Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Craniopharyngioma

Abstract

Craniopharyngiomas are rare malformational tumours of low histological malignancy arising along the craniopharyngeal duct. The two histological subtypes, adamantinomatous craniopharyngioma (ACP) and papillary craniopharyngioma (PCP), differ in genesis and age distribution. ACPs are diagnosed with a bimodal peak of incidence (5–15 years and 45–60 years), whereas PCPs are restricted to adults mainly in the fifth and sixth decades of life. ACPs are driven by somatic mutations in CTNNB1 (encoding β-catenin) that affect β-catenin stability and are predominantly cystic in appearance. PCPs frequently harbour somatic BRAFV600E mutations and are typically solid tumours. Clinical manifestations due to increased intracranial pressure, visual impairment and endocrine deficiencies should prompt imaging investigations, preferentially MRI. Treatment comprises neurosurgery and radiotherapy; intracystic chemotherapy is used in monocystic ACP. Although long-term survival is high, quality of life and neuropsychological function are frequently impaired due to the close anatomical proximity to the optic chiasm, hypothalamus and pituitary gland. Indeed, hypothalamic involvement and treatment-related hypothalamic lesions frequently result in hypothalamic obesity, physical fatigue and psychosocial deficits. Given the rarity of these tumours, efforts to optimize infrastructure and international collaboration should be research priorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of craniopharyngioma.
Fig. 2: Protumorigenic effects of senescence and SASP in mouse and human ACP.
Fig. 3: Neuroradiological characteristics of craniopharyngioma and other sellar masses.
Fig. 4: CP with hypothalamic involvement: preoperative grading on MRI.
Fig. 5: Craniopharyngioma hypothalamic damage: postoperative grading on MRI.

Similar content being viewed by others

References

  1. Muller, H. L., Merchant, T. E., Puget, S. & Martinez-Barbera, J. P. New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma. Nat. Rev. Endocrinol. 13, 299–312 (2017). A comprehensive review on the current state of the art in diagnostics, treatment and follow-up of CP.

    Article  PubMed  Google Scholar 

  2. Muller, H. L. Management of endocrine disease: childhood-onset craniopharyngioma: state of the art of care in 2018. Eur. J. Endocrinol. 180, R159–R174 (2019).

  3. Bogusz, A. & Muller, H. L. Childhood-onset craniopharyngioma: latest insights into pathology, diagnostics, treatment, and follow-up. Expert Rev. Neurother. 18, 793–806 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Pascual, J. M. et al. Craniopharyngioma classification. J. Neurosurg. 109, 1180–1182 (2008).

    Article  PubMed  Google Scholar 

  5. Gabel, B. C. et al. Unusual and rare locations for craniopharyngiomas: clinical significance and review of the literature. World Neurosurg. 98, 381–387 (2017).

    Article  PubMed  Google Scholar 

  6. Hoffmann, A., Brentrup, A. & Muller, H. L. First report on spinal metastasis in childhood-onset craniopharyngioma. J. Neurooncol. 129, 193–194 (2016).

    Article  PubMed  Google Scholar 

  7. Buslei, R. et al. in WHO Classification of Tumours of the Central Nervous System (eds Louis, D. N. et al.) 324–328 (International Agency for Research on Cancer, 2016).

  8. Apps, J. R. et al. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol. 135, 757–777 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sekine, S. et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am. J. Pathol. 161, 1997–2001 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buslei, R. et al. Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol. 109, 589–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Brastianos, P. K. et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat. Genet. 46, 161–165 (2014). The first report on BRAF mutations as a typical molecular finding in PCP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goschzik, T. et al. Genomic alterations of adamantinomatous and papillary craniopharyngioma. J. Neuropathol. Exp. Neurol. 76, 126–134 (2017).

    CAS  PubMed  Google Scholar 

  13. Haston, S. et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development 144, 2141–2152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson, L. N., Hepler, R. S., Yee, R. D., Frazee, J. G. & Simons, K. B. Magnetic resonance imaging of craniopharyngioma. Am. J. Ophthalmol. 102, 242–244 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Warmuth-Metz, M. Imaging and Diagnosis in Pediatric Brain Tumor Studies (Springer Nature, 2017).

  16. Forbes, J. A. et al. Endonasal endoscopic transsphenoidal resection of intrinsic third ventricular craniopharyngioma: surgical results. J. Neurosurg. 131, 1152–1162 (2019).

    Article  Google Scholar 

  17. Hidalgo, E. T. et al. Quality of life, hypothalamic obesity, and sexual function in adulthood two decades after primary gross-total resection for childhood craniopharyngioma. Childs Nerv. Syst. https://doi.org/10.1007/s00381-019-04161-9 (2019).

  18. Apra, C., Enachescu, C., Lapras, V., Raverot, G. & Jouanneau, E. Is gross total resection reasonable in adults with craniopharyngiomas with hypothalamic involvement? World Neurosurg. 129, e803–e811 (2019).

    Article  PubMed  Google Scholar 

  19. Madsen, P. J. et al. Endoscopic endonasal resection versus open surgery for pediatric craniopharyngioma: comparison of outcomes and complications. J. Neurosurg. Pediatr. 24, 236–245 (2019).

    Article  Google Scholar 

  20. d’Avella, E. et al. The endoscopic endonasal approach for pediatric craniopharyngiomas: the key lessons learned. Childs Nerv. Syst. https://doi.org/10.1007/s00381-019-04168-2 (2019).

  21. Ajithkumar, T. et al. Proton therapy for craniopharyngioma — an early report from a single European centre. Clin. Oncol. 30, 307–316 (2018).

    Article  CAS  Google Scholar 

  22. Ordonez-Rubiano, E. G. et al. Preserve or sacrifice the stalk? Endocrinological outcomes, extent of resection, and recurrence rates following endoscopic endonasal resection of craniopharyngiomas. J. Neurosurg. 131, 1163–1171 (2019).

    Article  Google Scholar 

  23. Bunin, G. R. et al. The descriptive epidemiology of craniopharyngioma. J. Neurosurg. 89, 547–551 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Olsson, D. S., Andersson, E., Bryngelsson, I. L., Nilsson, A. G. & Johannsson, G. Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J. Clin. Endocrinol. Metab. 100, 467–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Zacharia, B. E. et al. Incidence, treatment and survival of patients with craniopharyngioma in the Surveillance, Epidemiology and End Results program. Neuro Oncol. 14, 1070–1078 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Makino, K., Nakamura, H., Yano, S., Kuratsu, J. & Kumamoto Brain Tumor Group. Population-based epidemiological study of primary intracranial tumors in childhood. Childs Nerv. Syst. 26, 1029–1034 (2010).

    Article  PubMed  Google Scholar 

  27. Rosemberg, S. & Fujiwara, D. Epidemiology of pediatric tumors of the nervous system according to the WHO 2000 classification: a report of 1,195 cases from a single institution. Childs Nerv. Syst. 21, 940–944 (2005).

    Article  PubMed  Google Scholar 

  28. Muller, H. L. Craniopharyngioma. Handb. Clin. Neurol. 124, 235–253 (2014).

    Article  PubMed  Google Scholar 

  29. Nielsen, E. H. et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J. Neurooncol. 104, 755–763 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Muller-Scholden, J. et al. Radical surgery in a neonate with craniopharyngioma. Report of a case. Pediatr. Neurosurg. 33, 265–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Larkin, S. J. & Ansorge, O. Pathology and pathogenesis of craniopharyngiomas. Pituitary 16, 9–17 (2013).

    Article  PubMed  Google Scholar 

  32. Bailey, W., Freidenberg, G. R., James, H. E., Hesselink, J. R. & Jones, K. L. Prenatal diagnosis of a craniopharyngioma using ultrasonography and magnetic resonance imaging. Prenat. Diagn. 10, 623–629 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Chentli, F., Belhimer, F., Kessaci, F. & Mansouri, B. Congenital craniopharyngioma: a case report and literature review. J. Pediatr. Endocrinol. Metab. 25, 1181–1183 (2012).

    PubMed  Google Scholar 

  34. Crotty, T. B. et al. Papillary craniopharyngioma: a clinicopathological study of 48 cases. J. Neurosurg. 83, 206–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Sorva, R. & Heiskanen, O. Craniopharyngioma in Finland. A study of 123 cases. Acta Neurochir. 81, 85–89 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Boch, A. L., van Effenterre, R. & Kujas, M. Craniopharyngiomas in two consanguineous siblings: case report. Neurosurgery 41, 1185–1187 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Green, A. L., Yeh, J. S. & Dias, P. S. Craniopharyngioma in a mother and daughter. Acta Neurochir. 144, 403–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Pereira, A. M. et al. High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin. Endocrinol. 62, 197–204 (2005).

    Article  Google Scholar 

  39. Muller, H. L. et al. Obesity after childhood craniopharyngioma — German multicenter study on pre-operative risk factors and quality of life. Klin. Padiatr. 213, 244–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Poretti, A., Grotzer, M. A., Ribi, K., Schonle, E. & Boltshauser, E. Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev. Med. Child Neurol. 46, 220–229 (2004).

    Article  PubMed  Google Scholar 

  41. Visser, J. et al. Late mortality in pediatric patients with craniopharyngioma. J. Neurooncol. 100, 105–111 (2010).

    Article  PubMed  Google Scholar 

  42. Karavitaki, N. et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin. Endocrinol. 62, 397–409 (2005).

    Article  CAS  Google Scholar 

  43. Pemberton, L. S., Dougal, M., Magee, B. & Gattamaneni, H. R. Experience of external beam radiotherapy given adjuvantly or at relapse following surgery for craniopharyngioma. Radiother. Oncol. 77, 99–104 (2005).

    Article  PubMed  Google Scholar 

  44. Fahlbusch, R., Honegger, J., Paulus, W., Huk, W. & Buchfelder, M. Surgical treatment of craniopharyngiomas: experience with 168 patients. J. Neurosurg. 90, 237–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Bulow, B. et al. Postoperative prognosis in craniopharyngioma with respect to cardiovascular mortality, survival, and tumor recurrence. J. Clin. Endocrinol. Metab. 83, 3897–3904 (1998).

    CAS  PubMed  Google Scholar 

  46. Adamson, T. E., Wiestler, O. D., Kleihues, P. & Yasargil, M. G. Correlation of clinical and pathological features in surgically treated craniopharyngiomas. J. Neurosurg. 73, 12–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Tavangar, S. M. et al. Craniopharyngioma: a clinicopathological study of 141 cases. Endocr. Pathol. 15, 339–344 (2004).

    Article  PubMed  Google Scholar 

  48. Weiner, H. L. et al. Craniopharyngiomas: a clinicopathological analysis of factors predictive of recurrence and functional outcome. Neurosurgery 35, 1001–1010 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffmann, A. et al. Fusiform dilatation of the internal carotid artery in childhood-onset craniopharyngioma: multicenter study on incidence and long-term outcome. Pituitary 19, 422–428 (2016).

    Article  PubMed  Google Scholar 

  50. Wijnen, M. et al. Excess morbidity and mortality in patients with craniopharyngioma: a hospital-based retrospective cohort study. Eur. J. Endocrinol. 178, 93–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Wijnen, M. et al. The metabolic syndrome and its components in 178 patients treated for craniopharyngioma after 16 years of follow-up. Eur. J. Endocrinol. 178, 11–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Wijnen, M. et al. Very long-term sequelae of craniopharyngioma. Eur. J. Endocrinol. 176, 755–767 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Holmer, H. et al. Hypothalamic involvement and insufficient sex steroid supplementation are associated with low bone mineral density in women with childhood onset craniopharyngioma. Eur. J. Endocrinol. 165, 25–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Hoffmann, A. et al. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma. Eur. J. Endocrinol. 173, 389–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Heinks, K. et al. Periostin concentrations in childhood-onset craniopharyngioma patients. J. Endocrinol. Invest. 42, 815–824 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Erfurth, E. M., Holmer, H. & Fjalldal, S. B. Mortality and morbidity in adult craniopharyngioma. Pituitary 16, 46–55 (2013).

    Article  PubMed  Google Scholar 

  57. Holsken, A., Buchfelder, M., Fahlbusch, R., Blumcke, I. & Buslei, R. Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol. 119, 631–639 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Gaston-Massuet, C. et al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl Acad. Sci. USA 108, 11482–11487 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Buslei, R. et al. Nuclear β-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas. Acta Neuropathol. 113, 585–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hofmann, B. M. et al. Nuclear β-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am. J. Surg. Pathol. 30, 1595–1603 (2006).

    Article  PubMed  Google Scholar 

  61. Burghaus, S. et al. A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch. 456, 287–300 (2010).

    Article  PubMed  Google Scholar 

  62. Apps, J. R. et al. Imaging invasion: micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion. Acta Neuropathol. Commun. 4, 57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andoniadou, C. L. et al. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13, 433–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Thimsen, V. et al. Expression of SRY-related HMG box transcription factors (Sox) 2 and 9 in craniopharyngioma subtypes and surrounding brain tissue. Sci. Rep. 7, 15856 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Andoniadou, C. L. et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 124, 259–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinez-Barbera, J. P. & Andoniadou, C. L. Concise review: paracrine role of stem cells in pituitary tumors: a focus on adamantinomatous craniopharyngioma. Stem Cells 34, 268–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Uhrbom, L., Hesselager, G., Nister, M. & Westermark, B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 58, 5275–5279 (1998).

    CAS  PubMed  Google Scholar 

  68. Fomchenko, E. I. et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLOS ONE 6, e20605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Memarzadeh, S. et al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12, 572–585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, Y. et al. Glioma initiating cells contribute to malignant transformation of host glial cells during tumor tissue remodeling via PDGF signaling. Cancer Lett. 365, 174–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCarthy, N. As directed. Nat. Rev. Cancer 13, 824–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Carreno, G. et al. SHH pathway inhibition is protumourigenic in adamantinomatous craniopharyngioma. Endocr. Relat. Cancer 26, 355–366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Donson, A. M. et al. Molecular analyses reveal inflammatory mediators in the solid component and cyst fluid of human adamantinomatous craniopharyngioma. J. Neuropathol. Exp. Neurol. 76, 779–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gump, J. M. et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol. Commun. 3, 30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, J., Zhang, C., Pan, J., Chen, L. & Qi, S. T. Interleukin-6 induces an epithelialmesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration. Mol. Med. Rep. 15, 4123–4131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gomes, D. C. et al. Sonic hedgehog pathway is upregulated in adamantinomatous craniopharyngiomas. Eur. J. Endocrinol. 172, 603–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Holsken, A. et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol. Commun. 4, 20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sekine, S. et al. Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology 45, 573–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Seemayer, T. A., Blundell, J. S. & Wiglesworth, F. W. Pituitary craniopharyngioma with tooth formation. Cancer 29, 423–430 (1972).

    Article  CAS  PubMed  Google Scholar 

  83. Pascual, J. M. et al. Jakob Erdheim (1874–1937): father of hypophyseal-duct tumors (craniopharyngiomas). Virchows Arch. 467, 459–469 (2015).

    Article  PubMed  Google Scholar 

  84. Gonzalez-Meljem, J. M. et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat. Commun. 8, 1819 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gonzalez-Meljem, J. M. & Martinez-Barbera, J. P. Senescence drives non-cell autonomous tumorigenesis in the pituitary gland. Mol. Cell Oncol. 5, e1435180 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mori, M., Takeshima, H. & Kuratsu, J. Expression of interleukin-6 in human craniopharyngiomas: a possible inducer of tumor-associated inflammation. Int. J. Mol. Med. 14, 505–509 (2004).

    CAS  PubMed  Google Scholar 

  89. Pettorini, B. L. et al. The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv. Syst. 26, 1779–1784 (2010).

    Article  PubMed  Google Scholar 

  90. Massimi, L., Martelli, C., Caldarelli, M., Castagnola, M. & Desiderio, C. Proteomics in pediatric cystic craniopharyngioma. Brain Pathol. 27, 370–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coy, S. et al. Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol. 20, 1101–1112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Hoffmann, A. et al. History before diagnosis in childhood craniopharyngioma: associations with initial presentation and long-term prognosis. Eur. J. Endocrinol. 173, 853–862 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Muller, H. L. et al. Xanthogranuloma, Rathke's cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J. Clin. Endocrinol. Metab. 97, 3935–3943 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Walz, P. C. et al. Pediatric pituitary adenomas. Childs Nerv. Syst. https://doi.org/10.1007/s00381-019-04293-y (2019).

  96. Pal, A., Leaver, L. & Wass, J. Pituitary adenomas. BMJ 365, l2091 (2019).

    Article  PubMed  Google Scholar 

  97. Boekhoff, S., Bison, B., Eveslage, M., Sowithayasakul, P. & Muller, H. L. Craniopharyngiomas presenting as incidentalomas: results of KRANIOPHARYNGEOM 2007. Pituitary 22, 532–541 (2019).

    Article  PubMed  Google Scholar 

  98. Muller, H. L. et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 89, 3298–3305 (2004). This study demonstrates the effect of hypothalamic involvement on growth and the development of obesity before diagnosis and during long-term follow-up.

    Article  CAS  PubMed  Google Scholar 

  99. Prieto, R., Pascual, J. M. & Barrios, L. Optic chiasm distortions caused by craniopharyngiomas: clinical and magnetic resonance imaging correlation and influence on visual outcome. World Neurosurg. 83, 500–529 (2015).

    Article  PubMed  Google Scholar 

  100. Elliott, R. E., Jane, J. A. Jr & Wisoff, J. H. Surgical management of craniopharyngiomas in children: meta-analysis and comparison of transcranial and transsphenoidal approaches. Neurosurgery 69, 630–643 (2011).

    Article  PubMed  Google Scholar 

  101. Muller, H. L. Childhood craniopharyngioma. Recent advances in diagnosis, treatment and follow-up. Horm. Res. 69, 193–202 (2008).

    PubMed  Google Scholar 

  102. Hoffman, H. J. et al. Aggressive surgical management of craniopharyngiomas in children. J. Neurosurg. 76, 47–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Honegger, J., Buchfelder, M. & Fahlbusch, R. Surgical treatment of craniopharyngiomas: endocrinological results. J. Neurosurg. 90, 251–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Feng, Y., Ni, M., Wang, Y. G. & Zhong, L. Y. Comparison of neuroendocrine dysfunction in patients with adamantinomatous and papillary craniopharyngiomas. Exp. Ther. Med. 17, 51–56 (2019).

    CAS  PubMed  Google Scholar 

  105. Pascual, J. M. et al. Craniopharyngiomas primarily involving the hypothalamus: a model of neurosurgical lesions to elucidate the neurobiological basis of psychiatric disorders. World Neurosurg. 120, e1245–e1278 (2018).

    Article  PubMed  Google Scholar 

  106. Roth, C. L., Gebhardt, U. & Muller, H. L. Appetite-regulating hormone changes in patients with craniopharyngioma. Obesity 19, 36–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Kilday, J. P. et al. Favorable survival and metabolic outcome for children with diencephalic syndrome using a radiation-sparing approach. J. Neurooncol. 116, 195–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Hoffmann, A., Gebhardt, U., Sterkenburg, A. S., Warmuth-Metz, M. & Muller, H. L. Diencephalic syndrome in childhood craniopharyngioma-results of german multicenter studies on 485 long-term survivors of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 99, 3972–3977 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Rossi, A. et al. Neuroimaging of pediatric craniopharyngiomas: a pictorial essay. J. Pediatr. Endocrinol. Metab. 19, 299–319 (2006).

    PubMed  Google Scholar 

  110. Hoffmann, A. et al. Childhood craniopharyngioma — changes of treatment strategies in the trials KRANIOPHARYNGEOM 2000/2007. Klin. Padiatr. 226, 161–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Elliott, R. E., Moshel, Y. A. & Wisoff, J. H. Minimal residual calcification and recurrence after gross-total resection of craniopharyngioma in children. J. Neurosurg. Pediatr. 3, 276–283 (2009).

    Article  PubMed  Google Scholar 

  112. Sartoretti-Schefer, S., Wichmann, W., Aguzzi, A. & Valavanis, A. MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am. J. Neuroradiol. 18, 77–87 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Steno, J., Malacek, M. & Bizik, I. Tumor-third ventricular relationships in supradiaphragmatic craniopharyngiomas: correlation of morphological, magnetic resonance imaging, and operative findings. Neurosurgery 54, 1051–1058 (2004).

    Article  PubMed  Google Scholar 

  114. Omay, S. B. et al. Do craniopharyngioma molecular signatures correlate with clinical characteristics? J. Neurosurg. 128, 1473–1478 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Fujio, S. et al. A clinical rule for preoperative prediction of braf mutation status in craniopharyngiomas. Neurosurgery 85, 204–210 (2019).

    Article  PubMed  Google Scholar 

  116. Kordes, U. et al. Ectopic craniopharyngioma. Klin. Padiatr. 223, 176–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Prieto, R., Pascual, J. M. & Barrios, L. Topographic diagnosis of craniopharyngiomas: the accuracy of MRI findings observed on conventional T1 and T2 images. AJNR Am. J. Neuroradiol. 38, 2073–2080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prieto, R., Pascual, J. M., Rosdolsky, M. & Barrios, L. Preoperative assessment of craniopharyngioma adherence: magnetic resonance imaging findings correlated with the severity of tumor attachment to the hypothalamus. World Neurosurg. 110, e404–e426 (2018).

    Article  PubMed  Google Scholar 

  119. Fouladi, M. et al. Survival and functional outcome of children with hypothalamic/chiasmatic tumors. Cancer 97, 1084–1092 (2003).

    Article  PubMed  Google Scholar 

  120. Surawicz, T. S. et al. Descriptive epidemiology of primary brain and CNS tumors: results from the central brain tumor registry of the United States, 1990–1994. Neuro Oncol. 1, 14–25 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ogashiwa, M. et al. [Clinicopathological study on low grade glioma. In relation to malignant transformation]. Neurol. Med. Chir. 30, 820–826 (1990).

    Article  CAS  Google Scholar 

  122. Barkovich, J. A. in Pediatric Neuroimaging (ed. Barkovich, J. A.) 445–446 (Williams & Wilkins, 2000).

  123. Martinez, R., Honegger, J., Fahlbusch, R. & Buchfelder, M. Endocrine findings in patients with optico-hypothalamic gliomas. Exp. Clin. Endocrinol. Diabetes 111, 162–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Salzman, K. L. et al. Primary intracranial germ cell tumors: clinicopathologic review of 32 cases. Pediatr. Pathol. Lab. Med. 17, 713–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Fujimaki, T. et al. CT and MRI features of intracranial germ cell tumors. J. Neurooncol. 19, 217–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Kanagaki, M. et al. MRI and CT findings of neurohypophyseal germinoma. Eur. J. Radiol. 49, 204–211 (2004).

    Article  PubMed  Google Scholar 

  127. Kamoshima, Y., Sawamura, Y., Motegi, H., Kubota, K. & Houkin, K. Xanthogranuloma of the sellar region of children: series of five cases and literature review. Neurol. Med. Chir. 51, 689–693 (2011).

    Article  Google Scholar 

  128. Bonneville, J. F., Bonneville, F. & Cattin, F. Magnetic resonance imaging of pituitary adenomas. Eur. Radiol. 15, 543–548 (2005).

    Article  PubMed  Google Scholar 

  129. Steiner, E., Imhof, H. & Knosp, E. Gd-DTPA enhanced high resolution MR imaging of pituitary adenomas. Radiographics 9, 587–598 (1989).

    Article  CAS  PubMed  Google Scholar 

  130. Pascual, J. M., Prieto, R., Carrasco, R. & Barrios, L. Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle: surgical-MRI correlation and use in topographical diagnosis. J. Neurosurg. 119, 381–405 (2013).

    Article  PubMed  Google Scholar 

  131. Puget, S. et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J. Neurosurg. 106, 3–12 (2007).

    PubMed  Google Scholar 

  132. Van Gompel, J. J., Nippoldt, T. B., Higgins, D. M. & Meyer, F. B. Magnetic resonance imaging-graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg. Focus 28, E3 (2010).

    Article  PubMed  Google Scholar 

  133. Muller, H. L. et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur. J. Endocrinol. 165, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Prieto, R. et al. Craniopharyngioma adherence: a reappraisal of the evidence. Neurosurg. Rev. https://doi.org/10.1007/s10143-018-1010-9 (2018).

  135. Muller, H. L. et al. Prognosis and sequela in patients with childhood craniopharyngioma — results of HIT-ENDO and update on KRANIOPHARYNGEOM 2000. Klin. Padiatr. 216, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Cheng, J., Shao, Q., Pan, Z. & You, J. Analysis and long-term follow-up of the surgical treatment of children with craniopharyngioma. J. Craniofac. Surg. 27, e763–e766 (2016).

    Article  PubMed  Google Scholar 

  137. Daubenbuchel, A. M. et al. Hydrocephalus and hypothalamic involvement in pediatric patients with craniopharyngioma or cysts of Rathke's pouch: impact on long-term prognosis. Eur. J. Endocrinol. 172, 561–569 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Elowe-Gruau, E. et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J. Clin. Endocrinol. Metab. 98, 2376–2382 (2013). A unique single-centre comparison of different treatment strategies (GTR versus hypothalamus-sparing surgery plus radiotherapy) that shows that hypothalamus-sparing strategies were superior in terms of long-term obesity and QOL and with comparable relapse and progression rates.

    Article  CAS  PubMed  Google Scholar 

  139. Sterkenburg, A. S. et al. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 17, 1029–1038 (2015). This 20-year follow-up analysis of 485 patients with childhood-onset CP shows impaired overall survival in patients with hypothalamic involvement. Relapse and progression rates were similar with regards to different degrees of resection (GTR versus incomplete resection).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fjalldal, S. et al. Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity. Int. J. Obes. 43, 533–544 (2019). This study demonstrates that hypothalamus volume on MRI is a predictor for severity of hypothalamic syndrome after CP.

    Article  CAS  Google Scholar 

  141. Park, S. W. et al. Tumor origin and growth pattern at diagnosis and surgical hypothalamic damage predict obesity in pediatric craniopharyngioma. J. Neurooncol. 113, 417–424 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Roth, C. L. et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity 23, 1226–1233 (2015). A grading system for imaging of hypothalamic lesions after initial surgery in CP, showing high predictive sensitivity for the devlopment of hypothalamic obesity.

    Article  PubMed  Google Scholar 

  143. Kilday, J. P. et al. Intracystic interferon-alpha in pediatric craniopharyngioma patients: an international multicenter assessment on behalf of SIOPE and ISPN. Neuro Oncol. 19, 1398–1407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, S., Fang, Y., Cai, B. W., Xu, J. G. & You, C. Intracystic bleomycin for cystic craniopharyngiomas in children. Cochrane Database Syst. Rev. 7, CD008890 (2016).

    PubMed  Google Scholar 

  145. Zhu, W. et al. A reformed surgical treatment modality for children with giant cystic craniopharyngioma. Childs Nerv. Syst. 33, 1491–1500 (2017).

    Article  PubMed  Google Scholar 

  146. Pascual, J. M., Prieto, R. & Carrasco, R. Infundibulo-tuberal or not strictly intraventricular craniopharyngioma: evidence for a major topographical category. Acta Neurochir. 153, 2403–2425 (2011).

    Article  PubMed  Google Scholar 

  147. Muller, H. L. Hypothalamic involvement in craniopharyngioma — implications for surgical, radiooncological, and molecularly targeted treatment strategies. Pediatr. Blood Cancer 65, e26936 (2018).

    Article  PubMed  Google Scholar 

  148. Mortini, P. et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 51, 148–162 (2016). A study analysing and comparing the predictive value of different neuroradiological grading systems of hypothalamic involvement or lesions for outcome after CP.

    Article  CAS  PubMed  Google Scholar 

  149. Pascual, J. M. et al. [The 2013 Sixto Obrador Award. A triple-axis topographical model for surgical planning of craniopharyngiomas. Part I: historical review of the topographical diagnosis and classification schemes of craniopharyngiomas]. Neurocirugia 25, 154–169 (2014).

    Article  PubMed  Google Scholar 

  150. Pascual, J. M. et al. [The 2013 Sixto Obrador Award. A triple-axis topographical model for surgical planning of craniopharyngiomas. Part II: anatomical and neuroradiological evidence to define triple-axis topography and its usefulness in predicting individual surgical risk]. Neurocirugia 25, 211–239 (2014).

    Article  PubMed  Google Scholar 

  151. Prieto, R. et al. Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. Neurosurg. Focus 41, E13 (2016).

    Article  PubMed  Google Scholar 

  152. Koutourousiou, M., Fernandez-Miranda, J. C., Wang, E. W., Snyderman, C. H. & Gardner, P. A. The limits of transsellar/transtuberculum surgery for craniopharyngioma. J. Neurosurg. Sci. 62, 301–309 (2018).

    PubMed  Google Scholar 

  153. Locatelli, D. et al. Endoscopic endonasal approaches to anterior skull base defects in pediatric patients. Childs Nerv. Syst. 22, 1411–1418 (2006).

    Article  PubMed  Google Scholar 

  154. Giovannetti, F. et al. Minimally-invasive endoscopic-assisted sinus augmentation. J. Craniofac. Surg. 30, e359–e362 (2019).

    Article  PubMed  Google Scholar 

  155. Tomita, T. & Bowman, R. M. Craniopharyngiomas in children: surgical experience at Children's Memorial hospital. Childs Nerv. Syst. 21, 729–746 (2005).

    Article  PubMed  Google Scholar 

  156. Wang, K. C., Hong, S. H., Kim, S. K. & Cho, B. K. Origin of craniopharyngiomas: implication on the growth pattern. Childs Nerv. Syst. 21, 628–634 (2005).

    Article  PubMed  Google Scholar 

  157. Tosta-Hernandez, P. D. C. et al. Childhood craniopharyngioma: a 22-year challenging follow-up in a single center. Horm. Metab. Res. 50, 675–682 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Feng, S. Y. et al. Microsurgical treatment of craniopharyngioma: experiences on 183 consecutive patients. Medicine 97, e11746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu, J. K., Sevak, I. A., Carmel, P. W. & Eloy, J. A. Microscopic versus endoscopic approaches for craniopharyngiomas: choosing the optimal surgical corridor for maximizing extent of resection and complication avoidance using a personalized, tailored approach. Neurosurg. Focus 41, E5 (2016).

    Article  PubMed  Google Scholar 

  160. Chamoun, R. & Couldwell, W. T. Transcortical-transforaminal microscopic approach for purely intraventricular craniopharyngioma. Neurosurg. Focus 34, Video 4 (2013).

    Article  PubMed  Google Scholar 

  161. Hardesty, D. A., Montaser, A. S., Beer-Furlan, A., Carrau, R. L. & Prevedello, D. M. Limits of endoscopic endonasal surgery for III ventricle craniopharyngiomas. J. Neurosurg. Sci. 62, 310–321 (2018).

    PubMed  Google Scholar 

  162. de Vile, C. J. et al. Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J. Clin. Endocrinol. Metab. 81, 2734–2737 (1996).

    PubMed  Google Scholar 

  163. Garre, M. L. & Cama, A. Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr. Opin. Pediatr. 19, 471–479 (2007).

    Article  PubMed  Google Scholar 

  164. Flitsch, J., Muller, H. L. & Burkhardt, T. Surgical strategies in childhood craniopharyngioma. Front. Endocrinol. 2, 96 (2011).

    Article  Google Scholar 

  165. Mallucci, C. et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system. Childs Nerv. Syst. 28, 1181–1192 (2012).

    Article  PubMed  Google Scholar 

  166. Fjalldal, S. et al. Hypothalamic involvement predicts cognitive performance and psychosocial health in long-term survivors of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 98, 3253–3262 (2013). This study of neuropsychological sequelae after CP reveals an association with different grades of hypothalamic involvement.

    Article  CAS  PubMed  Google Scholar 

  167. Wang, X. Y., Xu, S. J. & Li, X. G. Post-operative implantation metastasis of craniopharyngioma: a case report. J. Int. Med. Res. 38, 1876–1882 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Adeberg, S. et al. Dosimetric comparison of proton radiation therapy, volumetric modulated arc therapy, and three-dimensional conformal radiotherapy based on intracranial tumor location. Cancers 10, E401 (2018).

    Google Scholar 

  169. Hill, T. K. et al. Patterns of care in pediatric craniopharyngioma: outcomes following definitive radiotherapy. Anticancer Res. 39, 803–807 (2019).

    Article  PubMed  Google Scholar 

  170. Merchant, T. E. et al. Necrosis, vasculopathy, and neurological complications after proton therapy for childhood craniopharyngioma: results from a prospective trial and a photon cohort comparison. Int. J. Radiat. Oncol. Biol. Phys. 96, S120–S121 (2016).

    Article  Google Scholar 

  171. Merchant, T., Indelicato, D., Hua, C., Wu, S. & Conklin, H. Comparison of academic scores after proton and photon therapy in children and young adults with craniopharyngioma. Pediatr. Blood Cancer 64, e26772 (2017).

    Article  Google Scholar 

  172. Borrill, R. et al. Papillary craniopharyngioma in a 4-year-old girl with BRAF V600E mutation: a case report and review of the literature. Childs Nerv. Syst. 35, 169–173 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Dandurand, C., Sepehry, A. A., Asadi Lari, M. H., Akagami, R. & Gooderham, P. Adult craniopharyngioma: case series, systematic review, and meta-analysis. Neurosurgery 83, 631–641 (2018).

    Article  PubMed  Google Scholar 

  174. Brastianos, P. K. et al. Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J. Natl Cancer Inst. 108, djv310 (2016). This report describes an impressive treatment response to targeted therapy in BRAF V600E -mutant PCP.

    Article  CAS  PubMed  Google Scholar 

  175. Eveslage, M. et al. The postoperative quality of life in children and adolescents with craniopharyngioma. Dtsch Arztebl. Int. 116, 321–328 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Fournier-Goodnight, A. S. et al. Neurocognitive functioning in pediatric craniopharyngioma: performance before treatment with proton therapy. J. Neurooncol. 134, 97–105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. DeVile, C. J., Grant, D. B., Hayward, R. D. & Stanhope, R. Growth and endocrine sequelae of craniopharyngioma. Arch. Dis. Child 75, 108–114 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Karavitaki, N., Cudlip, S., Adams, C. B. & Wass, J. A. Craniopharyngiomas. Endocr. Rev. 27, 371–397 (2006).

    Article  PubMed  Google Scholar 

  179. Smith, T. R., Cote, D. J., Jane, J. A. Jr & Laws, E. R. Jr. Physiological growth hormone replacement and rate of recurrence of craniopharyngioma: the Genentech National Cooperative Growth Study. J. Neurosurg. Pediatr. 18, 408–412 (2016).

    Article  PubMed  Google Scholar 

  180. Heinks, K. et al. Quality of life and growth after childhood craniopharyngioma: results of the multinational trial KRANIOPHARYNGEOM 2007. Endocrine 59, 364–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Boekhoff, S., Bogusz, A., Sterkenburg, A. S., Eveslage, M. & Muller, H. L. Long-term effects of growth hormone replacement therapy in childhood-onset craniopharyngioma: results of the German craniopharyngioma registry (HIT-Endo). Eur. J. Endocrinol. 179, 331–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Karavitaki, N. et al. GH replacement does not increase the risk of recurrence in patients with craniopharyngioma. Clin. Endocrinol. 64, 556–560 (2006).

    Article  CAS  Google Scholar 

  183. Lustig, R. H. Hypothalamic obesity after craniopharyngioma: mechanisms, diagnosis, and treatment. Front. Endocrinol. 2, 60 (2011).

    Article  Google Scholar 

  184. Muller, H. L. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 23, 81–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Daubenbuchel, A. M. & Muller, H. L. Neuroendocrine disorders in pediatric craniopharyngioma patients. J. Clin. Med. 4, 389–413 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Daubenbuchel, A. M. et al. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine 54, 524–531 (2016). The first report in patients with CP showing that oxytocin concentrations are decreased in the saliva of patients with anterior hypothalamic lesions.

    Article  CAS  PubMed  Google Scholar 

  187. Hoffmann, A. et al. First experiences with neuropsychological effects of oxytocin administration in childhood-onset craniopharyngioma. Endocrine 56, 175–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Daubenbuchel, A. M. et al. Eating behaviour and oxytocin in patients with childhood-onset craniopharyngioma and different grades of hypothalamic involvement. Pediatr. Obes. 14, e12527 (2019).

    Article  PubMed  Google Scholar 

  189. Cook, N., Miller, J. & Hart, J. Parent observed neuro-behavioral and pro-social improvements with oxytocin following surgical resection of craniopharyngioma. J. Pediatr. Endocrinol. Metab. 29, 995–1000 (2016).

    Article  PubMed  Google Scholar 

  190. Hsu, E. A., Miller, J. L., Perez, F. A. & Roth, C. L. Oxytocin and naltrexone successfully treat hypothalamic obesity in a boy post-craniopharyngioma resection. J. Clin. Endocrinol. Metab. 103, 370–375 (2018).

    Article  PubMed  Google Scholar 

  191. van Iersel, L. et al. Pathophysiology and individualized treatment of hypothalamic obesity following craniopharyngioma and other suprasellar tumors: a systematic review. Endocr. Rev. 40, 193–235 (2019). A comprehensive review on treatment modalities for hypothalamic syndrome in CP.

    Article  PubMed  Google Scholar 

  192. Muller, H. L. et al. First experiences with laparoscopic adjustable gastric banding (LAGB) in the treatment of patients with childhood craniopharyngioma and morbid obesity. Klin. Padiatr. 219, 323–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Inge, T. H. et al. Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy. Nat. Clin. Pract. Endocrinol. Metab. 3, 606–609 (2007).

    Article  PubMed  Google Scholar 

  194. Muller, H. L., Gebhardt, U., Maroske, J. & Hanisch, E. Long-term follow-up of morbidly obese patients with childhood craniopharyngioma after laparoscopic adjustable gastric banding (LAGB). Klin. Padiatr. 223, 372–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Bretault, M. et al. Bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J. Clin. Endocrinol. Metab. 98, 2239–2246 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Wijnen, M. et al. Efficacy and safety of bariatric surgery for craniopharyngioma-related hypothalamic obesity: a matched case-control study with 2 years of follow-up. Int. J. Obes. 41, 210–216 (2017).

    Article  CAS  Google Scholar 

  197. Muller, H. L. et al. Functional capacity, obesity and hypothalamic involvement: cross-sectional study on 212 patients with childhood craniopharyngioma. Klin. Padiatr. 215, 310–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Muller, H. L. et al. Longitudinal study on quality of life in 102 survivors of childhood craniopharyngioma. Childs Nerv. Syst. 21, 975–980 (2005).

    Article  PubMed  Google Scholar 

  199. Muller, H. L. et al. Functional capacity and body mass index in patients with sellar masses — cross-sectional study on 403 patients diagnosed during childhood and adolescence. Childs Nerv. Syst. 21, 539–545 (2005).

    Article  PubMed  Google Scholar 

  200. Mehren, A. et al. Self- and informant-rated apathy in patients with childhood-onset craniopharyngioma. J. Neurooncol. 140, 27–35 (2018).

    Article  PubMed  Google Scholar 

  201. Ondruch, A., Maryniak, A., Kropiwnicki, T., Roszkowski, M. & Daszkiewicz, P. Cognitive and social functioning in children and adolescents after the removal of craniopharyngioma. Childs Nerv. Syst. 27, 391–397 (2011).

    Article  PubMed  Google Scholar 

  202. Crom, D. et al. Health status in long-term survivors of pediatric craniopharyngiomas. J. Neurosci. Nurs. 42, 323–328 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bogusz, A. et al. Posterior hypothalamus-sparing surgery improves outcome after childhood craniopharyngioma. Endocr. Connect 8, 481–492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Carpentieri, S. C. et al. Memory deficits among children with craniopharyngiomas. Neurosurgery 49, 1053–1057 (2001).

    CAS  PubMed  Google Scholar 

  205. Ozyurt, J., Muller, H. L. & Thiel, C. M. A systematic review of cognitive performance in patients with childhood craniopharyngioma. J. Neurooncol. 125, 9–21 (2015). A comprehensive review on the neuropsychological sequelae in childhood-onset CP.

    Article  PubMed  Google Scholar 

  206. Ozyurt, J. et al. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. J. Pediatr. 164, 876–881.e4 (2014).

    Article  PubMed  Google Scholar 

  207. Carpentieri, S. et al. Memory deficits among children with craniopharyngioma. Neurosurgery 49, 1053–1058 (2001).

    CAS  PubMed  Google Scholar 

  208. Cohen, M., Guger, S. & Hamilton, J. Long term sequelae of pediatric craniopharyngioma — literature review and 20 years of experience. Front. Endocrinol. 2, 81 (2011).

    Article  Google Scholar 

  209. Hankinson, T. C. et al. Patterns of care for craniopharyngioma: survey of members of the American Association of Neurological Surgeons. Pediatr. Neurosurg. 49, 131–136 (2013).

    Article  PubMed  Google Scholar 

  210. Schwartz, T. H. A role for centers of excellence in transsphenoidal surgery. World Neurosurg. 80, 270–271 (2013).

    Article  PubMed  Google Scholar 

  211. Casanueva, F. F. et al. Criteria for the definition of Pituitary Tumor Centers of Excellence (PTCOE): a Pituitary Society statement. Pituitary 20, 489–498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Tallen, G. et al. Strategies to improve the quality of survival for childhood brain tumour survivors. Eur. J. Paediatr. Neurol. 19, 619–639 (2015).

    Article  PubMed  Google Scholar 

  213. Muller, H. L. et al. Low concordance between surgical and radiological assessment of degree of resection and treatment-related hypothalamic damage: results of KRANIOPHARYNGEOM 2007. Pituitary 21, 371–378 (2018).

    Article  PubMed  Google Scholar 

  214. Rimkus, T. K., Carpenter, R. L., Qasem, S., Chan, M. & Lo, H. W. Targeting the sonic hedgehog signaling pathway: review of Smoothened and GLI inhibitors. Cancers 8, E22 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Sekulic, A. et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. BMC Cancer 17, 332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Miller, C., Guillaume, D., Dusenbery, K., Clark, H. B. & Moertel, C. Report of effective trametinib therapy in 2 children with progressive hypothalamic optic pathway pilocytic astrocytoma: documentation of volumetric response. J. Neurosurg. Pediatr. 19, 319–324 (2017).

    Article  PubMed  Google Scholar 

  217. Robert, C. et al. METRIC phase III study: efficacy of trametinib (T), a potent and selective mek inhibitor (MEKi), in progression-free survival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAFV600/k mutant advanced or metastatic melanoma (MM). J. Clin. Oncol. 30, LBA8509 (2012).

  218. Grob, S. et al. Targeting IL-6 is a potential treatment for primary cystic craniopharyngioma. Front. Oncol. 9, 791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Roque, A. & Odia, Y. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncol. 6, 95–99 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Himes, B. T. et al. Recurrent papillary craniopharyngioma with BRAF V600E mutation treated with dabrafenib: case report. J. Neurosurg. 130, 1299–1303 (2019).

    Google Scholar 

  221. Juratli, T. A. et al. Targeted treatment of papillary craniopharyngiomas harboring BRAF V600E mutations. Cancer 125, 2910–2914 (2019).

    Article  PubMed  Google Scholar 

  222. Peng, J. & Müller, H. L. Personalized therapy in craniopharyngioma — novel perspectives and limitations. J. Xiangya Med. 2, 71–76 (2017).

    Article  Google Scholar 

  223. Gupta, D. K. et al. Recurrence in pediatric craniopharyngiomas: analysis of clinical and histological features. Childs Nerv. Syst. 22, 50–55 (2006).

    Article  PubMed  Google Scholar 

  224. Yasargil, M. G. et al. Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J. Neurosurg. 73, 3–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  225. Larijani, B. et al. Presentation and outcome of 93 cases of craniopharyngioma. Eur. J. Cancer Care 13, 11–15 (2004).

    Article  CAS  Google Scholar 

  226. Hafez, M. A., ElMekkawy, S., AbdelBadie, H., Mohy, M. & Omar, M. Pediatric craniopharyngioma — rationale for multimodal management: the Egyptian experience. J. Pediatr. Endocrinol. Metab. 19, 371–380 (2006).

    PubMed  Google Scholar 

  227. Zhang, Y. Q., Wang, C. C. & Ma, Z. Y. Pediatric craniopharyngiomas: clinicomorphological study of 189 cases. Pediatr. Neurosurg. 36, 80–84 (2002).

    Article  PubMed  Google Scholar 

  228. Adeloye, A., Nottidge, V. A. & Udi, J. Craniopharyngioma in Nigerian children. Childs Nerv. Syst. 4, 128–134 (1988).

    Article  CAS  PubMed  Google Scholar 

  229. Ersahin, Y., Yurtseven, T., Ozgiray, E. & Mutluer, S. Craniopharyngiomas in children: Turkey experience. Childs Nerv. Syst. 21, 766–772 (2005).

    Article  PubMed  Google Scholar 

  230. Amayiri, N. et al. Review of management and morbidity of pediatric craniopharyngioma patients in a low-middle-income country: a 12-year experience. Childs Nerv. Syst. 33, 941–950 (2017).

    Article  PubMed  Google Scholar 

  231. Rolland-Cachera, M. F. et al. Body mass index variations: centiles from birth to 87 years. Eur. J. Clin. Nutr. 45, 13–21 (1991).

    CAS  PubMed  Google Scholar 

  232. Mason, P. W., Krawiecki, N. & Meacham, L. R. The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch. Pediatr. Adolesc. Med. 156, 887–892 (2002).

    Article  PubMed  Google Scholar 

  233. Ismail, D., O'Connell, M. A. & Zacharin, M. R. Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J. Pediatr. Endocrinol. Metab. 19, 129–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Denzer, C. et al. Treatment of hypothalamic obesity with dextroamphetamine: a case series. Obes. Facts 12, 91–102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Elfers, C. T. & Roth, C. L. Effects of methylphenidate on weight gain and food intake in hypothalamic obesity. Front. Endocrinol. 2, 78 (2011).

    Article  Google Scholar 

  236. Lustig, R. H. et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 88, 2586–2592 (2003).

    Article  CAS  PubMed  Google Scholar 

  237. Hamilton, J. K. et al. Hypothalamic obesity following craniopharyngioma surgery: results of a pilot trial of combined diazoxide and metformin therapy. Int. J. Pediatr. Endocrinol. 2011, 417949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zoicas, F., Droste, M., Mayr, B., Buchfelder, M. & Schofl, C. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur. J. Endocrinol. 168, 699–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  239. Kalina, M. A. et al. Carbohydrate-lipid profile and use of metformin with micronized fenofibrate in reducing metabolic consequences of craniopharyngioma treatment in children: single institution experience. J. Pediatr. Endocrinol. Metab. 28, 45–51 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.L.M. is supported by the German Childhood Cancer Foundation, Bonn, Germany (grant DKS2014/13). The authors thank C. L. Andoniadou, Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK, for help in preparing Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.L.M.); Epidemiology (H.L.M.); Mechanisms/pathophysiology (J.-P.M.-B.); Diagnosis, screening and prevention (H.L.M. and M.W.-M.); Management (T.E.M. and S.P.); Quality of life (H.L.M., T.E.M. and S.P.); Outlook (H.L.M.); Overview of the Primer (H.L.M.).

Corresponding author

Correspondence to Hermann L. Müller.

Ethics declarations

Competing interests

H.L.M. has received reimbursement of participation fees for scientific meetings and continuing medical education events from the following companies: Ferring, Lilly, Pfizer, Sandoz/Hexal, Novo Nordisk, Ipsen and Merck Serono. He has received reimbursement of travel expenses from Ipsen and lecture honoraria from Pfizer. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks E. T. Hidalgo, J. M. Pascual, R. Prieto, T. Schwartz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, H.L., Merchant, T.E., Warmuth-Metz, M. et al. Craniopharyngioma. Nat Rev Dis Primers 5, 75 (2019). https://doi.org/10.1038/s41572-019-0125-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0125-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer