

Doi 10.5943/mycosphere/9/6/3

Four new filamentous fungal species from newly-collected and hivestored bee pollen

Zhao YZ¹, Zhang ZF², Cai L², Peng WJ^{1*}, Liu F^{2*}

¹ Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China ² State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

Zhao YZ, Zhang ZF, Cai L, Peng WJ, Liu F 2018 – Four new filamentous fungal species from newly-collected and hive-stored bee pollen. Mycosphere 9(6), 1089–1116, Doi 10.5943/mycosphere/9/6/3

Abstract

Hive-stored pollen, as one of the major nutrition sources for honeybees, is the mixture of fresh bee pollen with honey, plant resins and wax. In this study, four new species (i.e. *Arthrinium locuta-pollinis*, *Chrysosporium alvearium*, *Nigrograna locuta-pollinis* and *Trichoderma pollinicola*) were identified, when we explored the culturable fungi in newly-collected bee pollen and hive-stored pollen produced by Italian honey bees (*Apis mellifera ligustica*) in the flowering season of rape (*Brassica campestris*). The four new species were described on the basis of morphological comparisons and multi-locus phylogenetic analyses, and their relationships with morphologically similar and phylogenetically closely related taxa are discussed.

Key words – Arthrinium – Chrysosporium – Morphology – Nigrograna – Phylogenetic analyses – Trichoderma

Introduction

Bee pollen, one of the products obtained from the hive due to the activity of honeybees, is abundant in organic molecules, with demonstrated antifungal, antibacterial, antiviral, antiinflammatory, immune stimulating and analgesic activities (Kroyer & Hegedus 2001, Almaraz-Abarca et al. 2004). Newly-collected bee pollen is not always served as the direct food source for honey bees. Bee pollen is sometimes stored in comb cells of hives for a few days, mixing with honey, plant resins and wax, and then consumed by honey bees (Brovarskyi et al. 2017, Kieliszek et al. 2018). During this process, bacteria and yeasts have been considered playing an important role on lactic acid fermentation (Foote 1957, Haydak 1958, Gilliam 1979). However, filamentous fungi thus far received rare attention in apicultural research even they are widely known for their ability to degrade and synthesize numerous compounds (Gilliam et al. 1989).

Up to now, only a few fungal taxa have been reported from newly-collected bee pollen and hive-stored pollen based on morphological identification, such as *Alternaria alternata*, *Aspergillus* spp., *Aureobasidium pullulans*, *Bettsia alvei*, *Cladosporium oxysporum*, *Epicoccum purpurascens*, *Eremascus fertilis*, *Fusarium oxysporum*, *Gymnoascus setosus*, *Monilia* spp., *Mucor erectus*, *Oospora favorum* and *Penicillium* spp. (Egorova 1971, Sainger et al. 1978, Gilliam et al. 1989), and fungi associated with these two types of pollen remained poorly explored.

In our fungal exploration from newly-collected bee pollen and hive-stored pollen in the flowering season of *Brassica campestris*, four new filamentous species are discovered. They are

described and illustrated based on the morphological comparisons and phylogenetic analyses in the present study. While the fungal community composition and distinction between these two kinds of bee pollen will be published elsewhere.

Materials & Methods

Sample collection and fungal isolation

Newly-collected pollen and hive-stored pollen samples were collected from Italian honey bee (*Apis mellifera ligustica*) colonies located in Yicheng, Hubei province in China, where the blooming rape (*Brassica campestris*) covered more than 500 hectares in March 2016 (Fig. 1). Three colonies with consistent population were used to trap bee pollen and produce stored pollen. Each colony was comprised of 10 frames of adult bees (about 8000–10 000 adult bees). Before we established the bee colonies, no pollen was stored in beehives, but which contained some bee larvae and honey. New frames were placed in the colonies to provide space for the worker bees to store pollen.

Figure 1 – Sampling site and samples. a Sampling site beside fields of *Brassica campestris*. b–c Worker bees (*Apis mellifera ligustica*) collecting pollen of rape flowers. d Newly-collected pollen obtained by pollen traps. e Red arrow indicating hive-stored pollen under fermentation in the comb cells. f–g Hive-stored pollen.

In the flowering season of rape, standard pollen traps were used to collect bee pollen samples (Fig. 1) (Giesecke et al. 2010). Fresh bee pollen was immediately collected from pollen baskets (corbicula) of incoming honey bees. Fourteen days after the flowering season of rape, hive-stored pollen samples were dug by sterile medicine spoons (Kieliszek et al. 2018). One hundred grams of newly-collected pollen and hive-stored pollen samples were collected from each colony, which

made 3 samples for each kind of pollen. All samples were put in sterile 10 mL centrifuge tubes and took back to laboratory immediately and preserved at 4 °C.

Fungi were isolated following a modified dilution plate method from newly-collected and hive-stored pollen samples (Zhang et al. 2015). One gram of each sample was suspended in 10 mL sterile water in a 15 mL sterile centrifuge tube. The tubes were shaken by Vortex vibration meter thoroughly. The suspension was then diluted to a series of concentrations, i.e. 10^{-2} , 10^{-3} , 10^{-4} and 10^{-5} . Two hundred microliters suspensions from each dilution were spread onto potato-dextrose agar (PDA, Aobox, ABX-00279) and yeast-peptone-dextrose agar (YPD) containing ampicillin (50 µg/ mL) and streptomycin (50 µg/ mL), onto De Man, Rogosa and Sharpe agar (MRS, Aobox, 02-293) containing amphotericin (8 µg/ mL), by three replicates.

All the plates were incubated at room temperature (ca. 25–28 °C) for 1–4 weeks, and from which the single colonies were picked up and inoculated onto new PDA plates every 2 d. All fungal strains were stored at 4 °C in the LC Culture Collection (personal culture collection held in lab of Dr. Lei Cai) for further studies. The dry cultures of novel species were deposited in the Herbarium of Microbiology, Academia Sinica (HMAS), while living cultures were deposited in the China General Microbiological Culture Collection Center (CGMCC).

Morphology

Morphological characterization was made for isolates cultivated on potato dextrose agar (PDA; Difco), and alternatively on synthetic nutrient-poor agar (SNA, 1 g KH₂PO₄, 1 g KNO₃, 0.5 g MgSO₄·7H₂O, 0.5 g KCl, 0.2 g glucose, 0.2 g sucrose, 0.6 ml NaOH (1 M) and 13.2 g agar/liter distilled water) or amended with double-autoclaved pine needles placed onto the agar surface (Smith et al. 1996), malt extract agar (MEA, malt extract (Oxoid CM0059) 50 g, ZnSO₄·7H₂O 0.01g, CuSO₄·5H₂O 0.005 g/liter distilled water), and cornmeal agar (CMA, cornmeal 20 g, peptone 20 g, glucose 20 g, agar 15 g/liter distilled water) according to the genus level placement of the novel species. Cultures were incubated at 25 °C and another five temperatures for *Trichoderma* (15 °C, 20 °C, 30 °C, 37 °C, 40 °C) according to Jaklitsch & Voglmayr (2015). Cultures were made mounted on lactic acid, and at least 30 measurements per structure were documented and examined under a Nikon Eclipse 80i microscope using differential interference contrast (DIC). Taxonomic descriptions and nomenclature were deposited in MycoBank.

Molecular analyses

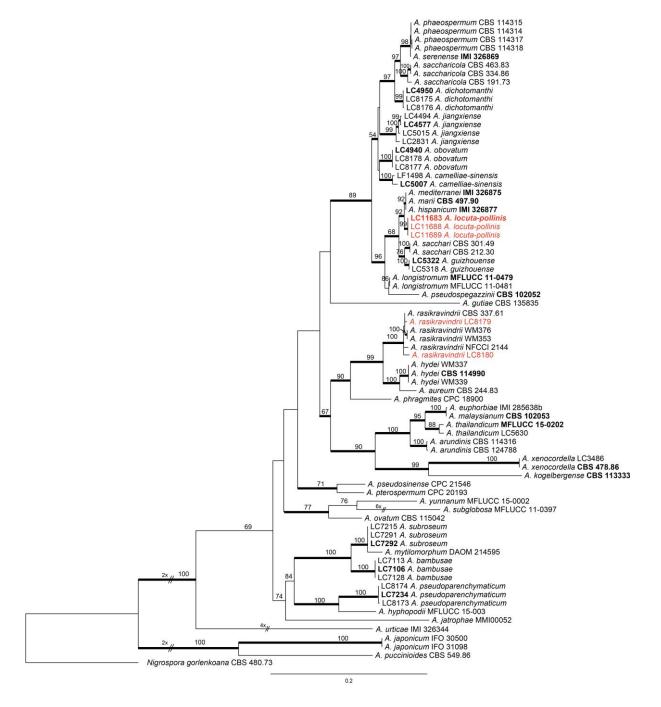
Total genomic DNA was extracted from fungal mycelia using a modified CTAB protocol (Guo et al. 2000). Multi genes were amplified and sequenced for each new species, and the primer sets were listed in Table 1. ITS, *TEF1-a* and *TUB2* sequences were obtained for *Arthrinium*, LSU, ITS, *CAL* and *RPB2* sequences obtained for *Chrysosporium*, LSU, ITS, *RPB2* and *TEF1-a* obtained for *Nigrograna*, and ITS, *CAL*, *RPB2* and *TEF1-a* obtained for *Chrysosporium* due to the lack of reference sequences of other loci. PCR amplification protocols were performed as described by Gao et al. (2017), but the denaturing temperatures were adjusted to 59 °C for *RPB2*, and 55 °C for the other loci. Purification and sequencing of PCR amplifications were carried out by the Omegagenetics Company, Beijing, China. MEGA 6.06 was used to obtain consensus sequences from DNA sequences generated from forward and reverse primers. All reference and novel sequences obtained in this study were deposited in TreeBASE (www.treebase.org, S22986).

Sequences alignment was performed with MAFFT 7, and was manually improved with MEGA 6.06. Bayesian inference (BI) and maximum likelihood (ML) methods were implemented in this study. Bayesian analyses were performed using MRBAYES 3.2.2 (Ronquist et al. 2012) as outlined by Liu et al. (2014). ML analyses were performed using RAXML 7.0.3 with 1000 replicates under the GTR-GAMMA model (Stamatakis 2006).

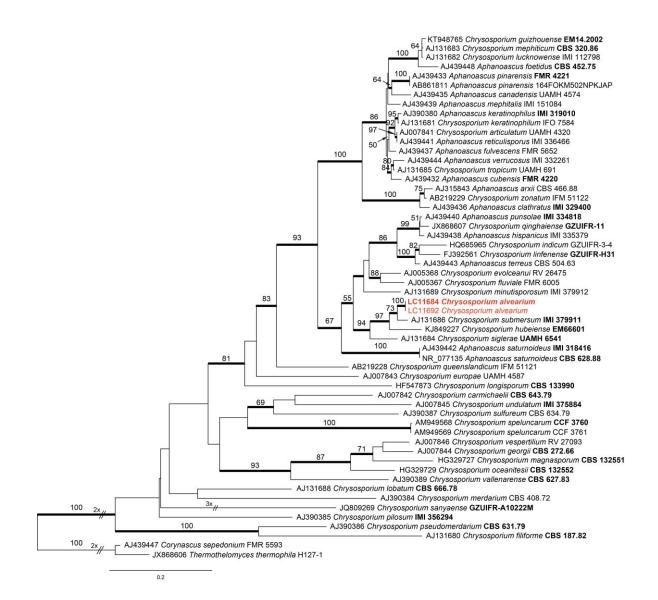
Locus	Primer	Primer sequences 5' to 3'	Orientation	Reference
large subunit ribosomal DNA (LSU)	LR0R	ACCCGCTGAACTTAAGC	Forward	Rehner & Samuels (1994)
× ,	LR5	ATCCTGAGGGAAACTTC	Reverse	Rehner & Samuels (1994)
ITS	ITS1	TCCGTAGGTGAACCTGCG G	Forward	White et al. (1990)
	ITS4	TCCTCCGCTTATTGATAT GC	Reverse	White et al. (1990)
beta-tubulin (<i>TUB2</i>)	T1	AACATGCGTGAGATTGT AAGT	Forward	O'Donnell & Cigelnik (1997)
(1022)	Bt2a	GGTAACCAAATCGGTGC TGCTTTC	Forward	Glass & Donaldson (1995)
	Bt2b	ACCCTCAGTGTAGTGACC CTTGGC	Reverse	Glass & Donaldson (1995)
translation elongation factor 1- alpha (<i>TEF1-a</i>)	EF 1- 728F	CAT CGA GAA GTT CGA GAA GG	Forward	Carbone & Kohn (1999)
	EF 1- 1567R	ACHGTRCCRATACCACCR ATCTT	Reverse	Rehner (2001)
	EF 1- 2218R	ATGACACCRACRGCRAC RGTYTG	Reverse	Rehner (2001)
calmodulin (CAL)	CAL- 228F	GAGTTCAAGGAGGCCTT CTCCC	Forward	Carbone & Kohn (1999)
	CAL- 737R	CATCTTTCTGGCCATCAT GG	Reverse	Carbone & Kohn (1999)
RNA polymerase II second largest subunit (<i>RPB2</i>)	fRPB2- 5F	GAYGAYMGWGATCAYTT YGG	Forward	Liu et al. (1999)
	fRPB2- 7cR	CCCATRGCTTGYTTRCCC AT	Reverse	Liu et al. (1999)

Table 1 Primers used in this study

Results


Phylogenetic analyses

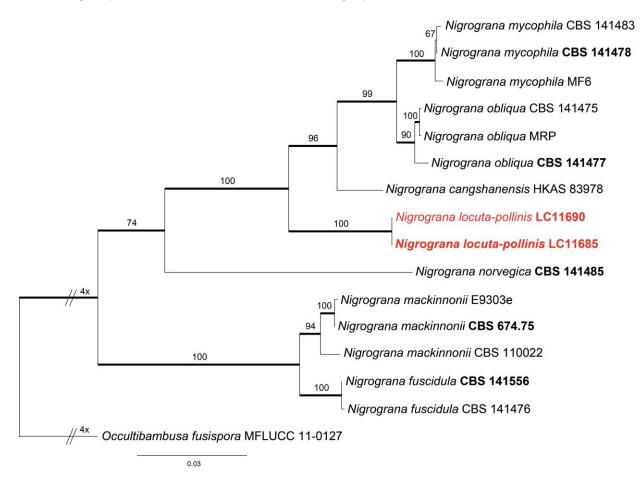
Arthrinium. Phylogenetic analysis of *Arthrinium* was performed on the concatenated dataset of ITS, *TUB2* and *TEF1-a*, with *Nigrospora gorlenkoana* (CBS 480.73) as outgroup (Fig. 2). The concatenated dataset contained 720 characters with alignment gaps for ITS, 1025 for *TUB2*, and 602 for *TEF1-a*. The maximum likelihood (ML) tree confirmed the tree topology of the Bayesian consensus (BS) tree. Strains from the newly-collected bee pollen and hive-stored pollen separated into two well-supported clades in the phylogenetic tree of *Arthrinium* (Fig. 2), which represented one known species, *A. rasikravindrii*, and one novelty described in this study.


Chrysosporium. Phylogenetic analysis of *Chrysosporium* and related species was performed based on ITS sequences (Fig. 3). Fifty-six sequences from *Chrysosporium* and *Aphanoascus* were included in the ITS dataset, with *Corynascus sepedonium* and *Thermothelomyces thermophila* as outgroups. The dataset contained 791 characters with alignment gaps. The ML tree confirmed the

tree topology of BS tree. Strains from the hive-stored pollen formed a distinct clade which closely related to *C. submersum* and *C. hubeiense* (Fig. 3).

Nigrograna. Phylogenetic analysis of *Nigrograna* was performed on the concatenated dataset of LSU, ITS, *RPB2* and *TEF1-a*, with *Occultibambusa fusispora* (MFLUCC 11-0127) as outgroup (Fig. 4). The concatenated dataset contained 748 characters with alignment gaps for LSU, 439 for ITS, 807 for *RPB2*, and 691 for *TEF1-a*. The maximum likelihood (ML) tree confirmed the tree topology of the Bayesian consensus (BS) tree. Strains from the hive-stored pollen formed a distinct and well-supported clade in the 4-locus tree and showed phylogenetic distance from all other species in *Nigrograna* (Fig. 4).

Figure 2 – Phylogenetic tree of *Arthrinium* calculated with maximum likelihood analysis on a combined dataset of three-locus sequences (ITS, *TUB2*, *TEF1-a*) by running RAxML v.7.0.3. The RAxML bootstrap support values (> 50%) are displayed at the nodes. Thickened branches indicate branches also present in the Bayesian tree with > 0.95 posterior probabilities. Strains in bold indicate ex-type cultures. Strains obtained in this study are in red colour.


Figure 3 – Phylogenetic tree of *Chrysosporium* and related taxa calculated with maximum likelihood analysis on ITS sequences by running RAxML v.7.0.3. The RAxML bootstrap support values (> 50%) are displayed at the nodes. Thickened branches indicate branches also present in the Bayesian tree with > 0.95 posterior probabilities. Strains in bold indicate ex-type cultures. Strains obtained in this study are in red colour.

Trichoderma. Trichoderma isolates obtained in this study were confirmed belonging to the *T. harzianum* species complex based on the BLASTn searches of the NCBI GenBank nucleotide database and preliminary *TEF1-a* gene tree (results not shown). Multi-locus phylogenetic analysis of *T. harzianum* species complex was then performed on the concatenated dataset of ITS, *RPB2*, *ACT*, *CAL* and *TEF1-a*, with *T. aggressivum* (CBS 100525) as outgroup (Fig. 5). The concatenated dataset contained 535 characters with alignment gaps for ITS, 836 for *RPB2*, 299 for *ACT*, 431 for *CAL* and 597 for *TEF1-a*. The maximum likelihood (ML) tree confirmed the tree topology of the Bayesian consensus (BS) tree. Strains from the newly-collected pollen formed a distinct and well-supported clade in the 5-locus tree and showed phylogenetic distance from all other species in *T. harzianum* species complex (Fig. 5).

Taxonomy

Arthrinium locuta-pollinisF. Liu & L. Cai, sp. nov.Fig. 6MycoBank: MB824505; Facesoffungi number: FoF05221Etymology – locuta-pollinis, named after the origin of this species, stored pollen.Fig. 6

Colonies on PDA flat, surface initially white and becoming yellowish in the center, with abundant aerial mycelia, reaching 9 cm in 7 d at 25 C. On MEA, colonies umbonate, entire edge, surface initially white and becoming yellowish in the center, with abundant aerial mycelia. Hyphae hyaline, or pale brown, branched, septate, 2–5 μ m diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells pale brown, smooth, subglobose to ampulliform to doliiform, 3–7.5 × 3–6 μ m (av. ± SD = 4.9 ± 1.13 × 3.8 ± 0.77 μ m). Conidia pale brown to brown with hyaline equatorial rim, smooth, globose to subglobose, 5.5–9 × 4.5–8 μ m (av. ± SD = 7.1 ± 0.55 × 6.4 ± 0.66 μ m), or ellipsoidal, 8–15× 5–9.5 μ m (av. ± SD = 10.7 ± 1.47 × 7.1 ± 0.85 μ m). Elongated cells (sterile cells) formed on solitary loci on hyphae, pale brown or brown, smooth, ellipsoidal to clavate, 11.5–21 × 3.5–8 μ m (av. ± SD = 15.7 ± 2.22 × 5.7 ± 1.08 μ m).

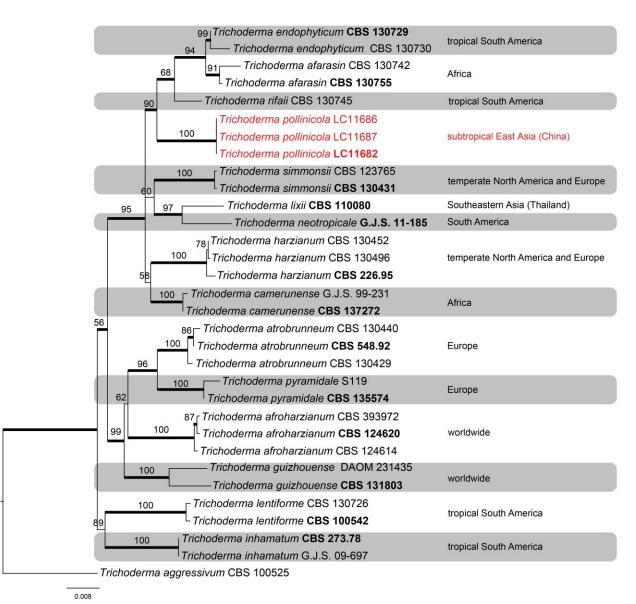


Figure 4 – Phylogenetic tree of *Nigrograna* calculated with maximum likelihood analysis on a combined dataset of four-locus sequences (ITS, LSU, *RPB2*, *TEF1-a*) by running RAxML v.7.0.3. The RAxML bootstrap support values (> 50%) are displayed at the nodes. Thickened branches indicate branches also present in the Bayesian tree with > 0.95 posterior probabilities. Strains in bold indicate ex-type cultures. Strains obtained in this study are in red colour.

Materials examined – CHINA, Hubei Province, from hive-stored pollen collected in the Italian honey bee colonies in the flowering season of *Brassica campestris*, 31 Mar 2016, Y.Z. Zhao (holotype HMAS 247779) – ex-holotype living culture CGMCC 3.18782 = LC 11683 = LF1844; *ibid.* living cultures LC 11688 = LF2064, LC 11689 = LF2065.

Notes – Arthrinium locuta-pollinis is phylogenetically closely related to A. mediterranei, A. marii and A. hispanicum, but differs in distinct morphological characters and nucleotide differences. Arthrinium locuta-pollinis produces globose, subglobose or ellipsoidal conidia, while which are globose or subglobose in A. hispanicum, A. marii and A. mediterranei. Furthermore, A. locuta-pollinis differs from A. mediterranei in producing smaller globose or subglobose conidia ($5.5-9 \times 4.5-8 \mu m vs. 9-9.5 \times 7.5-9 \mu m$) and longer sterile cells ($11.5-21 \times 3.5-8 \mu m vs. 7-7.5 \times 10^{-10} m vs. 9-9.5 \times 10^{-10} m vs. 9-9.$

6.5–7 μ m) (Larrondo & Calvo 1992), and differs from *A. hispanicum* in producing obviously longer sterile cells (11.5–21 μ m vs. < 7.5–8.5 μ m) (Larrondo & Calvo 1992).

Figure 5 – Phylogenetic tree of *Trichoderma harzianum* species complex calculated with maximum likelihood analysis on a combined dataset of five-locus sequences (ITS, *ACT*, *CAL*, *RPB2*, *TEF1-a*) by running RAxML v.7.0.3. The RAxML bootstrap support values (> 50%) are displayed at the nodes. Thickened branches indicate branches also present in the Bayesian tree with > 0.95 posterior probabilities. Strains in bold indicate ex-type cultures. Strains obtained in this study are in red colour.

Chrysosporium alvearium F. Liu & L. Cai, sp. nov.

Fig. 7

MycoBank: MB824506; Facesoffungi number: FoF05222

Etymology – *alvearium*, referring to the place where the fungus was collected, hive.

Description – Colonies on PDA flat or with slightly elevated center, with a daily growth rate of 2–2.5 mm in the dark at 25 C, white coloured, powdery, irregular at the margin; reverse white. Hyphae hyaline, branched, smooth, septate, 1.5–2.5 μ m diam. Terminal and lateral conidia sessile or on short or long right-angled side protrusions, solitary or in chains of up to 10 conidia, hyaline, smooth, globose, pyriform, clavate, or obovoid, rarely cylindrical, 1-celled, 4–9 × 2–7.5 μ m (av. ± SD = 5.6 ± 0.8 × 4.4 ± 1.1 μ m). Intercalary conidia abundant, solitary or in chains, smooth,

globose, barrel-shaped, ellipsoid to obvoid, $4-11 \times 3.5-9.5 \ \mu m$ (av. $\pm SD = 7 \pm 1.1 \times 5.9 \pm 1.0 \ \mu m$). Racquet hyphae and chlamydospores present. Sexual morph not observed.

Materials examined – CHINA, Hubei Province, from hive-stored pollen collected in the Italian honey bee colonies in the flowering season of *Brassica campestris*, 31 Mar 2016, Y.Z. Zhao (holotype HMAS 247780) – ex-holotype living culture CGMCC 3.18783 = LC 11684 = LF1882; *ibid.* living cultures LC 11692 = LF2097, LC 11693 = LF2098.

Notes – Traditionally morphologically defined *Chrysosporium* is polyphyletic with affiliations to at least three orders of the Ascomycota (Vidal et al. 2000, Pitt et al. 2013). The genus awaits taxonomic revision if the type species *C. merdarium* could be epitypified (Pitt et al. 2013). Morphologically our species is characterized by white colonies and aleurioconidia on undifferentiated hyphae, in agreement to the current morphological circumscription of *Chrysosporium* (Carmichael 1962). *Chrysosporium alvearium* is phylogenetically closely related to *C. submersum* and *C. hubeiense* (Fig. 3), but their ITS sequences only shows 97% and 94% similarities respectively. Morphologically, *C. alvearium* differs from *C. submersum* by lower growth rate on PDA (28–35 mm/14d vs. 50–60 mm/14d) and the absence of 1–3-septate conidia. In addition, the conidia of *C. alvearium* are commonly in longer chains than that of *C. submersum* (rarely, up to four conidia) (Vidal et al. 2002). In contrast to *C. hubeiense*, *C. alvearium* produces longer terminal and lateral conidia (4–9 × 2–7.5 µm vs. 2.2–4.3 × 1.6–2.3 µm) (Zhang et al. 2016).

Nigrograna locuta-pollinis F. Liu & L. Cai, sp. nov.

MycoBank: MB824507; Facesoffungi number: FoF05223

Etymology – *locuta-pollinis*, named after the origin of this species, stored pollen.

Diagnosis – Growth on PDA after 14 d at room temperature (ca. 25 C) flat, entire edge, olivaceous grey, aerial mycelia fluffy, 49 mm diam.; on MEA flat, entire edge, olivaceous grey, aerial mycelia sparse, 18 mm diam.; on CMA flat, entire edge, olivaceous to olivaceous black, aerial mycelia sparse, 49 mm diam. Cultures sterile.

Reference phylogeny – Fig. 4, present study.

Molecular and phylogenetic notes – *Nigrograna locuta-pollinis* forms a distinct and strongly supported monophyletic clade (ML bootstrap 100 %, Bayesian posterior probabilities = 1.00) within genus *Nigrograna* (Fig. 4). It differs from its closest phylogenetic neighbor, *N. cangshanensis*, by unique fixed alleles in three loci based on alignments of the separate loci demonstrated in the supplementary file (See supplementary file: Fig. S1).

Materials examined – CHINA, Hubei Province, from hive-stored pollen collected in the Italian honey bee colonies in the flowering season of *Brassica campestris*, 31 Mar 2016, Y.Z. Zhao (holotype HMAS 247781) – ex-holotype living culture CGMCC 3.18784 = LC 11685 = LF1889; *ibid.* living cultures LC 11690 = LF2070, LC 11691 = LF2071.

Notes – *Nigrograna* was erected by Gruyter et al. (2012), and currently includes five species (Jaklitsch & Voglmayr 2016). These species were reported from bark of moderately decayed twigs of shrubs and trees and sometimes as human pathogens. They usually produce sexual morph in their life cycle. *Nigrograna locuta-pollinis* was isolated from hive-stored pollen, expanding the known habitat of this genus, but proved sterile when cultivated on several different media (PDA, SNA \pm pine needle, CMA, MEA, etc.).

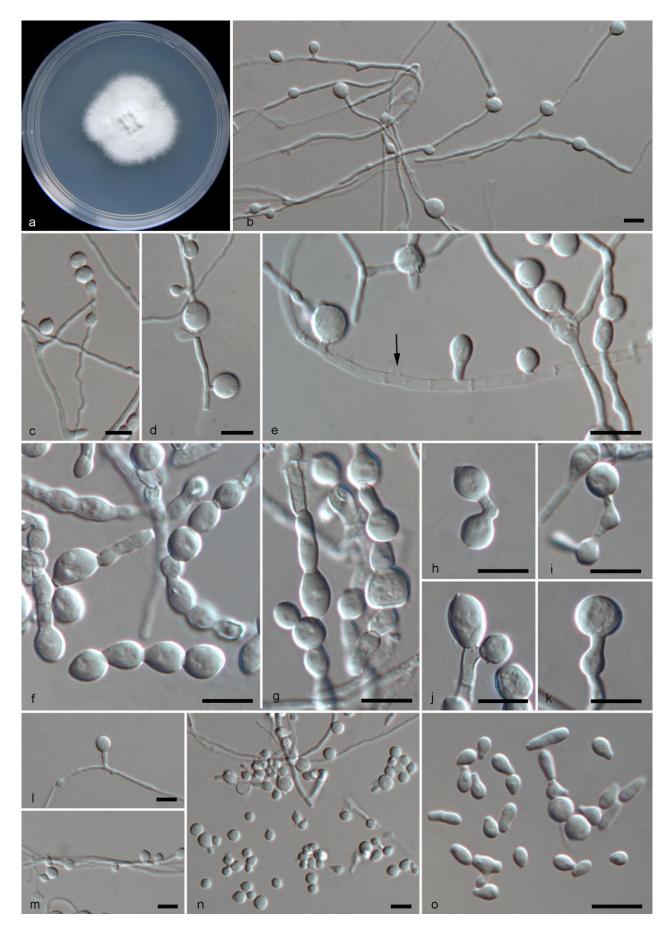
Trichoderma pollinicola F. Liu & L. Cai, sp. nov.

Fig. 8

MycoBank: MB824508; Facesoffungi number: FoF05224

Etymology – *pollinicola*, referring to the substrate where the fungus was first discovered, pollen.

Description – Characteristics in culture: Colony radius after 72 h at 15 C on PDA 8–11 mm, on SNA 9–15 mm, on CMA 17–18 mm; 20 C on PDA 28–30 mm, on SNA 32–34 mm, on CMA 30–31 mm; 25 C on PDA 53–54 mm, on SNA 49–50 mm, on CMA 44–52 mm; at 30 C on PDA 48–49 mm, on SNA 46–49 mm, on CMA 60–65 mm; at 37 C on PDA 12–16 mm, on SNA 7–8 mm, on CMA 8–10 mm. Not growing at 40 C.


On PDA after 96 h at 25 C aerial hyphae abundant, cottony, radial; conidia appearing within 48–72 h, typically abundant and disposed in three concentric rings around the inoculum. On CMA after 96 h at 25 C aerial hyphae abundant, cottony, radial; conidia appearing within 48 h, forming abundantly and disposed around the inoculum in the range of 2.5 cm radius. On SNA after 96 h at 25 C, aerial hyphae sparse, appearing in several concentric rings. Conidia noted within 72–96 h, forming abundantly on aerial hyphae, conidial pustules spreading in concentric rings, 0.5–1.5 mm in diam. Conidiophores pyramidal, comprising a distant main axis, side branches paired or unpaired, often at acute angles with the main axis, re-branching up to 3 levels. Phialides solitary or in whorls of 2–4, lageniform to ampulliform, 4.5–9.5 × 2.5–4 µm (av. \pm SD = 6.7 \pm 1.2 × 3.0 \pm 0.2 µm), length/width ratio = 2.2, base 1.5–2.5 µm wide (av. = 2 µm), supporting cells 2–4 µm wide (av. = 3.1 µm). Conidia globose or subglobose, rarely ovoid, 2.5–3.5 × 2–3 µm (av. \pm SD = 2.8 \pm 0.1 × 2.6 \pm 0.1 µm), length/ width ratio = 1.1, smooth, green. Chlamydospores not observed.

Materials examined – CHINA, Hubei Province, from newly-collected pollen collected in the Italian honey bee colonies in the flowering season of *Brassica campestris*, 31 Mar 2016, Y.Z. Zhao (holotype HMAS 247782) – ex-holotype living culture CGMCC 3.18781 = LC 11682 = LF1542; *ibid.* living cultures LC 11686 = LF2050, LC 11687 = LF2051.

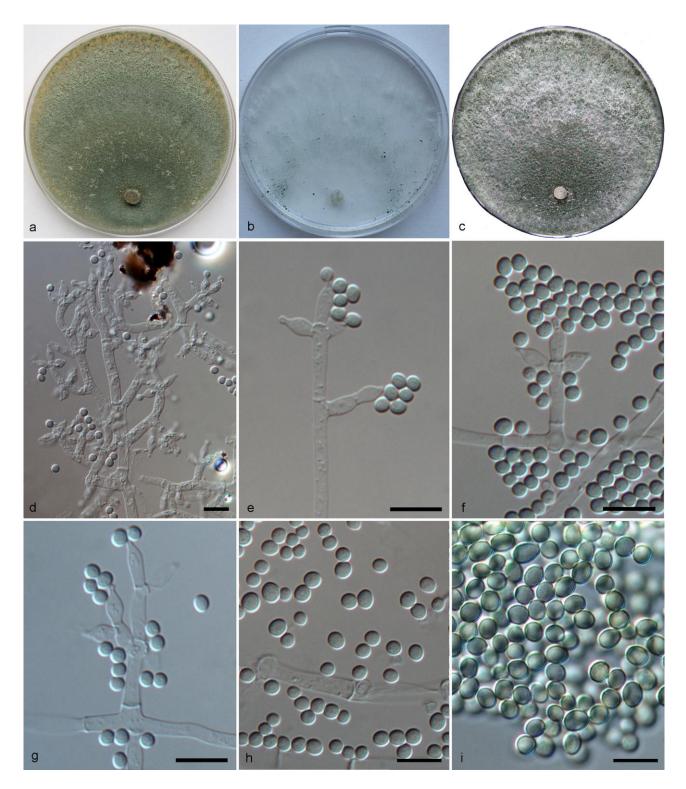

Notes – Strains of *Trichoderma pollinicola* formed a well-supported and distinct clade in the *T. harzianum* species complex based on multi-locus (ITS, *ACT*, *CAL*, *TEF1-a*, *RPB2*) phylogenetic analysis (Fig. 5). It differs from the phylogenetically related species *T. rifaii* in lower growth rate (e.g. colony radius after 72 h at 25 °C on PDA 53–54 mm vs. 62–67 mm, on SNA 49–50 mm vs. 55–65mm) (Chaverri et al. 2015). *Trichoderma pollinicola* is similar to *T. rifaii* in microstructure, but they can be distinguished from each other either by *RPB2* (96% similarity, 32 bp differences) or *TEF1-a* (96% similarity, 21 bp differences) sequence data.

Figure 6 – *Arthrinium locuta-pollinis* (ex-holotype CGMCC 3.18782 = LC 11683). a–b Colonies after 7 d on PDA. c. Colony on MEA producing conidia mass. d–f Conidiogenous cells giving rise to conidia. g Conidia. h Conidia and elongated conidia (might be sterile cells, indicated by arrows). Bar = 10 μ m.

Figure 7 – *Chrysosporium alvearium* (ex-holotype CGMCC 3.18783 = LC 11684). a Colony after 10 d on PDA. b–e, h–m Conidiogenous structures. f–g Conidia in chains. n–o Conidia. Scale Bar = 10 μ m.

Figure 8 – *Trichoderma pollinicola* (ex-holotype CGMCC 3.18781 = LC 11682). a–c Colonies after 7 d at 25 °C (a. PDA. b. SNA. c. CMA). d Conidiophores. e–g Phialides. h. Hyaline to light green conidia when young. i Green conidia with age. Scale Bar = $10 \mu m$.

Discussion

During our survey of culturable fungi from newly-collected and hive-stored pollen, four new species were identified, i.e. Arthrinium locuta-pollinis, Chrysosporium alvearium, Nigrograna locuta-pollinis and Trichoderma pollinicola. As far as we know, nine previously described Chrysosporium species were recorded from mason bees (Osmia spp.), beehives, bee pollen and honey, i.e. C. botryoides, C. farinicola, C. globiferum and its two varieties, C. hispanicum, C. holmii, C. medium, C. merdarium and its variety, C. minor and C. pyriforme. Most of above species

representing extreme xerophiles have already been combined into *Xerochrysium* or *Bettsia* except *C. merdarium* (Pitt et al. 2013). Although *C. alvearium* was isolated from hive-stored pollen from beehives and the genus *Chrysosporium* is polyphyletic, it shows very low similarity to *Xerochrysium* or *Bettsia*.

Species in the *T. harzianum* complex were recently indicated having a tendency of specialization for habitat (Chaverri et al. 2015). Some were demonstrated to be endophytic, while others were only isolated from soil. In the present study, *T. pollinicola* was isolated from the newly-collected pollen of *Brassica campestris*, however we could not determine whether *T. pollinicola* was the endophyte of *B. campestris* or environment related fungus. It is worth noting that, we did not obtain any *Trichoderma* strain when performing fungal isolation from the flowers of *B. campestris* at the same time (results not shown). As far as we know, only one species in *Trichoderma*, *T. pseudokoningii*, was previously recorded from *B. campestris* from Canada (Rifai 1969), while which belongs to Longibrachiatum clade (Jaklitsch & Voglmayr 2015).

Arthrinium species are geographically distributed in various substrates, e.g. host plants, air and soil (Wang et al. 2018). Arthrinium camelliae-sinensis has recently been reported from pollen product of Brassica campestris ('Huaxing' brand) which made from fresh-collected pollen (Wang et al. 2018). Whereas in the present study, A. locuta-pollinis is isolated from hive-stored pollen of Brassica campestris, but not from newly-collected pollen. It is probably that A. locuta-pollinis was introduced through bees' activity or from air. According to the multi-locus phylogeny (Fig. 2), A. mediterranei, A. marii and A. hispanicum showed phylogenetic identity. Further comparison revealed that ITS and TUB2 sequences of type strains of above three species are identical, and the TEF sequences of A. mediterranei and A. hispanicum are absent in any public database for comparison. Further researches are therefore required to determine their conspecific or heterogeneity.

Culture media such as YPD and MRS are commonly used for bacteria and yeast isolation. Surprisingly we obtained some exclusive species comparing to the most commonly used PDA medium (results not shown), for example, the two new species *A. locuta-pollinis* and *C. alvearium* were only isolated from YPD, and *T. pollinicola* was only from MRS. While *N. locuta-pollinis* was only isolated on PDA. The exclusive fungi obtained from YPD and MRS may be more in favor of the yeast/bacterial dominated environment. Another possibility is that, when the diluted concentration of pollen is low enough, the growth space of *A. locuta-pollinis*, *C. alvearium* and *T. pollinicola* were not be occupied and restrained by favorable yeast or bacteria on YPD and MRS. Above results demonstrated that the application of different culture media and dilution concentration of materials could help to reveal more microbial biodiversity.

Acknowledgements

This study was financially supported by the Agricultural Science and Technology Innovation Program, China (ASTIP). Xiaohong Chen is thanked for help with partial fungal isolation and PCR amplification, and Kai Chen is thanked for assistance on phylogenetic analysis of genus *Trichoderma*. We also acknowledge Shengming Han for providing pictures of sampling sites in Fig. 1.

References

- Almaraz-Abarca N, Campos MDG, Ávila-Reyes JA, Naranjo-Jiménez N et al. 2004 Variability of antioxidant activity among honeybee-collected pollen of different botanical origin 29(10), 574–578.
- Brovarskyi V, Velychko S, Brindza J, Adamchuk L. 2017 Development and testing of the technology of production of the beebread with the use of artificial combs. Agrobiodiversity for Improving Nutrition, Health and Life Quality 1, 31–42.
- Carbone I, Kohn LM. 1999 A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91, 553–556.

- Carmichael JW. 1962 *Chrysosporium* and some other aleuriosporic hyphomycetes. Canadian Journal of Botany 40(8), 1137–1173.
- Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R et al. 2015 Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3), 558–590.
- Egorova A1. 1971 Preservative microflora in stored pollen. Veterinariya 8, 40–41.
- Foote HL. 1957 Possible use of microorganisms in synthetic bee bread production. The American Bee Journal 97, 476–478.
- Gao Y, Liu F, Duan W, Crous PW, Cai L. 2017 *Diaporthe* is paraphyletic. IMA Fungus 8(1), 153–187.
- Giesecke T, Fontana SL, van der Knaap WO, Pardoe HS, Pidek IA. 2010 From early pollen trapping experiments to the Pollen Monitoring Programme. Vegetation History and Archaeobotany 19(4), 247–258.
- Gilliam M. 1979 Microbiology of pollen and bee bread: the yeasts. Apidologie 10, 43–53.
- Gilliam M, Prest DB, Lorenz BJ. 1989 Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20(1), 53–68.
- Glass NL, Donaldson G. 1995 Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61, 1323–1330.
- Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJ et al. 2012 Redisposition of *Phoma*like anamorphs in Pleosporales. Studies in Mycology 75, 1–36.
- Guo LD, Hyde KD, Liew ECY. 2000 Identification of endophytic fungi from *Livistona chinensis* based on morphology and rDNA sequences. New Phytologist 147, 617–630.
- Haydak MH. 1958 Pollen-pollen substitutes-beebread. The American Bee Journal 98, 145–146.
- Jaklitsch WM, Voglmayr H. 2015 Biodiversity of *Trichoderma* (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80, 1–87.
- Jaklitsch WM, Voglmayr H. 2016 Hidden diversity in *Thyridaria* and a new circumscription of the Thyridariaceae. Studies in Mycology 85, 35–64.
- Kieliszek M, Piwowarek K, Kot AM, Blazejak S et al. 2018 Pollen and bee bread as new healthoriented products: A review. Trends in Food Science & Technology 71, 170–180.
- Kroyer G, Hegedus N. 2001 Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innovative Food Science & Emerging Technologies 2(3), 171–174.
- Larrondo JV, Calvo MA. 1992 New contributions to the study of the genus Arthrinium. Mycologia 84(3), 475–478.
- Liu YJ, Whelen S, Hall BD. 1999 Phylogenetic relationships among ascomycetes: evidence from an RNA Polymerase II subunit. Molecular Biology and Evolution 16, 1799–1808.
- Liu F, Cai L, Crous PW, Damm U. 2014 The *Colletotrichum gigasporum* species complex. Persoonia 33, 83–97.
- O'Donnell K, Cigelnik E. 1997 Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular Phylogenetics and Evolution 7, 103–116.
- Pitt JI, Lantz H, Pettersson OV, Leong SL. 2013 Xerochrysium gen. nov. and Bettsia, genera encompassing xerophilic species of Chrysosporium. IMA Fungus 4(2), 229–241.
- Rehner SA. 2001 Primers for Elongation Factor 1-alpha (EF1-alpha). http://ocid.nacse.org/research/deephyphae/EF1primer.pdf (accessed 13.02.01)
- Rehner SA, Samuels GJ. 1994 Taxonomy and phylogeny of *Gliocladium* analyzed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98, 625–634.
- Rifai MA. 1969 A revision of the genus Trichoderma. Mycological Papers 116, 1–56.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systermatic Biology 61(3), 539–542.

- Sainger JK, Garg AP, Sharma PD. 1978 Mycoflora of some pollen grains. Acta Botanica Brasilica 6, 165–168.
- Smith H, Wingfield MJ, Crous PW, Coutinho TA. 1996 Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62, 86–88.
- Stamatakis A. 2006 RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690.
- Vidal P, Valmaseda M, Vinuesa MA, Guarro J. 2002 Two new species of *Chrysosporium*. Studies in Mycology (47), 199–209.
- Vidal P, Vinuesa MA, Sánchez-Puelles JM, Guarro J. 2000 Phylogeny of the anamorphic genus *Chrysosporium* and related taxa based on rDNA internal transcribed spacer sequences. Revista Iberoamericana de Micología 17, 22–29.
- Wang M, Tan XM, Liu F, Cai L. 2018 Eight new Arthrinium species from China. MycoKeys 34, 1–24.
- White TJ, Bruns T, Lee S, Taylor J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: A guide to methods and applications. New York, NY: Academic Press. p. 315–322.
- Zhang Y, Liu F, Wu W, Cai L. 2015 A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera *Acrophialophora* and *Taifanglania*. Mycologia 107, 768–779.
- Zhang YW, Chen WH, Zeng GP, Wang YR et al. 2016 Two new *Chrysosporium* (Onygenaceae, Onygenales) from China. Phytotaxa 270(3), 210–216.

Supplementary files:

ISI	•
LOU	

rograna_cangshanensis_HKAS_83978	1001											
11665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	10	20	30		50		70		90	10
programa_cangshanensis_HKAS_83978 10600 10 00 00 00 00 00 00 00 00 00 00 00 0	Nigrograna_cangshanensis_HKAS_83978 .C11685	tttgaaat	1 9 9 1 9 9 C	Caggg taggg	gagtigtaati gagtigtaati	g lagaggg g lagaggg	9 1119919 9 1119919			ggaa agg ggaa agg	ga g a aga ga g a aga	999 999
Torgrana_cangshanensis_HKAS_83978 Image of a many of a m		- 100	110	120	130		150	160	170	180	190	20
rograna_cangshanensis_HKAS_83978 analog analog and an galage gala	Nigrograna_cangshanensis_HKAS_83978 LC11685	tgagaat tgagaat	g a g g	gg ga ag gg ga ag	ta gigi	aaag aaag	ga gag ga gag	9 a g t t g t t t g 9 a g t t g t t t g	ggaalg ag ggaalg ag	laaalggg laaalggg	agg <mark>taaatti</mark> agg <mark>taaatti</mark>	
rograna_cangshanensis_HKAS_83978 analog analog and an galage gala	7	200	210	220	230	240	250	260	270	280	290	30
rograna_cangshanensis_HKAS_83978 analogo and construction of the second	Ngrograna_cangshanensis_HKAS_83978 .C11685			agaga ga agaga ga	anag gaaaa aggaaaa	g tagag tgat g tagag tgat	gaaaga ga	aaaga <mark>II</mark> aaaga II	ggaaagagag			9 9 9 1 9 9 9 1
		300	310	320	330	340	350	360	370	380	390	40
rograna_cangshanensis_HKAS_83978 ga na aqaa ta canga ga ta aqagaga ga g	Nigrograna_cangshanensis_HKAS_83978 .C11685			a aga <mark>b</mark> a	g tgcagttg g tgtagtg	8 99 8 90	at ga d tc ga d	ggiga i i	t glagg agg a agg agg	ag a ag a	ag <mark>ti</mark> tggg g as <mark>ti</mark> cggg g	g ag g ag
11685 0 a a a q a 1 transformed a construction of a cons		400	410	420	430	440	450	460	470	480	490	50
rograna_cangshanensis_HKAS_83978 g 0 ea 00 0 ee 0 0 0 ee 0 0 0 0 ea 0 ea	Nigrograna_cangshanensis_HKAS_83978 .C11685	ga aaaga ga aaaga	tcarea ctarea	gtat a gtat t	tt gggatga tt gggatga		gagg gtaa gagg gtaa	gtag ag gtag ag	1998119899 1998119899	g g a g g a	lg laggal Ig laggal	
* 600 610 620 630 640 650 660 670 680 690 7 rograna_cangshanensis_HKAS_83978 000000000000000000000000000000000000	3		510	520	530	540	550	560		580		60
▼]700 710 720 rograna_cangshanensis_HKAS_83978 0 9 00 aa taggg gaa gaa	Nigrograna_cangshanensis_HKAS_83978 .C11685	g graarg g graarg	g t g laag g t g laag	99 9 99 9	gaaa a gga gaaa a gga	aaggag aaggag		g gag g g gag g	lgggigiaaag lgggigiaaag	999 9 999 9	g aa gaaag g aa gaaag	gaa gaa
▼]700 710 720 rograna_cangshanensis_HKAS_83978 0 9 00 aa taggg gaa gaa		600	610	620	630	640	650	660	670	680	690	70
rograna_cangshanensis_HKAS_83978 8 9 9 9 0 a 8 9 9 9 0 a 8 9 9 0 a 8 9 9 0 0 a 8 9 9 0 0 a 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nigrograna_cangshanensis_HKAS_83978 LC11685	ggagg g ggagg g	ggaa ti ggaa	a ggg g a a ggg g a	a ga ga a ga ga	ga gi ga gi	ggalgg ggalgg	a <mark>iiiig</mark> ag <mark>i</mark> aa aiiigagiaa	gag a ag g gag a ag g	ggga ggga	gaaaga gg gaaaga gg	gaa gaa
11885 a g t gaa aggg gaag a												
	LC11685	16 g g	aatagggtg	aag a								

ITS:

115.										
Nigrograna_cangshanensis_HKAS_83978 LC11685	3 gct at	10 gggataga	20 a ga	30 gaga		50 99 999 99 999		70 gg gga aa t gg gga ag ci	80 aaa aaaa	90 10 gtaatag agta gcaatag agta
Nigrograna_cangshanensis_HKAS_83978 LC11685	100	110 ag aaaaa ag aaaaaa			140 aa gga aa gga		160 gargaa gargaa	170 gaa g ag ga gaa g ag ga	180 aa g ga aa aa g ga aa	190 20 9 89 9 988 9 9 89 9 988 9
Nigrograna_cangshanensis_HKAS_83978 LC11685				230 gaa g a a gaa g a a		250 99 8 9	260 999 a 9	270 '		
	1300	310	320 '	330 g ggcgga g ggcgga	340		360 99 a 9	370 99 4 89 9	380 ag a aa g ag a aa g	390 40 9 99 9
	400	410	420 agaag t agaag c	43 ct						
TEF1-a:										
Nigrograna_cangshanensis_HKAS_83978 LC11685				30 ga ggag ga ggag	40 a 9	50 9 a a 9 a a		70 ga ag at ga ag at		90 10 aa aagargga a aa aagargga a
Nigrograna_cangshanensis_HKAS_83978 LC11685		110 gggag gag gggag gag		130 aggaga a aggaga a	140 aaggaga aaggaga		160 aagaagg aagaagg	170 gga acaa gga ataa	180 aagca g aagac g	190 20
Nigrograna_cangshanensis_HKAS_83978 LC11685	200	210 99 aa 99 aa	220 gggga aa a gggga aa a	230 ga gagt ga gagt	240 tc aa ca aa	250 ' g a g a g c g a	260 aaggg g aaggg g	270 ggagaaggaga ggagaaggaga	280 aaga aa aaga aa	290 30 9 a togaag 9 a cogaag
Nigrograna_cangshanensis_HKAS_83978 LC11685		310 gagg a gagg a	320 gaga gaga	330 ga a t ga a c	340 ag g	350 ga aag ga aag	360	370 c agga	380 g g a aag g g a aag	
Nigrograna_cangshanensis_HKAS_83978 LC11685	400 ' 99 a 99	410 ' ag gg ag gg	420 9 9 9 9 0	430 a cog g ta a tog g ca	440 aagg gg aagg gg	450 a gg g a a gg g a	460 '	470 10 00 0 0 00 0	480 a a gaag a a gaag	
Nigrograna_cangshanensis_HKAS_83978 LC11685	500 aga g a	510 a gag ag a gag ag	520 g gacg g gatg	530 9990 ag	540 gg ga aa gg ga aa	550 9 990 aa 9 991 aa	560 g aagaa g aagaa	570	580 aggaaa g	590 60 c 9 99 88 9
	1600	610 a aagaa aagaa	620 9a a 9a a	630 taagggc g g aaaggga g	640 aa ag	650 9 899 9 899	660 9	670 10 0 99	680 899 99 9 899 99 9	690 9

Figure S1 – Sequence alignments of Nigrograna locuta-pollinis and N. cangshanensis

Table S1 Strains used in this study.

Figs	Spacing	Strain number ¹	Host	GenBank	accessions	²				
Figs	Species	Strain number	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
Fig. 2	Arthrinium	CBS 114316	Leaf of Hordeum vulgare	KF1448	KF1449	KF1450				
r 1g. 2	arundinis	CDS 114510	Leaf of <i>Hordeum vulgure</i>	84	74	16				
		CBS 124788	Living leaves of Fagus	KF1448	KF1449	KF1450				
		CDS 124700	sylvatica	85	75	17				
	A. aureum	CBS 244.83*	Air	AB2202	KF1449	KF1450				
	A. uureum	CDS 244.05	All	51	81	23				
	A. bambusae	LC7106 =	Leaf of bamboo	KY4947	KY7051	KY8062				
	A. bumbusue	WM340	Leaf of ballboo	18	86	04				
		LC7113 =	Leaf of bamboo	KY4947	KY7051	KY8062				
		WM347	Leaf of ballboo	20	88	05				
		LC7128 =	Leaf of bamboo	KY4947	KY7051	KY7051				
		WM362	Leaf of ballboo	30	98	26				
	A. camelliae-	LC5007	Camellia sinensis	KY4947	KY7051	KY7051				
	sinensis		Camettia strensis	04	73	03				
		LC8181 =	Brassica capestris	KY4947	KY7052	KY7051				
		LF1498	Brassica capesiris	61	29	57				
	1 dichotomanthi	LC4950	Dichotomanthus	KY4946	KY7051	KY7050				
	A. alcholomanini	LC4950	tristaniaecarpa	97	67	96				
		LC8175	Dichotomanthus	KY4947	KY7052	KY7051				
		LC0175	tristaniaecarpa	55	23	51				
		LC8176	Dichotomanthus	KY4947	KY7052	KY7051				
		LC0170	tristaniaecarpa	56	24	52				
	1 aunhorbiae	IMI 285638b	Unknown	AB2202	AB2202					
	A. euphorbiae	1111 2050500	Chikhowh	41	88	-				
	A. camelliae- sinensis A. dichotomanthu A. euphorbiae A. guizhouense A. gutiae A. hispanicum	LC5318	Air	KY4947	KY7051	KY7051				
	A. guiznouense	LCJ516	All	08	77	07				
		LC5322	Air	KY4947	KY7051	KY7051				
		LCJJ22	Аш	09	78	08				
	A gutiga	CBS 125825	Cut of a grasshopper	KR0113	KR0113	KR0113				
	л. gunue	gutiae CBS 135835 Gut of a grasshopper				51				
	1 hispaniaum	IMI 326877*	Maritime sand	AB2202	AB2202					
	A. mspanicum	1111 320077	Mariume Sanu	42	89	-				

Fier		Studio1		GenBank	accessions	2				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
	1 Indai	CBS 114990*	Culms of Bambusa tuldoides	KF1448	KF1449	KF1450				
	A. hydei	CDS 114990*	Cullins of Bambusa Iulaolaes	90	82	24				
		LC7103 =	Leaf of bamboo	KY4947	KY7051	KY7051				
		WM337	Lear of balliboo	15	83	14				
		LC7105 =	Leaf of bamboo	KY4947	KY7051	KY7051				
		WM339	Lear of balliboo	17	85	16				
	A. hyphopodii	MFLUCC 15-	Culms of Bambusa tuldoides	KR0691						
	А. пурнороши	0003*	Cullis of Bambusa fundoides	10	-	-				
	A. japonicum	IFO 30500	Unknown	AB2202	AB2203					
	А. јирописит	II O 30300	Clikilowii	62	09	-				
		IFO 31098	Unknown	AB2202	AB2203	_				
		n O 51070	Chikhowh	64	11	_				
	A. jatrophae	MMI00052*	Healthy petiole of Jatropha	JQ2463	_	_				
	n. junophuc	10110100032	podagrica	55						
	A. jiangxiense	LC2831	Leaf of bamboo	KY4946	KY8062	KY7050				
	11. jungsiense	LC2051		86	01	85				
		LC4494	Phyllostachys sp.	KY4946	KY7051	KY7050				
		Lettyt	Thyloslachys sp.	90	60	89				
		LC4577	Maesa sp.	KY4946	KY7051	KY7050				
			maesa sp.	93	63	92				
		LC5015	Imperata cylindrica	KY4947	KY7051	KY7051				
		200010		05	74	04				
	A. kogelbergense	CBS 113333*	Dead culms of Restionaceae	KF1448	KF1449	KF1450				
	8 8			92	84	26				
	A. locuta-	LC11683 =	Hive-stored pollen of	MF9395	MF9396	MF9396				
	pollinis	LF1844*	Brassica campestris	95	22	16				
		LC11688 =	Hive-stored pollen of <i>B</i> .	MF9395	MF9396	MF9396				
		LF2064	campestris	97	23	18				
		LC11689 =	Hive-stored pollen of <i>B</i> .	MF9395	MF9396	MF9396				
		LF2065	campestris	96	24	17				
	A. longistromum	MFLUCC 11-	Decaying bamboo culms	KU9401	-	-				
	0	0481*	, , , , , , , , , , , , , , , , , , , ,	41						

F !	C	Stars to a second 1	II4	GenBank	accessions	²				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
		MFLUCC 11- 0479	Decaying bamboo culms	KU9401 42	-	-				
	A. malaysianum	CBS 102053*	<i>Macaranga hullettii</i> stem colonised by ants	KF1448 96	KF1449 88	KF1450 30				
	A. marii	CBS 497.90*	Air	AB2202 52	KF1449 93	KF1450 35				
	A. mediterranei	IMI 326875*	Air	AB2202 43	AB2202 90	-				
	A. mytilomorphum	DAOM 214595	Dead blades of Andropogon	KY4946 85	-	-				
	A. obovatum	LC4940	Lithocarpus sp.	KY4946 96	KY7051 66	KY7050 95				
		LC8178	Lithocarpus sp.	KY4947 58	KY7052 26	KY7051 54				
		LC8177	Lithocarpus sp.	KY4947 57	KY7052 25	KY7051 53				
	A. ovatum	CBS 115042*	Arundinaria hindsii	KF1449 03	KF1449 95	KF1450 37				
	A. phaeospermum	CBS 114314	Leaf of Hordeum vulgare	KF1449 04	KF1449 96	KF1450 38				
	phacesperman	CBS 114315	Leaf of Hordeum vulgare	KF1449 05	KF1449 97	KF1450 39				
		CBS 114317	Leaf of Hordeum vulgare	KF1449 06	KF1449 98	KF1450 40				
		CBS 114318	Leaf of Hordeum vulgare	KF1449 07	KF1449 99	KF1450 41				
	A. phragmites	CPC 18900*	Culms of Phragmites australis	KF1449 09	KF1450 01	KF1450 43				
	A. pseudosinense	CPC 21546*	Leaf of bamboo	KF1449 10	-	KF1450 44				
	A. pseudoparenchy maticum	LC7234 = WM468	Leaf of bamboo	KY4947 43	KY7052 11	KY7051 39				

D !	<u> </u>	G4		GenBank	accessions	2 ²				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
		LC8174	Leaf of bamboo	KY4947 54	KY7052 22	KY7051 50				
		LC8173	Leaf of bamboo	KY4947 53	KY7052 21	KY7051 49				
	A. pseudospegazzini i	CBS 102052*	<i>Macaranga hullettii</i> stem colonised by ants	KF1449 11	KF1450 02	KF1450 45				
	A. pterospermum	CPC 20193*	Leaf lesion of <i>Machaerina</i> sinclairii	KF1449 13	KF1450 04	KF1450 46				
	A. puccinioides	CBS 549.86	Leaf of <i>Lepidosperma</i> gladiatum	AB2202 53	AB2203 00	-				
	A. rasikravindrii	CBS 337.61	Cissus	KF1449 14	-	-				
		LC8180 = LF1684	Bee bread	KY4947 60	KY7052 28	KY7051 56				
		LC8179 = LF1737	Bee bread	KY4947 59	KY7052 27	KY7051 55				
		LC7119 = WM353	Leaf of bamboo	KY4947 24	KY7051 92	KY7051 21				
		LC7142 = WM376	Leaf of bamboo	KY4947 35	KY7052 03	KY7051 31				
		NFCCI 2144*	Soil	JF32645 4.2	-	-				
	A. sacchari	CBS 212.30	Phragmites australis	KF1449 16	KF1450 05	KF1450 47				
		CBS 301.49	Bamboo	KF1449 17	KF1450 06	KF1450 48				
	A. saccharicola	CBS 191.73	Air	KF1449 20	KF1450 09	KF1450 51				
		CBS 334.86	Dead culms of <i>Phragmites</i> australis	AB2202 57	KF1450 10	KF1450 52				
		CBS 463.83	Dead culms of <i>Phragmites</i> australis	KF1449 21	KF1450 11	KF1450 53				

E taa	Smaailaa	Standar manual 1	Heat	GenBank	accessions	2				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
	A. serenense	IMI 326869*		AB2202	AB2202	_				
	A. serenense			50	97	-				
	A. subglobosum	MFLUCC 11- 0397*	Dead bamboo culms	KR0691 12	-	-				
	A. subroseum	LC7215 = WM449	Leaf of bamboo	KY4947 40	KY7052 08	KY7051 36				
		LC7291 = WM525	Leaf of bamboo	KY4947 51	KY7052 19	KY7051 47				
		LC7292 = WM526	Leaf of bamboo	KY4947 52	KY7052 20	KY7051 48				
	A. thailandicum	MFLUCC 15- 0202*	Dead bamboo culms	KU9401 45	-	-				
		LC5630	Rotten wood	KY4947 14	KY8062 00	KY7051 13				
	A. urticae	IMI 326344	Unknown	AB2202 45	AB2202 92	-				
	A. xenocordella	CBS 478.86*	Soil from roadwa	KF1449 25	KF1450 13	KF1450 55				
		LC3486	Camellia sinensis	KY4946 87	KY7051 58	KY7050 86				
	A. yunnanum	MFLUCC 15- 0002*	Decaying bamboo culms	KU9401 47	-	-				
	Nigrospora gorlenkoana	CBS 480.73	Vitis vinifera	KX9861 09	KY0194 56	KY0194 20				
Fig. 3	Aphanoascus arxii	CBS 466.88	Soil	AJ3158 43						
	A. canadensis	UAMH 4574		AJ4394 35						
	A. clathratus	IMI 329400*	Soil	AJ4394 36						
	A. cubensis	IMI 356789, FMR 4220*	Soil	AJ4394 32						

F: ~~	<u>S</u> maailar	Studio mumb 1	II.ast	GenBank	accession	\mathbf{s}^2				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
	A. foetidus	CBS 452.75*	Myomys daltoni	AJ4394 48						
	A. fulvescens	FMR 5652		AJ4394 37						
	A. hispanicus	IMI 335379		AJ4394 38						
	A. keratinophilus	IMI 319010*	Soil	AJ3903 80						
	A. mephitalis	IMI 151084	Dung	AJ4394 39						
	A. pinarensis	164FOKM502N PKJAP	Gallus gallus	AB8618 11						
		IMI 360509, FMR 4221*	Soil	AJ4394 33						
	A. punsolae	IMI 334818*	Soil	AJ4394 40						
	A. reticulisporus	IMI 336466	Soil	AJ4394 41						
	A. saturnoideus	CBS 628.88*	Soil	NR_0771	35					
		IMI 318416*	Soil	AJ4394 42						
	A. terreus	CBS 504.63	Soil	AJ4394 43						
	A. verrucosus	IMI 332261	Soil	AJ4394 44						
	Chrysosporium alvearium	LC11692 = LF2097 LC11693 = LF2098 LC11684 = LF1882*	Hive-stored pollen of <i>B.</i> <i>campestris</i> Hive-stored pollen of <i>B.</i> <i>campestris</i> Hive-stored pollen of <i>B.</i> <i>campestris</i>	MF9395 99 MF9396 00 MF9395 98	MF9396 26 MF9396 27 MF9396 25		MF9396 08 MF9396 09 MF9396 07	MF9395 81 MF9395 82 MF9395 80	i	MF9395 91 MF9395 90 MF9395 89
	C. articulatum	UAMH 4320		AJ0078 41						

Eler	Smaalag	64main	II.o.a4	GenBank	accessio	ns ²				
Figs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
	C. carmichaelii	CBS 643.79*		AJ0078						
	C. curmientaciti	CDD 045.77		42						
	C. europae	UAMH 4587		AJ0078						
	1			43						
	C. evolceanui	RV 26475		AJ0053 68						
				08 AJ1316						
	C. filiforme	CBS 187.82*	Pinus contorta var. latifolia	80						
				AJ0053						
	C. fluviale	FMR 6005		67						
	a		0.11	AJ0078						
	C. georgii	CBS 272.66*	Soil	44						
	C. guizhouense	EM14.2002*	Soil	KT9487						
	C. guiznouense	EIVI14.2002*	5011	65						
	C. hubeiense	EM66601*	Soil	KJ8492						
	C. hubelense	LIVIOUUUI	Soli	27						
	C. indicum	GZUIFR-3-4		HQ6859						
				65						
	C.	IFO 7584		AJ1316 81						
	keratinophilum			81 FJ39256						
	C. linfenense	GZUIFR-H31*	Soil	FJ39230						
				AJ1316						
	C. lobatum	CBS 666.78*	Apodemus	88						
		CDC 122000*	dermic lesion of Erpeton	HF5478						
	C. longisporum	CBS 133990*	tentaculatum	73						
	C. lucknowense	IMI 112798*	Soil	AJ1316						
	C. lucknowense	IIVII 112798 ¹		82						
	C. magnasporum	CBS 132551*	Catharacta skua Brunnich	HG3297						
	C. magnusporum		pellet	27						
	C. mephiticum	CBS 320.86*	Soil	AJ1316						
	· · r			83						

E:~~	Smaataa	Studin mumb 1	Hagt	GenBank	accessio	ns ²				
ligs	Species	Strain number ¹	Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL
	C. merdarium	CBS 408.72*	Dung	AJ3903 84						
	C. minutisporosum	IMI 379912		AJ1316 89						
	C. oceanitesii	CBS 132552*	Dead junvenile of <i>Oceanites</i> oceanicus	HG3297 29						
	C. pilosum	IMI 356294*	River sediment	AJ3903 85						
	C. pseudomerdariu m	CBS 631.79*	Beach sand	AJ3903 86						
	C. qinghaiense	GZUIFR-11*	Soil	JX8686 07						
	C. queenslandicum	IFM 51121	Soil	AB2192 28						
	C. sanyaense	GZUIFR- A10222M*	Rhizosphere Soil of palm	JQ8092 69						
	C. siglerae	UAMH 6541*	Soil	AJ1316 84						
	C. speluncarum	CCF 3761	Bat guano	AM949 569						
		CCF 3760*	Guano of Rhinolophus euryale	AM949 568						
	C. submersum	IMI 379911*	River sediment	AJ1316 86						
	C. sulfureum	CBS 634.79	Cheese rind	AJ3903 87						
	C. tropicum	UAMH 691		AJ1316 85						
	C. undulatum	IMI 375884*	Soil	AJ0078 45						
	C. vallenarense	CBS 627.83, ATCC 64421*	Keratinous substrate	AJ3903 89						

Table S	S1 (Conti	nued.
---------	------	-------	-------

T ²	Species	Strain number ¹ Host	Heat	GenBank accessions ²							
Figs			Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL	
	C. vespertilium	RV 27093		AJ0078 46							
	C. zonatum	IFM 51122	Soil	AB2192 29							
	Corynascus sepedonium	FMR 5593		AJ4394 47							
	Thermothelomyc es thermophila	H127-1	Soil	JX8686 06							
Fig. 4	Nigrograna cangshanensis	HKAS 83978*	Submerged wood	KY5110 63		KY5110 66	-	KY5110 64			
	N. fuscidula	CBS 141476	Dead branches of <i>Sambucus</i> nigra	KX6505 47		KX6505 22	KX6505 76	KX6505 47			
		CBS 141556*	Dead branches and twigs of <i>Sambucus nigra</i>	KX6505 50		KX6505 25	-	KX6505 50			
	N. locuta- pollinis	LC11685 = LF1889* LC11690 = LF2070	Hive-stored pollen of <i>B.</i> <i>campestris</i> Hive-stored pollen of <i>B.</i> <i>campestris</i>	MF9396 01 MF9396 02		MF9396 13 MF9396 14	MF9396 10 MF9396 11	MF9395 83 MF9395 84			
		LC11691 = LF2071	Hive-stored pollen of <i>B</i> . campestris	MF9396 03		MF9396 15	MF9396 12	MF9395 85			
	N. mackinnonii	CBS 110022	Man, mycetoma of patient	KF0156 53		KF4079 85	KF0157 04	GQ3876 14			
		CBS 674.75*	Man, black grain mycetoma	NR_1320	37	KF4079 86	KF0157 03	GQ3876 13			
		E9303e	Malvaviscus concinnus	JN5457 59		LN6266 73	LN6266 66	LN6266 81			
	N. mycophila	CBS 141478*	Twigs of Acer campestre	KX6505 53		KX6505 26	-	KX6505 53			
		MF6	Corylus avellana	KX6505 54		KX6505 27	-	KX6505 54			
		CBS 141483	Twigs of Acer pseudoplatanus	KX6505 55		KX6505 28	KX6505 77	KX6505 55			

	Species	Strain number ¹	TT 4	GenBank accessions ²							
Figs			Host	ITS	TUB	TEF	RPB2	28S	ACT	CAL	
	N. norvegica	CBS 141485*	Twig of Tilia platyphyllos	KX6505 56		-	KX6505 78	KX6505 56			
	N. obliqua	CBS 141475	Sambucus racemosa	KX6505 58		KX6505 30	KX6505 79	KX6505 58			
		CBS 141477*	Twigs of Salix caprea	KX6505 60		KX6505 31	KX6505 80	KX6505 60			
		MRP	Ribes uva-crispa	KX6505 61		KX6505 32	KX6505 81	KX6505 61			
	Occultibambusa fusispora	MFLUCC 11- 0127	Bamboo	KU9401 25		KU9401 95	KU9401 72	KU8631 14			
Fig. 5	Trichoderma afarasin	CBS 130742	Cola altissima trunk endophyte	FJ44225 9		FJ46340 0	FJ44277 8		FJ44246 8	FJ44231 2	
	-	CBS 130755*	Soil	AY0277 84		AF3480 93	-		FJ44253 6	FJ44238 8	
	T. afroharzianum	CBS 124620*	On basidioma of Moniliophthora roreri on fruit of Theobroma	FJ44226 5		FJ46330 1	FJ44269 1		-	FJ44237 0	
		CBS 124614	On basidioma of Moniliophthora roreri on fruit of Theobroma	FJ44223 3		FJ46329 8	FJ44270 9		-	FJ44237 2	
		IMI 393972	Soil	AY0277 81		AF3481 06	-		FJ44253 5	AF4428 82	
	T. aggressivum	CBS 100525	Mushroom compost	AF0576 00		AF3480 95	AF5455 41		FJ44243 3	AF4428 59	
	T. atrobrunneum	CBS 130440	Soil	FJ44227 3		FJ46336 0	FJ44272 4		FJ44249 2	FJ44232 9	
		CBS 130429	Decaying Pinus sylvestris	AF4439 26		AF4439 43	FJ44273 5		FJ44252 5	AF4428 86	
		CBS 548.92*	Decorticated wood of Fagus sp.	AF4439 24		AF4439 42	-		FJ44252 8	AF4428 83	
	T. camerunense	CBS 137272*	Soil	AY0277 80		AF3481 07	-		FJ44253 7	AF4428 75	

Б.	<u> </u>	Strain number ¹	Host	GenBank accessions ²							
Figs	Species			ITS	TUB	TEF	RPB2	28S	ACT	CAL	
		G.J.S. 99-231	Soil	AY0277		AF3481			FJ44253	AF4428	
		U.J.S. <i>33-231</i>	5011	83		08	-		8	74	
	T. endophyticum	CBS 130729*	Theobroma gileri trunk	FJ44224		FJ46331			FJ44244	FJ44229	
	1. endopnylicum	CDS 150729	endophyte	3		9	-		5	2	
		CBS 130730	Theobroma gileri trunk	FJ44224		FJ46331	FJ44272		FJ44244	FJ44229	
		CDS 150750	endophyte	2		4	1		6	3	
	T. guizhouense	DAOM 231435	Soil	EF1912		EF1913				FJ57772	
	1. guiznouense	DAOM 251455	5011	96		21	-		-	1	
		CBS 131803*	Soil	JN1913		JN2154	JQ9014				
		CDS 151805*	3011	11		84	00		-	-	
	T 1	CDS 226 05*	S - 11	AJ2227		AF3481	AF5455		FJ44256	AF4428	
	T. harzianum	CBS 226.95*	Soil	20		01	49		7	64	
		CBS 1304452 =		FJ44267		FJ46339	FJ44277		FJ44249	FJ44236	
		G.J.S. 04-71	Castanea sativa twig endophyte	3		6	9		4	9	
		CBS 130496 =	Ricinus communis stem	FJ44267		FJ46332	FJ44270		FJ44256	FJ44233	
		G.J.S. 05-107	endophyte	9		9	8		9	3	
	T 1	CDC 072 70*		FJ44268		AF3480	FJ44272		FJ44256	AF4428	
	T. inhamatum	CBS 273.78*	Soil	0		99	5		1	91	
		C I C 00 (07	G '1			KP1152					
		G.J.S. 09-697	Soil	-		72	-		-	-	
		CDC 120726	<i>Theobroma cacao</i> trunk	FJ44268		FJ85187	FJ44278		FJ44244	FJ44228	
	T. lentiforme	CBS 130726	endophyte	1		2	6		0	7	
		CDC 100540*	2	AF4691		AF4691			AF4691	AF4691	
		CBS 100542*	Decorticated wood	89		95	-		93	91	
		GD G 110000#	Decayed Ganoderma	AF4439		AF4439			FJ44253	AF4428	
	T. lixii	CBS 110080*	basidiocarp	20		38	-		3	72	
		G T G 11 105*	Hevea guianensis trunk	HQ0224		HQ0227			KP1152	KP1152	
	T. neotropicale	G.J.S. 11-185*	endophyte	07		71	-		68	79	
	<i>7</i> 1 11· · · 1	LC11682 =	Newly-collected pollen of <i>B</i> .	MF9395		MF9396	MF9396			MF9395	
	T. pollinicola	LF1542*	campestris	92		19	04		-	86	
		LC11686 =	Newly-collected pollen of <i>B</i> .	MF9395		MF9396	MF9396			MF9395	
		LF2050	campestris	93		20	05		-	87	

Figs	Species	Strain number ¹	Host	GenBank accessions ²							
				ITS	TUB	TEF	RPB2	28S	ACT	CAL	
		LC11687 = LF2051	Newly-collected pollen of <i>B</i> . campestris	MF9395 94		MF9396 21	MF9396 06		-	MF9395 88	
	T. pyramidale	CBS 135574*	Olea europaea	-		KJ6656 99	KJ6653 34		-	-	
		S119	Quercus pubescens	-		KJ6656 96	-		-	-	
	T. rifaii	CBS 130745	<i>Theobroma cacao</i> trunk endophyte	FJ44262 1		FJ46332 1	FJ44272 0		FJ44247 1	FJ44231 5	
	T. simmonsii	CBS 123765	Decaying bark	AF4439 18		AF4439 36	FJ44279 8		FJ44252 4	AF4428 70	
		CBS 130431*	Decaying bark	AF4439 17		AF4439 35	FJ44275 7		FJ44252 6	AF4428 69	

¹ ATCC: American Type Culture Collection, Manassas, VA, USA; CBS: Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; FMR: Facultat de Medicina i Ciències de la Salut, Reus, Spain; IFO: Institute for Fermentation, Osaka, Japan; IMI: Culture collection of CABI Europe UK Center, Egham, UK; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai Thailand; LC: working collection of Lei Cai, housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; UAMH: Centre for Global Microfungal Biodiversity, University of Toronto, Toronto, Canada; ² Sequences newly generated in this study are indicated in bold.