Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic targeting of FUBP3 phase separation by GATA2-AS1 inhibits malate-aspartate shuttle and neuroblastoma progression via modulating SUZ12 activity

Abstract

Malate-aspartate shuttle (MAS) is essential for maintaining glycolysis and energy metabolism in tumors, while its regulatory mechanisms in neuroblastoma (NB), the commonest extracranial malignancy during childhood, still remain to be elucidated. Herein, by analyzing multi-omics data, GATA binding protein 2 (GATA2) and its antisense RNA 1 (GATA2-AS1) were identified to suppress MAS during NB progression. Mechanistic studies revealed that GATA2 inhibited the transcription of glutamic-oxaloacetic transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2). As a long non-coding RNA destabilized by RNA binding motif protein 15-mediated N6-methyladenosine methylation, GATA2-AS1 bound with far upstream element binding protein 3 (FUBP3) to repress its liquid-liquid phase separation and interaction with suppressor of zest 12 (SUZ12), resulting in decrease of SUZ12 activity and epigenetic up-regulation of GATA2 and other tumor suppressors. Rescue experiments revealed that GATA2-AS1 inhibited MAS and NB progression via repressing interaction between FUBP3 and SUZ12. Pre-clinically, administration of lentivirus carrying GATA2-AS1 suppressed MAS, aerobic glycolysis, and aggressive behaviors of NB xenografts. Notably, low GATA2-AS1 or GATA2 expression and high FUBP3, SUZ12, GOT2 or MDH2 levels were linked with unfavorable outcome of NB patients. These findings suggest that GATA2-AS1 inhibits FUBP3 phase separation to repress MAS and NB progression via modulating SUZ12 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GATA2 suppresses MAS gene expression in NB.
Fig. 2: GATA2-AS1 facilitates GATA2 expression and suppresses MAS in NB cells.
Fig. 3: Glutamine destabilizes GATA2-AS1 via RBM15-mediated m6A modification in NB cells.
Fig. 4: GATA2-AS1 interacts with FUBP3 protein in NB cells.
Fig. 5: GATA2-AS1 inhibits phase separation of FUBP3 and its interaction with SUZ12.
Fig. 6: GATA2-AS1 represses FUBP3 phase separation essential for SUZ12 target gene expression.
Fig. 7: GATA2-AS1 inhibits MAS and NB progression via repressing FUBP3.
Fig. 8: GATA2-AS1, RBM15, FUBP3, and target genes are associated with outcome of NB.

Similar content being viewed by others

Data availability

RNA-seq results have been deposited in GEO database (https://www.ncbi.nlm.nih.gov/geo, accession number GSE229665). Public datasets are available from GEO database (GSE62564, GSE45547), POSTAR3 (http://postar.ncrnalab.org), RBPDB (http://rbpdb.ccbr.utoronto.ca), ABLife (https://ablife.cc), BioGRID (https://thebiogrid.org), or PONDR (http://www.pondr.com) database.

References

  1. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

  2. Burns JS, Manda G. Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci. 2017;18:2755.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gatenby RA, Gillies RJ. Why do cancers have high malate-aspartate shuttle? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  4. Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life. 2020;72:2241–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pardo B, Contreras L, Satrústegui J. De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier Aralar/AGC1. Front Endocrinol. 2013;4:149.

    Article  Google Scholar 

  6. Rub B, del Arco A, Bartley C, Satrustegui J, Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J Biol Chem. 2004;279:55659–66.

    Article  Google Scholar 

  7. Wang C, Chen H, Zhang M, Zhang J, Wei X, Ying W. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis. Cancer Lett. 2016;378:1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    Article  CAS  PubMed  Google Scholar 

  9. Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 2014;1843:372–86.

    Article  CAS  PubMed  Google Scholar 

  10. Rupaimoole R, Lee J, Haemmerle M, Ling H, Previs RA, Pradeep S, et al. Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis. Cell Rep. 2015;13:2395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kildisiute G, Kholosy WM, Young MD, Roberts K, Elmentaite R, van Hooff SR, et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv. 2021;7:eabd3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su Z, Fang H, Hong H, Shi L, Zhang W, Zhang W, et al. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol. 2014;15:523.

    Article  PubMed  Google Scholar 

  13. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26:2438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim GJ, Park SY, Kim H, Chun YH, Park SH. Chromosomal aberrations in neuroblastoma cell lines identified by cross species color banding and chromosome painting. Cancer Genet Cytogenet. 2001;129:10–16.

    Article  CAS  PubMed  Google Scholar 

  15. Gautier M, Thirant C, Delattre O, Janoueix-Lerosey I. Plasticity in neuroblastoma cell identity defines a noradrenergic-to-mesenchymal transition (NMT). Cancers. 2021;13:2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M, et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015;34:1110–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han S, Zhu L, Zhu Y, Meng Y, Li J, Song P, et al. Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics. 2021;11:8464–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gameiro PA, Encheva V, Dos Santos MS, MacRae JI, Ule J. Metabolic turnover and dynamics of modified ribonucleosides by (13)C labeling. J Biol Chem. 2021;297:101294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics. 2013;29:2928–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walia RR, Xue LC, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V. RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLoS One. 2014;9:e97725.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucl Acids Res. 2006;34:D535–39.

    Article  CAS  PubMed  Google Scholar 

  22. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23:4061–4071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15:57–67.

    Article  CAS  PubMed  Google Scholar 

  24. Ulianov SV, Velichko AK, Magnitov MD, Luzhin AV, Golov AK, Ovsyannikova N, et al. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucl Acids Res. 2021;49:10524–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao Z, Ju Q, Ji J, Li Y, Zhao Y. N6-Methyladenosine Methylation Regulator RBM15 is a Potential prognostic biomarker and promotes cell proliferation in pancreatic adenocarcinoma. Front Mol Biosci. 2022;9:842833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q, et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer. 2019;18:95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qutob N, Masuho I, Alon M, Emmanuel R, Cohen I, Di Pizio A, et al. RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Sci Rep. 2018;8:653.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Gao L, Shao M, Sun GYA. MYC target long non-coding RNA GATA2-AS1 regulates non-small cell lung cancer growth. Neoplasma. 2019;66:954–62.

    Article  CAS  PubMed  Google Scholar 

  30. Niu Y, Guo Y, Li Y, Shen S, Liang J, Guo W, et al. LncRNA GATA2-AS1 suppresses esophageal squamous cell carcinoma progression via the mir-940/PTPN12 axis. Exp Cell Res. 2022;416:113130.

    Article  CAS  PubMed  Google Scholar 

  31. Pan Y, Zhu Y, Zhang J, Jin L, Cao P. A feedback loop between GATA2-AS1 and GATA2 promotes colorectal cancer cell proliferation, invasion, epithelial-mesenchymal transition and stemness via recruiting DDX3X. J Transl Med. 2022;20:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol. 2012;82:1–17.

    Article  PubMed  Google Scholar 

  33. Li YW, Wang JX, Yin X, Qiu SJ, Wu H, Liao R, et al. Decreased expression of GATA2 promoted proliferation, migration and invasion of HepG2 in vitro and correlated with poor prognosis of hepatocellular carcinoma. PLoS One. 2014;9:e87505.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, He X, Ngeow J, Eng C. GATA2 negatively regulates PTEN by preventing nuclear translocation of androgen receptor and by androgen-independent suppression of PTEN transcription in breast cancer. Hum Mol Genet. 2012;21:569–76.

    Article  CAS  PubMed  Google Scholar 

  35. Böhm M, Locke WJ, Sutherland RL, Kench JG, Henshall SM. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene. 2009;28:3847–56.

    Article  PubMed  Google Scholar 

  36. Gau BH, Chen TM, Shih YHJ, Sun HS. FUBP3 interacts with FGF9 3’ microsatellite and positively regulates FGF9 translation. Nucl Acids Res. 2011;39:3582–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang HI, Chang YY, Lin JY, Kuo RL, Liu HP, Shih SR, et al. Interactome analysis of the EV71 5′ untranslated region in differentiated neuronal cells SH-SY5Y and regulatory role of FBP3 in viral replication. Proteomics. 2016;16:2351–62.

    Article  CAS  PubMed  Google Scholar 

  38. Weber A, Kristiansen I, Johannsen M, Oelrich B, Scholmann K, Gunia S, et al. The FUSE binding proteins FBP1 and FBP3 are potential c-myc regulators in renal, but not in prostate and bladder cancer. BMC Cancer. 2008;8:369.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao Q, Zhou R, Meng Y, Duan R, Wu L, Li R, et al. Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3-c-Myc axis. Oncogene. 2020;39:3926–38.

    Article  CAS  PubMed  Google Scholar 

  40. Conway E, Healy E, Bracken AP. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 2015;37:42–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer. 2020;122:315–28.

    Article  CAS  PubMed  Google Scholar 

  42. Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022;22:239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaefer KN, Peifer M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates. Dev Cell. 2019;48:429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, et al. Functional domains of NEAT1 architectural lncrna induce paraspeckle assembly through phase separation. Mol Cell. 2018;70:1038–53.

    Article  CAS  PubMed  Google Scholar 

  45. Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, et al. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021;7:eabe5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fang E, Wang X, Wang J, Hu A, Song H, Yang F, et al. Therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits malate-aspartate shuttle and neuroblastoma progression. Theranostics. 2020;10:1555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao X, Li D, Yang F, Lian H, Wang J, Wang X, et al. Long noncoding RNA NHEG1 drives β-catenin transactivation and neuroblastoma progression through interacting with DDX5. Mol Ther. 2020;28:946–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang E, Wang X, Yang F, Hu A, Wang J, Li D, et al. Therapeutic targeting of MZF1-AS1/PARP1/E2F1 axis inhibits proline synthesis and neuroblastoma progression. Adv Sci. 2019;6:1900581.

    Article  CAS  Google Scholar 

  49. Li D, Song H, Mei H, Fang E, Wang X, Yang F, et al. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun. 2018;9:2829.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brauckhoff A, Malz M, Tschaharganeh D, Malek N, Weber A, Riener MO, et al. Nuclear expression of the ubiquitin ligase seven in absentia homolog (SIAH)-1 induces proliferation and migration of liver cancer cells. J Hepatol. 2011;55:1049–57.

    Article  CAS  PubMed  Google Scholar 

  51. Yang J, Smith DK, Ni H, Wu K, Huang D, Pan S, et al. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc Natl Acad Sci USA. 2020;117:5782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019;11:e10835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li D, Wang X, Mei H, Fang E, Ye L, Song H, et al. Long noncoding RNA pancEts-1 promotes neuroblastoma progression through hnRNPK-mediated β-catenin stabilization. Cancer Res. 2018;78:1169–83.

    Article  CAS  PubMed  Google Scholar 

  54. Son MJ, Ryu JS, Kim JY, Kwon Y, Chung KS, Mun SJ, et al. Upregulation of mitochondrial NAD(+) levels impairs the clonogenicity of SSEA1(+) glioblastoma tumor-initiating cells. Exp Mol Med. 2017;49:e344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for Dr. Kai Breuhahn for providing vectors. This work was granted by the National Natural Science Foundation of China (81903011, 82072801, 82173316, 82293663).

Author information

Authors and Affiliations

Authors

Contributions

XW and YG conceived and performed most of the experiments; GC, EF, JW, QL, DL, AH, BB, and YZ accomplished some of the in vitro experiments. XW, EF, HG, JS, and XD accomplished the in vivo studies. XW and EF undertook the mining of publicly available datasets. QT and LZ wrote the manuscript.

Corresponding authors

Correspondence to Liduan Zheng or Qiangsong Tong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, Y., Chen, G. et al. Therapeutic targeting of FUBP3 phase separation by GATA2-AS1 inhibits malate-aspartate shuttle and neuroblastoma progression via modulating SUZ12 activity. Oncogene 42, 2673–2687 (2023). https://doi.org/10.1038/s41388-023-02798-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02798-0

Search

Quick links