Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of risk factors related to metabolic syndrome on acute myocardial infarction in younger patients

Abstract

Despite diagnostic and therapeutic advancements in cardiovascular medicine, myocardial infarction (MI) remains a major cause of adverse outcomes in younger MI patients, i.e., those who are aged 55 years or younger. Traditional cardiovascular risk factors have not often been emphasized in the management of younger MI patients. However, plaque rupture or erosion, which is deeply related to cardiovascular risk factors, remains the most common etiology of MI even in younger patients. The global increase in the prevalence of obesity underscores the clinical importance of metabolic syndrome (MetS), i.e., obesity-associated cardiovascular risk factors, dyslipidemia, diabetes mellitus and particularly hypertension, in younger people. The concept of “lifetime risk” of cardiovascular disease reinforces the need for prevention or treatment of MetS. This review focuses on the risk factors related to MetS and an overall understanding of recent profiles of younger MI patients. We hope that this review will aid in the primary prevention of MetS-related risk factors and the prevention of cardiovascular disease, particularly MI, in younger patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta A, Wang Y, Spertus JA, Geda M, Lorenze N, Nkonde-Price C, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014;64:337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chhabra ST, Kaur T, Masson S, Soni RK, Bansal N, Takkar B, et al. Early onset ACS: an age based clinico-epidemiologic and angiographic comparison. Atherosclerosis. 2018;279:45–51.

    Article  CAS  PubMed  Google Scholar 

  3. Cui Y, Hao K, Takahashi J, Miyata S, Shindo T, Nishimiya K, et al. Age-specific trends in the incidence and in-hospital mortality of acute myocardial infarction over 30 years in Japan—report from the Miyagi AMI registry study. Circ J. 2017;81:520–8.

    Article  PubMed  Google Scholar 

  4. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.

    Article  PubMed  Google Scholar 

  5. Gultai R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L, et al. Acute myocardial infarction in young individuals. Mayo Clin Proc. 2020;95:136–56.

    Article  Google Scholar 

  6. Aschermann M. Atherosclerosis in childhood. Cas Lek Cesk. 2009;148:361–4.

    CAS  PubMed  Google Scholar 

  7. Markus J, Costan GM, Gerald SB, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Eng J Med. 2011;365:1876–85.

    Article  Google Scholar 

  8. Kawaguchi S, Hasebe T, Ohta H, Kikuchi A, Asanome A, Nishiura T, et al. Acute myocardial infarction in a 17-year-old high-school girl. Intern Med. 2021;60:259–63.

    Article  PubMed  Google Scholar 

  9. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72:2231–64.

    Article  PubMed  Google Scholar 

  10. Hao K, Takahashi J, Ito K, Miyata S, Nihei T, Nishimiya K, et al. Clinical characteristics of patients with acute myocardial infarction who did not undergo primary percutaneous coronary intervention-report from the MIYAGI-AMI registry study. Circ J. 2015;79:2009–16.

    Article  CAS  PubMed  Google Scholar 

  11. Chapman AR, Shah ASV, Lee KK, Anand A, Francis O, Adamson P, et al. Long term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation. 2018;137:1236–45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neumann JT, Sörensen NA, Rübsamen N, Ojeda F, Renné T, Qaderi V, et al. Discrimination of patients with type 2 myocardial infarction. Eur Heart J. 2017;38:3514–20.

    Article  CAS  PubMed  Google Scholar 

  13. Shingh A, Gupta A, DeFilippis EM, Qamar A, Biery DW, Almarzooq Z, et al. Cardiovascular mortality after type 1 and type 2 myocardial infarction in young adults. J Am Coll Cardiol. 2020;75:1003–13.

    Article  Google Scholar 

  14. Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, et al. Spontaneous coronary artery dissection: current state of the science. A scientific statement from the American Heart Association. Circulation. 2018;137:e523–57.

  15. Saw J, Mancini GBJ, Humphries KH. Contemporary review on spontaneous coronary artery dissection. J Am Coll Cardiol. 2016;68:297–312.

    Article  PubMed  Google Scholar 

  16. Elkayam U, Jalnapurkar S, Barakkat MN, Khatri N, Kealey AJ, Mehra A, et al. Pregnancy-associated acute myocardial infarction: a review of contemporary experience in 150 cases between 2006 and 2011. Circulation. 2014;129:1695–702.

    Article  PubMed  Google Scholar 

  17. Ota H, Tashiro N, Nakagawa N, Tanabe Y, Takeuchi T, Okada M, et al. Spontaneous resolution of an accidental total coronary occlusion. Intern Med. 2010;49:2593–7.

    Article  PubMed  Google Scholar 

  18. DeFilippis EM, Singh A, Divakaran S, Gupta A, Collins BL, Biery D, et al. J Am Coll Cardiol. 2018;71:2540–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  20. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–36.

    Article  CAS  PubMed  Google Scholar 

  21. Casavalle PL, Lifshitz F, Romano LS, Pandolfo M, Caamano A, Boyer PM, et al. Prevalence of dyslipidemia and metabolic syndrome risk factor in overweight and obese children. Pediatr Endocrinol Rev. 2014;12:213–23.

    PubMed  Google Scholar 

  22. Reinehr T, de Sousa G, Toschke AM, Andler W. Comparison of metabolic syndrome prevalence using eight different definitions: a critical approach. Arch Dis Child. 2007;92:1067–72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89:2569–75.

    Article  CAS  PubMed  Google Scholar 

  24. Karelis AD. Metabolically healthy but obese individuals. Lancet. 2008;372:1281–3.

    Article  PubMed  Google Scholar 

  25. Damanhoury S, Newton AS, Rashid M, Hartling L, Byrne JLS, Ball GDC. Defining metabolically healthy obesity in children: a scoping review. Obes Rev. 2018;19:1476–91.

    Article  CAS  PubMed  Google Scholar 

  26. Vukovic R, Dos Santos TJ, Ybarra M, Atar M. Children with metabolically healthy obesity: a review. Front Endocrinol. 2019;10:865.

    Article  Google Scholar 

  27. Khokhar A, Chin V, Perez-Colon S, Farook T, Bansal S, Kochummen E, et al. Differences between metabolically healthy vs unhealthy obese children and adolescents. J Natl Med Assoc. 2017;109:203–10.

    PubMed  Google Scholar 

  28. Kubo T. Common approach to childhood obesity in Japan. J Pediatar Endocrinol Metab. 2014;27:581–92.

    Google Scholar 

  29. Teo KK, Rafiq T, Anand SS, Schulze KM, Yusuf S, McDonald SD, et al. Associations of cardiometabolic outcomes with indices of obesity in children aged 5 years and younger. PLoS ONE. 2019;14:e0218816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, et al. Emerging risk factors collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95.

    Article  PubMed  Google Scholar 

  31. Lamon-Fava S, Wilson PW, Schaefer EJ. Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1996;16:1509–15.

    Article  CAS  PubMed  Google Scholar 

  32. Peter W, Ralph B, Lisa S, Helen P, William K. Overweight and obesity as determinants of cardiovascular risk. Arch Intern Med. 2002;162:1867–72.

    Article  Google Scholar 

  33. Kannel WB. Risk factors in hypertension. J Cardiovasc Pharmacol. 1989;13:S4–10.

    Article  PubMed  Google Scholar 

  34. Nakamura T, Tsubono Y, Kameda-Takemura K, Funahashi T, Tamashita S, Hisamichi S, et al. Magnitude of sustained multiple risk factors for ischemic heart disease in Japanese employees: a case-control study. Jpn Circ J. 2001;65:11–7.

    Article  CAS  PubMed  Google Scholar 

  35. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeBoer MD. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients. 2019;11:1788.

    Article  CAS  PubMed Central  Google Scholar 

  37. Weihe P, Weihrauch-Bluher S. Metabolic syndrome in children and adolescents: diagnostic criteria, therapeutic options and perspectives. Curr Obes Rep. 2019;8:472–9.

    Article  PubMed  Google Scholar 

  38. Anderson RE, Pfeffer MA, Thune JJ, McMurray JJ, Califf RM, Velazquez E, et al. High-risk myocardial infarction in the young: The VALsartan in acute myocardial infarction (VALIANT) trial. Am Heart J. 2008;155:706–11.

    Article  PubMed  Google Scholar 

  39. Davidson L, Wilcox J, Kim D, Benton S, Fredi J, Vaughan D. Clinical features of precocious acute coronary syndrome. Am J Med. 2014;127:140–4.

    Article  PubMed  Google Scholar 

  40. Dugani SB, Fabbri M, Chamberlain AM, Bielinski SJ, Weston SA, Manemann SM, et al. Premature myocardial infarction: a community study. Mayo Clin Proc Inn Qual Out. 2021;5:413–22.

    Article  Google Scholar 

  41. Davis M, Diamond J, Montgomery D, Krishnan S, Eagle K, Jackson E, et al. Acute coronary syndrome in young women under 55 years of age: clinical characteristics, treatment, and outcomes. Clin Res Cardiol. 2015;104:648–55.

    Article  CAS  PubMed  Google Scholar 

  42. Vikulova DN, Grubisic M, Zhao Y, Lynch K, Humphries KH, Pimstone SN, et al. Premature atherosclerotic cardiovascular disease: trends in incidence, risk factors, and sex-related differences, 2000 to 2016. J Am Heart Assoc. 2019;8:e012178.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fu JF, Shi HB, Liu LR, Jiang P, Liang L, Wang CL, et al. Non-alcoholic fatty liver disease: an early mediator predicting metabolic syndrome in obese children? World J Gastroenterol. 2011;17:735–42.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jamal A, Phillips E, Gentzke AS, Homa DM, Babb SD, King BA, et al. Current cigarette smoking among adults: United States, 2016. MMWR Morb Mortal Wkly Rep. 2018;67:53–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun YQ, Burgess S, Staley JR, Wood AM, Bell S, Kaptoge SK, et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses. BMJ. 2019;364:l1042.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Biery DW, Berman AN, Singh A, Divakaran S, DeFilippis EM, Collins BL, et al. Association of smoking cessation and survival among young adults with myocardial infarction in the partners YOUNG-MI registry. JAMA Netw Open. 2020;3:e209649.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hajek P, Phillips-Waller A, Przulj D, Pesola F, Myers Smith K, Bisal N, et al. Randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019;380:629–37.

    Article  PubMed  Google Scholar 

  48. Li YW, Kao TW, Chang PK, Chen WL, Wu LW. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: a 9-year longitudinal study. Sci Rep. 2021;11:9900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiesbauer F, Blessberger H, Azar D, Goliasch G, Wagner O, Gerhold L, et al. Familial combined hyperlipidaemia in very young myocardial infarction survivors (< or =40 years of age). Eur Heart J. 2009;30:1073–9.

    Article  PubMed  Google Scholar 

  50. Singh A, Collins B, Qamar A, Gupta A, Fatima A, Divakaran S, et al. Study of young patients with myocardial infarction: Design and rationale of the YOUNG-MI Registry. Clin Cardiol. 2017;40:955–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singh A, Gupta A, Collins BL, Qamar A, Monda KL, Biery D, et al. Familial Hypercholesterolemia among young adults with myocardial infarction. J Am Coll Cardiol. 2019;73:2439–50.

    Article  PubMed  Google Scholar 

  52. Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6:69–80.

    Article  PubMed  Google Scholar 

  53. Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care. 2003;26:2999–3005.

    Article  PubMed  Google Scholar 

  54. Divakaran S, Singh A, Biery D, Yang J, DeFilippis EM, Collins BL, et al. Diabetes is associated with worse long-term outcomes in young adults after myocardial infarction: the partners YOUNG-MI registry. Diabetes Care. 2020;43:1843–50.

    Article  PubMed  Google Scholar 

  55. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  56. Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction the ARIC community surveillance study. Circulation. 2019;139:1047–56.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Vittinghoff E, Pletcher, Allen NB, Hazzouri AZA, Yaffe K, et al. Associations of blood pressure and cholesterol levels during young adulthood with later cardiovascular events. J Am Coll Cardiol. 2019;74:330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stamler J. The INTERSALT Study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65:626–42.

    Article  Google Scholar 

  60. Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29:415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Petra R, Cam E. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Boil. 2017;956:61–84.

    Google Scholar 

  62. Jordan CP, Shannon LL, William BF, David GE. Mechanisms of dietary sodium-induced impairments in endothelial function and potential countermeasures. Nutrients. 2021;19:270–87.

    Google Scholar 

  63. Vanessa P, Ellen TC. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;14:712–41.

    Google Scholar 

  64. Jones DW, Whelton PK, Allen N, Clark D, Gidding SS, Muntner P, et al. Management of stage 1 hypertension in adults with a low 10-year risk for cardiovascular disease: Filling a guidance gap: a scientific statement from the American Heart Association. Hypertension. 2021;77:e58–67.

    Article  CAS  PubMed  Google Scholar 

  65. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–9.

    Article  CAS  PubMed  Google Scholar 

  66. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adult. N Engl J Med. 2015;373:1307–17.

    Article  PubMed  Google Scholar 

  67. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  68. Fan H, Zhu Q, Medrano-Gracia P, Zhang X. Comparison of child adiposity indices in prediction of hypertension in early adulthood. J Clin Hypertens. 2019;21:1858–62.

    Article  Google Scholar 

  69. Kindblom JM, Bygdell M, Hjelmgren O, Martikainen J, Rosengren A, Bergström G, et al. Pubertal body mass index change is associated with adult coronary atherosclerosis and acute coronary events in men. Arterioscler Thromb Vasc Biol. 2021;41:2318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Agbaje AO, Barker AR, Tuomainen TP. Effects of arterial stiffness and carotid intima-media thickness progression on the risk of overweight/obesity and elevated blood pressure/hypertension: a cross-lagged cohort study. Hypertension. 2022;79:159–69.

    Article  CAS  PubMed  Google Scholar 

  71. Yang J, Biery DW, Singh A, Divakaran S, DeFilippis EM, Wu WY, et al. Risk factors and outcomes of very young adults who experience myocardial infarction: the partners YOUNG-MI registry. Am J Med. 2020;133:605–12.

    Article  CAS  PubMed  Google Scholar 

  72. Ference BA, Bhatt DL, Catapano AL, Packard CJ, Graham I, Kaptoge S, et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA. 2019;322:1381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang LX, Gurka MJ, DeBoer MD. Metabolic syndrome severity and lifestyle factors among adolescents. Minerva Pediatr. 2018;70:467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Poyrazoglu S, Bas F, Darendeliler F. Metabolic syndrome in young people. Curr Opin Endocrinol Diabetes Obes. 2014;21:56–63.

    Article  CAS  PubMed  Google Scholar 

  75. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337.

    Article  PubMed  Google Scholar 

  76. Zimmerman FH, Cameron A, Fisher LD, Grace NG. Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). J Am Coll Cardiol. 1995;26:654–61.

    Article  CAS  PubMed  Google Scholar 

  77. Moccetti T, Malacrida R, Pasotti E, Sessa F, Genoni M, Barlera S, et al. Epidemiologic variables and outcome of 1972 young patients with acute myocardial infarction. Data from the GISSI-2 database. Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2). Arch Intern Med. 1997;157:865–9.

    Article  CAS  PubMed  Google Scholar 

  78. Canto JG, Shlipak MG, Rogers WJ, Malmgren JA, Frederick PD, Lambrew CT, et al. Prevalence, clinical characteristics, and mortality among patients with myocardial infarction presenting without chest pain. JAMA. 2000;283:3223–9.

    Article  CAS  PubMed  Google Scholar 

  79. Doughty M, Mehta R, Bruckman D, Das S, Karavite D, Tsai T, et al. Acute myocardial infarction in the young—The University of Michigan experience. Am Heart J. 2002;143:56–62.

    Article  PubMed  Google Scholar 

  80. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: How do the national cholesterol education panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.

    Article  PubMed  Google Scholar 

  81. Fournier JA, Cabezón S, Cayuela A, Ballesteros SM, Cortacero JA, Díaz De La Llera LS. Long-term prognosis of patients having acute myocardial infarction when </= 40 years of age. Am J Cardiol. 2004;94:989–92.

    Article  PubMed  Google Scholar 

  82. Pineda J, Marín F, Roldán V, Valencia J, Marco P, Sogorb F. Premature myocardial infarction: Clinical profile and angiographic findings. Int J Cardiol. 2008;126:127–9.

    Article  PubMed  Google Scholar 

  83. Kokubo Y, Kamide K, Okamura T, Watanabe M, Higashiyama A, Kawanishi K, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease in a Japanese urban cohort: the Suita study. Hypertension. 2008;52:652–9.

    Article  CAS  PubMed  Google Scholar 

  84. McManus DD, Chinali M, Saczynski JS, Gore JM, Yarzebski J, Spencer FA, et al. 30-year trends in heart failure in patients hospitalized with acute myocardial infarction. Am J Cardiol. 2011;107:353–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Schoenenberger AW, Radovanovic D, Stauffer JC, Windecker S, Urban P, Niedermaier G, et al. Acute coronary syndromes in young patients: presentation, treatment and outcome. Int J Cardiol. 2011;148:300–4.

    Article  PubMed  Google Scholar 

  86. Egiziano G, Akhtari S, Pilote L, Daskalopoulou SS, GENESIS (GENdEr and Sex DetermInants of Cardiovascular Disease) Investigators. Sex differences in young patients with acute myocardial infarction. Diabet Med. 2013;30:e108–14.

    Article  CAS  PubMed  Google Scholar 

  87. Bucholz EM, Strait KM, Dreyer RP, Lindau ST, D’Onofrio G, Geda M, et al. Editor’s Choice-Sex differences in young patients with acute myocardial infarction: a VIRGO study analysis. Eur Heart J Acute Cardiovasc Care. 2017;6:610–22.

    Article  PubMed  Google Scholar 

  88. Garshick MS, Vaidean GD, Vani A, Underberg JA, Newman JD, Berger JS, et al. Cardiovascular risk factor control and lifestyle factors in young to middle-aged adults with newly diagnosed obstructive coronary artery disease. Cardiology. 2019;142:83–90.

    Article  PubMed  Google Scholar 

  89. Miedema MD, Dardari ZA, Nasir K, Blankstein R, Knickelbine T, Oberembt S, et al. Association of coronary artery calcium with long-term, cause-specific mortality among young adults. JAMA Netw Open. 2019;2:e197440.

    Article  PubMed  PubMed Central  Google Scholar 

  90. DeFilippis EM, Collins BL, Singh A, Biery DW, Fatima A, Qamar A, et al. Women who experience a myocardial infarction at a young age have worse outcomes compared with men: the mass general Brigham YOUNG-MI registry. Eur Heart J. 2020;41:4127–37.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu WY, Biery DW, Singh A, Divakaran S, Berman AN, Ayuba G, et al. Recovery of left ventricular systolic function and clinical outcomes in young adults with myocardial infarction. J Am Coll Cardiol. 2020;75:2804–15.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zeitouni M, Nanna MG, Sun JL, Chiswell K, Peterson ED, Navar AM. Performance of guideline recommendations for prevention of myocardial infarction in young adults. J Am Coll Cardiol. 2020;76:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jamil S, Jamil G, Mesameh H, Qureshi A, AlKaabi J, Sharma C, et al. Risk factor comparison in young patients presenting with acute coronary syndrome with atherosclerotic coronary artery disease vs. angiographically normal coronaries. Int J Med Sci. 2021;18:3526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Al-Shahrani MS, Katbi FA, Al-Sharydah AM, AlShahrani SD, Alghamdi TM, Al-Sharidah MA. Differences in clinical nature and outcome among young patients suffering from an acute coronary syndrome. J Blood Med. 2021;12:1011–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Qureshi WT, Kakouros N, Fahed J, Rade JJ. Comparison of prevalence, presentation, and prognosis of acute coronary syndromes in 35 years, 36 - 54 years, and 55 years patients. Am J Cardiol. 2021;140:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Hasebe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasebe, T., Hasebe, N. Impact of risk factors related to metabolic syndrome on acute myocardial infarction in younger patients. Hypertens Res 45, 1447–1458 (2022). https://doi.org/10.1038/s41440-022-00951-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00951-y

Keywords

This article is cited by

Search

Quick links