Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Burkitt lymphoma

Abstract

Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein–Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI–SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Burkitt lymphoma incidence and P. falciparum temperature suitability index.
Fig. 2: Multimodal age-specific incidence rates of Burkitt lymphoma.
Fig. 3: Model of Burkitt lymphoma pathogenesis.
Fig. 4: Breakpoints of IGH::MYC translocation in Burkitt lymphoma.
Fig. 5: Involved anatomical sites in Burkitt lymphoma.
Fig. 6: Molecular pathways altered in Burkitt lymphoma.
Fig. 7: Morphology of classic Burkitt lymphoma.
Fig. 8: Risk-adapted treatment approach to Burkitt lymphoma in children, adolescents and adults.

Similar content being viewed by others

References

  1. Burkitt, D. A sarcoma involving the jaws in African children. Br. J. Surg. 46, 218–223 (1958).

    CAS  Google Scholar 

  2. Magrath, I. Denis Burkitt and the African lymphoma. Ecancermedicalscience 3, 159 (2009).

    CAS  Google Scholar 

  3. Davies, J. N. P. et al. Cancer in an African community, 1897–1956: an analysis of the records of Mengo Hospital, Kampala, Uganda: Part I. Br. Med. J. 1, 259–264 (1964).

    CAS  Google Scholar 

  4. Wright, D. H. Burkitt’s tumour. A post‐mortem study of 50 cases. Br. J. Surg. 51, 245–251 (1964).

    CAS  Google Scholar 

  5. Elmes, B. G. T. & Baldwin, R. B. T. Malignant disease in Nigeria: an analysis of a thousand tumours. Ann. Trop. Med. Parasitol. 41, 321–328 (1947).

    CAS  Google Scholar 

  6. O’Conor, G. T. & Davies, J. N. P. Malignant tumors in African children. With special reference to malignant lymphoma. J. Pediatr. 56, 526–535 (1960).

    Google Scholar 

  7. Brown, J. B. & O’Keefe, C. Brief communications: Sarcoma of the ovary with unusual oral metastases. Ann. Surg. 87, 467–476 (1928).

    Google Scholar 

  8. Epstein, M. A. & Barr, Y. M. Cultivation in vitro of human lymphoblasts from Burkitt’s malignant lymphoma. Lancet 283, 252–253 (1964).

    Google Scholar 

  9. Stewart, S. E., Lovelace, E., Whang, J. J. & Ngu, V. A. Burkitt tumor: tissue culture, cytogenetic and virus studies. J. Natl Cancer Inst. 34, 319–327 (1965).

    CAS  Google Scholar 

  10. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt’s Lymphoma. Lancet 283, 702–703 (1964).

    Google Scholar 

  11. Manolov, G. & Manolova, Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature 237, 33–34 (1972). This study identifies for the first time the derivative chromosome 14 as a consequence of translocation t(8;14) in Burkitt lymphoma, highlighting the relevance of genetic abnormalities in this lymphoma.

    CAS  Google Scholar 

  12. Zech, L., Haglund, U., Nilsson, K. & Klein, G. Characteristic chromosomal abnormalities in biopsies and lymphoid‐cell lines from patients with Burkitt and non‐Burkitt lymphomas. Int. J. Cancer 17, 47–56 (1976).

    CAS  Google Scholar 

  13. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982). Molecular study showing that MYC oncogene is the gene involved in the chromosomal aberration t(8;14) in BL.

    CAS  Google Scholar 

  14. Boerma, E. G., Siebert, R., Kluin, P. M. & Baudis, M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia 23, 225–234 (2009).

    CAS  Google Scholar 

  15. Dalla-Favera, R. et al. Mechanism of activation and biological role of the c‐myc oncogene in B‐cell lymphomagenesis. Ann. NY Acad. Sci. 511, 207–218 (1987).

    CAS  Google Scholar 

  16. Swerdlow, S.H. et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC, 2017).

  17. Geser, A. et al. Epstein-Barr virus markers in a series of Burkitt’s lymphomas from the West Nile District, Uganda. Eur. J. Cancer Clin. Oncol. 19, 1393–1404 (1983).

    CAS  Google Scholar 

  18. Grande, B. M. et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 133, 1313–1324 (2019). A comprehensive molecular analysis of both EBV+ and EBV BL demonstrated a link between EBV+ BL and mutation patterns indicative of aberrant AID expression and function.

    CAS  Google Scholar 

  19. Kaymaz, Y. et al. Comprehensive transcriptome and mutational profiling of endemic Burkitt lymphoma reveals EBV type-specific differences. Mol. Cancer Res. 15, 563–576 (2017).

    CAS  Google Scholar 

  20. Abate, F. et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog. 11, e1005158 (2015).

    Google Scholar 

  21. Leoncini, L. Epstein-Barr virus positivity as a defining pathogenetic feature of Burkitt lymphoma subtypes. Br. J. Haematol. 196, 468–470 (2022).

    CAS  Google Scholar 

  22. Rochford, R. Reframing Burkitt lymphoma: virology not epidemiology defines clinical variants. Ann. Lymphoma 5, 22 (2021).

    Google Scholar 

  23. Alaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: lymphoid neoplasms. Leukemia 36, 1720–1748 (2022).

    Google Scholar 

  24. Haddow, A. J. An improved map for the study of Burkitt’s lymphoma syndrome in Africa. East. Afr. Med. J. 40, 429–432 (1963).

    CAS  Google Scholar 

  25. Burkitt, D. A. “Tumour safari” in East and Central Africa. Br. J. Cancer 16, 379–386 (1962).

    CAS  Google Scholar 

  26. Burkitt, D. A children’s cancer dependent on climatic factors. Nature 194, 232–234 (1962).

    CAS  Google Scholar 

  27. Kafuko, G. W. & Burkitt, D. P. Burkitt’s lymphoma and malaria. Int. J. Cancer 6, 1–9 (1970).

    CAS  Google Scholar 

  28. Rainey, J. J. et al. Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int. J. Cancer 120, 121–127 (2007).

    CAS  Google Scholar 

  29. Liao, H.-M. et al. Epstein–Barr virus in Burkitt lymphoma in Africa reveals a limited set of whole genome and LMP-1 sequence patterns: analysis of archival datasets and field samples from Uganda, Tanzania, and Kenya. Front. Oncol. 12, 812224 (2022).

    Google Scholar 

  30. Anwar, N. et al. The investigation of Epstein–Barr viral sequences in 41 cases of Burkitt’s lymphoma from Egypt. Epidemiologic correlations. Cancer 76, 1245–1252 (1995).

    CAS  Google Scholar 

  31. Hassan, R. et al. Clinical and demographic characteristics of Epstein–Barr virus-associated childhood Burkitt’s lymphoma in Southeastern Brazil: epidemiological insights from an intermediate risk region. Haematologica 93, 780–783 (2008).

    Google Scholar 

  32. Queiroga, E. M. et al. Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am. J. Clin. Pathol. 130, 946–956 (2008).

    CAS  Google Scholar 

  33. Mbulaiteye, S. M. et al. Epstein–Barr virus patterns in US Burkitt lymphoma tumors from the SEER Residual Tissue Repository during 1979–2009. APMIS 122, 5–15 (2014).

    Google Scholar 

  34. Teras, L. R. et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. Ca. Cancer J. Clin. 66, 443–459 (2016).

    Google Scholar 

  35. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).

    CAS  Google Scholar 

  36. Richter, J. et al. Epstein–Barr virus status of sporadic Burkitt lymphoma is associated with patient age and mutational features. Br. J. Haematol. https://doi.org/10.1111/bjh.17874 (2021).

    Article  Google Scholar 

  37. Zhang, X. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87–100 (2021).

    Google Scholar 

  38. Mbulaiteye, S. M. et al. Pediatric, elderly, and emerging adult-onset peaks in Burkitt’s lymphoma incidence diagnosed in four continents, excluding Africa. Am. J. Hematol. 87, 573–578 (2012).

    Google Scholar 

  39. Mbulaiteye, S. M. et al. Trimodal age-specific incidence patterns for Burkitt lymphoma in the United States, 1973-2005. Int. J. Cancer 126, 1732–1739 (2010). This was the first paper to report multimodal patterns of Burkitt lymphoma the US, suggesting that the molecular forms of Burkitt lymphoma may vary with age at diagnosis, and that mortality patterns vary with age.

    CAS  Google Scholar 

  40. Greenspan, D. et al. Diffuse, undifferentiated non-Hodgkins lymphoma among homosexual males – United States. MMWR Morb. Mortal. Wkly. Rep. 31, 277–279 (1982).

    Google Scholar 

  41. Ziegler, J. L. et al. High-grade non-Hodgkin’s lymphoma in patients with AIDS. Ann. NY Acad. Sci. 437, 412–419 (1984).

    CAS  Google Scholar 

  42. Serraino, D. et al. The epidemiology of AIDS-associated non-Hodgkin’s lymphoma in the World Health Organization European Region. Br. J. Cancer 66, 912–916 (1992).

    CAS  Google Scholar 

  43. Mbulaiteye, S. M. & Devesa, S. S. Burkitt lymphoma incidence in five continents. Hemato 3, 434–453 (2022).

    Google Scholar 

  44. Mbulaiteye, S. M. & Anderson, W. F. Age-related heterogeneity of Burkitt lymphoma. Br. J. Haematol. 180, 153–155 (2018).

    Google Scholar 

  45. Roschewski, M. et al. Multicenter study of risk-adapted therapy with dose-adjusted EPOCH-R in adults with untreated Burkitt lymphoma. J. Clin. Oncol. 38, 2519–2529 (2020). A multicentre prospective study demonstrating the safety and efficacy of low-intensity therapy with dose-adjusted EPOCH-R in adults with Burkitt lymphoma.

    CAS  Google Scholar 

  46. Dunleavy, K. et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N. Engl. J. Med. 369, 1915–1925 (2013).

    CAS  Google Scholar 

  47. Roithmann, S. et al. HTV-associated non-Hodgkin’s lymphomas: clinical characteristics and outcome. The experience of the French registry of HIV-associated tumors. Ann. Oncol. 2, 289–295 (1991).

    CAS  Google Scholar 

  48. Worch, J., Rohde, M. & Burkhardt, B. Mature B-cell lymphoma and leukemia in children and adolescents – review of standard chemotherapy regimen and perspectives. Pediatr. Hematol. Oncol. 30, 465–483 (2013).

    CAS  Google Scholar 

  49. Mbulaiteye, S. M. et al. African Burkitt’s lymphoma: could collaboration with HIV-1 and malaria programmes reduce the high mortality rate? Lancet 375, 1661–1663 (2010).

    Google Scholar 

  50. Ozuah, N. W., Lubega, J., Allen, C. E. & El-Mallawany, N. K. Five decades of low intensity and low survival: adapting intensified regimens to cure pediatric Burkitt lymphoma in Africa. Blood Adv. 4, 4007–4019 (2020). A retrospective study demonstrating the challenges of delivering effective therapy in resource-restricted areas of the world such as sub-Saharan Africa.

    CAS  Google Scholar 

  51. Costa, L. J., Xavier, A. C., Wahlquist, A. E. & Hill, E. G. Trends in survival of patients with Burkitt lymphoma/leukemia in the USA: an analysis of 3691 cases. Blood 121, 4861–4866 (2013).

    CAS  Google Scholar 

  52. Noy, A. et al. AMC 048: Modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood 126, 160–166 (2015). A multicenter prospective study demonstrating the feasibility and efficacy of highly dose-intensive chemotherapy with CODOX-M/IVAC in adults with HIV-associated Burkitt lymphoma.

    CAS  Google Scholar 

  53. Joko-Fru, W. Y. et al. Survival from childhood cancers in Eastern Africa: a population-based registry study. Int. J. Cancer 143, 2409–2415 (2018).

    CAS  Google Scholar 

  54. McGoldrick, S. M. et al. Survival of children with endemic Burkitt lymphoma in a prospective clinical care project in Uganda. Pediatr. Blood Cancer 66, e27813 (2019).

    Google Scholar 

  55. Kazembe, P., Hesseling, P. B., Griffin, B. E., Lampert, I. & Wessels, G. Long term survival of children with Burkitt lymphoma in Malawi after cyclophosphamide monotherapy. Med. Pediatr. Oncol. 40, 23–25 (2003).

    CAS  Google Scholar 

  56. Olweny, C. L. M. et al. Long‐term experience with Burkitt’s lymphoma in Uganda. Int. J. Cancer 26, 261–266 (1980).

    CAS  Google Scholar 

  57. Clifford, P., Singh, S., Stjernswärd, J. & Klein, G. Long-term survival of patients with Burkitt’s lymphoma: an assessment of treatment and other factors which may relate to survival. Cancer Res. 27, 2578–2615 (1967).

    CAS  Google Scholar 

  58. Rochford, R., Cannon, M. J. & Moormann, A. M. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat. Rev. Microbiol. 3, 182–187 (2005).

    CAS  Google Scholar 

  59. Morrow, R. H. in Burkitt’s Lymphoma: A Human Cancer Model No. 60 (eds Lenoir, G. M., O‘Conor, G.T. & Olweny, C. L. M.) 177–186 (IARC, 1985).

  60. Carpenter, L. M. et al. Antibodies against malaria and Epstein–Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int. J. Cancer 122, 1319–1323 (2008).

    CAS  Google Scholar 

  61. Aka, P. et al. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response. Blood 122, 629–635 (2013).

    CAS  Google Scholar 

  62. Derkach, A. et al. Associations between IgG reactivity to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens and Burkitt lymphoma in Ghana and Uganda case-control studies. EBioMedicine 39, 358–368 (2019).

    Google Scholar 

  63. Emmanuel, B. et al. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers. Am. J. Trop. Med. Hyg. 84, 397–401 (2011).

    Google Scholar 

  64. Johnston, W. T. et al. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci. Rep. 4, 3741 (2014).

    Google Scholar 

  65. Arisue, N. et al. Assessment of mixed Plasmodium falciparum sera5 infection in endemic Burkitt lymphoma: a case–control study in Malawi. Cancers (Basel) 13, 1692 (2021).

    CAS  Google Scholar 

  66. Legason, I. D. et al. Evaluating the causal link between malaria infection and endemic Burkitt lymphoma in northern Uganda: a Mendelian randomization study. EBioMedicine 25, 58–65 (2017).

    Google Scholar 

  67. Williams, A. O. Haemoglobin genotypes, ABO blood groups, and Burkitt’s tumour. J. Med. Genet. 3, 177–179 (1966).

    CAS  Google Scholar 

  68. Gouveia, M. H. et al. Endemic Burkitt Lymphoma in second-degree relatives in Northern Uganda: in-depth genome-wide analysis suggests clues about genetic susceptibility. Leukemia 35, 1209–1213 (2021). This is the first study to report pathologically and genetically confirmed Burkitt lymphoma in relatives and to report germline variants in TCF4 and CHD8 in the affected members.

    Google Scholar 

  69. Li, F. Y. et al. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood 123, 2148–2152 (2014).

    CAS  Google Scholar 

  70. Levine, P. H., Connelly, R. R. & McKay, F. W. in Burkitt’s Lymphoma: A Human Cancer Model No. 60 (eds Lenoir, G. M., O‘Conor, G.T. & Olweny, C. L. M.) 217–224 (IARC, 1985).

  71. Sumba, P. O. et al. Microgeographic variations in Burkitt’s lymphoma incidence correlate with differences in malnutrition, malaria and Epstein–Barr virus. Br. J. Cancer 103, 1736–1741 (2010).

    CAS  Google Scholar 

  72. Juan, R. et al. Plasma magnesium is inversely associated with Epstein–Barr virus load in peripheral blood and Burkitt lymphoma in Uganda. Cancer Epidemiol. 52, 70–74 (2018).

    Google Scholar 

  73. Li, F. Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    CAS  Google Scholar 

  74. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Google Scholar 

  75. Guech-Ongey, M. et al. AIDS-related Burkitt lymphoma in the United States: what do age and CD4 lymphocyte patterns tell us about etiology and/or biology? Blood 116, 5600–5604 (2010).

    CAS  Google Scholar 

  76. Mbulaiteye, S. M., Biggar, R. J., Goedert, J. J. & Engels, E. A. Immune deficiency and risk for malignancy among persons with AIDS. J. Acquir. Immune Defic. Syndr. 32, 527–533 (2003).

    Google Scholar 

  77. Mahale, P. et al. Cancer risk following lymphoid malignancies among HIV-infected people. AIDS 34, 1237–1245 (2020).

    CAS  Google Scholar 

  78. Hernández-Ramírez, R. U. et al. Association of immunosuppression and HIV viraemia with non-Hodgkin lymphoma risk overall and by subtype in people living with HIV in Canada and the USA: a multicentre cohort study. Lancet HIV 6, e240–e249 (2019). This paper provides the most detailed data about risk for BL in HIV positive patients who are receiving the best care in the US. The paper provides good background information about the role of chronic HIV viraemia as a risk factor for BL, and the inadequacy of treatment of HIV alone to prevent BL.

    Google Scholar 

  79. Peprah, S. et al. Risk factors for Burkitt lymphoma in East African children and minors: a case–control study in malaria-endemic regions in Uganda, Tanzania and Kenya. Int. J. Cancer 146, 953–969 (2020).

    CAS  Google Scholar 

  80. Mbulaiteye, S. M. et al. Spectrum of cancers among HIV-infected persons in Africa: the Uganda AIDS-Cancer Registry Match Study. Int. J. Cancer 118, 985–990 (2006).

    CAS  Google Scholar 

  81. Newton, R. et al. A case-control study of human immunodeficiency virus infection and cancer in adults and children residing in Kampala, Uganda. Int. J. Cancer 92, 622–627 (2001).

    CAS  Google Scholar 

  82. Agarwal, B. et al. Lymphoid neoplasms in HIV-positive individuals in India. J. Acquir. Immune Defic. Syndr. 29, 181–183 (2002).

    Google Scholar 

  83. Jiamsakul, A. et al. Brief report: Malignancies in adults living with HIV in Asia. J. Acquir. Immune Defic. Syndr. 80, 301–307 (2019).

    Google Scholar 

  84. Ziegler, J. L., Bluming, A. Z. & Templeton, A. C. Burkitt’s lymphoma and tropical splenomegaly syndrome. Lancet 2, 317 (1971).

    CAS  Google Scholar 

  85. Martínez-Acitores de la Mata, D., Juanmartiñena, J. F., León Brito, H. & Campillo Arregui, A. Gastroduodenal Burkitt’s lymphoma: a rare cause of epigastric pain and diarrhea. Rev. Esp. Enferm. Dig. 114, 293–294 (2022).

    Google Scholar 

  86. Mbulaiteye, S. M. Safety and efficacy of rituximab in Malawi: a case for multicentre oncology clinical trials in Africa? Lancet Glob. Health 9, e895–e896 (2021).

    Google Scholar 

  87. Brown, R. J. et al. Lymphoma in acquired generalized lipodystrophy. Leuk. Lymphoma 57, 45–50 (2016).

    CAS  Google Scholar 

  88. Sartiano, G. P. Letter: Burkitt’s lymphoma in a patient treated for Hodgkin’s disease: one or two diseases? N. Engl. J. Med. 292, 1352 (1975).

    CAS  Google Scholar 

  89. Sakr, H. I., Buckley, K., Baiocchi, R., Zhao, W. J. & Hemminger, J. A. Erdheim Chester disease in a patient with Burkitt lymphoma: a case report and review of literature. Diagn. Pathol. 13, 94 (2018).

    Google Scholar 

  90. Salaverria, I. & Siebert, R. The gray zone between Burkitt’s lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J. Clin. Oncol. 29, 1835–1843 (2011).

    Google Scholar 

  91. Aukema, S. M. et al. Sequential karyotyping in Burkitt lymphoma reveals a linear clonal evolution with increase in karyotype complexity and a high frequency of recurrent secondary aberrations. Br. J. Haematol. 170, 814–825 (2015).

    CAS  Google Scholar 

  92. Wagener, R. et al. IG-MYC1 neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas. Blood 132, 2280–2285 (2018).

    CAS  Google Scholar 

  93. Aukema, S. M. et al. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma. Haematologica 99, 726–735 (2014).

    CAS  Google Scholar 

  94. Forero-Castro, M. et al. The presence of genomic imbalances is associated with poor outcome in patients with Burkitt lymphoma treated with dose-intensive chemotherapy including rituximab. Br. J. Haematol. 172, 428–438 (2016).

    CAS  Google Scholar 

  95. Scholtysik, R. et al. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica 95, 2047–2055 (2010).

    CAS  Google Scholar 

  96. Bouska, A. et al. Adult high-grade B-cell lymphoma with Burkitt lymphoma signature: genomic features and potential therapeutic targets. Blood 130, 1819–1831 (2017).

    CAS  Google Scholar 

  97. Capello, D. et al. Genome wide DNA-profiling of HIV-related B-cell lymphomas. Br. J. Haematol. 148, 245–255 (2010).

    CAS  Google Scholar 

  98. Reutter, K. et al. Reconstructing clonal evolution in relapsed and non-relapsed Burkitt lymphoma. Leukemia 35, 639–643 (2021).

    Google Scholar 

  99. Pasqualucci, L. et al. Genetics of follicular lymphoma transformation. Cell Rep. 6, 130–140 (2014).

    CAS  Google Scholar 

  100. Nadeu, F. et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat. Med. 28, 1662–1671 (2022).

    CAS  Google Scholar 

  101. López, C. et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat. Commun. 10, 1459 (2019).

    Google Scholar 

  102. Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Google Scholar 

  103. Lieber, M. R., Yu, K. & Raghavan, S. C. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair. 5, 1234–1245 (2006).

    CAS  Google Scholar 

  104. Levy, N. S., Malipiero, U. V., Lebecque, S. G. & Gearhart, P. J. Early onset of somatic mutation in immunoglobulin V(H) genes during the primary immune response. J. Exp. Med. 169, 2007–2019 (1989).

    CAS  Google Scholar 

  105. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    CAS  Google Scholar 

  106. Russell, L. J. et al. IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J. Clin. Oncol. 32, 1453–1462 (2014).

    Google Scholar 

  107. Akasaka, T. et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 109, 3451–3461 (2007).

    CAS  Google Scholar 

  108. Dyer, M. J. S. et al. Immunoglobulin heavy chain locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia: rare clinical curios or potent genetic drivers? Blood 115, 1490–1499 (2010).

    CAS  Google Scholar 

  109. Hilton, L. K. et al. The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH. Blood 134, 1528–1532 (2019).

    CAS  Google Scholar 

  110. Wagener, R. et al. Cryptic insertion of MYC exons 2 and 3 into the immunoglobulin heavy chain locus detected by whole genome sequencing in a case of “MYC-negative” Burkitt lymphoma. Haematologica 105, E202–E205 (2020).

    Google Scholar 

  111. Woroniecka, R. et al. Cryptic MYC insertions in Burkitt lymphoma: new data and a review of the literature. PLoS ONE 17, e0263980 (2022).

    CAS  Google Scholar 

  112. Hou, T. Y. & Kraus, W. L. Spirits in the material world: enhancer RNAs in transcriptional regulation. Trends Biochem. Sci. 46, 138–153 (2021).

    CAS  Google Scholar 

  113. Stasevich, E. M. et al. Enhancer RNA AL928768.3 from the IGH locus regulates MYC expression and controls the proliferation and chemoresistance of Burkitt lymphoma cells with IGH/MYC translocation. Int. J. Mol. Sci. 23, 4624 (2022).

    CAS  Google Scholar 

  114. Sanders, L. et al. A double hit CD10-negative B-cell lymphoma with t(3;8)(q27;q24) leading to juxtaposition of the BCL6 and MYC loci associated with good clinical outcome. Case Rep. Hematol. 2014, 120714 (2014).

    Google Scholar 

  115. Johnson, S. M. et al. Lymphomas with pseudo-double-hit BCL6-MYC translocations due to t(3;8)(q27;q24) are associated with a germinal center immunophenotype, extranodal involvement, and frequent BCL2 translocations. Hum. Pathol. 80, 192–200 (2018).

    CAS  Google Scholar 

  116. Ok, C. Y. & Medeiros, L. J. High-grade B-cell lymphoma: a term re-purposed in the revised WHO classification. Pathology 52, 68–77 (2020).

    CAS  Google Scholar 

  117. Piccaluga, P. P. et al. Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 117, 3596–3608 (2011).

    CAS  Google Scholar 

  118. Hummel, M. et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354, 2419–2430 (2006). This relevant study identifies a specific gene expression profile in BL compared with other germinal centre-derived B cell lymphoma and distinguishes subgroups in other types of mature aggressive B cell lymphoma resembling BL.

    CAS  Google Scholar 

  119. Klein, U., Klein, G., Ehlin-Henriksson, B., Rajewsky, K. & Kuppers, R. Burkitt’s lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes. Mol. Med. 1, 495–505 (1995).

    CAS  Google Scholar 

  120. Hochberg, D. et al. Demonstration of the Burkitt’s lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc. Natl Acad. Sci. USA 101, 239–244 (2004).

    CAS  Google Scholar 

  121. Busch, K. et al. Identification of two distinct MYC breakpoint clusters and their association with various IGH breakpoint regions in the t(8;14) translocations in sporadic Burkitt-lymphoma. Leukemia 21, 1739–1751 (2007).

    CAS  Google Scholar 

  122. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    Google Scholar 

  123. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    CAS  Google Scholar 

  124. Elgaafary, S. et al. Molecular characterization of Burkitt lymphoma in the breast or ovary. Leuk. Lymphoma 62, 2120–2129 (2021).

    CAS  Google Scholar 

  125. Roux, M. E., McWilliams, M., Phillips-Quagliata, J. M., Weisz-Carrington, P. & Lamm, M. E. Origin of IgA-secreting plasma cells in the mammary gland. J. Exp. Med. 146, 1311–1322 (1977).

    CAS  Google Scholar 

  126. Wilson, E. & Butcher, E. C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200, 805–809 (2004).

    CAS  Google Scholar 

  127. Low, E. N., Zagieboylo, L., Martino, B. & Wilson, E. IgA ASC accumulation to the lactating mammary gland is dependent on VCAM-1 and alpha4 integrins. Mol. Immunol. 47, 1608–1612 (2010).

    CAS  Google Scholar 

  128. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    CAS  Google Scholar 

  129. Frenzel, A. et al. Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood 115, 995–1005 (2010).

    CAS  Google Scholar 

  130. Michalak, E. M. et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16, 684–696 (2009).

    CAS  Google Scholar 

  131. Hoffman, B. & Liebermann, D. A. Apoptotic signaling by c-MYC. Oncogene 27, 6462–6472 (2008).

    CAS  Google Scholar 

  132. Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).

    CAS  Google Scholar 

  133. Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 44, 1316–1320 (2012). One of the first molecular studies using whole genome, exome and transcriptome analysis in BL and identifying inactivated ID3 alterations cooperating with IG::MYC translocation in BL lymphomagenesis.

    CAS  Google Scholar 

  134. Love, C. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

    CAS  Google Scholar 

  135. Kretzmer, H. et al. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat. Genet. 47, 1316–1325 (2015).

    CAS  Google Scholar 

  136. Man, J. et al. TCF3 protein was highly expressed in pediatric Burkitt lymphoma and predicts poor prognosis: a single-center study. Leuk. Lymphoma https://doi.org/10.1080/10428194.2022.2076852 (2022).

    Article  Google Scholar 

  137. Hernandez-Vargas, H. et al. Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines. Sci. Rep. 7, 5852 (2017).

    Google Scholar 

  138. Wilke, A. C. et al. SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood 139, 538–553 (2022).

    CAS  Google Scholar 

  139. Tagawa, H., Karube, K., Tsuzuki, S., Ohshima, K. & Seto, M. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 98, 1482–1490 (2007).

    CAS  Google Scholar 

  140. Psathas, J. N. et al. Lymphoid neoplasia: the Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop. Blood 122, 4220–4229 (2013).

    CAS  Google Scholar 

  141. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    CAS  Google Scholar 

  142. Olive, V. et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009).

    CAS  Google Scholar 

  143. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    CAS  Google Scholar 

  144. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  Google Scholar 

  145. Peled, J. U. et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 20, 631–646 (2010).

    CAS  Google Scholar 

  146. Sánchez-Beato, M. et al. Overall survival in aggressive B-cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27. Am. J. Pathol. 159, 205–213 (2001).

    Google Scholar 

  147. Coronel, L. et al. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Res. 49, 7437–7456 (2021).

    CAS  Google Scholar 

  148. Miyazaki, K. et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem. Biophys. Res. Commun. 308, 106–113 (2003).

    CAS  Google Scholar 

  149. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    CAS  Google Scholar 

  150. Zhou, M. et al. An investigation into the human serum ‘interactome’. Electrophoresis 25, 1289–1298 (2004).

    CAS  Google Scholar 

  151. Giulino-Roth, L. et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 120, 5181–5184 (2012).

    CAS  Google Scholar 

  152. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    CAS  Google Scholar 

  153. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    CAS  Google Scholar 

  154. Rohde, M. et al. Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols. Genes Chromosomes Cancer 53, 911–916 (2014).

    CAS  Google Scholar 

  155. Muppidi, J. R. et al. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature 516, 254–258 (2014).

    CAS  Google Scholar 

  156. Wester, H. J. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 5, 618–630 (2015).

    CAS  Google Scholar 

  157. Beider, K. et al. Targeting the CD20 and CXCR4 pathways in non-Hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19, 3495–3507 (2013).

    CAS  Google Scholar 

  158. Calandra, G., Bridger, G. & Fricker,S. CXCR4 in clinical hematology. Curr. Top. Microbiol. Immunol. 341, 173–191 (2010).

    CAS  Google Scholar 

  159. O’Callaghan, K. et al. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. Blood 119, 1717–1725 (2012).

    Google Scholar 

  160. Hu, Y. et al. Enhancement of the anti-tumor activity of therapeutic monoclonal antibodies by CXCR4 antagonists. Leuk. Lymphoma 53, 130–138 (2012).

    CAS  Google Scholar 

  161. Burkhardt, B. et al. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age. Nat. Commun. 13, 3881 (2022).

    CAS  Google Scholar 

  162. De-Thé, G. et al. Epidemiological evidence for causal relationship between Epstein–Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274, 756–761 (1978).

    Google Scholar 

  163. Asito, A. S. Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt’s lymphoma patients: a case control study. Infect. Agent. Cancer 5, 13 (2010).

    Google Scholar 

  164. Aguilar, R. Assessment of the combined effect of Epstein–Barr virus and Plasmodium falciparum infections on endemic Burkitt lymphoma using a multiplex serological approach. Front. Immunol. 8, 1284 (2017).

    Google Scholar 

  165. Coghill, A. E. et al. The association between the comprehensive Epstein–Barr virus serologic profile and endemic Burkitt lymphoma. Cancer Epidemiol. Biomark. Prev. 29, 57–62 (2020).

    CAS  Google Scholar 

  166. Hausen, H. Z. et al. Epstein–Barr virus in Burkitt’s lymphoma and nasopharyngeal carcinoma: EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228, 1056–1058 (1970).

    Google Scholar 

  167. Olweny, C. L. M. et al. Epstein–Barr virus genome studies in Burkitt’s and non-Burkitt’s lymphomas in Uganda. J. Natl Cancer Inst. 58, 1191–1196 (1977).

    CAS  Google Scholar 

  168. Neri, A. et al. Epstein–Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77, 1092–1095 (1991). This paper demonstrated that EBV was clonal in BL cells and that EBV infection was not secondary to tumorigenesis.

    CAS  Google Scholar 

  169. Kennedy, G., Komano, J. & Sugden, B. Epstein–Barr virus provides a survival factor to Burkitt’s lymphomas. Proc. Natl Acad. Sci. USA 100, 14269–14274 (2003).

    CAS  Google Scholar 

  170. Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y. & Takada, K. Isolation of Epstein–Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68, 6069–6073 (1994).

    CAS  Google Scholar 

  171. Price, A. M. Epstein–Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. Elife 6, e22509 (2017).

    Google Scholar 

  172. Paschos, K. et al. Epstein–Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog. 5, e1000492 (2009).

    Google Scholar 

  173. Kelly, G. L. et al. Different patterns of Epstein–Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. J. Virol. 87, 2882–2894 (2013).

    CAS  Google Scholar 

  174. Kelly, G. L., Milner, A. E., Baldwin, G. S., Bell, A. I. & Rickinson, A. B. Three restricted forms of Epstein–Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 103, 14935–14940 (2006).

    CAS  Google Scholar 

  175. Watanabe, A. et al. Epstein-Barr virus-encoded Bcl-2 homologue functions as a survival factor in Wp-restricted Burkitt lymphoma cell line P3HR-1. J. Virol. 84, 2893–2901 (2010).

    CAS  Google Scholar 

  176. Kelly, G. L. An Epstein–Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog. 5, e1000341 (2009).

    Google Scholar 

  177. Vereide, D. T. et al. Epstein–Barr virus maintains lymphomas via its miRNAs. Oncogene 33, 1258–1264 (2014).

    CAS  Google Scholar 

  178. Kaymaz, Y. et al. Epstein–Barr virus genomes reveal population structure and type 1 association with endemic Burkitt lymphoma. J. Virol. 94, e02007-19 (2020).

    Google Scholar 

  179. Bristol, J. A. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 14, e1007179 (2018).

    Google Scholar 

  180. Mutalima, N. et al. Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS ONE 3, e2505 (2008).

    Google Scholar 

  181. Moormann, A. M. & Bailey, J. A. Malaria – how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis. Curr. Opin. Virol. 20, 78–84 (2016).

    Google Scholar 

  182. Summerauer, A. M. et al. Epstein–Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma. Eur. J. Immunol. https://doi.org/10.1002/eji.202249820 (2022).

    Article  Google Scholar 

  183. Hübschmann, D. et al. Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia 35, 2002–2016 (2021).

    Google Scholar 

  184. Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/lgH translocations. Cell 135, 1028–1038 (2008).

    CAS  Google Scholar 

  185. Epeldeguia, M. & Martínez-Mazaa, O. Immune activation: contribution to AIDS-associated non-Hodgkin lymphoma. Immunopathol. Dis. Ther. 6, 79–90 (2015).

    Google Scholar 

  186. Torgbor, C. A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog. 10, e1004170 (2014).

    Google Scholar 

  187. Wilmore, J. R. et al. AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein–Barr virus. Int. J. Cancer 136, 1371–1380 (2015).

    CAS  Google Scholar 

  188. Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of Epstein–Barr virus-induced disease. Annu. Rev. Immunol. 33, 787–821 (2015).

    CAS  Google Scholar 

  189. Dantuma, N. P., Sharipo, A. & Masucci, M. G. Avoiding proteasomal processing: the case of EBNA1. Curr. Top. Microbiol. Immunol. 269, 23–36 (2002).

    CAS  Google Scholar 

  190. Münz, C. et al. Human CD4+ T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J. Exp. Med. 191, 1649–1660 (2000).

    Google Scholar 

  191. Moormann, A. M. et al. Children with endemic Burkitt lymphoma are deficient in EBNAl-specific IFN-γ T cell responses. Int. J. Cancer 124, 1721–1726 (2009).

    CAS  Google Scholar 

  192. Ma, S.-D. et al. PD-1/CTLA-4 blockade inhibits Epstein–Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 12, e1005642 (2016).

    Google Scholar 

  193. Masucci, M. G. et al. Allele-specific down-regulation of MHC class I antigens in Burkitt lymphoma lines. Cell. Immunol. 120, 396–400 (1989).

    CAS  Google Scholar 

  194. Hutcheson, R. L., Chakravorty, A. & Sugden, B. Burkitt lymphomas evolve to escape dependencies on Epstein-Barr virus.Front. Cell. Infect. Microbiol. 10, 606412 (2021).

    Google Scholar 

  195. Mundo, L. et al. Frequent traces of EBV infection in Hodgkin and non-Hodgkin lymphomas classified as EBV-negative by routine methods: expanding the landscape of EBV-related lymphomas. Mod. Pathol. 33, 2407–2421 (2020).

    CAS  Google Scholar 

  196. Bellan, C. et al. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood 106, 1031–1036 (2005).

    CAS  Google Scholar 

  197. Fowler, N. H. et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 101, 531–540 (2016).

    CAS  Google Scholar 

  198. Scott, D. W. & Gascoyne, R. D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer 14, 517–534 (2014).

    CAS  Google Scholar 

  199. Granai, M. et al. Immune landscape in Burkitt lymphoma reveals M2-macrophage polarization and correlation between PD-L1 expression and non-canonical EBV latency program. Infect. Agent. Cancer 15, 28 (2020).

    CAS  Google Scholar 

  200. Granai, M. et al. Burkitt lymphoma with a granulomatous reaction: an M1/Th1-polarised microenvironment is associated with controlled growth and spontaneous regression. Histopathology https://doi.org/10.1111/his.14391 (2021).

    Article  Google Scholar 

  201. Schmiester, M. et al. Acute left ventricular insufficiency in a Burkitt Lymphoma patient with myocardial involvement and extensive local tumor cell lysis: a case report. BMC Cardiovasc. Disord. 22, 31 (2022).

    Google Scholar 

  202. Ryan, D. P., Friedmann, A. M., Schmitz, M. D. & Ryan, R. J. H. Case records of the Massachusetts General Hospital. Case 11-2013. A 4-year-old boy with fever and abdominal pain. N. Engl. J. Med. 368, 1435–1444 (2013).

    CAS  Google Scholar 

  203. Pui, C. H. et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J. Clin. Oncol. 19, 697–704 (2001).

    CAS  Google Scholar 

  204. Dunleavy, K., Little, R. F. & Wilson, W. H. Update on Burkitt lymphoma. Hematol./Oncol. Clin. North. Am. 30, 1333–1343 (2016).

    Google Scholar 

  205. Magrath, I. T. African Burkitt’s lymphoma: history, biology, clinical features, and treatment. J. Pediatr. Hematol. Oncol. 13, 222–246 (1991).

    CAS  Google Scholar 

  206. Kelly, J. L. et al. Outcomes of patients with Burkitt lymphoma older than age 40 treated with intensive chemotherapeutic regimens. Clin. Lymphoma Myeloma 9, 307–310 (2009).

    CAS  Google Scholar 

  207. Blum, K. A., Lozanski, G. & Byrd, J. C. Adult Burkitt leukemia and lymphoma. Blood 104, 3009–3020 (2004).

    CAS  Google Scholar 

  208. Zayac, A. S. et al. Outcomes of Burkitt lymphoma with central nervous system involvement: Evidence from a large multicenter cohort study. Haematologica 106, 1932–1942 (2021).

    CAS  Google Scholar 

  209. Salzburg, J. et al. Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Münster Group report. J. Clin. Oncol. 25, 3915–3922 (2007).

    Google Scholar 

  210. Engels, E. A., Pfeiffer, R. M., Landgren, O. & Moore, R. D. Immunologic and virologic predictors of AIDS-related non-Hodgkin lymphoma in the highly active antiretroviral therapy era. J. Acquir. Immune Defic. Syndr. 54, 78–84 (2010).

    CAS  Google Scholar 

  211. Hecht, J. L. & Aster, J. C. Molecular biology of Burkitt’s lymphoma. J. Clin. Oncol. 18, 3707–3721 (2000).

    CAS  Google Scholar 

  212. Haralambieva, E. et al. Florid granulomatous reaction in Epstein–Barr virus-positive nonendemic Burkitt lymphomas: report of four cases. Am. J. Surg. Pathol. 28, 379–383 (2004).

    Google Scholar 

  213. Hollingsworth, H. C., Longo, D. L. & Jaffe, E. S. Small noncleaved cell lymphoma associated with florid epithelioid granulomatous response: a clinicopathologic study of seven patients. Am. J. Surg. Pathol. 17, 51–59 (1993).

    CAS  Google Scholar 

  214. Lai, R., Weiss, L. M., Chang, K. L. & Arber, D. A. Frequency of CD43 expression in non-Hodgkin lymphoma: a survey of 742 cases and further characterization of rare CD43+ follicular lymphomas. Am. J. Clin. Pathol. 111, 488–494 (1999).

    CAS  Google Scholar 

  215. Barth, T. F. E. et al. Homogeneous immunophenotype and paucity of secondary genomic aberrations are distinctive features of endemic but not of sporadic Burkitt’s lymphoma and diffuse large B-cell lyphoma with MYC rearrangement. J. Pathol. 203, 940–945 (2004).

    CAS  Google Scholar 

  216. Rodig, S. J., Vergilio, J. A., Shahsafaei, A. & Dorfman, D. M. Characteristic expression patterns of TCL1, CD38, and CD44 identify aggressive lymphomas harboring a MYC translocation. Am. J. Surg. Pathol. 32, 113–122 (2008).

    Google Scholar 

  217. Naresh, K. N. et al. Diagnosis of Burkitt lymphoma using an algorithmic approach – applicable in both resource-poor and resource-rich countries. Br. J. Haematol. 154, 770–776 (2011).

    Google Scholar 

  218. Menter, T., Gasser, A., Juskevicius, D., Dirnhofer, S. & Tzankov, A. Diagnostic utility of the germinal center-associated markers GCET1, HGAL, and LMO2 in hematolymphoid neoplasms. Appl. Immunohistochem. Mol. Morphol. 23, 491–498 (2015).

    CAS  Google Scholar 

  219. Ambrosio, M. R. et al. The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin. PLoS ONE 7, e44315 (2012).

    CAS  Google Scholar 

  220. Cardoso, C. C. The importance of CD39, CD43, CD81, and CD95 expression for differentiating B cell lymphoma by flow cytometry. Cytometry B Clin. Cytom. 94, 451–458 (2018).

    CAS  Google Scholar 

  221. Tsagarakis, N. J. et al. Contribution of immunophenotype to the investigation and differential diagnosis of Burkitt lymphoma, double-hit high-grade B-cell lymphoma, and single-hit MYC-rearranged diffuse large B-cell lymphoma. Cytometry B Clin. Cytom. 98, 412–420 (2020).

    CAS  Google Scholar 

  222. Mandelker, D. L., Dorfman, D. M., Li, B. & Pozdnyakova, O. Antigen expression patterns of MYC-rearranged versus non-MYC-rearranged B-cell lymphomas by flow cytometry. Leuk. Lymphoma 55, 2592–2596 (2014).

    CAS  Google Scholar 

  223. Naresh, K. N. et al. A refined approach to the diagnosis of Burkitt lymphoma in a resource‐poor setting. Histopathology 80, 743–745 (2022).

    Google Scholar 

  224. Orem, J., Mbidde, E. K. & Weiderpass, E. Current investigations and treatment of Burkitt’s lymphoma in Africa. Trop. Doct. 38, 7–11 (2008).

    Google Scholar 

  225. Weiderpass, E. et al. Agreement between diagnoses of childhood lymphoma assigned in Uganda and by an international reference laboratory. Clin. Epidemiol. 4, 339–347 (2012).

    Google Scholar 

  226. Okello, C. D. et al. Haematological malignancies in sub-Saharan Africa: east Africa as an example for improving care. Lancet Haematol. 8, e756–e769 (2021).

    Google Scholar 

  227. Ambrosio, M. R. et al. MYC protein expression scoring and its impact on the prognosis of aggressive B-cell lymphoma patients. Haematologica 104, e25–e28 (2019).

    CAS  Google Scholar 

  228. Khoury, J. D. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36, 1703–1719 (2022).

    Google Scholar 

  229. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 100 1–441 (IARC, 2012).

  230. Bouvard, V. et al. Carcinogenicity of malaria and of some polyomaviruses. Lancet Oncol. 13, 339–340 (2012).

    Google Scholar 

  231. de The, G. Viruses and human cancers: challenges for preventive strategies. Environ. Health Perspect. 103 (Suppl. 8), 269–273 (1995).

    Google Scholar 

  232. Minard-Colin, V. et al. Rituximab for high-risk, mature B-cell non-Hodgkin’s lymphoma in children. N. Engl. J. Med. 382, 2207–2219 (2020).

    CAS  Google Scholar 

  233. Parkin, D. M. et al. Stage at diagnosis and survival by stage for the leading childhood cancers in three populations of sub-Saharan Africa. Int. J. Cancer 148, 2685–2691 (2021).

    CAS  Google Scholar 

  234. Wolitz, R., Emanuel, E. & Shah, S. Rethinking the responsiveness requirement for international research. Lancet 374, 847–849 (2009).

    Google Scholar 

  235. Mbulaiteye, S. M. Burkitt lymphoma: beyond discoveries. Infect. Agents Cancer 8, 35 (2013).

    Google Scholar 

  236. Lee, A. W. M. et al. A systematic review and recommendations on the use of plasma EBV DNA for nasopharyngeal carcinoma. Eur. J. Cancer 153, 109–122 (2021).

    CAS  Google Scholar 

  237. Xian, R. R. et al. Plasma EBV DNA: a promising diagnostic marker for endemic Burkitt lymphoma. Front. Oncol. 11, 804083 (2021).

    Google Scholar 

  238. Mbulaiteye, S. M. et al. High levels of Epstein–Barr virus DNA in saliva and peripheral blood from Ugandan mother–child pairs. J. Infect. Dis. 193, 422–426 (2006).

    Google Scholar 

  239. Westmoreland, K. D. et al. Plasma Epstein–Barr virus DNA for pediatric Burkitt lymphoma diagnosis, prognosis and response assessment in Malawi. Int. J. Cancer 140, 2509–2516 (2017).

    CAS  Google Scholar 

  240. Donati, D. et al. Clearance of circulating Epstein–Barr virus DNA in children with acute malaria after antimalaria treatment. J. Infect. Dis. 193, 971–977 (2006).

    CAS  Google Scholar 

  241. Dave, S. S. et al. Molecular diagnosis of Burkitt’s lymphoma. N. Engl. J. Med. 354, 2431–2442 (2006).

    CAS  Google Scholar 

  242. Lv, J. et al. Liquid biopsy tracking during sequential chemo-radiotherapy identifies distinct prognostic phenotypes in nasopharyngeal carcinoma. Nat. Commun. 10, 3941 (2019).

    Google Scholar 

  243. Gardner, A. et al. Simplified detection of Epstein-Barr virus for diagnosis of endemic Burkitt lymphoma. Blood Adv. 6, 3650–3654 (2022).

    CAS  Google Scholar 

  244. Murphy, S. B. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin. Oncol. 7, 332–339 (1980).

    CAS  Google Scholar 

  245. Rosolen, A. et al. Revised international pediatric non-Hodgkin lymphoma staging system. J. Clin. Oncol. 33, 2112–2118 (2015).

    Google Scholar 

  246. Olszewski, A. J. et al. Burkitt lymphoma international prognostic index. J. Clin. Oncol. 39, 1129–1138 (2021).

    CAS  Google Scholar 

  247. Gopal, S. & Gross, T. G. How I treat Burkitt lymphoma in children, adolescents, and young adults in sub-Saharan Africa. Blood 132, 254–263 (2018). A concise review on the treatment approaches for Burkitt lymphoma in resource-restricted areas of the world such as sub-Saharan Africa.

    CAS  Google Scholar 

  248. Orem, J. et al. Clinical characteristics, treatment and outcome of childhood Burkitt’s lymphoma at the Uganda Cancer Institute. Trans. R. Soc. Trop. Med. Hyg. 105, 717–726 (2011).

    Google Scholar 

  249. Geser, A., Brubaker, G. & Draper, C. C. Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am. J. Epidemiol. 129, 740–752 (1989).

    CAS  Google Scholar 

  250. Maclean, K. H., Dorsey, F. C., Cleveland, J. L. & Kastan, M. B. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88 (2008).

    CAS  Google Scholar 

  251. Snow, R. W. et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550, 515–518 (2017).

    CAS  Google Scholar 

  252. Howlader, N., Shiels, M. S., Mariotto, A. B. & Engels, E. A. Contributions of HIV to non-Hodgkin lymphoma mortality trends in the United States. Cancer Epidemiol. Biomark. Prev. 25, 1289–1296 (2016).

    Google Scholar 

  253. Jacobson, C. & La Casce, A. How I treat Burkitt lymphoma in adults. Blood 124, 2913–2920 (2014).

    CAS  Google Scholar 

  254. Casulo, C. & Friedberg, J. Treating Burkitt lymphoma in adults. Curr. Hematol. Malig. Rep. 10, 266–271 (2015).

    Google Scholar 

  255. Woessmann, W. et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood 105, 948–958 (2005).

    CAS  Google Scholar 

  256. Meinhardt, A. et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J. Clin. Oncol. 28, 3115–3121 (2010).

    CAS  Google Scholar 

  257. Goldman, S. et al. A dose substitution of anthracycline intensity with dose-dense rituximab in children and adolescents with good-risk mature B-cell lymphoma. Leukemia 35, 2994–2997 (2021).

    CAS  Google Scholar 

  258. Magrath, I. et al. Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J. Clin. Oncol. 14, 925–934 (1996). A single institution study in children and young adults with the highly dose-intenstive regimen CODOX-M/IVAC for Burkitt lymphoma that demonstrated very high rates of complete response.

    CAS  Google Scholar 

  259. Murphy, S. B. et al. Results of treatment of advanced-stage Burkitt’s lymphoma and B cell (SIg+) acute lymphoblastic leukemia with high-dose fractionated cyclophosphamide and coordinated high-dose methotrexate and cytarabine. J. Clin. Oncol. 4, 1732–1739 (1986).

    CAS  Google Scholar 

  260. Hoelzer, D. et al. Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood 124, 3870–3879 (2014). A large multicenter prospective study demonstrating the safety and efficacy of adding rituximab to highly dose-intensive chemotherapy in children and adults with Burkitt lymphoma and Burkitt-like leukaemia.

    CAS  Google Scholar 

  261. Burkhardt, B. et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia 25, 153–160 (2011).

    CAS  Google Scholar 

  262. Chamuleau, M. et al. R-CODOX-M/R-IVAC versus dose-adjusted (DA)-EPOCH-R in patients with newly diagnosed high-risk Burkitt lymphoma; first results of a multi-center randomized Hovon/Sakk trial [abstract LB2370]. Presented at the European Hematology Association Congress EHA2022 (2022).

  263. Magrath, I. Lessons from clinical trials in African Burkitt lymphoma. Curr. Opin. Oncol. 21, 462–468 (2009).

    Google Scholar 

  264. Hesseling, P. B. et al. The Cameroon 2008 Burkitt lymphoma protocol: improved event-free survival with treatment adapted to disease stage and the response to induction therapy. Pediatr. Hematol. Oncol. 29, 119–129 (2012).

    CAS  Google Scholar 

  265. Kimani, S. et al. Safety and efficacy of rituximab in patients with diffuse large B-cell lymphoma in Malawi: a prospective, single-arm, non-randomised phase 1/2 clinical trial. Lancet Glob. Health 9, e1008–e1016 (2021).

    Google Scholar 

  266. Hesseling, P. B., Kouya, F., Katayi, E., Mbah, G. & Wharin, P. Burkitt’s lymphoma: the prevalence of HIV/AIDS and the outcome of treatment. South Afr. Med. J. 108, 84–85 (2018).

    CAS  Google Scholar 

  267. Roschewski, M., Staudt, L. M. & Wilson, W. H. Burkitt’s lymphoma. N. Engl. J. Med. 22, 1111–1122 (2022).

    Google Scholar 

  268. Attallah-Yunes, S. A., Murphy, D. J. & Noy, A. HIV-associated Burkitt lymphoma. Lancet Haematol. 7, e594–e600 (2020).

    Google Scholar 

  269. Pearson, A. D. J. et al. ACCELERATE and European Medicine Agency Paediatric Strategy Forum for medicinal product development for mature B-cell malignancies in children. Eur. J. Cancer 110, 74–85 (2019).

    Google Scholar 

  270. Griffin, T. C. et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 52, 177–181 (2009).

    Google Scholar 

  271. Burke, G. A. A. et al. Ibrutinib plus CIT for R/R mature B-NHL in children (SPARKLE trial): initial safety, pharmacokinetics, and efficacy. Leukemia 34, 2271–2275 (2020).

    Google Scholar 

  272. Fujita, N. et al. The role of hematopoietic stem cell transplantation with relapsed or primary refractory childhood B-cell non-Hodgkin lymphoma and mature B-cell leukemia: a retrospective analysis of enrolled cases in Japan. Pediatr. Blood Cancer 51, 188–192 (2008).

    Google Scholar 

  273. Cairo, M. et al. Overall survival of children and adolescents with mature B cell non-Hodgkin lymphoma who had refractory or relapsed disease during or after treatment with FAB/LMB 96: a report from the FAB/LMB 96 Study Group. Br. J. Haematol. 182, 859–869 (2018).

    CAS  Google Scholar 

  274. Kim, H. et al. Clinical outcome of relapsed or refractory Burkitt lymphoma and mature B-cell lymphoblastic leukemia in children and adolescents. Cancer Res. Treat. 46, 358–365 (2014).

    CAS  Google Scholar 

  275. Anoop, P. et al. Outcome of childhood relapsed or refractory mature B-cell non-Hodgkin lymphoma and acute lymphoblastic leukemia. Leuk. Lymphoma 53, 1882–1888 (2012).

    CAS  Google Scholar 

  276. Jourdain, A. et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective “Lymphomes Malins B” protocols. A Société Française des Cancers de l’Enfant study. Haematologica 100, 810–817 (2015).

    Google Scholar 

  277. Rigaud, C. et al. Outcome of relapse in children and adolescents with B-cell non-Hodgkin lymphoma and mature acute leukemia: a report from the French LMB study. Pediatr. Blood Cancer 66, e27873 (2019).

    Google Scholar 

  278. Woessmann, W. et al. Progressive or relapsed Burkitt lymphoma or leukemia in children and adolescents after BFM-type first-line therapy. Blood 135, 1124–1132 (2020).

    Google Scholar 

  279. Burkhardt, B. et al. Treatment and outcome analysis of 639 relapsed non-Hodgkin lymphomas in children and adolescents and resulting treatment recommendations. Cancers (Basel) 13, 2075 (2021).

    CAS  Google Scholar 

  280. Grigg, A. & Ritchie, D. Graft-versus-lymphoma effects: clinical review, policy proposals, and immunobiology. Biol. Blood Marrow Transplant. 10, 579–590 (2004).

    CAS  Google Scholar 

  281. Petersen, S. L. Alloreactivity as therapeutic principle in the treatment of hematologic malignancies. Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Dan. Med. Bull. 54, 112–139 (2007).

    CAS  Google Scholar 

  282. Schmitz, N., Dreger, P., Glass, B. & Sureda, A. Allogeneic transplantation in lymphoma: current status. Haematologica 92, 1533–1548 (2007).

    Google Scholar 

  283. Giulino-Roth, L. et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr. Blood Cancer 60, 2018–2024 (2013).

    Google Scholar 

  284. Okur, F. V. & Krance, R. Stem cell transplantation in childhood non-Hodgkin’s lymphomas. Curr. Hematol. Malig. Rep. 5, 192–199 (2010).

    Google Scholar 

  285. Ehrhardt, M. J., Hochberg, J., Bjornard, K. L. & Brinkman, T. M. Long-term survivors of childhood, adolescent and young adult non-Hodgkin lymphoma. Br. J. Haematol. 185, 1099–1110 (2019).

    Google Scholar 

  286. Bluhm, E. C. et al. Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. Blood 111, 4014–4021 (2008).

    CAS  Google Scholar 

  287. Ehrhardt, M. J. et al. Neurocognitive, psychosocial, and quality-of-life outcomes in adult survivors of childhood non-Hodgkin lymphoma. Cancer 124, 417–425 (2018).

    CAS  Google Scholar 

  288. Burckhardt, C. S. & Anderson, K. L. The Quality of Life Scale (QOLS): reliability, validity, and utilization. Health Qual. Life Outcomes 1, 60 (2003).

    Google Scholar 

  289. Klassen, A. F., Anthony, S. J., Khan, A., Sung, L. & Klaassen, R. Identifying determinants of quality of life of children with cancer and childhood cancer survivors: a systematic review. Supportive Care Cancer 19, 1275–1287 (2011).

    Google Scholar 

  290. Hu, Y. et al. Quality of life and related demographic factors in long-term survivors of childhood non-Hodgkin’s lymphoma. Chin. J. Contemp. Pediatr. 23, 882–888 (2021).

    Google Scholar 

  291. Bottomley, A. The cancer patient and quality of life. Oncologist 7, 120–125 (2002).

    Google Scholar 

  292. Westmoreland, K. et al. Translation, psychometric validation, and baseline results of the Patient-Reported Outcomes Measurement Information System (PROMIS) pediatric measures to assess health-related quality of life of patients with pediatric lymphoma in Malawi. Pediatr. Blood Cancer 65, e27353 (2018).

    Google Scholar 

  293. Ribrag, V. et al. Rituximab and dose-dense chemotherapy for adults with Burkitt’s lymphoma: a randomised, controlled, open-label, phase 3 trial. Lancet 387, 2402–2411 (2016).

    CAS  Google Scholar 

  294. Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens. Health 38, 48–60 (2020).

    Google Scholar 

  295. Valeri, F. & Endres, K. How biological sex of the host shapes its gut microbiota. Front. Neuroendocrinol. 61, 100912 (2021).

    CAS  Google Scholar 

  296. Wang, J. J. et al. Sex differences in colonization of gut microbiota from a man with short-term vegetarian and inulin-supplemented diet in germ-free mice. Sci. Rep. 6, 36137 (2016).

    CAS  Google Scholar 

  297. Ruiss, R. et al. A virus-like particle-based Epstein–Barr virus vaccine. J. Virol. 85, 13105–13113 (2011).

    CAS  Google Scholar 

  298. Ogembo, J. G. A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice. J. Transl Med. 13, 50 (2015).

    Google Scholar 

  299. Perez, E. M., Foley, J., Tison, T., Silva, R. & Ogembo, J. G. Novel Epstein–Barr virus-like particles incorporating gH/gLEBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice. Oncotarget 8, 19255–19273 (2017).

    Google Scholar 

  300. Escalante, G. M. A pentavalent Epstein–Barr virus-like particle vaccine elicits high titers of neutralizing antibodies against Epstein–Barr virus infection in immunized rabbits. Vaccines (Basel) 8, 169 (2020).

    CAS  Google Scholar 

  301. Zhang, T. Y. et al. A unique B cell epitope-based particulate vaccine shows effective suppression of hepatitis B surface antigen in mice. Gut 69, 343–354 (2020).

    CAS  Google Scholar 

  302. Cui, X. & Snapper, C. M. Epstein Barr virus: development of vaccines and immune cell therapy for EBV-associated diseases. Front. Immunol. 12, 734471 (2021).

    CAS  Google Scholar 

  303. Chen, H., Liu, H. & Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 3, 5 (2018).

    Google Scholar 

  304. Llombart, V. & Mansour, M. R. Therapeutic targeting of “undruggable” MYC. EBioMedicine 75, 103756 (2022).

    CAS  Google Scholar 

  305. Madden, S. K., de Araujo, A. D., Gerhardt, M., Fairlie, D. P. & Mason, J. M. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer 20, 3 (2021).

    Google Scholar 

  306. Bray, F. et al. (eds) Cancer Incidence in Five Continents Vol. XI. IARC Scientific Publication No. 166 (IARC, 2017).

Download references

Acknowledgements

The studies of the authors on Burkitt lymphoma have been supported by the German Ministry of Science and Education (BMBF) in the framework of the ICGC MMML-Seq (01KU1002A-J), ICGC DE-Mining (01KU1505G and 01KU1505E), and MMML-MYC-SYS (036166B) projects and the KinderKrebsInitiative Buchholz Holm-Seppensen. This work was also supported by the BMBF-funded Heidelberg Center for Human Bioinformatics (HD-HuB) within the German Network for Bioinformatics Infrastructure (de.NBI) (031A537A, 031A537C) and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services contracts HHSN261201100063C and HHSN261201100007I. C.L. is supported by postdoctoral Beatriu de Pinós from Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and by the Marie Sklodowska-Curie COFUND program from H2020 (2018-BP-00055). B.B. and the NHL-BFM study group are supported by the German Cancer Aid and the Deutsche Kinderkrebsstiftung. The authors thank J. Ferlay of the International Agency for Research on Cancer for assisting with access to data files. The authors thank M. D. Parkin, B. Liu and all of the registries, and members of the African Cancer Registry Network (AFRCN) (http://afcrn.org/index.php/membership/membership-list), for giving them their BL data from Africa for 2018. The authors thank M. Hyer, E. Carver and J. Lyman of Information Management Systems (Rockville, MD) for preparing the files for analysis and drawing the maps.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.S. and C.L.); Epidemiology (S.M.M. and M.D.O.); Mechanisms/pathophysiology (C.L. and R.R.); Diagnosis, screening and prevention (J.K.C.C., L.L. and S.M.M.); Management (B.B., J.O. and M.R.); Quality of life (B.B., J.O. and M.R.); Outlook (R.S. and C.L.); Overview of the Primer (R.S. and C.L.).

Corresponding author

Correspondence to Reiner Siebert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks A. Gloghini, M. A. Piris, L. Sterlin Young and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C., Burkhardt, B., Chan, J.K.C. et al. Burkitt lymphoma. Nat Rev Dis Primers 8, 78 (2022). https://doi.org/10.1038/s41572-022-00404-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00404-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer