Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiology and Biochemistry

Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics

Abstract

Background

Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment.

Methods

We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women.

Results

The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis.

Conclusions

In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The flow of information through the different stages of the review.
Fig. 2: Obesity-related pathophysiology of infertility in both sexes.
Fig. 3: Pathophysiological side effects associated with ORI in both sexes.
Fig. 4: Possible treatment mechanisms of phytotherapeutics against ORI.

Similar content being viewed by others

References

  1. Afzal M, Siddiqi N, Ahmad B, Afsheen N, Aslam F, Ali A, et al. Prevalence of overweight and obesity in people with severe mental illness: systematic review and meta-analysis. Front Endocrinol. 2021;12:769309.

    Google Scholar 

  2. Fichman V, Costa RSSD, Miglioli TC. Association of obesity and anovulatory infertility. Einstein.2020;18:eAO5150

    PubMed  PubMed Central  Google Scholar 

  3. Abiad F, Awwad J, Abbas HA, Zebian D, Ghazeeri G. Management of weight loss in obesity-associated male infertility: a spotlight on bariatric surgery. Hum Fertil. 2017;20:227–35.

    Google Scholar 

  4. Davidson LM, Millar K, Jones C, Fatum M, Coward K. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum Fertil. 2015;18:184–93.

    CAS  Google Scholar 

  5. Hohos NM, Skaznik-Wikiel ME. High-fat diet and female fertility. Endocrinology. 2017;158:2407–19.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr. 2019;10:S17–30.

    PubMed  PubMed Central  Google Scholar 

  7. Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16:111–7.

    PubMed  PubMed Central  Google Scholar 

  8. Tchang BG, Aras M, Kumar RB, Aronne LJ. Pharmacologic Treatment of Overweight and Obesity in Adults. 2021 Aug 2. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

  9. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11:215–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Ghosh S, Paul M, Mondal KK, Bhattacharjee S, Bhattacharjee P. Sedentary lifestyle with increased risk of obesity in urban adult academic professionals: an epidemiological study in West Bengal, India. Sci Rep. 2023;13:4895.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Foucaut AM, Faure C, Julia C, Czernichow S, Levy R, Dupont C. Sedentary behavior, physical inactivity and body composition in relation to idiopathic infertility among men and women. PLoS One. 2019;14:e0210770.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Akgün N, Cimşit Kemahlı MN, Pradas JB. The effect of dietary habits on oocyte/sperm quality. J Turk Ger Gynecol Assoc. 2023;24:125–37.

    PubMed  PubMed Central  Google Scholar 

  13. Leisegang K, Almaghrawi W, Henkel R. The effect of Nigella sativa oil and metformin on male seminal parameters and testosterone in Wistar rats exposed to an obesogenic diet. Biomed Pharmacother. 2021;133:111085.

    PubMed  CAS  Google Scholar 

  14. Belan M, Harnois-Leblanc S, Laferrère B, Baillargeon JP. Optimizing reproductive health in women with obesity and infertility. CMAJ. 2018;190:E742–5.

    PubMed  PubMed Central  Google Scholar 

  15. Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107:840–7.

    PubMed  Google Scholar 

  16. Bieniek JM, Kashanian JA, Deibert CM, Grober ED, Lo KC, Brannigan RE, et al. Influence of increasing body mass index on semen and reproductive hormonal parameters in a multi-institutional cohort of subfertile men. Fertil Steril. 2016;106:1070–5.

    PubMed  CAS  Google Scholar 

  17. Amiri M, Ramezani, Tehrani F. Potential adverse effects of female and male obesity on fertility: a narrative review. Int J Endocrinol Metab. 2020;18:e101776.

    PubMed  PubMed Central  Google Scholar 

  18. Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, et al. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34:1669–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Sharma R, Agarwal A, Harlev A, Esteves S. A meta-analysis to evaluate the effects of body mass index on reproductive hormones in men. Fertil Steril. 2017;108:215.

    Google Scholar 

  20. Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med. 2014;2014:719050.

    PubMed  PubMed Central  Google Scholar 

  21. Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16:22.

    PubMed  PubMed Central  Google Scholar 

  22. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2018;39:1–20.

    PubMed  Google Scholar 

  23. Katib A. Mechanisms linking obesity to male infertility. Cent Eur J Urol. 2015;68:79–85.

    Google Scholar 

  24. Mansour R, El-Faissal Y, Kamel A, Kamal O, Aboulserour G, Aboulghar M, et al. Increased insulin resistance in men with unexplained infertility. Reprod Biomed Online. 2017;35:571–5.

    PubMed  CAS  Google Scholar 

  25. Friedrich N, Thuesen B, Jørgensen T, Juul A, Spielhagen C, Wallaschofksi H, et al. The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care. 2012;35:768–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Calderón B, Gómez-Martín JM, Vega-Piñero B, Martín-Hidalgo A, Galindo J, Luque-Ramírez M, et al. Prevalence of male secondary hypogonadism in moderate to severe obesity and its relationship with insulin resistance and excess body weight. Andrology. 2016;4:62–7.

    PubMed  Google Scholar 

  27. Michalakis K, Mintziori G, Kaprara A, Tarlatzis BC, Goulis DG. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism. 2013;62:457–78.

    PubMed  CAS  Google Scholar 

  28. Leisegang K, Bouic PJ, Menkveld R, Henkel RR. Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reprod Biol Endocrinol. 2014;12:34.

    PubMed  PubMed Central  Google Scholar 

  29. Saez F, Drevet JR. Dietary cholesterol and lipid overload: impact on male fertility. Oxid Med Cell Longev. 2019;2019:4521786.

    PubMed  PubMed Central  Google Scholar 

  30. Saez Lancellotti TE, Boarelli PV, Monclus MA, Cabrillana ME, Clementi MA, Espínola LS, et al. Hypercholesterolemia impaired sperm functionality in rabbits. PLoS One. 2010;5:e13457.

    PubMed  PubMed Central  Google Scholar 

  31. Zainab BHZ, Hamad AHA. Hyperlipidemia and male infertility. Egypt J Basic Appl Sci. 2021;8:385–96.

    Google Scholar 

  32. Hu Q, Lu Y, Hu F, He S, Xu X, Niu Y, et al. Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice. Int J Med Sci. 2020;17:2611–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16:87.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Sathibabu Uddandrao VV, Brahmanaidu P, Ravindarnaik R, Suresh P, Vadivukkarasi S, Saravanan G. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic rats. Eur J Nutr. 2019;58:2425–37.

    PubMed  CAS  Google Scholar 

  35. Barbagallo F, Condorelli RA, Mongioì LM, Cannarella R, Cimino L, Magagnini MC, et al. Molecular mechanisms underlying the relationship between obesity and male infertility. Metabolites. 2021;11:840.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16:80.

    PubMed  PubMed Central  Google Scholar 

  37. Kasililika AG, Odukogbe ATA, Dairo MD. Lifestyle and oxidative stress status in infertile women in Dares Salaam, Tanzania: comparative cross-sectional study. Middle East Fertil Soc J. 2021;26:33.

    Google Scholar 

  38. Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16:123–9.

    PubMed  PubMed Central  Google Scholar 

  39. Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, et al. Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol. 2017;8:307.

    Google Scholar 

  40. Leisegang K, Bouic PJ, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol. 2016;76:155–63.

    PubMed  CAS  Google Scholar 

  41. Fan W, Xu Y, Liu Y, Zhang Z, Lu L, Ding Z. Obesity or overweight, a chronic inflammatory status in male reproductive system, leads to mice and human subfertility. Front Physiol. 2018;8:1117.

    PubMed  PubMed Central  Google Scholar 

  42. Wang F, Yang W, Ouyang S, Yuan S. The vehicle determines the destination: the significance of seminal plasma factors for male fertility. Int J Mol Sci. 2020;21:8499.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of inflammatory associated impairment of sperm function, spermatogenesis and steroidogenesis. Front Endocrinol. 2022;13:897029.

    Google Scholar 

  44. De Oliveira FA, Costa WS, B Sampaio FJ, Gregorio BM. Resveratrol attenuates metabolic, sperm, and testicular changes in adult Wistar rats fed a diet rich in lipids and simple carbohydrates. Asian J Androl. 2019;21:201–7.

    PubMed  Google Scholar 

  45. Demirci T, Sahin E. The effect of chronic stress and obesity on sperm quality and testis histology in male rats; a morphometric and immunohistochemical study. Histol Histopathol. 2019;34:287–302.

    PubMed  CAS  Google Scholar 

  46. Yildirim OG, Sumlu E, Aslan E, Koca HB, Pektas MB, Sadi G, et al. High-fructose in drinking water initiates activation of inflammatory cytokines and testicular degeneration in rat. Toxicol Mech Methods. 2019;29:224–32.

    PubMed  CAS  Google Scholar 

  47. Silvestris E, Lovero D, Palmirotta R. Nutrition and female fertility: an interdependent correlation. Front Endocrinol. 2019;10:346.

    Google Scholar 

  48. Snider AP, Wood JR. Obesity induces ovarian inflammation and reduces oocyte quality. Reproduction. 2019;158:R79–90.

    PubMed  CAS  Google Scholar 

  49. Gao X, Li Y, Ma Z, Jing J, Zhang Z, Liu Y, et al. Obesity induces morphological and functional changes in female reproductive system through increases in NF-κB and MAPK signaling in mice. Reprod Biol Endocrinol. 2021;19:148.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148:R15–27.

    PubMed  CAS  Google Scholar 

  51. Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681–91.

    PubMed  CAS  Google Scholar 

  52. Hou YJ, Zhu CC, Duan X, Liu HL, Wang Q, Sun SC. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6:18858. https://doi.org/10.1038/srep18858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pohlmeier WE, Xie F, Kurz SG, Lu N, Wood JR. Progressive obesity alters the steroidogenic response to ovulatory stimulation and increases the abundance of mRNAs stored in the ovulated oocyte. Mol Reprod Dev. 2014;81:735–47.

    PubMed  CAS  Google Scholar 

  54. Boots CE, Jungheim ES. Inflammation and human ovarian follicular dynamics. Semin Reprod Med. 2015;33:270–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Fernandez MO, Sharma S, Kim S, Rickert E, Hsueh K, Hwang V, et al. Obese neuronal PPARγ knockout mice are Leptin sensitive but show impaired glucose tolerance and fertility. Endocrinology. 2017;158:121–33.

    PubMed  CAS  Google Scholar 

  56. Reynolds KA, Boudoures AL, Chi MM, Wang Q, Moley KH. Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. Reprod Fertil Dev. 2015;27:716–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Dutta S, Biswas A, Sengupta P. Obesity, endocrine disruption and male infertility. Asian Pac J Reprod. 2019;8:195–202.

    CAS  Google Scholar 

  58. Bhattarai T, Chaudhuri P, Bhattacharya K, Sengupta P. Effect of progesterone supplementation on post-coital unilaterally ovariectomized superovulated mice in relation to implantation and pregnancy. Asian J Pharm Clin Res. 2014;7:29–31.

    Google Scholar 

  59. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96:2341–53.

    PubMed  CAS  Google Scholar 

  60. Bhat GK, Sea TL, Olatinwo MO, Simorangkir D, Ford GD, Ford BD, et al. Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl. 2006;27:302–10.

    PubMed  CAS  Google Scholar 

  61. Yuan F, Li YN, Liu YH, Yi B, Tian JW, Liu FY. Adiponectin inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol Med Rep. 2012;6:449–53. https://doi.org/10.3892/mmr.2012.931.

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki H, Matsuzaki J, Hibi T. Ghrelin and oxidative stress in gastrointestinal tract. J Clin Biochem Nutr. 2011;48:122–5.

    PubMed  CAS  Google Scholar 

  63. Flehmig G, Scholz M, Klöting N, Fasshauer M, Tönjes A, Stumvoll M, et al. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation. PLoS One. 2014;9:e99785.

    PubMed  PubMed Central  Google Scholar 

  64. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7:153–61.

    PubMed  Google Scholar 

  65. Reverchon M, Ramé C, Bertoldo M, Dupont J. Adipokines and the female reproductive tract. Int J Endocrinol. 2014;2014:232454.

    PubMed  PubMed Central  Google Scholar 

  66. Chabrolle C, Tosca L, Ramé C, Lecomte P, Royère D, Dupont J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil Steril. 2009;92:1988–96.

    PubMed  CAS  Google Scholar 

  67. Richards JS, Liu Z, Kawai T, Watanabe H, Suresh D, Kuo FT, et al. Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil Steril. 2012;98:471–9.e1.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Maillard V, Froment P, Ramé C, Uzbekova S, Elis S, Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction. 2011;141:467–79.

    PubMed  CAS  Google Scholar 

  69. Spicer LJ, Schreiber NB, Lagaly DV, Aad PY, Douthit LB, Grado-Ahuir JA. Effect of resistin on granulosa and theca cell function in cattle. Anim Reprod Sci. 2011;124:19–27.

    PubMed  CAS  Google Scholar 

  70. Choi KH, Joo BS, Sun ST, Park MJ, Son JB, Joo JK, et al. Administration of visfatin during superovulation improves developmental competency of oocytes and fertility potential in aged female mice. Fertil Steril. 2012;97:1234–41.e1-3.

    PubMed  CAS  Google Scholar 

  71. Kim JY, Xue K, Cao M, Wang Q, Liu JY, Leader A, et al. Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone. Endocrinology. 2013;154:2912–23.

    PubMed  CAS  Google Scholar 

  72. Nataraj SK, Hemalatha, Girija K. Biochemical changes in female infertility: highlights on leptin, adiponectin, visfatin, and resistin. Indian J Med Biochem. 2019;23:339–42.

    Google Scholar 

  73. Turan E, Öztekin Ü. Relationship between visceral adiposity index and male infertility. Andrologia. 2020;52:e13548.

    PubMed  CAS  Google Scholar 

  74. Stenkula KG, Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol. 2018;315:R284–95.

    PubMed  CAS  Google Scholar 

  75. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633–43.

    PubMed  CAS  Google Scholar 

  76. Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, et al. The hypothalamic-pituitary-gonadal axis in men with schizophrenia. Int J Mol Sci. 2023;24:6492.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Wei W, Zhang X, Zhou B, Ge B, Tian J, Chen J. Effects of female obesity on conception, pregnancy and the health of offspring. Front Endocrinol. 2022;13:949228.

    Google Scholar 

  78. De Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update. 2021;27:771–96.

    PubMed  Google Scholar 

  79. Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27:3837–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Integrative HMP.Integrative HMP. (iHMP) Research Network Consortium The Integrative Human Microbiome Project. Nature. 2019;569:641–8.

    Google Scholar 

  81. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–15.

    PubMed  CAS  Google Scholar 

  82. Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota. J Mol Endocrinol. 2022;69:R81–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol. 2018;9:1835.

    PubMed  PubMed Central  Google Scholar 

  84. Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol. 2019;82:e13178.

    PubMed  CAS  Google Scholar 

  85. Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Investig. 2019;129:4050–7.

    PubMed  PubMed Central  Google Scholar 

  86. de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes. 2017;8:253–67.

    PubMed  PubMed Central  Google Scholar 

  87. Al-Asmakh M, Stukenborg JB, Reda A, Anuar F, Strand ML, Hedin L, et al. The gut microbiota and developmental programming of the testis in mice. PLoS One. 2014;9:e103809.

    PubMed  PubMed Central  Google Scholar 

  88. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Lu YC, Sudirman S, Mao CF, Kong ZL. Glycoprotein from Mytilus edulis extract inhibits lipid accumulation and improves male reproductive dysfunction in high-fat diet-induced obese rats. Biomed Pharmacother. 2019;109:369–76.

    PubMed  CAS  Google Scholar 

  91. Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018;103:1502–11.

    PubMed  PubMed Central  Google Scholar 

  92. Vitale SG, Ferrari F, Ciebiera M, Zgliczyńska M, Rapisarda AMC, Vecchio GM, et al. The role of genital tract microbiome in fertility: a systematic review. Int J Mol Sci. 2021;23:180.

    PubMed  PubMed Central  Google Scholar 

  93. Davis JS. Connecting female infertility to obesity, inflammation, and maternal gut dysbiosis. Endocrinology. 2016;157:1725–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med. 2014;5:1487–99.

    PubMed  PubMed Central  Google Scholar 

  95. Brahma Naidu P, Uddandrao VV, Ravindar Naik R, Suresh P, Meriga B, Begum MS, et al. Ameliorative potential of gingerol: promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol. 2016;419:139–47.

    PubMed  CAS  Google Scholar 

  96. Meriga B, Parim B, Chunduri VR, Naik RR, Nemani H, Suresh P, et al. Correction to: antiobesity potential of piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats. Nutr Metab. 2017;14:76.

    Google Scholar 

  97. Antony Rathinasamy JIR, Uddandrao VVS, Raveendran N, Sasikumar V. Antiobesity effect of Biochanin-A: effect on trace element metabolism in high fat diet-induced obesity in rats. Cardiovasc Hematol Agents Med Chem. 2020;18:21–30.

    PubMed  Google Scholar 

  98. Uddandrao VVS, Rameshreddy P, Brahmanaidu P, Ponnusamy P, Balakrishnan S, Ramavat RN, et al. Antiobesity efficacy of asiatic acid: down-regulation of adipogenic and inflammatory processes in high fat diet induced obese rats. Arch Physiol Biochem. 2020;126:453–62.

    PubMed  CAS  Google Scholar 

  99. Jansy Isabella Rani A, Sathibabu Uddandrao VV, Sangeethadevi G, Saravanan G, Chandrasekaran P, Sengottuvelu S, et al. Biochanin A attenuates obesity cardiomyopathy in rats by inhibiting oxidative stress and inflammation through the Nrf-2 pathway. Arch Physiol Biochem. 2023;129:788–98.

    Google Scholar 

  100. Uddandrao VVS, Parim B, Singaravel S, Ponnusamy P, Ponnusamy C, Sasikumar V, et al. Polyherbal formulation ameliorates diabetic cardiomyopathy through attenuation of cardiac inflammation and oxidative stress Via NF-κB/Nrf-2/HO-1 pathway in diabetic rats. J Cardiovasc Pharmacol. 2022;79:e75–86.

    PubMed  CAS  Google Scholar 

  101. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14:511.

    PubMed  PubMed Central  Google Scholar 

  102. Karri S, Sharma S, Hatware K, Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: a future trend perspective. Biomed Pharmacother. 2019;110:224–38.

    PubMed  CAS  Google Scholar 

  103. Yun JW. Possible anti-obesity therapeutics from nature–a review. Phytochemistry. 2010;71:1625–41.

    PubMed  CAS  Google Scholar 

  104. Chandrasekaran C, Vijayalakshmi M, Prakash K, Bansal V, Meenakshi J, Amit A. Herbal approach for obesity management. Am J Plant Sci. 2012;3:1003–14.

    Google Scholar 

  105. Payab M, Hasani-Ranjbar S, Shahbal N, Qorbani M, Aletaha A, Haghi-Aminjan H, et al. Effect of the herbal medicines in obesity and metabolic syndrome: a systematic review and meta-analysis of clinical trials. Phytother Res. 2020;34:526–45.

    PubMed  CAS  Google Scholar 

  106. Eraniappan S, Balasubramaniyan P, Uddandrao VVS, Roy A, Singaravel S. Beta-glucan suppresses high-fat-diet-induced obesity by attenuating dyslipidemia and modulating obesogenic marker expressions in rats. Fundam Clin Pharmacol. 2023;37:629–38.

    PubMed  CAS  Google Scholar 

  107. Chung S, Park SH, Park JH, Hwang JT. Anti-obesity effects of medicinal plants from Asian countries and related molecular mechanisms: a review. Rev Cardiovasc Med. 2021;22:1279–93.

    PubMed  Google Scholar 

  108. Erfani Majd N, Azizian H, Tabandeh MR, Shahriari A. Effect of Abelmoschus esculentus powder on ovarian histology, expression of apoptotic genes and oxidative stress in diabetic rats fed with high fat diet. Iran J Pharm Res. 2019;18:369–82.

    PubMed  PubMed Central  Google Scholar 

  109. Borzoei A, Rafraf M, Niromanesh S, Farzadi L, Narimani F, Doostan F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J Tradit Complement Med. 2017;8:128–33.

    PubMed  PubMed Central  Google Scholar 

  110. Barzegar MH, Khazali H, Kalantar SM, Khoradmehr A. Effect of citrullus colocynthis hydro-alcoholic extract on hormonal and folliculogenesis process in estradiol valerate-induced PCOs rats model: an experimental study. Int J Reprod Biomed. 2017;15:661–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Alahmadi AA, Alzahrani AA, Ali SS, Alahmadi BA, Arab RA, El-Shitany NAE. Both Matricaria chamomilla and Metformin extract improved the function and histological structure of thyroid gland in polycystic ovary syndrome rats through antioxidant mechanism. Biomolecules. 2020;10:88.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Hassanzadeh Bashtian M, Emami SA, Mousavifar N, Esmaily HA, Mahmoudi M, Mohammad, et al. Evaluation of fenugreek (Trigonella foenum-graceum L.), effects seeds extract on insulin resistance in women with polycystic ovarian syndrome. Iran J Pharm Res. 2013;12:475–81.

    PubMed  PubMed Central  Google Scholar 

  113. Hussein ES, Abu-Raghif AR, Almuaid HA. Amorphophallus konjac and polycystic ovary syndrome. Iraqi JMS. 2020;18:61–9.

    Google Scholar 

  114. Esmaeilinezhad Z, Babajafari S, Sohrabi Z, Eskandari MH, Amooee S, Barati-Boldaji R. Effect of synbiotic pomegranate juice on glycemic, sex hormone profile and anthropometric indices in PCOS: a randomized, triple blind, controlled trial. Nutr Metab Cardiovasc Dis. 2019;29:201–8. https://doi.org/10.1016/j.numecd.2018.07.002.

    Article  PubMed  CAS  Google Scholar 

  115. Peng MF, Tian S, Song YG, Li CX, Miao MS, Ren Z, et al. Effects of total flavonoids from Eucommia ulmoides Oliv. leaves on polycystic ovary syndrome with insulin resistance model rats induced by letrozole combined with a high-fat diet. J Ethnopharmacol. 2021;273:113947.

    PubMed  CAS  Google Scholar 

  116. Yi W, Li X, Chen K, Zhu M, Cai X, Pan A. Effects of Cangfu Daotan Decoction on obese polycystic ovary syndrome and its mechanism. Steroids. 2021;165:108740.

    PubMed  CAS  Google Scholar 

  117. Hong G, Wu H, Ma ST, Su Z. Catechins from oolong tea improve uterine defects by inhibiting STAT3 signaling in polycystic ovary syndrome mice. Chin Med. 2020;15:125.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Ahmed AA, Jaafar SF, Hassan HM, Taha HM, Amal ZS. Gum Arabic supplementation improved antioxidant status and alters expression of oxidative stress gene in ovary of mice fed high fat diet. Middle East Fertil Soc J. 2016;21:101–8.

    Google Scholar 

  119. Desai BN, Maharjan RH, Nampoothiri LP. Aloe barbadensis Mill. formulation restores lipid profile to normal in a letrozole-induced polycystic ovarian syndrome rat model. Pharmacogn Res. 2012;4:109–15.

    Google Scholar 

  120. Ngadjui E, Nkeng-Efouet PA, Nguelefack TB, Kamanyi A, Watcho P. High fat diet-induced estrus cycle disruption: effects of Ficus asperifolia. J Complement Integr Med. 2015;12:205–15.

    PubMed  Google Scholar 

  121. Amini L, Mojab F, Jahanfar S, Sepidarkish M, Raoofi Z, Maleki-Hajiagha A. Efficacy of Salvia officinalis extract on the prevention of insulin resistance in euglycemic patients with polycystic ovary syndrome: a double-blinded placebo-controlled clinical trial. Complement Ther Med. 2020;48:102245.

    PubMed  Google Scholar 

  122. Bandariyan E, Mogheiseh A, Ahmadi A. The effect of lutein and Urtica dioica extract on in vitro production of embryo and oxidative status in polycystic ovary syndrome in a model of mice. BMC Complement Med Ther. 2021;21:55.

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Saba K, Ismath S, Suhail S, Aafreen S. Efficacy of Unani formulation in infertility among obese women: a clinical study. Int J Med Health Res. 2017;4:125–33.

    Google Scholar 

  124. Han C, Liu C, Geng J, Tang Y, Li Y, Wang Y, et al. Black and green tea supplements ameliorate male infertility in a murine model of obesity. J Med Food. 2020;23:1303–11.

    PubMed  CAS  Google Scholar 

  125. Gujjala S, Putakala M, Gangarapu V, Nukala S, Bellamkonda R, Ramaswamy R, et al. Protective effect of Caralluma fimbriata against high-fat diet induced testicular oxidative stress in rats. Biomed Pharmacother. 2016;83:167–76.

    PubMed  Google Scholar 

  126. Kong ZL, Johnson A, Ko FC, He JL, Cheng SC. Effect of Cistanche Tubulosa extracts on male reproductive function in streptozotocin–nicotinamide-induced diabetic rats. Nutrients. 2018;10:1562.

    PubMed  PubMed Central  Google Scholar 

  127. Nejatbakhsh R, Riyahi S, Farrokhi A, Mahmazi S, Yazdinezhad A, Kazemi M, et al. Ameliorating effects of fennel and cumin extracts on sperm quality and spermatogenic cells apoptosis by inducing weight loss and reducing leptin concentration in diet-induced obese rats. Andrologia. 2017;49:e12748.

    Google Scholar 

  128. Mu Y, Yan WJ, Yin TL, Yang J. Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction. Mol Med Rep. 2016;14:3588–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Kong ZL, Johnson A, Ting TL, Cheng PJ, Mao CF. Protective effects of echinacea purpurea ethanol extract on male reproductive dysfunction in obese rats. Appl Sci. 2021;11:2392.

    CAS  Google Scholar 

  130. Ghorbanlou M, Rostamkhani S, Shokri S, Mahmazi S, Fallah R, Moradi F, et al. Possible ameliorating effects of Glycyrrhiza Glabra (Licorice) on the sperm parameters in rats under high fat diet. Endocr Regul. 2020;54:22–30.

    PubMed  Google Scholar 

  131. Hala AH, Khattab ZA, Abdallah G, Kamel M. Grape seed extract alleviate reproductive toxicity caused by aluminium chloride in male rats. J Am Sci. 2010;6:352–61.

    Google Scholar 

  132. Deeh Defo PB, Wankeu-Nya M, Ngadjui E, Esther N, Umar ZU. The methanolic extract of Guibourtia tessmannii (Caesalpiniaceae) improves sexual parameters in high fat diet-induced obese sexually sluggish rats. Asian Pac J Reprod. 2017;6:202–11.

    Google Scholar 

  133. Puchai C, Kokmas W, Kruevaisayawan H, Tunsophon S, Khongsombat O. Effect of Hibiscus sabdariffa on sperm quality and testicular oxidative stress in rats fed with high fat diet. J Physiol Biomed Sci. 2019;32:36–41.

    Google Scholar 

  134. Wu Y, Zhang M, Zhao Q, Chen L, Wang G, Ge S, et al. Effect of Huaji Jianpi Decoction on the semen quality of high-fat diet-induced obese mice. Transl Androl Urol. 2022;11:336–47.

    PubMed  PubMed Central  Google Scholar 

  135. Dong Y, Wang Q, Zheng YF, Ma JC, Li BY, Wang J. Huatan Qushi Decoction improves lipid metabolism and semen quality in obese rats with oligoasthenozoospermia: effects and mechanisms. Zhonghua Nan Ke Xue. 2019;25:1015–20.

    PubMed  Google Scholar 

  136. Tüfek NH, Yahyazadeh A, Altunkaynak BZ. Protective effect of indole-3-carbinol on testis of a high fat diet induced obesity. Biotech Histochem. 2023;98:1–12.

    PubMed  Google Scholar 

  137. Greish SM, Abdel Kader GS, Abdelaziz EZ, Eltamany DA, Sallam HS, Abogresha NM. Lycopene is superior to moringa in improving fertility markers in diet-induced obesity male rats. Saudi J Biol Sci. 2021;28:2956–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. El-Wakf AM, Elhabibi EM, Abd, El-Ghany E. Preventing male infertility by marjoram and sage essential oils through modulating testicular lipid accumulation and androgens biosynthesis disruption in a rat model of dietary obesity. Egypt J Basic Appl Sci. 2015;2:167–75.

    Google Scholar 

  139. Alkafafy ME, Sayed SM, El-Shehawi AM, El-Shazly S, Farouk S, Alotaibi SS, et al. Moringa oleifera ethanolic extract ameliorates the testicular dysfunction resulted from HFD-induced obesity rat model. Andrologia. 2021;53:e14126.

    PubMed  CAS  Google Scholar 

  140. Dileep P, Govardhan P. Melioration of fertility in high fat diet induced obese male wistar rats using polyherbal formulation. Glob J Pharm Sci. 2017;3:555615.

    Google Scholar 

  141. Yang FL, Wei YX, Liao BY, Wei GJ, Qin HM, Pang XX, et al. Effects of Lycium barbarum polysaccharide on endoplasmic reticulum stress and oxidative stress in obese mice. Front Pharmacol. 2020;11:742.

    PubMed  PubMed Central  Google Scholar 

  142. Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, et al. Effects of Quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Horm Metab Res. 2017;49:115–21.

    PubMed  CAS  Google Scholar 

  143. Ayeleso AO, Oguntibeju OO, Aboua YG, Brooks NL. Effects of red palm oil and rooibos on sperm motility parameters in streptozotocin-induced diabetic rats. Afr J Tradit Complement Altern Med. 2014;11:8–15.

    PubMed  PubMed Central  Google Scholar 

  144. Cui X, Jing X, Wu X, Yan M. Protective effect of resveratrol on spermatozoa function in male infertility induced by excess weight and obesity. Mol Med Rep. 2016;14:4659–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Miao XL, Gao GM, Jiang L, Xu R, Wan DP. Asiatic acid attenuates high-fat diet-induced impaired spermatogenesis. Exp Ther Med. 2018;15:2397–403.

    PubMed  CAS  Google Scholar 

  146. Luo Q, Li Y, Huang C, Cheng D, Ma W, Xia Y, et al. Soy isoflavones improve the spermatogenic defects in diet-induced obesity rats through Nrf2/HO-1 pathway. Molecules. 2019;24:2966.

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Boudou F, Berroukche A, Bendahmane-Salmi M, Kandouci B, Houari adli DE, Tou N. Ameliorative effects of Syzygium aromaticum essential oil on fertility in male rats exposed to manganese. Adv Sex Med. 2013;3:37412.

    Google Scholar 

  148. Cloutier F, Roumaud P, Ayoub-Charette S, Chowdhury S, Martin LJ. The intake of an extract from seeds of Tamarindus indica L. modulates the endocrine function of adult male mice under a high fat diet. Heliyon. 2020;6:e03310.

    PubMed  PubMed Central  Google Scholar 

  149. Tüfek NH, Altunkaynak ME, Altunkaynak BZ, Kaplan S. Effects of thymoquinone on testicular structure and sperm production in male obese rats. Syst Biol Reprod Med. 2015;61:194–204.

    PubMed  Google Scholar 

  150. Jani NHM, Daud D, Sharkawi NA, Hashim N, Ismail NH, Salleh A, et al. The effect of Zingiber zerumbet rhizome ethanolic extract on sexual behaviours and sperm parameters in high fat diet-induced obese rats. J Appl Pharm Sci. 2021;11:079–84.

    Google Scholar 

  151. Othman FA, Mohamad SF, Sabarudin NA. Phytochemical analysis of Citrus maxima and its effect on male reproductive system in high-fat diet induced sprague dawley rats. J Sci Technol. 2018;1:95–104.

    Google Scholar 

  152. Wen X, Han Z, Liu SJ, Hao X, Zhang XJ, Wang XY, et al. Phycocyanin improves reproductive ability in obese female mice by restoring ovary and oocyte quality. Front Cell Dev Biol. 2020;8:595373.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The management of K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, and India-637215 is acknowledged by the authors for its ongoing support and provision of the facilities required for doing research.

Author information

Authors and Affiliations

Authors

Contributions

VVSU: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Writing - original draft and Writing – review & editing. PBN: Data curation, Formal analysis, Investigation and Methodology. PC: Data curation and Formal analysis. GS: Formal analysis and Writing – review & editing.

Corresponding author

Correspondence to V. V. Sathibabu Uddandrao.

Ethics declarations

Competing interests

The authors declared no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddandrao, V.V.S., Brahma Naidu, P., Chandrasekaran, P. et al. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes 48, 147–165 (2024). https://doi.org/10.1038/s41366-023-01411-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01411-4

Search

Quick links