Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies

Abstract

Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.

Key points

  • Neuroendocrine neoplasms are categorized as either neuroendocrine tumours (NETs) or neuroendocrine carcinomas (NECs) characterized by markedly different proliferative rates.

  • Slow-growing NETs share key biological characteristics across different sites of origin.

  • NECs are aggressive cancers that almost always have inactivation of the tumour-suppressor genes TP53 and RB1.

  • NECs across sites of origin have been subtyped based on overlapping sets of key transcription factors.

  • Despite fundamental biological similarities, both NETs and NECs have some characteristics, including mutational spectra, that are reflective of their organ of origin.

  • Further understanding of these differences and commonalities could accelerate therapeutic research for patients with neuroendocrine neoplasms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common trajectories of metastatic spread for lung and gastrointestinal NENs.
Fig. 2: Histology of neuroendocrine neoplasms.
Fig. 3: Prevalent genetic mutations in NENs.
Fig. 4: Transcriptional subtypes and developmental models of SCLC, LCNEC and GEP-NECs.
Fig. 5: Application of patient-derived models of NENs.

Similar content being viewed by others

References

  1. Bedard, P. L., Hyman, D. M., Davids, M. S. & Siu, L. L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088 (2020).

    Article  CAS  Google Scholar 

  2. Flaherty, K. T., Le, D. T. & Lemery, S. Tissue-agnostic drug development. Am. Soc. Clin. Oncol. Educ. Book 37, 222–230 (2017).

    Article  Google Scholar 

  3. FDA. FDA Approves Entrectinib for NTRK Solid Tumors and ROS-1 NSCLC https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc (2019).

  4. FDA. FDA Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions (2018).

  5. FDA. FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  6. FDA. FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/site Agnostic Indication https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (2017).

  7. FDA. FDA Grants Accelerated Approval to Dostarlimab-gxly for dMMR Advanced Solid Tumors https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (2022).

  8. Rindi, G. et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 31, 1770–1786 (2018).

    Article  Google Scholar 

  9. Yao, J. C. et al. One hundred years after ‘carcinoid’: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26, 3063–3072 (2008).

    Article  Google Scholar 

  10. Dasari, A. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335–1342 (2017).

    Article  Google Scholar 

  11. Frilling, A. et al. Neuroendocrine tumor disease: an evolving landscape. Endocr. Relat. Cancer 19, R163–R185 (2012).

    Article  CAS  Google Scholar 

  12. Williams, E. D. & Sandler, M. The classification of carcinoid tumours. Lancet 1, 238–239 (1963).

    Article  CAS  Google Scholar 

  13. WHO Classification of Tumours Editorial Board. Digestive System Tumours: WHO Classification of Tumours, 5th Edition (International Agency for Research on Cancer, 2019).

  14. WHO Classification of Tumours Editorial Board. Thoracic Tumours: WHO Classification of Tumours, 5th Edition (International Agency for Research on Cancer, 2021).

  15. Stelwagen, J., de Vries, E. G. E. & Walenkamp, A. M. E. Current treatment strategies and future directions for extrapulmonary neuroendocrine carcinomas: a review. JAMA Oncol. 7, 759–770 (2021).

    Article  Google Scholar 

  16. Chang, M. T. et al. Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin. Cancer Res. 24, 1965–1973 (2018).

    Article  CAS  Google Scholar 

  17. Gluckman, C. R. & Metz, D. C. Gastric neuroendocrine tumors (Carcinoids). Curr. Gastroenterol. Rep. 21, 13 (2019).

    Article  Google Scholar 

  18. Perri, G., Prakash, L. R. & Katz, M. H. G. Pancreatic neuroendocrine tumors. Curr. Opin. Gastroenterol. 35, 468–477 (2019).

    Article  CAS  Google Scholar 

  19. Naraev, B. G. et al. Management of diarrhea in patients with carcinoid syndrome. Pancreas 48, 961–972 (2019).

    Article  CAS  Google Scholar 

  20. Robelin, P. et al. Characterization, prognosis, and treatment of patients with metastatic lung carcinoid tumors. J. Thorac. Oncol. 14, 993–1002 (2019).

    Article  CAS  Google Scholar 

  21. Hermans, B. C. M. et al. Unique metastatic patterns in neuroendocrine neoplasms of different primary origin. Neuroendocrinology 111, 1111–1120 (2021).

    Article  CAS  Google Scholar 

  22. Riihimäki, M., Hemminki, A., Sundquist, K., Sundquist, J. & Hemminki, K. The epidemiology of metastases in neuroendocrine tumors. Int. J. Cancer 139, 2679–2686 (2016).

    Article  Google Scholar 

  23. Rekhtman, N. et al. Stage IV lung carcinoids: spectrum and evolution of proliferation rate, focusing on variants with elevated proliferation indices. Mod. Pathol. 32, 1106–1122 (2019).

    Article  CAS  Google Scholar 

  24. Moertel, C. G., Weiland, L. H., Nagorney, D. M. & Dockerty, M. B. Carcinoid tumor of the appendix: treatment and prognosis. N. Engl. J. Med. 317, 1699–1701 (1987).

    Article  CAS  Google Scholar 

  25. Grozinsky-Glasberg, S. et al. Current size criteria for the management of neuroendocrine tumors of the appendix: are they valid? Clinical experience and review of the literature. Neuroendocrinology 98, 31–37 (2013).

    Article  CAS  Google Scholar 

  26. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  Google Scholar 

  27. Cives, M. & Strosberg, J. R. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J. Clin. 68, 471–487 (2018).

    Article  Google Scholar 

  28. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Prim. 7, 3 (2021).

    Article  Google Scholar 

  29. Ko, J., Winslow, M. M. & Sage, J. Mechanisms of small cell lung cancer metastasis. EMBO Mol. Med. 13, e13122 (2021).

    Article  CAS  Google Scholar 

  30. Smith, J. D., Reidy, D. L., Goodman, K. A., Shia, J. & Nash, G. M. A retrospective review of 126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann. Surg. Oncol. 21, 2956–2962 (2014).

    Article  Google Scholar 

  31. Garcia-Carbonero, R. et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology 103, 186–194 (2016).

    Article  CAS  Google Scholar 

  32. Yatabe, Y. et al. Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J. Thorac. Oncol. 14, 377–407 (2019).

    Article  CAS  Google Scholar 

  33. Cree, I. A. et al. Counting mitoses: SI(ze) matters! Mod. Pathol. 34, 1651–1657 (2021).

    Article  Google Scholar 

  34. Travis, W. D. et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am. J. Surg. Pathol. 22, 934–944 (1998).

    Article  CAS  Google Scholar 

  35. Beasley, M. B. et al. Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum. Pathol. 31, 1255–1265 (2000).

    Article  CAS  Google Scholar 

  36. Sorbye, H. et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann. Oncol. 24, 152–160 (2013).

    Article  CAS  Google Scholar 

  37. Baine, M. K. & Rekhtman, N. Multiple faces of pulmonary large cell neuroendocrine carcinoma: update with a focus on practical approach to diagnosis. Transl. Lung Cancer Res. 9, 860–878 (2020).

    Article  CAS  Google Scholar 

  38. Febres Aldana, C. A. et al. Rb tumor suppressor in small cell lung cancer: combined genomic and immunohistochemical analysis with a description of a distinct Rb-proficient subset. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-1115 (2022).

    Article  Google Scholar 

  39. Dasari, A., Mehta, K., Byers, L. A., Sorbye, H. & Yao, J. C. Comparative study of lung and extrapulmonary poorly differentiated neuroendocrine carcinomas: a SEER database analysis of 162,983 cases. Cancer 124, 807–815 (2018).

    Article  Google Scholar 

  40. Ito, T. et al. Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: a nationwide survey analysis. J. Gastroenterol. 50, 58–64 (2015).

    Article  Google Scholar 

  41. Tsai, H.-J. et al. The epidemiology of neuroendocrine tumors in Taiwan: a nation-wide cancer registry-based study. PLoS One 8, e62487 (2013).

    Article  CAS  Google Scholar 

  42. Leoncini, E., Carioli, G., la Vecchia, C., Boccia, S. & Rindi, G. Risk factors for neuroendocrine neoplasms: a systematic review and meta-analysis. Ann. Oncol. 27, 68–81 (2016).

    Article  CAS  Google Scholar 

  43. Giraldi, L. et al. Risk factors for pancreas and lung neuroendocrine neoplasms: a case-control study. Endocrine 71, 233–241 (2021).

    Article  CAS  Google Scholar 

  44. Varghese, A. M. et al. Small-cell lung cancers in patients who never smoked cigarettes. J. Thorac. Oncol. 9, 892–896 (2014).

    Article  CAS  Google Scholar 

  45. Tlemsani, C. et al. Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. Sci. Transl. Med. 13, eabc7488 (2021).

    Article  CAS  Google Scholar 

  46. Mukherjee, S. et al. Germline pathogenic variants impact clinicopathology of advanced lung cancer. Cancer Epidemiol. Biomark. Prev. 31, 1450–1459 (2022).

    Article  CAS  Google Scholar 

  47. Quintanal-Villalonga, Á. et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).

    Article  Google Scholar 

  48. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  Google Scholar 

  49. Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 1–10 (2017).

    Article  CAS  Google Scholar 

  50. Nadal, R., Schweizer, M., Kryvenko, O. N., Epstein, J. I. & Eisenberger, M. A. Small cell carcinoma of the prostate. Nat. Rev. Urol. 11, 213–219 (2014).

    Article  CAS  Google Scholar 

  51. Quintanal-Villalonga, A. et al. Multiomic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov. 11, 3028–3047 (2021).

    Article  CAS  Google Scholar 

  52. Quintanal-Villalonga, A. et al. Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation. J. Hematol. Oncol. 14, 170 (2021).

    Article  CAS  Google Scholar 

  53. Shamir, E. R. et al. Identification of high-risk human papillomavirus and Rb/E2F pathway genomic alterations in mutually exclusive subsets of colorectal neuroendocrine carcinoma. Mod. Pathol. 32, 290–305 (2019).

    Article  CAS  Google Scholar 

  54. Yachida, S. et al. Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system. Cancer Discov. 12, 692–711 (2022).

    Article  CAS  Google Scholar 

  55. Kraft, S., Faquin, W. C. & Krane, J. F. HPV-associated neuroendocrine carcinoma of the oropharynx: a rare new entity with potentially aggressive clinical behavior. Am. J. Surg. Pathol. 36, 321–330 (2012).

    Article  Google Scholar 

  56. Stoler, M. H., Mills, S. E., Gersell, D. J. & Walker, A. N. Small-cell neuroendocrine carcinoma of the cervix. A human papillomavirus type 18-associated cancer. Am. J. Surg. Pathol. 15, 28–32 (1991).

    Article  CAS  Google Scholar 

  57. Capella, C. et al. Primary gastric Merkel cell carcinoma harboring DNA polyomavirus: first description of an unusual high-grade neuroendocrine carcinoma. Hum. Pathol. 45, 1310–1314 (2014).

    Article  CAS  Google Scholar 

  58. Yang, C. et al. Lung-only melanoma: UV mutational signature supports origin from occult cutaneous primaries and argues against the concept of primary pulmonary melanoma. Mod. Pathol. 33, 2244–2255 (2020).

    Article  CAS  Google Scholar 

  59. Hartley, C. P., Steinmetz, H. B., Memoli, V. A. & Tafe, L. J. Small cell neuroendocrine carcinomas of the lung do not harbor high-risk human papillomavirus. Hum. Pathol. 46, 577–582 (2015).

    Article  CAS  Google Scholar 

  60. Bishop, J. A. et al. HPV analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma. Am. J. Surg. Pathol. 36, 142–148 (2012).

    Article  Google Scholar 

  61. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  Google Scholar 

  62. Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543, 65–71 (2017).

    Article  CAS  Google Scholar 

  63. Francis, J. M. et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat. Genet. 45, 1483–1486 (2013).

    Article  CAS  Google Scholar 

  64. van Riet, J. et al. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat. Commun. 12, 4612 (2021).

    Article  Google Scholar 

  65. Kawasaki, K. et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183, 1420–1435 (2020).

    Article  CAS  Google Scholar 

  66. Crona, J. & Skogseid, B. GEP- NETS UPDATE: genetics of neuroendocrine tumors. Eur. J. Endocrinol. 174, R275–R290 (2016).

    Article  CAS  Google Scholar 

  67. Brandi, M. L. et al. Multiple endocrine neoplasia type 1: latest insights. Endocr. Rev. 42, 133–170 (2021).

    Article  Google Scholar 

  68. Choueiri, T. K. & Kaelin, W. G. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).

    Article  CAS  Google Scholar 

  69. Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).

    Article  CAS  Google Scholar 

  70. Kresak, J. L. & Walsh, M. Neurofibromatosis: a review of NF1, NF2, and Schwannomatosis. J. Pediatr. Genet. 5, 98–104 (2016).

    Article  CAS  Google Scholar 

  71. Fernandez-Cuesta, L. et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat. Commun. 5, 3518 (2014).

    Article  Google Scholar 

  72. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  Google Scholar 

  73. Swarts, D. R. A. et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J. Clin. Endocrinol. Metab. 99, E374–E378 (2014).

    Article  CAS  Google Scholar 

  74. George, J. et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat. Commun. 9, 1048 (2018).

    Article  Google Scholar 

  75. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  Google Scholar 

  76. Mu, P. et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017).

    Article  CAS  Google Scholar 

  77. Aggarwal, R., Zhang, T., Small, E. J. & Armstrong, A. J. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J. Natl Compr. Canc Netw. 12, 719–726 (2014).

    Article  Google Scholar 

  78. Aggarwal, R. et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 36, 2492–2503 (2018).

    Article  CAS  Google Scholar 

  79. Park, J. W. et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362, 91–95 (2018).

    Article  CAS  Google Scholar 

  80. Lim, J. S. et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545, 360–364 (2017).

    Article  CAS  Google Scholar 

  81. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  Google Scholar 

  82. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  Google Scholar 

  83. Kawasaki, K. et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma. Gastroenterology 158, 638–651 (2020).

    Article  CAS  Google Scholar 

  84. Kloosterman, W. P. et al. A systematic analysis of oncogenic gene fusions in primary colon cancer. Cancer Res. 77, 3814–3822 (2017).

    Article  CAS  Google Scholar 

  85. Venizelos, A. et al. The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 29, 1–14 (2021).

    Article  Google Scholar 

  86. Chen, L. et al. Genetic characteristics of colorectal neuroendocrine carcinoma: more similar to colorectal adenocarcinoma. Clin. Colorectal Cancer 20, 177–185 (2021).

    Article  Google Scholar 

  87. Rekhtman, N. et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin. Cancer Res. 22, 3618–3629 (2016).

    Article  CAS  Google Scholar 

  88. Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).

    Article  CAS  Google Scholar 

  89. Baine, M. K. et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 15, 1823–1835 (2020).

    Article  CAS  Google Scholar 

  90. Gay, C. M. et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 346–360 (2021).

    Article  CAS  Google Scholar 

  91. Rekhtman, N. Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod. Pathol. 35, 36–50 (2022).

    Article  CAS  Google Scholar 

  92. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  Google Scholar 

  93. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  Google Scholar 

  94. Baine, M. K. et al. POU2F3 in SCLC: clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2022.06.004 (2022).

    Article  Google Scholar 

  95. Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–285 (2017).

    Article  CAS  Google Scholar 

  96. Wu, Q. et al. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci. Adv. 7, eabg1850 (2021).

    Article  CAS  Google Scholar 

  97. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496 (2021).

    Article  CAS  Google Scholar 

  98. Ireland, A. S. et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38, 60–78 (2020).

    Article  CAS  Google Scholar 

  99. Cejas, P. et al. Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nat. Commun. 12, 5775 (2021).

    Article  CAS  Google Scholar 

  100. Brady, N. J. et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat. Commun. 12, 3372 (2021).

    Article  CAS  Google Scholar 

  101. Tully, K. M. et al. Radioimmunotherapy targeting delta-like ligand 3 in small cell lung cancer exhibits antitumor efficacy with low toxicity. Clin. Cancer Res. 28, 1391–1401 (2022).

    Article  CAS  Google Scholar 

  102. Korsen, J. A. et al. Delta-like ligand 3-targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc. Natl Acad. Sci. USA 119, e2203820119 (2022).

    Article  CAS  Google Scholar 

  103. Ferone, G., Lee, M. C., Sage, J. & Berns, A. Cells of origin of lung cancers: lessons from mouse studies. Genes Dev. 34, 1017–1032 (2020).

    Article  CAS  Google Scholar 

  104. Ouadah, Y. et al. Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and Notch. Cell 179, 403–416 (2019).

    Article  CAS  Google Scholar 

  105. Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    Article  CAS  Google Scholar 

  106. Derks, J. L. et al. Clinical-pathologic challenges in the classification of pulmonary neuroendocrine neoplasms and targets on the horizon for future clinical practice. J. Thorac. Oncol. 16, 1632–1646 (2021).

    Article  CAS  Google Scholar 

  107. Cives, M. et al. The tumor microenvironment in neuroendocrine tumors: biology and therapeutic implications. Neuroendocrinology 109, 83–99 (2019).

    Article  CAS  Google Scholar 

  108. Bischoff, P. et al. The single-cell transcriptional landscape of lung carcinoid tumors. Int. J. Cancer 150, 2058–2071 (2022).

    Article  CAS  Google Scholar 

  109. Stankovic, B. et al. The immune microenvironment in typical carcinoid lung tumour, a brief report of four cases. Scand. J. Immunol. 92, e12893 (2020).

    Article  CAS  Google Scholar 

  110. da Silva, A. et al. Characterization of the neuroendocrine tumor immune microenvironment. Pancreas 47, 1123–1129 (2018).

    Article  Google Scholar 

  111. Ferrata, M. et al. PD-L1 expression and immune cell infiltration in gastroenteropancreatic (GEP) and non-GEP neuroendocrine neoplasms with high proliferative activity. Front. Oncol. 9, 343 (2019).

    Article  Google Scholar 

  112. Roberts, J. A., Gonzalez, R. S., Das, S., Berlin, J. & Shi, C. Expression of PD-1 and PD-L1 in poorly differentiated neuroendocrine carcinomas of the digestive system: a potential target for anti-PD-1/PD-L1 therapy. Hum. Pathol. 70, 49–54 (2017).

    Article  CAS  Google Scholar 

  113. Tsunokake, J. et al. Tumor microenvironment in mixed neuroendocrine non-neuroendocrine neoplasms: interaction between tumors and immune cells, and potential effects of neuroendocrine differentiation on the tumor microenvironment. Cancers 14, 2152 (2022).

    Article  CAS  Google Scholar 

  114. Marion-Audibert, A.-M. et al. Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology 125, 1094–1104 (2003).

    Article  Google Scholar 

  115. Terris, B. et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32, 133–138 (1998).

    Article  CAS  Google Scholar 

  116. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    Article  CAS  Google Scholar 

  117. Kwon, M. et al. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev. 29, 1587–1592 (2015).

    Article  CAS  Google Scholar 

  118. Denny, S. K. et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 166, 328–342 (2016).

    Article  CAS  Google Scholar 

  119. Yang, D. et al. Axon-like protrusions promote small cell lung cancer migration and metastasis. eLife 8, e50616 (2019).

    Article  CAS  Google Scholar 

  120. Best, S. A. et al. Harnessing natural killer immunity in metastatic SCLC. J. Thorac. Oncol. 15, 1507–1521 (2020).

    Article  CAS  Google Scholar 

  121. Chen, H.-Z. et al. Genomic and transcriptomic characterization of relapsed SCLC through rapid research autopsy. JTO Clin. Res. Rep. 2, 100164 (2021).

    Google Scholar 

  122. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    Article  CAS  Google Scholar 

  123. Yao, J. C. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387, 968–977 (2016).

    Article  CAS  Google Scholar 

  124. Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009).

    Article  CAS  Google Scholar 

  125. Caplin, M. E. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371, 224–233 (2014).

    Article  Google Scholar 

  126. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    Article  CAS  Google Scholar 

  127. Caplin, M. E. et al. Lanreotide autogel/depot in advanced enteropancreatic neuroendocrine tumours: final results of the CLARINET open-label extension study. Endocrine 71, 502–513 (2021).

    Article  CAS  Google Scholar 

  128. Singh, S., Poon, R., Wong, R. & Metser, U. 68Ga PET imaging in patients with neuroendocrine tumors: a systematic review and meta-analysis. Clin. Nucl. Med. 43, 802–810 (2018).

    Article  Google Scholar 

  129. Reubi, J. C. et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res. 50, 5969–5977 (1990).

    CAS  Google Scholar 

  130. Susini, C. & Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 17, 1733–1742 (2006).

    Article  CAS  Google Scholar 

  131. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  Google Scholar 

  132. Cives, M. et al. The role of cytotoxic chemotherapy in well-differentiated gastroenteropancreatic and lung neuroendocrine tumors. Curr. Treat. Options Oncol. 20, 72 (2019).

    Article  Google Scholar 

  133. Moertel, C. G., Hanley, J. A. & Johnson, L. A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 303, 1189–1194 (1980).

    Article  CAS  Google Scholar 

  134. Strosberg, J. R. et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117, 268–275 (2011).

    Article  CAS  Google Scholar 

  135. Fine, R. L. et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: the pancreas center at Columbia University experience. Cancer Chemother. Pharmacol. 71, 663–670 (2013).

    Article  CAS  Google Scholar 

  136. Filosso, P. L. et al. Multidisciplinary management of advanced lung neuroendocrine tumors. J. Thorac. Dis. 7, S163–S171 (2015).

    Google Scholar 

  137. Forde, P. M. et al. Systemic therapy, clinical outcomes, and overall survival in locally advanced or metastatic pulmonary carcinoid: a brief report. J. Thorac. Oncol. 9, 414–418 (2014).

    Article  CAS  Google Scholar 

  138. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  CAS  Google Scholar 

  139. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article  CAS  Google Scholar 

  140. Paz-Ares, L. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open 7, 100408 (2022).

    Article  CAS  Google Scholar 

  141. Moertel, C. G., Kvols, L. K., O’Connell, M. J. & Rubin, J. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68, 227–232 (1991).

    Article  CAS  Google Scholar 

  142. Mitry, E. et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br. J. Cancer 81, 1351–1355 (1999).

    Article  CAS  Google Scholar 

  143. Zhang, P. et al. Etoposide and cisplatin versus irinotecan and cisplatin as the first-line therapy for patients with advanced, poorly differentiated gastroenteropancreatic neuroendocrine carcinoma: a randomized phase 2 study. Cancer 126, 2086–2092 (2020).

    Article  CAS  Google Scholar 

  144. Li, R. et al. Multi-omics profiling of primary small cell carcinoma of the esophagus reveals RB1 disruption and additional molecular subtypes. Nat. Commun. 12, 3785 (2021).

    Article  CAS  Google Scholar 

  145. Selenica, P. et al. APOBEC mutagenesis, kataegis, chromothripsis in EGFR-mutant osimertinib-resistant lung adenocarcinomas. Ann. Oncol. https://doi.org/10.1016/j.annonc.2022.09.151 (2022).

    Article  Google Scholar 

  146. Takayanagi, D. et al. Comparative analysis of genetic alterations, HPV-status, and PD-L1 expression in neuroendocrine carcinomas of the cervix. Cancers 13, 1215 (2021).

    Article  CAS  Google Scholar 

  147. Meuwissen, R. et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  Google Scholar 

  148. Kawasaki, K., Fujii, M. & Sato, T. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis. Model. Mech. 11, dmm029595 (2018).

    Article  Google Scholar 

  149. Caeser, R. et al. Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nat. Commun. 13, 2144 (2022).

    Article  CAS  Google Scholar 

  150. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

    Article  Google Scholar 

  151. Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  Google Scholar 

  152. April-Monn, S. L. et al. Three-dimensional primary cell culture: a novel preclinical model for pancreatic neuroendocrine tumors. Neuroendocrinology 111, 273–287 (2021).

    Article  CAS  Google Scholar 

  153. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  Google Scholar 

  154. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  Google Scholar 

  155. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, eaay2574 (2019).

    Article  CAS  Google Scholar 

  156. Toshimitsu, K. et al. Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat. Chem. Biol. 18, 605–614 (2022).

    Article  CAS  Google Scholar 

  157. Cheng, D. T. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of C.M.R. is supported by the US NIH National Cancer Institute (NCI) grants R35 CA263816 and U24 CA213274. Generation of the data for Fig. 3 was supported in part by the Marie-Josée and Henry R. Kravis Center for Molecular Oncology and the NCI Cancer Center Core Grant P30 CA008748. The authors gratefully acknowledge S. Tischfield and the members of the Molecular Diagnostics Service in the Department of Pathology at the Memorial Sloan Kettering Cancer Center for their assistance in drafting the figures for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Álvaro Quintanal-Villalonga or Charles M. Rudin.

Ethics declarations

Competing interests

C.M.R. has consulted regarding oncology drug development for AbbVie, Amgen, AstraZeneca, D2G, Daiichi Sankyo, Epizyme, Genentech/Roche, Ipsen, Jazz, Kowa, Lilly, Merck and Syros, and serves on the scientific advisory boards of Bridge Medicines, Earli, and Harpoon Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Bunn; M. Falconi, who co-reviewed with V. Andreasi; G. Pelosi; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov/ct2/home

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, K., Rekhtman, N., Quintanal-Villalonga, Á. et al. Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 20, 16–32 (2023). https://doi.org/10.1038/s41571-022-00696-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00696-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer