Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and treatment of Friedreich ataxia: a European perspective

Abstract

Friedreich ataxia is the most frequent hereditary ataxia, with an estimated prevalence of 3–4 cases per 100,000 individuals. This autosomal-recessive neurodegenerative disease is characterized by progressive gait and limb ataxia, dysarthria, lower-limb areflexia, decreased vibration sense, muscular weakness in the legs, and a positive extensor plantar response. Non-neurological signs include hypertrophic cardiomyopathy and diabetes mellitus. Symptom onset typically occurs around puberty, and life expectancy is 40–50 years. Friedreich ataxia is usually caused by a large GAA-triplet-repeat expansion within the first intron of the frataxin (FXN) gene. FXN mutations cause deficiencies of the iron–sulfur cluster-containing subunits of the mitochondrial electron transport complexes I, II, and III, and of the iron–sulfur protein aconitase. Mitochondrial dysfunction has been addressed in several open-label, non-placebo-controlled trials, which indicated that treatment with idebenone might ameliorate hypertrophic cardiomyopathy; a well-designed phase II trial suggested concentration-dependent functional improvements in non-wheelchair-bound children and adolescents. Other current experimental approaches address iron-mediated toxicity, or aim to increase FXN expression through the use of erythropoietin and histone deacetylase inhibitors. This Review provides guidelines, from a European perspective, for the diagnosis of Friedreich ataxia, differential diagnosis of ataxias and genetic counseling, and treatment of neurological and non-neurological symptoms.

Key Points

  • Friedreich ataxia is an autosomal-recessive disorder caused by mutations (usually GAA-repeat expansions) in the gene encoding the mitochondrial protein frataxin

  • The mutations cause a dramatic reduction in the expression of frataxin

  • Friedreich ataxia seems to be restricted to individuals from Europe, the Middle East, North Africa and India

  • Well-established standards exist for the clinical and genetic diagnosis of Friedreich ataxia

  • A phase II trial with the antioxidant and mitochondrial enhancer idebenone has shown concentration-dependent symptomatic benefits, as measured using neurological scales

  • Other treatments that interfere with disease pathogenesis and progression are currently being developed, and preclinical data indicate that specific histone deacetylase inhibitors upregulate frataxin expression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for diagnosis of chronic, progressive ataxia in childhood (excluding infancy), adolescence and adulthood.

Similar content being viewed by others

References

  1. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    CAS  PubMed  Google Scholar 

  2. Labuda, M. et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54, 2322–2324 (2000).

    CAS  PubMed  Google Scholar 

  3. Cossee, M. et al. Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl Acad. Sci. USA 94, 7452–7457 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Epplen, C. et al. Differential stability of the (GAA) tract in the Friedreich ataxia (STM7) gene. Hum. Genet. 99, 834–836 (1997).

    CAS  PubMed  Google Scholar 

  5. Juvonen, V. et al. Dissecting the epidemiology of a trinucleotide repeat disease—example of FRDA in Finland. Hum. Genet. 110, 36–40 (2002).

    CAS  PubMed  Google Scholar 

  6. Polo, J. M. et al. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain 114, 855–866 (1991).

    PubMed  Google Scholar 

  7. Wintermeyer, P. et al. Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients. NeuroReport 11, 2079–2082 (2000).

    CAS  PubMed  Google Scholar 

  8. Werdelin, L. & Keiding, N. Hereditary ataxias: epidemiological aspects. Neuroepidemiology 9, 321–331 (1990).

    CAS  PubMed  Google Scholar 

  9. Skre, H. Friedreich's ataxia in western Norway. Clin. Genet. 7, 287–298 (1975).

    CAS  PubMed  Google Scholar 

  10. Jonasson, J. et al. Evidence for a common spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur. J. Hum. Genet. 8, 918–922 (2000).

    CAS  PubMed  Google Scholar 

  11. Colombo, R. & Carobene, A. Age of the intronic GAA triplet repeat expansion mutation in Friedreich ataxia. Hum. Genet. 106, 455–458 (2000).

    CAS  PubMed  Google Scholar 

  12. Richards, M. et al. Tracing European founder lineages in the near Eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Semino, O. et al. The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective. Science 290, 1155–1159 (2000).

    CAS  PubMed  Google Scholar 

  14. Tambets, K. et al. The western and eastern roots of the Saami—the story of genetic “outliers” told by mitochondrial DNA and Y chromosomes. Am. J. Hum. Genet. 74, 661–682 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Montermini, L. et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet. 6, 1261–1266 (1997).

    CAS  PubMed  Google Scholar 

  16. Harding, A. E. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 589–620 (1981).

    CAS  PubMed  Google Scholar 

  17. Fahey, M. C. et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131, 1035–1045 (2008).

    PubMed  Google Scholar 

  18. Givre, S. J. et al. Visual loss and recovery in a patient with Friedreich ataxia. J. Neuroophthalmol. 20, 229–233 (2000).

    CAS  PubMed  Google Scholar 

  19. Ell, J. et al. Neuro-otological abnormalities in Friedreich's ataxia. J. Neurol. Neurosurg. Psychiatry 47, 26–32 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rance, G. et al. Speech perception ability in individuals with Friedreich ataxia. Brain 131, 2002–2012 (2008).

    PubMed  Google Scholar 

  21. Trouillas, P. et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J. Neurol. Sci. 145, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  22. Subramony, S. H. et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64, 1261–1262 (2005).

    CAS  PubMed  Google Scholar 

  23. Fahey, M. C. et al. How is disease progress in Friedreich's ataxia best measured? A study of four rating scales. J. Neurol. Neurosurg. Psychiatry 78, 411–413 (2007).

    CAS  PubMed  Google Scholar 

  24. Schmitz-Hübsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    PubMed  Google Scholar 

  25. Lynch, D. R. et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology 66, 1711–1716 (2006).

    CAS  PubMed  Google Scholar 

  26. Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    PubMed  Google Scholar 

  27. Montermini, L. et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann. Neurol. 41, 675–682 (1997).

    CAS  PubMed  Google Scholar 

  28. Ulku, A. et al. Friedreich's ataxia: a clinical review of 20 childhood cases. Acta Neurol. Scand. 77, 493–497 (1988).

    CAS  PubMed  Google Scholar 

  29. Alikasifoglu, M. et al. Clinical and genetic correlate in childhood onset Friedreich ataxia. Neuropediatrics 30, 72–76 (1999).

    CAS  PubMed  Google Scholar 

  30. Coppola, G. et al. Why do some Friedreich's ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J. Neurol. 246, 353–357 (1999).

    CAS  PubMed  Google Scholar 

  31. Hirai, T. et al. Neurological findings, neurophysiological examinations, and sural nerve biopsy in a case of Friedreich ataxia [Japanese]. Rinsho Shinkeigaku 46, 485–490 (2006).

    PubMed  Google Scholar 

  32. Santoro, L. et al. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich's ataxia. J. Neurol. Neurosurg. Psychiatry 66, 93–96 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller-Felber, W. et al. The clinical spectrum of Friedreich's ataxia in German families showing linkage to the FRDA locus on chromosome 9. Clin. Invest. 71, 109–114 (1993).

    CAS  Google Scholar 

  34. Santiago-Perez, S. et al. A neurophysiological study of the alterations to the central and peripheral nervous systems in Friedreich's ataxia [Spanish]. Rev. Neurol. 44, 193–197 (2007).

    CAS  PubMed  Google Scholar 

  35. Santoro, L. et al. Influence of GAA expansion size and disease duration on central nervous system impairment in Friedreich's ataxia: contribution to the understanding of the pathophysiology of the disease. Clin. Neurophysiol. 111, 1023–1030 (2000).

    CAS  PubMed  Google Scholar 

  36. Claus, D. et al. Central motor conduction in degenerative ataxic disorders: a magnetic stimulation study. J. Neurol. Neurosurg. Psychiatry 51, 790–795 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mondelli, M. et al. Motor evoked potentials by magnetic stimulation in hereditary and sporadic ataxia. Electromyogr. Clin. Neurophysiol. 35, 415–424 (1995).

    CAS  PubMed  Google Scholar 

  38. Lopez-Diaz-de-Leon, E. et al. Auditory neuropathy in Friedreich ataxia. A report of two cases. Int. J. Pediatr. Otorhinolaryngol. 67, 641–648 (2003).

    PubMed  Google Scholar 

  39. Mascalchi, M. et al. Friedreich's ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am. J. Roentgenol. 163, 187–191 (1994).

    CAS  PubMed  Google Scholar 

  40. Della Nave, R. et al. Brain structural damage in Friedreich's ataxia. J. Neurol. Neurosurg. Psychiatry 79, 82–85 (2008).

    CAS  PubMed  Google Scholar 

  41. Casazza, F. & Morpurgo, M. The varying evolution of Friedreich's ataxia cardiomyopathy. Am. J. Cardiol. 77, 895–898 (1996).

    CAS  PubMed  Google Scholar 

  42. Meyer, C. et al. Cardiomyopathy in Friedreich's ataxia—assessment by cardiac MRI. Mov. Disord. 22, 1615–1622 (2007).

    PubMed  Google Scholar 

  43. Kawai, C. et al. Heart disease in Friedreich's ataxia: observation of a case for half a century. Jpn. Circ. J. 64, 229–236 (2000).

    CAS  PubMed  Google Scholar 

  44. Allard, P. et al. Pathomechanics and management of scoliosis in Friedreich ataxia patients: preliminary report. Can. J. Neurol. Sci. 7, 383–388 (1980).

    CAS  PubMed  Google Scholar 

  45. Cady, R. B. & Bobechko, W. P. Incidence, natural history, and treatment of scoliosis in Friedreich's ataxia. J. Pediatr. Orthop. 4, 673–676 (1984).

    CAS  PubMed  Google Scholar 

  46. Labelle, H. et al. Natural history of scoliosis in Friedreich's ataxia. J. Bone Joint Surg. Am. 68, 564–572 (1986).

    CAS  PubMed  Google Scholar 

  47. Milbrandt, T. A. et al. Friedreich's ataxia and scoliosis: the experience at two institutions. J. Pediatr. Orthop. 28, 234–238 (2008).

    PubMed  Google Scholar 

  48. Beauchamp, M. et al. Natural history of muscle weakness in Friedreich's ataxia and its relation to loss of ambulation. Clin. Orthop. Relat. Res. 311, 270–275 (1995).

    Google Scholar 

  49. Moseley, M. L. et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51, 1666–1671 (1998).

    CAS  PubMed  Google Scholar 

  50. Puccio, H. & Koenig, M. Friedreich ataxia: a paradigm for mitochondrial diseases. Curr. Opin. Genet. Dev. 12, 272–277 (2002).

    CAS  PubMed  Google Scholar 

  51. Lodi, R. et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann. Neurol. 49, 590–596 (2001).

    CAS  PubMed  Google Scholar 

  52. Hart, P. E. et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch. Neurol. 62, 621–626 (2005).

    PubMed  Google Scholar 

  53. Rustin, P. et al. Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study. Lancet 354, 477–479 (1999).

    CAS  PubMed  Google Scholar 

  54. Hausse, A. O. et al. Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart 87, 346–349 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Buyse, G. et al. Idebenone treatment in Friedreich's ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60, 1679–1681 (2003).

    CAS  PubMed  Google Scholar 

  56. Mariotti, C. et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60, 1676–1679 (2003).

    CAS  PubMed  Google Scholar 

  57. Ribai, P. et al. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch. Neurol. 64, 558–564 (2007).

    PubMed  Google Scholar 

  58. Pineda, M. et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur. J. Paediatr. Neurol. 12, 470–475 (2008).

    PubMed  Google Scholar 

  59. Schöls, L. et al. Idebenone in patients with Friedreich ataxia. Neurosci. Lett. 306, 169–172 (2001).

    PubMed  Google Scholar 

  60. Arnold, P. et al. Expanding view of phenotype and oxidative stress in Friedreich's ataxia patients with and without idebenone. Schweiz. Arch. Neurol. Psychiatr. 157, 169–175 (2006).

    Google Scholar 

  61. Artuch, R. et al. Friedreich's ataxia: idebenone treatment in early stage patients. Neuropediatrics 33, 190–193 (2002).

    CAS  PubMed  Google Scholar 

  62. Rustin, P. et al. Heart hypertrophy and function are improved by idebenone in Friedreich's ataxia. Free Radic. Res. 36, 467–469 (2002).

    CAS  PubMed  Google Scholar 

  63. Di Prospero, N. A. et al. Safety, tolerability, and pharmacokinetics of high-dose idebenone in patients with Friedreich ataxia. Arch. Neurol. 64, 803–808 (2007).

    PubMed  Google Scholar 

  64. Di Prospero, N. A. et al. Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 6, 878–886 (2007).

    CAS  PubMed  Google Scholar 

  65. Schols, L. et al. L-carnitine and creatine in Friedreich's ataxia. A randomized, placebo-controlled crossover trial. J. Neural Transm. 112, 789–796 (2005).

    CAS  PubMed  Google Scholar 

  66. Sorbi, S. et al. Double-blind, crossover, placebo-controlled clinical trial with L-acetylcarnitine in patients with degenerative cerebellar ataxia. Clin. Neuropharmacol. 23, 114–118 (2000).

    CAS  PubMed  Google Scholar 

  67. Miller, E. R. 3rd et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142, 37–46 (2005).

    CAS  PubMed  Google Scholar 

  68. Li, K. et al. Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum. Mol. Genet. 17, 2265–2273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boddaert, N. et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110, 401–408 (2007).

    CAS  PubMed  Google Scholar 

  70. Sohn, Y. S. et al. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111, 1690–1699 (2008).

    CAS  PubMed  Google Scholar 

  71. Boesch, S. et al. Friedreich's ataxia: clinical pilot trial with recombinant human erythropoietin. Ann. Neurol. 62, 521–524 (2007).

    CAS  PubMed  Google Scholar 

  72. Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2, 551–558 (2006).

    CAS  PubMed  Google Scholar 

  73. Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3, e1958 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Maring, J. R. & Croarkin, E. Presentation and progression of Friedreich ataxia and implications for physical therapist examination. Phys. Ther. 87, 1687–1696 (2007).

    PubMed  Google Scholar 

  75. American Physical therapy Association. Guide to Physical Therapist Practice, 2nd edn (American Physical Therapy Association, Alexandria, 2001).

  76. Delatycki, M. B. et al. Surgery for equinovarus deformity in Friedreich's ataxia improves mobility and independence. Clin. Orthop. Relat. Res. 430, 138–141 (2005).

    Google Scholar 

  77. Harris-Love, M. O. et al. Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil. Neural Repair 18, 117–124 (2004).

    PubMed  Google Scholar 

  78. Goulipian, C. et al. Orthopedic shoes improve gait in Friedreich's ataxia: a clinical and quantified case study. Eur. J. Phys. Rehabil. Med. 44, 93–98 (2008).

    CAS  PubMed  Google Scholar 

  79. Ben Smail, D. et al. Intrathecal baclofen in the treatment of painful, disabling spasms in Friedreich's ataxia. Mov. Disord. 20, 758–759 (2005).

    PubMed  Google Scholar 

  80. Cardoso, E. S. et al. Botulinum toxin type A for the treatment of the spastic equinus foot in cerebral palsy. Pediatr. Neurol. 34, 106–109 (2006).

    PubMed  Google Scholar 

  81. Bateni, H. et al. Can use of walkers or canes impede lateral compensatory stepping movements? Gait Posture 20, 74–83 (2004).

    PubMed  Google Scholar 

  82. Fillyaw, M. J. & Ades, P. A. Endurance exercise training in Friedreich ataxia. Arch. Phys. Med. Rehabil. 70, 786–788 (1989).

    CAS  PubMed  Google Scholar 

  83. Yorkston, K. M. et al. The effect of rate control on the intelligibility and naturalness of dysarthric speech. J. Speech Hear. Disord. 55, 550–560 (1990).

    CAS  PubMed  Google Scholar 

  84. Sapir, S. et al. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [LSVT]) on ataxic dysarthria: a case study. Am. J. Speech Lang. Pathol. 12, 387–399 (2003).

    PubMed  Google Scholar 

  85. Ramig, L. O. et al. Intensive voice treatment (LSVT) for patients with Parkinson's disease: a 2 year follow up. J. Neurol. Neurosurg. Psychiatry 71, 493–498 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yorkston, K. M. et al. Extended communication samples of augmented communicators. I: A comparison of individualized versus standard single-word vocabularies. J. Speech Hear. Disord. 55, 217–224 (1990).

    CAS  PubMed  Google Scholar 

  87. Fox, C. M. et al. The science and practice of LSVT/LOUD: neural plasticity-principled approach to treating individuals with Parkinson disease and other neurological disorders. Semin. Speech Lang. 27, 283–299 (2006).

    PubMed  Google Scholar 

  88. Corben, L. A. et al. Towards an understanding of cognitive function in Friedreich ataxia. Brain Res. Bull. 70, 197–202 (2006).

    PubMed  Google Scholar 

  89. White, M. et al. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich's ataxia. Acta Neurol. Scand. 102, 222–226 (2000).

    CAS  PubMed  Google Scholar 

  90. Wessel, K. et al. Double-blind crossover study with levorotatory form of hydroxytryptophan in patients with degenerative cerebellar diseases. Arch. Neurol. 52, 451–455 (1995).

    CAS  PubMed  Google Scholar 

  91. Wilson, C. L. et al. Quality of life in Friedreich ataxia: what clinical, social and demographic factors are important? Eur. J. Neurol. 14, 1040–1047 (2007).

    CAS  PubMed  Google Scholar 

  92. D'Ambrosio, R. et al. Disability and quality of life in hereditary ataxias: a self-administered postal questionnaire. Int. Disabil. Stud. 9, 10–14 (1987).

    CAS  PubMed  Google Scholar 

  93. Levent, K. et al. Anaesthesia for Friedreich's ataxia. Case report. Minerva Anestesiol. 66, 657–660 (2000).

    CAS  PubMed  Google Scholar 

  94. Schmitt, H. J. et al. Rocuronium for muscle relaxation in two children with Friedreich's ataxia. Br. J. Anaesth. 92, 592–596 (2004).

    CAS  PubMed  Google Scholar 

  95. Kam, P. C. & Cardone, D. Propofol infusion syndrome. Anaesthesia 62, 690–701 (2007).

    CAS  PubMed  Google Scholar 

  96. Short, T. G. & Young, Y. Toxicity of intravenous anaesthetics. Best Pract. Res. Clin. Anaesthesiol. 17, 77–89 (2003).

    CAS  PubMed  Google Scholar 

  97. Bruner, J. P. & Yeast, J. D. Pregnancy associated with Friedreich ataxia. Obstet. Gynecol. 76, 976–977 (1990).

    CAS  PubMed  Google Scholar 

  98. Fogel, B. L. & Perlman, S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 6, 245–257 (2007).

    CAS  PubMed  Google Scholar 

  99. Mukerji, M. et al. Molecular analysis of Friedreich's ataxia locus in the Indian population. Acta Neurol. Scand. 102, 227–229 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg B. Schulz.

Ethics declarations

Competing interests

Jörg B. Schulz and Massimo Pandolfo have consulted and received honoraria as speakers on behalf of Takeda Pharmaceuticals and Santhera Pharmaceuticals. Sylvia Boesch, Caterina Mariotti and Ludger Schöls have acted as consultants for Takeda Pharmaceuticals. Alexandra Dürr and Paola Giunti received honoraria as speakers on behalf of Takeda Pharmaceuticals. Jörg B. Schulz, Sylvia Boesch, Alexandra Dürr, Paola Giunti, Caterina Mariotti, Ludger Schöls and Massimo Pandolfo are investigators in the phase III trial with idebenone. Pierre Vankan is employed by Santhera Pharmaceuticals. Massimo Pandolfo is an investigator in the phase II clinical trial with deferiprone, has acted as a consultant and has received honoraria from Apopharma, has received research support from Repligen, and is a patent holder with Athena Diagnostics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, J., Boesch, S., Bürk, K. et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5, 222–234 (2009). https://doi.org/10.1038/nrneurol.2009.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing