

ANNOTATION REPORT

AREA POSTREMA (AP)

Katie J. Glattfelder, Lydia L. Ng and John A. Morris

Introduction

This report contains a gene expression summary of the area postrema (AP), derived from the <u>Allen Brain Atlas</u> (ABA) in-situ hybridization (ISH) mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the <u>Allen Reference Atlas</u>. Using an established algorithm, the expression values of the AP were compared to the values of the macro/parent-structure, in this case the medulla, for the purpose of extracting regionally specific gene expression data. The highest ranking ratios were then manually curated and verified. The 50 Select Genes were compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; complementary sagittal data may also be accessed using the <u>ABA</u>. Correlation between gene expression in the AP and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally and are presented below. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of these 50 Select Genes.

To read more about how the 50 Select Genes list is derived, please refer to the Fine Structure Annotation white paper.

Allen Reference Atlas Coronal Levels: 127-131 Allen Reference Atlas Sagittal Levels: 19-21 hown below is a plate from the Allen Reference Atlas, depicting the AP (level 128)

Description of Structure:

LOCATION and STRUCTURAL ANATOMY:

The hierarchical relationship within the brain is depicted below in the structure <u>legend</u>. The Allen Reference Atlas (based on Nisslstained sections scanned at 10X) was the primary resource for the following descriptions.

For additional information please refer to the <u>Allen Reference Atlas white paper</u>. <u>BrainInfo</u> houses a search engine that allows searches for structure name aliases.

The area postrema (AP) is a compact substructure of the sensory-related medulla (MYsen), located within the hindbrain. The AP straddles the midline in the dorsomedial region of the medulla, directly under the cerebellum, and forms the caudal wall of the fourth ventricle at the transition to the central canal (c). Laterally, the AP is bounded by the commissural portion of the nucleus of the solitary tract (NTSco), which has more diffuse, lighter cells that also extend to the ventral aspect of the posterior AP. In the coronal plane, the AP has an inverted triangular shape while in the sagittal plane the AP exhibits an elliptical or tear-drop shape. The small, dark staining, and uniformly packed cells of the AP make it readily apparent in both NissI-stained and ISH data due to its location on the midline and the high density of its cells.

The appearance and location of the AP can be appreciated on the following two pages. Nisslstained sections and Allen Reference Atlas plates reveal the cytoarchitecture and extent of the area postrema, and its location in relation to surrounding structures.

Alphabetically By Structure
Allen Brain Atlas: Structural Relationships
Click on a row to see what structures it contains.
show all hide all
Basic Cell Groups and Regions
⊟ Brain stem [BS]
■ Interbrain [IB]
⊞ Midbrain [MB]
B Hindbrain (HB)
⊞ Pons [P] ≂ Medulle [MV]
⊟ Medulla, concorvirolatod (MV-con)
Area nostrema [AP]
⊞ Dorsal column nuclei (DCN)
■ External cuneate nucleus [ÉCU]
Nucleus of the trapezoid body [NTB]
■ Nucleus of the solitary tract [NTS]
Spinal nucleus of the trigeminal, caudal part [SPVC]
Spinal nucleus of the trigeminal, interpolar part [SPVI]
Budeus a [a]
m Medulla, motor related (MY-mot)
⊟ Medulla, behavioral state related [MY-sat]
■ Nucleus raphé magnus (RM)
■ Nucleus raphé obscurus [RO]
■ Nucleus raphé pallidus [RPA]
⊞ fiber tracts
Grooves
eventricular systems

Atlas and Nissl: **Coronal: Rostral** Caudal THE S 520 200 200 30 200 Reference Atlas 020 TE I UVU (IX) UVU (IX) UVU (IX) UVU (IX) NTSm CO co CO ce co NTSm ts NTSm ts == === DMX DMX DMX DMX evel 128 evel 130 evel 127 _evel 129 28 2 Nissl 126 TAN

Atlas and Nissl: Sagittal:

In-Situ Hybridization Expression Patterns of 50 Select Genes:

The ISH data below presents the anatomical and cytoarchitectural characteristics of the AP in the context of actual gene expression. In addition to presenting molecularly defined borders, ISH gene expression patterns also aid in phenotyping cell populations that otherwise can not be differentiated on purely morphological grounds. The 50 genes in this section were selected based on a mathematical algorithm to identify gene expression patterns that allow selective identification of the AP. The gene expression patterns were then verified manually. As such, these genes do not represent the only genes found in this structure, genes specific to this structure, or genes expressing at the highest level within this structure.

The ISH protocol is described in the <u>Data Production Processes white paper</u>. To read about heat map conversion, refer to the <u>Informatics Data Processing white paper</u>. The expression data subsequently presented can be further explored, in coronal and sagittal planes, at <u>brain-map.org</u>.

This survey of the 50 Select Genes showed a relatively narrow range of expression patterns in the AP. The majority of genes showed widespread expression across the entire nucleus, al-though the density of expression varied significantly from gene to gene, ranging from high (Wif1) to scattered (Nid1). In addition, some of the genes showed a subpopulation of cells: several genes expressed along the periphery of the AP while the internal cells remained either unexpressed or expressed at a lower density and/or intensity (Fabp7). In a few other genes the reverse was true with expression primarily within the interior of the AP and little expression along the periphery (Smoc2). Ependymal cells lining of the ventricles sometimes appear to show expression (e.g. Igfbp5) although further corroboration is necessary.

Cellular density expression key		Cellular intensity expression key		
None	No expression	No color	Very low intensity	
Sparse	Very few cells expressing	Blue	Low intensity	
Scattered	Less than 10% of cells expressing in scattered pattern	Green	Medium intensity	
Medium	10-80% of cells expressing	Yellow	High intensity	
High	Greater than 80% of cells expressing	Red	Very high intensity	

To view heat map at <u>brain-map.org</u>, right click on an ISH image and select "Show Expression Analysis."

ISH DATA The Allen Institute ISH images below were selected to highlight various expression patterns of the area postrema.

ISH Igfbp5

Coronal: High density expression in the AP, just below the molecular layer of the cerebellum.

Central canal

Cerebellum

Heat map lgfbp5

Coronal: The AP shows high density and very high intensity expression as shown by a heat map.

Area Postrema

ISH Iqfbp5

Sagittal: The full rostrocaudal extent of the AP is shown.

ISH <u>Nid1</u> Coronal: Small, interstitial cells in the AP.

Cerebellum Central canal Area Postrema

ISH Nid1

Sagittal: Scattered expression throughout the AP.

Heat map

Sagittal: Igfbp5 expression is presented as high density and very high intensity.

Heat map

Nid1

Coronal: The scattered density and high intensity can be seen in the section below.

Heat map Nid1

Sagittal: Nid1 expression, scattered density and high intensity.

50 SELECT GENES:

This gene list was generated by manual curation of an <u>algorithmically</u> derived list that compared gene expression values of area postrema to those of the medulla. Categories of expression are subjectively grouped by relative expression characteristics.

Curation of 50 Select Genes List: June 2007

General	ral Expression Pattern				
Number	Gene Symbol	Gene Name	Expression Pattern		
1	lgfbp5	insulin-like growth factor binding protein 5	High density, very high intensity		
2	Dap	death-associated protein	High density, very high intensity		
3	Efnb2	ephrin B2	Medium density, high intensity		
4	Dkk3	dickkopf homolog 3 (Xenopus laevis)	High density, high to very high intensity		
5	Wif1	Wnt inhibitory factor 1	High density, very high intensity		
6	Prokr2	prokineticin receptor 2	High density, very high intensity		
7	ld4	inhibitor of DNA binding 4	High density, very high intensity		
8	Fn1	fibronectin 1	High density, very high intensity		
		calcium channel, voltage-dependent,			
9	Cacng5	gamma subunit 5	High density, high to very high intensity		
10	<u>Casr</u>	calcium-sensing receptor	Medium density, very high intensity		
		receptor (calcitonin) activity modifying pro-			
11	Ramp3	tein 3	Medium density, very high intensity		
12	C230071H18Rik	RIKEN cDNA C230071H18 gene	Medium density, medium to high intensity		
		regulatory factor X, 4 (influences HLA class			
13	<u>Rfx4</u>	II expression)	Medium density, medium to high intensity		
14	<u>A530088H08Rik</u>	RIKEN cDNA A530088H08 gene	High density, very high intensity		
4.5	0.1.10	glycerophosphodiester phosphodiesterase			
15	Gdpd2	domain containing 2	High density, high to very high intensity		
16	Rarb	retinoic acid receptor, beta	High density, high intensity		
47		UDP-GICNAC:betaGal beta-1,3-N-	Maalium daasiku maalium ta bisb intersitu		
17	B3gnt2		Medium density, medium to high intensity		
18	Crym	Crystallin, mu	Medium density, high to very high intensity		
10	Pitonm2	brane associated 2	High density, high intensity		
13		alanine-alvoyvlate aminotransferase 2-like			
20	Aaxt2l1	1	High density, high to very high intensity		
21	Slc20a2	solute carrier family 20, member 2	High density, very high intensity		
22	Trp53i11	Trp53 inducible protein 11	High density, very high intensity		
23	BC029169	cDNA sequence BC029169	High density, high intensity		
24	Hoxa5	homeo box A5	Medium density, high intensity		
25	Cd63	Cd63 antigen	Medium density, high intensity		
		solute carrier family 27 (fatty acid trans-			
26	Slc27a1	porter), member 1	High density, very high intensity		
27	5730469M10Rik	RIKEN cDNA 5730469M10 gene	High density, high intensity		
28	Sned1	sushi, nidogen and EGF-like domains 1	High density, very high intensity		
29	Mgll	monoglyceride lipase	Medium density, high to very high intensity		
30	<u>Gpr139</u>	G protein-coupled receptor 139	High density, high intensity		
31	Accn4	amiloride-sensitive cation channel 4, pituitary	High density, high to very high intensity		
		gem (nuclear organelle) associated protein			
32	Gemin4	4	Medium density, high intensity		
33	Plxnd1	plexin D1	Medium density, medium to high intensity		
34	Tacr3	tachykinin receptor 3	Medium density, medium intensity		
35	Tgfbr2	transforming growth factor, beta receptor II	Scattered density, medium to high intensity		
36	Gpr83	G protein-coupled receptor 83	Medium density, high intensity		
37	Ghsr	growth hormone secretagogue receptor	High density, very high intensity		
38	Nid1	nidogen 1	Scattered density, medium to high intensity		
39	Prlhr	prolactin releasing hormone receptor	Scattered density, medium to high intensity		
40	<u>Calcr</u>	calcitonin receptor	Scattered density, high intensity		
41	Lzd-s	P lvsozvme structural	Scattered density, high intensity		

alleninstitute.org

alleninstitute.org

Internal Expression Pattern					
Number	Gene Symbol	Gene Name	Expression Pattern		
			High density, very high intensity interior cells;		
		neurotrophic tyrosine kinase, receptor, type	scattered density, high intensity peripheral		
42	Ntrk1	1	cells		
			Medium density, very high intensity interior		
			cells; scattered density, high intensity periph-		
43	Smoc2	SPARC related modular calcium binding 2 eral cells			
			Medium density, very high intensity interior		
			cells; medium density, high intensity periph-		
44	<u>Glp1r</u>	glucagon-like peptide 1 receptor	eral cells		
			Medium density, high intensity interior cells;		
45	<u>Etv1</u>	ets variant gene 1	sparse density, low intensity peripheral cells		
			High density, high intensity interior cells;		
46	A930001M12Rik	RIKEN cDNA A930001M12 gene	sparse density, low intensity peripheral cells		
42.Ntrk1		<u>43.Smoc2</u>	<u>44.Glp1r</u>		
AL CONSIGNA			· · · · ·		
			and the second second second		
in the last	in the second in				
a server of		the second states of the secon			
	and the second second				
2 - 1 - 1					
and the second					
			1		
and an and a second	ALL CONTRACTOR				
<u>45.Etv1</u>		46.A930001M12Rik			
at the second		A PERSONAL AND A PERSON AND A			
at was	Rent Arrange Con				
. Kan	and the second				
a second and					
1. 3.5.13	The area and a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
- s the					
and the second					
	College Marine Strange	and the state of the state			
the state of the second	a set man		a la		

Peripheral Expression Pattern					
Number	Gene Symbol	Gene Name	Expression Pattern		
47	<u>Edg1</u>	endothelial differentiation sphingolipid G- protein-coupled receptor 1	Scattered density, medium intensity interior cells; high density, very high intensity peripheral cells		
48	Fabp7	fatty acid binding protein 7, brain	Scattered density, high intensity interior cells; high density, very high intensity peripheral cells		
10	Tafb2	transforming growth factor, beta 2	Scattered density, medium intensity interior cells; medium density, high intensity periph-		
			Medium density, low to medium intensity in- terior cells; medium density, medium to high		
17 Edg1	CZ30030IN03RIK	RIKEN CDNA C230030N03 gene	AQ Tofb2		
50 C2300	30N03Rik				

Correlated Expression:

The ABA coronal set contains the majority of genes of known scientific interest, as well as genes exhibiting marked or unique expression patterns. A correlation analysis of all available ABA coronal experiments (4376) was performed by comparing an expression value of the area postrema (AP) to expression values in other regions of the brain. Following <u>image analysis</u>, the data values for each experiment were mapped to a 3-D reference brain at 200µm³ voxel resolution. Then, each voxel was assigned a single expression value based on the product of density and intensity of expression. Values from all 4376 experiments were computed, and the likelihood of co-expression between any two voxels or regions are reported as a Pearson's correlation coefficient.

For the purposes of determining correlated expression between the area postrema and other brain regions, expression values from all voxels within the area postrema were aggregated to form a single expression value. Two types of comparisons were then made. First, the aggregate expression values of the area postrema and those of other anatomically defined regions (~200 structures) were compared within the 3-D reference brain (structure vs. structure; table below). Second, a color map was then generated to display the correlation between the area postrema and each of the ~53,000 voxels of the reference volume (structure vs. voxel; correlation map on the following page).

STRUCTURE vs. STRUCTURE

The expression value of the AP was compared to expression values for all other defined atlas regions. Degree of correlation is displayed as a comparative fraction, with self-correlation = 1.000. Correlation between the AP and macro/parent-structures are presented, as well as correlation between the AP and the 25 highest ranking substructures. (The most highly correlated macro/parentstructures do not always contain the 25 top most correlated substructures). Columns match the Allen Reference Atlas palette.

STRUCTURE vs. VOXEL:

Correlation between the area postrema and all other 200 um³ voxels in the brain. Degree of correlation assessed for each voxel is provided visually (lower value = the correlation value of the 25th ranked substructure reported on the previous page) using the "jet" color scale at rostrocaudal levels throughout the brain.

Gene Ontology (GO) Analysis:

GO TABLE: Below is an ontological analysis of the 50 Select Genes, using DAVID Bioinformatics Resources.

The functional terms that follow were returned using these constraints:

Category	Definition	Constraints	
P-value	Probability that the term is over-represented in this 50 Select Genes list relative to the mouse genome	when p ≤ 0.05	
Gene Count	The minimum number of genes that must fall into an onto- logical category to be considered a group	5 genes per term group	
GO Level	The level of functional specificity for GO functional cate- gories: Molecular Function (mf), Biological Process (bp) and Cellular Components (cc)	Level GO_All	
# of DAVID IDs	Number of unique DAVID gene IDs from user's input list	49 DAVID gene IDs/ 50 input genes	

Date of table completion: June 15th, 2007

GO Category	GO Term	Gene Count	% of Genes	p-value
GOTERM_CC_ALL	extracellular space	17	34.69%	3.19E-05
GOTERM_MF_ALL	peptide receptor activity	5	10.20%	1.16E-04
GOTERM_CC_ALL	extracellular region	17	34.69%	1.36E-04
GOTERM_MF_ALL	peptide binding	5	10.20%	2.91E-04
GOTERM_BP_ALL	development	15	30.61%	3.95E-04
GOTERM_BP_ALL	system development	8	16.33%	4.76E-04
GOTERM_MF_ALL	receptor activity	16	32.65%	0.00114106
GOTERM_BP_ALL	nervous system development	7	14.29%	0.001792063
GOTERM_MF_ALL	signal transducer activity	17	34.69%	0.003534057
GOTERM_BP_ALL	cell surface receptor linked signal transduction	15	30.61%	0.004982882
GOTERM_MF_ALL	transmembrane receptor activity	12	24.49%	0.006339499
GOTERM_BP_ALL	morphogenesis	8	16.33%	0.009324962
GOTERM_BP_ALL	organ development	8	16.33%	0.010680059
GOTERM_MF_ALL	G-protein coupled receptor activity	10	20.41%	0.014525386
GOTERM_CC_ALL	integral to membrane	21	42.86%	0.015631625
GOTERM_CC_ALL	intrinsic to membrane	21	42.86%	0.015978282
GOTERM_BP_ALL	G-protein coupled receptor protein signaling pathway	11	22.45%	0.035977527
GOTERM_BP_ALL	organ morphogenesis	5	10.20%	0.039380829
GOTERM_BP_ALL	positive regulation of cellular physiological process	5	10.20%	0.049000235

Glynn Dennis Jr., Brad T. Sherman, Douglas A. Hosack, Jun Yang, Michael W. Baseler, H. Clifford Lane, Richard A. Lempicki. "DAVID: Database for Annotation, Visualization, and Integrated Discovery." *Genome Biology.* 2003 **4**(5): P3.

Area Postrema (AP) Summary:

Anatomy

- The AP is a small, midline structure positioned at the caudal wall of the fourth ventricle, ventral to the cerebellum.
- The cells within the AP appear small, evenly distributed, and densely packed.
- In Nissl-stained sections, the borders of the AP are easily distinguishable because of its location on the midline and the relatively high density of its cells.

Expression Patterns of the 50 Select Genes

- This survey showed a narrow range of expression patterns in the AP.
- Some genes appear to have a different density of expression along the periphery of the AP versus the interior.
- The border between the AP and the rest of the medulla could be sharply defined by gene expression, and agreed with the borders delineated in the Allen Reference Atlas.

Expression Correlation with AP

- Pallidum and hypothalamus correlated most highly with the AP.
- Cortex and hippocampus were the least correlated regions.
- Of the top ranking 25 sub-structures highly correlated with the AP, many reside in the midbrain and hypothalamus, although the epithalamus (medial and lateral habenulae) provides an interesting exception.

Please send comments or questions by email to <u>!Annotation@alleninstitute.org</u>. To further explore the gene expression data and analytical tools referred to in this report, please access the genome-wide data set at <u>brain-map.org</u>.

Other Tools:

NEUROBLAST:

Many of the 50 genes listed in this report can be used to explore the NeuroBlast tool. This unique mining tool works seamlessly from within brain-map.org to produce a list of genes that share similar expression patterns to any gene in the coronal data set. Search for and select any gene, then select one of several brain regions from the NeuroBlast drop-tab to explore a ranked list of similarly expressed genes for that region.

To learn more about this function, please refer to the NeuroBlast white paper.

BRAIN EXPLORER:

To compare gene expression levels across anatomical structures in 3-D detail, download the <u>Brain Explorer</u> desktop application. This program is used to view gene expression in 3-D view (coronal, sagittal, horizontal and everywhere in between) across all brain structures and allows for simultaneous viewing of multiple expression profiles.

The NeuroBlast spatial homology function and an anatomic search tool are also available from within Brain Explorer to allow the user to search for and visualize genes with similar expression patterns.