RECEIVED

APR 5 1988

COE KC DIST SUPERFUND BRANCH

COPY 1 OF

CONTAMINATION EVALUATION AT THE U.S. COAST GUARD STATION (FORMER ENGINEERS SCHOOL) FORT TOTTEN

• . .

FINAL ENGINEERING REPORT

CONTRACT DACW41-86-D-0112 PROJECT NO. C02NY005700

Prepared by:

Metcalf & Eddy, Inc. 10 Harvard Mill Square Wakefield, Massachusetts

Submitted to:

Department of the Army Kansas City District, Corps of Engineers 700 Federal Building Kansas City, Missouri

March 28, 1988

200.1e C02NY005701_01.09_0001

TABLE OF CONTENTS

.

<u>Page</u>

1.0	EXECUTIVE SUMMARY 1
2	1.1 Summary of Findings 1
2 0	
2.0	GENERAL
	2.1 Introduction
	2.2 Project Objectives 3
	2.3 Site Location and Physiography 3
	2.4 Ownership and Prior Use 7
	•
3.0	SITE INVESTIGATION 11
•••	3.1 Introduction
	3.2 Monitoring Well Installation 12
	3.2.1 Boring Operation 14
	3.2.2 Geologic Data 14
	3.2.3 Monitoring Well Construction
	3.2.4 Well Development 18
	3.2.5 Water Levels 19
	3.2.6 Hydraulic Conductivities
	3.3 Sampling Program 21
	3.3.1 Work Plans
	3.3.2 Sampling Locations
	3.3.3 Sampling Methods
	3.3.3.1 Groundwater Sampling
	3.3.3.2 Soil Sampling 29
	3.3.3.3 Wipe Tests 29
3.4	ANALYTICAL METHODS
	3.5 Quality Assurance 30
	3.5.1 Field Sampling and Measurements
	3.5.2 Laboratory Analysis, Systems and
	Performance Audit
	3.5.3 Quality Assurance
4.0	ELECTRO-MAGNETIC SURVEY 40
	4.1 Introduction 40
	4.2 Subsurface Conditions 41
	4.3 Method 41
	4.4 Results
	4.5 Conclusions
5.0	BUNKER (BUILDING #619) PENETRATION
••••	5.1 Introduction
	5.2 Method
	5.3 Results
~ ~	5.4 Conclusion
6.0	PRESENTATION OF RESULTS
	6.1 Analytical Results 47
	6.2 Water and Soil Standards and Criteria 47

TABLE OF CONTENTS (Continued)

<u>Page</u>

7.0	CONCL	USIONS AND RECOMMENDATIONS
	7.1	Introduction
	7.2	Results
	7.3	Conclusions
	7.4	Recommendations
8.0	REFER	ENCES
Арре	ndix A	Well Logs and Field Data
Appe	ndix B	Monitoring Well Completion Diagrams
Appe	ndix C	Well Survey Data RAI Analytical Data
Anne	ndiv D	PAT Analytical Data

•

Appendix D RAI Analytical Data Appendix E Quality Control Sample Results Appendix F New Jersey Soil Cleanup Approaches

LIST OF TABLES

~ .

.

.

<u>Tabl</u>	<u>e</u> <u>Pa</u>	<u>age</u>
3.1	Finished Well Specifications	17
3.2	Well Development Characteristics	18
3.3	Water Levels	19
3.4	Well Purging Data	29
3.5	Analytical Summary	31
6.1	Aqueous Sample Results	48
6.2	Soil Sample Results	49- 50
6.3	Sediment Sample Results	51
6.4	Wipe Sample Results	52
6.5	Water Criteria	53
6.6	Soil Criteria	54

LIST OF FIGURES

.

<u>Figu</u>	re Page
2.1	Map of General Vicintiy of Fort Totten 5
2.2	Base Map of Fort Totten, Coast Guard Property 6
3.1	Sampling Locations Map 13
3.2	Cross-Section of Wells 15
4.1	E.M. Survey 44

•

.

1.0 EXECUTIVE SUMMARY

A preliminary contamination evaluation has been conducted at the U.S. Coast Guard Station property at Fort Totten, Queens, NY. This evaluation was performed under the Department of Defense (DOD) Defense Environmental Restoration Program (DERP) to confirm or deny the presence of environmental contamination onsite. The methods by which this evaluation was performed are outlined in this report.

Contamination was found to exist on this site. The contaminants detected consist of lead and chromium in groundwater, mercury in soils and marine sediments, petroleum hydrocarbons in marine sediments, and pesticides (DDD, DDT, and DDE) in buildings #619 and #624. Lastly, there does not appear to be any buried ordnance and drums onsite, nor does there appear to be a sealed room in building #619.

DERP CONFIRMATION STUDY AT ENGINEERING SCHOOL, FORT TOTTEN DERA PROJECT #CO2NY005700

1.1 Summary of Findings

Groundwater, soil, sediment and building surface contamination has been encountered at concentrations which may require regulatory review for this location. The contamination is reasonably suspected to have resulted from activities which took place during the period of DOD control and therefore should be referred to the appropriate office or agency for determination of a future course of action.

2.0 GENERAL

2.1 Introduction

The Department of Defense (DOD) conducts maintenance and manufacturing operations at defense installations. To assess possible environmental contamination resulting from these activities at former DOD sites, the Defense Appropriation Act was adopted in 1984 and the Defense Environmental Restoration Program (DERP) was begun. Responsibility for the management of DERP was given to the Secretary of Defense to assure a consistent approach.

The Huntsville Division of the Army Corps of Engineers is responsible for the inventory phase of the investigation of former DOD sites. This phase entails the collection and chemical analysis of groundwater, surface water, sediments, and soil samples to assess possible environmental contamination. Results of these studies will be employed to compare, evaluate, and rank individual DOD sites.

This report describes the inventory phase investigation performed at the U.S. Coast Guard Station (previous DOD property) at the Fort Totten Engineers School in Queens, New York. Project objectives and background information are presented in Section 2. Details of the sampling program are described in Section 3. Results of an electromagnetic survey are included in Section 4. Bunker penetration in building #619 is described in Section 5. Summary of analytical results is presented in

Section 6. Conclusions and recommendations are discussed in Section 7. Well logs and field data are included in Appendix A, monitoring well completion diagrams in Appendix B, well surveying data in Appendix C, chemical analytical data in Appendix D, quality control sample results in Appendix E, and New Jersey soil cleanup approaches are presented in Appendix F.

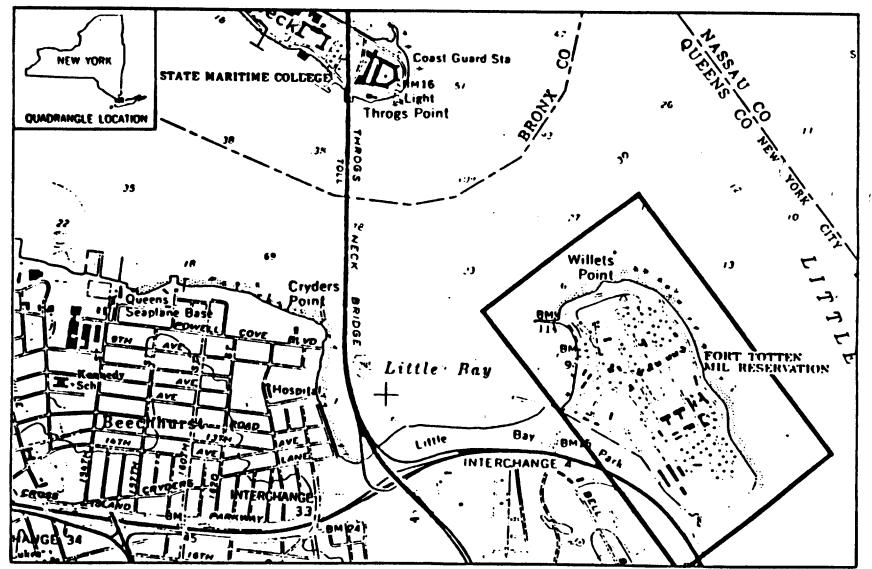
2.2 Project Objectives

The objectives of this investigation were to provide a preliminary determination of the presence or absence of chemical contamination which may have resulted from former DOD activities at this site and to determine the potential of contamination to local groundwater. To accomplish this objective, the following work was conducted:

- Site visit for collection of background information and establishment of preliminary monitoring well and sampling locations.
- 2. Installation of five groundwater, monitoring wells.
- 3. Collection and analysis of groundwater, soil, sediment samples, and wipe tests.
- 4. Performance of an electro-magnetic survey.
- 5. Coring into bunker #619 to determine its contents.
- 6. Evaluation of physical and analytical data to determine the absence or presence of contamination.

2.3 <u>Site Location and Physiography</u>

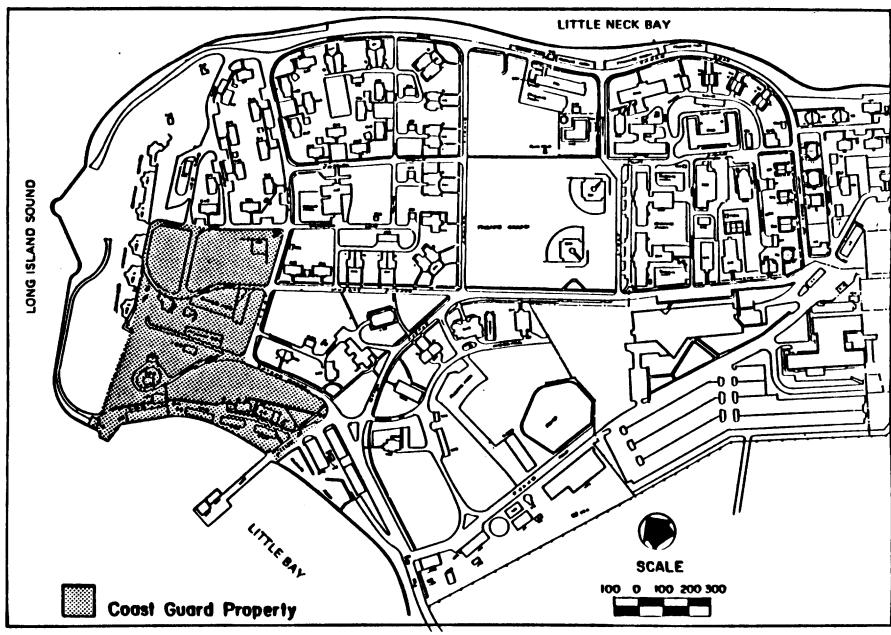
The U.S. Coast Guard Station at Fort Totten is located with the U.S. Army Engineers School on the Fort Totten military


installation. Fort Totten is approximately 20 miles east of New York City at the mouth of the East River in Queens, New York (north shore of Long Island) as shown in Figure 2.1. Access to Fort Totten is via the Cross Island Parkway to Bell Boulevard.

Fort Totten is a 147 acre site and has been owned and operated by the DOD since 1857 (at that time called Willets Point). From 1857 to 1944, Fort Totten was used by the U.S. Army for national defense and engineer training purposes. From 1944 to present, Fort Totten has been operated by various U.S. Army commands which includes a training center for U.S. Army reserves and engineers. Today Fort Totten still functions as a training center. However, the land which composes Fort Totten is now owned by several federal agencies along with the DOD.

The U.S. Army still owns and operates the largest tract of land on Fort Totten (92.4 acres). The General Services Administration now owns and operates 45 acres, and the Department of Transportation (DOT) owns 9.6 acres which is operated by the U.S. Coast Guard.

The U.S. Coast Guard operated property at Fort Totten (which is the target of this investigation) occupies the north-west portion of the peninsula and is bounded by U.S. Army property on the north, east and west as shown in Figure 2.2. Access to this property is gained via Willets Street which branches off of Totten Avenue.


This site contains fifteen buildings and a pier. Grassy lawns surround the station buildings in the southern half of the

.

SOURCE: U.S. COAST GUARD

· •

 $\hat{\mathbf{y}}$

FIGURE 2.2 BASE MAP OF FORT TOTTEN, COAST GUARD PROPERTY

SOURCE U.S. COAST GUARD

site and northernmost areas. The northwestern area is heavily overgrown and wooded. Most of the station buildings are grouped along an axis boarding the waterfront on the western boundary. These buildings consist of a station barracks and administration gallery, workshops, storage spaces, and several vacant buildings. A single structure which houses married Coast Guard personnel is situated in the western section of this site and a large frame building (sublet to a civilian organization) is positioned in the center. Lastly, three small out-buildings are located in the north-eastern section of this site. The site elevation ranges from 10 to 60 feet above mean sea level. 2.4 Ownership and Prior Use

Fort Totten has been used for military purposes since the French and Indian War. However, the land on which Fort Totten is built first came into public record in 1640, when it belonged to a farmer named Thomas. From 1829 to 1857, the land passed through the hands of many owners until purchased by the U.S. Government in 1857.

In 1857, Congress appropriated the funds to build a fortification on Willets Point (Fort Totten) and in 1862 construction of the fort was initiated. This fortification was part of what was then known as the "Third System" of seacoast fortifications which began during a period of peace in 1817. The Fort Totten fortification complex was built and designed to protect New York City from naval forces of the confederate states during the Civil War. At that time, the fortification was built

at sea level from massive granite stones which were brought in by barge from quarries in New York and Pennsylvania. Above the stone fort on top of the hill, powder and munition magazines were built. In 1864, construction of this fort was discontinued and the partially completed stone fort can still be seen today on the northern tip of Fort Totten facing Long Island Sound.

During the Civil War, Fort Totten was used as a training post for troops enroute to the front even though its gun batteries never fired in anger.

In 1864, a hospital was built on Fort Totten which treated sick and wounded patients until closed in 1865. During this time, the first permanent garrison for the fort was established. This garrison consisted of 350 men and officers which represented most of the Engineer Corps of the United States Army at the time. In 1868, the War Department established Fort Totten as an Engineering School and in 1869 another general hospital was established on the property. During this period, Fort Totten was the only military engineer depot in the United States and became the arsenal for all mining, sapping tools, school for submarine mining, arsenal for pontoon material, and a depot for all material pertaining to the system of torpedo defenses. Submarine mine defense systems, seacoast searchlights and seacoast mortar batteries were also developed at Fort Totten during this time.

During the Spanish American War, a second set of fortifications was constructed on the hill in back of the first

set of fortifications. The second fortification sat 80 feet above sea level and again was designed to defend against naval attack penetrating into Long Island Sound. At the same time, a skirmish line of torpedoes was laid from Fort Totten across the channel to Fort Schuyler which was located on Throggs Point. These torpedoes were designed to detonate by means of electric batteries located at each end of the line. In addition, two groups of submarine mines (22 per group) were positioned as antiship weapons to assist in the defense of New York City. These improved defenses were once again never used since an attack on New York never occurred.

On July 23, 1898, President McKinley ordered that the fort at Willets Point be named Fort Totten as it is called today. The fort was named in honor of Brigadier General Joseph G. Totten, Corps of Engineers, United States Army who designed and planned many of the improvements of the United States coastal defenses.

In 1903, the Engineering School moved to Washington D.C. and later to Fort Belvoir, Virginia where they remain today. At this time, the Coast Artillery took over Fort Totten.

During World War I, additional guns were added to the fortifications at Fort Totten and troops enroute to the front in Europe were concentrated here.

In 1922, the 62nd Coastal Artillery Regiment was stationed at Fort Totten. The 62nd Coastal Artillery Regiment was equipped with anti-aircraft artillery and later became the mother unit for the entire United States Anti-Aircraft defense system.

Between 1937-1942, many improvements were made at Fort Totten. This included remodeling of buildings, new roads and filling in marshland areas. These improvements made Fort Totten one of the most attractive army establishments in the United States at the time.

During World War II, Fort Totten became the headquarters for the Anti-Aircraft Artillery Command of the Eastern Defense Command. It was then charged with the defense against air attack for the entire east coast and in 1941, the first radar system used on the east coast was installed here.

The Army Anti-Aircraft command was deactivated in 1944 and Fort Totten then became the base for the North Atlantic Wing of the Air Transport Command. Aircraft under this command operated from LaGuardia Air Field. In 1945, Fort Totten became the headquarters for the entire Atlantic Division of the Air Transport Command and functioned under the Army Air Corps. until 1947 when Fort Totten was designated as an Army Medical Center. At that time, the old hospital was reconditioned, refurnished and named the Fort Totten General Hospital until closed in 1949. When the hospital closed, Fort Totten became the headquarters of the New York-New Jersey subarea of the army, and functioned as a training facility for the Organized Reserve Corps. and the National Guard in the New York-New Jersey area.

Since 1967, Fort Totten has been a sub-installation of Fort Hamilton, Brooklyn, New York and is still used today as an engineering training school for the army. However, the land

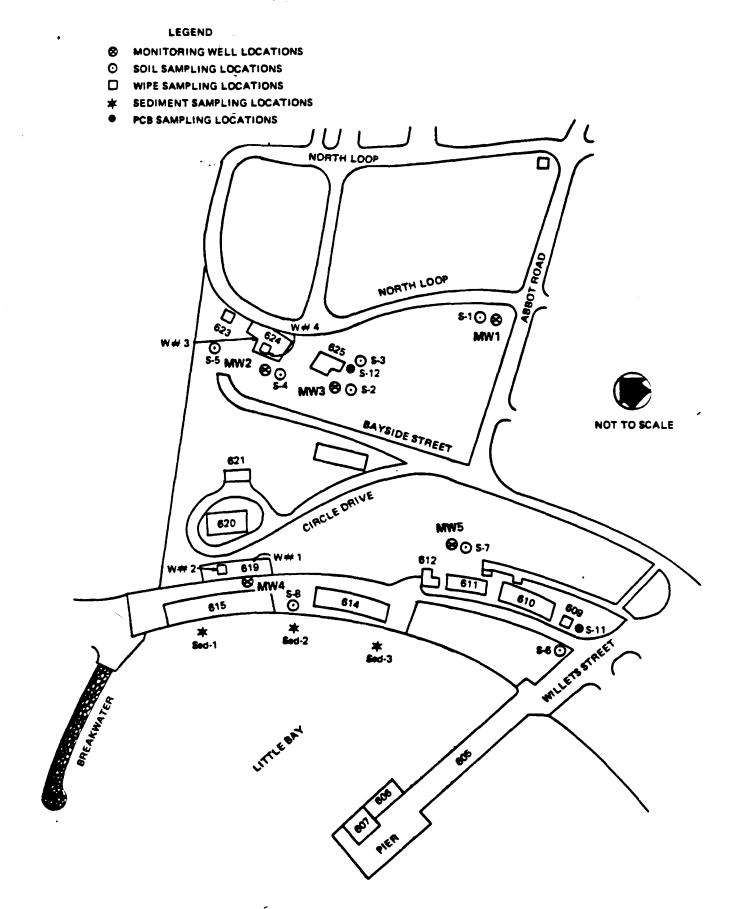
composing Fort Totten has been sub-divided for use by other U.S. Government agencies. The majority of Fort Totten (92.4 acres) is still owned and used by the U.S. Army. The remaining tracts of land are now in the possession of the U.S. Coast Guard (9.6 acres) and U.S. General Services Administration (45 acres).

The land (9.6 acres) which makes up the U.S. Coast Guard Station at Fort Totten is now being investigated under the Defense Environmental Restoration Program to determine if any environmental contamination exists on this property from past DOD activities.

At present, the U.S. Coast Guard operated property at Fort Totten is used as a small boat station for search and rescue activities, and tending aids to navigation.

3.0 SITE INVESTIGATION

3.1 <u>Introduction</u>


This site investigation was conducted to determine whether contamination exists at the U.S. Coast Guard Station at Fort Totten and whether this contamination appears to be related to past DOD activities at this site. A contamination evaluation, based on environmental samples collected at this site, has been performed in an effort to assess levels of any constituents found on site. The following subsections describe the methods employed to make this determination. Specific items discussed include drilling operations, geology, well construction and development procedures, and the sampling program.

M&E conducted a preliminary site visit prior to beginning any field activities. The preliminary site visit was conducted in order to collect existing information regarding the history of Fort Totten and to determine prospective sampling locations on the Coast Guard property at Fort Totten. The site visit was conducted on October 28, 1986. Well locations and sample locations were selected based on local geohydrology, known areas of past DOD industrial activities, and visual observations. Monitoring well/groundwater and soil sample locations are illustrated in Figure 3.1.

Surface soil samples were taken near suspected areas of hazardous materials handling operations. Groundwater monitoring wells were positioned near suspected areas of contaminant infiltration and migration to provide samples representative of groundwater beneath the site and groundwater flowing off the site. The wells were also positioned to gain a more accurate understanding of the groundwater flow direction beneath the site.

3.2 Monitoring Well Installation

Five shallow groundwater monitoring wells were installed at the U.S. Coast Guard Station in Fort Totten. All wells were installed and completed as outlined in the approved well Installation Plan of December 1986. The following sections briefly discuss the drilling procedures, geotechnical information, well installation, well development and testing for hydraulic conductivities.

FIGURE 3.1 SAMPLING LOCATIONS MAP

3.2.1. Boring Operation

Drilling at the Fort Totten site began June 2, 1987. A mobile CME 75 drill rig was used for the drilling program. The method employed 6 1/2 inch hollow stem augers which yielded an approximate hole diameter of 11 inches through the unconsolidated deposits.

The hollow stem auger method involved advancing 5 foot flights of hollow stem augers into the ground. As the augers were rotated into the overburden the wings on the augers carried the drill cuttings to the land surface. As cuttings arrived at the surface they were shoveled into a 55 gallon drum.

Two foot split spoon samples were continuously collected to a depth of 10 feet or to the top of the rock surface, whichever was encountered first.

The drill rig was steam cleaned according to the procedures and protocol outlined in the approved Well Installation Plan. All tools, flights of augers and accessories used for boring each hole were steam cleaned prior to commencing work on site and in between work on each of the boreholes. Split spoons were cleaned with live steam and a natural bristle brush.

3.2.2. Geologic Data

The unconsolidated deposits encountered during the drilling of the five holes (Figure 3.2) were similar in each of the holes. Generally, a thin surface layer of brown silty sand with

FIGURE 3-2. STRATIGRAPHIC CROSS-SECTIONS, FORT TOTTEN, NY

/ 愛聞字 JAL FEET ABOVE NGVD

occasional stones and organic matter overlay deposits of glacial till of Pleistocene age. The layer of unconsolidated deposits ranged from twelve to 33 feet thick. Most split spoons revealed samples composed of brown fine sands and silts with occasional pebbles and less commonly stones. Cinders were also encountered during drilling in samples taken from wells MW-2, MW-3, and MW-4. Laboratory tests performed on soil samples (water content, after boring limits, sieve analysis) in accordance with ASTM methods, confirmed field observations. Soils were chiefly made up of (SM) silty sands, poorly graded sand-silt mixtures and (ML) organic silts and very fine sands with slight plasticity. In accordance with task #6 (Scope of Work paragraph 3.4.1) bedrock, which was not encountered upon refusal, was not cored and therefore not analyzed in this report.

3.2.3. Monitoring Well Construction

Five monitoring wells were constructed on the U.S. Coast Guard property at the Fort Totten site in accordance with the well installation plan. All monitoring wells were constructed with approximately 10 feet of screen set below the water table. MW1, MW2, MW3, MW4, and MW5 extend to depths of 33 feet, 25 feet, 30 feet, 12 feet, and 25 feet respectively.

Each monitoring well was constructed with 2-inch, threaded flush joint, No. 10 (0.010 inch slot) PVC manufactured well screen; 2-inch PVC (schedule 80), threaded, flush joint, solid riser pipe, No. 1 silica sand, bentonite pellets, grout mixture,

steel protective coverings with locking cover (or for MW4, one road box cover) and concrete pads with steel protective posts. Well construction plans for each monitoring well are presented in Appendix B, and well survey data in Appendix C.

Drill holes were reamed and washed out with onsite potable water in cases where obstructions existed at depth. Monitoring wells were constructed by placing PVC screen and riser down the hole. Sand was slowly added to the hole and periodically checked to assure that no bridging occurred and that a proper interval of sand pack filled the annular space between the PVC screen and the borehole well. A minimum 2 foot bentonite seal was placed atop the sand pack and the remainder of the hole was filled with a grout mixture comprised of portland cement and bentonite powder. A 3 foot square concrete pad was constructed on the ground surface and a steal protective surface was emplaced on all wells with the exception of MW4 which was constructed flush with the land surface through the emplacement of a road box. Three quard posts were placed around each steel protective casing. Table 3.1 summarized the Characteristics of each well.

Well No.	Depth (ft)	Screen Length (ft)	Sand pack (ft)	Bentonite (ft)	Grout Layer (ft)
MW-1	33	10	13	2	18
MW-2	25	10	10	2	10
MW-3	30	10	13	2	15
MW-4	12	10	7	1	2
MW-5	25	10	8	2	11

TABLE 3.1 FINISHED WELL SPECIFICATIONS U.S. COAST GUARD STATION, FORT TOTTEN, QUEENS, NEW YORK

3.2.4. Well Development

All grout seals in the monitoring wells were allowed to cure a minimum of 48_hours prior to development. Monitoring wells were developed using teflon bailers. After a well was bailed dry, the well was allowed to recharge and bailed dry again. The purpose of the well development is to assure the removal of fine particles from the well, to assure a good hydraulic connection between the well screen, filter pack and formation, and to remove any contamination inadvertently introduced during the drilling process. Well development information is summarized in Table 3.2.

			TAI	BLE 3.	.2			
		WELL	DEVELOPME	NT CH	ARACTERI	STICS		
U.S.	COAST	GUARD	STATION,	FORT	TOTTEN,	QUEENS,	NEW	YORK

Well No.	Development Process	Approximate Volume Of Water Removed (gal)	Development Time (hrs)
MW-1	Bailer	30	4.0
MW-2	Bailer	45	4.5
MW-3	Bailer	45	4.0
MW-4	Bailer	25	4.0
MW-5	Bailer	100	4.0

The monitoring wells at the Fort Totten site were developed without incident. The depth and amount of recharge varied within each monitoring well. Therefore a variety of well volumes were required to develop each different well. The technique used to develop the wells removed silts from the screened section of the well and created a secure connection between the well screen, filter pack and fractured formation.

3.2.5. Water Levels

Water level measurements in each monitoring well were recorded after the completion of each well and prior to sampling. This information is presented in Table 3.3. Surveyed horizontal control positions and elevations of each monitoring well are present in Appendix C of this report.

Well No.	Land Surface **(NGVD)	*TOC (NGVD)	Water Level Below TOC (ft)	Water Elevation (NGVD)	Hydraulic Conductivity (ft/day)
MW-1	61.50	63.40	17.09	46.31	0.1
MW-2	58.90	61.06	16.99	44.07	0.3
MW-3	57.10	59.13	14.56	44.57	0.4
MW-4	12.15	11.87	5.54	6.28	0.5
MW-5	25.0	27.01	19.04	7.97	0.3

TABLE 3.3 WATER LEVELS U.S. COAST GUARD STATION, FORT TOTTEN, QUEENS, NEW YORK

* Top of Casing

****** NGVD = National Geodetic Vertical Datum

Water level elevations vary significantly with each location. Water elevations ranged between 46.31 feet and 6.28 feet above National Geodetic Vertical Datum (NGVD). Inferred groundwater gradients across the site, based on those elevations, indicate that groundwater flow is generally to the northwest downgradient toward Long Island Sound.

3.2.6. Hydraulic Conductivities

Slug and bail tests were conducted at all five monitoring well locations in accordance with the approved well installation plan. Slug and bail tests were conducted as follows: The initial water level was recorded. Both tests were initiated by inducing a sudden change in water level and measuring the response of the well. The change in water level was accomplished by introducing a known quantity of previously bailed well water (slugging the well) or removing (bailing the well) a known quantity of water with a bailer. Data were recorded using a water level tape. Data were analyzed using the Hvorslev method when the well screen remained submerged during testing. The modified Hvorslev method was used when data gathered from a well whose screen was not submerged throughout the test.

The hydraulic conductivity (K) values which are based specifically on slug test analysis are presented in Table 3.3. The rate at which the monitoring well responds depends upon the rate of recharge that occurs. This rate can vary by several orders of magnitude depending upon the characteristics of the formation in which each well is installed. Values for K (Table 3.3) range from 0.1 to 0.5 feet per day which is less than one order of magnitude of difference among the five wells. These values fall into the standard range of values given for glacial till deposits.

3.3 <u>Sampling Program</u>

The preliminary contamination evaluation conducted by Metcalf & Eddy included the sampling and analysis of the groundwater monitoring wells, soils, sediments, and wipe tests on the structures. The field sampling episode was conducted from July 18 - July 24, 1987. Sampling protocol and procedures were presented in project work plans submitted to the Army Corps of Engineers in April 1987.

The parameters chosen for analysis were outlined in the scope of work provided by the U.S. Army Corps of Engineers. The analyses selection reflect possible contamination expected resulting from past DOD activities, and includes the measurement of volatile compounds, petroleum hydrocarbons, selected metals, PCB, pesticides, pH, conductivity, and temperature.

3.3.1. Work Plans

After the site visit and prior to actual field work, work plans were developed to outline site investigation procedures. These work plans included:

- . Site Specific Health & Safety Plan
- . Site Specific Well Installation Plan
- . Site Specific Sampling Analysis and Quality Assurance Project Plan (S&A/QAPP)

COE approval of these work plans was obtained prior to commencement of well construction, sampling, electro-magnetic survey, and coring into the bunker (Bldg. #619). The field team adhered to procedures described in the above work plans.

The specific work plans were submitted to the COE as separate documents and have not been presented within this report. However, a summary of field techniques employed during the investigation has been included in Section 3.3.3. The analytical methodology is provided in the SA/QAPP and is summarized in Section 3.4. The analytical results of the QC samples have been evaluated and compared against the goals stated in the S&A/QAPP. A quality assurance summary for the project is included in 3.5.

3.3.2. Sampling Locations

The individual sampling locations were selected to assess particular areas of the site. Each location is briefly described to indicate the selection rationale. Sampling locations that are described which could not be sampled during this program are indicated as such. Sampling locations are illustrated in Figure 3.1 and are described as follows:

Monitoring Well MW-1

Monitoring Well MW-1 was installed in the eastern portion of the site at the corner of Abbot Road and North Loop. This well position was selected as an upgradient "background" monitoring point to determine groundwater quality prior to movement through the U.S. Coast Guard Station at Fort Totten. This well position is located on the sites highest elevation with surrounding vegetation consisting of grass and trees. It should also be

noted that a battery of gun mounts "Battery King" was decommissioned and buried below the recreation field just upgradient of MW-1.

Monitoring Well MW-2

Monitoring Well MW-2 was installed downgradient of building #624. This well position was selected to intercept potential groundwater contaminants which may have been released in and around this building. Past DOD activities performed in this area include vehicle repair, and electrical equipment maintenance. In addition, there is some evidence that the area behind building #624 was used as a solid waste "trash" dump.

Monitoring Well MW-3

Monitoring Well MW-3 was installed downgradient of building #625. This well position was selected to intercept potential groundwater contaminants which may have been released in and around this building. Past DOD activities performed in this area include fuel storage in above ground tanks. Dark colored fuel stains were observed on surface soils near this building during the site visit.

Monitoring Well MW-4

Monitoring Well MW-4 was installed downgradient of building #619 "bunker". This well position was selected to intercept potential groundwater contaminants which may have been

released in and around this building. In addition, this well location would also intercept any contaminant migration from building #624 and #625. Past DOD activities in and around building #619 may have resulted in the release of solvents, oils, pesticides, and mercury.

Monitoring Well MW-5

Monitoring Well MW-5 was installed in the vicinity of buildings #610, #611, and #612. This well location was selected to detect potential groundwater contaminants which may have been released in and around these buildings. In addition, this well location would also intercept any contaminant migration from buildings #624 and #625. The past DOD activities that took place at this location were primarily administrative in nature with some light industrial maintenance. However, this area is contiguous to the waterfront area where torpedoes, mines, and search lights were developed and maintained.

Soil Sample S-1

Soil Sample S-1 was collected in the eastern corner of the U.S. Coast Guard Station at Fort Totten near MW-1. This location was selected as an upgradient location to serve as a background sample.

Soil Sample S-2

Soil Sample S-2 was collected near MW-3 down slope from bldg. #625. This location was selected because of dark colored fuel stains (possibly paraffins) on surface soils which were observed during the site visit.

<u>Soil Sample 5-3</u>

Soil Sample S-3 was collected at the east corner of building 625 down slope of MW-2 in an area of past oil storage/use activities, and possible spills and leaks.

Soil Sample S-4

Soil Sample S-4 was collected near MW-2 located down slope of building #624. This location was selected due to past maintenance and repair activities which took place in this area.

Soil Sample S-5

Soil Sample S-5 was collected approximately 40 feet behind building #623. This sample location was selected due to suspected solid waste dumping "trash" in this area during past DOD activities.

<u>Soil Sample S-6</u>

Soil Sample S-6 was collected at the corner of Willets Street and the access road leading shoreside into the U.S. Coast Guard Station at Fort Totten. This location was selected to

detect potential contaminants down slope from buildings #609, #610, #611, and #612.

Soil Sample S-7

•.

Soil Sample S-7 was collected near MW-5. This location was selected to detect contaminants down slope of buildings #624 and #625, and to detect contaminants in the area of buildings #610, #611, and #612.

<u>Soil Sample S-8</u>

Soil Sample S-8 was collected approximately 30 feet down slope of building #619 "bunker" and in between buildings #615 and #614. This location was selected to detect potential contamination which may have been released from and around these buildings. This is also the area where past DOD industrial activity was the greatest.

Soil Sample S-11

Soil Sample S-11 was collected near building #609. This location was selected for PCB analysis because an electrical transformer station is and has been located there for some years.

Soil Sample S-12

Soil Sample S-12 was collected on the east corner of building #625. This location for a PCB sample was selected because of past oil storage activities and accidental spills or leaks which caused staining on surrounding soils.

Wipe Test W#1

Wipe Test W#1 were taken in the left room facing the bay in building #619. This location was selected because of past DOD storage activities of DDT in this room.

Wipe Test W#2

Wipe Test W#2 was taken in the right room facing the bay in building #619. This location was selected because of past DOD storage activities of DDT in this room.

Wipe Test W#3

Wipe test W#3 was taken in the right room facing the bay in building #624. This location was selected because of potential past DOD storage activities of DDT in this room.

Wipe Test W#4

Wipe test W#4 was taken in the left room facing the bay in building #624. This location was selected because of potential past DOD storage activities of DDT in this room.

Sediment Samples (Sed-1, Sed-2, & Sed-3)

Three sediment samples were collected in the bay along the seawall at the U.S. Coast Guard Station. The three samples were taken at 100 foot intervals between the pier and the back of building #615. The samples were collected at a depth of 6 inches. These locations were selected to detect potential

contaminant

containment run-off from shore which might have occurred during past DOD activities.

3.3.3. <u>Sampling Methods</u>

•.

Detained sampling and analytical procedures are provided in the S&A/QAPP. Brief summaries of methodology are presented in the following section and include methods for groundwater, soil, and wipe tests.

3.3.3.1. Groundwater Sampling

At least 5 well casing volumes were removed from each monitoring well prior to groundwater sampling. This was necessary to assure that the samples collected were representative of the water quality in the aquifer. Table 3.4 presents well purging data. Sampling of the five monitoring wells involved the following steps:

- . measurement of static water level
- . purging out 5 well casing volumes
- . allow groundwater to recover to static level
- . collection of sample

A teflon bailer was employed for well purging and sample recovery.

	SWL (feet)	WELL VOLUME (gallons)	VOLUME PURGED (gallons)	WELL VOLUME PURGED
MW-1	14.70	2.40	12.00	5
MW-2	18.35	1.25	6.25	5
MW-3	16.09	2.45	12.30	5
MW-4	10.85	0.758	3.79	5
MW-5	19.75	0.905	4.60	5

TABLE 3.4 WELL PURGING DATA

SWL = Standing water level to top of casing

3.3.3.2. Soil Sampling

Soil samples were collected at 10 locations throughout the site. A hand-driven soil auger was employed to collect each soil sample from a depth of approximately 6 inches. Samples were scooped with a stainless steel spoon into a pyrex bowl and homogenized prior to aliquotting into sample containers. Volatile Organic compound samples were collected prior to homogenization to minimize loss of volatile components.

3.3.3.3. Wipe Tests

Wipe tests were collected at four locations by wiping a 2" x 2" hexane rinsed gauze pad over a 9" x 9" area on each floor area tested. The gauze pad was handled with forceps. The wipe test sample "gauze pad" was then returned to its container "VOA Vial" for analysis.

3.4 Analytical Methods

The analytical methods employed to analyze samples are presented in detail in the S&A/QAPP. Table 3.5 summarizes the specific analytical methods used.

3.5 <u>Quality Assurance</u>

As required by the Fort Totten S&A/QAPP a quality assurance summary report was to be prepared upon the conclusion of all sample collection, analysis and data reduction activities. The purpose of such a report is to "summarize and present all pertinent quality control data and discuss the influence of quality assurance issues on the overall data quality." This report consists of the discussion and results provided in this section.

As applied to field measurements and laboratory analyses performed during this project, Quality Assurance is the demonstration and documentation of data quality. These procedures include the recording of all quality control activities undertaken by the field team, and the assessment of analytical performance of the subcontract laboratory through the analysis of internal and external control and audit samples.

3.5.1. Field Sampling and Measurements

All field sampling was in compliance with the S&A/QAPP; all field samples and QC samples were collected as planned; all wells were surveyed before sampling, proper decontamination procedures were utilized, field analytical parameters of conductivity, pH,

	-			n.,
Teetien	Sample	Sample	Parameters	EPA Method No.
Location	Date	No.	Falameters	Method No.
MW-1	7/22/87	2332-301	Volatile Organics	8240
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Extractable Organics	625
			Total Metals	200 Series
MW-2	7/22/87	2332-302,	Volatile Organics	8240
(triplicate)		2332-306,	Extractable Organics	625
		2332-307*	Total Metals	200 Series
MW-3	7/22/87	2332-303	Volatile Organics	8240
MN J	// 22/07		Extractable Organics	625
			Total Metals	200 Series
			IULAI MELAIS	200 501105
MW-4	7/22/87	2332-304	Volatile Organics	8240
	•		Extractable Organics	625
			Total Metals	200 Series
MW-5	7/23/87	2332-305	Volatile Organics	8240
MW-3	1/23/01	2332-303	Extractable Organics	625
			Total Metals	200 Series
			IOLAI MELAIS	200 Series
Well	7/22/87	2332-308,	Volàtile Organics	8240
Sample Blk	., ,	2332-309*	Extractable Organics	625
-			Total Metals	200 Series
•• - 7 7		2222 210	Valatila Organica	8240
Well		2332-310,	Volatile Organics	0240
Travel Blk		2332-311*		
Well Travel	7/23/87	2332-360,	Volatile Organics	8240
Blk #2	· / / - ·	2332-359*	-	
S-1	7/20/87	2332-320	Volatile Organics	8240
			Extractable Organics	8270
			Total Metals	7000 Series
S-2	7/20/87	2332-321	Volatile Organics	8240
	,,20,0,	even Jei	Extractable Organics	8270
			Total Metals	7000 Series
			Iotal Metalb	
S-3	7/20/87	2332-322,	Volatile Organics	8240
		2332-328,	Extractable Organics	8270
		2332-329*	Total Metals	7000 Series
~ .	7/20/07		Veletile Orresies	8240
S-4	7/20/87	2332-323	Volatile Organics	8240
			Extractable Organics	
			Total Metals	7000 Series

TABLE 3.5 ANALYTICAL SUMMARY

.

•••

-

.

Location	Sample Date	Sample No.	Parameters	EPA Method No.
S-5	7/20/87		Volatile Organics Extractable Organics Total Metals	8240 8270 7000 Series
S-6	7/20/87	2332-325	Volatile Organics Extractable Organics Total Metals	8240 8270 7000 Series
S-7	7/20/87	2332-326	Volatile Organics Extractable Organics Total Metals	8240 8270 7000 Series
S-8	7/20/87	2332-327	Volatile Organics Extractable Organics Total Metals	8240 8270 7000 Series
S-11	7/20/87	2332-330	PCBs	3540 & 80 80
S-12 (triplicate)	7/20/87	2332-331, 2332-358, *2332-332	PCBS	3540 & 80 80
Soil Sample Blank	7/20/87	2332-332, *2332-333	Volatile Organics Extractable Organics Total Metals	8240 8270 7000 Series
Soil Sample Blank #2	7/20/87	2332-337	PCBs	3540 & 80 80
Soil Travel Blank #1	7/20/87	2332-335, *2332-336	Volatile Organics	8240
Sed-1 (triplicate	7/21/87	2332-341, 2332-344, *2332-345	Volatile Organics Total Metals Petroleum Hydrocarbons	8240 7000 Series 503 A,D Std Methods
Sed-2	7/21/87	2332-342	Volatile Organics Total Metals Petroleum Hydrocarbons	8240 7000 Series 503 A,D Std Methods
Sed-3	7/21/87	2332-343	Volatile Organics Total Metals Petroleum Hydrocarbons	8240 7000 Series 503 A,D Std Methods

TABLE 3.5 (Continued) ANALYTICAL SUMMARY

Location	Sample Date	Sample No.	Parameters	EPA Method No.
Sediment Sample Blank	7/21/87	2332-346, *2332-347	Volatile Organics Total Metals Petroleum Hydrocarbons	8240 7000 Series 503 A,D Std Methods
Sediment Travel Blank	7/21/87	2332-348, *2332-349	Volatile Organics	8240
Wipe #1	7/21/87	2332-350 2332-354, *2332-355	DDT, DDE, DDD	608
Wipe #2	7/21/87	2332-351	DDT, DDE, DDD	608
Wipe #3	7/21/87	2332-352	DDT, DDE, DDD	608
Wipe #4	7/21/87	2332-353	DDT, DDE, DDD	608
Wipe Sample Blank	7/21/87	2332-356, 2332-357	DDT, DDE, DDD	608

TABLE 3.5 (Continued) ANALYTICAL SUMMARY

* Note these samples were sent to MRDED-L for QA and have not been included in this report.

and temperature were recorded as required, and chain of custody procedures including sample labeling were adhered to.

3.5.2. Metcalf & Eddy Laboratory Analysis, Systems and Performance Audit

An on-site laboratory systems audit would normally be performed by Metcalf & Eddy to assure that the subcontractor laboratory is capable of maintaining the necessary minimum levels of instrumentation and levels of experience of personnel, and that laboratory quality assurance/control procedures are in conformance with the requirements of the QAPP. However, since the Army Corps of Engineers, Missouri River Division Laboratory (MRD) decided to conduct a performance and system audit of Resource Analysts, Inc. (RAI) to validate their ability to perform work under this contract, Metcalf & Eddy did not schedule any additional audits. The independent performance audit conducted by the COE involved preparation and analysis of QA samples prepared by the Army COE Missouri River Division (MRD) Quality Assurance Laboratory. The purpose of those QA samples was to provide an independent determination of any problem areas in sample handling, analysis, and reporting by the subcontract laboratory. The program also provided data to document performance of the various measurement systems. Quality assurance samples were submitted as blind samples to RAI for comparison of results. The QA samples submitted had been selected by the MRD QA Laboratory to include analyses of duplicate standard pairs, low and high range standards, as well

as blanks. The QA samples were prepared in certified Organic free water, not actual site samples. The results of the MRD audit were not made available to M&E, only that MRD had approved RAI Laboratory to conduct the required analyses under this contract. The laboratory related quality control activities undertaken during the course of this project were designed to assure that measurement systems as well as activities specific to a given site evaluation were under control.

The ongoing laboratory related quality control activities consisted principally of the evaluation of data obtained from the following sample categories: (a) calibration standards, (b) working standards, (c) field samples, (d) laboratory duplicates, (e) laboratory spikes, (f) laboratory methods blanks, (g) trip blanks, (h) laboratory split samples. Procedures to be used to evaluate that data would include calculation of arithmetic means, standard deviations, relative percent differences for duplicate samples and comparison of differences between standards of spiked and experimentally determined values expressed as percent recovery. Identification and treatment of outliers was not appropriate as no marked deviations were noted in the data set. The information used to evaluate the laboratory quality control activities was to be obtained from the subcontract laboratory performing the analytical work. An assessment of the laboratory's compliance with stated objectives presented in the Fort Totten S&A/QAPP is summarized below.

Quality Assurance data are presented in tables F.1 through F.5 in Appendix E. The tables include results for field

duplicate analysis, laboratory sample spikes, laboratory replicates, laboratory sample spikes, surrogate Recoveries and laboratory control data.

All Field Duplicate Analysis with the exceptions of Chromium and Lead in MW-2, Silver and Cadmium in S-3, and Silver and Barium in Sed-3 were within QA objectives as presented in Table F.1. Laboratory Sample Spikes were within QA objectives with the exception of Selenium in MW-1, S-1, and S-7, Arsenic in S-7, and petroleum hydrocarbons in Sed-1 field duplicate, as presented in Table F.2. Laboratory replicates, as presented in Table F.3, were within QA objectives with the exception of Barium in MW-1. The Surrogate Standard Recoveries for volatile compounds as presented in Table F.4 were within the control range with the exception of D(4)-1-2-Dichloroethane in S-3, D8-Toluene in MW-2, MW-2 Field Duplicate, MW-3, MW-4, MW-5 Lab Replicate 2, Well Travel Blank, and Lab Controls D0027, and D0012. Surrogate Standard Recoveries for Extractable organics were within control ranges with the exception of 2-F1-Phenol in S-3 Field Duplicate, S-5, Blank A014 S-8, and S-8 Lab Duplicate, Nitrobenzene and 2-F1-Biphenyl in S-1, S-2, S-3, S-3 Field Duplicate, S-7, Blank A014, S-8, and S-8 Lab Duplicate, and Terphenyl-d14 in S-8 as described in Table F.5.

3.5.3 RAI Quality Assurance

<u>Wells</u>

Spike recovery was below control limits for selenium. Since both the calibration and verification and the laboratory control sample were well within control limits, this probably represents a matrix effect.

Silver recovery was low in the laboratory control sample, however, since spike recovery was well within control, the data was accepted for the series.

Silver, barium, cadmium and chromium for all samples and lead for "Well #4 2332-304", (our laboratory number 10465-12) were analyzed by method 7241 (Graphite Furnace Atomic Absorption Spectroscopy).

Surrogate recoveries for d_8 -toluene were consistently low for these samples. Some fell just below acceptance levels. This would not have effected the detection of toluene however. No toluene was found in the samples. Methylene chloride was found in an instruments blank at 11 ug/L. It was not found in the samples. One of the laboratory replicates had higher than normal recovery for methylene chloride. This elevated level is likely due to lab contamination. Matrix spike recoveries were acceptable.

BIS-2-ethylhexyl phthalate was found in the blank for semivolatiles at a level equivalent to 100 ug/L. Some samples contained this compound at similar levels. These values should be considered suspect. Matrix spike recoveries for the

semivolatiles ranged from 38 to 134% recovery. While some values were outside project limits, they fell within EPA CLP acceptance criteria.

<u>Soils</u>

•. _--

Spike recoveries were below control limits for arsenic in the soils samples and selenium in both the soil and water samples. Since both the calibration verification and the laboratory control sample were well within control limits, this probably represents a matrix effect.

Silver recovery was low in the laboratory control sample, however, since spike recoveries were well within control for both the soil samples and the water sample, the data was accepted for the series.

Silver, Barium, Cadmium, Chromium, and Lead were analyzed by Method 6010 (Inductively Coupled Argon Plasma Spectroscopy) ICP. No problems were encountered for Volatile Organics. No problems were encountered for Acid/Base Neutral Extractable Organic Compounds. No analytical problems were encountered for PCB's.

<u>Sediments</u>

Spike Recoveries were below contract limits for arsenic in the soil samples for the selenium in both the soil and water samples. Since both the calibration verification and the laboratory control sample were well within control limits, this probably represents a matrix effect.

Silver recovery was low in the laboratory control sample, however, since spike recoveries were well within control for both the soil samples and the water sample, the data was accepted for the series.

Silver, barium, cadmium, chromium, and lead were analyzed by method 6010 (Inductively Coupled Argon Plasma Spectoscopy). Lead was analyzed in the water sample "2332-346 FT Sed Sam Blk", (our laboratory number 10,430-13) by method 7421 (Graphite Furnace Atomic Absorption Spectroscopy).

Recoveries were low for the volatiles laboratory control sample. Methylene chloride was found in the water blank at 13 ppb but was not found in the samples. Toluene was found at 0.7 ug/g in the soil blank but was not found in the samples. The duplicate water matrix spikes showed higher than expected recoveries (113 to 171%). The detection of volatiles was not effected however, and no compounds were detected in the samples. Surrogate recoveries for all samples were acceptable except for BFB in 2332-346 FT Sed Blk which was 83% with an acceptance limit of 86%.

Matrix spike recovery for oil and grease was 156% and 60% for the two soils spiked. Inhomogeneity of the soils contributed to the error.

<u>Wipes</u>

Wipes were analyzed for pesticides by electron capture gas chromotograph and confirmed using Hall Detector. Interferences in the wipes may have been present and raised detected

quantities. These samples could not be subsampled for precision and occurance determination. Laboratory Control Sample results for pesticides were within CLP acceptance limits except for Endrin and DDT which showed 51 and 27% recovery. CLP criteria are 56 and 36% respectively. The calibration for DDT is updated with each calibration check sample to compensate for changing DDT breakdown characteristics. This is reflected in the reported concentration for DDT in the mid-range calibration QC data.

3.5.4 <u>Summary</u>

The above observations are minor in nature, thus the analytical sample data presented within this report is satisfactory and completely usable for the original purpose of this site characterization.

4.0 ELECTRO-MAGNETIC SURVEY

4.1 <u>Introduction</u>

An electro-magnetic (EM) survey was performed at the U.S. Coast Guard Station at Fort Totten on December 8-10, 1986. The purpose of this survey was to detect potential buried ordnance and drums, and to verify that groundwater monitoring wells could be installed safely without drilling into buried obstructions such as water lines, power lines, and communications lines.

The instrument employed in this survey was a GEONICS EM-31. This instrument is direct "continuous" reading in millisiemens per meter (ms/m). It has an effective exploration depth of about 6 meters and is composed of a self-contained

dipole transmitter and dipole receiver which operates on a 9.8 kHz frequency. The EM-31 is powered by alkaline "C" cell batteries and has conductivity ranges from 3 to 1,000 ms/m.

4.2 <u>Subsurface Conditions</u>

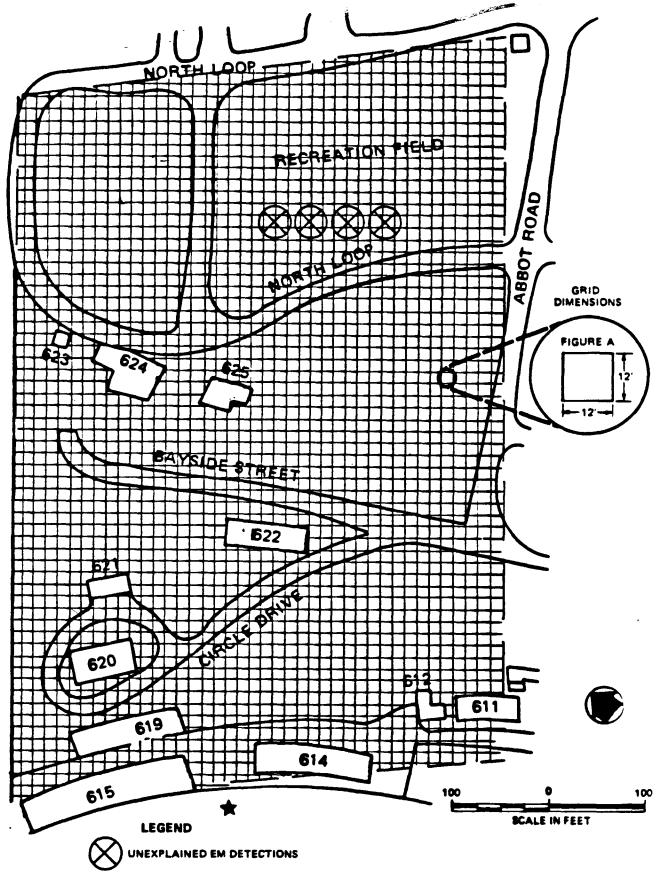
Prior to performing the EM survey, research at the Post Engineers Office at Fort Totten was conducted. This research consisted of obtaining all known drawings of underground utilities which included communications lines, potable water lines, fire fighting water lines, electrical service lines, storm drainage lines, and sewer lines. During this research, some utility drawings were obtained. However, it was learned that many drawings of underground utilities at Fort Totten were destroyed during a fire. It was also learned that the U.S. Coast Guard Station property at Fort Totten is a maze of abandoned underground cables which served the old gun emplacements and overall communications for the site. During the EM survey, some of these cables could be seen in various states of decay penetrating above the ground surface. Drawings of these abandoned cable positions were not available.

4.3 <u>Method</u>

The U.S. Coast Guard property at Fort Totten was mapped as a grid system prior to performing the EM survey. The grid consisted of 12' x 12' squares which were measured off in horizontal and vertical lines with cloth tapes. The horizontal and vertical lines were then walked while carrying the EM-31

which was set on 500 mv at a maximum detection range of 30 mmho/m. All readings at or above 30 mmho/m during the survey were marked with a wooden stake. Consistent readings in straight lines were verified with utility location drawings or assumed to be abandoned undocumented utility lines. Single non-consistent EM hits were marked and later re-surveyed in an attempt to establish a pattern.

4.4 <u>Results</u>


As expected, the EM-31 detected all known utilities as well as undocumented abandoned utilities. Many abandoned utility lines detected were discussed with personnel of the U.S. Coast Guard Station. Their local knowledge of this area verified the existence of these abandoned lines. U.S. Coast Guard personnel recalled unearthing many of these lines during station improvements and maintenance.

The only major EM hit which could not be explained was in the northeast area of the recreation field as shown in Figure 4.1. This area covers a buried fortification "Battery King" which might account for the unexplained EM hits. It was later learned that Battery King still contains the metal ring gun mounts, although the guns themselves were removed during the battery's demobilization. It was also learned that a minirailway system existed between Battery King and the underground bunker munitions storage facility on Fort Totten's northern tip. The railway was used to transport munitions to Battery King and may still exist in whole or in part. Metal pieces of this

railway would include axles, wheels, tracks, spikes, and rail car bodies.

4.5 <u>Conclusion</u>

The subsurface area below the U.S. Coast Guard Station at Fort Totten is a maze of utility lines and debris. This was ascertained from old and new site drawings, interviews with Coast Guard and Army personnel, visual observations, and EM survey results. Historically, ordnance has been unearthed along the waterfront of the U.S. Coast Guard Station and on U.S. Army property to the north. This was ascertained by interviews with U.S. Coast Guard and U.S. Army personnel. However, no buried ordnance or drums were found on the U.S. Coast Guard Station property by M&E or the present U.S. Coast Guard personnel at the station. In addition, the majority of the EM survey data resulted in continuous and consistent detections which are interpreted to as buried utilities. The exception to this is the northeast area of the recreation field as shown in Figure 4.1. This area contains magnetic anomolies which could be the remnants of a buried rail road system that serviced Battery King. It can not be concluded with certainty that buried ordnance or drums do not exist on this property without performing excavations. However, it is unlikely that buried ordnance and drums exist on the U.S. Coast Guard property. This is based on interviews with U.S. Coast Guard personnel presently assigned to Fort Totten, results from the existing EM survey data, drawings and past DOD activities that took place on this property.

METCALF & EDDY

5.0 BUNKER (BUILDING #619) PENETRATION

5.1 Introduction

The bunker (building #619) which stands at the east corner of the U.S. Coast Guard property at Fort Totten across from building #615 was thought to have a sealed room. This assumption was made due to the fact that approximately three-fourths of the structure has usable space and the remaining one-fourth (east corner) appears to be sealed with concrete aggregate. Concrete aggregate was also used to construct the entire bunker.

The bunker was constructed in the early 1900's. It was used first as a communications center and later as a storage area. DDT was once stored in this structure, but now it is used by the U.S. Coast Guard Station as a general equipment storage area.

5.2 Method

A 6-inch diameter diamond tip barrel coring devise powered by a 6 hp electric motor was used to core through the front outside wall and interior wall of the suspected room. During the coring, operators used supplied air breathing systems and continuously monitored the ambient air for Organic vapors, radiation, and explosive levels. Air monitoring was performed and supplied air was breathed in the event wall penetration resulted in a contaminant release.

The length of the coring barrel was 36 inches at full penetration. A 36-inch barrel was selected since the average thickness of the bunker wall in usable spaces was 18 inches.

5.3 <u>Results</u>

The coring barrel penetrated the front outside bunker wall to a depth of 36 inches without reaching an interior space. Coring was again performed on the inside bunker wall which was accessed through the interior space. During the coring of the interior wall, a 2-inch void was encountered at 16 inches of penetration. The coring barrel passed through the 2-inch void and continued coring into the next wall until a depth of 36 inches was achieved. At this depth no interior space was found to exist in the suspected room.

5.4 <u>Conclusion</u>

The east end of the bunker (building #619) does not appear to be a sealed room. This area of the bunker appears to be solid reinforced aggregate concrete. The matrix of the aggregate in the suspected room is identical to that of the usable rooms and walls. This probably means that all parts of the bunker were constructed at the same time and that a room was not later sealed In addition, construction of the bunker appears to be off. prefabricated. Walls were probably pre-formed in pieces and later assembled by a crane. This would account for the 2-inch void between the bunker interior wall and the suspected room. Lastly, the east corner faces Long Island Sound which would be where a potential attack would come from. It is, therefore, suspected that the east wall of the bunker was given extra strength as was the roof. Both the roof and the east bunker wall "suspected room" are constructed to a 7-foot thickness of reinforced concrete aggregate.

6.0 PRESENTATION OF RESULTS

This section contains a summary of sample analysis results and a presentation of groundwater standards and soil clean up criteria associated with the analytes measured. The analytical results are discussed and compared to the standards and criteria in Section 7 to determine the presence or absence of contamination at the site.

6.1 Analytical Results

Table 6.1 summarizes the monitoring well and other aqueous sample data. Soil sample data are presented in Table 6.2, sediment sample data are presented in Table 6.3 and Wipe sample data is presented in Table 6.4. Only analyte concentrations greater than detection limits were reported in Tables 6.1-6.4. The complete analytical results are presented in Appendix D.

6.2 Water and Soil Standards and Criteria

To present a basis for comparison of analyte concentrations measured to those acceptable or suggested for groundwater and soils, National Priority Drinking Water Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs) developed under the Safe Drinking Water Act, NY State groundwater standards, US soil background metal levels, NJ soil cleanup objectives and NJ surrogate or action levels of organics in soils have been presented in Tables 6.5 and 6.6.

The NJ objectives are presented to place the concentrations of metals and volatile organics detected in soil at the site into perspective, because no New York State Standards or criteria were

TABLE 6.1. AQUEOUS SAMPLES

-

.

				/							
				MV-1 2332-301	MN-2 2332-302	NV-3 2332-303	NU-4 2332-304	NN-5 2332-305	Semp Blk 2332-308	Trav Bik #1 2332-310	Trav Olk #2 2332-360
	Volatile Organic	8		ND	ND	ND	ND	ND	ND	ND _,	ND
	Semi-Volatile Or	genica								ł	
	Bis(2 ethylhexyl	phthalate)	ug/L	120	120	170	120	120	110	RA	NA
	Total Metals										•
25	Arsenic	88 AS	ug/L	<10	16	<10	<10	<10	<10	NA	NA
1000	Ber ium	es Ba	ug/L	200	230	<100	150	<100	<100	NA	MA
50	Chromium	as Cr	ug/L	31	97	32	72	<25	<10	NA	NA
25	Leed	es Pb	ug/L	7	30	7	330	4	4	NA	NA
4 8	FIELD MEASUREMEN	TS									
	patt.	pH units		6.6	6.4	7.5	6.5	5.6	100		
	conductivity	unhoe		430	210	470 '	790	210	-	1011	-
	temperature	C		14	14	13	17	14		909	1414

MA - Not analyzed for this parameter

1. J. 1

-

* units up/kg

•

Note: only analyte concentrations greater than detection limits have been reported

III = list measured

Samp Bik = Sample Blank

Trav Bik - Travel Blank

IID = Not detected

TABLE 6.2. SOIL SAMPLES

		8-1 2332-320 ug/kg*	8-2 2332-321 ug/kg*	8-3 2332-322 ug/kg*	8-4 2332-323 vg/kg*	8-5 2332-324 ug/tg*	8-6 2332-325 ug/tg ^o	8-7 2332-326 ug/kg*	8-8 2332-327 ug/kg*	Samp 01k 2332-333 ug/L	Trav Bik 2332-335 ug/L	HECH Blank C-3839 ug/kg*	iab Bit 8-A104 ug/tg*	Lab Bik C-3816 up/kg*
Volatile Organics														
Nothylana chiarida		-300	-508	-500	<500	<500	<500	<500	<508	31	12	1,400	-	3
Teluene		<500	<500	<500	<500	<500	<500	<500	<500	5	4	1,000	M	1.6
Saul Volatile Organ	ites													
Flureenthene		<388	2,000	TRACE	<300	TRACE	798	<306	688	<10	-	-	<300	-
Pyrana		<300	1,700	TRACE	<300	<300	400	<300	TRACE	<10	MA	MA	<300	MA .
Beneo(a)anthrocano		<300	1,300	<300	<300	<300	TRACE	<300	<300	<10	MA	-	<308	-
Chysane		<300	1,000	<300	<300	<300	TRACE	<300	<300	<10	MA.	MA	<300	-
Die(2othylhanyi)pht		700	700	1,500	1,400	1,700	1,300	1,500	1,000	53	MA	MA	700	MA
Banzo(b)fluoranthan		<300	2,100	<300	<300	TRACE	700	<300	<300	<10	MA	8 4	<300	84
Benzo(a)pyrana		<300	1,400	<300	<300	<300	700	<300	<300	<18	MA	-	<300	-
Idena(1,2,3-c,d)pya		<300	600	<300	<300	<300	<300	<300	<300	<18	HA.	MA	<300	NA.
Banzo(g,h, f)porylan		<300	766	<300	<300	<300	<300	<300	<300	<10	M	10A	<300	MA .
Total Motals														
Silver	10 Ag	<1,880	1, 100	1,100	<1,000	<1,800	<1,000	<1,000	4,500	<19		-	-	
Areanie	88 AS	19,000	11,000	15,000	4,988	8,600	13,009	20,000	2,700	<18	IA.	-		
Bar futb	as 8a	94,000	80,000	76,000	69,000	50,000	100,000	57,000	16,000	<100	**	-		
Cadalius	es Cil	<700	<500	530	<500	<508	1,200	680	400	4	-	-	-	•
Chronium	48 Cr	39,000	22,000	32,000	11,000	12,000	28,000	27,000	8,600	<10	MA		EA.	
Hereury	ee Ng	97	148	420	830	740	390	1,200	70	4.5			11	
Lond	aa Pb	40,000	100,000	80,000	100,000	250,000	140,000	45,000	57,000	4		IN I	III.	-
Selanias	aa Be	<1,000	«1, 000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<10	•	-	-	14

1

, •

TABLE 6.2 (Continued). SOIL SAMPLES

-

, t

	8-11 2332-330 ug/kg*	8-12 2332-331 ug/kg*	Samp Blk #2 2332-337 ug/L	Løb Blk 8-P102 Ug/kg*
PCBs				
PC8-1242	<80	<80	<80	<80
PCB-1254	<160	<160	<160	<160
PCB-1221	<80	<80	<80	<80
PC8-1232	<80	<80	<80	<80
PC8-1248	<80	<80	<80	<80
PC8-1260	<160	<160	<160	<160
PCB-1016	<80	<80	<80	<80

Detection limits of aqueous samples are lower than soil samples

*dry wt besis

MA - Not analyzed for this parameter

- -

4

-

TABLE 6.3. SEDIMENT SAMPLES

			Sed-1 2332-341	Sed-2 2332-342	Sed-3 2332-343	Sed Sample Blk 2332-346	Sed Travel Bik 2332-348
Volatile Organics	i		ND	ND	ND	ND+	ND*
Total Metals							
Arsenic	as As	ug/kg	4,900	5,000	2,800	<10*	NA
Serium	es Ba	ug/kg	<10,000	18,000	10,000	<100*	MA
Chromium	as Cr	ug/kg	13,000	19,000	12,000	<10*	NA
Hercury	as Hg	ug/kg	270	200	1,500	<.5*	NA
Lead	as Pb	ug/kg	210,000	225,000	270,000	<5*	NA
Petroleum Hydroca	rbone	ug/kg	220,000	280,000	150,000	<1,000*	NA

í

MA - Not analyzed for this parameter

٠

* units ug/L

Note: only analyte concentrations greater than detection limits have been reported

HH = Not measured

Somp Bik = Sample Blank

Trav Blk = Travel Blank

ID = Not detected

TABLE 6.4. WIPE SAMPLES

· ,

· · · · · · · ·

· ---

	Wi 23	na 61 32-350	01p	e 42 2-351		e 63 2-352	233	- 44 2-353		mpto Bik 1-356
	Consentration (up/uipo)	potection Linit (up/vipe)	Concentration (up/vipe)	Detection Linit (up/wipe)	Concentration (ug/wipe)	Betection Limit (ug/vipe)	Concentration (ug/uipe)	Detection Limit (ug/wipe)	Concentration (ug/wipe)	Detection Liuit (ug/wipe)
4,4° - 507 4,4° - 502 4,4° - 502	4.2 1.1 0.67	8,91 8,91 8,91	1.7 0.20 0.42	8.01 6.01 6.01	3.2 8.85 8.53	9.91 9.91 9.91	4.1 8.2 8.0	9.91 9.91 9.91	Rep #1 Rep #2 10 10 10 10 10 10 10 10	0.01 0.01 0.01

-1

~

1 1 1

- -

.

ID - Not Betected

TABLE 6.5. WATER CRITERIA

	NATIONAL PR DRINKING WA MCLG	TER REGULATIONS	NEW YORK STATE GROUNDWATER STANDARDS (3)	DATA Ranges	
		ug/L	ug/L	ug/L	
Arsenic	50	50	25	< 10-10	
Barium	1,500	-	1,000	< 10-16	• •
Chromium	120	50	50	< 10 -97	
Lead	20	50	25	<5-330	
bis(2ethy1hexy1phtha1ate)	-	-	4,200	110-170	

S S

Footnotes:

- 1. MCLG Maximum contaminant level goal; proposed values taken from 50 <u>Federal Register</u> 46936 (November 13, 1985).
- 2. MCL Maximum contaminant level; interim guidance levels.
- 3. Water Quality Regulations, New York State Department of Conservation 11/29/84 and Environmental 8/31/78.

	DATA RANGES ug/kg	NJ Action		
Volatile Organics	<500	1	,000	
Extractable Organics	< 300-1,700	10	,000	
	NJ Background ^(1,2) ug/kg	U.S Background ⁽³⁾ ug/kg	Data Ranges ug/kg	NJ Cleanup Levels ⁽³⁾
Silver	NA	90	<1 ,000-4, 500	5,000
Arsenic	NA	1,100-16,700	2,700-20,000	20,000
Barium	NA	NA	16,000-100,000	NA
Cadmium	1,000-4,000	10-1,000	<500-1,200	3,000
Chromium	5,000-48,000	1,000-1,500,000	8,600-39,000	100,000
Mercur y	NA	10-4,600	70-1,200	1,000
Lead .	1,000-180,000	2,000-200,000	45,000-250,000	250,000-1,000,000
Selenium	10-40,000	10-5,000	<1,000	4,000

Footnotes:

- 1. NJ Dept. of Environmental Protection, Summary of Approaches to Soil Clean Up Levels, January 1987.
- 2. NJ Cleanup Objectives cited to put the level of soil contamination into perspective. No New York Guidance is available.
- 3. NJ established surrogate or action level (1 ppm volatile organics in soil).

identified. The NJ regulations listed are in no manner applicable to the Fort Totten, NY site. The New Jersey Department of Environmental Protection guidance related to soil clean-up levels is included n Appendix G.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 <u>Introduction</u>

The objective of this investigation was to provide a preliminary investigation to determine the presence or absence of chemical contamination which may have resulted from former DOD activities at Fort Totten and to determine the potential for contamination of local groundwater or surface water supplies. To accomplish this objective 5 groundwater wells were installed, and the following samples were collected from areas most suspect of contamination: 5 groundwater samples, 10 soil samples, 4 wipe samples, and 3 sediment samples.

New York State groundwater standards served as a basis for comparison. In the absence of New York soil clean-up regulations, New Jersey soil slean-up guidance levels were compared to analyte concentrations found.

7.2 <u>Results</u>

Volatile organic compounds were below detection limits for soils and groundwater, semivolatile organic compounds were measurable in some soil samples but well below NJ Clean-up criteria. PCBs in all soil samples were below detection limits. Although most total metal concentrations were below New York State groundwater standards, chromium and lead concentrations in MW-2 and MW-4 exceeded these. Mercury at 1200 ug/kg in (S-7) and

1500 ug/kg (Sed-3) exceeded NJ Cleanup criteria of 1000 ug/kg. Petroleum hydrocarbons concentrations of 220,000 ug/kg, 280,000 ug/kg and 150,000 ug/kg in Sed-1, Sed-2 and Sed-3, respectively exceeded NJ action levels. DDT, DDD, and DDE were detected in all wipe samples collected in buildings #619 and #624.

ym - 184

7.3 <u>Conclusions</u>

- . There is little evidence of volatile or semivolatile organic compound contamination in groundwater, soils, or sediments.
- . No evidence was detected of PCB contamination in soils near former locations of electrical transformers.
- Lead contamination in the groundwater of MW-2 and MW-4 may be attributed to past DOD activities. Lead is a common contaminant at former defense sites. However, chromium disposal has not been identified in available literature and may or may not be attributed to former defense activities. Mercury disposal onsite was reported. Therefore, mercury contamination in soils and sediments may have resulted from past DOD activities.
- Petroleum hydrocarbon concentrations in sediments exceeded NJ action levels. This contamination may be attributed to past DOD activities due to numerous oil spills at the site, that had occurred during DOD operations.
- . The presence of pesticide contamination in buildings #619 and #624 is most probably due to past DOD activities. The storage of pesticides in these buildings had been reported in available information.
- Although results of the EM survey presented in Section 4 resulted in heavy interference from utility lines and debris, it is unlikely that drums or ordnance are buried onsite. This conclusion is based upon interviews with coast guard personnel, interpretation of survey data and existing drawings and available information regarding past DOD activities onsite.

The east end of building #619 does not appear to contain a sealed room.

7.4 <u>Recommendations</u>

Since the Scope of Work for this evaluation was to "confirm or deny" the presence of environmental contamination, it is recommended that a Risk Assessment at a minimum or an RI/FS at a maximum be performed since contamination does exist on this site. However, it should be noted that the groundwater on this site is <u>not</u> used as drinking water nor does it flow towards a drinking water source. Groundwater on this site discharges into Long Island Sound which is actually the Atlantic Ocean. The primary threat of concern to the environment and human health on this site appears to be the presence of mercury contamination in soil, marine sediments, and in the floor drainage system of building #615.

8.0 REFERENCE

- Scope of Work for the Contamination Evaluation at Engineers School, Fort Totten, Queens New York, Project Number C02NY005700, September 26, 1986.
- Law Environmental Services, Draft Report: "Defense Environmental Restoration Program Inventory Report for Former Nike Site HM-69 Homestead, Florida". September 1985.

- Federal Drinking Water Standards of the Safe Drinking Water Act. Vol 50 Federal Register, November 13, 1985, pg. 46936.
- Water Quality Regulations Surface Water and Groundwater Classifications and Standards Section 703.5, 11/30/84 and 8/31/78.
- New Jersey Department of Environmental Protection Summary of Approaches to Soil Cleanup Levels. January 1987.
- Code of Federal Register Sections 261.31 & 261.33. July 1, 1985, pg. 266 and 374.
- McMaster, B.N., Sosebee, J.B., Fraser, W.G., Govro, K.C., Jones, C.F., Grainger, S.A., and Civatarese, K.A., "Historical Overview of the Nike Missile System". September 1983.
- Bruce, M.C., Roux, R.G., "Survey of the Former Nike Sites Located at North Smithfield, Foster and Coventry, Rhode Island". June 1981.
- Barcelona, M.J. et. al., "Practical Guide for Groundwater Sampling", Illinois State Water Survey, SWS Contract Report 374, 1985, pp. 43-45.
- Freeze, R.A. and Cherry, J.A., <u>Groundwater</u>, Englewood, Cliffs, N.J., Prentice Hall, Inc. 1979 pp. 604.

APPENDIX A

ч., ч

WELL LOGS AND FIELD DATA

Ŧ

1

i

1

1

ţ.

ŗ

The second s .

METCALF & EDDY ENGINCERS

3

t

GEOLOGIC DRILL LOG

".**•**

T. C. VIN

	_										•				
				CT:					308	NO.					NG NO.
•	L	Arr	114 (e.p.	<u>st E</u>	ng, ne	<u>ru</u>			332		•*			1(A+B)
				TON		•			Coor	UINATES:			from:	ELET.	Teto: 4277.
	┝	<u>P7</u>	/0	Hei	4			<u>_</u>	<u> </u>						33.
	H	7.21		ANTA Dic	ACT	σκ: <u>/</u>	<u>• / //</u>	nt.	NV57	TOK: M. Z.	<u>ir bel</u>		el evit	6/2/0	57 10 cm
						nE 7		2. 1.	1000	LLER: J.B.	chsa		· · · · · · · · · · · · · · · · · · ·	6/	6/07
			<u>// "</u>							WE ATHIE : Clay, Won, humid	Rein	15,	09 6	was 6	erroral
	4	CA3	·IN 6	-67	7 /	V HICL	.: Ci	,	(47 <i>1</i>):	DEILLING FLU Now (MSA)	12:	Tor .	•F 7:06 -	k i Ve	mu, eriji
	1.1	5/20.	L I I	1	50	11	204	*****	2129		CRIPT ANT		-	2	Note of the
	イム	int.	5401	SUNCH F	6	DWS DER MCHES	CORT	E1C V	9.7 12 12	CLAS	51 7 10		TIS N	N.	Contro 70 1 01 3 21.4005
	0					10-8		1		0-5' Brown, C					400.0
			 	 	ļ				1	f. sand, man. S-1.3' Brown,	g tine dry (* 000 1	- act.sil	1/2	Red . ann .
		┝	╂──	╂──	┨───			4		f. same.	- //-		•	1	Hy Vupe at '
	4	2	4-6	1.6	8.1	8 13.13		1		4.4.6 Brown		1. co	mpa eterly	, , , , , , , , , , , , , , , , , , , ,	Nou: O
Ì]	Į .	sitty f. sand , let blos	1000 1	un 1	hand		Rud
		<u> </u>	 	 	 			1		10 6 8 105 4.6-5.6' Brow		1.0	mpert		Rock at S'
1		┣								f. sand, tr. s.	. 7+		- /		
3	ī	3	6.73	1.3	7.5 -	50/.3		1		6-6.5' Bran, 1	norst,	com	act, sil	4.7	Hau = O
3	1					her an				f. sand.		£ 4.			Redien
		<u> </u>	744	r No	f. sice	6	7.3'	1		4. 5-6.9' Brown, 1	, , , , , ,	v			· ·
Į		┠──								Compart 6.9-7.5 Prown,	marsh	, silt	y f. som	.et	:
ī								110000	11	w-1 ~15'	Sw (Dow	·· A. II J		
	É	4	<u> 2 - 16</u>	19	13.19	1112				2.9.4° Brown, A	he he m	c #/# .	art, f.m	-d	How = C Rod = norm
										9.4-10 Brann,	masst	ותפה	pact, s i l		[
I										f, sand I/se	لناط حمر ب	63,11	1/4 Go and	**(
	16	5	10-12	1.2	5.0	-12 70				Brown, muist, tottle m.sand,	comp	act,	f. sond	,	Maus 0
			•	•	1		-			trille m.samt, mottle	# • \$1/	مد زم	mu u ner fe		Root:
	ار	;-		·		-12-13				15-16, į Banon,	Moist	. Em	neact.		HALTO
21	5	-	1541	1.6	10.7	74-0				f. sand , 1 tere +					Redinan
ż				•						black mottles.	h m. m.	• ••= •			
à			•-	•• ••		•• •• •	•			15.8-16.5 gray F. scand + silt.			•	")	
					 	·				16.5-17 Brown S. sand, the 1				.1+	
										black mottles	") """		0	1	
					L]				· · · · · · · · · · · · · · · · · · ·				!	
				TYPL 3 7 571		57 :	5461	77 7-25	(om)	LETION NOTES	:			-	16 NO.:
(<u>kor</u>	<u>e: (c)</u>		0 .	0711	12 2	L <u></u>					Mur.	-/

METCALT & EDDY

۱

ļ

1

ţ

l

1

ţ

ł

.

ENGINEETS

GEOLOGIC TRILL LOG

	-	PROJECT: My loops of Frighters Fr. In				Ŧ.		NO.	BORING 1. A.		
2	1 - 21 - 20	J.A.		SOIL ZLONS Tik	TOLL 7/: COTI	, NATAN	2 - 17 - 1		2 or 2.		(A • B) No1:, cii Mario 16 162 Mario 16 163 Mario 16 163
512	7			6-9-12-14			C	Biru un, un,	compact, U.t. Sa m(poblets, black		10-93' 90-93' 851.31' Haut O Rading m
25	8	25-27	1.7	9-10-16-20				6 f. sond 26.26.3 fray 26.3-26.9 Brug Compact, 0	wet, compact, sitt , sitty chay lows m, sitty f. sand , powers dry	>	MAN : O Rud - Nom
30	9	30.32	1.9	8-12-M-3		•		Gray, wet, Co		4	HAU = O Rud = Hom
		• • •	· · · · · ·					Flushed Oug poteble L Set: 10", 2", 82-22" Le Riser: 25',	ors w/110 gal ater. .01 slot Rifk scra law Grand		·····
								11/2 bucket b E bug, Ty	nd 33'-20' Beatmite pellets 20 pe I Portland Com nit 18'-0'	i-18' m	
		•	- 	••••••••••••••••••••••••••••••••••••••							
		7.57				7-00	60.0		· <i>:</i>	Eotomo	M2. :

•

METCALF & EDDY

ſ

ſ

Į

ł

2.1.95

ENGINEERS

19803

GEOLOGIC DRILL LOG

東子の

•••

ė

1-<u>4</u>:

PROJECT: A LE EL T. H.	JOB NO.	SHEET 2	
Prmi, LE Ft Totlam LochTION:	2332 COORDINATIS:	<u>2 or Z</u>	114 - 2 481. TOTAL UNIT
Queens, NY			25
DEILL CONTEACTOR: RIR JH.	WSPECTOR: M.	Zirbel Elfivit:	6/4/87
DRILL RIG: EME 75	WHLER: J.	Zirbel Elfivit: Buckson Tim Serie	: 6/6/87
HOLE STEE: SAMPLEY: (W.			auga EL
II (6'H" A HSA) CASING -ETT IN HOLE (U.F. for	Ram, Cool	15' be low	
	None (HS		ivenii Erij
SUS SOIL ROCK	2		N-76 -
3 THE STATE BLOWS TO		SCRIPTION AND	A L my- stol
A VIT IN THE CONS TO THE AND THE CONT	3 °	ASSIFICATION	H T i the may
0 1 0.2 1.4 4.7.6.3	Brown, Dry	, loose silt w/	2 T.
		and chay, fow small	Hau = 2 Rad = no
	Stores	•	/ 1460 - 14
	MUNIS SMI	monts	
	S-20 Cinde	rs and black soms	
s <u>2 2.5 1.8 3-4.5-4</u> 4.5	Appesent F	Il; H & dA bran	Here . O
	from sand	elay, few small stor	Rud: no
<u>}</u> <u>+</u> <u>+</u>]	Some Back	Cinders]
035-71.8 5-8-9-14	5.5.9. H Ld	boun mixel, most,	HHH20
	lucke, silt a	VF-m said and ching,	Person
	few small	stores and cindors.	
	4. sand w	ion, moist, loose,	
├ - ┤┤│	6.5-7.0 3.0	um, moist, stiff,	
	site stay a	sif. send and chang	4
5 4 7.5 1, 8 9-11-20-21	w/f. sand	m, maist, st, ft, silt and clay	Hau: O Led: nor
	8.3-9.5 g.a.	with black states	
	moist. f.se	nd with the season of a season	
	9-93 6/ech	,most, loose,	
	f-c sand		<u> </u>
5 10-11 . 2 5-50.14	Tsrown, luo	e, moist, sitt with. Ey, Some small	Hum = O
ss votuset	stones and	Enders.	lad . no
- * Auger refu al a 12			8 8 .
6 15-17 1.7 1A-7-12-	15-16 Brewn	loose , moist , sitt	HAN : O
19	w/f, sand strup + cin	and clay, some sould	Bud so on
	VG-No-3 Burn	stiff, noist, off with	er.
	Chey, little 6:	sand. This law mating	1 1
Samine Types:		and proist, Lose f.	!
SS: STIT STOON, ST: SHLIZY THE	COMPLETION NOTE	1-	OZING NO.:
Hend Brohole + 10' West	J		<u>11W-Z</u>

to out of fill

METCALT & EDDY

ENGINEERS

GEOLOGIC DRILL'EOG

ł

.

PROJECT: Army CoE Fr Totlen									NO.	BORING NO.1.				
<u>H-</u>	M	_	c e	<u> </u>		cte	4	12	332	2 1 2	Millerz			
24024	Jun126	N Pril	Zerizii	501 	L NG K SHIS	ROLL 71: Ceti Rit.		101 1111-11	:4	562-12713N MNZ MSS 18 16d T 11:N	1112	NOTE: CN: WAY & LLOLLS MAR & SI JULA CANTAN & SI JULA CANTAN & SI SI LL MAG, & TC.		
		-72	<u>1.ę</u> ,	8.001	! -/9				Brown, moiss and si H H Inche Hick apperent.	, stat, f. sand ayers econul . Thin lowing t	hera,	H&u = O Rad = µ m		
se	, 25	27	<i>1</i> .7	6-8-1	0 19				Brown, wet, e.o.b. 25	compact, f. su	nd	HALLED Rad : MON		
F	╞	-							E.B.B. 23 Set well:	,				
	╞				_				Screen 18.0 Ruger 16.0	•',2" Prc,.01.1.1. ,3" PVC 14'10	24.	24'		
	1-								Sund- 760gs	30/50 Other Fi 12'-25'	int She			
-	┨╌	┤							Bontonite F	Pellets 3/0°;160	cket			
F	1-	1							Grout - Po	10-12' +land Type I a	mi Be	nton it		
].]			-				10 be	?		ł		
E	\vdash	+												
	1-	1			_									
	1-	1												
	1-	1												
		1-												
		<u>↓</u> -↓-												
				• •- •	- 									
		╉			+									
35	** 5	>1 1	- 470 . - 470 . - 470 . - 470 .	man, s		5110 L B : 1.71		600	·i : 7 1811 AIE	·/::	BOENG	νε.: υ-Ι		

• • · · ·

1

METCALF & EDDY ENGINGERS	GEOLOGIC T	RILL LO)G			
PROJECT:		_ 1	BORING NO.			
A. M. C.E. Fr T. HV:1 LOCATION:	2332 <u>1</u> COOXUNATES:	<u> </u>	MILLI-3			
Queens Nt -	(00×0/////2):		30'			
PRILL CANTEACTOR: R.R.	INSPECTOR: M. Ziebel		6/3/87			
VEILL RIG: IME	DrillER: J. Bucks	g + 11415.11	6 6 6 127			
HOLE JIZE: SAMPLEY: (W. 11°	SALL : WE ATHIG &: Warm, cloudy		acri (EL)			
CASING LETT IN HOLE CUT . 1-	ENATIN: DRILLING FLUID:	Tot of FOCK	(DEMIL EL.):			
	Nore (HSA)	<u> </u>	Note out			
The state Thomas 90	DESCRIP AV		A L mur serer			
ALLES PER CORY 6	CLASSIF		N A Carie Triset			
1 0-7 1.5 4-5-7-19 '	Dr. 5 bicum, dec.	loose, loamy	1/1012			
	f. sand (f. sand I a root	. •	Read : wor			
	.5-2.0 brown, was	at, f. same				
	arralk, fou sou at .5-20 - motired					
	How reading - pro	tally Fuel ail.				
25 2543 1.2 4-9-6-5	2505 harry mail ,	low, for	Quel smell.			
	Sind and silt. Ste.		House 2 Real = 110mg			
├-┽┽┼ ┃	Actice ble ail sme		MAN=Zin			
Su' 5.7 1.8 10-8-7.4	S. O.S. S Brown, and Silt - stainer & bard	+ , f. sworthad	brouthing			
	Bill - stainer 6 hard Brick fragment at		HAU:1 Rud: 1000			
		1				
ⅠⅠⅠⅠⅠ	8. Am 19.9" Bian, 1000 10069.					
7.5 7.5 1.7 1+12-12-12	Brown, maist, 100	w, f. sand,	Hu:0			
7.5 7.5 1.7 1+12-12-12-12 4.5	to sitt; for 1"	stones .	Red : som			
125 10-12 1.9 6-9-8-12	Homeneto fraguent	at hay	Harsin ba			
<u>}-</u> }- }- }- }- } -	P. H. Brown, moust, 100 T. s. 11. Baldish jaco	abour on hyper	Kungole: 2			
	11.16 to our mant h	most siles	Hauso 1			
	11.5-12 Brown, mont, W/SIL, Dill other	Constant	Check M, P			
13015-17 ~ 4-15-14-18	V'stone at top	•	Al Mel - C			
▶	Brann, Mouit, Icen al fame adalt at 6	- ,	1 m to p 4 0 p			
			100.00 000			
	1 1					

METCALT & EDDY

ENGINELIS

n na 🦕

GEOLOGIC TRILL LOG

PROJECT: Army Co E - F+ 7	offen		2332 2. rt 2			Borine 1 Mai - 3				
Solt Solt	7. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 A.S	:	E 523-13-713 M ANZ 2 ASS 17 124 2 ASS 17 124 T 10M		MOT: _ CII.				
7 20.22 1.6 15-17-15-2			Browsm, wet. fest & mall	hard , Fo sand & sil stones	~	20" - 20" Haw + C Rad = O(c)=				
2 25-27 1.8 H-1C-17-20			10000 1000 1000 1000 1000 1000 1000 10	own, work, hard, f. s.	and	Hau + C Rail : worm				
4 3: 32 1.7 9-17-235 			throughout throughout		ch,	Hmu = C Rad = mon m				
				at reinauger		Cenciactorit, withor 3E Handon 10				
· · · · · · · · · · · · · · · · · · ·	· · ·		5000 5000 7150	2".015/51 PUC 19-29" - 25/ abour groum 14' de pa	er l					
			6 1/2 hay 40/0	0 Olluna flintshot 30' Bantonito Pellots Portland Typo I Ga	15-17	:				
				-		• • •				
						• • •				
AN74 C TYPL 5:					Botins					

METCALF & EDDY ENGINLERS

GEOLOGIC DRILL LOG

PROJECT: Army Cot - Fr. Totten -								- i	NI. 332	-	BORING NO.				
	- 0	CAT	TION	- <u></u> -	10"		T		UINATLE:	T =====	- MW-4				
											12 "				
					t:	R+R	1_+1	ins	PECTOR: M.Z	inha 1	FLEWIN	: 61	1. 107		
Drill RIG : CME 75									LLET: J. B.	7 14 . 50		6/01			
ŕ	101	E	JIZ.	£:]	SAI	·iPLE &	:: (w.		WEATHER:				-707 - 81		
_		// "	44				•		Clear, Cool						
C	A 5	ING	-67	T IN	\$10L	1 G	10. /20	~~~~~);	DRILLING FLW Nume (HSA	05 F.OC.	FOCK (DEMIL EN):				
	°.		1.2	501	L	Rock	3	TU	1		ندور بن برو من مورد کر		Note: er		
2		E	12 8				Ě.		DES	(ZI)7718	~	91			
	23	12 2	IS A	BLO Pé		70 CORT	Š	11 A 7 1 3		AN E SIFILA	TISN		Cari a 70 1 41		
2	1.1	<u> </u>	ha	6 1	Venis	REC.	Č	Q					2		
5	1	.5 .	1.6	8.6.	9.9			T	3-1.5 Black ,	muist, loos	e , m - F , m	2,	Han : O		
		2.5						1	tr. silv. Many	small ste	m rs. Ciad	lors	Retinne		
									and Black "	stains at	1-1.5'	1	Hy: Oat		
								1	1.5.2.3 Brown				hole		
I								1	Sana. Rost.	stants al	mg tissu	~			
5[2	25.	1.3	24-9-	12-15				Brown, Muist	, loose, f	sand . A	2	Hau=0		
ĺ		4.5						1	Russo rodi	sh stain	ing in		Led - mon		
								1	horizontel	ban d's	-	1	the = Out has		
I					_			1					/		
·[3	5-7	1.6	9-10-9	1.12				Brown, wet ,	ard, f.s	nd w/al	14			
I									Inter heddad	laners at	Leand	2	Hau = O Real = monta		
I					- :]	<u> </u>			(1-3" thick); s	Some an	all store		Hy: Oat Lo		
									and discripte	Deices	106.		Letorat 5		
Į								t		7	5		to for an 3		
ऽ	•	7.5	0	15-22	-0-12	0		1	No Recovery						
								l				1			
	·				[]				1			1			
Ĺ								[[1	í .		
									1						
۶Ľ	4	IDR	1.8	5.44	-6			I	10-10.8 Brown,	wet, los u	t, f. soul	.1	40		
L]			Τ				w/s1+	,		1	Roditor		
ſ	.]					_			10.6-11.2 Brown	met. las	se,f.m	I			
								[sand, tr. sil	-	•	I	j · · · ·		
ľ	J				J				11.2-12 . Groy a		methos,	1			
L								1	wet, stiff,			1			
ſ	T				Τ				10.0.6. 12'			1	• • •		
L									Screen: 6-11's	5',010 %	1, PVC,2'	۰I			
Ĺ									River : 0:6' ; 0	5,7°Pv(,		
ſ									Scort 1 5 - 12 ; 8	olso Om- VB" pollo	æ €%æ\$\$\$ \$\$1./L=	21.	bog 5		
								***					Durt 1/0		
			YHIS					com	LETION NOTES				6 NO. :		
				· · · · ·			* 7~25				ł	n1w	-4		
								-for	of road						

** Curing mochane was used to create 12 - but in made *** Riser was trimmed flugh with road and Bed bor was installed install of protective instance. METCALF & EDDY ENGINCERS

()

l

GEOLOGIC DRILL LOG

....

ちょうきょう こうちょう ちょう

			CT:	F	E.	To			303	· •		SHEL				No.
	<u> </u>	44	ION	<u> </u>	Pr	10	Men	—		<u>332</u> VINATES:	1	• •	2			D TOTAL MAYO
			· · · · ·						Coor							• •
						Rt /	e T.+	L	INST	TOTOR: M.Z.	n ha	/	FLEVA	1: 4	15	127
22	122	2	1G	: 0	NTE	75		<u></u>	271	LLEE: J. B.	ckse		714:50	1.:	6	16/27
HC	? L E		512	F :	51	ri7LS	x: (n	~. x		WEATHEY:	T	Gre	in seles	11	2:	271 81
						<u></u>				Clear, Suna	9	/	7 6e	low .	9.0	und
CA	511	16	-27	7 1	V #10	LE C	610.1	- E N	# <i>""</i>):	DRILLING FLW		707	05 F.00	K	Ve i	nu, EL.)
				r		T			T	Nome (HSA)	•				
21	2.	. >	25	50	14	200		Ę	ž	750	C Z 17	-			A L	Note: er
3 7	213	Â,	ξĘ	36	0-115	70	·]-]		NAN JU		AND		-		3.6	Wate . Do 7
33	213	3			₽£.2.	CORI REI			13 ~	CLAS	551F	~~~	TION	· [.	27	2 2 1. 6
			_		NUE	7	+	<u> </u>	<u> </u>	05 Topsoil	and :	עת	co			27:
Ή	4		1.3	4.3	3-3	╉╌╍	-		1	MCIST, LOSS C	• • • • • • • • • • • • • • • • • • •	and	and si	11		HALL SO Red : no
\vdash	+				-	╉╧╼━	-1		[.5-2 Broom,		1, 100	se, f.m			1
						╉──━	-		1	and oilt.				ł		
5 2	-1;	5.1	1.4	1 2	. 4.5	1-	1		1	2.5- 8.5 Brown		.	hard	. 1		Hanc
		.5	<u>. /</u>	-			-			f. sand and a						Rodinor
	+			t		t	1	!		25.4 Braw	• • 6m	750 1	thim _			
	-†-					†	-			lam , not ous,	m1 3 + 6	i, he	rady Fr			
	+-					╉╼╾╼	·			sand + silt		later	. f. com			
	+-	-+				╉╌╌╴				4.4.5 Gray, # +4.0 6-000	10151	MR 1/00	', ▼• 48~~4 }\$			
· र	te	.,	11	3. 4	-8-50	1.0	4			5-5.5 Brown, #						Har + O
† ₹	1	•4			· • he		1			f. end.		••••	, _ ,			Redimm
	+	-+	-24			F	1			f. sund, and	form	on la	minate			*
	1-	-+				 				mont, los se	', f. se	ind,	* . s, l+			
54	726	. .†	17	5.2	.9-15	†				Brown, MOI						**
1÷	7.5 - 1.7 5.8						1	tr. silr. Vur	Man O	5 .	tunes			HAL 20		
	1-	-†					1			and pobble	69	- 9.5	•	ł		Radison
F	1-	7				1	1			-	-					
5	10.	10-1 1.5 8-B		8-5-7					10-115 Biown	, wet,	10010	, F.C 80	=-		Haw . O	
										where could and numerous small stones 115.11.6 From , wet hose, and sand 11.6.12 Brown, stot, wet, f.						Redirm
Γ	T	1					1			11.5.11.6 Srows	5	***	and so	~~		
].	T	•	-			1			sand +silt =			, **	1		
]															
1	15	- 1	1.9	4-7	.11-13]			15-15,7 Brow		el, h	und,	-+-		HAU.D
[11			••			1		1	for sand, or	·. s. l+					Rad : none
	T	T		i			1		Ì	15.7 -16.4 Gro mals, 1+ ; many	5,00	rt, st	ff cha	2		
]				•••	* ···•	ł		Ĭ	16.4-17 Brown	Histor Tales	1006		1		
]_]				,,		,			
Γ		T]		•				•			
	1	I					1		1					ļ		
			YNIS						(om7	LETION NOTES	:			Bo	-IN	6 A'O. :
						SHLI OTI	84.24	66							ω-	

* Hit sewer pipe at ~7' - moved well NE ~4' ** Borod to 7.5 in New hole ()

. .

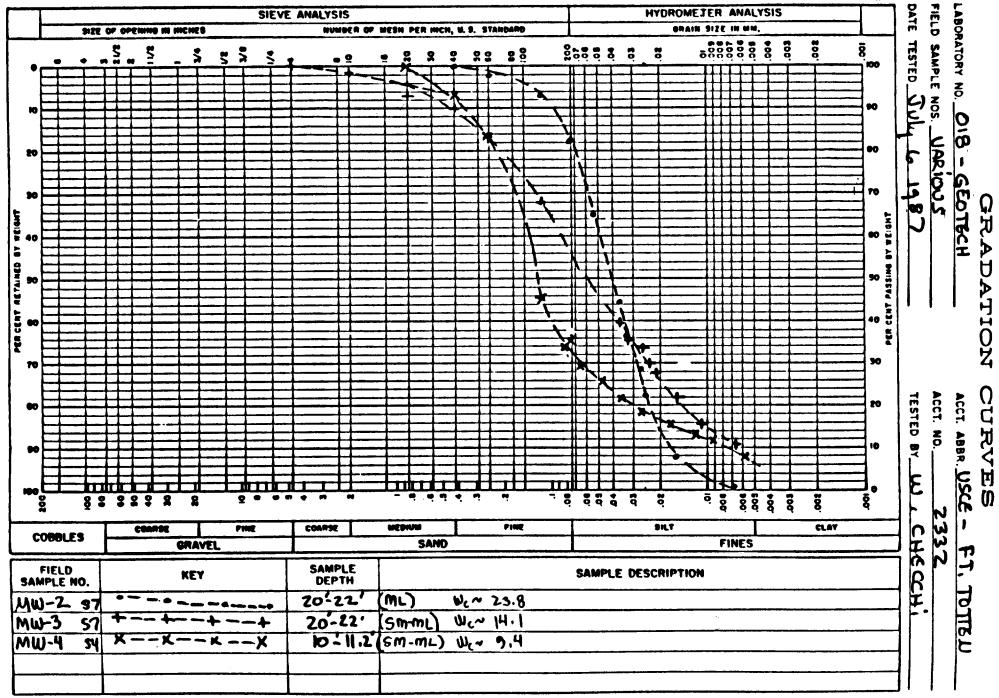
METCALF & EDDY GEOLOGIC DRILL LOG

6745" 5 ~ "+.

ž

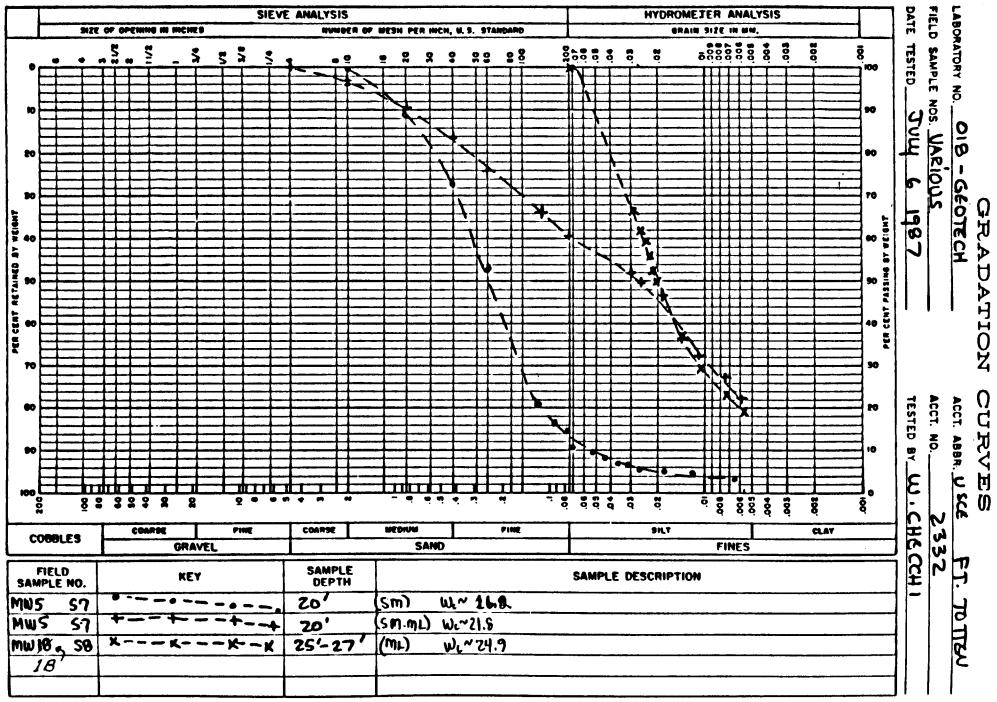
7	20	DJE	c T:	<u>. </u>		-	202	NO.	SHEET	Borin	IG NE.
				F+	Tothen	•		32	2 17 2		
76: 71			BELWED		ROLL 7/5	~~~~	204	52	56717713N ANZ ASS 18164710N	11/2 11/2	MOTE: ON: MOTE: ON: MAY FLECLS MAY FLECLS CANFORKEO ET - CANG, ET - CANG, ET - CANG,
20	2	20-	1.8	3 - 9 - // - //	_			20.5-21 Gr Clog, this 21-82 Bros	un, 10000, moist , // ay, moist, stif /auninu tagns. m, 10052, wet	~,	Itnu: O Rad:nonm
5	0	25-27	.5	10-21-19				stift, wet,	ne bay nother; clay ach, loose, we		Hauso Ridison
								Set-well Screen - 10 Biser - 15 Scuid - 50/5	; ; 2"PVC, .01 s1 ; 2"PVC 50 OHuw Flint	10+ 13-2 13+1 126+ 13-1	3' 2'a bowg.m 25' · C'/, b
								Bentonite - 3	le" pellots thend Type I c W/Banton:to pe	9-11	1% bucket
		··· •									
								-			
2	15 k	t SP A 1 3100	** **	13: 	: .7	ere i	671	·································	·/::	Boenn	• <u>* -</u> 5

+ weter at 24' inside auger


WATER CONTENT

	LABORATORY NO. 018-GEOTI	SCH A	ACCT. ABBR. LISCE - FORT TOTIEN			
	SAMPLE NO. VARIOUS		CT. NO	2332		
	DATE TESTED JUNE 17			W,CHEQ		
		zs-27'	20-22'	20:22	10-11.2'	Sands day 20'
	TEST NUMBER	MW1B-58		MW3 S7	MW4 54	MW5-57
	TARE NUMBER	1R	VE IP	1L	IN	18
	A. WEIGHT OF WET SOIL + TARE	352.74	418,00	446.09	386172	178.04
	B. WEIGHT OF DRY SOIL + TARE	292.74	347.78	397,26	348,50	157-14
	C. WEIGHT OF WATER, Wut(A-B)	60,00	70.44	48.83	28.22	
2	D. WEIGHT OF TARE	51.34	51.53	51.53	49.30	
5	E. WEIGHT OF DRY SOIL, WS=(B-D)	241.40		345.73	299.20	
Į.	F. WATER CONTENT, W= (C/E=100)	24.9	23.8	14.1	9.4	21.8
ţ		Sand!				
į	TEST NUMBER	MU15-57				r
:	TARE NUMBER	: 15		· · · · · · · · · · · · · · · · · · ·		
ž	A. WEIGHT OF WET SOIL + TARE	271.28				
1	B. WEIGHT OF DRY SOIL + TARE	240.68				
Ľ.	C. WEIGHT OF WATER, WW=(A-B)	30.60				
Ì	D. WEIGHT OF TARE	51,24				
Ľ	E. WEIGHT OF DRY SOIL, Wg = (B-D)					
EDDY	F. WATER CONTENT, W= (C/E = 100)	16,2				
	7/1/87 HYDRO LICTORS					
Ż		403 57	MW2 57	MWS S7	MWS-57	MW 18 58
METCALF	TARE NUMBER					
Ī	A. WEIGHT OF WET SOIL + TARE	100.03				
	B. WEIGHT OF DRY SOIL + TARE		108.91	156.09	153.67	135.22
	C. WEIGHT OF WATER, WWE (A-B)	34.2				
	D. WEIGHT OF TARE	31.86	31.91	51.43	50.43	5092
	E. WEIGHT OF DRY SOIL, W. + (B-D)	136.97	77.00	104.66	103,18	84.30
	F. WATER CONTENT, W= (C/E = 100)		l		L	
		······	·····			
í	TEST NUMBER	MWY SY				
	TARE NUMBER	·				
	A. WEIGHT OF WET SOIL + TARE					
	B. WEIGHT OF DRY SOIL + TARE	143.59				
	C. WEIGHT OF WATER, WW=(A-B)					
	D. WEIGHT OF TARE	50.69				
	E. WEIGHT OF DRY SOIL, WB=(B-D)	92.90				
	F. WATER CONTENT, W=(C/E=100)	L				

ļ


5

PALF P

METCALF & EDDY. ENGINEERS.

3

METCALF & EDDY. ENGINEERS.

LABORATORY	NO. 018-GE	DTECH		CCT. ABBR. C	ISCE-FT. T	DTIEN
		MW 18 58 (25-27') ACCT.		2332		
DATE TESTED	July 6,7	1987			N. CHECCHI	
		DRY SAMPLE + TARE	+35.22 50.92			<u></u>
	WT. TARE # WT. TOTAL E	DRY SAMPLE	84.30			
	WT. RETAINI	ED #10 \$IEVE		% PL	JS #10	
	WT. PASSING	G #10 SIEVE		% MI	NUS #10	
WT. TARE # WT. PASSING #	#10 SIEVE + TARE #10 SIEVE N PASSING #10 SIEVE					
	#200 SIEVE + TARE					
WT. TARE #	-					
WT. PASSING						
U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% RETAINED	U.S. SIEVE NO.	CUMULATI WEIGHT RETAINED	10% RETAINED	% TOTAL SAMPLE RETAINED B
9			#20	1		

840

#60

#140

#200

PAN -200 WASHED -200 TOTAL -200

4.00

0

4.7

Juglius alland

XA . + . 8 -

METCALF & EDDY, INC., Engineers, BOSTON . NEW YORK . PALO ALTO

3..

2..

T.

3/4"

3/8"

NO. 4 NO. 10 PAN

•

1 1/2"

۱

t

1

1 -

t

1

1

ţ

•

LABORATORY NO. 018 -GEOTECH	ACCT. ABBR. USCE FT. TOTIEN
FIELD SAMPLE NO. 44-2 -57 (20-22'	
DATE TESTED July 6,7 1987	TESTED BY W. CHECCHS
WT. TOTAL DRY SAMPLE + TARE . WT. TARE # 1P .	108.91
WT. TOTAL DRY SAMPLE	27.00
WT. RETAINED #10 SIEVE	% PLUS #10
WT. PASSING #10 SIEVE	% MINUS #10
SPLIT PORTION PASSING #10 SIEVE (approx. 115 gm max.) WT. PASSING #10 SIEVE + TARE WT. TARE # WT. PASSING #10 SIEVE	
WASH PORTION PASSING #10 SIEVE WT. RETAINED #200 SIEVE + TARE WT. TARE #	
WT. NETAINED #200 SIEVE	
WT. PASSING #200 SIEVE	

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% Retained
3		
2		
1 1/2"		
۲"		
2/4"		
3/8"		
NO. 4		
NO. 10		
PAN		

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% PASSING 10% RETAINED A	% TOTAL SAMPLE RETAINED B
#20			
#40	0		0.0 ·
#6 0	1.92		2.5
#140	6.01		7.8
#200	13.56		17.6
PAN -200			
WASHED			
TOTAL -200			

8 = % PLUS #10 + % MINUS #10 × A

8=_____ + _____ ×A

ł

1

LABORATORY NO. 018-GEOTECHI FIELD SAMPLE NO. MW-3 57 (20-22' DATE TESTED JULY 6,7 1987	ACCT. ABBR. USCE-FT. TOTTEN ACCT. NO. 2332 TESTED BY W. CHECCH'
WT. TOTAL DRY SAMPLE + TARE WT. TARE # \L WT. TOTAL DRY SAMPLE	168.83 31.96 136.97
WT. RETAINED #10 SIEVE WT. PASSING #10 SIEVE	% PLUS #10 % MINUS #10
SPLIT PORTION PASSING #10 SIEVE (approx. 115 gm max.) WT. PASSING #10 SIEVE + TARE	
WT. TARE #	
WASH PORTION PASSING #10 SIEVE	
WT. TARE #	
WT. PASSING #200 SIEVE	

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% Retained
3"		
2		
1 1/2"		
1*		
3/4"		
3/8"		
NO. 4		0
NO. 10	2.11	1.5
PAN		

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	S PASSING 10% RETAINED	% TOTAL SAMPLE RETAINED
#20	10,14		7.4
840	13.89		10.1
#60	22.46		16.4
#140	43.83		32.0
#200	58.06		62.5
PAN -200			Alla an balling
WASHED			
TOTAL -200			

8 = % PLUS #10 + % MINUS #10 × A

8=_____ + _____ ×A

1 M 309

METCALF & EDDY, INC., Engineers, BOSTON . NEW YOWK . PALO ALTO

f

t

Ţ

Ţ

ŗ

LABORATORY NO. 018 - GEOTECH MW 4 54 (10-1	ACCT. ABBR. USEG FT. TOTTEN
PIELD SAMPLE NO.	
DATE TESTED JULY 6,7, 1987	TESTED BY W.CHECCH3
WT. TOTAL DRY SAMPLE + TA	
WT. TARE #	50,69
WT. TOTAL DRY SAMPLE	92.90
WT. RETAINED #10 SIEVE .	% PLUS #10
WT. PASSING #10 SIEVE	% MINUS #10
SPLIT PORTION PASSING #10 SIEVE (approx. 115 gm m WT. PASSING #10 SIEVE + TARE WT. TARE # WT. PASSING #10 SIEVE	
WASH PORTION PASSING #10 SIEVE	
WT. RETAINED #200 SIEVE + TARE	
WT. TARE #	
WT. RETAINED #200 SIEVE	
WT. PASSING #200 SIEVE	

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% Retained
3"		
2**		
1 1/2"		
1**		
8/4"		
3/8"		
NO. 4		
NO. 10		
PAN		

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% PASSING 10% RETAINED A	% TOTAL SAMPLE RETAINED 8
#20	0		0
#40 6.2	6.35		6.8
#6 0	15.79		17.0
#140	50,82		64.7
#200	60.23		64.B
PAN -200			
WASHED			
TOTAL -200			

8 = % PLUS #10 + % MINUS #10 × A

8 = _____ + ____ × A

METCALF & EDDY, INC., Engineers, BOSTON . NEW YORK . PALO ALTO

.

F

٩.

LABORATORY NO. DIB-GEOTECH	1	ACCT. ABBR.	USCE- FT. TOTTEN
FIELD SAMPLE NO. MW 6 57	<u>20' (110)</u>	ACCT. NO.	2332
DATE TESTED July 6,7 19	87	TESTED BY	W. CHECCH
WT. TOTAL DRY SAMPLI WT. TARE # 1C WT. TOTAL DRY SAMPLI	50	.43	· · · · · · · · · · · · · · · · · · ·
WT. RETAINED #10 SI WT. PASSING #10 SI			PLUS #10
SPLIT PORTION PASSING #10 SIEVE (approx. 118	5 gm max.)		
WT. PASSING #10 SIEVE + TARE			
WT. TARE #		-	
WT. PASSING #10 SIEVE		<u> </u>	
WASH PORTION PASSING #10 SIEVE		-	
WT. RETAINED #200 SIEVE + TARE			
WT. TARE #			
WT. RETAINED #200 SIEVE			
WT. PASSING #200 SIEVE			

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% Retained
3		
2		
1 1/2"		
٣		
3/4"		
3/8"		
NO. 4	0	0
NO. 10	0.95	0.9
PAN		

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% PASSING 10% RETAINED A	% TOTAL SAMPLE RETAINED B
#20	11.56		11.2
#40	28,17		27.3
#6 0	48 11		47.4
#140	21.92		79.3
#200	87.77		85.1
PAN -200			
WASHED			
TOTAL -200			

8 = % PLUS #10 + % MINUS #10 × A

8=_____ + _____ ×A

METCALF & EDDY, INC., Engineers, BOSTON . NEW YORK . PALO ALTO

1

t

ľ.

۔ ٹ

1

ŧ

t

=C . J 309 3EV. 6/83

-

LABORATORY NO. 018	- GEOTECH	ACCT. ABBR	USCE - FT. TOTTEN
FIELD SAMPLE NO. MU	<u>5 57 (20')</u>	ACCT. NO.	2332
DATE TESTED JUL	4 67 1987	TESTED BY	W. CHECCH'I
	TOTAL DRY SAMPLE + TARE	156,09 51,43	
	TOTAL DRY SAMPLE	104.66	
WT.	RETAINED #10 SIEVE	Y	6 PLUS #10
WT.	PASSING #10 SIEVE		MINUS #10
SPLIT PORTION PASSING #10 WT. PASSING #10 SIEVE + TA WT. TARE #	SIEVE (approx. 115 gm max.) RE		
WT. PASSING #10 SIEVE	<u> </u>		
WASH PORTION PASSING #10	SIEVE		
WT. RETAINED #200 SIEVE +	TARE		•
WT. TARE #			
WT. RETAINED #200 SIEVE			
WT. PASSING #200 SIEVE			

U.S. SIEVE NO.	CUMULATIVE WEIGHT RETAINED	% Retained
3		
2		
1 1/2"		
1,**		
3/4 "		
3/8"		
NO. 4	0	6
NO. 10	3.65	3.5
PAN		

U.S. Sieve No.	CUMULATIVE WEIGHT RETAINED	S PASSING 105 RETAINED	% TOTAL SAMPLE RETAINED B
#20	10.15		9,7
#40	17.19		16.4
#60	25,22		24.1
#140	35.16		33,6
#200	41.60		39.7
PAN -200			Laberte Patholitan
WASHED			
TOTAL -200			

8 = % PLUS #10 + % MINUS #10 × A

■_____ + _____ ×A

,

1

.

ł

METCALF	& EDDY
---------	--------

GRAIN SIZE ANALYSIS	S-HYDROMETER	METHOD
Project USCE - FT. TO TTEN	Job No	2332
Location of Project QUEENS , NY		
Description of Soil	Depth of Sample	25'-27'
Tested By W. CHECCH	_ Date of Testing _	July 6, 1987
Hydrometer analysis		•
Hydrometer no. <u>IS2 H</u> G, of soli	ds = _ Z.65	[100
Dispersing agent Na PO3	Amount 4%	
Zero correction	Meniscus correction	<u> </u>

Date	Time of reading	Elapsed time, min	Temp., °C	Actual Hyd. reading R.	Corr. Hyd. reading R,	96 Finer	Hyd. Corr. only for meniacus R	L Srom Table 6-5	√∓	K from Table 6-4	D. m m
7/5/37	2057	0	20							.0137	
		-25		+60							
		.5		+60							
		1		+60							
		1.5		59	56	66.4	60	65			.0285
		2		55	52	61.7	56	7.1			.0258
		2.5		52	49	501	53	26			10239
		3		50	47	55.6		7.9			.0222
		3,5		47	44	52.2		8.4			.0212
		4		45	42	49.8		8.8			10203
		11		34	31	36.8	35	10.5			.0134
		Z1		28	25	29.6		11.5			10101
		43		22.5	19.5	23.1	235	12.45			10074
		77		19	16	19.0	20	13.0			10056
		5		15.5	12.5	14.3		13.6			10039
7 -	0525	118		13	10	11.9	14	14.0			.0019
										·	
										·	

R. = Ramai - zero correction + C,

We find $= R_i(a)W_i$

71 4.00

D-KVIA

(4)

ſ

METCALF & EDDY

•

GRAIN SIZE ANA	LYSIS-HYDROMETER METH	HOD
Project USCE - FT, TOTIEN	Job No. 233	2
Location of Project QUEENS N	Y Boring No. <u>MW-2</u> 5	ample No. <u>57</u>
Description of Soil	Depth of Sample2	<u>o'-22'</u>
Tested By W. CHECCH	Date of Testing	1 6 1987
Hydrometer analysis		•
Hydrometer no. 152 H G.	of solids = 2.65	_ 1.00
Dispersing agent NaPO3	Amount 4 %	Wt. of soil, W. 77.00
Zero correction	Meniscus correction	1

Date	Time of reading	Elapsed time, min	Temp., °C	Actual Hyd. reading R,	Corr. Hyd. reading R,	96 Finer	Hyd. Corr. only for meniacus R	L from Table 18-5	$\sqrt{\frac{1}{1}}$	K trom Table 6-4	D. mm
./:7	213		20							10137	
		.5		53	SD	64.9	54	7.4			.0527
		1		42	49	43.6	43	9,2			,0416
		1.5		37	34	44.2	38	1.01			.0355
		2		31	28	36.4	32	11.1			.032
		3		25	22	28.6	24	12.0			.027
		4		20	17	22.1	21	12.9			.024
		12		9	6	7.8	10	147			.015
		60		3	0	0	4	15.6			.006
											

R. = Remain - zero correction + C,

2M 13.56

•

No finer - R/a/W.

D=KVIA

PORM 308 (PEV. 1996)

٠

,

.

t,

(20)

METCALF & EDDY

GRAIN SIZE ANALYS	IS-HYDROMETER	METHOD	
Project USCE - PT; TOTICN	Job No	2332	
Location of Project QUEENS, N.Y.	Boring No. MW_3	3_ Sample No 57	
Description of Soil	Depth of Sample	20-22'	
Tested By W.CHECCH	Date of Testing	ruy 6 1987	
Hydrometer analysis			
Hydrometer no. 152 H G, of so	olids =		•
Dispersing agent NaPOz	-		136.97
	_ Meniscus correction _	1	

Date	Time of reading	Elapsed time, min	Temp., °C	Actual Hyd. reading R.	Corr. Hyd. reading R,	96 Finer	Hyd. Corr. only for meniscus R	L from Table 6-5	√ +	K from Table 6-4	D. mm
7/1/37	2119	0	20							.0157	
		0,5		+60				-			
				57	54	39.4	5B	6.8			,0357
		1.5		51.5	485	35.4	52.5	7.7			.0310
		2		49	46	33.6	So	8.1			.0274
		3		44	41	29.9	45	89			0236
		4		41	38	27.7	42	9.4			.0210
		8.5		33	30	21.9	34	107			.0154
		22		24	21	15.3	び	12.2			.0102
		55.5		17.5	14.5	10.6	18.5	13.25			.0067
		148		12	9	6.6	13	14.2			10042
7/-7	::*:	695		8	5	3.6	?	14.8			10020
_											

2010 correction + C, 10 : 1/2 Z · 1/ 10 : 7 R.= R.

% finer = R(a)/W,

D=KVLA

(2.6)

•

-	M	ET	CA	LF	8	ED	DY	
---	---	----	----	----	---	----	----	--

í

GRAIN SIZE ANALYSIS-	HYDROMETER METHOD
Project USCE - PT. TO ITEN	Job No
Location of Project QUEENS NY	Boring No. MW 4 Sample No. 54
Description of Soil	Depth of Sample 10 - 11, 2
Tested By W. CHECCH	Date of Testing July 6 1987
Hydrometer analysis	• •
Hydrometer no. <u>152 H</u> G, of solid	2.65
Dispersing agent NaPO2 A	mount 4% Wt. of soil, W. 92.90
Zero correction 3	feniscus correction
•	

Date	Time of reading	Elapsed Sime, Min	Temp., °C	Actual Hyd. reading R,	Corr. Hyd. reading R,	96 Finer	Hyd. Corr. only for meniacus R	L trom Table 6-5	√ +	K 500 84	D. mm
7/6/27	2253	0	20	•						.0137	
		.25		34	31	33.4	35	185			,0888
		.5		30	27	29,1	31	11.2			10648
		1		27	24	25.8	28	11.8			.0471
		2		23	20	21.5		12.4			.0341
		4		20	17	18.3	21	12.9			.0246
	- N.	9		17.5	14.5	15.6	185	13.25			10166
		19		15	12,	12.9	16	137			,0116
		31		14	11	11.8	15	138			.0091
		81.5		10	7	7.5	11	14.5			10058
<u> </u>		172		9	6	6.4	10	14.7			.0040
•											
•											
				· · · · ·							
<u></u> -											
R. = Rada	y • 2910 CC	orrection 4	· · · 2	8 u 10 b	0,23	96 tine	r = RjejA	N.	•	<u> </u>	D-K\U

PORM SOS (NEV. 1946)

1

(°)

METCALF & EDDY

-

GRAIN SIZE ANALYSIS-HYDI	ROMETER METHOD
Project USCE - FT. TOTTEN Job P	10
Location of Project QUEEUS, NY Borin	g No. HUS Sample No. 57
Description of Soil Depti	
Tested By W. CHECCHi Date	
Hydrometer analysis	•
Hydrometer no. <u>IS2 H</u> G, of solids =	2.65 1.00
•	4% Wt. of soil, W. 103. 18
Zero correction Menisci	us correction

	Date	Time of reading	Elapsed time, shin	Temp., °C	Actual Hyd. reading R,	Corr. Hyd. reading R,	4 Finer	Hyd. Corr. only for meniacus R	L from Table 6-5	√ +	K from Table 6-4	D. Imm
(10)	7/6/37	24 03	.25		20	17	16.5	21	12.9		,0137	
			.5		14	11	6.7	15	138			.0720
			1		12.5	9.5	9.2		141			.0514
			1.5		11.0	8	7.8	12	14.3			10423
			2		10.5	7.5	7.3	11.2	14.4			.0368
			3		10	7	6.8	11	14.5			10301
		~	4		9	6	5.8	10	14.7			.0263
			9.5		8.5	55	5.3	4.5	14.2			.0171
			21.5		8	5	4,8	9	14.8			<u>10/14</u>
			72.		6	3	2.9	7	15.2			10063
		11	162		5	2	1.9	6	15:5			,0042
	R _e = R _{ach}	w - 2010 Ci	prrection 4	20 2N 2N	0.95 .8.17 17.77		96 fine	- R₍a) A	W.			D=K\ []?
NM 306 (MB	(V. 1878))			30	1111							

R,= 1

e,

METCALF & EDDY

GRAIN SIZE ANALYS		
Project USCE - FT TOTTEN	Job No Z332	
Location of Project QUEONS, N.Y.	Boring No. MWS Sample No. 57	
Description of Soil	Depth of Sample	
	Date of Testing JUH 6 1987	
Hydrometer analysis	•	
	solids = 2.65 a = 1.00	
Dispersing agent Na POg	Amount Wt. of soil, W. 104.66	Þ
Zero correction		

Date	Time of reading	Elapsed Sime, min	Temp., °C	Actual Hyd. reading R,	Corr. Hyd. reading R,	96 Finer	Hyd. Corr. only for meniacus R	L trom Table 6-5	√ +	K trom Table 6-4	D. mm
7/0/87	21 08	0	20							0137	
		.25		+60							
		15		460							
		1		60	57	54.5					
		1.5		67	54	51,6	58	68			,0 292
	~	2		55	52	49.7	5	7:1			.0258
		4		51.5	485	46.3	52.5	27			.0190
		10.5		41	38	36.3	42	9.4			.0130
		18.5		36.5	335	32.0	37.5	6.15			.0101
		36		31	25	26.8	32	11.1			10070
		63		26	23	22.0	27	11.9		·	.0059
		158		20	17	16.2	21	129			10039
ר <u>י</u>	25:6	663		14.5	11.5	11.0	15.5	13.75			.0520
		orrection ·	• c .		1	96 fine	r = R.(a)/	L W.	I	1	0-RVIA

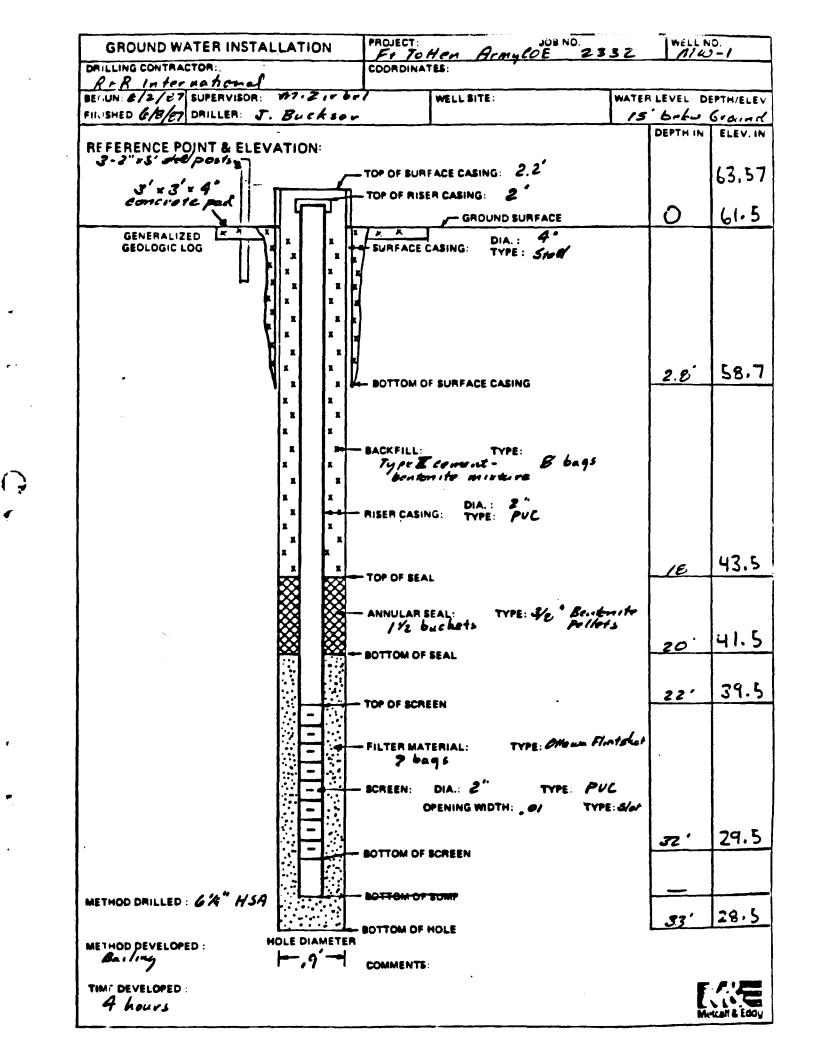
% finer - R.(a)W,

R.-

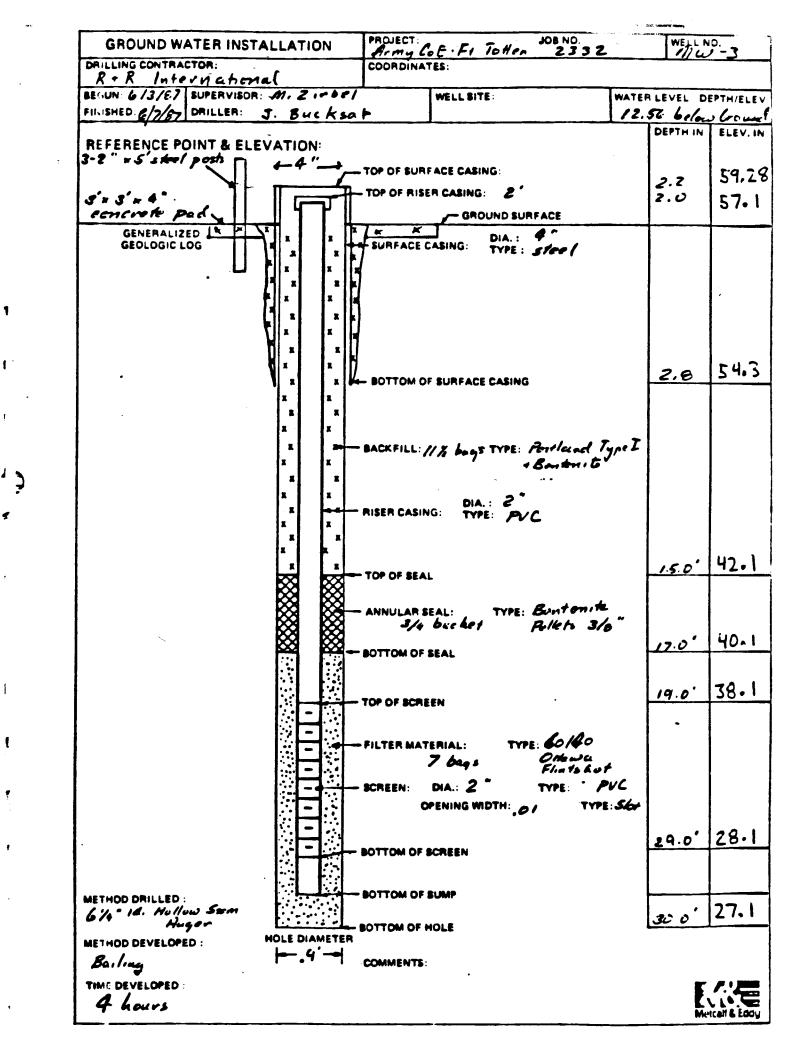
2010 correction + C, 25 3.65 34 17.19 3I 41.60

(15)

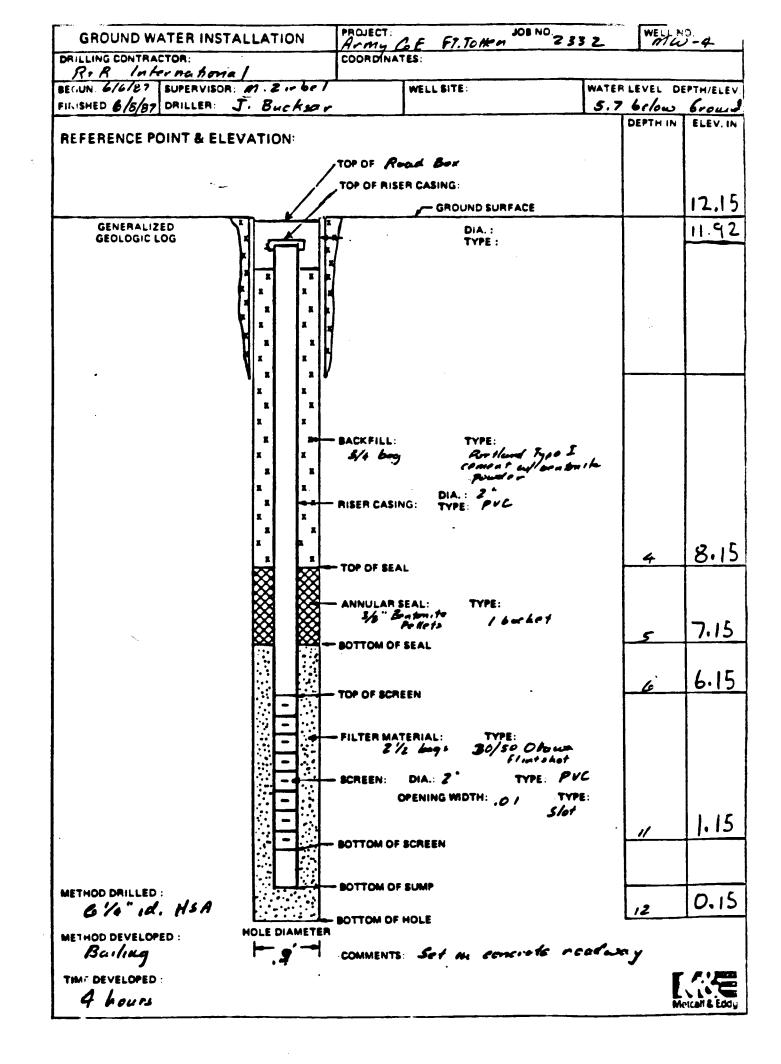
APPENDIX B

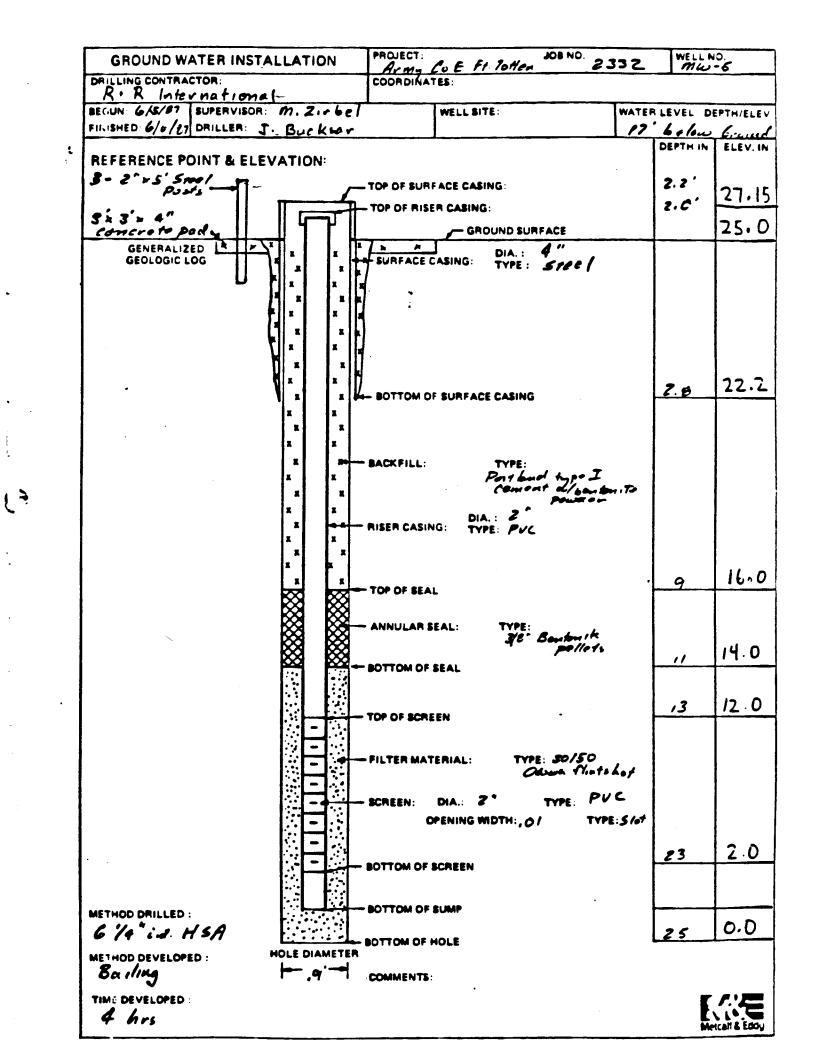

MONITORING WELL COMPLETION DIAGRAMS


,


ı

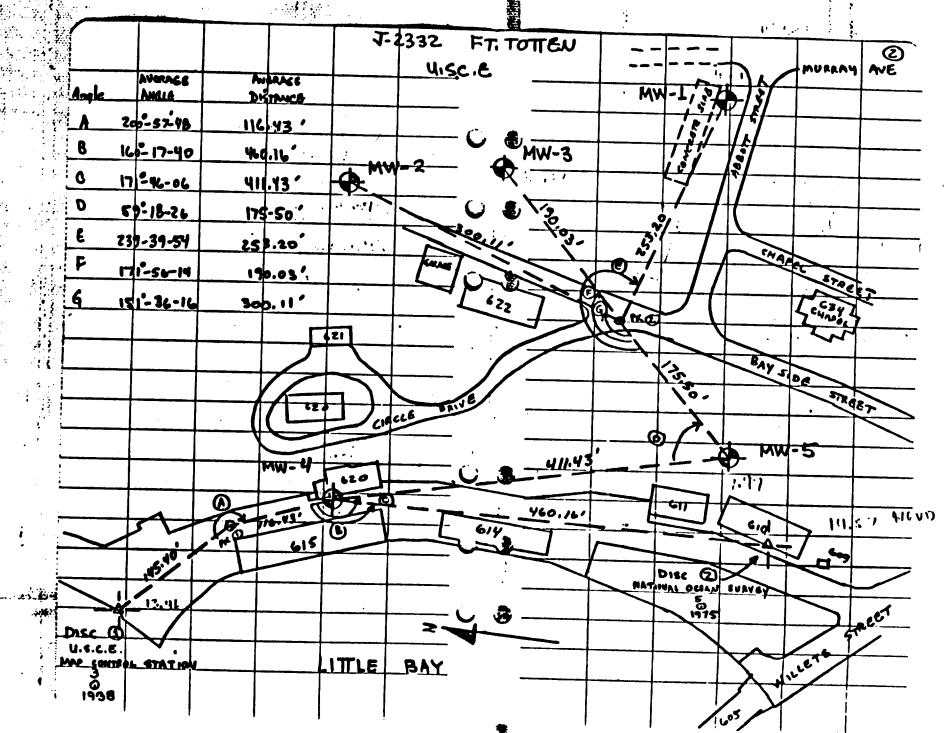
ę


•



ŧ

APPENDIX C


-

.

WELL SURVEY DATA

					anan a	A ar	-			ι Ι					l i
		5 5						6 .			:			ŕ	· · · · · · · · · · · · · · · · · · ·
19.000 (19.000))))))))))))))))))))))))))))))))))			•	•	:		J 233		FT	, το Π	en.				3
	BE	Cr)	MARK	1 D	isc 2;				1	BM 1	+ 5.22	19.79		14.57	(HGYD)
		Nat	ional_	OCEAN S	UR 101	$\left \right $	<u>۸</u>			1 97	+ 5,31	17.78	-7.32	12.47	
		w	Shia GTC	N D.	d. '	(1975	V		U	BM 2	+ 3.21	16.67	- 4.32	13.46	
	PER				SECTION	NOM	123			TP 2	+ 5.44	17.59	-452	12.15	Concrete MN-4
			(301)	443-846	8	6001 YENSIN	EREC. BUT		J				- 5,67	11.92	H: Pt. HU PUC LU
	· `	6.	00 A.	t Mea	n low h	1	-						-5.72	11.87	PVC. Rise
			28 =		ow Wa		\mathbf{P}		J	BM-1	+ 4.03	18.60	-3.02	14.57	disc 2
				.G.V.		DI	Se elev.		-	TP 3	+ 12.46	28.80	-2.26	16.34	
				-	De.	(= 17	73 MLLV	() N)	1	TP 9	+11.35	38.50	-1.65	27.15	MW - 5
			42= }			ter	0R		1			*	-11.49	27.01	TOP PVC
					hah Hig								- 13.5	25.0	GROWNI MW-5
	BEN				Disc 1			-		TP. S	+ 19.89	53.64	- 4.75	33.75	
	-				of Bm	incers	1.	_	,	TP .6	+ 8.19	61.39	- 0.44	53.20	
			p Contro	1	1 1	3			J			~	-0.26	61.13	The prot
•						(1938	2	-		, <u>, , , , , , , , , , , , , , , , , , </u>			-0.33	61.06	Tor PVC MW-2
• • • •			EVATIO	0 = 16	.34 8	M.L.W	12		J				-2.5	58.9	GROUND MW-2
				OR	t	/			-	<u>79. 7</u>	+ 5,63	64.91	-2.11	59.28	TOP PROTE
station in a constant station			16.4		Above 3			-	•			×	-5.78	59.13	TOP PUC MW-3
•				2	tews				٦			1	- 7.8		GROUND MULT 3
	· · · · ·			13.46	NEVD			-		r.p. 9	+ 3.21	66.78	I	63.57	MW-1
•	:				+•		1	-		<u></u>	- 3.61	× ***	-3.38	63,40	TOP PVI
· · ·							1						-5.3	61.5	MW-1 GROUND

,

.

. .

....

· . -

A. •

5.1

: 1

1

1

APPENDIX D

ł

1

ļ

;

RAI ANALYTICAL DATA

Field Identification: 2332-301 Fort Totten Well #1 Naboratory Number: 10,465-3

Matrix: Water

Parameter	Date Analyzed	<u>Method/Reference</u>	<u>Concentration</u>
Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
Barium, recoverable (mg/L)	7/30/87	6010/1	• 0.2
Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
Chromium, recoverable (mg/L)	7/30/87	6010/1	0.031
Mercury, recoverable (mg/L)	7/28/87	7470/1	<0.0005
Lead, recoverable (mg/L)	8/11/87	6010/1	0.0072
Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-302 Fort Totten Well #2 Laboratory Number: 10,465-6

.

Matrix: Water

· :

r	Parameter	Date Analyzed	<u>Method/Reference</u>	<u>Concentration</u>
	Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
4	Arsenic, recoverable (mg/L)	8/12/87	7060/1	0.016
	Barium, recoverable (mg/L)	7/30/87	6010/1	0.23
	Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
÷	Chromium, recoverable (mg/L)	7/30/87	6010/1	0.097
'	arcury, recoverable (mg/L)	7/28/87	7470/1	<0.0005
	Lead, recoverable (mg/L)	8/11/87	6010/1	0.030
1	Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-303 Fort Totten Well #3 Laboratory Number: 10,465-9 Matrix: Water

۱	Parameter	Date <u>Analyzed</u>	<u>Method/Reference</u>	<u>Concentration</u>
	Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
₹	Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
	Barium, recoverable (mg/L)	7/30/87	6010/1	<0.1
	Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
-	Chromium, recoverable (mg/L)	7/30/87	6010/1	0.032
-	Mercury, recoverable (mg/L)	7/28/87	7470/1	<0.0 005
	Lead, recoverable (mg/L)	8/11/87	6010/1	0.0069
,	Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-304 Fort Totten Well #4 Laboratory Number: 10,465-12

. .

•

1

•

1

1

Matrix: Water

Parameter	Date Analyzed	<u>Method/Reference</u>	<u>Concentration</u>
Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
Barium, recoverable (mg/L)	7/30/87	6010/1	0.15
Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
Chromium, recoverable (mg/L)	7/30/87	6010/1	0.072
Mercury, recoverable (mg/L)	7/28/87	7470/1	<0.0 005
Lead, recoverable (mg/L)	8/11/87	6010/1	0.33
Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-306 Fort Totten Well #6 Matrix: Water
Laboratory Number: 10,465-15

Parameter	Date Analyzed	<u>Method/Reference</u>	<u>Concentration</u>
Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
Arsenic, recoverable (mg/L)	8/12/87	7060/1	0.018
Barium, recoverable (mg/L)	7/30/87	6010/1	0.19
Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
Chromium, recoverable (mg/L)	7/30/87	6010/1	0.071
'ercury, recoverable (mg/L)	7/28/87	7470/1	<0.0005
Lead, recoverable (mg/L)	8/11/87	6010/1	0.016
Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-308 Well Samp Blk Laboratory Number: 10,465-18

Matrix: Water

.

ŕ	Parameter	Date <u>Analyzed</u>	<u>Method/Reference</u>	<u>Concentration</u>
	Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
	Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
	Barium, recoverable (mg/L)	7/30/87	6010/1	<0.1
	Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
	Chromium, recoverable (mg/L)	7/30/87	6010/1	<0.01
•	Mercury, recoverable (mg/L)	7/28/87	7470/1	<0.0005
	Lead, recoverable (mg/L)	8/11/87	6010/1	<0.005
	Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

Field Identification: 2332-305 Fort Totten Well #5 Laboratory Number: 10,465=22

٠.

-

.....

...,

,

.

۳

Matrix: Water

Parameter	Date <u>Analyzed</u>	<u>Method/Reference</u>	<u>Concentration</u>
Silver, recoverable (mg/L)	7/30/87	6010/1	<0.01
Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
Barium, recoverable (mg/L)	7/30/87	6010/1	<0.1
Cadmium, recoverable (mg/L)	7/30/87	6010/1	<0.005
Chromium, recoverable (mg/L)	7/30/87	6010/1	<0.025
Mercury, recoverable (mg/L)	7/28/87	7470/1	<0.0005
Lead, recoverable (mg/L)	8/11/87	6010/1	<0.005
Selenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

References: 1) EPA SW 846, 2nd Edition

...

LABORATORY CONTROL SAMPLE

.

Lab Number: 10429

1

٠١

Site: Fort Totten

WS 378 CONC. 12 (DOUBLE CONC.)

	<u>True Value</u>	Found	<pre>% Recovery</pre>	Method
Silver	0.092	0.038	41	7760
Arsenic	0.124	0.123	99	7060
Barium	0.924	0.841	91	7080
Cadmium	0.0148	0.012	81	7130
Chromium	0.134	0.131	98	7190
Mercury	0.016	0.017	107	7470
Lead	0.126	0.117	93	7420
Selenium	0.0186	0.0161	87	7740

CALIBRATION VERIFICATION

Lab Number: 10429	•		Site: Units:	Fort Totten mg/L
METALS:				
	<u>True Value</u>	Found	¥R.	Method
Arsenic	0.050	0.048	96	7060
Barium	20.0	20.0	100	7080
Cadmium	0.50	0.492	98	7130
Chromium	1.0	0.985	98.5	7190
Lead	10.0	10.0	100	7420

Control Limits: Mercury and Tin 80-120; Other Metals 90-110
 Indicate Analytical Method Used: P-ICP; A-Flame AA; F-Furnace AA

0.050 0.049

CALIBRATION VERIFICATION SOURCES

0.0050 0.00515 103

1.0 0.998 99.8

Dilution of Commercial AA Standard unless otherwise specified.

Mercury

Selenium

Silver

1

Resource Analysts, Incorporated

7470

7740

7760

99

QUALITY ASSURANCE/QUALITY CONTROL

.

MERCURY

-

1. Blank Data

Blank Number	•	Results <u>(ug/g)</u>
HgB 68		<0.05

-

2. Accuracy

ı

۲

1

+ +

T

,

Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentration Found <u>(ug/g)</u>	% <u>Recovery</u>
10429-27	2332-328	0.207	1.0	1.23	102
3. Prec	ision			1	% Relative
Sample	Field I.D.	Replicate 1 (ug/g)	Replicate 2 <u>(ug/g)</u>	Average (ug/g)	Range
10429-27	2332-328	0.209	0.204	0.207	2.4

SILVER

1.	Blank	Date.
֥	DIGHY	Dala

	Results
Blank Number	<u>(ug/g)</u>
MB 366	<0.5

2. Accuracy

Z. ACCU	Field I.D.	Original Concentration	Spike Level (ug/g)	Total Concentrati Found <u>(ug/g)</u>	on % Recovery
Sample	<u>Fleid I.D.</u>	<u>(ug/g)</u>		100/0/	Kecovery
10429-3	2332-320	<1	7.2	7.0	97
10429-21	2332-326	<1	6.0	5.8	97
3. Prec	ision				*
		Replicate 1	Replicate 2	Average	Relative
Sample	Field I.D.	<u>(ug/g)</u>	(ug/g)	<u>(ug/g)</u>	Range
10429-3	2332-320	<1	<1	<1	NC
10429-21	2332-326	<1	<1	<1	NC

Resource Analysts, Incorporated

•

ARSENIC

•	61	ank	ħ	-	-	•
•	DT	ант	ν	æ	5	a

٩

Blank Number	-	Results (ug/g)
MB 366	•	<1

2. Accuracy

			Original		Total Concentration	n
	Sample	Field I.D.	Concentration (ug/g)	Spike Level <u>(ug/g)</u>	Found (ug/g)	% Recovery
9	10429-3 10429-21	2332-320 2332-326	19 20	7.2 6.0	22.5 22.8	49 47
ł	3. Prec	ision				*
,	Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 <u>(ug/g)</u>	Average (ug/g)	Relative Range
	10429-3 10429-21	2332-320 2332-326	20 21	18 19	19 20	10.5 10
				BARIUM	~	
•	. Blan	k Data	Pagults			

Blank Number	Results <u>(ug/g)</u>
MB 366	<10

2. Accuracy

į

ì

٠

Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentrati Found <u>(ug/g)</u>	on % <u>Recovery</u>
10429-3 10429-21	2332-320 2332-326	94 5	724 602	757 617	91 102
3. Prec	ision				*
Sample	<u>Field I.D.</u>	Replicate 1 (ug/g)	Replicate 2 (ug/g)	Average (ug/g)	Relative Range
10429-3 10429-21	2332-320 2332 326	93 58	95 56	94 57	2 3.5

,

BARIUM

1.	Blank Data	•
		Results
	<u>Blank Number</u>	- <u>(ug/g)</u>
	MB 366	<0.5
	MD 200	·

_

2. Accuracy

.

1

č

ŧ.

,

.

.

ł

2. Accu		Original		Total Concentrati	
Sample	Field I.D.	Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Found (ug/g)	% <u>Recovery</u>
10429-3	2332-320	0.72	72	71	98
10429-21	2332-326	<0.6	60.2	55	90
3. Prec	ision				•
Sample	Field I.D.	Replicate 1 (ug/g)	Replicate 2 <u>(ug/g)</u>	Average (ug/g)	% Relative <u>Range</u>
10429-3	2332-320	0.69	0.74	0.72	6.9
10429-21	2332-326	<0.6	<0.6	<0.6	NC

CHROMIUM

1. Blank Data

Blank Number	Results <u>(ug/g)</u>
MB 366	<1

2. Accuracy

Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentration Found <u>(ug/g)</u>	% <u>Recovery</u>
10429-3	2332-320	39	725	796	104
10429-21	2332-326	27	602	640	102
3. Prec	ision				*
Sample	Field I.D.	Replicate 1 (ug/g)	Replicate 2 (ug/g)	Average (ug/g)	Relative <u>Range</u>
10429-3	2332-320	38	39	39	2.6
10429-21	2332-326	26	27	27	3.7

.

1. Blank Data

Blank Number	-	Results (mg/L)
MB 367	•	<0.1

2. Accuracy

2. ACCU				Total	
		Original Concentration	Spike Level	Concentratic Found	n %
<u>Sample</u>	<u>Field I.D.</u>	(mg/L)	(mg/L)	(mg/L)	Recovery
10465-3	2332-301	0.2	5.0	4.94	95

. .

3. Precision

.

ſ

٦

£

1.

J. 1160					*
Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	0.1	0.2	0.2	50

CHROMIUM

Blank Data	
Blank Number	Results (mg/L)
MB 367	<0.01

2. Accuracy

Sample	Field I.D.	Original Concentration <u>(mg/L)</u>	Spike Level <u>(mg/L)</u>	Total Concentration Found <u>(mg/L)</u>	% Recovery
10465-3	2332-301	0.031	5.0	5.4	107
3. Prec	ision				*
Sample	<u>Field I.D.</u>	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	0.032	0.029	0.031	9.7

		,			LEAD		
	1.	Blan	k Data	-			
	<u>Blank Number</u> MB 367 2. Accuracy		<u>k Number</u>	Results <u>(mg/L)</u>			
			67	<0.1			
			racy	·-			
	Sam	ple	Field I.D.	Original Concentration <u>(mg/L)</u>	Spike Level <u>(mg/L)</u>	Total Concentration Found <u>(mg/L)</u>	k <u>Recovery</u>
.		65-3	2332-301	<0.1	5.0	4.97	99
,	3. Precision						*
	Sam	ple	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
	104	65-3	2332-301	<0.1	<0.1	<0.1	NC
	NC	= not	calculable	due to results	below detecti	on limit.	
					SELENIUM		
	 Blank Data <u>Blank Number</u> MB 367 		k Data				
			k Number	Results (mg/L)			
•			67	<0.01			
	2.	Accu	racy			Total	
1	Sam	ple	Field I.D.	Original Concentration <u>(mg/L)</u>	Spike Level (mg/L)	Concentration Found (mg/L)	% Recovery
	104	65-3	2332-301	<0.01	0.05	0.0111	22
	3.	Prec	ision				•
7	<u>Sam</u> j	ple	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	% Relative <u>Range</u>
,	104	65-3	2332-301	<0.01	<0.01	<0.01	NC
	NC	= not	calculable	due to results	below detecti	on limit.	

1

ţ

۲

.

÷

Resource Analysts, Incorporated

. .

SILVER

Blank Data	
Blank Number	-Results <u>(mg/L)</u>
MB 367	<0.02

2. Accuracy

,

	•	Original		Total Concentratio	n
Sample	Field I.D.	Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Found (mg/L)	% <u>Recovery</u>
10465-3	2332-301	<0.01	0.05	0.053	106

. 3. Precision

Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.01	<0.01	<0.01	NC

CADMIUM

1. Blank Data

Blank Number	Results (mg/L)
MB 367	<0.005

2. Accuracy

•

.

	×	Original		Total Concentratio	n
Sample	Field I.D.	Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Found (mg/L)	% <u>Recovery</u>
10465-3	2332-301	<0.005	0.5	0.477	94

3. Precision

Sample	Field I.D.	Replicate 1 <u>(mg/L)</u>	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.005	<0.005	<0.005	NC

NC = Not calculable due to result below detection limit.

•

•

T. DIGHY Dara	1.	Blank	Data
---------------	----	-------	------

,

DIGHT DECC	·
Blank Number	Results (ug/g)
MB 366	<1

•• ----

2. Accuracy

.

,

ī.

2

₹

٩

<u>Sample</u>	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentration Found <u>(ug/g)</u>	% <u>Recovery</u>
	2332-320	<1	7.2	4.1	57
10429-21	2332-326	<1	6.0	2.6	43
3. Prec	ision				

Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 (ug/g)	Average (ug/g)	% Relative <u>Range</u>
	2332-320	<1	<1	<1	NC
	2332-326	<1	<1	<1	NC

NC = Not calculable due to result below detection limit.

1. Blank Data

-

LEAD

<u>.</u>

Blank Number	Results (ug/g)
MB 366	(1

2. Accuracy

2. Attu	T GCl			Total	
Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level (ug/g)	Concentratio Found <u>(ug/g)</u>	n <u>k</u> <u>Recovery</u>
10 429-3 10 429-2 1	2332-320 2332-326	40 45	724 602	684 578	89 89
3. Prec	ision				
Sample	Field I.D.	Replicate 1 (ug/g)	Replicate 2 (ug/g)	Average <u>(ug/g)</u>	% Relative <u>Range</u>
10429-3 10429-21	2332-320 2332-326	40 47	40 43	40 45	0 8.9

Resource Analysts, Incorporated

Ŧ

1. Blank Data

1

•		Results
<u>Blank Number</u>		(mg/L)
	•	
MB 367		<0.01

-

2. Accuracy

	Original			Total Concentration		
1	Sample	Field I.D.	Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Found (mg/L)	% <u>Recovery</u>
	10465-3	2332-301	<0.1	0.05	0.0427	85

3. Precision

1

ļ

Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	% Relative <u>Range</u>
10465-	3 2332-301	<0.01	<0.01	<0.01	NC
				

NC = Not calculable due to result below detection limit.

MERCURY

1. Blank Data

· · · · · · · · · · · · · · · · · · ·	Results
Blank Number	(mg/L)
MB 367	<0.0005

2. Accuracy

Sample	Field I.D.	Original Concentration <u>(mg/L)</u>	Spike Level <u>(mg/L)</u>	Total Concentration Found <u>(mg/L)</u>	% <u>Recovery</u>
10465-3	2332-301	<0.0005	0.01	0.00755	76
3. Prec	ision				¥

Sample	Field I.D.	Replicate 1 <u>(mg/L)</u>	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.0005	<0.0005	<0.0005	NC
NC = Not	calculated	due to result	below detection	n limit.	

•

÷

•• •••

نې

ſ

1

ļ

7

· · ,

VOLATILE ORGANICS	STANDARD		RECOVERY	DETECTION LIMIT (ug/g)
CHLOROMETHANE	(ug/g)	(ug/g/	0.0	1.0
VINYL CHLORIDE	6.2	* * 6.8 *	0.0	1.0
	6.2	6 8	109.7	0.5
	6.2	0.0 *	0.0	
CHLOROETHANE BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,2-trans-DICHLOROETHYLENE CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE	6.2	3.7		
MEINIDENE CREOKIDE	6.2	5.7	02 5	0.5
1,1-DICHLOROETHILENE	6.2	5.0	93.5 88.7 95.2 90.3	0.5
1, 1-DICHLOROETHANE	0.2	5.5	00.7	0.5
1,2-trans-DICHLOROETHILENE	0.2	5.7 E (99.2	0.5
	6.2	5.0	96.8	0.5
1, 2-DICHLOROETHANE	0.2	6.U	90.3	0.5
1,1,1-TRICHLOROETHANE	6.2	5.6		
CARBON TETRACHLORIDE	6.2	5.7	91.9	0.5
		6.1 6.1 6.2	98.4	0.5
1,2-DICHLOROPROPANE	6.2	6.1	98.4	0.5
1,2-DICHLOROPROPANE 1,3-trans-DICHLOROPROPENE TRICHLOROETHYLENE BENZENE 1,3-cis-DICHLOROPROPENE	4.8	6.2	129.2	0.5
TRICHLOROETHYLENE	6.2	6.2		0.5
BENZENE	6.2	6.1	98.4	
		6.1	78.2	0.5
1,1,2-TRICHLOROETHANE 2-CHLOROETHYL VINYL ETHER	6.2	6.7 6.2 6.5	108.1	0.5
2-CHLOROETHYL VINYL ETHER	6.2	6.2	100.0 104.8	0.5
DIBROMOCHLOROMETHANE BROMOFORM	6.2	6.5	104.8	0.5
BROMOFORM	6.2 6.2 6.2 6.2	6.5	104.8	0.5
TETRACHLOROETHYLENE	6.2	6.4		0.5
1,1,2,2-TETRACHLOROETHANE	6.2	6.6	106.5	0.5
TOLUENE	6.2	6.6	106.5	0.5
CHLOROBENZENE	6.2	6.1	98.4	0.5
ETHYLBENZENE	6.2	6.1 5.9	98.4 95.2	0.5
	<i>.</i> .			0 F
	6.2	5.7	91.9	
	6.2		95.2	0.5
THF	6.2	6.2	100.0	2.5
MEK	6.2	6.6	106.5	2.5
VINYL ACETATE	6.2 6.2	6.6 5.6 5.6 6.0	106.5 90.3 90.3 96.8	1.0
MIBK	6.2	5.6	90.3	2.5
2-HEXANONE	6.2	6.0	96.8	2.5
STYRENE	6.2	6.1	98.4	0.5
XYLENES	17.0	16.0	94.1	0.5

* The retention times have changed and Chloromethane eluted before scan start delay began. Vinylchloride and Bromomethane's baseline detection is poor due to new column bleed.

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

Lab Number: Sample Designation: Date Analyzed:	•	WP017C1 C3823 8/3/87	HALO
Matrix:	-	Water	

,

,

1

1

VOLATILE ORGANICS	TRUE	CONC	. DETECTION	\$
1	VALUE	FOUN		RECOVERY
	(ug/L)	(ug/L) (ug/L)	
CHLOROMETHANE	BDL	BDL	-	
VINYL CHLORIDE	BDL	BDL		
CHLOROETHANE	BDL	BDL		
BROMOMETHANE	BDL	BDL		
METHYLENE CHLORIDE	98.0	65.9	5	67
1,1-DICHLOROETHYLENE	BDL	BDL	5	
1,1-DICHLOROETHANE	BDL	BDL	5	
1,2-trans-DICHLOROETHYLENE	BDL	BDL	5	
CHLOROFORM	60.4	39.3	5	65
1,2-DICHLOROETHANE	90.2	85.0	5	94
1,1,1-TRICHLOROETHANE	73.8	25.4	5	34
CARBON TETRACHLORIDE	92.7	22.8	5	24
BROMODICHLOROMETHANE	84.5	77.7	5	92
1,2-DICHLOROPROPANE	BDL	BDL	5	
1,3-trans-DICHLOROPROPENE	BDL	BDL	5	
TRICHLOROETHYLENE	55.1	22.3	5	40
BENZENE	BDL	BDL	5	
1.3-cis-DICHLOROPROPENE	BDL	BDL	5	
1,1,2-TRICHLOROETHANE	BDL	BDL	5	
2-CHLOROETHYL VINYL ETHER	BDL	BDL	5	
DIBROMOCHLOROMETHANE	71.7	89.0	555555555555555555555555555555555555555	124
BROMOFORM	97.8	122	5	125
TETRACHLOROETHYLENE	48.0	19.0	5	39
1,1,2,2-TETRACHLOROETHANE	BDL	BDL	5	
TOLUENE	BDL	BDL	5	
CHLOROBENZENE	79.1	55.6	5	70
ETHYLBENZENE	BDL	BDL	5	
ACETONE	BDL	BDL	25	
CARBON DISULFIDE	BDL	BDL	5	
THF	BDL	BDL	25	
MEK	BDL	BDL	25	
VINYL ACETATE	BDL	BDL	10	
MIBK	BDL	BDL	25	
2-HEXANONE	BDL	BDL	25	
STYRENE	BDL	BDL	5	
XYLENES	BDL	BDL	5	
SURROGATE STANDARDS RECOVERY				
	RECOVERY (%)		ACCEPTANCE LIMITS (%)	
d4-DICHLOROETHANE	100		70 - 121	
d8-TOLUENE	106		81 - 117	
BROMOFLUOROBENZENE	102		74 - 121	
Bromof Boorobenzene	T V Z		19 - 161	

-

٠

Lab Number:	, Blank	
	C3816	
Date Analyzed:	8/3/87	
latrix:	Water	
	Hater	
7		
VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
·	(ug/L)	(ug/L)
CHLOROMETHANE	BDL	10
VINYL CHLORIDE	BDL	10
CHLOROETHANE	BDL	5
BROMOMETHANE	BDL	5
METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	3	5
1,1-DICHLOROETHYLENE	BDL	5
1,1-DICHLOROETHANE	BDL	5
1,2-trans-DICHLOROETHYLENE	BDL	5 5
CHLOROFORM	BDL	5
1,2-DICHLOROETHANE	BDL	5
1,1,1-TRICHLOROETHANE	BDL	5
CARBON TETRACHLORIDE	BDL	5
BROMODICHLOROMETHANE	BDL	5
1,2-DICHLOROPROPANE	BDL	5
1,3-trans-DICHLOROPROPENE	BDL	5
TRICHLOROETHYLENE	BDL	5
BENZENE	BDL	5
1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL	5
1,1,2-TRICHLOROETHANE	BDL	5
2-CHLOROETHYL VINYL ETHER	BDL	5
DIBROMOCHLOROMETHANE	BDL	5
BROMOFORM	BDL	5
TETRACHLOROETHYLENE	BDL	5
1,1,2,2-TETRACHLOROETHANE	BDL	5
TOLUENE	1.6	5
CHLOROBENZENE	BDL	5
ETHYLBENZENE	BDL	5
N.		
ACETONE	BDL	25
CARBON DISULFIDE	BDL	5
THF	BDL	25
MEK	BDL	25
VINYL ACETATE	BDL	10
MIBK	BDL	25
2-HEXANONE	BDL	25
STYRENE	BDL	5 5
XYLENES	BDL	5

SURROGATE STANDARDS RECOVE	CRY	
	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-dichloroethane	90	76 - 114
d8-TOLUENE	94	88 - 110
BROMOFLUOROBENZENE	102	86 - 115

.

,

Lab Number: Sample Designation: Date Analyzed: Matrix:		MeOH Blank 7/29 C3839 8/3/87 Solid
	-	

.

-

. .

•

7

	•		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g)	(ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	VINYL CHLORIDE CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
	BROMOMETHANE BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	1.4 BDL	0.5
1	1,1-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
	1,2-trans-DICHLOROETHYLENE		0.5
r	-	BDL	0.5
	1.2-DICHLOROETHANE	BDL.	0.5
	1,1,1-TRICHLOROETHANE	BDL BDL	0.5
	CARBON TETRACHLORIDE	BDL	0.5
		BDL	0.5
	1 2-DICHLOROPROPANE	BDI.	0.5
	1,3-trans-DICHLOROPROPENE	BDL BDL BDL	0.5
,		BDL	0.5
	TRICHLOROETHYLENE BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE		0.5
	1,1,2-TRICHLOROETHANE	BDL BDL BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL.	- 0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
	DIBROMOCHLOROMETHANE BROMOFORM	BDL	0.5
1	TETRACHLOROETHYLENE	BDL	0.5
1	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	TOLUENE	1.0	0.5
	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
	TOLUENE Chlorobenzene Ethylbenzene	220	0.5
	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
	MEK	BDL	2.5
,	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
•	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	···· • • • • • • • • •		0.5
	SURROGATE STANDARDS RECOVERY		

	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-DICHLOROETHANE	83	70 - 121
d8-TOLUENE	98	81 - 117
BROMOFLUOROBENZENE	96	74 - 121

	-	
Lab Number: Sample Designation: Date Analyzed: Matrix:	•	10,429-1 2332-320 Fort Totten Soil #1 8/3/87 Solid

• _-

7

.

•

•

•

•

•

.

VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
	(ug/g)	(ug/g)
CHLOROMETHANE	(ug/g) BDL	1
VINYL CHLORIDE	BDL	1
CHLOROETHANE	BDL	0.5
BROMOMETHANE	BDL	1
NOMUNI ENE CULODIDE	BDL	0.5
1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
1.1-DICHLOROETHANE	BDL	0.5
1,2-trans-DICHLOROETHYLENE		0.5
CHLOROFORM	BDL	0.5
CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE	BDL	0.5
1 1 1-TRICHLOROETHANE	BDL	0.5
CARBON TETRACHLORIDE	BDL	0.5
	BDL	0.5
1, 2-DICHLOROPROPANE	BDL	0.5
1,3-trans-DICHLOROPROPENE		0.5
T, J-CIENS DICHDOROFROT DAD	BDL	0.5
TRICHLOROETHYLENE BENZENE	BDL	0.5
	BDL	0.5
1,1,2-TRICHLOROETHANE	BDL	0.5
2-CHLOROETHYL VINYL ETHER	BDL	0.5
	BDL	0.5
	BDL	0.5
	BDL	0.5
1,1,2,2-TETRACHLOROETHANE		0.5
	BDL	0.5
TOLUENE	BDL	0.5
•	BDL	0.5
ETHYLBENZENE	קעם	0.5
ACETONE	BDL	2.5
CARBON DISULFIDE	BDL	0.5
THF	BDL	2.5
MEK	BDL	2.5
VINYL ACETATE	BDL	1
MIBK	BDL	2.5
2-HEXANONE	BDL	2.5
STYRENE	BDL	0.5
XYLENES	BDL	0.5
SURROGATE STANDARDS RECOVERY		
	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-DICHLOROETHANE	90	70 - 121
d8-TOLUENE	111	81 - 117
BROMOFLUOROBENZENE	102	74 - 121

ACID/BASE/NEUTRAL MATRIX SPIKE RECOVERY

- ' •

Laboratory Number:	10,429-2
Sample Designation:	2332-320 Fort Totten Soil #1
Date Analyzed:	8/12/87
Matrix:	Solid

.

7

.

,

1

,

a

COMPOUND	SAMPLE CONC. (ug/g)	CONC. SPIKE ADDED (ug/g)	CONC. SPIKE FOUND (ug/g)	% Recovery
1,4-DICHLOROBENZENE	0	3.3	0.3	9.090
ACENAPTHENE	0	3.3	2	60.60
2,4-DINITROTOLUENE	0	3.2	2.4	75
N-NITROSO-DI-N PROPYLAMINE	0	3.5	2.3	65.71
PYRENE	0	3.5	1.8	51.42
PHENOL	0	6.8	3.1	45.58
2-CHLOROPHENOL	0	9.5	3.4	35.78
1-CL-3-METHYLPHENOL	0	6.7 -	8.4	125.3
-NITROPHENOL	0	6.7	1.7	25
PENTACHLOROPHENOL	Ō	6.5	4.3	66

\$

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: BPA SW 846, 2ND EDITION METHOD 3550/8270

Resource Analysts, Incorporated

•••

Lab Number:10,429-4Sample Designation:2332-321 Fort Totten Soil #2Pate Analyzed:8/3/87atrix:Solid

.

7

· , •

	·_		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g)	(ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
1	METHYLENE CHLORIDE	BDL	0.5
•	1,1-DICHLOROETHYLENE	BDL	0.5
	BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
	1,2-trans-DICHLOROETHYLENE	BDL	0.5
1	CHLOROFORM	BDL	0.5
	1,2-DICHLOROETHANE	BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
÷	CARBON TETRACHLORIDE	BDL	0.5
•	BROMODICHLOROMETHANE	BDL	0.5
	BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL	0.5
	1,3-trans-DICHLOROPROPENE	BDL	0.5
1	TRICHLOROETHYLENE	BDL	0.5
	HENZENE.	BDI.	0.5
	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE 2-CHLOROETHYL VINYL ETHER	BDL	0.5
	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
I	BROMOFORM	BDL	0.5
:	TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
		BDL	0.5
	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
	TOLUENE CHLOROBENZENE ETHYLBENZENE		
	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
	MEK	BDL	2.5
Ŧ	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
.)	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY	RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)

	(%)	(\$;)
d4-DICHLOROETHANE	90	70 - 121
d8-TOLUENE	101	81 - 117
BROMOFLUOROBENZENE	101	74 - 121

. .

Laboratory Number:	10.429-5
Sample Designation:	2002-321 Fort Tetten Soil #2
Date Extracteo:	7/32/57
Date Analyzed:	5/3/27
(TETTIX:	Scil

-

•---

-

Results expressed on a dry (100 degrees C) basis. * Moisture Content: 5.75

٠

			DETECTION LIMIT			DETECTION LIF.
5		(uç/ş)	(uç/ş)		(ug/g)	luç′ş ¹
	NENITROSODIMETHYLAMINE	BDL	0.2	4-NITEGANILINE	801	1
	FHENOL	BOL	G.3	4.8-DINITRO-2-METHYLPHENCL	BUL	:
	Eis (2-CHLOROETHYL ETHES)	BDL	0.3	N-NITROSODIPHENYLAMINE (1)	BOL	0.C
ť	2-CHLOROPHENOL	BDL	D.3	4-BRONOPHENYL-PHENYLETHER	501	9.3
	1.3-DICHLOROBENZENE	BDL	0.3	HEXACHLOROBENZENE	BDL	5.3
	1:4-DICHLOROBENZENE	BDL	0.3	PENTACHLOROPHENOL	BOL	:
: :	EENZYL ALCOHOL	BDL	0.3	FHENANTHRENE	50L	ē.3
	1.2-DICHLOROBENZENE	BDL	C.3	ANTHRACENE	501	0.3
	2-METHYLFHENOL	BOL	2.3	DI-N-BUTYLFHTHALATE	EDL	0.3
1	Bis (2-CHLORDISOFROFYL) ETHER	BDL	0.3	FLUORDANTHENE	2	0.3
	4-METHYLPHENOL	BDL	0.3	BENZIDENE	501	r.
	HEXACHLOROETHANE	50.	0.3	PYRENE	1.7	0.2
	N-NITROBODI-N-PROFYLAMINE	BDL	0.3	BUTYLBENCYLFHTHALATE	EDL	C. J
1	"ITRUBENZENE	BDL	G.3	T.J'-DICHLGROBENZIDINE	361	0.7
	SOFHORONE	ED'L	6.3	EENZOIEFANTHRACENE	1.3	€.3
	2-NITROFHENDL	BDL	G 3	ÚMRYSENE	1	C.3
ł	2.4-DIMETHYLPHENGL	EDL	0.3	81512-ETHYLHEXYLJPHTHALATE	Q. 7	5.3
	EENZOIC ACID	BD1	1	DI-N-OCTYLPHTHALATE	BDL	5.3
	ELS (2-CHEORETHOXY) METHANE	EDL	0.3	BENZOFEFELUGRANTHENE	2.1	0.3
	2.4-DICHLOROFHENDL	BDL	6.3	BENZOIKIFLUORANTHENE	BD1	0.3
	1,2,4-TRICHLORUBENZENE	BDL	5.3	EENZOLSIPYRENE	1.4	ē.3
	NAPHTHALENE	BDL	D.3	IDENUL1.2.3-c.d}PYRENE	C.6	0.3
	4-CHLORGANILINE	BDL	0.3	DIBENZO(a.h)ANTHRACENE	EDL	0.3
(HEXACHLOROBUTADIENE	BDL	0.3	BENZO(g.h.i)PERYLENE	0.7	E.3
	4-CHLORO-3-METHYLFHENGL	BDL	2.3			
	2-METHYLNAPHTHALENE	BDL	0.3	SURROGATE STANDARDS RECOVERY		
1	MEXACHLOROCYCLOPENTADIENE	8DL	0.3			ACCEPTANCE LIMI
	1.4.5-TRICH_OROPHENC_	BDL	9.3		(\$)	183
	2.4.3-TRICHLOROFMENOL	5 0L	1	2-FL-PHENOL	14	21 - 100
	2-CHLORONAPHIMALENE	BDL	0.3	d6-PHENOL	15	10 - 90
- T	2-NITROANILINE	BDL	1	NITROBENZENE-d5	19	35 - 114
	DIMETHYLPHTHALATE	BDL	0.3	2-FL-BIRHENYL	27	43 - 11:
	ACENAPHTHYLENE	BDL	0.3	TRIEROMOPHENGL	29	- 12 - 122
	1.6-DINITROTOLUENE	BDL	0.3	TERFHENYL-d14	45	33 - 141
	3-NITROANILINE	50L	1			
	ACENAPTITHENE	BDL	0.3			
	2.4-DINITROPHENOL	BDL	1			
	L-NITROPHENCL	BD1	1			
	DIBENZOFURAN	BDL	0.3			
	4-DINITROTOLUENE	BDL	0.3			
	DIETHYLPHTHALATE	8DL	0.3	BOL = BELOW DETECTION LIMIT		
	4-CHLOROPHENYL-PHENYLETHER	BDL	0.3	METHOD REFERENCE: EPA SH 846. 2		
	FLUORENE	BDL	0.3	METHOD 3550/8	270	

.

a •		•
Lab Number: Sample Designation: Date Analyzed: Jatrix:	-	10,429-7 2332-322 Fort Totten Soil #3 8/3/87 Solid

7

.

· ·

	·		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g)	
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
		BDL	0.5
		BDL	1
4	METHYLENE CHLORIDE	BDL	0.5
	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
•	1,2-trans-DICHLOROETHYLENE	BDL	0.5
-	CHLOROFORM 1,2-DICHLOROETHANE	BDL BDL	0.5
	1,2-DICHLOROETHANE	BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
	CARBON TETRACHLORIDE	BDL BDL	0.5
	BROMODICHLOROMETHANE	זמפ	0.5
	1,2-DICHLOROPROPANE 1,3-trans-DICHLOROPROPENE	BDL	0.5
	1, 3- trans-Dichlokorkorene	BDL	0.5
	TRICHLOROETHYLENE BENZENE	BDL	0.5
		BDL	0.5
	1 1 2-TRICHLOROETHANE	BDL	0.5
	1,1,2-TRICHLOROETHANE 2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
	DIBROMOCHLOROMETHANE BROMOFORM TETRACHLOROETHYLENE 1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	TOLUENE	BDL	0.5
1	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
,	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
,	MEK	BDL	2.5
	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5 2.5
-	2-HEXANONE	BDL	0.5
	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-DICHLOROETHANE	66	70 - 121
	d8-TOLUENE	90	81 - 117
	BROMOFLUOROBENZENE	76	74 - 121

۰.

orstony Number:	10.429-E
ample Designation:	2332-322 Fert Titten Soil #3
late Extracted:	7/35/57
Date Ansiyzed:	1/2/27
Matrix:	50il

-

Results expresses on a dry H103 degrees CP basis. Miisture Content: 15.64

٩

.

• •		DETECTION LIMIT		CONCENTRATION (US/9)	DETECTION LIMI fug/ar
	(nð\č)	(uç/ç)		EDL	
N-NITROSODIMETHYLAMINE	BOL	0.2	4-NITROANILINE	BOL	•
' PHENOL	BDL	C.3	4.6-DINITRO-2-METHYLFHENDL	EDL	0.7
EIS (2-CHLORDETHYL ETHER	BDL	G. 3	N-NITROSUDIFHENYLAMINE [1]	601 691	0.3
2-CHLOROFHENOL	BDL	Ū.3	4-BROMOPHENYL-PHENYLETHER	EDL	0.0 0.2
1	20L	0.3	HEXACHLOROBENZENE		
1.4-DICHLORUBENZENE	BOL	0.3	PENTACHLOROPHENOL	501	• 5.2
BENZYL ALCOHOL	301	0.3	FHENANTHRENE	6DL	9.C 5.E
(1.2-DICHLORDEENZENE	801	5.3	ANTHRACENE	BD1	9.3
2-HETHYLEHENGL	ÊDL	9.3	DI-N-BUTYLFFTHALATE	BDL	0.0 • •
BIS HI-CHLOROISOPPOPILE ETHER	BDL	0.3	FLUORCANTHENE	Trace	₽.0 2
4-MET-YLEHENOL	BDL	6.3	EENZIDENE	EDL	2
HERACHLOFDETHANE	BDL	D.3	PYRENE	Trace	1.
NENTROSCOIEN-REPYLARINE	201	C.3	BUTYLEENZYLEHIMALATE	EDL	0. ?
NTRUEENZENE	BOL	2.3	3.31-SICHLOROBENZIDINE	601	C.7
ALGEDIZALEMI Nº ISOPHORONE	ED_	0. 1	EEN20-ALANTHRACENE	201	5.3
• • • •	BUL	5.3	CHRYSENE	B01	0.3
INTEROPHENOL	EDL	0.3	ESERC-ETHYLHEXYL IFHTHALATE	1.5	¢.1
<u>,</u>	50L	1	DI-N-OCTYLPHTHALATE	501	1.3
EEAZOIC ACIO	BDL	J.3	EENZOI'E (FLUORANTHENE	ĒDL	0.1
EIS (2-CHLOFETHOXY) METHANE	BDL	0.3	SENZGER DELUGEANTHENE	BDL	5.2
2.4-DICHLORGFHENDL	-	0.3	FENZOIEJFYRENE	80L	<u>0.2</u>
1.2.4-TRICHLOROBENZENE	EDL	0.3	IDEN((1.2.3-C.C)FYRENE	EAL	£.7
NAPHTHALENE	BDL	0.3	DIBENZOLS.BJANTHRACENE	EðL	
4-CHLORCANILINE	EDL	0.3 0.3	BENZCIG, h. i JFERYLENE	EDL	2.2
HEVACHLOROBUTADIENE	BDL		E De C (Bille & Fr En re En e		
1 4-CALORO-3-METHYLFHENDL	EDL	0.3	SURROGATE STANDARDS RECOVERY		
2-METHYLNAFITHALENE	80L	0.3	SURROUNTE STRADARES RECOVERS	RECOVERY	ACCEPTANCE LIMI
HEXACHLORDCYCLOPENTADIENE	BDL	0.3		141	(\$
2.4.5-TRICHLOROPHENDL	5 542	0.3	2-FL-PHENOL	• • · · · · · · · · · · · · · · · · · ·	21 - 190
I.4.5-TRICHLOFOFHENOL	SDL	1		32	10 - 94
2-CHLORONAPHTHALENE	BDL	6.3	ot-FRENGL	17	25 - 11-
2-NITROANILINE	BDL	1	NITROBENZENE-GB	2	43 - 11:
DIMETRYLPHTHALATE	BD1	0.3	2-FL-BIPHENYL	 20	18 - 127
ACENAPHTHYLENE	EDL	0.3	TRIEROMOFHENOL	73	33 - 141
2.1-DINITROTOLUENE	80L	0.3	TERFHENYL-C14	, ,	
3-NITEDANILINE	EDL	1			
ACENAFHTHENE	BDL	Q.3	· · · ·		
2.4-DINITROFHENOL	BDL	1	'Irace' denotas probable presen	ce Delow listed a	10120118-14411-
4-NITROPHENDL	B DL	1			
DIBENZGFURAN	EDL	C.3			
2.4-DINITEGTOLUENE	BUL	ĉ.3			
DIETHYLFHTHALATE	BDL	0.3	BOL = BELOW DETECTION LIMIT		
4-CHLOROPHENYL-PHENYLETHER	5DL	0.3	HETHOD REFERENCE: EPA SU 146.		
FLUORENE	BDL	0.3	METHOD 3550/	8270	

10,429-10 Lab Number: Sample Designation: 2332-323 Fort Totten Soil #4 ----Date Analyzed: 8/3/87 .atrix: Solid

.

7

.

.

	· _		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g) BDL	(ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
ч	METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
. .	1,2-trans-DICHLOROETHYLENE	BDL	0.5
•	CHLOROFORM	BDL	0.5
	1,2-DICHLOROETHANE -1,1,1-TRICHLOROETHANE	BDL BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
1	CARBON TETRACHLORIDE	BDL	0.5
	BROMODICHLOROMETHANE	BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
1	1,3-trans-DICHLOROPROPENE	BDL	0.5
	TRICHLOROETHYLENE	BDL	0.5
	BENZENE	BDL	0.5
ı	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL	0.5
	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5 0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
(BROMOFORM TETRACHLOROETHYLENE	BDL BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
		BDL	0.5
10	CHI OBOBENZENE	BDL	0.5
	ETUYI BEN7ENE	BDL	0.5
	TOLUENE Chlorobenzene Ethylbenzene		0.5
¥. 1	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
7	MEK	BDL	2.5
	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-DICHLOROETHANE	100	70 - 121
	d8-TOLUENE	105	81 - 117
	BROMOFLUOROBENZENE	103	74 - 121

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

٥	~
TBIORY NULDET:	10,429-11
ie Designation:	2332-323 Fort Totten Soil #4
ere Extrecteo:	7/30/57
ate Analýzed:	8/3/27
Terrix:	5011

-

isuits expressed on a dry (10) degrees C) basis. Toisture content: 5.6%

t

		DETECTION LINET			N DETECTION LIMIT
	(ug/g)	(uş/ş)		(uç/ş)	lug/g`
N-NITROSODIMETHYLAMINE	EDL	0.8	A-NETROANTLINE	EDL	1
" HENOL	801	0.3	4.x-DINITR(-2-RETHYLFHENDL	BDL	1
is (2-CHLOROETHYL ETHER)	BDL	D. J	N-KETROSODIFHENYLAMINE (1)	EDL	Ũ. J
I-CHLOROFHENOL	BDL	0.3		BOL	E.3
<pre>{ *.3-DICHLOROBENZENE</pre>	BDL	9.3	HERACHLOEDBENZENE	8 0L	0.2
.4-DICHLOROBENZENE	BDL	D. 3	TEN ACHLOROPHENOL	8D1	1
JENZYL ALCOHOL	EDL	0.3	PHENANTHRENE	BDL	0.3
1.2-DICHLOROBENZENE	BDL	0.3	ANTHRACENE	EDL _	0.3
-HETHYLFHENOL	SDL	0.3	DI-N-BUTHIFHT-ALATE	301	<u>• 1</u>
is (2-CHLORDISOPROPYL) ETHER	BDL	0.3	TLUGROANTHENE	BDL	ē.3
4-METHYLPHENOL	BDL	0.3	HENZIDENE	BDL	2
EXACHLOROETHANE	BDL	0.3	# YRENE	BDL	0.3
I-NITROSODI-N-FROPYLAMINE	BDL	0.3	BUTHLEENZYLEHTHALATE	EDL	0.3
VITROBENZENE	501	0.3	F.C'-DICHLORGEENZIDINE	801	Ū.7
TSOFHGRONE	80L	0.3	冠王和立今·18 LANTHRACENE	SDL	0.3
TROFBENG_	EDL	0.3	GHRYSENE -	BOL	0.2
-DIMETHYLPHENOL	EDL	0.3	BUM THAT HEXYL IFHTHALATE	1.4	6.1
EENZOIC ACID	BDL	:	DU-W-DUTMLTHTHALATE	BDL	ē.3
is (2-CHLORETHOXY) METHANE	8DL	0.3	BEDRED LD () FL UORAN THENE	Trace	C . T
.4-DICHLOROPHENOL	BOL	0.3	BENERD IN HELEDRANTHENE	601	C. 3
1.2.4-TRICHLORDBENZENE	EDL	0.3	ERIZOIA IFYRENE	BDL	<u>6.</u> 1
/ MARHIHALENE	Bo'	0.3	ICEINGIC . 2. 3-C. SIFYPENE	BDL	5.3
-CHLOROANILINE	SDL	6.3	FRENZU (B. M.) ANTHRACENE	EDL	Ū.]
HEXACHLOROBUTADIENE	BD1	2.3	HERE MILENE	BUL	2.3
4-CHLORG-3-METHYLPHENDL	8DL	0.3			
-HETHYLNAPHTHALENE	EDL	D. J	SUMPROSATE STANDARDE RECOVERY		
REXACHLOROCYCLOPENTADIENE	BDL	C. 3		RECOVERY	ACCEPTANCE LIMITE
2.4.6-TRICHLOROPHENOL	BDL	D. 3		(%)	11
1 2.4.5-TRICHLOROPHENOL	801	1	2-71-PHENDL	34	21 - 100
	EDL	Ũ. 3	1:-FIENOL	45	10 - 44
2-NETROANILINE	BDL	1	NI FROBENZENE-15	43	35 - 114
+ DIMETHYLPHIHALATE	BOL	G. 3	2-FL-ETFHENYL	52	63 - 11t
ACENAFHTHYLENE	BDL	0.3	TRESKONOFHENGL	59	10 - 123
2. E-DINITROTOLUENE	BDL	0.3		80	33 - 141
2-NITROANILINE	RDL	1			
ACENAPHTHENE	BDL	0.3			
1.4-DINITROPHENOL	BDL	1	Trace denotes probable presen	ce below listed de	tection limit.
4-NITROPHENOL	BDL	1			
DIEENZOFURAN	EDL	D.3			
0.4-DINITROTOLUENE	EDL	C. 3			
TETHYLPHTHALATE	BDL	0.3	RUL = RELOW DETECTION LIMIT		
HLORGPHENYL-PHENYLETHER	BDL	0.3	TENTOD REFERENCE: EPA SK S46.	2ND FOITION	
LUORENE	BDL	0.3	METHOD 3550/		

Resource Analysts, Incorporated

• :

Lab Number:	•	10. 4 29 - 13
Sample Designation:-		2332-324 Fort Totten Soil #5
Date Analyzed:		8/3/87
Matrix:		Solid

7

	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g)	(ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHIODOETHANE	BDL	
	CHLOROETHANE BROMOMETHANE		0.5 1
	BROMOMETRANE	BDL	
	METHYLENE CHLORIDE	BDL	0.5
.	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
	1,2-trans-DICHLOROETHYLENE	BDL	0.5
41	1,2-trans-Dichloroethylene Chloroform 1,2-dichloroethane 1,1,1-trichloroethane	BDL	0.5
)		BDL	0.5
		BDL	0.5
	CARBON TETRACHLORIDE	BDL	0.5
	BROMODICHLOROMETHANE	BDL	0.5
	BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL	0.5
	1,3-trans-DICHLOROPROPENE	BDL	0.5
	TRICHLOROFTHYLENE	BDL	0.5
	TRICHLOROETHYLENE BENZENE	BDL	0.5
	1 (3-cic-DICHIOROPROPENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL	0.5
;	2-CHLOBOETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER		
	DIBROMOCHLOROMETHANE BROMOFORM TETRACHLOROETHYLENE	BDL	0.5
	BROMOFORM	BDL	0.5
	TETRACHLOROETHYLENE	BDL	0.5
		BDL	0.5
	TOLUENE	BDL	0.5
1 i		BDL	0.5
,	ETHYLBENZENE	BDL	0.5
		BDL	2.5
	CARBON DISULFIDE	BDL	0.5
•	THF	BDL	2.5
	MEK	BDL	2.5
1	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
7	XYLENES	BDL	0.5
		222	0.0
	SURROGATE STANDARDS RECOVERY		
	DONNOGRIE SIANDARDS RECUVERI	RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	AA-DICHI OROFTUNIE	98	70 - 121
	d4-DICHLOROETHANE		
3	d8-TOLUENE	107	81 - 117
	BROMOFLUOROBENZENE	105	74 - 121
	•		

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

.

Resource Analysts, Incorporated

.

·.-.

. '

Laboratory Nucler:	10.429-14
ble Designation:	2332-324 Fort Totten Soil #5
ate Extracted:	7/35/37
.ata Analyzed:	3/3/87
*=****	Scil
	· _

-

-spuits expressed on a dry 103 degrees CE basis. Moisture content: 5.9%

.

	CONCENTRATION	DETECTION LIMIT			N GERECTRON LIMIT
	(us/s)	[ug/g]		(u;/s)	tuş/ş
N-NITROSODIMETRYLAMINE	801	C. 1	4-NITROANILINE	801	1
A HENOL	BDL	0.3	4.6-DINITRO-2-METHYLPHENOL	BDL	•
TIS (2-CHLOROETHYL ETHER)	50L	0.3	N-NITROSODIPHENYLAMINE (1)	BDL	0.3
2-CHLOROPHENOL	801	0.3	4-BFOMOPHENYL-PHENYLETHER	801	
1.3-DICHLOROBENZENE	20L	Ũ. 3	HEXACHLORGEENZENE	80L	E.2
	50L	9,3	PENTACHLOROFHENOL	E D L	1
PENZYL ALCOHOL	851	0.3	PHENANTHRENE	80L	5.2
1.2-DICHLORGBENZENE	BD'L	C.3	ANTHRACENE	6 11	5. J
I-METHYLPHENOL	BOL	0.3	DI-N-BUTYLFHTHALATE	30L	5.3
IS (2-CHLOROISOFROFYL) ETHEP	ED'	Ū.3	FLUORGANTHENE	Trace	5.7
1-METH (PHENOL	EDL	5.3	EENZIGENE	<u>801</u>	2
HEXACHLOFDETHANE	BDL	0.3	FYRENE	EDL	5.1
N-NITECSODI-N-FROEVLAMINE	301	0.3	BUTYLEENZYLEHTHALATE	801	· · · ·
ATTROBENZENE	BUL	6.3	2.3 -DICHLOROBENZIDINE	BDL	C.7
, IEGREORCNE	501	C.3	BENZQIE }ANTHRACENE	20 <u>5</u>	
- T-NITESPHERCE	B: _	C.3	CHRYSENE	EC.	. 1
-DINETHYLEMENCE	5D_	ē.3	BILILETHYLHEXYLHPHTHALATE	1,7	
SENTOIC ACID	80.	1	SI-N-CCIYLPHIHALATE	BDL	5.3
SEE F2-CHLORETHONK METHANE	801	0.7	BENZOFDIFLUORANTHENE	Trace	2 P
2.4-DICHLORDFHENGL	301	0.3	BENZOFA BELLIOFAN THENE	E D L	.
1.2.4-TRICHLOROBENZENE	501	0.3	BEN20133FYRENE	EDL	• • •
/ MAPHIMALENE	BOL	0.2	IDENG(1.1.3-0.0)FYRENE	272	2.3
- K-CHLOFDANILINE	BCL	0.3	DIBENZOISINDANTHRACENE	801	ē. 1
HEXACHLOROBUTADIENE	801	0.3	EENZ01¢.h.i)PEFYLENE	ebu	<u>C.</u> 3
4-CHLORO-3-METHYLPHENCE	501	0.3			
-METHYLNAPHTHALENE	EDL	0.3	SUBROGATE STANGARDE FECOVERS		
-EXACELOROCYCLOPENTADIENE	EDL	5.3		RECOVERY	ACCEPTANCE LITE
2.4.6-TRICHLOROFHENDL	BDL	D.3		[%]	141
7 2.4.5-TRECHLOROPHENDL	301	1	1-F1-FHENG_	. ?	21 - 147
2-CHLORONAPHTHALENE	201	0.3	OU PHENOL	<u>15</u>	
2-NETROANILINE	문장님	1	NITROBENZENE-15	65	76 - 11 1
_DIMETHYLPHIMALATE	814	0.3	2-FPIPHENY	43	<u> </u>
ACENAPHIHYLENE	201	0.Z	TELEROMORHENGL	51	
2.4-DINITECTOLUENE	E.C.	0.3	TERFHENSE - 114	ŧŪ	
3-NITRGANILINE	EDL	1			
ACENAPHIHENE	BDL	0.3			
2.4-DINITROPHENOL	BOL	1	'Trace' denotes probable presen	ce below listed a	station limit.
4-NITROPHENOL	BDL	1	÷		
DIEENZOFURAN	6DL	0.3			
2.4-DINITROTCLUENE	Bút	0.3			
DIETHYLPHTHALATE	BDL	Ū. 3	BOL = BELOW DETECTION LIMIT		
CHLOROPHENYL-PHENYLETHER	BOL	ũ.3	METHOD REFERENCE: EPA SH 540.		
UORENE	BDL	0.3	METHOD 3550/	8270	

Lab Number: -Sample Designation: Date Analyzed: atrix:

. ,

۰,

10,429-16 2332-325 Fort Totten Soil #6 8/3/87 Solid

	VOLATILE ORGANICS	CONCENTRATION (ug/g)	DETECTION LIMIT (ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
	METHYLENE CHLORIDE	BDL	0.5
•	1 1-DICHLOROFTHYLENE	BDL	0.5
	1 1-DICHLOROFTHANE	BDL	0.5
	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	0.5
ę -	CHLOROFORM	BDL	0.5
ì		BDL.	0.5
	1,1,1-TRICHLOROETHANE	BDL BDL	0.5
	CARBON TETRACHLORIDE	BDL	0.5
ļ	BROMODICHLOROMETHANE	BDL BDI.	0.5
	1,2-DICHLOROPROPANE	BDL BDL	0.5
	1,3-trans-DICHLOROPROPENE	BDL	0.5
		BDL	0.5
	TRICHLOROETHYLENE BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE	BDL	0.5
	1, 3-CIS-DICHLOROFROPENE	BDL	0.5
	1,1,2-TRICHLOROETHANE 2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
	BROMOEOPM	BDL	0.5
١	BROMOFORM TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	TOLUENE	BDL	0.5
	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
	EINILBENZENE		0.5
ļ	ACETONE	BDL	2.5
•	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
,	MEK	BDL	2.5
,	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
۲	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		
		RECOVERY (%)	ACCEPTANCE LIMITS (%)
	d4-DICHLOROETHANE	90	70 - 121

70 - 121 81 - 117 74 - 121 90 d4-DICHLOROETHANE 101 d8-TOLUENE 100 BROMOFLUOROBENZENE

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

ACID/BASE/NEUTRAL EXTRACTABLE ORGANIC COMPOUNDS

_spiratory Number:	10.424-17 -
fample Selignation:	2332-325 Fort Totter Soil #5
Sete Extracted:	7/30/57
Date Analyzett	1/3/37
5215141	Soil

Results expressed on a link (103 degrees C) babis. Moisture content: 9.24

•

.

		CONCENTRATION	DETECTION LIMIT		CONCENTRATION	DETECTION LIFE
		(up/p)	(ug/g)		(uş;ş)	119.2
	N-NITROSODIMETHYLAMINE	BDL	0.8	4-NITROANILINE	BOL	1
	PHENCL	BDL	Ũ. 3	4.6-DINITRO-2-METHYLPHENOL	80_	
	BIS (2-CHLORDETHYL ETHER	SDL	0.3	N-NITROSODIPHENYLAMINE [1]	EDL	0.3
	2-CHLORCPHENOL	BDL	0.3	6-BROMOPHENYL-PHENYLETHER	EDL	Ċ.?
'	1.3-DICHLOROBENZENE	BDL	6.3	HEXACHLOROBENZENE	301	5.3
	1.4-DICHLOROBENZENE	BOL	0.3	PENTACHLOROPHENCL	801	•
	EINZYL ALCOHOL	BDL	0.3	PHENANTHRENE	EDL	1.3
1	1.2-DICHLOPOBENZENE	BDL	0.2	ANTHRACENE	BCL	0.2
	L-HETHYLEHENOL	EDL	0.3	DI-N-BUTHLEHTHALATE	200	2.3
	Els (B-CHLORIISOFROFYL EIHEF	EDL	0.3	FLUGRCANTHENE	:. 7	5.3
,	4-METRYLEMENDL	301	0.1	BENZIDENE	201	-
	HEZACHLOROEIGAUE	80.	5.3	FYFENE	0.4	
	N-NITROBODI-N-FROBYLATINE	201	0.3	SUTFLEENSYLEBIHALATE	10E	
	RITACERZENE	ESC	<u>6.3</u>	2.21-DICHLOFCEEXIIDINE	81-1	· · ·
	CFHORENE	EC	6.2	EENZOUEBANTHRACENE	Trace	2013 2013
	J-NITPOPPENCL	301	9.2	CHEYEENE	1-316	ē.3
	2-MIGHETHYLFHENGL	500	0.3	ESSIGHETER/LEEXALIFERTHALATE	1.5	• • •
1	E1K2010 4010	ZDL		DI-A-OUTVLEEDHALATE	ECL	÷.:
	EIS (2-CHLORETHOXY) MEIMANE	805	0.3	BENZO: 61FLUCHANTHENE	1.7	- 7
	2.4-DICHLOROPHENOL	BDL	C. 3	BENZORKIFLUGRANTHENE	801	1.2
	1.2.4-TRICHLOROBENZENE	. <u>2</u> DL	Ū.3	BENZOLESPYRENE	5.7	1.1
'	NAPHTHALENE	BDL	0.3	IDENO(1.2.3-6.5)FYRENE	ED.	A 3
	A-CHLORDANILINE	EDL	0.3	DIBENZO(BUD MANTHRACENE	BDL	0.3
	HEXACHLORCEU"ADIENE	BD1	ē.3	SENZO(q.n.:)PEFYLENE	EDL .	3.3
1		801	0.2			
	2-METHYLNAFHTHALENE	ED'	0.3	SURROGATE STANDARDE RECOVERY		
	HEXACHLOROCYCLOPENTADIENE	BDL	0.3		RECOVERY	ACCEPTANCE LIMI
;	1. C. E-TRICHLORCPHENOL	BUL	0.3		[\$]	(4)
	1.4.5-TRICHLERGEHENDL	EDL	1	2-FL-FHENCL	15	
	2-CHLORONARHIEALENE	851	0.3	di-PHENO.	62	10 - 94
_	2-NITROANILINE	BOL	1	NITROBENZENE-df	61 	35
•	DISETHYLPHIMALATE	BOL	0.3	2-FL-BIFHENYL	5:	43 - 11:
	ACENAFHTHYLENE	BDL	C.3	TRIEROMOPHENOL	70	15 - 111
	2.5-DINITROTOLUENE	BDL	0.3	TERPHENY514	tí	33 - 14.
•	3-NITROANILINE	BDL	1			
	ACENAPHTHENE	BOL	0.3			
	2.4-DINITROPHENOL	BDL	:	'Trace' denotes probable preser	the below listed (detection limit.
	4-NITROPHENOL	801	1.			
	DIBENZCFURAN	BOL	0.3			
	2.4-DINITROTOLUENE	EDL	0.3			
	JIETHYLPHTHALATE	BDL	0.3	BDL = BELOW DETECTION LIMIT		
	4-CHLOROPHENYL-PHENYLEIHER	ED'L	C. 3	METHOD REFERENCE: EPA SH 841.		
	FLUORENE	80L	0.3	METHOD 3550	/ 8270	

Lab Number: 10,429-19 Sample Designation: 2332-326 Fort Totten Soil #7 •--Date Analyzed: Matrix: 8/3/87 Solid _

• _

,

• •

7

	-		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
		(ug/g)	(ug/g)
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
1	METHYLENE CHLORIDE	BDL	0.5
•	METHILENE CHLORIDE		0.5
ŧ	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	
	1,1-DICELOROETHANE	BDL	0.5
11	1,2-trans-DICHLOROETHYLENE	BDL	0.5
i	CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE	BDL	0.5
	1,2-DICHLOROETHANE	BDL	0.5
,	1,1,1-TRICHLOROETHANE	BDL	0.5
'	CARBON TETRACHLORIDE	BDL	0.5
	BROMODICHLOROMETHANE	BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
1	1,3-trans-DICHLOROPROPENE	BDL	0.5
÷		BDL	0.5
1	TRICHLOROETHYLENE BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE	BDL	0.5
ţ	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
τ.	BROMOFORM	BDL	0.5
1.	TETRACHLOROETHYLENE		0.5
		BDL	
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
,	TOLUENE	BDL	0.5
,	CHLOROBENZENE >	BDL	0.5
	ETHYLBENZENE	BDL	0.5
ł	· · ·		, , , , , , , , , , , , , , , , , , , ,
1	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
1	MEK	BDL	2.5
	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
•	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
•	SURROGATE STANDARDS RECOVERY		
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-DICHLOROETHANE	88	70 - 121
	d8-TOLUENE	100	81 - 117
	BROMOFLUOROBENZENE	100	74 - 121
			·

ACID7BASE/NEUTRAL EXTRACTABLE CREANIC COMPOUNDE

aborstony Number:	15.429-20
Sample Designation:	2002-01: Fort Totter Soil \$7
Date Extracted:	7/30/27
Date Analyzed:	7/31/27
fistrix:	Soil

Results expressed on a dry (113 degrees C) basis. Moisture contert: 16%

			DETECTION LIMIT		CONCENTRATION	DETECTION LTH
		(uş/ş)	(yç/g)		[127/3]	(uş/ş
7	N-NITROECDIMETHYLAMINE	BDL	Û.Ê	4-NITROANILINE	201	:
	PMENEL	301	Û.3	4.6-DINITRO-2-METRYLFHENOL	201	:
	EIS FO-CHLORGETHYL ETHERS	BDL	C.3	N-NITROSODIFHENYLAMINE (1)	50'L	0.0
11	1-CHLOROPHENI1	BDL	D.3	4-BRODOPHENYL-PHENYLETHER	201	0.3
	1.3-DICHLOROZENZENE	EDL	0.3	HEXACHLOROBENZENE	30L	<u> </u>
	1.4-DICHLOPOBENJENE	BDL	0.3	PENTACHLOROFHENOL	BDL	
	BENZYL ALCOHOL	BDL	0.3	PHENANTHRENE	EDL	0.3
	1.2-DICHLORCBENZENE	80L	0.3	ANTHRACENE	891	Ū. J
	2-HETHYLFHENCL	BDL	0.3	DI-N-BUTYLEHTHALATE	BDL	ē. t
	Eis (2-CHLORGISOFROFY) ETHEF	BDL	0.3	FLUDROANTHENE	BCL	1.3
1	4-METHYLFHENOL	EDL	0.3	BENZIDENE	200	2
	HEXACHLORDETHANE	80_	0.3	FYRENE	BEL	0.3
	N-NITROSODI-N-PROFYLAMINE	BDL	0.3	BUTYLEENZYLEHTHALATE	805	2.2
	NITROPENDENE	BDL	0.3	3.8°-DICHLORCEENZIDINE	BOL	<u>,</u>
	ISOFHORE	201	0.3	EENJOIEIANTHRACENE	201	Q. 3
	2-NETROFHENDL	EDL	E. 3	CHENSERE	BB1	7.7
	2.4-DIMETHY_FHEND1 .	EDL	5.1	BIESCHETHYLHEKYLIFKTHALATE	1.5	
ŧ	BENDOIC ACID	801	1	DI-N-DCTVLPHTHALATE	E DL	ē. ē
	Els (2-CHLORETHOXY) METHANE	BDL	<u>0.3</u>	BENDOLDIFELBORANTHENE	601	
	1.4-DICHLOROFHENDL	801	0.3	BENZO (NIFLUORANTHENE	3(_	5.3
	1.2.4-TRICHLOROBENJENE	3DL	6.3	EENZO/BIENFENE	EDL	5.3
	NAPETHALENE	BDL	0.3	IDENOIS.D.B-E.S.FYRENE	301	
	4-CHLORDANILINE	801	Ũ.3	DIBENZO SUDIANTHRACENE	801	•
	HEXACHLOROBUTADIENE	801	2.2	EENZO(¢.h.:PERYLENE	201	3.3
	4-086080-3-#578x68+5800_	EDL	0.3			
	2-RETRYLNAPHTHALENE	BDL	9.2	SURROGATE STANDARDS RECOVERY		
	HEXACHLOROCYCLOPENTADIENE	BDL	0.3		RECOVERY	ACCEPTANCE LIM
1	2.4.6-TRICHLOFOPHENOL	50L	Ū.3		[8]	€ ¥ 1
	1.4.5-TRICHLOROFHENOL	3DL	:	2-FL-FHEX01	2.7	21 - 112
	2-CHLORONAPHTHALENE	BDL	6.3	CO-FRENCL	35	
	2-NITROANILIHE	BDL	1	NITROBENZENE-35	23	25 - 11-
	DINETHYLPHTHALATE	BDL	0.3	C-FL-BIFKENYL	25	42 - 11:
	ACENAPHTHYLENE	3DL	0.3	TRIBROMOPHENDL	22	12 - 11
	2.E-DINITRCTOLUENE	BD'L	Û.3	TERPHENYL-d14	57	32 - 14.
	3-NITROANILINE	EDL	:			
	ACENAFHTHENE	BDL	C.3			
	2.4-DINITROFHENCL	SDL	1			
·	4-NITROPHENOL	BDL	1			
	DIEENZOFURAN	BDL	0.3			
	1.4-DINITROTOLUENE	BDL	C. 3			
	DIETHYLPHTHALATE	BD1	0.3	EDL = BELOW DETECTION LIMIT		
	4-CHLOROPHENYL-FRENSLETFER	BD1	0.3	METHOD REFERENCE: EPA SH ELL. 2	ND EDITION	
	FLUORENE	801	0.3	METHOD 3650/8		

.

Lab Number:		10,429-22
Sample Designation: Date Analyzed: Matrix:	•	2332-327 Fort Totten Soil #8 - 8/3/87 Solid

•

•

	-		
	VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
	VOBRIIBE OKOMILOD		
	CHLOROMETHANE	.(ug/g) BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
		BDL	1
	BROMOMETHANE		0.5
T		BDL	0.5
	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	
	1,1-DICHLOROETHANE	BDL	0.5
1.	1,2-trans-DICHLOROETHYLENE		0.5
,	CHLOROFORM	BDL	0.5
	1,2-DICHLOROETHANE	BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
÷	CARBON TETRACHLORIDE	BDL	0.5
	BROMODICHLOROMETHANE	BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
	1,3-trans-DICHLOROPROPENE	BDL	0.5
1	TRICHLOROETHYLENE	BDL	0.5
	BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE	BDL	0.5
	1, 1, 2-TRICHLOROETHANE	BDL	0.5
			0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	
ł.	BROMOFORM	BDL	0.5
	TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	TOLUENE	BDL	0.5
	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
. 1	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
	MEK	BDL	2.5
,	VINYL ACETATE	BDL	1
		BDL	2.5
	MIBK		2.5
	2-HEXANONE	BDL	0.5
5	STYRENE	BDL	
	XYLENES	BDL	0.5
:	SURROGATE STANDARDS RECOVERY		
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-DICHLOROETHANE	88	70 - 121
	d8-TOLUENE	(94)	81 - 117
	BROMOFLUOROBENZENE	101	74 - 121

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

ACID/BASE/NEUTRAL EXTRACTABLE ORGANIC COMPOUNDS

pratory Number:	10,429-23 _
Sample Designation:	2332-327 Fort Totten Soil \$8
Date Extracted:	7/30/87
Date Analyzed:	7/31/87
Matrix:	Solid

Results expressed on a dry (103 degrees C) basis. Hoisture content: 21%

٠

		CONCENTRA	TION	DETECTION LIMIT		CONCENT	RATION	DETECTION LIMI
		REP 1. R		(ug/g)		REP 1	REP 2	(ug/g)
		(ug/g) (u				(ug/g)	(ug/g)	
	N-NITROSODIMETHYLAMINE		DL	0.8	4-NITROANILINE	BDL	BDL	1
	PHENOL		DL	0.3	4.6-DINITRO-2-METHYLPHENOL	BDL	BLD	1
	Bis (2-CHLOROETHYL ETHER)		IDL	0.3	N-NITROSODIPHENYLAMINE (1)	BDL	BDL	0.3
			IDL	0.3	1.2-DIPHENYLHYDRAZINE (AZOBENZENE)	BDL	BDL	0.3
	2-CHLOROPHENOL	-	IDL	0.3	4-BROMOPHENYL-PHENYLETHER	BDL	BDL	0.3
	1, 3-DICHLOROBENZENE		IDL	0.3	HEXACHLOROBENZENE	BDL	BDL	0.3
	1,4-DICHLOROBENZENE		IDL	0.3	PENTACHLOROPHENOL	BDL	BDL	1
-	BENZYL ALCOHOL			0.3	PHENANTHRENE	BDL	Trace	0.3
	1, 2-DICHLOROBENZENE		DL	0.3	ANTHRACENE	BDL	1.0	0.3
	2-METHYLPHENOL			0.3	DI-N-BUTYLPHTHALATE	BDL	BDL	0.3
	Bis (2-CHLOROISOPROPYL) ETHER		SDL.	0.3		(0.6	1.9	0.3
	4-HETHYLPHENOL		BOL			BDL	BDL	2
1	HEXACHLOROETHANE		JƏL	0.3	BENZIDENE	Jrace	1.2	0.3
	N-NITROSODI-N-PROPYLAHINE		BDL	0.3	PYRENE BUTWI BENTWI BUTWALATE	BDL	BDL	0.3
	TROBENZENE		BDL	0.3	BUTYLBENZYLPHTHALATE	BDL	BDL	0.7
	OPHORONE		BDL	0.3	3,3'-DICHLOROBENZIDINE		0.6	0.3
	2-NITROPHENOL		BDL	0.3	BENZO (a) ANTHRACENE	BOL		0.3
	2,4-DIMETHYLPHENOL		BDL	0.3	CHRYSENE	BOL	0.5	
:	BENZOIC ACID		BDL	1	Bis(2-ETHYLHEXYL)PHTHALATE	1.0	0.6	0.3
	Bis (2-CHLORETHOXY) METHANE	BDL I	BÐL	0.3	DI-N-OCTYLPHTHALATE	BDL	BDL	0.3
	2,4-DICHLOROPHENOL	BDL I	BDL	0.3	BENZO(b)FLUORANTHENE	BOL	0.9	0.3
i	1,2,6-TRICHLOROBENZENE	BDL	BOL	0.3	BENZO(K)FLUORANTHENE	BDL	BOL	0.3
1	NAPHTHALENE	BDL	BOL	0.3	BENZO(a)PYRENE	BOL	0.5	0.3
	4-CHLOROANILINE	BOL	BOL	0.3	IDENO(1,2,3-c,d)PYRENE	BDL	BDL	0.3
	HEXACHLOROBUTADIENE	BOL	BDL	0.3	DIBENZO(a, h)ANTHRACENE	BOL	BDL	0.3
4	4-CHLORO-3-HETHYLPHENOL	BDL	BDL	0.3	BENZO(g,h,i)PERYLENE	(BDL -	BDL	0.3
	2-NETHYLNAPHTHALENE	BDL	BOL	0.3				
	HEXACHLOROCYCLOPENTADIENE	BDL	BOL	0.3	SURROGATE STANDARDS RECOVERY			
1	2, 4, 6-TRICHLOROPHENOL		BOL	0.3		RECO		ACCEPTANCE LIMI
1	2,4,5-TRICHLOROPHENOL		BDL	1		(\$)	(\$)
	2-CHLORONAPHTHALENE		BDL	0.3	2-FL-PHENOL	9	11	21 - 100
	2-NITROANILINE		BOL	1	d6-PHENOL	20	26	10 - 94
	DIHETHYLPHTHALATE		BDL	0.3	NITROBENZENE-d5	1	5	23 - 120
	ACENAPHTHYLENE		BOL	0.3	2-FL-BIPHENYL	14	16	30 - 115
	2,6-DINITROTOLUENE		BDL	0.3	TRIBROMOPHENOL	24	16	10 - 123
	•		SOL	1	TERPHENYL-d14	12	18	18 - 137
	3-NITROANILINE ACENAPHTHENE		BOL	0.3				
		-	BDL		'Irace' denotes probable presence	below li	sted de	tection limit.
	2,4-DINITROPHENOL		BOL	1				
	4-NITROPHENOL							
	DIBENZOFURAN		BOL	0.3				
	,4-DINITROTOLUENE		BDL	0.3	BDL = BELOW DETECTION LIMIT			
	JIETHYLPHTHALATE		BOL	0.3	METHOD REFERENCE: EPA SU 846, 2NI	-	J	
	4-CHLOROPHENYL-PHENYLETHER	-	BDL	0.3	METHOD REFERENCE: EFA SW 840, 200 METHOD 3550/82		•	
	FLUORENE	BDL	BDL	0.3	ng inuu 3530/82	10		

Lab Number: 10,429-25 Sample Designation: 2332-328 Fort Totten Soil #9 •---Date Analyzed: 8/3/87 fatrix: Solid

• • •

٠

τ

	•		
	VOLATILE ORGANICS		DETECTION LIMIT
		(ug/g)	
	CHLOROMETHANE	BDL	1
	VINYL CHLORIDE	BDL	1
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
т	BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
•	1,1-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
	1,2-trans-DICHLOROETHYLENE		0.5
1	CHLOROFORM	BDL	0.5
'	1,2-DICHLOROETHANE	BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
ļ	CARBON TETRACHLORIDE	BDL	0.5
:	BROMODICHLOROMETHANE	BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
,	1,3-trans-DICHLOROPROPENE	BDL	0.5
	TRICHLOROETHYLENE	BDL	0.5
	BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL	0.5
	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
	BROMOFORM	BDL	0.5
	TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE		0.5
	TOLUENE	BDL	0.5
	CHLOROBENZENE	BDL	0.5
	ETHYLBENZENE	BDL	0.5
	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
,	MEK	BDL	2.5
1	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		•
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-dichloroethane	92	70 - 121
	d8-TOLUENE	105	81 - 117
	BROMOFLUOROBENZENE	103	74 - 121

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

ACID/PASE/NEUTRAL EXTRACTABLE ORGANIC CONFOUNDS

Dorstory Number:	15.429-26_
Sample Designation:	2332-328 Fort Totten Soil \$9
Date Extracted:	7/30/27
Date Analyzed:	7/31/97
Matrix:	Solid

Results expressed on a dry [113 degrees 0] basis. moisture content: 134

		CONCENTRATION	DETECTION LIMIT		CONCENTRATION	C DERECTION 11"
		(uç/ş)	tug/ç1		tuş″≢r	(uplan
	N-NITFOSODIMET#YLAMINE	BOL	0.5	L-NITROANILINE	ECL	:
7	PHENOL	EDL	0.3	Z . H - DEMETRE - E - NETENYLEHENDL	2 52	:
	EIEREN EIEREN KONDERDERKO ETHER	201	0.3	N-NITROEDDIERENYLAMINE (1)	80L	5. ž
	2-CHLOFOFHENCL	801	0.3	L-BROMORSENVL-FHENVLETHER		
ŧ	1.3-DICHLORDENZENE	805	ũ. 3	HEXACHLORDEENZENE	E11	0.0
+	1.4-DICHLORIEENZENE	801	6.3	FENTACHLOROPHENCL	E	:
•	RENZYL ALCOHOL	301	5.3	EHENANTHRENE	ĐL	• •
	1.2-DICELORDEENZENE	BD:	9.3	ANTHRACENE	51-1	· · ·
	2- DETRYLPHENOL	27	0.3	DIHWHEYTYLFHIRADAIE	891	÷.:
	EIS (2-CHLORDISOFFOFYL) EIHEF	30L	0.3	FLUCKGANTHENE	1 70	
	4-METHYLPHENGL	501 501	0.3	EENCLOENE	101	, •
·	HEXACHLORGETHANE	BDL	0.3	PYRENE	832	
1	N-NITROSODI-N-FROFYLAMIAE	BDL	6.3	EUTYLEENZYLEHTHALATE	622	
	NITPORENZENE	801	0.3	3.3°-DICHLORGEENZIDINE		5.7
	TSCPHORONE	801 801	2.3	EENZDIEJANTHRACENE	102	· ·
	-NITEDFEENCL	BOL	0.3	CHENSENE -	201	
	2.4-DIMETHYLFFENGL	500 200	0.3	B15 DETRYLHEXKLIPHTHALATE	1.1	
	PENZOIC ACID	801	1	DI-N-OCINEPTHALATE	SC1	<u>.</u>
-	EIS (2-CHLORETHOXY) METHANE	201	0.3	SENZOLESFLUORANTHENE	EDL	
	2.4-SICHLORDFERGE	BDL	0.3	EENZC() FLUORAN' HENE	801	:.?
	1.2.4-TPICPLOPOBENZENE	BDL	6.3	RENZO A PREENE	274	61
·	NAPPTHALENE	EDL	E.3	IGEN0(1.2.3-c.d)PYPENE	501	•
	4-CHEOROANILINE	60L	<u>.</u> 3	DIEENZOIR. H'ANTHRACENE	301	5.3
•	HEXACHIDROBUTALIENE	BDL	0.3	BENZO g.h. i)PEFYLENE	BOL	5 . 7
	4-CHLORO-3-METHYLFHENQL	E 01	0.3			
	2-METHYLNAPHIMALENE	801	0.3	SURROGATE STANDARDS RECOVERY		
Ì	HEXACHLOROGYCLOPENTADIENE	EDL	0.3		RECOVERY	ACCEPTANCE LIMI
	2.4.6-TRICHLORDPHENOL	BDL	0.3		(\$)	í t (
[2.4.5-TRICHLOROPHENOL	50L	1	2-FL-FHENOL	12	21 - 1M
÷ 1	2-CHEGRONAPHTHALENE	BDL	0.3	de-FHENCL	21	10 - 90
	2-NITROANILINE	EDL		NITROBENZENE-d5	8	35 - 114
-	DIMETHYLPHTHALATE	BDL	0.3	2-FL-PIPHENYL	17	43 - 115
	ACENAPHTHYLENE	801	0.3	TRIBRONOFHENOL	15	18 - 113
	2.5-DINITROTOLUENE	BDL	9.3	TERPHENYL-di4	54	33 - 141
	3-NITROANILINE	EDL	1			
	ACENAPHTHENE	BDL	Ū.3			
	2.4-DINITROPHENOL	BDL	1			
	L-NITROFMENOL	BOL	1			
	DIEENZOFURAN	BDL	G.3			
	1.4-DINITROTOLUENE	BOL	£.3			
	TETHYLFETHALATE	20L	0.3	EDL = BELOW DETECTION LIMIT		
	LICHTERSHALASI U-CHLOROPHENYL-PHENYLETYER	BDL	0.3	METHOD REFERENCE: EPA SH B44. 1	2ND EDITION	
	FINISHERIANITERIANILARIA FINORENE	50L	0.3	METHOD 3550/		
	★	***				

aboratory Number: Sample Designation: Date Analyzed: Matrix:	signation: 2332-330 Fort Tot!		
PCB'S	CONCENI REP 1 (ug/g)	RATION REP 2 (ug/g)	DETECTION LIMIT (ug/g)
- PCB-1242	BDL	BDL	0.08
PCB-1254 PCB-1221	BDL BDL	BDL BDL	0.16 0.08
DCD_1000	BDL	BDL	0.08
PCB-1232	BDL	BDL	0.08
PCB-1260	BDL	BDL	0.16
PCB-1016	BDL	BDL	0.08

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHODS 3540 AND 8080

l

1

Resource Analysts, Incorporated

•

aboratory Number: Sample Designation: Date Analyzed: Matrix:	10,429-29 232-331 Fort Totto 8/01/87 Solid	en Soil #12
PCB'S	CONCENTRATION (ug/g)	DETECTION LIMIT (ug/g)
PCB-1242	BDL	0.08
PCB-1254	BDL	0.16
PCB-1221	BDL	0.08
PCB-1232	BDL	0.08
PCB-1248	BDL	0.08
PCB-1260	BDL	0.16
PCB-1016	BDL	0.08

ι

•

1 A.

•

.

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHODS 3540 AND 8080

· · ·		
Lab Number: Sample Designation:	10,429-31	
Sample Designation:	2332-333 Ft Soi	ll Sam Blk #1
Date Analyzed:		
Matrix:	Water	
VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
	(ug/L)	(ug/L)
CHLOROMETHANE	BDL	10
VINYL CHLORIDE	BDL	10
CHLOROETHANE	BDL	5
BROMOMETHANE	BDL	5
METHYLENE CHLORIDE	31 BDL	5
1,1-DICHLOROETHYLENE		5
1,1-DICHLOROETHANE	BDL	5
1,2-trans-DICHLOROETHYLENE	BDL	5
CHLOROFORM	BDL	5
1,2-DICHLOROETHANE	BDL	5 5 5
1,1,1-TRICHLOROETHANE	BDL	5
CARBON TETRACHLORIDE	BDL	5
BROMODICHLOROMETHANE	BDL	5
1,2-DICHLOROPROPANE	BDL	5
1,3-trans-DICHLOROPROPENE	BDL	5
TRICHLOROETHYLENE	BDL	5
BENZENE	BDL	5
1,3-cis-DICHLOROPROPENE	BDL	5
1,1,2-TRICHLOROETHANE	BDL	5
2-CHLOROETHYL VINYL ETHER	BDL	5 5 5 5 5 5
DIBROMOCHLOROMETHANE	BDL	5
BROMOFORM	BDL	5
TETRACHLOROETHYLENE	BDL	5
1,1,2,2-TETRACHLOROETHANE	BDL	5
TOLUENE	5	5 5
CHLOROBENZENE	BDL	5
ETHYLBENZENE	BDL	5
		•
ACETONE	BDL	25
CARBON DISULFIDE	BDL	5
THF	BDL	25
MEK	BDL	25
VINYL ACETATE	BDL	10
MIBK	BDL	25
2-HEXANONE	BDL	25
STYRENE	BDL	5
XYLENES	BDL	5
SURROGATE STANDARDS RECOVERY		
	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-DICHLOROETHANE	84	76 - 114
d8-TOLUENE	100	88 - 110
BROMOFLUOROBENZENE	93	86 - 115

:

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

•

•

۲

٢

1

ŕ

7

Resource Analysts, Incorporated

- -....

-

ACID/BASE/NEUTRAL EXTRACTABLE ORGANID. COMPOUNDS

Esponstony Number:	10.429-32		
Sample Designation:	2332-323 Ft Juiten Em 21. 41		
Date Extracted:	7/24/52		
Date Analyzec:	7/31/27		
*Etrla:	Weter J		

•

.

•

			DETECTION 17411			N DETECTION LIN
		fug/Li	(jęt/_)		169 L	
	N-NITFOSCOIMEFHICAMINE .	50L	25		ED1	51
		BDL	10	4.t-DINITEL-I-METHYLFHENDL	BOL	::
	EIS (2-CHLORGEINYL ETHER	EDL	12	N-NITROSODI -N ENYLAMINE (1)	Ele	
r	1-CHLOROFHENOL	50'L	10	4-BROKOBHENYLETHER	E DL	• •
	1.3-DICHLORGEENZENE	EDL	15	HEXACHLOROEENZENE	B 9_	10
	1.4-DICHLORDEENZENE	BDL	18	FENTACHLOFOFHENOL	ED.	10
	PENZYL ALCOHOL	BDL	15	FHENANTHEENE	E)L	• 7
(1.1-DICHLORDEENZENE	ED1	10	ANTHRACENE	B01	11
	2-METHYLFHENGL	BDL	17	DI-N-BUTYLERTHALATE	BDL	15
	Eis (2-CHECROISOPROFYL) ETHEF	801	10	FLUDFOANTHENE	301	.0
	4-METHYLPHENOL	BDL	10	SENZIDEAE	EDL	100
	HEXACHLORDETHANE	BUL	25	FYFENE	BDL	
	N-NITROSODI-N-FROPYLAMINE	801	.10	BUTYLBENZYLPHTHALATE	EDL	
	NITFORENZENE	301	19	2.3'-DICHLORGEENZIDINE	8 55	22
	SOFHOF DNE	90L	10	EENING ANYHRACENE	30L	. •
	I-NITROFHENCI	EDL	11	CHRYSEN	ESE	1
	1.1-DIMETHYLFHENCL	EDL	15	ELSIL TREMEMERY HATHALATE	53	10
	EEX2010 ACID	501	30	01-N-ACTO CHALATE	EDL	12
	EIS (2-CHLORETHOXY) METHANE	EDL	12	RENZO CONTRACTOR NE	EDL	
	1.4-DICHLOROFHENGL	801	11	BENZO (KO FILKERANTHENE	802	• •
	1.2.4-TEICHLORGEENZENE	500 501	.W	EENZOUS	EDL	12
	NAFOTHALENE	BD.	19 19	IDENGEL 2.3-T. IJFYRENE	E E	12
	4-CHEORGANILINE	SDL	n	DISENSE) ANT HANT HEADENE	BDL	10
	HEXACHLOROBUTADIENE	BEL	**); **);	BENZELER, T. ETTER YLENE	801	12
Ł	4-CHEORO-3-METHYEPHENOL	EDL				
)	2-HETRYLNAPHTHALENE	BDL	17	SURROWALE STANDARDS RECOVERS		
	HEXACHLOROCYCLOFENTADIENE	20L	11	JJANUSTAL A CHAUTEL ALUET AL	RECOVERY	ACCEPTANCE COM
,	2.6.4-TRICHLOROFHENCE	BDL	D		[\$]	iş:
	1.4.5-TRICHLOROFHENOL	201	50	2-FL-PHENOL	. • , ب ب	21 - 102
	2-CELORONAPHIMALENE	801 801	5. 13	dh-PHENOL	42	10 - 94
	2-NITROANILINE	EDL	30	NITROBENZENE-de	190	35 - 114
	DIMETRYLPHINALATE	BDL	.10	2-FL-EN-HEAM	£4	43 - 11:
	ACENAPHTHYLENE	201	10	TRIERING POL	51	17 - 127
	2.3-DINITROTOLUENE	501 801	24. 242	TERRITENTLADIA	95	37 - 141
,	3-NITROANILINE	EDL	50	n ganna an gana an gana ang ang ang ang		
	ACENAPHTHENE	851	10 10			
	ACERATIONI 2.1-DINITROPHENGL	BDL	50			
		-	30 50			
	L-NITROPHENOL Direnzofuran	BDL				
		BDL	117 1945			
	2.4-DINITROTOLUENE	BDL	77E 17	EDL = HELDH TETECTION LINIT		
	DIETHYLFRTHALATE	BDL	<u>177.</u> 18 -		TE BETNIN ALT	ATT OF MET
	L-CHLOROPHENYL-PHENYLETHER	BDL	12	METHOD REFERENCE: 60 CFR FART 1	SST LETTERS ACT	. <u></u>
	FLUCRENE	EDL	<u>117</u>	METHOD 625		

	· · ·	
Lab Number:	10,429-34	
Sample Designation:	2332-335 Ft So	il Trav Blk #1
ate Analyzed.	8/3/87	
	Water	
hatiik.	NUCEI	
i.		
VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
VOLATILL ORGANICS	(ug/L)	(ug/L)
CHLOROMETHANE	BDL	10
VINYL CHLORIDE	BDL	10
CHLOROETHANE	BDL	5
BROMOMETHANE	BDL	5
METHYLENE CHLORIDE	12	5
1 1-DICHLOROFTHYLENE	BDL	5
1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	5
1,2-trans-DICHLOROETHYLENE	BDL	5
CHLOROFORM	BDL	5
1,2-DICHLOROETHANE	BDL	5
1,1,1-TRICHLOROETHANE	BDL	5
CARBON TETRACHLORIDE	BDL	5
BROMODICHLOROMETHANE	BDL	5
1, 2-DICHLOROPROPANE	BDL	5
1,3-trans-DICHLOROPROPENE	BDL	5
TRICHLOROETHYLENE	BDL	5
BENZENE	BDL	5
1,3-cis-DICHLOROPROPENE	BDL	5
1,1,2-TRICHLOROETHANE	BDL	5
2-CHLOROETHYL VINYL ETHER	BDL	5
DIBROMOCHLOROMETHANE	BDL	5
BROMOFORM	BDL	5
TETRACHLOROETHYLENE	BDL	5
1,1,2,2-TETRACHLOROETHANE	BDL	5
TOLUENE	6	5
CHLOROBENZENE	BDL	5
ETHYLBENZENE	BDL	5
ACETONE	BDL	25
CARBON DISULFIDE	BDL	5
THF	BDL	25
MEK	BDL	25
VINYL ACETATE	BDL	10
MIBK	BDL	25
2-HEXANONE	BDL	25
STYRENE	BDL	5
XYLENES	BDL	5
SURROGATE STANDARDS RECOVERY		
	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-DICHLOROETHANE	86	76 - 114
d8-TOLUENE	100	88 - 110
BROMOFLUOROBENZENE	94	86 - 115

.

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

.

.

r

1

•

,

MATRIX SPIKE DUPLICATE RECOVERY

Laboratory Number: 10,429-34 Sample Designation: 2332-335 Ft Soil Trv Blk #1 Date Analyzed: 8/3/87 Matrix: Solid

-

			REPLIC	REPLICATE 1	
COMPOUND	ug/g IN SAMPLE	ug/g SPIKE	ug/g FOUND	%REC- OVERY	
1,1-DICHLOROETHENE	0	54	62	115	
TRICHLOROETHYLENE	0	67	70	104	
BENZENE	0	52	57	110	
TOLUENE	6	54	61	102	
CHLOROBENZENE	0	58	65	112	

METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

ACIOVEASE/NEUTRAL EXTRACTABLE GRGANIC COMPORNDE

Lightions Runter:	E-K104
Eaple Designation:	81X
Date Extracted:	7/30/37
Sate Analyzed:	7/31/17
National Carl	Solie

• •

.

Regulta expression a prill 100 degrees CP bæsis. Moleture posterio i -

	CONCENTRATION	DETECTION LIMIT		CONCENTRATION	060560108 10M1
	(uş/ş)	(uç/ç)		iua/a	fuşişi
- A-NITEDEODIMETHYLAMINE	EDL	6.8	L-NITROANILINE	301	•
FRENDL	BOL	Ũ.3	w.t-DINIGRO-D-HETRYLPHENOL	21-1	1
EIS (2-CHEORGETHYL ETHER)	BDL	C.3	N-NITROSODIFHENYLAMINE (1)	201	1 .1
LICE ABABUTNA	301	ũ.3	4-BROMOPHENYL-PHENYLETHER	-35	
1.3-DICHLORCZENZENE	EDL	2.3	HEXACHLOROBENJENE	50L	1.3
1.4-31CHLOROBENZENE	BDL	2.3	PENTACHLOPOPHENOL	ED1	1
EENZYL ALCOHOL	60L	0.3	PHENANTHEENE	EDL	5.3
1.2-DICHLOROENZENE	BOL	0.3	ANTHRACENE	BDL	C.3
1-TETHYLPHENOL	30L	0.1	DI-N-BUTYLEHTBALATE	205	1.1
BIT RECENDENCE SIGER	804 804	0.3	FEUGROANTHENE	ESt	3.3
ALE COMPANYER CONTRACTOR CONTRACTOR	501 501	0.3	BENCIDENE	801	<u>:</u>
SEXACHLORDETHANE	501	6.3	FYRENE	501	<u>.</u> :
NERALALIAUS CANAL NEXTROSOLENERS (FILAR) (S	301 201	0.3	BUTYEBENEYEPBIBALATE	804	
NEAL ALLUNTATENIS LAGUAL ALTEORENIENE	EDL	5.3	Z. Z'-DICHLORGEENZIDINE	86.	
NU FOIRLINI TIOFHIFONE	800 800	6.3	FFNDAGE ANDREADENE	801	ē.:
LORGITURE -NITFIFHENGL	906 906	5.3	CHENSENE	£1.	- :
	501 571	 5.5	ELSTINE ELSTINE ELSTINE ELSTINE ELSTINE		.
<u>1.1-DIMETRYLPHENSI</u> Truban Jan	20-	•••	21-N-003X12H384147E	2:4	
A EENZOIC ACID Ein Filhentoreithoann Methane	101 201	1.3	RENZOIENFLUCRANTHENE	: /	::
1.0-DICHLOROFHENDL	ÊBL	0.3	BENZI IN TELVOFANIMENE	÷61	-
1.2.14-TRICHICFORENIENI	EDL	0.3	EENZO(STEVRESE	200	• •
KARATEALENE	801	0.3	THENDED LIGHT AND A FREEKE	832	• •
A-CHICREANILINE	EDL	5.3	LIBENING ANTHEALENE	EDL	• •
HEXACHLOROBUTADIENE	801	9.3	BENIGIALI PERVLENE	55.	• •
4-CHLORO-I-MEITHYLENI 4-CHLORO-I-MEITHYLENENÖL	201	5.3			
2-HETHYLNAPFTHALENE	501	C.3	SURFORATE STANDARDE BLOOVERS		
HEXACHLOROCYCLOPENTADIENE	801	0.2	•••••••	RECOVERY	ACCEPTAVIE 11 I
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	800	0.3		: 4	· •
2.1.5-TRICHLOPOPHENGL	80L	••••	C-FE-FHENOL	E	
2-CHLORONAPHTHALENE	50L	÷.3	de -FHENDL	1.	
2-Unio-Oberthinskildi 2-NITROANILINE	201	1	NITROEENCENE+CE	ç	1
PALING ANTEINE PT DISET SHERSTRALATE	50:	5.3	2-FL-51FFEN11	2:	47 - 111
ACENARY TRYLENE	BUL	0.3	TRIBROMORNEL	21	
2.5-DINITROTOLVENE	80_	0.3	TERPHENYL-dla	•1	31 - 141
S-NITROANILINE	EDL	,			
ACENAPHTHEME	601	6.3			
LLA-DINITROPHENCL	201				
4-NITROFHENCI	80L	1			
DIRENZOFURAN	EDL	5.3			
I.6-DINITROIDLUENE	BDL	9.3			
DIETHYLPHTHALATE	BDL	0.3	BDL = BELOW DETECTION LIMIT		
LECHICROPHENNL-PHENYLETMER	EDL	5.3	METHOD REFERENCE: EFA SK 34%.	2ND EDITION	
FLUGRENE	EDL EDL	0.3	METHOD SEED/		
1 LUVNINI	5 <i>3</i> 1				

Laboratory Number:	B-P102
Sample Designation:	Blank
Date Analyzed:	8/13/87
Matrix:	Solid

PCB'Ş	CONCENTRATION (ug/g)	DETECTION LIMIT (ug/g)
PCB-1242	BDL	0.08
PCB-1254	BDL	0.16
PCB-1221	BDL	0.08
PCB-1232	BDL	0.08
PCB-1248	BDL	0.08
PCB-1260	BDL	0.16
PCB-1016	BDL	0.08

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHODS 3540 AND 8080

t

t

4

.

•

Resource Analysts, Incorporated

••

Date: 8/13/87		~	Sample Number: (10,429-28		S-P102 PCB Solid)	
7	PCB SMO Sample No.	CONC. SPIKE ADDED (ug/g)	SAMPLE RESULTS (ug/g)	CONC. MS. (ug/g)	t REC.	
	PCB 1254	1.3	. 47	.60	48	

•

-

• 1

4

۲

.

Resource Analysts, Incorporated

RESOURCE ANALYSTS, INC. -LABORATORY CONTROL SPIKE

- · · · · ·

•

1

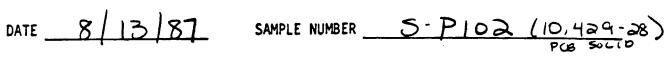
ſ

٢

I.

.

LAB NUMBER 10429 DA	TE <u>8/12/87</u>	SAMPLE DESIGNA	TION_WP780
Compound	TRUE VALUE	ACCEPTANCE Guidelines	ACTUAL RECOVERY
Bis (2-Chloroisopropyl) ether	55	12.0 - 84.8	40
Bis (2-Chlororthyl) ether	20	4.3 - 29.1	9
"Bis (2-chloroethoxy) methane	35	8.4 - 41.6	50
4-chlorophenyl-phenylether	40	5.2 - 64.4	23
4-Bromophenyl-phenylether	75	3.3 - 129	48


SOIL MATRIX SPIKE

• .

1

I

;

PCB SMO SAMPLE NO.	CONC. SPIKE ADDED (ug/ g)	SAMPLE RESULT U9/3	CONC. MS. ug 1g.	\$ REC.
PC6 1254	1.3	.47	.60	48
	•			

Resource Analysts, Incorporated

: • = च_- -

RESOURCE ANALYSTS, INC. LABORATORY CONTROL SPIKE

..

LAB NUMBER S-PIO3	DATE 8/13/87	SAMPLE DESIGNATION	10,429-29 PCB SOLIO
, <u> </u>		WP-783	conc. 17
Compound	TRUE VALUE	ACCEPTANCE GUIDELINES	ACTUAL RECOVERY
Aroclor 1254	. 18 rg/g .	.0724 ug/g.	-19 ug/g.

1

1

1

1

;

ł

1

f

SY: ACIDS _ibrary used: Data file name: SY: JL731H1 31-JUL-87 08: 52: 58 jection time: ments: ACID/SURR 50 STD. Dilution factor: 1.00 jibrary entries as follows: Standards: 15 1,4-DICHLOROBENZENE-D4 25 NAPHTHALENE-D8 35 ACENAPHTHENE-D10 **4**S PHENANTHRENE D10 CHRYSENE D12 55 Targets: 1 ' 1T PHENOL **2**T 2-CHLOROPHENOL **3T** 2-METHYLPHENOL **4**T 4-METHYLPHENOL ST. 2, 4-DIMETHYLPHENOL 2-NITROPHENOL **6**T 7T BENZOIC ACID 2, 4-DICHLOROPHENOL **8**T **9**T 4-CHLORD-3-METHYLPHENOL **10T** 2,4,6-TRICHLOROPHENOL 11T 2,4,5-TRICHLOROPHENOL 12T 2,4-DINITROPHENOL .3T 4-NITROPHENOL 14T 4,6-DINITRO-2-METHYLPHENOL 15T PENTACHLOROPHENOL No. Time Tmass/Smass Scan Tarea/Sarea 18 8.10 285 25 534 11.10

1

í

ACIDS Jo Sino. CONTINUING CAUBRATON CHECK

r

7-31-87-

Ref

STD

Fit

1.00

Conc

40.0

Units

UG/L

	25	11.10	534					STD	0. 76	4 0. 0	UG/L
	35	15. 58	906					STD	1.00	40. 0	UG/L
	45	19.35	1219					STD	0.85	40. 0	UG/L
	58	26. 32	1796					STD	0.74	40. 0	UG/L
	1T	7. 55	240	94. /	152.	42652. /	18539.	1	0. 93	50. 9	UG/L
	2 T	7. 72	254	128. /	152.	31483. /	18539.	1	0. 96	48.4	UG/L
	3T	8. 82	345	108. /	152.	28389. /	18539.	1	1.00	47.4	UG/L
	4 T	9. 18	375	107. /	152.	36655. /	18539.	1	1.00	48. 2	UG/L
,	5T	10. 42	478	107. /	136.	28926. /	70413.	2	1.00	51.1	UG/L
2	6T	10. 23	463	139. /	136.	11342. /	70413.	2	1.00	38. 9	UG/L
	7T	11.05	530	122. /	136.	11588. /	70413.	2	0. 94	43. 4	UG/L
	BT	10.82	511	63. /	136.	13623. /	70413.	2	0. 67	48. 2	UG/L
	9 T	12.67	664	107. /	136.	20061./	70413.	2	1.00	37. 2	UG/L
	10T	13. 70	750	198. /	164.	10099. /	28946.	3	1.00	43. 2	UG/L
	11T	13.82	759	198. /	164.	10263. /	28946.	3	0. 93	44.9	UG/L
	12T	15.90	733	184. /	164.	557. /	28946.	3	0. 77	6. 8	UG/L
	13T	16. 10	899	65. /	164.	3341./	28946.	3	0.00	18. 0	UG/L
	14T	17. 28	1047	198. /	188.	1861. /	41381.	4	0. 63	20. 0	UG/L
	٦T	19. 10	1198	266. /	188.	3533. /	41381.	4	0. 77	26.8	UG/L

39T	25. 05	1692	147. / 240.	26836. /	52368.	5	0.96	34.6	UG/L
40T	26. 30	1795	228. / 240.	31931. /	52368.	5	0.96	33. 0	UG/L
41T	26. 40	1804	228. / 240.	72047. /	52368.	5	0. 93	5 3. O	UG/L
5L	26.60	1821	149. / 240.	45427. /	52368.	5	0. 96	44. 5	UG/L
-3T	28. 18	2068	149. / 264.	47261./	20734.	6	0.85	31.0	UG/L
44T	29. 03	2068	252. / 264.	6652 6. /	20734.	6	0.00	107.6	UG/L
45T	29, 25	2068	252. / 264.	66526. /	20734.	6	1.00	100.4	UG/L
46T	30. 02	2068	252. / 264.	21749. /	20734.	6	0.00	56. 3	UG/L
47T	34.35	206B	276. / 264 .	8305. /	20734.	6	0.00	26. 5	UG/L
48T	34.48	2068	278. / 264.	4732. /	20734.	6	0. 0 0	16. 0	UG/L
49T	35. 47	2068	276. / 264.	6350. /	20734.	6	0. 28	28. 1	UG/L
50T	26. 28	1745	252. / 240.	3446. /	52368.	5	0.00	17. 2	UG/L
51T	23 . 0 0	1472	184. / 18 8.	104. /	96320.	4	0.00	1.1	UG/L

BAJE/NOUT. SO STO. CONTINUINC CAUBRATION CHECK 8-3-87

Resource Analysts, Incorporated

• :

ĺ

i

7

MATRIX SPIKE DUPLICATE RECOVERY

-

. .

Laboratory Number: 10,429-1 Sample Designation: 2332-320 Fort Totten Soil #1 Date Analyzed: 8/3/87 Matrix: Soil

.

-

-

.

1

a .

-

.

.

.

			REPLICATE 1		REPLIC	RELATIV	
COMPOUND	ug/g IN SAMPLE	ug/g SPIKE	ug/g FOUND	%REC- OVERY	ug/g FOUND	% REC- OVERY	RANGE %
1,1-DICHLOROETHENE	0	7	8	122	8	112	9
TRICHLOROETHYLENE	0	8	10	119	10	115	3
BENZENE	0	7	8	122	8	115	5
TOLUENE	0	7	8	121	8	124	2
CHLOROBENZENE	0	7	9	131	9	124	5

METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

.

ACID/BASE/NEUTRAL EXTRACTABLE ORGANIC COMPOUNDS

vorstory Number:	10.429-2
pample Designation:	2332-320 Fort Totten Soil #1
Date Extracted:	7/30/87
Date Analyzed:	8/3/27
# <u>5</u> ****	50il ^{**}

Results expressed on a try (103 degrees C) basis. Moisture Content: 13.2%

,

			DETECTION LIMIT			N DETECTION LITT
		(ug/ç)	(ua/g)	·	fuç/e∃	(uş/ş)
۲	N-NITROSODIMETHYLAMINE	BDL	0.8	6-NITROANILINE	80L	1
	PHENOL	BOL	0.3	4.=-DINITRO-2-METHYLPHENOL	201	:
	BIS (2-CHLORGETHYL ETHER)	BDL	0.3	N-NITROSODIFHENYLAMINE [1]	BDL	₿. 3
	2-CHLOROPHENOL	BDL	0.3	4-BROMOPHENYL-PHENYLETHER	801	0.3
•	1.3-DICHLORDEENZENE	BDL	C.3	HEXACHLOROBENZENE	501	ē.3
	1.4-DICHLORGEENZENE	BDL	0.3	PENTACHLOROPHENOL	801	1
	BENZYL ALCOHOL	BDL	0.3	PHENANTHRENE	ESL	0.3
	1.2-DICHLORCEENZENE	801	C.3	ANTHRACENE	BDL	0.3
	2-METHYLEMENOL	BDL	Ū. 3	DI-N-BUTYLPHTHALATE	BDL	<u>0.</u> 2
	EIS (2-CHLOROISOPROPYL) ETHER	BOL	0.3	FLUORGANTHENE	801	ē. 3
	4-METHYLFHENCL	BDL	0.3	BENZIDENE	EÐL	2
	HEXACHLORDETHANE	8DL	0.3	FYFENE	601	0.2
	N-NITROSODI-N-FROF/LAMINE	5DL	G.3	BUTYLBENZYLFHTHALATE	EDL	0.3
	NITROBENZENE	801	0.3	3.3 [°] -DICHLOROBENZIDINE	BDL	0.7
	TSOFHORONE	3DL	6.2	BENZOLEIANTHRACENE	EDL	6.3
	NITROFHENOL	BDL	0.3	CHRYSENE	BDL	2.3
	2.4-DIMETHYLPHENOL	BDL	0.3	EIS(2-ETHYLHEXYL PHTHALATE	0.7	5.3
	BENZUIC ACID	BDL	1	DI-N-OCTYLPHTHALATE	501	0.3
	Bis (2-CHLORETHOXY) METHANE	BDL	0.3	BENZO(b)FLUORANTHENE	BÛL	0.3
	2.4-DICHLOROPHENOL	BDL	0.3	BENZO(K)FLUOFANTHENE	BDL	6.3
	1.2,4-TRICHLOROBENZENE	BDL	0.3	BENZO(S)PYRENE	BDL	0.3
1	NAPHTHALENE	BDL	0.3	IDENO(1.2.3-c.d)PYRENE	BDL	0.3
	4-CHLOROANILINE	BDL	0.3	DIBENZO(a.h)ANTHRACENE	BDL	C.3
	HEXACHLOROBUTADIENE	BDL	C.3	BENZO(g.n.i)FERYLENE	BDL	0.3
1	4-CHLORO-3-METHYLPHENOL	BDL	0.3			<i></i>
•	2-DETHYLNAPHTHALENE	BDL	0.3	SURROGATE STANDARDS RECOVERY		
	HEXACHLOROCYCLOPENTADIENE	EDL	0.3	SURRUGATE STANDARDS RECUTER:	RECOVERY	ACCEPTANCE LIMI
	2.4.5-TRICHLORDFHENCL	BDL	0.3		(\$)	ACCEPTANCE LINE [%]
٠	2.4.S-TRICHLOROPHENOL	BDL	1	2-FL-PHENOL	12	21 - 165
	2-CHEORONAPHTHALENE		0.3		12	
		BDL		ds-PHENOL		10 - 94
7	2-NETROANELINE	3DL	1	NITROBENZENE-di	11	35 - 114
	DIMETHYLPHTHALATE	BDL	0.3	2-FL-EIPHENYL	22	43 - 11:
	ACENAPHTHYLENE	EDL	0.3	TRIBRONGPHENOL	33	15 - 117
	2.e-DINITROTOLUENE	BDL	0.3	TERFHENYL-314	41	3? - 14.
•	J-NITROANILINE	EDL	1			
	ACENAPHTHENE	BDL	0.3			
	2,4-DINITROPHENOL	EDL.	1			
	4-NITROPHENOL	BDL	1			
	DIBENZOFURAN	BDL	0.3			
	2.4-DINITROTOLUENE	801	0.3			
	DIETHYLPHTHALATE	BDL	0.3	EDL = BELOW DETECTION LIMIT		
	L-CHLOROPHENYL-PHENYLETHER	BDL	5.3	METHOD REFERENCE: EFA SH 545. 2	ND ELITION	
	FLUCRENE	EDL	0.3	METHOD 2350/2	270	

.

..

ield Identification: 2332-341 FT Sediment #1 -boratory Number: 10,430-2

w

Matrix: Solid

Matrix: Solid

.arameter	Date Analyzed	<u>Method/Reference</u>	<u>Concentration</u>
ilver, recoverable (ug/ġ) -	7/29/87	6010/1	<1
rsenic, recoverable (ug/g)	8/12/87	7060/1	4.9
Barium, recoverable (ug/g)	7/29/87	6010/1	<10
Cadmium, recoverable (ug/g)	7/29/87	6010/1	<0.5
hromium, recoverable (ug/g)	7/29/87	6010/1	13
mercury, recoverable (ug/g)	7/29/87	7471/1	0.27
Lead, recoverable (ug/g)	7/29/87	6010/1	210
lelenium, recoverable (ug/g)	8/14/87	7740/1	<1

ield Identification: 2332-342 FT Sediment #2 aboratory Number: 10,430-5

arameter	Date Analyzed	<u>Method/Reference</u>	Concentration
Silver, recoverable (ug/g)	7/29/87	6010/1	<1
irsenic, recoverable (ug/g)	8/12/87	7060/1	5.0
Barium, recoverable (ug/g)	7/29/87	6010/1	18
Cadmium, recoverable (ug/g)	7/29/87	6010/1	<0.5
Chromium, recoverable (ug/g)	7/29/87	6010/1	19
'ercury, recoverable (ug/g)	7/29/87	7471/1	0.20
ad, recoverable (ug/g)	7/29/87	6010/1	225
Selenium, recoverable (ug/g)	8/14/87	7740/1	<1

Field Identification: 2332-343 FT Sediment #3 Laboratory Number: 10,430-8

. .

Matrix: Solid

Parameter	Date <u>Analyzed</u>	Method/Reference	<u>Concentration</u>
Silver, recoverable (ug/g)	7/29/87	6010/1	<1
Arsenic, recoverable (ug/g)	8/12/87	7060/1	2.8
Barium, recoverable (ug/g)	7/29/87	6010/1	<10
Cadmium, recoverable (ug/g)	7/29/87	6010/1	<0.5
Chromium, recoverable (ug/g)	7/29/87	6010/1	12
-Mercury, recoverable (ug/g)	7/29/87	7471/1	0.15
Lead, recoverable (ug/g)	7/29/87	6010/1	270
Selenium, recoverable (ug/g)	8/14/87	7740/1	<1

Field Identification: 2332-344 FT Sediment #4 Laboratory Number: 10,430-11

irameter	Date <u>Analyzed</u>	<u>Method/Reference</u>	Concentration
Silver, recoverable (ug/g)	7/29/87	6010/1	<2
Arsenic, recoverable (ug/g)	8/12/87	7060/1	4.6
Barium, recoverable (ug/g)	7/29/87	6010/1	27
Cadmium, recoverable (ug/g)	7/29/87	6010/1	<0.6
Chromium, recoverable (ug/g)	7/29/87	6010/1	14
Mercury, recoverable (ug/g)	7/29/87	7471/1	0.28
Lead, recoverable (ug/g)	7/29/87	6010/1	190
Selenium, recoverable (ug/g)	8/14/87	7740/1	<1

Field Identification: 2332-346 FT Sed Samp Blk Matrix: Water Laboratory Number: 10,430-13

{	Date		
Parameter	Analyzed	Method/Reference	<u>Concentration</u>
Silver, recoverable (mg/L)	7/29/87	6010/1	<0.01
Arsenic, recoverable (mg/L)	8/12/87	7060/1	<0.01
Barium, recoverable (mg/L)	7/29/87	6010/1	<0.1
Cadmium, recoverable (mg/L)	7/29/87	6010/1	<0.005
Chromium, recoverable (mg/L)	7/29/87	6010/1	<0.01
Mercury, recoverable (mg/L)	7/29/87	7470/1	<0.0005
Lead, recoverable (mg/L)	7/29/87	7421/1	<0.005
elenium, recoverable (mg/L)	8/14/87	7740/1	<0.01

References: 1) EPA SW 846, 2nd Edition

.

1

!

!

Resource Analysts, Incorporated

.

CALIBRATION VERIFICATION

Lab Number: 10430	· _	Site: Units:	Fort Totten mg/L
		•	

METALS:

1

!

	True Value	Found	<u>NR</u>	<u>Method</u>	
Arsenic	0.050	0.048	96	7060	
Barium	20.0	20.0	100	7080	
Cadmium	0.50	0.492	98	7130	
Chromium	1.0	0.985	98.5	7190	
Lead	10.0	10.0	100	7420	
Mercury	0.0050	0.00515	103	7470	
Selenium	0.050	0.049	99	7740	
Silver	1.0	0.998	99.8	7760	

1) Control Limits: Mercury and Tin 80-120; Other Metals 90-110 2) Indicate Analytical Method Used: P-ICP; A-Flame AA; F-Furnace AA

CALIBRATION VERIFICATION SOURCES

Dilution of Commercial AA Standard unless otherwise specified.

:

Resource Analysts, Incorporated

MERCURY

1.	Blank Data	*
_		Results
	Blank Number	- <u>(ug/g)</u>
	Hab 68	<0.05

.

•

2. Accuracy

			Original		Total Concentrati	on
	Sample	Field I.D.	Concentration (ug/g)	Spike Level <u>(ug/g)</u>	Found (ug/g)	% <u>Recovery</u>
٦	10430-8	2332-343	0.15	0.99	1.18	104
	3. Prec	ision				K
{	Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 (ug/g)	Average (ug/g)	Relative Range
ł	10430-8	2332-343	0.14	0.16	0.15	13

SILVER

. Blank Data

L

í

Blank Number	Results (ug/g)	
MB 366	<0.5	

2. Accuracy

	·····	Original		Total Concentrati	on
Sample	Field I.D.	Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Found (ug/g)	% <u>Recovery</u>
10429-3	2332-320	<1	7.2	7.0	97
10429-21	2332-326	<1	6.0	5.8	97
3. Prec	ision	·			•
		Replicate 1	Replicate 2	Average	₹ Relative
Sample	Field I.D.	<u>(ug/g)</u>	(ug/g)	(ug/g)	Range
10429-3	2332-320	<1	<1	<1	NC
10429-21	2332-326	<1	<1	<1	NC

				-			
	1.		: Data : Number	Results (ug/g)			
		MB 36	56	<1			
	2. Samj	Accur	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentration Found (ug/g)	¥ Recovery
		29-3 29-21	2332-320 2332-326	19 20	7.2 6.0	22.5 22.8	49 47
ſ	3. <u>Sam</u> j	Preci ple	sion <u>Field I.D.</u>	Replicate 1 <u>(ug/g)</u>	Replicate 2 (ug/g)	Average <u>(ug/g)</u>	% Relative <u>Range</u>
I		29-3 29-21	2332-320 2332-326	20 21	18 19	19 20	10.5 10
i					BARIUM		
i	1.		t Data	Results (ug/g)			
		MB 36	56	<10			
	2. <u>Sam</u> j	Accur	racy <u>Field I.D.</u>	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentration Found <u>(ug/g)</u>	* Recovery
		29-3 29-21	2332-320 2332-326	94 5	724 602	757 617	91 102
	3.	Preci	lsion				*
•	Sam	ple	Field I.D.	Replicate 1 (ug/g)	Replicate 2 (ug/g)	Average (ug/g)	Relative <u>Range</u>
		29-3 29-21	2332-320 2332 326	93 58	95 56	94 57	2 3.5

.

ţ

I

ì

i

ŗ

•

Resource Analysts, Incorporated

¥.

٩.	Blank	Data	
	Black	Number	

Blank Number	Results (ug/g)	
MB 366	<0.5	

-

2. Accuracy

. *

đ

,

:

P

-

Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Total Concentratic Found <u>(ug/g)</u>	n Recovery
10429-3	2332-320	0.72	72	71	98
10429-21	2332-326	<0.6	60.2	55	90
3. Prec	ision				*
		Replicate 1	Replicate 2	Average	Relative
Sample	Field I.D.	(ug/g)	(ug/g)	(ug/g)	Range
10429-3	2332-320	0.69	0.74	0.72	6.9
10429-21	2332-326	<0.6	<0.6	<0.6	NC

<u>CHROMIUM</u>

1.	Blank Data	
		Results
	Blank Number	<u>(ug/g)</u>
	MB 366	<1

2. Accuracy

	2	J 			Total	
	Sample	Field I.D.	Original Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Concentration Found <u>(ug/g)</u>	Recovery
	10429-3	2332-320	39	725	796	104
,	10429-21	2332-326	27	602	640	102
	3. Prec	ision				•
•			Deslégate 1		1	% Relative
•	Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 <u>(ug/g)</u>	Average <u>(ug/g)</u>	Range
	10429-3	2332-320	38	39	39	2.6
	10429-21	2332-326	26	27	27	3.7

Resource Analysts, Incorporated

•••

1.	Blank Data	
	Blank Number	Results (mg/L)
	MB 367	<0.1

_

2. Accuracy

		Original		Total Concentration	
Sample	Field I.D.	Concentration (mg/L)	Spike Level (mg/L)	Found (mg/L)	% Recovery
10465-3	2332-301	0.2	5.0	4.94	95

3. Precision

					*
Sample	Field I.D.	Replicate 1 <u>(mg/L)</u>	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	0.1	0.2	0.2	50

CHROMIUM

٩.	Blank Data	
	Blank Number	Results (mg/L)
	MB 367	<0.01

2. Accuracy

10465-3 2332-301

1

{

•

	Sample	Field I.D.	Original Concentration <u>(mg/L)</u>	Spike Level <u>(mg/L)</u>	Total Concentration Found <u>(mg/L)</u>	\$ <u>Recovery</u>
,	10465-3	2332-301	0.031	5.0	5.4	107
	3. Prec	ision				*
r	Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average ((mg/L)	Relative Range

0.029

0.032

Resource Analysts, Incorporated

9.7

0.031

•••

	1.	Blan	ik Data	Results			
		<u>Blan</u>	k Number	(mg/L)			
		MB 3	67	- <0.1			
	2.	Accu	racy			- · •	
	Sam	ple	Field I.D.	Original Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Total Concentratic Found <u>(mg/L)</u>	n <u>%</u> <u>Recovery</u>
	104	65-3	2332-301	<0.1	5.0	4.97	99
T	3.	Prec	ision	Replicate 1	Replicate 2	Average	% Relative
	Sam	ple	Field I.D.	(mg/L)	(mg/L)	(mg/L)	Range
	104	65-3	2332-301	<0.1	<0.1	<0.1	NC
	NC	= not	calculable	due to results	below detecti	on limit.	
					SELENIUM		
	1.	Blan	k Data	Results		ч.	
		<u>Blan</u>	k Number	(mg/L)			
		MB 3	67	<0.01			
	2.	Accu	racy				
				Original		Total Concentratic	n
;				Concentration		Found	*
	Sam	ple	Field I.D.	(mg/L)	(mg/L)	(mg/L)	Recovery
	104	65-3	2332-301	<0.01	0.05 :	0.0111	22
f	з.	Prec	ision	,			*
ì	Sam	ple	<u>Field I.D.</u>	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
1 A.	104	65-3	2332-301	<0.01	<0.01	<0.01	NC
	NC	= not	calculable	due to results	below detecti	on limit.	

٩.	Blank Data	
	Blank Number	Results (mg/L)
	MB 367	<0.02

-

2. Accuracy

		Original Concentration Spike Level		Total Concentration I Found 4	
Sample	Field I.D.	(mg/L)	(mg/L)	(mg/L)	Recovery
1 10465-3	2332-301	<0.01	0.05	0.053	106

3. Precision

Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.01	<0.01	<0.01	NC

CADMIUM

1. Blank Data

	Blank Number	Results (mg/L)
ł	MB 367	<0.005

2. Accuracy

Į

.

		· · · ·	Original		Total Concentration		
Sample	Sample	Field I.D.	Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Found (mg/L)	% <u>Recovery</u>	
	10465-3	2332-301	<0.005	0.5	0.477	94	

3. Precision

				Poplicato 2	1	% Relative
• - 	Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Range
•	10465-3	2332-301	<0.005	<0.005	<0.005	NC

NC = Not calculable due to result below detection limit.

Resource Analysts, Incorporated

and the second second

1. Blank Data

Blank Number	Results (ug/g)		
MB 366	<1		

• ---

2. Accuracy

			Original		Total Concentratio	n
	Sample	Field I.D.	Concentration (ug/g)	Spike Level <u>(ug/g)</u>	Found (ug/g)	% Recovery
	10429-3	2332-320	<1	7.2	4.1	57
-	10429-21	2332-326	<1	6.0	2.6	43
	3. Prec	ision				
1			Replicate 1	Replicate 2	Average	% Relative
1	Sample	Field I.D.	<u>(ug/g)</u>	(ug/g)	<u>(ug/g)</u>	Range
1	10429-3	2332-320	<1	<1	<1	NC
ł	10429-21	2332-326	<1	<1	<1	NC

NC = Not calculable due to result below detection limit.

LEAD

1.	Blank Data	
	Blank Number	Results (ug/g)
	MB 366	<1

2. Accuracy

ļ

			Original		Total Concentrati	
Į	Sample	Field I.D.	Concentration <u>(ug/g)</u>	Spike Level <u>(ug/g)</u>	Found (ug/g)	k <u>Recovery</u>
•	10429-3 10429-21	2332-320 2332-326	40 45	724 602	684 578	8 9 89
	3. Prec:	ision				*
	Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 (ug/g)	Average <u>(ug/g)</u>	Relative Range
	10429-3 10429-21	2332-320 2332-326	40 47	40 43	40 45	0 8.9

ARSENIC

1. Blank Data

Blank Number	Results (mg/L)
MB 367	<0.01

2. Accuracy

		Original Concentration	Spike Level	Total Concentration Found	
Sample	Field I.D.	(mg/L)	<u>(mg/L)</u>	(mg/L)	Recovery
10465-3	2332-301	<0.1	0.05	0.0427	85

3. Precision

Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.01	<0.01	<0.01	NC

NC = Not calculable due to result below detection limit.

MERCURY

1.	Blank Data	
	Blank Number	Results <u>(mg/L)</u>
	MB 367	<0.0005

:

2. Accuracy

1

1

1

I

1

				Total	
		Original		Concentratio	n
Sample	Field I.D.	Concentration (mg/L)	Spike Level <u>(mg/L)</u>	Found (mg/L)	Recovery
10465-3	2332-301	<0.0005	0.01	0.00755	76

3. Precision

Sample	Field I.D.	Replicate 1 (mg/L)	Replicate 2 (mg/L)	Average (mg/L)	Relative <u>Range</u>
10465-3	2332-301	<0.0005	<0.0005	<0.0005	NC
NC = Not	calculated	due to result	below detectio	n limit.	

• •

Resource Analysts, Incorporated

÷

OC DATA FOR PESTICIDES

1. Laboratory Control Sample

<u>i. d.</u>	True Valu (ug/g)	e	Found (ug/g)	Recovery	Acceptance Limits
S-P105	Lindane	0.2	0.12	61	56 - 123
	Heptachlor	0.2	0.096	48	40 - 131
	Aldrin	0.2	0.11	57	40 - 120
	Dieldrin	0.5	0.27	54	52 - 126
	Endrin	0.5	0.26	51	56 - 121
	DDT	0.5	0.14	27	32 - 127

2. Blank

1

1

•

Blank Number

B 107 No compounds detected.

3. Mid-Range Calibration - Check

Standard <u>Compound</u>	(True) Calibration Value <u>8-5-87</u> (ug/mL)	Calibration Value <u>8-6-87</u> (ug/mL)	k <u>Recovery</u>
Lindane	0.025	0.020	79
Heptachlor	.050	.034	68
Aldrin	.050	.041	82
Heptachlor epoxide	.050	.041	82
Endosulfan 1	.10	.075	75
Dieldrin	.050	.040	80
Endosulfan 2	.050	.038	76
Endrin Aldehyde	.125	.089	71
DDT	.10	.028	(100)
Methoxychlor	.50	.19	38
alpha BHC	.025	.023	92
beta BHC	.050	.043	86
delta BHC	.050	.044	88
aldrin	.050	.041	82
DDE	.050	.041	82
endrin	.050	.041	82
DDD	.10	.081	81
endosulfan sulfate	.10	.080	80
endrin ketone	.10	.073	73

4. Precision

Wipes were unable to be subsampled for precision assessment.

. Accuracy

ſ

1

ł

1

Wipes were unable to be subsampled for accuracy assessment.

-

• ___

Resource Analysts, Incorporated

•.•

OC DATA FOR PETROLEUM HYDROCARBONS

-

_

1.	Laboratory Contro <u>I. D.</u>	True Value (mg/L)	Found (mg/L)	Recovery
	S-15 SD-13	5.04 5.04	5.0 5.4	99 107
2.	Mid Range Calibra	ation Check Sample		
	True Value (mg/L)	Found (mg/L)	Recovery (%)	
	50	53	106	
з.	Blank			
	Blank Number	Results		
	261 260	<60 ug/g <1 mg/L		
4.	Precision			

Sample	Field I.D.	Replicate 1 <u>(ug/g)</u>	Replicate 2 (ug/g)	Average (ug/g)	% Relative <u>Range</u>
.0439-9	2332-343	190	150	170	24

5. Accuracy

•

t

1

I

ţ

3

		Original Concentration Spike Level		Total Concentration Found %	
<u>Sample</u>	Field I.D.	<u>(ua/a)</u>	<u>(ua/a)</u>	<u>(ug/g)</u>	Recovery
10430-3 10430-11	2332-341 2332-344	220 280	320 630	710 660	156 6 0

Analysis: Petroleum Hydrocarbons (ug/g) Matrix: Solid Method/Reference: 503B,D,E/Standard Methods, 16th Edition Tate Analyzed: August 4, 1987

Field Identification	Lab. No.	Concentration
2332-341 FT Sediment #1	10,430-3	220
2332-342 FT Sediment #2	10,430-6	280
2332-343 FT Sediment #3	10,438-9	150
2332-344 FT Sediment #4	10,430-11	280

Analysis: Petroleum Hydrocarbons (ug/g) Matrix: Water Method/Reference: 503B,D,E/Standard Methods, 16th Edition Date Analyzed: August 4, 1987

Field Identification	Lab. No.	Concentration
2332-346 FT Sed Sam Blk	10,430-14	<1.0

t

ŧ

17

Lab Number:	10,430-1
Sample Designation:	2332-341 FT Sediment #1
Date Analyzed:	8/04/87 Solid

1

...**+**. 7

t

ſ

¥

Ì.

1

VOLATILE ORGANICS	CONCENTRATION (ug/g)	I DETECTION LIMIT (ug/g)
CHLOROMETHANE	(ug/g) BDL	1
VINYL CHLORIDE	BDL BDL BDL BDL	1
CHLOROETHANE	BDL	0.5
BROMOMETHANE METHYLENE CHLORIDE	BDI.	1
METHYLENE CHLORIDE	BDL	0.5
1 1-DICHLOROETHYLENE	BDI.	0.5
1 1-DICHLOPOPTHINE	BDI.	0.5
1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDI.	0.5
CULOBORORM	BDL	0.5
CHLOROFORM 1,2-DICHLOROETHANE		0.5
1,2-DICHLOROETHANE	BDL	
	BDL	0.5
CARBON TETRACHLORIDE	BDL	0.5
BROMODICHLOROMETHANE	BDL	0.5
1,2-DICHLOROPROPANE 1,3-trans-DICHLOROPROPENE	BDL	0.5
1,3-trans-DICHLOROPROPENE	BDL	0.5
TRICHLOROETHYLENE Benzene	BDL	0.5
Benzene	BDL	0.5
1,3-cis-DICHLOROPROPENE	BDL	0.5
1,1,2-TRICHLOROETHANE	BDL	0.5
2-CHLOROETHYL VINYL ETHER	BDL	0.5
DIBROMOCHLOROMETHANE	BDL	0.5
BROMOFORM	BDL	0.5
TETRACHLOROETHYLENE	BDL	0.5
1,1,2,2-TETRACHLOROETHANE		0.5
	BDL	0.5
CHLOROBENZENE	BDL	0.5
toluene Chlorobenzene Ethylbenzene	BDL	0.5
ACETONE	BDL	2.5
CARBON DISULFIDE	BDL	0.5
THF	BDL	2.5
MEK	BDL	2.5
VINYL ACETATE	BDL	1
MIBK	BDL	2.5
2-HEXANONE	BDL	2.5
STYRENE	BDL	0.5
XYLENES	BDL	0.5
SURROGATE STANDARDS RECOVERY	r	
	RECOVERY	ACCEPTANCE LIMITS
	(%)	(%)
d4-dichloroethane	87	70 - 121
de-Toluene	89	81 - 117
BROMOFLUOROBENZENE	81	74 - 121
-vanal haavaddu reus	V 🕹	

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: BPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

•••

Lab Number: Sample Designation: Date Analyzed: Matrix:

.

•

7

10,430-4 2332-342 FT Sediment #2 8/04/87 Solid

	·		
	VOLATILE ORGANICS	CONCENTRATION	
		(ug/g)	(ug/g)
	CHLOROMETHANE	BDL	• 1
	VINYL CHLORIDE	BDL	
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
4	METHYLENE CHLORIDE	BDL	0.5
	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
r "-		BDL	0.5
	CHLOROFORM 1,2-DICHLOROETHANE	BDL	0.5
	1,2-DICHLOROETHANE	BDL BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
1	CARBON TETRACHLORIDE	BDL	0.5
'	BROMODICHLOROMETHANE	BDL BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
(1,3-trans-DICHLOROPROPENE	BDL	0.5
ł	TRICHLOROETHYLENE	BDL	0.5
	BENZENE	BDL	0.5
	1, 3-cis-DICHLOROPROPENE	BDL	0.5
7	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
,	Bromoform Tetrachloroethylene	BDL	0.5
	TETRACHLOROETHYLENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
,	TOLUENE	BDL	0.5
	Chlorobenzene	BDL	0.5
	Toluene Chlorobenzene BTHylbenzene	BDL	0.5
1	ACETONE	BDL	2.5
1.	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
•	Mek	BDL	2.5
1	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
÷.	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		
		RECOVERY (%)	ACCEPTANCE LIMITS (%)
	d4-dichloroethane	84	70 - 121
١	de-Toluene	84	81 - 117
	BROMOFLUOROBENZENE	83	74 - 121
	dromof LookodenZ ene	63	14 - 191

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

.

·:•.

Lab Number: Sample Designation: Date Analyzed: fatrix:

.

~

•

τ.

10,430-7 2332-343 FT Sediment #3 8/04/87 Solid

	VOLATILE ORGANICS	CONCENTRATION	
	CHLOROMETHANE	(ug/g) BDL	
		BDL	· 1
	VINYL CHLORIDE		0.5
	CHLOROETHANE	BDL	
	BROMOMETHANE	BDL	1
Ţ	METHYLENE CHLORIDE	BDL	0.5
	BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHANE	BDL	0.5
· ·	1,2-trans-DICHLOROETHYLENE	BDL	0.5
÷	CHLOROFORM 1,2-DICHLOROETHANE	BDL	0.5
	1,2-DICHLOROETHANE	BDL BDL	0.5
	1,1,1-TRICHLOROETHANE	BDL	0.5
	CARBON TETRACHLORIDE	BDL	0.5
	BROMODICHLOROMETHANE	BDL BDL BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
	1,3-trans-DICHLOROPROPENE	BDL	0.5
,	TRICHLOROETHYLENE	EDI.	0.5
	BENZENE	BDL	0.5
	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL BDL BDL	0.5
1	1,1,2-TRICHLOROETHANE	BDL	0.5
	-CHLOROETHYL VINYL ETHER	BDI.	- 0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
۱ [.]	BROMOFORM	BDL	0.5
1	Bromoform Tetrachloroethylene	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE	BDL	0.5
	MAT TENTE	BDL	0.5
1.1	CHLOROBENZENE	BDL .	0.5
,	CHLOROBENZENE ETHYLBENZENE	BDL	0.5
ı	ACETONE	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF	BDL	2.5
	MEK	BDL	2.5
1	VINYL ACETATE	BDL	1
:	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	AILENES		0.5
	SURROGATE STANDARDS RECOVERY		
		RECOVERY	ACCEPTANCE LIMITS
		(%)	(%)
	d4-dichloroethane	86	70 - 121
	d8-Toluene	90	81 - 117
	Bromofluorobenz ene	80	74 - 121

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

·...

Lab Number: Sample Designation: Date Analyzed: Natrix:

-

-

.

ŧ

ſ

ł

t

÷

.

l

ţ

٩

7

10,430-10 2332-344 FT Sediment #4 8/04/87 Solid

	VOLATILE ORGANICS CHLOROMETHANE VINYL CHLORIDE CHLOROETHANE BROMOMETHANE METHYLENE CHLORIDE		DETECTION LIMIT (ug/g)
	CHLOROMETHANE	(ug/g) BDL BDL BDL BDL BDL BDL BDL	1
	VINVI. CHLORIDE	BDL	ī
	CHLOROETHANE	BDL	0.5
	BROMOMETHANE	BDL	1
	METHYLENE CHLORIDE	BDL	0.5
	1.1-DICHLOROETHYLENE	BDL	0.5
	1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	0.5
	1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	0.5
•		BDL	0.5
	1,2-DICHLOROETHANE	BDL	0.5
	1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE	BDL	A E
	CARBON TETRACHLORIDE	BDL BDL	0.5
	BROMODICHLOROMETHANE	BDL	0.5
	1,2-DICHLOROPROPANE	BDL	0.5
	1, 3-trans-DICHLOROPROPENE	BDL BDL	
	TRICHLOROETHYLENE	BDL	0.5
	15 B. N. Z. E. N. S.	BDL	0.5
	1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE 2-CHLOROETHYL VINYL ETHER	BDL	0.5
	1,1,2-TRICHLOROETHANE	BDL	0.5
	2-CHLOROETHYL VINYL ETHER	BDL	0.5
	DIBROMOCHLOROMETHANE	BDL	0.5
	Bromoform	BDL	0.5
	Tetrachloroethyl ene	BDL	0.5
		BDL	0.5
	TOLUENE	BDL	0.5
	Chlorobenzene	BDL	0.5
	ETHYLBENZENE	BDL	0.5
	1,1,2,2-TETRACHLOROETHANE TOLUENE CHLOROBENZENE ETHYLBENZENE ACETONE CARBON DISULFIDE THF	BDL	2.5
	CARBON DISULFIDE	BDL	0.5
	THF Mek Vinyl Acetate	BDL	2.5
	MEK	BDL	2.5
	VINYL ACETATE	BDL	1
	MIBK	BDL	2.5
	2-HEXANONE	BDL	2.5
	STYRENE	BDL	0.5
	XYLENES	BDL	0.5
	SURROGATE STANDARDS RECOVERY		
		recovery	ACCEPTANCE LIMITS

	RECOVERY	ACCEPTANCE LIMITS	
	(\$)	(%)	
d4-dichloroethane	98	70 - 121	
d8-Toluene	90	81 - 117	
BROMOF LUOROBENZENE	78	74 - 121	

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Lab Number:
Sample Designation:
Date Analyzed:
Matrix:

7

1

t

ſ

• •

1

{

1

1

1

10,430-12 2332-346 FT Sed Sam Blk 8/04/87 Water

VOLATILE ORGANICS	CONCENTRATION	
	(ug/L) BDL	(ug/L)
CHLOROMETHANE VINYL CHLORIDE CHLOROETHANE BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,2-trans-DICHLOROETHYLENE	влг	10
VINIL CHLORIDE	BDL	10
CHLOROETHANE	BDL	. 5
BROMOMETHANE	BDL	5
METHYLENE CHLORIDE	BDL	5
1,1-DICHLOROETHYLENE	BDL	5
1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE 1,2-trans-DICHLOROETHYLENE	BDL	5
1,2-trans-DICHLOROETHYLENE	BDL	5
Chloroform	BDL	5
1,2-DICHLOROETHANE	BDL	5
CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE	BDL	5
CARBON TETRACHLORIDE	BDL	5
	BDL	5
BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL	5
1,3-trans-DICHLOROPROPENE		
TRICHLOROETHYLENE	BDL	, , , , , , , , , , , , , , , , , , ,
TRICHLOROETHYLENE	BDL	5
1.3-cis-DICHLOROPROPENE	BDL	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1,3-cis-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE	BDL	
2-CHLOROETHYL VINYL ETHER	BDL	J
PIBONOCHI ODONEMUINA		5
B CHORODAN	BDL	5
DIBROMOCHLOROMETHANE BROMOFORM TETRACHLOROETHYLENE	BDL	5
	BDL	5
1,1,2,2-TETRACHLOROETHANE		5
TOLUENE	BDL	5
	BDL	5
ETHYLBENZENE	BDL	5
ACETONE	BDL	25
CARBON DISULFIDE	BDL	5
THF	BDL	25
MER	BDL	25
VINYL ACETATE	BDL	10
MIBK	BDL	25
2-HEXANONE	BDL	25
STYRENE	BDL	5
XYLENES	BDL	5
SURROGATE STANDARDS RECOVERY		
	RECOVERY	ACCEPTANCE LIMITS
	(%)	
d4-DICHLOROETHANE	90	76 - 114
	100	88 - 110
BROMOFLUOROBENZENE	83	86 - 115

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: BPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

25

.

ŧ

1

,

۱

¥.

.

Lab Number:10,430-15Sample Designation:2332-348 FT Sed Trav BlkDate Analyzed:8/04/87Matrix:Water

VOLATILE ORGANICS	CONCEN	TRATION	
	REP. 1		DETECTION LIMIT
·		(ug/L)	
CHLOROMETHANE	BDL	BDL	10
VINYL CHLORIDE	BDL	BDL	10
CHLOROETHANE	BDL	BDL	5
	BDL	BDL	5
METHYLENE CHLORIDE	BDL	BDL '	5
1 1-DICHLOROETHYLENE	BDL	BDL	5
1,1-DICHLOROETHYLENE 1,1-DICHLOROETHANE	BDL	BDL .	5
1,2-trans-DICHLOROETHYLENE	BDL	BDL	5
	BDL	BDL	5
	BDL	BDL	5
1,1,1-TRICHLOROETHANE	BDL	BDL	5
CARBON TETRACHLORIDE	BDL	BDL	5
BROMODICHLOROMETHANE	BDL	BDL	5
1,2-DICHLOROPROPANE	BDL		5
1,3-trans-DICHLOROPROPENE		BDL BDL	5
•	BDL BDL		5
TRICHLOROETHYLENE	BDL	BDL BDL	5
BENZENE	BDL		5
1,3-cis-DICHLOROPROPENE	BDL	BDL	5
1,1,2-TRICHLOROETHANE		BDL	5
2-CHLOROETHYL VINYL ETHER	BDL	BDL	5
DIBROMOCHLOROMETHANE	BDL	BDL	5
BROMOFORM	BDL	BDL	5 5
TETRACHLOROETHYLENE	BDL	BDL	5
1,1,2,2-TETRACHLOROETHANE	BDL	BDL	5
TOLUENE	BDL	BDL	5
CHLOROBENZENE	BDL	BDL	5
ETHYLBENZENE	BDL	BDL	5
ACETONE	BDL	BDL	25
CARBON DISULFIDE	BDL	BDL	5
THF	BDL	BDL	25
MER	BDL	BDL	25
VINYL ACETATE	BDL	BDL	10
MIBK	BDL	BDL	25
2-HEXANONE	BDL	BDL	25
STYRENE	BDL	BDL	5
XYLENES	BDL	BDL	5
SURROGATE STANDARDS RECOVERY			
	REP. 1	REP. 2	ACCEPTANCE LIMITS
	(%)	(%)	(%)
d4-dichloroethane	92	92	70 - 121
d8-toluene	96	94	81 - 117
BROMOFLUOROBENZENE	85	83	74 - 121

-

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW \$46, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

..

•.

Laboratory Number: Sample Designation: Jate Analyzed: Matrix:	- 10,430-16 2332-350 Fort Tott - 8/07/87 Solid	en Wipe #1
PESTICIDES	CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)
ALDRIN	BDL	0.005
ALPHA-BHC	BDL	0.005
- BETA-BHC	BDL	0.005
GAMMA-BHC	BDL	0.005
DELTA-BHC	BDL	0.005
CHLORDANE	BDL	0.05
4,4'-DDT	4.2	0.01
4 , 4 '-DDE	1.1	0.01
4,4'-DDD	0.69	0.01
DIELDRIN	BDL	0.01
ENDOSULFAN I	BDL	0.005
ENDOSULFAN II	BDL	0.01
ENDOSULFAN SULFATE	BDL	0.01
ENDRIN	BDL	0.01
ENDRIN ALDEHYDE	BDL	0.01
HEPTACHLOR	BDL	0.005
HEPTACHLOR EPOXIDE	BDL	0.005
TOXAPHENE	BDL	10
ENDRIN KETONE	BDL	0.01
METHOXYCHLOR	BDL	0.05

.

•

į

ł

•

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

* Pesticide identification is tentative. GC confirmation is needed for positive identification.

Resource Analysts, Incorporated

•••

Laboratory Number: Sample Designation: Date Analyzed: Matrix:	10,430-17 - 2332-351 Fort Tott 8/07/87 Solid	ten Wipe #2
PESTICIDES	CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)
ALDRIN	BDL	0.005
ALPHA-BHC	BDL	0.005
BETA-BHC	BDL	0.005
GAMMA-BHC	BDL	0.005
DELTA-BHC	BDL	0.005
CHLORDANE	BDL	0.05
4,4'-DDT	1.7	0.01
4,4'-DDE	0.29	0.01
4,4'-DDD	0.42	0.01
DIELDRIN	BDL	0.01
ENDOSULFAN I	BDL	0.005
ENDOSULFAN II	BDL	0.01
ENDOSULFAN SULFATE	BDL	0.01
ENDRIN	BDL	0.01
ENDRIN ALDEHYDE	BDL	0.01
HEPTACHLOR	BDL	· 0.005
HEPTACHLOR EPOXIDE	BDL	0.005
TOXAPHENE	BDL	10
ENDRIN KETONE	BDL	0.01
METHOXYCHLOR	BDL	0.05

ſ

i

7

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

* Pesticide identification is tentative. GC confirmation is needed for positive identification.

.

Laboratory Number: Sample Designation: ite Analyzed: Matrix:	- 10,430-18 2332-352 Fort Totto 8/07/87 Solid	en Wipe #3
PESTICIDES	CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)
ALDRIN	BDL	0.005
ALPHA-BHC	BDL	0.005
BETA-BHC	BDL	0.005
GAMMA-BHC	BDL	0.005
DELTA-BHC	BDL	0.005
CHLORDANE	BDL	0.05
4,4'-DDT	3.2	0.01
4,4'-DDE	0.05	0.01
4,4'-DDD	0.53	0.01
DIELDRIN	BDL	0.01
ENDOSULFAN I	BDL	0.005
ENDOSULFAN II	BDL	0.01
ENDOSULFAN SULFATE	BDL	0.01
ENDRIN	BDL	0.01
ENDRIN ALDEHYDE	BDL	0.01
HEPTACHLOR	BDL	0.005
HEPTACHLOR EPOXIDE	BDL	0.005
TOXAPHENE	BDL	. 10
ADRIN KETONE	BDL	0.01
METHOXYCHLOR	BDL	0.05

t

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

* Pesticide identification is tentative. GC confirmation is [needed for positive identification.

Resource Analysts, Incorporated

22

	Laboratory Number: ample Designation: Date Analyzed: Matrix:	10,430-19 2332-353 Fort Tott 8/07/87 Solid	en Wipe #4
	PESTICIDES	CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)
	ALDRIN	BDL	0.005
	ALPHA-BHC	BDL	0.005
	BETA-BHC	BDL	0.005
	GAMMA-BHC	BDL	0.005
	DELTA-BHC	BDL	0.005
ť	CHLORDANE	BDL	0.05
	4,4'-DDT	4.1	0.01
	4,4'-DDE	0.2	0.01
	4,4'-DDD	0.8	0.01
1	DIELDRIN	BDL	0.01
•	ENDOSULFAN I	BDL	0.005
	ENDOSULFAN II	BDL	0.01
,	ENDOSULFAN SULFATE	BDL	0.01
	ENDRIN	BDL	0.01
	ENDRIN ALDEHYDE	BDL	0.01
,	HEPTACHLOR	BDL	0.005
	HEPTACHLOR EPOXIDE	BDL	0.005
	:OXAPHENE	BDL	10
	ENDRIN KETONE	BDL	0.01
	METHOXYCHLOR	BDL	0.05

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

ĺ

* Pesticide identification is tentative. GC confirmation is needed for positive identification.

Laboratory Number: - 10,430-20 Sample Designation: 2332-354 Fort Totto ate Analyzed: 8/07/87 Matrix: Solid	en Wipe #5
PESTICIDES CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)
ALDRIN BDL	0.005
ALPHA-BHC BDL	0.005
BETA-BHC BDL	0.005
GAMMA-BHC BDL	0.005
DELTA-BHC BDL	0.005
CHLORDANE BDL	0.05
4,4'-DDT 2.3	0.01
4,4'-DDE .72	0.01
4,4'-DDD .60	0.01
DIELDRIN BDL	0.01
ENDOSULFAN I BDL	0.005
ENDOSULFAN II BDL	0.01
ENDOSULFAN SULFATE BDL	0.01
ENDRIN BDL	0.01
ENDRIN ALDEHYDE BDL	0.01
HEPTACHLOR BDL	0.005
HEPTACHLOR EPOXIDE BDL	0.005
TOXAPHENE BDL	10
NDRIN KETONE BDL	0.01
METHOXYCHLOR BDL	0.05

ſ

1

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

* Pesticide identification is tentative. GC confirmation is • needed for positive identification.

Resource Analysts, Incorporated

.....

	Laboratory Number: ample Designation: Date Analyzed: Matrix:	10,430-21 2332-356 FT Wipe S 8/07/87 Solid	am. Blk
	PESTICIDES	REP 1 REP 2 Concentration (ug/wipe)	DETECTION LIMIT (ug/wipe)
	ALDRIN	BDL BDL	0.005
	ALPHA-BHC	BDL BDL	0.005
1	BETA-BHC	BDL BDL	0.005
,	GAMMA-BHC	BDL BDL	0.005
	DELTA-BHC	BDL BDL	0.005
	CHLORDANE	BDL BDL	0.05
1	4,4'-DDT	BDL BDL	0.01
	4,4'-DDE	BDL BDL	0.01
	4,4'-DDD	BDL BDL	0.01
	DIELDRIN	BDL BDL	0.01
	ENDOSULFAN I	BDL BDL	0.005
	ENDOSULFAN II	BDL BDL	0.01
,	ENDOSULFAN SULFATE	BDL BDL	0.01
÷.	ENDRIN	BDL BDL	0.01
	ENDRIN ALDEHYDE	BDL BDL	0.01
	HEPTACHLOR	BDL BDL	0.005
!	YEPTACHLOR EPOXIDE	BDL BDL	0.005
	OXAPHENE	BDL BDL	10
	ENDRIN KETONE	BDL BDL	0.01
ľ	METHOXYCHLOR	BDL BDL	0.05

-

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

.

٠.

· - ---

.

.

ť

I

ŗ

_ . _

Resource Analysts, Incorporated

	Lab Number: Sample Designation: Date Analyzed:	Laboratory C3823 8/03/87	Control	Sample	
	Matrix:	Water			
	VOLATILE ORGANICS	TRUE	CONC.		\$
		VALUE	FOUND	LIMIT	RECOVERY
	·	(ug/L)	(ug/L)	(ug/L)	
	CHLOROMETHANE	BDL	BDL	10	
	VINYL CHLORIDE	BDL	BDL	· 10 5	
	CHLOROETHANE	BDL	BDL		
	BROMOMETHANE	BDL	BDL 65.9	J E	67
	METHYLENE CHLORIDE	98.0	BDL	J E	07
_	1,1-DICHLOROETHYLENE	BDL BDL	BDL	J K	
-	1,1-DICHLOROETHANE	BDL	BDL	5	
	1,2-trans-DICHLOROETHYLENE	60.4	39.3	5 5 5 5 5 5	65
	CHLOROFORM	90.2	85.0	5	94
•	1,2-DICHLOROETHANE	73.8	25.4	5	34
	1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE	92.7	22.8	5	24
	BROMODICHLOROMETHANE	84.5	77.7	5	92
	1,2-DICHLOROPROPANE	BDL	BDL	5	
	1, 3-trans-DICHLOROPROPENE	BDL	BDL	5	
	TRICHLOROETHYLENE	55.1	22.3	5	40
	BENZENE	BDL	BDL	5	• •
	1,3-cis-DICHLOROPROPENE	BDL	BDL	5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	1,1,2-TRICHLOROETHANE	BDL	BDL	5	
	2-CHLOROETHYL VINYL ETHER	BDL	BDL	5	
	DIBROMOCHLOROMETHANE	71.7	89.0		124
	BROMOFORM	97.8	122	5	125
	TETRACHLOROETHYLENE	48.0	19.0	5	39
	1,1,2,2-TETRACHLOROETHANE	BDL	BDL	5 5	
	TOLUENE	BDL	BDL	5	
	CHLOROBENZENE	79.1	55.6	5	70
	ETHYLBENZENE	BDL	BDL	5	
	ACETONE	BDL	BDL	25	
	CARBON DISULFIDE	BDL	BDL		
	THF	BDL	BDL	25	
	MEK	BDL	BDL	25	
	VINYL ACETATE	BDL	BDL	10	
	MIBK	BDL	BDL	25	
	2-HEXANONE	BDL	BDL	25	
	STYRENE	BDL	BDL	5	
,	XYLENES	BDL	BDL	5	
	SURROGATE STANDARDS RECOVERY				
		RECOVERY	, y c	CEPTANCE LIMI	TS
		(%)		(%)	
	d4-dichloroethane	100		76 - 114	
	d8-Toluene	106		88 - 110	
	Bromofluorobenz ene	102		86 - 115	
	•				

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

•

1 1

١

Ì

1

1

-

Resource Analysts, Incorporated

÷.

Lab Number: Sample Designation: Date Analyzed:	-	Calibration Verificats C3849 8/04/87	lon
Date Analyzed:	-	8/06/07	
Matrix:		Water	

-

• •

I

ł

1

1

	VOLATILE ORGANICS	CONC. OF STANDARD	CONC. FOUND (ug/L)	* Recovery	DETECTION LIMIT (ug/L)
		(ug/L) 50	24	48	10
	CHLOROMETHANE	50	29	58	10
	VINYL CHLORIDE	. 50	25	50	5
•	CHLOROETHANE	50	25	48	5
	BROMOMETHANE	50	53	106	5
	METHYLENE CHLORIDE				5
	1,1-DICHLOROETHYLENE	50	50	100	2 E
	1,1-DICHLOROETHANE	50	57	114	5 5 5 5 5 5 5
	1,2-trans-DICHLOROETHYLENE		46	92	5
	Chloroform	50	42	84	5
	1,2-DICHLOROETHANE	50	40	80	5
	1,1,1-TRICHLOROETHANE	50	34	68	5
	CARBON TETRACHLORIDE	50	32	64	5
	BROMODICHLOROMETHANE	50	42	84	5 5
	1,2-DICHLOROPROPANE	50	54	108	5
	1,3-trans-DICHLOROPROPENE	38	40	105	5
	TRICHLOROETHYLENE	50	37	74	5
	BENZENE	50	49 -	98	5 5 5 5
	1,3-cis-DICHLOROPROPENE	62	53	85	5
	1,1,2-TRICHLOROETHANE	50	56	112	5
	2-CHLOROETHYL VINYL BTHER	50	31	62	5
	DIBROMOCHLOROMETHANE	50	40	80	5
	BROMOFORM	50	45	90	5 5 5 5 5 5 5
	TETRACHLOROETHYLENE	· 50	34	68	5
	1,1,2,2-TETRACHLOROETHANE	50	57	114	5
	TOLUENE	50	52	104	5
	CHLOROBENZENE	50	42	84	5
	ETHYLBENZENE	50	46	92	5
:	ACETONE	50	43	86	25
	CARBON DISULFIDE	50	33	66	5
[THF	50	76	152	25
	MEK	50	72	144	25
	VINYL ACETATE	50	58	116	10
,	MIBK	50	72	144	25
	2-HEXANONE	50	71	142	25
÷	STYRENE	50	46	92	5
	XYLENES	134	130	97	5
•	vi reus)	T	6 V V	••	-

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

.

••

	Lab Number: Sample Designation:	Blank	
	Sample Designation:	8/04/87	
	Date Analyzed: Matrix:	Water	
	119 VA &N 1		
	VOLATILE ORGANICS		DETECTION LIMIT
	7	(ug/L) BDL	(ug/L)
	CHLOROMETHANE		10
	VINYL CHLORIDE	BDL	10
	CHLOROETHANE	BDL	5
	BROMOMETHANE	BDL	5
	METHYLENE CHLORIDE	13 BDL	5
	1,1-DICHLOROETHYLENE	BDL	5
	1,1-DICHLOROETHANE	BDL	5
	1,2-trans-DICHLOROETHYLENE	BDL	5
-	CHLOROFORM	BDL	5
	1,2-DICHLOROETHANE	BDL	5
	1,1,1-TRICHLOROETHANE	BDL	5
	CARBON TETRACHLORIDE	BDL	5
	BROMODICHLOROMETHANE	BDL	5
	1,2-DICHLOROPROPANE	BDL	5
	1,3-trans-DICHLOROPROPENE	BDL	5
	TRICHLOROETHYLENE	עעם	5
	BENZENE	BDL	5
	1,3-cis-dichloropropene 1,1,2-trichloroethane 2-chloroethyl Vinyl Ether	BDL	5
	1,1,2-TRICHLOROETHANE	BDL	5
	2-CHLOROETHYL VINYL ETHER	BDL	5
	DIBROMOCHLOROMETHANE BROMOFORM TETRACHLOROETHYLENE 1,1,2,2-TETRACHLOROETHANE	BDL	5
	BROMOFORM	BDL	5
	TETRACHLOROETHYLENE	BDL	- 5
		BDL	5
	TOLUENE	BDL	5
	CHLOROBENZENE	BDL	5
	ETHYLBENZENE	BDL	5
	ACETONE	BDL	25
	CARBON DISULFIDE	BDL	5
	THF	BDL	25
	MEK	BDL	25
	VINYL ACETATE	BDL	10
	MIBK	BDL	25
	2-HEXANONE	BDL	25
	STYRENE	BDL	5
	XYLENES	BDL	5
,	SURROGATE STANDARDS RECOVERY		
r		RECOVERY	ACCEPTANCE LIMITS
Ì		(%)	(%)
	d4-dichloroethane	90	76 - 114
	d8-TOLUENE	101	88 - 110
	BROMOFLUOROBENZENE	87	86 - 115

1

ļ

1

1

1

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: BPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

.

•

Lab Number: Sample Designation: Date Analyzed: Matrix:

· · ·

۲

ſ

7

1

J.

ſ

Blank 100 ME C3847 - 8/04/87 Solid

.

-

•

VOLATILE ORGANICS	CONCENTRATION	DETECTION LIMIT
	(ug/g) BDL BDL BDL	(ug/g)
CHLOROMETHANE VINYL CHLORIDE CHLOROETHANE BROMOMETHANE METHYLENE CHLORIDE 1,1-DICHLOROETHYLENE 1,2-TRODECHLOROETHYLENE	BDL	1
VINYL CHLORIDE	BDL	• 1
CHLOROETHANE	BDL	0.5
BROMOMETHANE	BDL	1
METHYLENE CHLORIDE	1.7	0.5
1.1-DICHLOROETHYLENE	BDL	0.5
1.1-DICHLOROETHANE	BDL	0.5
1,2-trans-DICHLOROETHYLENE	BDL	0.5
CHLOROFORM	BDL	0.5
CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE	BDL	0.5
1 1 1-TRICHLORORTHANE	BDL	0.5
CAPBON TETRACHLORIDE	BDL	0.5
BROMODICHLOROMETHANE	BDL	0.5
BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL	0.5
1,3-trans-DICHLOROPROPENE		0.5
T, J-LIENS-DICHDOROFROFEME	BDL	0.5
	BDL	0.5
BENZENE	BDU BDI	0.5
1, 3-cis-DICHLOROPROPENE 1, 1, 2-TRICHLOROETHANE		
2-CHLOROETHYL VINYL ETHER		0.5
Z-CHLOROETHIL VINIL ETHER		0.5
DIBROMOCHLOROMETHANE BROMOFORM TETRACHLOROETHYLENE	BDL BDL	0.5
	BDL	0.5
TETRACHLOROETHYLENE	BDL	0.5
1,1,2,2-TETRACHLOROETHANE	BDL	0.5
TOLUENE	.7 BDL	0.5
CHLOROBENZENE		0.5
TOLUENE Chlorobenzene Ethylbenzene	BDL	0.5
ACETONE	BDL	2.5
CARBON DISULFIDE	BDL	0.5
• • • • •	BDL	2.5
	BDL	2.5
VINYL ACETATE	BDL	1
MIBK	BDL	2.5
2-HEXANONE	BDL	2.5
STYRENE	BDL	0.5
XYLENES	BDL	0.5
SURROGATE STANDARDS RECOVERY		
	RECOVERY (%)	ACCEPTANCE LIMITS (%)
d4-dichloroethane	84	70 - 121
de-Dichloroethane de-Toluene	92	81 - 117
BROMOFLUOROBENZENE	81	74 - 121
Bronof Luoroden 25ne	V 4	

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

•

MATRIX SPIKE DUPLICATE RECOVERY

Laboratory Number: 10,430-10 Sample Designation: 2332-344 FT Sediment #4 Date Analyzed: 8/04/87 Matrix: Water

-

			REPLICATE 1		REPLICATE 2		RELATIV.
COMPOUND	UG/L IN Sample	ug/L Spike	ug/l Found	. TREC- Overy	ug/L Found	* REC- Overy	RANGE %
1,1-DICHLOROETHENE	0	50	70	140	77	154	10
TRICHLOROETHYLENE	0	52	78	150	89	171	13
BENZENE	0	48	60	125	69	144	14
TOLUENE	9	48	63	113	72	131	13
Chlorobenzene	0	53	70	132	81	153	15

METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

>

É

.

i

,

Resource Analysts, Incorporated

÷.

MATRIX SPIKE DUPLICATE RECOVERY

Laboratory Number: 10,430-12 Sample Designation: 2332-346 FT Sed Sam Blk Date Analyzed: 8/04/87 Matrix: Water

-

• •

ì

1

				REPLICATE 1		REPLICATE 2		RELATIVI	
٩	COMPOUND	ug/l IN Sample	ug/L Spike	ug/L Found	REC- Overy	ug/L Found	* REC- Overy	RANGE \$	
ſ	1,1-DICHLOROETHENE	0	50	79	158	82	164	4	
ł	TRICHLOROETHYLENE	0	52	89	171	87	167	2	
	BENZENE	0	48	67	140	66	138	2	
	TOLUENE	0	48	69	144	67	140	3	
	CHLOROBENZENE	0	53	79	149	77	145	3	

METHOD REFERENCE: EPA SW 846, 2ND EDITION METHOD 8240

Resource Analysts, Incorporated

·....

Laboratory Number: Sample Designation:	-	B-M107 Blank
ate Analyzed:		8/10/87
liatrix:	-	Solid

(

ł

ţ

.

•

PESTICIDES	CONCENTRATION (ug/wipe)	DETECTION LIMIT (ug/wipe)		
ALDRIN	BDL	0.005		
ALPHA-BHC	BDL	0.005		
BETA-BHC	BDL	0.005		
GAMMA-BHC	BDL	0.005		
DELTA-BHC	BDL	0.005		
CHLORDANE	BDL	0.05		
4,4'-DDT	BDL	0.01		
4,4'-DDE	BDL	0.01		
4,4'-DDD	BDL	0.01		
DIELDRIN	BDL	0.01		
ENDOSULFAN I	BDL	0.005		
ENDOSULFAN II	BDL	0.01		
ENDOSULFAN SULFATE	BDL	0.01		
ENDRIN	BDL	0.01		
ENDRIN ALDEHYDE	BDL	0.01		
HEPTACHLOR	BDL	0.005		
HEPTACHLOR EPOXIDE	BDL	0.005		
TOXAPHENE	BDL	10		
NDRIN KETONE	BDL	0.01		
AETHOXYCHLOR	BDL	0.05		

BDL = BELOW DETECTION LIMIT METHOD REFERENCE: 40 CFR PART 136, FRIDAY, OCTOBER 26, 1984 METHOD 608

.

* Pesticide identification is tentative. GC confirmation is needed for positive identification.

Resource Analysts, Incorporated

APPENDIX E

• _--

7

.

:

i

Ş

QUALITY CONTROL SAMPLE RESULTS

TABLE F.1 - FIELD DUPLICATE ANALYSIS

.

		W-2	MJ-2	Relative	QAPP
			Field Duplicate		Objective
AQUEOUS SAMPLES		2332-302	2332-306	(%)	(%)
		ug/L	ug/L		
Volatile Organics		ND	ND	••	<30
Extractable Organics					
Bis(2-ethylhexyl)phth	olate	120,000	98,000	20	<30
Total Metals					
Silver	as Ag	<10	<10	0	<30
Arsenic	as As	16	18	12	<30
Barium	es Ba	230	190	19	<30
Cadaium	es Cd	-5	ら	0	<30
Chromium	as Cr	97	71	31	<30
Hercury	as ilg	<.5	<.5	0	<30
Leed	as Pb	<30	16	61	<30
Selenium	as Se	<10	<10	0	<30
		\$-3	8-3		
SOIL SAMPLES			Field Duplicate	Relative	QAPP
		2332-322	2332-328	Difference	Objective
		ug/kg	ug/kg	(%)	(%)
Volatile Organics		ND	ND		<30
Extractable Organics					
Bis(2-ethylhexyl)phth	elste	1,500	1,100	30	<30

.

.

.....

, ,

.4

.

.

TABLE F.1 - FIELD DUPLICATE ANALYSIS continued

SOIL SAMPLES		\$-3	\$-3		
		2-2			
			Field Duplicate		QAPP
		2332-322	2332-328	Difference	Objective
			7	(%)	(%)
Total Metals		ug/kg*	ug/kg*		
Silver	es Ag	1,100	<2,000	58	<30
Arsenic	es As	15,000	16,000	6	<30
Barium	as Ba	76,000	100,000	27	<30
Cedeium	as Cd	530	<800	41	<30
Chromium	as Cr	32,000	42,000	27	<30
Mercury	es Ng	420	450	7	<30
Lead	as Pb	80,000	90,000	12	<30
Selenium	as Se	<1,000	<1,000	0	<30

SEDIMENT SAMPLES	Sed-3	Sed-3 Field Duplicate	Pointivo	
	2332-341	2332-344	Difference	Objective
	ug/kg	ug/kg	(%)	(%)
Volatile Organics	ND	ND		<30
Total Metals				
Silver	<1,000	<2,000	67	<30
Arsenic	4,900	4,600	6	<30
Berium	<10,000	27,000	92	<30
Cednium	<500	<600	18	<30
Chromium	13,000	14,000	7	<30
Nercury	270	280	4	<30
Lead	210,000	190,000	15	<30
Selenium	<1,000	<1,000	0	<30

HD = Not Detected, all volatile organics compounds were below detection limits

* dry wt besis

Relative % difference = Range % 100

Mean

1

.

t

TABLE F.2 - LABORATORY SAMPLE SPIKES

SOIL SAMPLE

s-1 Semple 2332-320

• • • •

			Replicate 1		Replicate 2			
	ug/kg*	ug/kg#	ug/kg*	X	ug/kg*	x	Relative	QAPP
Compound	in Sample	Spike	Found	Recovery	Found	Recovery	X Difference	Objective
								(%)
1,1 Dichloroethene	0	7,000	8,000	122	8,000	112	9	<30
Trichlorethylene	0	8,000	10,000	119	10,000	115	3	<30
Benzene	0	7,000	8,000	122	8,000	115	5	<30
Toluene	0	7,000	8,000	121	8,000	124	2	<30
Chlorobenzene	0	7,000	9,000	131	9,000	124	5	<30

1

*dry wt besis

XRecovery = Amount found - amount in sample X 100

amount spiked

Relative Percent Difference = Range X 100

mean

AQUEOUS SAMPLE			NV-1					
			sample	2332-301				
			Replicate 1		Replicate 2			
	ug/L	ug/L	ug/L	X	ug/L	x	Relative	QAPP
Compound	In Sample	Spike	Found	Recovery	Found	Recovery	X Difference	Objective
								(%)
1,1 Dichloroethene	0	54	68	126	55	102	21	<30
Trichlorethylene	0	67	67	100	59	88	13	<30
Benzene	0	52	58	112	53	102	9	<30
Toluene	0	54	54	100	48	89	12	<30
Chlorobenzene	0	58	61	105	56	97	9	<30

-+

ŕ

, 1 **.**

TABLE F.2-LABORATORY SAMPLE SPIKES continued

AQUEOUS SAMPLES	·			NW-1 Sample 2332-30	1	
Total Metals		Original Concentration ug/L	Spike Level / ug/L	Total Concentration Found ug/L	X Recovery	QAPP Objective (%)
Silver	as Ag	<10	50	53	106	70-130
Arsenic	as As	<10	50	42.7	85	70-130
Serium	as 8a	200	5,000	4,940	95	70-130
Cednium	as Cd	5	500	477	94	70-130
Chromium	as Cr	31	5,000	5,400	107	70-130
Hercury	as Hy	<0.5	10	7.6	76	70-130
Lead	as Pb	<100	5,000	4,970	99	70-130
Selenium	es Se	<10	50	11.1	22	70-130
SOIL SAMPLES				S-1		
				Sample 2332-32	D	
		Original	Spike	Total		QAPP
		Concentration	Level	Concentration	X	Objective
Total Metals		ug/kg*	ug/kg*	Found ug/kg*	Recovery	(%)
Silver	as Ag	<1,000	7,200	7,000	97	70-130
Arsenic	as As	<19,000	7,200	22,500	49	70-130
Berium	es la	94,000	724,000	757,000	91	70-130
Cadmium	as Cd	720	72,000	71,000	98	70-130
Chromium	as Cr	39,000	725,000	796,000	104	70-130
Lead	es Pb	40,000	724,000	684,000	89	70-130
Selenium	as Se	<1,000	7,200	4,100	57	70-130
				8-7		
				Sample 2332-320	•	
		Original	Spike	Total		QAPP
		Concentration	Level	Concentration	X	Objective
Total Metals		ug/kg*	ug/kg*	found ug/kg*	Recovery	(%)
Silver	as Ag	<1,000	6,000	5,800	97	70-130
Arsenic	as As	20,000	6,000	22,800	47	70-130
Berium	es Ba	5,000	602,000	617,000	102	70-130
Cedeius	as Cd	<600	60,200	55,000	90	70-130
Chromium	as Cr	27,000	602,000	640,000	102	70-130
Lead	as Pb	45,000	602,000	578,000	89	70-130
Selenium	as Se	<1,000	6,000	2,600	43	70-130

м....**н**

...

.

· .

•

~

. ł

4

ŧ.

•

1

TABLE F.2 - LABORATORY SAMPLE SPIKES continued

SEDIMENT SAMPLES		. 7	Sed-1 Sample 2332-341	I	
	Original Concentration ug/kg*	Spike Level ug/kg*	Total Concentration Found ug/kg*	X Recovery	QAPP Objective (%)
Petroleum Hydrocarbona	220,000	320,000	710,000	156	70-130
			Sed-1 Field Duplicato Sample 2332-344		
	Original Concentration ug/kg*	Spike Level ug/kg*	Total Concentration Found ug/kg*	X Recovery	QAPP Objective (%)
Petroleum Hydrocarbona	280,000	630,000	660,000	60	70-130

Sed-3

Sample 2332-343

and the second second

· - - -

.

ı,

í . · · ·

1

-

Totel Metals		Original Concentration ug/kg*	Spike Level ug/kg*	Total Concentration Found ug/kg*	X Recovery	QAPP Objective (%)
Hercury	as Hg	150	990	1,180	104	70-130

X Recovery = amount found-amount in sample x 100 amount spiked

* dry wt. besis

TABLE F.3 - LABORATORY REPLICATES

•

••

-

AQUEOUS SAMPLES			HW-1 Sample 2332-301					
Total Metals		Replicate 1 ug/L	Replicate 2 ug/L	Hean ug/L	Relative Difference (%)	QAPP Objectives (%)		
Silver	as Ag	<10	<10	<10	0	<30		
Arsenic	as As	<10	<10	<10	0	<30		
Berium	es Be	100	200	200	50	<30		
Cadmium	as Cd	<5	-45	<5	0	<30		
Chromium	as Cr	32	29	31	9.7	<30		
Hercury	as Hg	<0.5	<0.5	<0.5	0	<30		
Lead	as Pb	<100	<100	<100	0	<30		
Selenium	as Se	<10	<10	<10	0	<30		

.

SOIL SAMPLES

\$-1 Sample 2332-320

-

•

. .

~

ŕ

,

ť

Total Metala		Replicate 1 ug/kg*	Replicate 2 ug/kg*	Noan ug/kg*	Relative Difference (%)	QAPP Objectives (%)
Silver	ee Ag	<1,000	<1,000	<1,000	0	<30
Arsenic	86 As	20,000	18,000	19,000	10.5	<30
Bertun	as Sa	93,000	95,000	94,000	2	<30
Cednium	as Cd	690	740	720	6.9	<30
Chronium	as Cr	38,000	39,000	39,000	3	<30
Lead	es Pb	40,000	40,000	40,000	0	<30
Selenium	as Se	<1,000	<1,000	<1,000	0	<30

TABLE F.3 - LABORATORY REPLICATES continued .

S-7 Sample 2332-326

es ou -

Total Metals		Replicate 1 ug/kg*	Replicate 2 ug/kg*	Nean ug/kg ^a	Relative Difference (%)	QAPP Objectives (%)	
Silver	as Ag	<1,000	<1,000	<1,000	0	<30	
Arsenic	aa As	21,000	19,000	20,000	10	<30	
Darium	as Ba	58,000	56,000	57,000	3.5	<30	
Cednium	as Cd	<600	<600	<600	0	<30	
Chromium	as Cr	26,000	27,000	27,000	3.7	<30	
Lead	as Pb	47,000	43,000	45,000	8.9	<30	
Setenium	as Se	<1,000	<1,000	<1,000	0	<30	

and the second second

5-8

Sample 2332-328

Total Metals		Replicate 1 ug/kg*	Replicate 2 ug/kg*	Nean ug/kg*	Relative Difference (%)	QAPP Objectives (%)
Hercury	as Hg	209	204	207	2.4	<30

SEDIMENT SAMPLES

Sed-3 Sample 2332-343

Total Metals		Replicate 1 ug/kg ^e	Replicate 2 ug/kg*	Hean ug/kg*	Relative Difference (%)	QAPP Objectives (%)	
Hercury	as Hg	140	160	150	13	<30	
Petroleum Hydrocarbo	18	190,000	150,000	170,000	24	<30	

* Dry wt. besis

~

•

•

TABLE F.4 - SURROGATE STANDARD RECOVERIES--Volatile Compounds

		D(4)-1-2-0	ichloroethane	08- 1a	luene	Bramofluorobenzene		
Sample Description	Sample No.	X Recovery	Control Range	X Recovery	Control Range	X Recovery	Control Range	
MW-1	2332-301	88	76-114	79	88-110	87	86-115	
NU-2	2332-302	90	76-114	81	88-110 *	85	86-115 *	
MW-2 Field Duplicate	2332-306	88	76-114	81	88-110 *	85	86-115 *	
MV-3	2332-303	106	76-114	81	88-110 +	85	86-115 *	
MJ-4	2332-304	105	76-114	81	88-110 *	85	86-115 +	
NV-5	2332-305 Lab Rep 1	96	70-121	81	81-117	85	74-121	
MN-5	2332-305 Lab Rep 2	90	70-121	77	81-117 *	81	74-121	
Well Sample Bik	2332-308	100	76-114	79	88-110 *	83	86-115 *	
Well Travel Blk	2332-360	94	76-114	79	88-110 +	87	86-115	
L e b Control	00027	83	76-114	77	88-110 *	81	86-115 +	
Leb Control	00012	96	76-114	79	88-110 *	83	86-115 *	
S-1	2332-320	90	70-121	111	81-117	102	74-121	
S- 2	2332-321	90	70-121	101	81-117	101	74-121	
S-3	2332-322	66	70-121	• 90	81-117	76	74-121	
S-3 field Duplicate	2332-328	92	70-121	105	81-117	103	74-121	
S-4	2332-323	100	70-121	105	81-117	103	74-121	
S-5	2332-324	98	70-121	107	81-117	105	74-121	
S-6	2332-325	90	70-121	101	81-117	100	74-121	
\$-7	2332-326	86	70-121	100	81-117	100	74-121	
5-8	2332-327	88	70-121	94	81-117	101	74-121	
Soil Sample Bik	2332-333	84	76-114	100	88-110	93	86-115	
Soil Travel Blk	2332-335	86	76-114	100	88-110	94	86-115	
Sed-1	2332-341	87	70-121	89	81-117	81	74-121	
Sed-1 Field Duplicate	2332-344	96	70-121	90	81-117	78	74-121	
Sed-2	2332-342	84	70-121	84	81-117	83	74-121	
Sed-3	2332-343	86	70-121	90	81-117	80	74-121	
Sed Sample Blk	2332-346	90	76-114	100	88-110	83	86-115	
Sed Travel Bik	2332-348 Lab Rep 1	92	70-121	96	81-117	85	74-121	
Sed Travel Bik	2332-348 Lab Rep 2	92	70-121	94	81-117	83	74-121	
Leb Control	C3823	100	76-114	106	88-110	102	86-115	

~

. ~

--.

•

4

.•

ŗ

,

X Recovery = Amount found X 100, It is assumed that analyte in sample is negligible Amount in spike

* % Recovery outside Control Range

TABLE F.S - SUBROGATE STANDARD RECOVERIES-Extractable Organics

		2-F1-F	hanal	di- 11	Innet	#1trab	neene	2-FL-81	phonyl .	Tribramp	henel	Terphany	rl-d14
Surple Description	Sample No.	I Receivery	Centrel	I Receivery	Centrel	I Recovery	Centrel	1 Recovery	Control	X Recovery	Centrel	I Receivery	Control
•			Range		Range		Range		Range		Range		Range
ML-1	2332-301	53	21-100	35	10-94		35-114	70	43-116	31	10-123	80	33-141
MJ-1	2332-301-Lab Nap	39	21-100	29	10-94	97	35-114	71	43-116	30	10-123	78	33-141
MN-2	2332-302	43	21-100	42	10-94	91	35-114	76	43-116	48	10-123	n	33-141
NV-2 Field Duplicate	2332-306	60	21-100	39	10-94	107	35-114	86	43-116	50	10-123	100	33-141
IN/-3	2332-303	72	21-100	24	18-94	103	35-114	81	43-116	- 38	10-123	105	33-141
MA-4	2332-304	62	21-100	42	10-94	100	35-114	84	43-116	38	10-123	66	33-141
M-5	2332-305	43	21-100	41	10-94	96	35-114	82	43-116	45	10-123	97	33-141
Weil Semple Bik	2332-308	66	21-100	39	10-94	85	35-114	64	43-116	47	10-123	101	33-141
8-1	2332-320	12	21-100	13	10-94	16	35-114 *	28	43-116 *	33	10-123	.41	33-141
8-2	2332-321	14	21-100	15	10-94	19	35-114 *	27	43-116 *	29	10-123	, 45	33-141
8-3	2332-322	21	21-100	30	10-94	17	35-114 *	20	43-116 *	- 30	10-123	יז ו	33-141
. 1-3 Field Duplicate	2332-320	12	21-100 *	21	10-94		35-114 *	17	43-116 *	16	10-123	54	33-,141
8-4	2332-323	34	21-100	46	10-94	43	35-114	52	43-116	59	10-123	80	33-141
8-5	2332-325	17	21-100 *	8	10-94	49	35-114	43	43-116	51	10-123	67	33-141
1-6	2332-325	35	21-100	43	10-94	41	35-114	56	43-116	79	10-123	44	33-141
8-7	2332-326	27	21-100	35	10-94	23	35-114 *	26	43-116 *	33	10-123	67	33-141
1-8	2332-327	•	21-100 *	20	10-94	1	23-120 *	14	30-115 *	24	10-123	12	18-137 *
1-8 Lab Dupi Icote	2332-327	11	21-100 *	26	10-94	5	23-120 *	14	30-115 •	16	10-123	18	18-137
Soil Sample Bik	2332-333	69	21-100	42	10-94	100	35-114		43-116	51	10-123	96	33-141
Blank	8-A014	15	21-100 *	*	10-94	•	35-114 *	21	43-116 *	24	10-123	61	33-141
Diank	8-A105	37	21-100	24	10-94	100	35-114	79	43-116	50	10-123	91	33-141

•

-

~

ı

X Recovery - Amount found H 100, It is assumed that analyte in sample is negligible

.

Amount in apike

* I Recovery autoide Centrel Range

.

APPENDIX F

...

٢

1

1

۲

.

NEW JERSEY SOIL CLEANUP APPROACHES

Attachment 6

•••

5

Γ

F

fr

1

r; 1

-

ľ

•

Cleanup Approaches used by MJDEP

New Jersey Department of Environmental Protection

Summary of Approaches to Soil Cleanup Levels

(1) Discussion of Theoretical Approaches

i

11

Ì

I

R

Ĺ

MJDEP has investigated many theoretical approaches to establishing cleanup objectives for contaminated soil including cleanup to background, cleanup to the analytical detection limits and cleanup to a risk asses went derived number.

- (A) <u>Cleanup to Background</u> has been considered for a number of compounds. Development of a cleanup objective based on background requires an extensive environmental data base. This approach can only be applied to compounds which are normally found in mature. If it is applied to apphropogenic compounds the cleanup level could become "sero" which equates to the current limit of detection of the analytical method in use. A cleanup objective based on background is determined by the range of concentrations observed on a specific site or based on literature values. This approach has been applied to inorganic compounds. For petroleum hydrocarbons, an "industrial" background is generalized as 100 ppm.
- (B) <u>Cleanup levels based on analytical detection limits</u> have been considered. In reality, the cleanup objective becomes the limit of detection of the analytical wethod, thus the cleanup objective becomes non-detectable (cleanup to pristime conditions). This approach is undesirable by itself because the limit of detection of analytical wethods is a moving target. Current trends in environmental analytical chemistry indicate that detection limits will continue to decrease to levels that are below those of environmental or public health concern. This approach is further complicated by the fact that in many instances the wethod detection limit is influenced by the nature of the matrix and the presence of other interfering compounds.

Developing a cleanup objective based on wethod detection limits can only be applied to anthropogenic compounds. If applied to compounds which occur naturally, the cleanup objective could be well below the levels normally found in the environment.

(C) <u>Risk assessment methodology</u> has been used to establish cleanup objectives. The use of risk assessment is common to standard and/or criteria setting. The Water Preliminary Protective Concentration Limits and Recommended Maximum Contaminant Levels are based on risk assessment methodologies which estimate the risks from carcinogens and moncarcinogens in drinking water. In the case of carcinogens, it is assumed that no threshold exists below which cancer does not develop. Thus, exposure to any dose regardless of how small, results in a cancer risk. For moncarcinogens, on the other band, a threshold exists below which no response is observed. Thus a "mafe" dose exists. The numbers developed for risk based standards/criteris range from sub parts per billions (carcinogens) to hundreds of parts per million (non-carcinogens).

It must be noted that the use of the risk assessment approach requires that an exposure pathway be defined in terms of the frequency and duration of exposure and that a suitable toxicology database exists for the chemical of concern. In the absence of either of these, the risk assessment approach cannot be applied correctly. Where there is uncertainty regarding the route or extent of exposure, the risk assessment will reflect these uncertainties.

In general, conservati e worst case exposure scenarios are used in developing risk based standards or criteria. Unfortunately, real life exposures may be quite different than those used to develop the risk based number. Thus a risk based number may "overprotect" the individuals being exposed. This can be avoided by developing situation specific risk based cleanup criteria or by developing a range of exposure scenarios which can be selectively applied to specific situations. The most conservative approach (and the least time consuming) is to use reasonable worst case exposure scenarios to protect the most sensitive individual likely to be exposed.

(D) <u>Chemical class cleanup objectives</u> have been set for classes of compounds. Cleanup objectives which have been established for a class of compounds are used as a surrogate or action level to indicate if a closer look at the individual chemicals comprising the residue is warranted.

(II) Application of Cleanup Approaches in WJDEP Programs.

11

•

x!

Soil cleanup levels have been developed based on anticipated background or risk assessment. In general, the Department attempts to establish a soil cleanup level that:

- protects human health from direct contact
- protects groundwater from degradation due to leaching
- protects surface water (in situations when signation of contaminated soil to surface water is a possibility).

The Department has also established surrogate or alarm levels for classes of compounds. These surrogates are usually conservatively set to serve as an indicator or "red flag" to point the meed for further attention. This approach allows staff not trained in toxicology to determine when the assistance of a toxicologist/environmental chemist is meeded. In general, surrogate levels are not cleanup numbers, but they could be in certain situations.

(A) <u>Inorganic compounds</u> - Cleanup levels for metals have been established based on expected background concentrations in New Jersey soils. The cleanup objectives are generally to 1 to 3 times background depending on the range of concentration observed and toxicity. Table 1 summarizes New Jersey background, United States background and soil cleanup objectives. Some of the cleanup objectives were proposed by BCRA, applicants and have been accepted by the Department in ECRA cleanups. The cleanup objectives applied at a specific site may be different than those listed in Table 1 depending on site specific factors. These exceptions normally allow higher levels to remain on site. These situations include (1) if information exists to indicate the soil background onsite is different than values listed in the Table, (2) contamination from other sources is suspected (especially lead on a site mear highways), (3) a contamination problem is area wide and (4) encapsulation is included as part of the cleanup plan.

(B) Organic contaminants - Cleanup levels for individual organic compounds have been developed based on r sk assessment methodologies. A worst case soil ingestion model is used to calculate an acceptable soil contaminant level (ASCL) to protect individuals from direct contact and a simple transport to groundwater model is used to calculate an ASCL to protect groundwater quality. The ASCLs are then compared to analytical method detection limits to determine if the calculated concentration can be measured accurately. If the risk based criterion is below the method detection limit, the method detection limit becomes the cleanup objective.

Ĺ

[.

: : :

•

L-

This latter approach has been used by the New Jersey Division of Mazardous Site Mitigation (DHSM) to develop an acceptable soil contaminant level for PCBs based on direct contact. (Transport to groundwater was considered insignificant since PCBs bind strongly to soils.) A risk assessment utilizing a pica and inhalation of soil scenario indicated that individuals could be exposed to soils contaminated with 274 ppb of PCBs without exceeding a one-in-a-million lifetime cancer risk due to this exposure. The limit of detection of PCBs in soil using current analytical methods is 3.3 ppm. In reality 5 ppm or above can be detected with confidence. Thus the acceptable soil contaminant level (based on analytical methods) is 5 ppm. In situations where the potential for children to come in contact with soils is great (ie., parks, schoolyards, residential areas) 5 ppm is not adequate to protect health and a cleanup objective of 1 ppm should be considered, in spite of the inherent uncertainty with regard to quantitation.

This risk approach has been embodied in a document entitled Calculation of Gleanup Levels for Contaminated Soils, recently prepared by DESN. The approach outlined in the document is composed of two steps (A) selection of chemicals of concern and (B) calculation of acceptable soil contaminant levels to protect individuals from direct contact and to protect groundwater and surface water quality. The approach has been used to rank and calculate acceptable soil contaminant levels for 21 compounds which include PCBs, chlorinated solvents, monchlorinated solvents, phenols, polycylicaromatic hydrocarbons, and phthalates. This approach was developed in-house and has not gone through an external peer review. DESN is finalizing a request for proposal to hire a consultant to review, critique and refine the approach developed by DESN. (C) <u>Surrogate or action levels</u> have been developed for volatile organics, base neutral extractables and petroleum hydrocarbons as shown below.

Volatile Organics1 ppmBase Neutrals10 ppmPetroleum Hydrocarbons100 ppm

ł

!

Ļ

Ľ

(D) Chemical Class Cleanup Objectives have been set for petroleum hydrocarbons at 100 ppm. (This was assumed to be "industrial background".) The actual soil cleanup number will vary depending on the chemical constituents present in the petroleum residue. Levels greater than 100 ppm may be acceptable if the residue is comprised mainly of toluene or xylenes while a 1- el less than 100 ppm may be warranted if the residue is comprised mostly of benzene and/or the carcinogenic polynuclear aromatic hydrocarbons. TABLE 1

Netal	B.J. Beckground [®]	U.S. Background	Cleanup Objective	Time above BJ Background
Arcenic Fraction Coduium	W.A. Alp, 1.0 - 4.0	1.1 - 16.7 10 - 16 00 (24,00) 0.01 - 1.0ppe	20 990 430 3 990	н.а. Г.
Chronium	5.0 - 48	1 - 1,500	100 ppm	2
Copper	0.5 - 53.6	2 - 200	170	3
Cyazide	3. A.	0.09	12*	J. A.
Lead	1.0 - 180	2 - 200	250 - 1000*	1-2
Nercury	J.A.	0.01 - 4.6	1	B.A.
Vick+1	11.1 - 86.5	8 - 550	100	t.
Seleziun	0.01 - 4 ^b	0.01 - 5.0	4	1
Silver	· W.A.	0.01 - 5	5	¥.A.
Sinc	4.5 - 168	10 - 3000	350	2

a. Data from Stephen Toth or Barry Notto, Cook College, Butgers Driversity. b. Usiliant a Usilian Usilian Conformation

...

C N. Agricultural soils in W.J.

• Suggested by a consultant on an BCEA case.

2561:dv

ľ

Ľ

- {