Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology of ependymomas and emerging novel therapies

Abstract

Ependymomas are rare central nervous system tumours that can arise in the brain’s supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major discoveries in ependymoma.
Fig. 2: Molecular subgroups of ependymoma.
Fig. 3: Mechanisms of ependymoma tumorigenesis.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology 21 (Suppl. 5), V1–V100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McGuire, C. S., Sainani, K. L. & Fisher, P. G. Incidence patterns for ependymoma: a Surveillance, Epidemiology, and End Results study. J. Neurosurg. 110, 725–729 (2009).

    Article  PubMed  Google Scholar 

  3. Vera-Bolanos, E. et al. Clinical course and progression-free survival of adult intracranial and spinal ependymoma patients. Neuro-oncology 17, 440–447 (2015).

    Article  PubMed  Google Scholar 

  4. De, B. et al. Patterns of relapse for children with localized intracranial ependymoma. J. Neurooncol. 138, 435–445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marinoff, A. E. et al. Rethinking childhood ependymoma: a retrospective, multi-center analysis reveals poor long-term overall survival. J. Neurooncol. 135, 201–211 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byer, L. et al. A systematic review and meta-analysis of outcomes in pediatric, recurrent ependymoma. J. Neurooncol. 144, 445–452 (2019).

    Article  PubMed  Google Scholar 

  7. Kilday, J. P. et al. Pediatric ependymoma: biological perspectives. Mol. Cancer Res. 7, 765–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rudà, R. et al. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-oncology 20, 445–456 (2017).

    Article  PubMed Central  Google Scholar 

  9. Bailey, P. A study of tumors arising from ependymal cells. Arch. Neurol. Psychiatry 11, 1–27 (1924).

    Article  Google Scholar 

  10. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  11. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015). This landmark paper classified ependymomas into nine subgroups based on DNA methylation profiles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neumann, J. E. et al. Molecular characterization of histopathological ependymoma variants. Acta Neuropathol. 139, 305–318 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Ghasemi, D. R. et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 138, 1075–1089 (2019). This paper identified a rare subgroup of aggressive spinal ependymomas that are driven by MYCN amplification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lourdusamy, A., Rahman, R. & Grundy, R. G. Expression alterations define unique molecular characteristics of spinal ependymomas. Oncotarget 6, 19780–19791 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mack, S. C. et al. Spinal myxopapillary ependymomas demonstrate a warburg phenotype. Clin. Cancer Res. 21, 3750–3758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, M. et al. Genomic landscape of intramedullary spinal cord gliomas. Sci. Rep. 9, 18722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Witt, H. et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20, 143–157 (2011). This paper identified two important subgroups of posterior fossa ependymomas, PFA and PFB, that have different biological features and clinical outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pajtler, K. W. et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol. 133, 5–12 (2017). This paper summarized consensus statements from an international meeting in 2016 on the clinical management of intracranial ependymomas and the future of ependymoma research.

    Article  CAS  PubMed  Google Scholar 

  19. Panwalkar, P. et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 134, 705–714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bayliss, J. et al. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci. Transl. Med. 8, 366ra161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pajtler, K. W. et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 136, 211–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baroni, L. V. et al. Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro-oncology 23, 1360–1370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cavalli, F. M. G. et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 136, 227–237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torre, M. et al. Characterization of molecular signatures of supratentorial ependymomas. Mod. Pathol. 33, 47–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Fukuoka, K. et al. Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathol. Commun. 6, 134–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572, 67–73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, S. J. et al. Multiplatform Molecular profiling reveals epigenomic intratumor heterogeneity in ependymoma. Cell Rep. 30, 1300–1309.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillen, A. E. et al. Single-Cell RNA sequencing of childhood ependymoma reveals neoplastic cell subpopulations that impact molecular classification and etiology. Cell Rep. 32, 108023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinberg, R. A. The Biology of Cancer (Garland Science, 2013).

  30. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014). This paper characterized the ST-EPN-RELA subgroup of supratentorial ependymomas, which are driven by the fusion between the C11orf95 (renamed ZFTA) and RELA genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, J. J., Jillette, N., Li, X. N., Cheng, A. W. & Lau, C. C. C11orf95-RELA reprograms 3D epigenome in supratentorial ependymoma. Acta Neuropathol. 140, 951–960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ozawa, T. et al. A de novo mouse model of C11orf95-RELA fusion-driven ependymoma identifies driver functions in addition to NF-κB. Cell Rep. 23, 3787–3797 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Figarella-Branger, D. et al. Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro-oncology 18, 919–927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malgulwar, P. B. et al. C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin. J. Neurooncol. 138, 29–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Pajtler, K. W. et al. YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nat. Commun. 10, 3914 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Andreiuolo, F. et al. Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol. 29, 205–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Scheil, S. et al. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol. 11, 133–143 (2006).

    Article  PubMed Central  Google Scholar 

  38. Hall, W. A., Merrill, M. J., Walbridge, S. & Youle, R. J. Epidermal growth factor receptors on ependymomas and other brain tumors. J. Neurosurg. 72, 641–646 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Gilbertson, R. J. et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer Res. 8, 3054–3064 (2002).

    CAS  PubMed  Google Scholar 

  40. Senetta, R. et al. Epidermal growth factor receptor and caveolin-1 coexpression identifies adult supratentorial ependymomas with rapid unfavorable outcomes. Neuro-oncology 13, 176–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Mendrzyk, F. et al. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin. Cancer Res. 12, 2070–2079 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Servidei, T. et al. Novel SEC61G-EGFR fusion gene in pediatric ependymomas discovered by clonal expansion of stem cells in absence of exogenous mitogens. Cancer Res. 77, 5860–5872 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Mohankumar, K. M. et al. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat. Genet. 47, 878–887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rogers, H. A. et al. PI3K pathway activation provides a novel therapeutic target for pediatric ependymoma and is an independent marker of progression-free survival. Clin. Cancer Res. 19, 6450–6460 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Magrassi, L. et al. EDG3 and SHC3 on chromosome 9q22 are co-amplified in human ependymomas. Cancer Lett. 290, 36–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Vassal, G. et al. Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J. Clin. Oncol. 27, 1884–1892 (2009).

    Article  PubMed  Google Scholar 

  48. Gupta, R. K. et al. Study of chromosome 9q gain, Notch pathway regulators and Tenascin-C in ependymomas. J. Neurooncol. 116, 267–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Von Haken, M. S. et al. Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chromosomes Cancer 17, 37–44 (1996).

    Article  Google Scholar 

  50. Suzuki, S. O. & Iwaki, T. Amplification and overexpression of mdm2 gene in ependymomas. Mod. Pathol. 13, 548–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, H. et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat. Med. 17, 347–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Rousseau, E. et al. CDKN2A, CDKN2B and p14(ARF) are frequently and differentially methylated in ependymal tumours. Neuropathol. Appl. Neurobiol. 14, 574–583 (2003).

    Article  Google Scholar 

  53. Ridley, L. et al. Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neurooncology 10, 675–689 (2008).

    CAS  Google Scholar 

  54. Ammoun, S. et al. Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene 33, 336–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Liang, M. L. et al. Significance of cyclin D1 overexpression in progression and radio-resistance of pediatric ependymomas. Oncotarget 9, 2527–2542 (2018).

    Article  PubMed  Google Scholar 

  56. Rajaram, V. et al. 9p21 and 13q14 dosages in ependymomas. A clinicopathologic study of 101 cases. Mod. Pathol. 17, 9–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Alonso, M. E. et al. Aberrant CpG island methylation of multiple genes in ependymal tumors. J. Neurooncol. 67, 159–165 (2004).

    Article  PubMed  Google Scholar 

  58. Karakoula, K. et al. Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma. Cancer Lett. 346, 34–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Lummus, S. C. et al. p16 Loss and E2F/cell cycle deregulation in infant posterior fossa ependymoma. Pediatr. Blood Cancer 64, e26656 (2017).

    Article  Google Scholar 

  60. Korshunov, A. et al. Molecular staging of intracranial ependymoma in children and adults. J. Clin. Oncol. 28, 3182–3190 (2010).

    Article  PubMed  Google Scholar 

  61. Lau, Y. K. I. et al. Merlin is a potent inhibitor of glioma growth. Cancer Res. 68, 5733–5742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rajaram, V., Gutmann, D. H., Prasad, S. K., Mansur, D. B. & Perry, A. Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Mod. Pathol. 18, 991–997 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hamilton, D. W., Lusher, M. E., Lindsey, J. C., Ellison, D. W. & Clifford, S. C. Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett. 227, 75–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Waha, A. et al. Analysis of HIC-1 methylation and transcription in human ependymomas. Int. J. Cancer 110, 542–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Griesinger, A. M. et al. NF-κB upregulation through epigenetic silencing of LDOC1 drives tumor biology and specific immunophenotype in Group A ependymoma. Neuro-oncology 19, 1350–1360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pierscianek, D. et al. TET2 promotor methylation and TET2 protein expression in pediatric posterior fossa ependymoma. Neuropathology 40, 138–143 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, T. et al. Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clin. Epigenetics 12, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mack, S. C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014). This paper characterized the CpG methylation patterns in posterior fossa ependymomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Michealraj, K. A. et al. Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell 181, 1329–1345.e24 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Hübner, J. M. et al. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro-oncology 21, 878–889 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jain, S. U. et al. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat. Commun. 10, 2146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Costa, F. F. et al. Identification of micrornas as potential prognostic markers in ependymoma. PLoS One 6, e25114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Margolin-Miller, Y. et al. Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. Genes Chromosomes Cancer 56, 639–650 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Lourdusamy, A. et al. Transcriptomic analysis in pediatric spinal ependymoma reveals distinct molecular signatures. Oncotarget 8, 115570–115581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, Q. B. et al. Downregulated long non-coding RNA LINC00899 inhibits invasion and migration of spinal ependymoma cells via RBL2-dependent FoxO pathway. Cell Cycle 18, 2566–2579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gojo, J. et al. Telomerase activation in posterior fossa group A ependymomas is associated with dismal prognosis and chromosome 1q gain. Neuro-oncology 19, 1183–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tabori, U. et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J. Clin. Oncol. 24, 1522–1528 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Barszczyk, M. et al. Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathol. 128, 863–877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tabori, U. et al. Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma. Br. J. Cancer 99, 1129–1135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, C. et al. Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathol. Commun. 8, 173–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Andreiuolo, F. et al. Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro-oncology 12, 1126–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Milde, T. et al. Nestin expression identifies ependymoma patients with poor outcome. Brain Pathol. 22, 848–860 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005). This paper suggested that radial glia cells are the cells of origin in ependymoma.

    Article  CAS  PubMed  Google Scholar 

  85. Gojo, J. et al. Single-Cell RNA-Seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma. Cancer Cell 38, 44–59.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu, L. et al. A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-oncology 12, 580–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, P. et al. EphB2 activation is required for ependymoma development as well as inhibits differentiation and promotes proliferation of the transformed cell. Sci. Rep. 5, 9248 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moreno, L. et al. Role of platelet derived growth factor receptor (PDGFR) over-expression and angiogenesis in ependymoma. J. Neurooncol. 111, 169–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Lehtinen, B. et al. Clinical association analysis of ependymomas and pilocytic astrocytomas reveals elevated FGFR3 and FGFR1 expression in aggressive ependymomas. BMC Cancer 17, 310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Preusser, M. et al. Vascularization and expression of hypoxia-related tissue factors in intracranial ependymoma and their impact on patient survival. Acta Neuropathol. 109, 211–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Wagemakers, M. et al. Tumor vessel biology in pediatric intracranial ependymoma. J. Neurosurg. Pediatr. 5, 335–341 (2010).

    Article  PubMed  Google Scholar 

  92. Roma, A. A. & Prayson, R. A. Expression of cyclo-oxygenase-2 in ependymal tumors. Neuropathology 26, 422–428 (2006).

    Article  PubMed  Google Scholar 

  93. Griesinger, A. M. et al. Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in group a ependymoma. Cancer Immunol. Res. 3, 1165–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Umbach, G. et al. Extraneural metastatic anaplastic ependymoma: a systematic review and a report of metastases to bilateral parotid glands. Neurooncology Pract. 7, 218–227 (2020).

    Google Scholar 

  95. Rooprai, H. K., Rucklidge, G. J., Panou, C. & Pilkington, G. J. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br. J. Cancer 82, 52–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Snuderl, M. et al. Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J. Neuropathol. Exp. Neurol. 67, 911–920 (2008).

    Article  PubMed  Google Scholar 

  97. Wani, K. et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 123, 727–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Malgulwar, P. B. et al. Epithelial-to-mesenchymal transition–related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis. Hum. Pathol. 82, 149–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Merchant, T. E. et al. Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected ependymoma, and observation for completely resected, supratentorial ependymoma. J. Clin. Oncol. 37, 974–983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grundy, R. G. et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol. 8, 696–705 (2007).

    Article  PubMed  Google Scholar 

  101. Merchant, T. E. et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10, 258–266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zapotocky, M. et al. Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: cure at a cost. Cancer 125, 1867–1876 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Morrall, M. C. H. J. et al. Neurocognitive, academic and functional outcomes in survivors of infant ependymoma (UKCCSG CNS 9204). Childs Nerv. Syst. 35, 411–420 (2019).

    Article  PubMed  Google Scholar 

  104. Adolph, J. E. et al. Local and systemic therapy of recurrent ependymoma in children and adolescents: short- and long-term results of the E-HIT-REZ 2005 study. Neuro-oncology 23, 1012–1023 (2021).

    Article  PubMed  Google Scholar 

  105. Ritzmann, T. A. et al. A retrospective analysis of recurrent pediatric ependymoma reveals extremely poor survival and ineffectiveness of current treatments across central nervous system locations and molecular subgroups. Pediatr. Blood Cancer 67, e28426 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Bobola, M. S. et al. Apurinic/apyrimidinic endonuclease is inversely associated with response to radiotherapy in pediatric ependymoma. Int. J. Cancer 129, 2370–2379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Vuurden, D. G. et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2, 984–996 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chamberlain, M. C. & Johnston, S. K. Temozolomide for recurrent intracranial supratentorial platinum-refractory ependymoma. Cancer 115, 4775–4782 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Rudà, R. et al. Temozolomide as salvage treatment for recurrent intracranial ependymomas of the adult: a retrospective study. Neuro-oncology 18, 261–268 (2016).

    Article  PubMed  Google Scholar 

  110. Gilbert, M. R. et al. A phase II study of dose-dense temozolomide and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and spinal cord ependymoma. Neuro-oncology 23, 468–477 (2021).

    Article  PubMed  Google Scholar 

  111. Buccoliero, A. M. et al. O6-methylguanine-DNA-methyltransferase in recurring anaplastic ependymomas: PCR and immunohistochemistry. J. Chemother. 20, 263–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Meco, D. et al. Ependymoma stem cells are highly sensitive to temozolomide in vitro and in orthotopic models. Neuro-oncology 16, 1067–1077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sabnis, D. H. et al. A role for ABCB1 in prognosis, invasion and drug resistance in ependymoma. Sci. Rep. 9, 10290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Smith, A. et al. EPEN-54. ACNS0831, phase III randomized trial of post-radiation chemotherapy in patients with newly diagnosed ependymoma ages 1 to 21 years. Neuro-oncology 22, iii318–iii319 (2020).

    Article  PubMed Central  Google Scholar 

  115. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Servidei, T. et al. Effects of epidermal growth factor receptor blockade on ependymoma stem cells in vitro and in orthotopic mouse models. Int. J. Cancer 131, E791–E803 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Sie, M. et al. Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma. PLoS One 10, e0122555 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wetmore, C. et al. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: a children’s Oncology Group Study ACNS1021. Cancer Med. 5, 1416–1424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jakacki, R. I. et al. Single-agent erlotinib versus oral etoposide in patients with recurrent or refractory pediatric ependymoma: a randomized open-label study. J. Neurooncol. 129, 131–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Wong, V. C. H., Morrison, A., Tabori, U. & Hawkins, C. E. Telomerase inhibition as a novel therapy for pediatric ependymoma. Brain Pathol. 20, 780–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salloum, R. et al. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J. Neurooncol. 129, 443–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gururangan, S. et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma-a pediatric brain tumor consortium study. Neuro-oncology 14, 1404–1412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. DeWire, M. et al. An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J. Neurooncol. 123, 85–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sampson, J. H., Gunn, M. D., Fecci, P. E. & Ashley, D. M. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer 20, 12–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Hoffman, L. M. et al. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol. 127, 731–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Donson, A. M. et al. Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J. Immunol. 183, 7428–7440 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Witt, D. A. et al. Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr. Blood Cancer 65, e26960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nambirajan, A. et al. Clinicopathological evaluation of PD-L1 expression and cytotoxic T-lymphocyte infiltrates across intracranial molecular subgroups of ependymomas: are these tumors potential candidates for immune check-point blockade? Brain Tumor Pathol. 36, 152–161 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Nam, S. J. et al. Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma. Cancer Immunol. Immunother. 68, 305–318 (2019).

    Article  PubMed  Google Scholar 

  130. Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020). This paper successfully demonstrated the use of CAR T cell therapy in a mouse model of ependymoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gerber, P. & Kirschstein, R. L. SV40-induced ependymomas in newborn hamsters. Virology 18, 582–588 (1962).

    Article  CAS  PubMed  Google Scholar 

  132. Bergsagel, D. J., Finegold, M. J., Butel, J. S., Kupsky, W. J. & Garcea, R. L. Dna sequences similar to those of simian virus 40 in ependymomas and choroid plexus tumors of childhood. N. Engl. J. Med. 326, 988–993 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Weggen, S. et al. Low frequency of SV40, JC and BK polyomavirus sequences in human medulloblastomas, meningiomas and ependymomas. Brain Pathol. 10, 85–92 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Antony Michealraj, Sachin Kumar and Polina Balin for their insightful feedback and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

A.H.S. conceived of the project, searched the literature, wrote the manuscript, and edited the manuscript. N.S., K.J., M.H.S., M.D.T. and M.G.F. reviewed and suggested edits to the manuscript. M.G.F. supervised the project. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks Richard Grundy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Glossary

Ependymal cells

Ciliated epithelial glial cells located on the surface of brain and spinal cord ventricles.

Clear cell ependymoma

Rare ependymoma variant consisting mostly of cells that resemble oligodendrocytes (glial cells that produce myelin sheath).

Papillary ependymoma

Rare ependymoma variant consisting of cuboidal or columnar cells on top of finger-like stromal projections.

Tanycytic ependymoma

Rare ependymoma variant characterized by streams of hair-like cells.

Gliogenic progenitor cells

Progenitor cells that give rise to glial cells.

Roof-plate-like stem cells

Stem cells that have transcriptional similarity to the embryonic roof plate (the most dorsal structure of the neural tube).

Perinecrotic zones

Regions surrounding necrotic (dead) tissue.

Periventricular neural stem cells

(NSCs). Neural stem cells adjacent to the ventricles.

CpG island methylator phenotype

A state characterized by a high degree of DNA hypermethylation in CpG-rich promoters.

Telomere crisis

A state where DNA ends are substantially eroded leading to instability of chromosomes and, ultimately, cell death.

G-quadruplex secondary structures

Helical structures formed in guanine-rich nucleic acid sequences.

Neurospheres

Free-floating clusters of neural stem cells in cell culture.

Conformal radiation therapy

Form of radiation therapy wherein radiation beams closely fit the area of a tumour and match its shape.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A.H., Samuel, N., Juraschka, K. et al. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 22, 208–222 (2022). https://doi.org/10.1038/s41568-021-00433-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00433-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer