026110	_	_	
Pseudolophiostoma	CBS 143941	LC312490	LC312519	LC312548	LC312577	LC312606	
obtusisporum							
Pseudolophiostoma	CBS 143658	LC312491	LC312520	LC312549	LC312578	LC312607	
obtusisporum							
Pseudolophiostoma tropicum	CBS 143659	LC312492	LC312521	LC312550	LC312579	LC312608	
Pseudolophiostoma tropicum	CBS 143660	LC312493	LC312522	LC312551	LC312580	LC312609	
Pseudolophiostoma vitigenum	HH 26930	AB618697	LC001735	AB619015	LC001761	_	
Pseudolophiostoma vitigenum	HH 26931	AB618698	LC001736	AB619016	LC001762	_	
Pseudopaucispora	CBS 143661	LC312494	LC312523	LC312552	LC312581	LC312610	
brunneospora							
Pseudoplatystomum	BCC 22835	GQ925831		GQ925844	GU479857	GU/70830	
scabridisporum	D CC 22855	0Q923031	_	00923044	00479037	00479830	
Pseudoplatystomum	BCC 22836	GQ925832		GO925845	GU479856	GU/70820	
scabridisporum	Dec 22030	00/25052	_	00/25045	00479090	00479829	
Sigarispora clavata	MFLUCC 18–1316	MN304835	_	MN274566	MN328901	-	
Sigarispora arundinis	KT 651	AB618680	JN942965	AB618999	LC001738	JN993486	
Sigarispora caryophyllacearum	MFLUCC 17-0749	MG829176	MG828964	MG829076	MG829238.	. –	
Sigarispora caudata	KT 530	AB618681	LC001723	AB619000	LC001739	_	
Sigarispora caulium	MFLUCC 15-0036	MG829177	MG828965	MG829077	MG829239	_	
Sigarispora coronillae	MFLUCC 14-0941	KT026116	KT026120	KT026112	_	_	
Sigarispora junci	MFLUCC 14-0938	MG829178	MG828966	MG829078	_	_	
Sigarispora medicaginicola	MFLUCC 17-0681	MG829179	MG828967	MG829079	_	_	
Sigarispora muriformis	MFLUCC 13-0744	KY501110	KY496740	KY496719	—	—	
Sigarispora ononidis	MFLUCC 14-0613	KU243126	KU243128	KU243125	KU243127	—	
Sigarispora ravennica	MFLUCC 14-0005	KP698415	KP698413	KP698414	_	_	
Sigarispora rosicola	MFLU 15–1888	MG829180	MG828968	MG829080	MG829240	_	
Sigarispora scrophulariae	MFLUCC 17-0689	MG829181	MG828969	MG829081	_	_	
Sigarispora thymi	MFLU 15-2131	MG829182	MG828970	MG829082	MG829241	_	
Teichospora rubriostiolata	TR 7H	_	KU601590	KU601590	KU601609	KU601599	
Teichospora trabicola	C 134E	_	KU601591	KU601591	KU601601	KU601600	
Vaginatispora amygdali	KT2248	LC312495	LC312524	LC312553	LC312582	LC312640	
Vaginatispora amygdali	MFLUCC 18-1586	MK085057	MK085055	MK085059	MK087657	_	
Vaginatispora appendiculata	MFLUCC 16-0314	KU743219	KU743217	KU743218	KU743220	_	
Vaginatispora aquatica	MFLUCC 11-0083	KJ591575	KJ591577	KJ591576	_	_	

Table 1 Continued.

Таха	Strain number	GenBank accession numbers				
		SSU	ITS	LSU	TEF1-α	RPB2
Vaginatispora armatispora	MFLUCC 18-0247	MK085058	MK085056	MK085060	MK087658	MK087669
Vaginatispora armatispora	HKTLCC1562	_	AF383955	_	_	_
Vaginatispora armatispora	MFLUCC 18-0213	MN304831	MN304826	MN274563	MN328897	MN328894
Vaginatispora microarmatispora	MTCC 12733	MF142594	MF142592	MF142593	MF142595	MF142596
Vaginatispora scabrispora	KT2443	LC312496	LC312525	LC312554	LC312583	LC312612

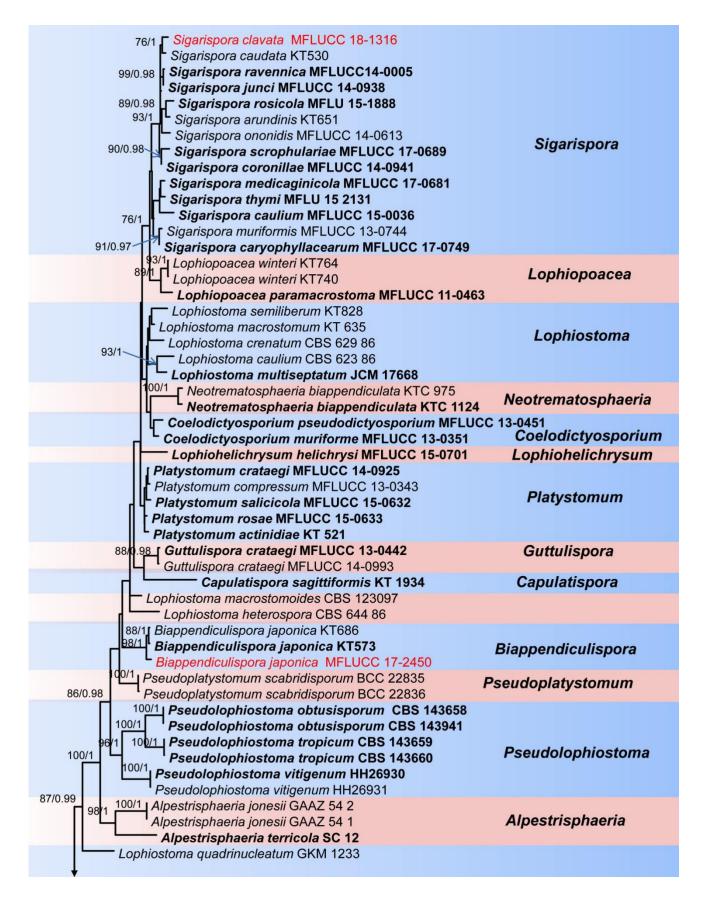
Results

Phylogenetic analyses

The combined LSU, SSU, ITS, TEF1- α and RPB2 dataset comprised 82 taxa of Lophiostomataceae, with *Teichospora rubriostiolata* (TR7) and *Teichospora trabicola* (C134) as the outgroup taxa. The dataset comprised 4,188 characters after alignment including gaps (LSU: 1–826; SSU: 827–1767; ITS: 1768–2283; TEF1- α : 2284–3177; RPB2: 3178–4188). The RAxML analysis of the combined dataset yielded a best scoring tree (Fig. 1) with a final ML optimization likelihood value of –28080.438440. The matrix had 1551 distinct alignment patterns, with 26.56% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.250308, C = 0.245041, G = 0.267629, T = 0.237021; substitution rates AC = 1.632712, AG = 4.315873, AT = 1.313155, CG = 1.501540, CT = 9.264809, GT = 1.000000; gamma distribution shape parameter α = 0.180969. Support values for maximum likelihood (ML) above than 75% and Bayesian posterior probabilities (PP) greater than 0.95 are given at the nodes.

The phylogenetic analyses showed that newly isolates of *Vaginatispora armatispora*, *Biappendiculispora japonica* and *Neovaginatispora fuckelii* clustered with *V. armatispora* (MFLUCC 18–0247, HKTLCC 1562), *B. japonica* (KT 573, KT 686) and *N. fuckelii* (KT 634, KH 161, CBS 101952), respectively, with strong statistical support (100 ML/1.00 PP, 98 ML/1.00 PP and 100 ML/1.00 PP, respectively).

The novel species *Sigarispora clavata* grouped with members of the genus *Sigarispora* as a sister taxon to *S. caudata* with strong statistical support (76 ML/1.00 PP). The other new species, *Flabellascoma aquaticum* and *F. fusiforme* clustered together within the genus *Flabellascoma*, but they formed distinct lineages with significant statistical support (96 ML/1.00 PP and 100 ML/1.00 PP, respectively).


Flabellascoma aquaticum D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov. Fig. 2

Index Fungorum number: IF 556720; Facesoffungi number: FoF 06212

Etymology - Referring to the aquatic habitat

Holotype – MFLU 19–0992

Saprobic on submerged decaying wood. Sexual morph: Ascomata 280–440 µm high, 260–390 µm diam ($\overline{x} = 327 \times 360 \text{ µm}$, n = 8), immersed, scattered, subglobose, dark brown to black, with a long, black neck. Ostiole crest-like, dark brown to black, elongated, composed of brown to black cells. Peridium 25–52 µm wide, uniform, comprising 2 zones, outer layers composed several dark brown cells, inner zone composed of 5–7 layers of rectangular, hyaline to pale brown cells of *textura*

Figure 1 – Phylogenetic tree based on RAxML analyses of combined LSU, SSU, ITS, TEF1- α and RPB2 sequence data. Maximum likelihood bootstrap > 75 % and Bayesian posterior probabilities > 0.95 (BYPP) are indicated at the nodes. The ex-type strains are shown in bold and the newly obtained

isolates are shown in red. The tree is rooted with *Teichospora rubriostiolata* (TR7) and *Teichospora trabicola* (C134).

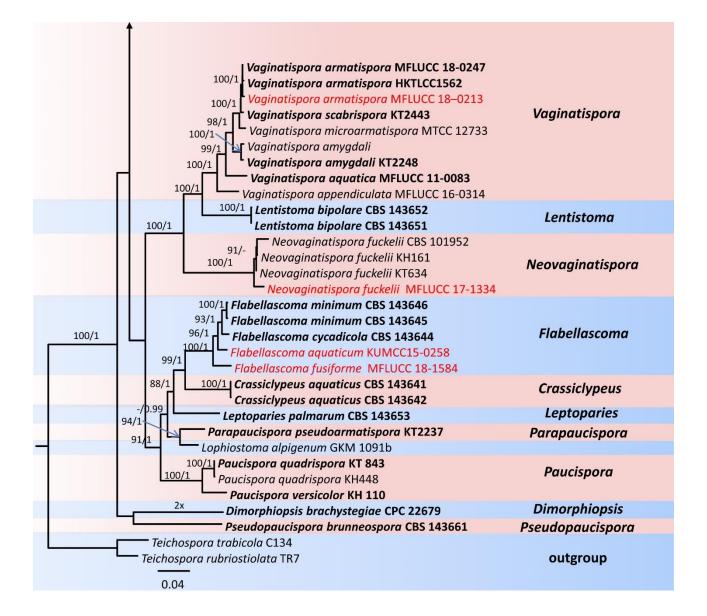
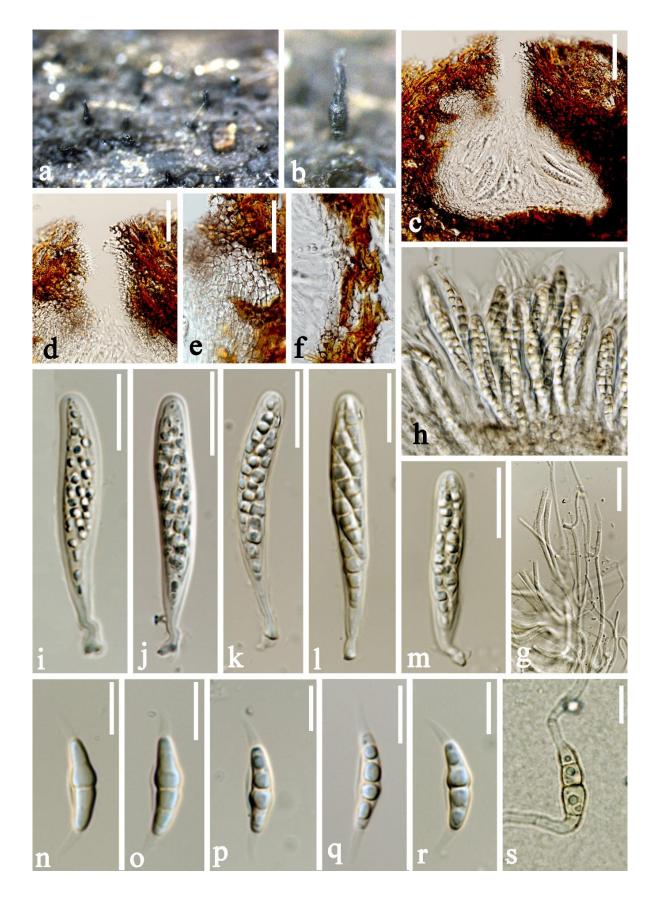



Figure 1 – Continued.

angularis and globulosa. Hamathecium comprising numerous, 1.2–2 µm wide, cellular pseudoparaphyses, septate, branched and anastomosed. Asci 48–72 × 8–9 µm ($\bar{x} = 60 \times 8.6$ µm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical-clavate, short pedicellate, apically rounded with an ocular chamber. Ascospores 16–18 × 4.3–5.3 µm ($\bar{x} = 17 \times 5$ µm, n = 30), fusiform with narrow and obtuse ends, hyaline, uniseptate, slightly constricted at the septum, 4-guttules, 2 middle ones larger than end ones, with a narrow sheath. Appendages drawn out from sheath at both of ends (4.7–7 µm wide, n = 30), hyaline, unbranched. Asexual morph: Undetermined.

Material examined – CHINA, Yunnan Province, saprobic on decaying wood submerged in Dulong River (27°53'51.50" N, 98°20'13.10" E), May 2015, Z.L. Luo, S-390 (MFLU 19–0992, holotype), ex-type living culture, KUMCC 15–0258.

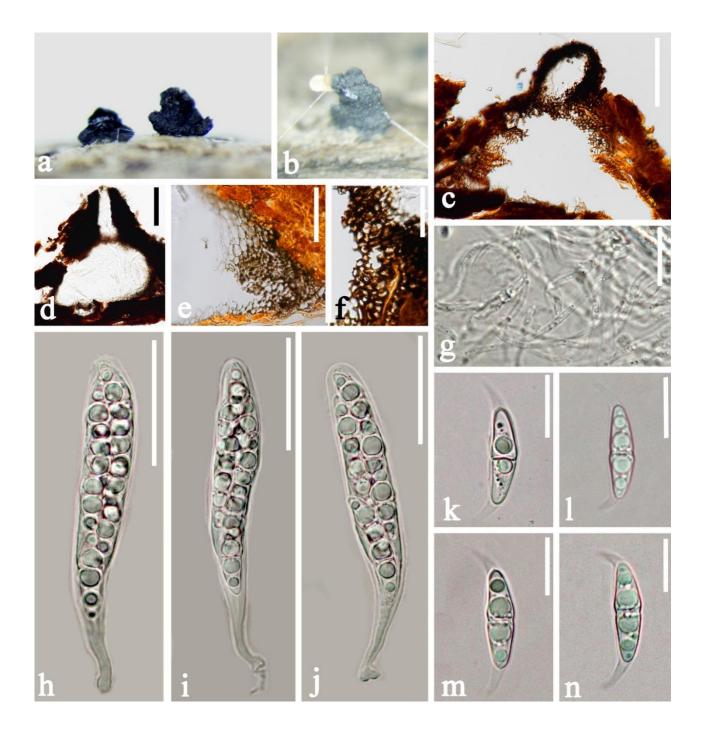
Figure 2 – *Flabellascoma aquaticum* (MFLU 19–0992, holotype). a Ascomata on submerged wood. b Neck of ascoma. c Section of ascoma. d Ostiolar neck of ascoma. e, f Peridium of ascomata. g Pseudoparaphyses. h–m Asci. n–r Ascospore. s Germinating ascospore. Scale bars: $c = 50 \mu m$, $d-f = 30 \mu m$, $g-m = 20 \mu m$, $n-s = 10 \mu m$.

Notes – *Flabellascoma* species have similar shaped asci and ascospores. *F. cycadicola* and *F. minimum* are distinguishable from each other based on ascospore size. *F. aquaticum* differs from *F. cycadicola* in ascus and ascospore size $(48-72 \times 8-9 \text{ vs. } 67.5-88 \times 9-12 \mu\text{m} \text{ and } 16-18 \times 4.3-5.3 \text{ vs.} 17-23 \times 4.5-7 \mu\text{m})$. Moreover, *F. aquaticum* can be morphologically distinguished from *F. cycadicola* and *F. minimum* based on ascomata characters. *F. aquaticum* has ascomata with a cylindrical, long, black neck (Fig. 2b). Whereas, ascomata of *F. cycadicola* and *F. minimum* have short, elongated, crest-like, ostiolar neck. In the phylogenetic analysis, *F. aquaticum* and *F. fusiforme* grouped with other existing *Flabellascoma* species, but formed distinct lineages, and thus are distinct species (Fig. 1).

Flabellascoma fusiforme D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov. Fig. 3

Index Fungorum number: IF 556721; Facesoffungi number: FoF 06213 Etymology – referring to the fusiform ascospores.

Holotype – MFLU 19–0993


Saprobic on submerged decaying wood. Sexual morph: Ascomata 310–420 µm high, 320–380 µm diam ($\overline{x} = 358 \times 345$ µm, n = 5), scattered, immersed, subglobose, dark brown to black. Ostiole crest-like, central, with a reduced crest and a pore-like opening, composed dark brown to black cells. Peridium 25–50 µm wide, composed two strata, outer stratum comprising brown to dark brown, thick-walled cells, inner stratum composed of several layers with lightly pigmented to hyaline cells. Hamathecium comprising 1.5–3 µm wide, septate, branched, cellular pseudoparaphyses. Asci 66–80 × 10–12 µm ($\overline{x} = 72.8 \times 10.8$ µm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical-clavate with a furcate pedicel, apically rounded with a broad ocular chamber. Ascospores 15–18 × 4–5 µm ($\overline{x} = 16.6 \times 4.7$ µm, n = 30), fusiform, with narrow and obtuse to acute ends, hyaline, uniseptate, 4-guttules, 2 middle ones larger than end ones, constricted at septum, smooth, with a thin sheath, appendages drawn out from sheath at both of ends (5.4–8 µm wide, n = 30), hyaline, unbranched. Asexual morph: Undetermined.

Material examined – CHINA, Yunnan Province, saprobic on decaying wood submerged in Nujiang River (27°37'29.92" N, 98°45'38.10" E), October 2016, Z.L. Luo, S-1583 (MFLU 19–0993, holotype), ex-type culture, MFLUCC 18–1584

Notes – Currently, two species are accepted in *Flabellascoma*. In this study, we introduce two additional species in this genus. The new species *Flabellascoma fusiforme* fits well with the morphological characters of *Flabellascoma*, such as immersed ascomata, bitunicate, fissitunicate, cylindrical-clavate asci and fusiform, hyaline, 1-septate ascospores with a narrow bipolar sheath. We herein compare the morphological differences between new species *Flabellascoma fusiforme* with other *Flabellascoma* species.

Flabellascoma fusiforme is phylogenetically close to *F. aquaticum* (Fig. 1). However, *Flabellascoma fusiforme* can be easily distinguished from *F. aquaticum* by its ascomatal shape and ascus size. *Flabellascoma fusiforme* has ascomata with a short, elongated, crest-like ostiolar neck (Fig. 3a, b, c), while the ascomata in *F. aquaticum* has a cylindrical, long, black neck (Fig. 2b) and the asci of *F. fusiforme* are larger than *F. aquaticum* (66–80 × 10–12 vs. 48–72 × 8–9 μ m).

Flabellascoma fusiforme can be distinguished from *F. cycadicola* in having smaller ascospores $(15-18 \times 4-5 \text{ vs. } 17-23 \times 4.5-7 \text{ }\mu\text{m})$ and longer ascus pedicel. In addition, both the ascospores ends of *F. cycadicola* are narrower than *F. fusiforme*. Furthermore, *F. fusiforme* differs from *F. minimum* in its shape of ascomata and ascospores; *F. fusiforme* has subglobose ascomata and straight ascospores. However, *F. minimum* ascomata are ellipsoidal to lageniform and ascospores are slightly curved.

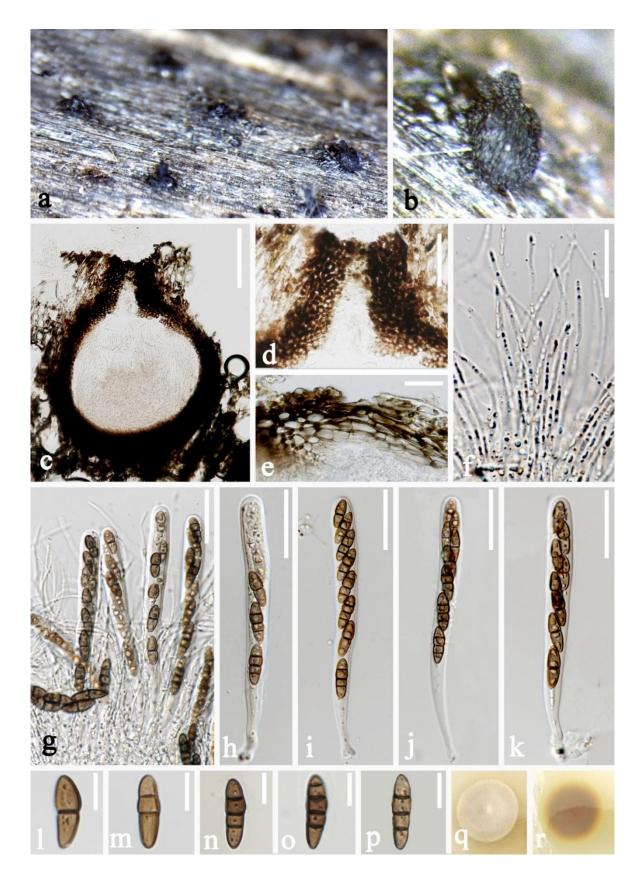


Figure 3 – *Flabellascoma fusiforme* (MFLU 19–0993, holotype). a–c Ascomata on submerged wood. c, d Section of ascoma. e, f Peridium of ascomata. g Pseudoparaphyses. h–j Asci. k–n Ascospore. Scale bars: c, d = 100 μ m, e = 50 μ m, f, h–j = 30 μ m, g = 20 μ m, k–n = 10 μ m.

Sigarispora clavata D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.Fig. 4Index Fungorum number: IF 556722; Facesoffungi number: FoF 06214Etymology – Referring to the clavate ascospores.

Holotype – MFLU 19–0994

Saprobic on submerged decaying wood in freshwater habitats. Sexual morph: Ascomata 327–470 μ m high, 280–460 μ m diam ($\overline{x} = 380 \times 400 \mu$ m, n = 5), semi-immersed to immersed, subglobose, coriaceous, black, ostiolate. Ostiole slit-like, variable in shape, with a crest-like apex and a pore-like opening, plugged by gelatinous tissue, made up of lightly pigmented, pseudoparenchymatous cells.

Figure 4 – *Sigarispora clavata* (MFLU 19–0994, holotype). a, b Ascomata on submerged wood. c Section of ascoma. d Ostiolar neck of ascoma. e Peridium. f Pseudoparaphyses. g–k Asci. l–p Ascospore. q, r culture on PDA. Scale bars: c = 100 μ m, d = 50 μ m, e, g–k = 30 μ m, f = 20 μ m, l–p = 10 μ m.

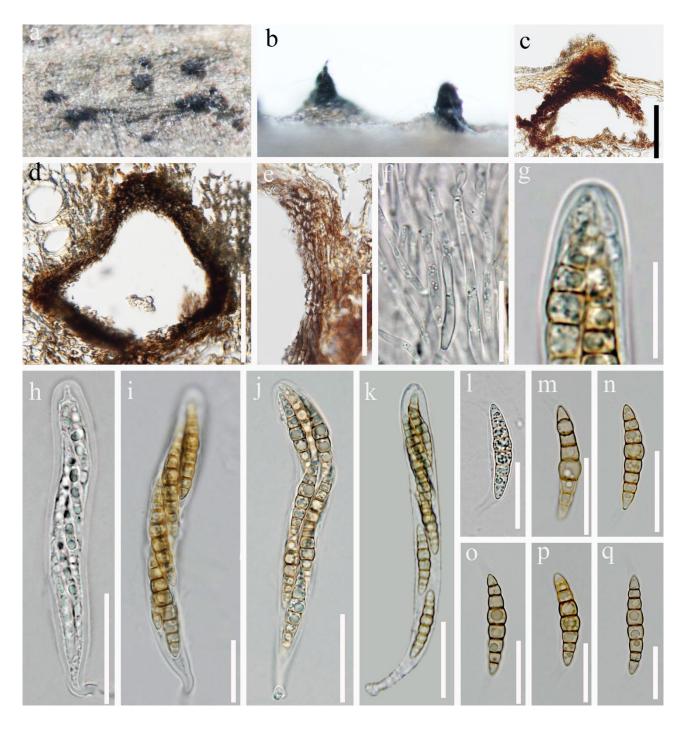
Peridium 32–55 µm wide, comprises a single stratum, with brown to dark brown cells of *textura* globulosa and *textura angularis*. *Hamathecium* comprising 1.5–2 µm wide, filiform, hyaline, septate, guttulate, smooth cellular pseudoparaphyses. *Asci* 91–117 × 9–12 µm ($\overline{x} = 104 \times 11$ µm, n = 20), cylindrical, round at the apex, bitunicate, long pedicellate, with a small ocular chamber at the apex. *Ascospores* 13–17 × 4–6 µm ($\overline{x} = 15.4 \times 5.3$ µm, n = 30), uni to bi-seriate, overlapping, ellipsoidal to clavate, with obtuse ends, straight or slightly curved, hyaline when young, dark brown to yellowish brown at maturity, 1–4-septate, slightly constricted at the septum, guttules, smooth walled. Asexual morph: Undetermined.

Material examined – CHINA, Tibet Autonomous Region (30°15'08.02" N, 82°58'27.77" E), on submerged decaying wood, May 2017, Z.L. Luo, 2XZ A 1–2–1, S-1483 (MFLU 19–0994, holotype), ex-type culture, MFLUCC 18–1316.

Notes – Species of *Sigarispora* are characterized by immersed, papillate, ostiolate ascomata, a peridium of pseudoparenchymatous cells, bitunicate, fissitunicate asci and ellipsoidal-fusiform or muriform ascospores, with or without sheaths, and appendages. Our species fits well within the species concept of genus *Sigarispora*. However, our species can be distinguished from other species of *Sigarispora* by its 1–4-septate, ellipsoidal to clavate ascospores with obtuse ends.

In our study, *Sigarispora clavata* is sister to *S. caudata* with good support (76 ML/1.00 PP). *Sigarispora clavata* shares similar morphological characteristics with *S. caudate* in having immersed to semi-immersed, coriaceous ascomata, bitunicate, cylindrical asci with ocular chamber and brown to dark brown ascospores. However, *S. clavata* differs from *S. caudate* in ascomatal size (380–400 × 280–460 vs. $145-210 \times 210-305 \mu m$) and ascospores shape, septations and size (1–4 vs. 4–6 septate, $13-17 \times 4-6 vs. 23.5-34.5 \times 5.5-7 \mu m$, respectively), *S. clavata* has ellipsoidal to clavate ascospores with obtuse ends, whereas ascospores of *S. caudata* are fusiform with narrow and acute ends.

Biappendiculispora japonica Thambug., Wanas., Kaz. Tanaka & K.D. Hyde, in Thambugala et al., Fungal Diversity, 74: 214 (2015) Fig. 5


Index Fungorum Number: IF551529; Facesoffungi number: FoF01097

Saprobic on submerged decaying wood. Sexual morph: Ascomata 330–420 µm high, 240–300 µm diam ($\overline{x} = 383 \times 276$ µm, n = 5), semi-immersed to immersed, solitary to gregarious, subglobose, papillate, coriaceous, black. Ostiole slit-like, central, brown to dark brown. Peridium 15–25 µm wide composed one stratum, with several layers of brown to dark brown, cells of *textura angularis*, cells towards the inside lighter, outside is darker. Hamathecium comprising numerous, branched, septate, guttulate, cellular pseudoparaphyses, embedded in a gelatinous matrix. Asci 108–130 × 15–18 µm ($\overline{x} = 119 \times 16.4$ µm, n = 20), 8-spored, bitunicate, fissitunicate, cylindric-clavate, with short pedicel, rounded at the apex, with an ocular chamber. Ascospores 29.8–39 × 6–8 µm ($\overline{x} = 34.2 \times 7$ µm, n = 30), overlapping uni to bi-seriate, fusiform with acute ends, mostly curved, 7–8-septate, constricted at the septa, guttulate, hyaline when young, becoming yellowish to brown at maturity, smooth, with appendages at both ends. Asexual morph: Undetermined.

Material examined – CHINA, Yunnan Province, Dali city, Midu County, saprobic on decaying wood submerged in a stream, May 2015, H.W. Shen S–787 (DLU 787), living culture, MFLUCC 17–2450.

Notes – *Biappendiculispora japonica* was introduced by Tanaka & Harada (2003) and it was previously placed in the genus *Lophiostoma*. Subsequently, Thambugala et al. (2015) showed that *L. japonica* grouped as a sister clade to *Pseudolophiostoma*. Therefore, Thambugala et al. (2015) introduced a new genus *Biappendiculispora* to accommodate *Lophiostoma japonica*. Morphologically, our fresh collection fits well with *B. japonica*, such as immersed, coriaceous

ascomata, bitunicate, cylindric-clavate asci with an ocular chamber and hyaline to brown, fusiform ascospores with acute ends. Phylogenetic analysis showed that our isolate clustered together with *B. japonica* with strong bootstrap support (98 ML/1.00 PP) (Fig. 1). Therefore, we identify our collection as *Biappendiculispora japonica* and it is a new record from China which was previously reported in Japan from terrestrial habitats.

Figure 5 – *Biappendiculispora japonica* (DLU 787) a, b Ascomata on submerged wood. c, d Section of ascoma. e Peridium. f Pseudoparaphyses. g Ascus apex. h–k Asci. l–q Ascospore. Scale bars: c, d = 100 μ m, e = 50 μ m, f–g, l–q = 20 μ m, f = 20 μ m, h–k = 30 μ m.

Neovaginatispora fuckelii (Sacc.) A. Hashim., K. Hiray. & Kaz. Tanaka, Studies in Mycology 90: 188. 2018. Fig. 6

Index Fungorum Number: IF551535; Facesoffungi number: FoF00829 Basionym: *Lophiostoma fuckelii* Sacc., Michelia 1(no. 3): 336 (1878)

- = Lophiostoma pulveraceum Sacc., Michelia 1: 336, 1878
- = Didymosphaeria lophospora Sacc. & Speg., Michelia 1: 376, 1878
- = Lophiosphaera mendax Rehm, Ann. Myc. 5: 544,1907
- = *Vaginatispora fuckelii* (Sacc.) Thambugala, Fungal diversity 74: 242, 2015

Saprobic on submerged decaying wood in freshwater habitats. Sexual morph: Ascomata 230–270 µm high, 180–220µm diam ($\bar{x} = 238 \times 203$ µm, n = 5), semi-immersed, coriaceous, black, subglobose, ostiolate. Ostiole rounded or slit-like, variable in shape, central, periphysate, with a porelike opening. Peridum 25–40 µm wide, comprise two strata, outer stratum stratum comprising brown to dark brown flattened *cells*, inner stratum comprising several layers of hyaline cells of *textura angularis*. Hamathecium comprising 1.5–2.0 µm wide, septate, cellular Pseudoparaphyses, filiform, septate with small guttules, hyaline. Asci 47–54 × 6.5–8.5 µm ($\bar{x} = 50 \times 7.5$ µm, n = 20), 8-spored, bitunicate, cylindrical, round at the apex, short pedicellate, with an indistinct ocular chamber. Ascospores 12–13 × 3–4 µm ($\bar{x} = 12 \times 3.5$ µm, n = 30), biseriate, overlapping, fusiform with acute ends, hyaline, straight or slightly curved, 1-septate, strongly constricted at the septum, mostly 4-guttules, smooth-walled, with hyaline appendages at both ends. Asexual morph: Undetermined.

Material examined – CHINA, Yunnan Province, Binchuan county, saprobic on decaying wood submerged in a stream, May 2015, H.W. Shen, S–784 (DLU 784), living culture, MFLUCC 17–1334.

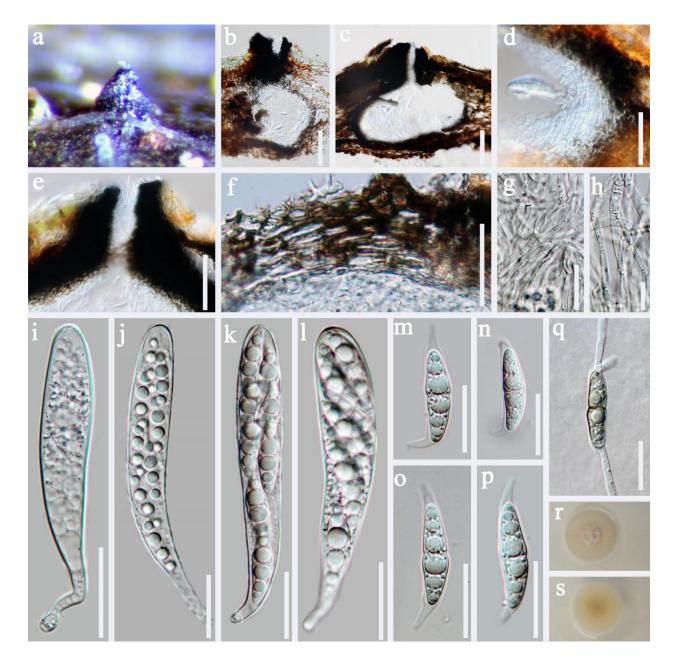
Notes – The new collection is identified as *Neovaginatispora fuckelii* based on morphology and phylogeny. Morphologically, our new collection fits well with the description of *Neovaginatispora fuckelii* (Thambugala et al. 2015, Tennakoon et al. 2018). In our phylogenetic analysis, our newly collected isolate clustered with *N. fuckelii* with high bootstrap support (100 ML/1.00 PP). We therefore, identified the newly isolate as *N. fuckelii*.

Neovaginatispora fuckelii has a wide distribution and it has been reported from terrestrial habitats in China, Japan, Germany, Sweden, Switzerland and UK (Wang & Lin 2004, Thambugala et al. 2015, Tennakoon et al. 2018). In this study, our new collection was collected from a freshwater habitat. Thus, we report our collection as a new record from freshwater habitat.

Vaginatispora armatispora (K.D. Hyde, Vrijmoed, Chinnaraj & E.B.G. Jones) Wanas., E.B.G. Jones & K.D. Hyde Stud. Fung. 1(1): 62 (2016) Fig. 7

Index Fungorum number: IF 819870; Facesoffungi number: FoF 05060

Saprobic on submerged decaying wood in freshwater and marine habitats. Sexual morph: Ascomata 240–340 µm diam. 270–335 µm high, ($\bar{x} = 300 \times 288$ µm, n = 5), scattered, immersed or semi-immersed, globose to subglobose, black, base flatted, coriaceous to carbonaceous. Ostiole black, elongated, crest-like, central, with hyaline periphyses. Peridium 25–40 µm wide, composed of several pale brown to brown cells of *textura angularis*, cells towards the inside hyaline to pale brown, at the outside, darker, somewhat flattened, fusing and with the host tissues. Hamathecium comprising 1.5–2 µm wide, septate, hyaline pseudoparaphyses composing situated between and above the asci, embedded in a gelatinous matrix. Asci 82–115 × 13.5–15.7 µm ($\bar{x} = 108 \times 14.3$ µm, n = 20), 8spored, bitunicate, fissitunicate, cylindrical-clavate, short pedicellate, apically rounded with an ocular chamber, hyaline. Ascospores 22–30 × 5.5–8 µm ($\bar{x} = 25.8 \times 6.7$ µm, n = 30), fusiform, with obtuse ends, hyaline when young, pale brown at mature, smooth-walled, 1-septate, strongly constricted at the septum, distinct large guttules, mostly 6-guttules, rarely 4-guttules, 2–3-guttules in each cells, surrounded by a narrow mucilaginous sheath, with distinct hyaline appendages at both ends. Asexual morph: undetermined.


Figure 6 – *Neovaginatispora fuckelii* (DLU 784) a, b Ascomata on submerged wood. c, f Peridium d Section of ascoma. e Ostiole. g Pseudoparaphyses. h Ascus apex. i–k Asci. l–s Ascospores. t Germinating ascospore. u, v Culture on PDA. Scale bars: c, i = 50 μ m, d, e = 100 μ m, f = 30 μ m, g, i–k = 20 μ m, h = 5 μ m, l–t = 10 μ m.

Material examined – THAILAND, Sai khu waterfall, Prachuap khiri Khan, on submerged decaying wood, August 2017, V. Kumar, B29, (DLU B29), living culture, MFLUCC 18–0213.

Notes - Vaginatispora armatispora was previously introduced as Massarina armatispora by

Hyde et al. (1992), that was collected from Mangroves in India and China. The placement of this species was updated by Wanasinghe et al. (2016) and, transferred to *Vaginatispora* based on both phylogeny and morphology.

In this study, our new isolate (MFLUCC 18–0213) clustered with strains of *Vaginatispora armatispora* with strong bootstrap (100 ML/1.00 PP). Morphology of our new isolate overlaps with *Vaginatispora armatispora* (HKTLCC1562, MFLUCC 18–0247) (Hyde et al. 1992, 2019). Therefore, we identified this new isolate as *Vaginatispora armatispora*.

Figure 7 – *Vaginatispora armatispora* (DLU B29) a Ascomata on submerged wood. b, c Section of ascoma. d, f Peridium. e Ostiole. g, h Pseudoparaphyses. i–l Aci. i–k Asci. m–p Ascospore. q Germinating ascospore. r, s Culture on PDA. Scale bars: b, c = 100 μ m, d = 30 μ m, e = 50 μ m, f, i–q = 20 μ m, g, h = 10 μ m.

Discussion

Lophiostomataceae, with over 150 species, is a highly speciose family in Pleosporales,

(Wijayawardene et al. 2018). They are cosmopolitan and distributed in many countries (China, France, Hungary, Italy, India, Japan, Russia and Thailand) (Thambugala et al. 2015, Wijayawardene et al. 2017, Hashimoto et al. 2018, Wanasinghe et al. 2018). However, only two Lophiostomataceae species *viz. Lophiostoma bipolare* and *L. proprietunicatum* have been reported in Yunnan, China (Luo et al. 2004). In this study, we carried out research on lignicolous freshwater fungi in Tibet and Yunnan provinces, China and Southern Thailand. Six Lophiostomataceae species have been collected and among them, five species are reported from China showing that members of this family are also widely distributed in China.

Species of Lophiostomataceae are highly diverse in their ascomata, peridium, pseudoparaphyses and ascospores characters. It is difficult to distinguish the species based on morphological characters alone and many species lack sequence data (Thambugala et al. 2015). Furthermore, some genera in Lophiostomataceae such as *Lophiostoma* are paraphyletic (Hashimoto et al. 2018). Therefore, further collections and phylogenetic studies are recommended for better understand the species boundaries within these genera.

Flabellascoma species are so far reported from terrestrial habitats (Hashimoto et al. 2018), while the two new species, *F. aquaticum* and *F. fusiforme* were collected from freshwater. This expands the habitat range of *Flabellascoma* species to freshwater. Species of *Flabellascoma* have similar shape and size of asci and ascospores and it is therefore difficult to distinguish them. but ascomatal features appear to be informative to delineate them. *Flabellascoma aquaticum* ascomata has a long black neck, whereas, *F. fusiforme* has ascomata with a short, elongated, crest-like ostiolar neck (Hashimoto et al. 2018). *Sigarispora* is a well-resolved genus in Lophiostomataceae. Species in this genus are known from terrestrial habitats in Russia, Italy and Japan (Li et al. 2016, Thambugala et al. 2015, Wanasinghe et al. 2018) and in this study, the new species *Sigarispora clavata* is reported from freshwater habitats in China.

Acknowledgements

We would like to thank the National Natural Science Foundation of China (Project ID: 31660008 and 31860006), Fungal diversity conservation and utilization innovation team of Dali University (ZKLX2019213) and the Thailand Research Fund grant "impact of climate change on fungal diversity and biogeography in the Greater Mekong Sub-region (RDG6130001)" for financial and laboratory support. Dan-Feng Bao thanks Shaun Pennycook from Landcare Research, Auckland, New Zealand, for advising on the taxon names, Wen-Li Li, Yan-Mei Zhang and Hong-Wei Shen are acknowledged for their help on DNA extraction and PCR amplification.

References

- Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B et al. 2015 Fungal diversity notes 111–252– taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75, 27–274.
- Bucher VVC, Hyde KD, Pointing SB, Reddy CA. 2004 Production of wood decay enzymes, mass loss and lignin solubilization in wood by diverse freshwater fungi. Fungal Diversity 15, 1–14.
- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q et al. 2014 The sooty moulds. Fungal Diversity 66, 1–36.
- Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F et al. 2010 ALTER: programoriented conversion of DNA and protein alignments. Nucleic Acids Research 38, 14–18.
- Hall TA. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

- Hashimoto A, Hirayama K, Takahashi H, Matsumura M et al. 2018 Resolving the *Lophiostoma bipolare* complex: Generic delimitations within Lophiostomataceae. Studies in Mycology 90, 161–189.
- Ho WH, Yanna, Hyde KD, Hodgkiss IJ. 2002 Seasonality and sequential occurrence of fungi on wood submerged in Tai Po Kau Forest Stream, Hong Kong. Aquatic Microbial Ecology 21, 289–298.
- Hyde KD. 1992 Tropical Australian freshwater fungi. I. Some ascomycetes. Austral Syst Bot 5, 109–116.
- Hyde KD. 1995 Tropical Australia freshwater fungi VII. New genera and species of ascomycetes. Nova Hedwigia 61, 119–140.
- Hyde KD, Goh TK 1998 Fungi on submerged wood in Lake Barrine, north Queensland, Australia. Mycological Research 102, 739–749.
- Hyde KD, Fryar S, Tian Q, Bahkali AH et al. 2016 Lignicolous freshwater fungi along a north– south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecology 19, 190–200.
- Hyde KD, Jones EBG, Liu JK, Ariyawansa H. 2013 Families of Dothideomycetes. Fungal Diversity 63, 1–313.
- Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A et al. 2017 Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87, 1–235.
- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ et al. 2019 Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96, 1–242.
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ et al. 2015 The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.
- Katoh K, Standley DM. 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30, 772–780.
- Kodsueb R, Vijaykrishna D, Aptroot A, Lumyong S et al. 2006 The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia 98, 571–583.
- Li GJ, Hyde KD, Zhao RL, Hongsanan S et al. 2016 Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78, 1–237.
- Liu JK, Hyde KD, Jones EG, Ariyawansa HA et al. 2015 Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72, 1–197.
- Liu YJ, Whelen S, Hall BD. 1999 Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16, 1799–1808.
- Luo J, Yin J, Cai L, Zhang K et al. 2004 Freshwater fungi in Lake Dianchi, a heavily polluted lake in Yunnan, China. Fungal Diversity 16, 93–112.
- Luo ZL, Hyde, KD, Liu JK, Bhat DJ et al. 2018 Lignicolous freshwater fungi from China II: Novel *Distoseptispora* (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere 9, 444–461.
- Miller MA, Pfeiffer W, Schwartz T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, November 2010, 1–8.
- Nitschke TRJ. 1869 Grundlage eines systems der Pyrenomyceten. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande. Westfalens und des Regierungsbezirks Osnabrück 26, 70–77.

- Nylander JAA. 2004 MrModeltest v2 Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
- Palmer ME, Covich AP, Finlay BJ, Gilbert J et al. 1997 Biodiversity and ecosystem processes in freshwater sediments. Ambio 26, 571–577.
- Rannala B, Yang Z. 1996 Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304–311.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference andmodel choice across a large model space. Systematic Biology 61, 539–542.
- Saccardo PA. 1883 Sylloge Fungorum Omnium hucusque cognitorum: Volume 2. Padova, Italy.
- Stamatakis A, Hoover P, Rougemont J. 2008 A rapid bootstrap algorithm for the RAxML webservers. Systematic Biology 75, 758–771.
- Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
- Tennakoon DS, Kuo CH, Jeewon R, Thambugala KM et al. 2018 Saprobic Lophiostomataceae (Dothideomycetes): *Pseudolophiostoma mangiferae* sp. nov. and *Neovaginatispora fuckelii*, a new record from *Mangifera indica*. Phytotaxa 364, 157–17.
- Thambugala KM, Hyde KD, Tanaka K, Tian Q et al. 2015 Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74, 199–266.
- Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN et al. 2017 Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83, 1–261.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172, 4238–4246.
- Wanasinghe DN, Jones EBG, Dissanayake AJ, Hyde KD 2016 Saprobic Dothideomycetes in Thailand: Vaginatispora appendiculata sp. nov. (Lophiostomataceae) introduced based on morphological and molecular data. Studies in Fungi 1, 56–68.
- Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R et al. 2018 Fungal diversity notes 709– 839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89, 1–236.
- Wang HK, Aproot A, Crous PW, Hyde KD et al. 2007 The polyphyletic nature of Pleosporales: An example from *Massariosphaeria* based on ribosomal DNA and RBP2 gene phylogenies. Fungal Biology 111, 1268–1276.
- White TJ, Bruns T, Lee S, Taylor J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis GM, Shinsky D, White T (eds) PCR protocols: a guide to methods and applications. Academic, New York, 315–322.
- Wijayawardene NN, Hyde KD, Lumbsch TH, Liu JK et al. 2018 Outline of Ascomycota: 2017. Fungal Diversity 88, 167–263.
- Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth et al. 2017 Notes for genera: Ascomycota. Fungal Diversity 86, 1–594.
- Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD et al. 1998 Role of fungi in freshwater ecosystems. Biodiversity, Conservation 7, 1187–1206.