Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and interpreting antinuclear antibody tests in systemic rheumatic diseases

Abstract

Antinuclear antibodies (ANAs) are valuable laboratory markers to screen for and support the diagnosis of various rheumatic diseases (known as ANA-associated rheumatic diseases). The importance of ANA testing has been reinforced by the inclusion of ANA positivity as an entry criterion in the 2019 systemic lupus erythematosus classification criteria. In addition, specific ANAs (such as antibodies to Sm, double-stranded DNA (dsDNA), SSA/Ro60, U1RNP, topoisomerase I, centromere protein B (CENPB), RNA polymerase III and Jo1) are included in classification criteria for other rheumatic diseases. A number of techniques are available for detecting antibodies to a selection of clinically relevant antigens (such as indirect immunofluorescence and solid phase assays). In this Review, we discuss the advantages and limitations of these techniques, as well as the clinical relevance of the differences between the techniques, to provide guidance in understanding and interpreting ANA test results. Such understanding not only necessitates insight into the sensitivity and specificity of each assay, but also into the importance of the disease context and antibody level. We also highlight the value of titre-specific information (such as likelihood ratios).

Key points

  • Clinicians should be aware of the type of assay used for antinuclear antibody detection and the advantages and disadvantages of using immunofluorescence (IIF) assays and solid phase immunoassays (SPAs) for screening.

  • IIF assays can vary in performance between different laboratories, whereas the performance of fully automated assays is more consistent.

  • The performance characteristics of IIF assays and SPAs are disease-dependent; IIF assays are more sensitive than SPA for screening for systemic sclerosis (and systemic lupus erythematosus) but not Sjögren syndrome.

  • For both IIF assays and SPAs, no single cut-off has both good sensitivity and good specificity; combining IIF with SPA has the highest clinical value.

  • A dichotomous interpretation of test results overlooks important information at the antibody level; this limitation of antinuclear antibody testing can be overcome by reporting test result-specific likelihood ratios.

  • The differences among the assays are not only important considerations when screening and diagnosing patients, but also when using these assays for classifying patients (for example, for clinical trial enrolment).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of methods used for ANA detection.

Similar content being viewed by others

References

  1. Mahler, M., Meroni, P. L., Bossuyt, X. & Fritzler, M. J. Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. J. Immunol. Res. 2014, 315179 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Meroni, P. L. & Schur, P. H. ANA screening: an old test with new recommendations. Ann. Rheum. Dis. 69, 1420–1422 (2010).

    CAS  PubMed  Google Scholar 

  3. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1151–1159 (2019).

    PubMed  Google Scholar 

  4. Shiboski, C. H. et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 76, 9–16 (2017).

    PubMed  Google Scholar 

  5. van den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann. Rheum. Dis. 72, 1747–1755 (2013).

    PubMed  Google Scholar 

  6. Alarcon-Segovia, D. & Villareal, M. Classification and diagnostic criteria for mixed connective tissue disease. in Mixed connective tissue diseases and antinuclear antibodies (eds Kasukawa, R. & Sharp, G. C.) 33–40 (Elsevier, 1987).

  7. Lundberg, I. E. et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 76, 1955–1964 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Damoiseaux, J. et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 78, 879–889 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, E. K. et al. Report of the First International Consensus on Standardized Nomenclature of Antinuclear Antibody HEp-2 Cell Patterns 2014–2015. Front. Immunol. 6, 412 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Cavazzana, I. et al. Evaluation of a novel particle-based assay for detection of autoantibodies in idiopathic inflammatory myopathies. J. Immunol. Methods 474, 112661 (2019).

    CAS  PubMed  Google Scholar 

  11. Agmon-Levin, N. et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 73, 17–23 (2014).

    CAS  PubMed  Google Scholar 

  12. Tan, E. M. et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 40, 1601–1611 (1997).

    CAS  PubMed  Google Scholar 

  13. Leuchten, N. et al. Detection of antinuclear antibodies for classifying systemic lupus erythematosus: a systematic literature review and meta-regression of diagnostic data. Arthritis Care Res. 70, 428–438 (2018).

    CAS  Google Scholar 

  14. Op De Beeck, K. et al. Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay. Autoimmun. Rev. 10, 801–808 (2011).

    CAS  PubMed  Google Scholar 

  15. Willems, P. et al. Screening for connective tissue disease-associated antibodies by automated immunoassay. Clin. Chem. Lab. Med. 56, 909–918 (2018).

    CAS  PubMed  Google Scholar 

  16. Willems, P. et al. Antinuclear antibody as entry criterion for classification of systemic lupus erythematosus: pitfalls and opportunities. Ann. Rheum. Dis. 78, e76 (2019).

    PubMed  Google Scholar 

  17. Mariz, H. A. et al. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum. 63, 191–200 (2011).

    CAS  PubMed  Google Scholar 

  18. Vulsteke, J. B. et al. Titre-specific positive predictive value of antinuclear antibody patterns. Ann. Rheum. Dis. pii: annrheumdis-2019–216245 (2019).

  19. Albesa, R. et al. Increased prevalence of anti-DFS70 antibodies in young females: experience from a large international multi-center study on blood donors. Clin. Chem. Lab. Med. 57, 999–1005 (2019).

    CAS  PubMed  Google Scholar 

  20. Conrad, K., Röber, N., Andrade, L. E. & Mahler, M. The clinical relevance of anti-DFS70 autoantibodies. Clin. Rev. Allergy Immunol. 52, 202–216 (2017).

    CAS  PubMed  Google Scholar 

  21. Mahler, M., Andrade, L. E., Casiano, C. A., Malyavantham, K. & Fritzler, M. J. Anti-DFS70 antibodies: an update on our current understanding and their clinical usefulness. Expert. Rev. Clin. Immunol. 15, 241–250 (2019).

    CAS  PubMed  Google Scholar 

  22. Bonroy, C. et al. The importance of detecting anti-DFS70 in routine clinical practice: comparison of different care settings. Clin. Chem. Lab. Med. 56, 1090–1099 (2018).

    CAS  PubMed  Google Scholar 

  23. Bossuyt, X. et al. Detection of antinuclear antibodies by automated indirect immunofluorescence analysis. Clin. Chim. Acta 415, 101–106 (2013).

    CAS  PubMed  Google Scholar 

  24. Claessens, J. et al. Solid phase assays versus automated indirect immunofluorescence for detection of antinuclear antibodies. Autoimmun. Rev. 17, 533–540 (2018).

    CAS  PubMed  Google Scholar 

  25. Van Hoovels, L. et al. Analytical performance of the single well titer function of NOVA View®: good enough to omit ANA IIF titer analysis? Clin. Chem. Lab. Med. 56, 258–261 (2018).

    PubMed  Google Scholar 

  26. Oyaert, M., Bossuyt, X., Ravelingien, I. & Van Hoovels, L. Added value of indirect immunofluorescence intensity of automated antinuclear antibody testing in a secondary hospital setting. Clin. Chem. Lab. Med. 54, e63–e66 (2016).

    CAS  PubMed  Google Scholar 

  27. Schouwers, S. et al. Value-added reporting of antinuclear antibody testing by automated indirect immunofluorescence analysis. Clin. Chem. Lab. Med. 52, 547–551 (2014).

    CAS  PubMed  Google Scholar 

  28. Bossuyt, X. et al. Harmonization of clinical interpretation of antinuclear antibody test results by solid phase assay and by indirect immunofluorescence through likelihood ratios. Autoimmun. Rev. 11, 102386 (2019).

    Google Scholar 

  29. Bossuyt, X. & Luyckx, A. Antibodies to extractable nuclear antigens in antinuclear antibody-negative samples. Clin. Chem. 51, 2426–2427 (2005).

    CAS  PubMed  Google Scholar 

  30. Hoffman, I. E. A., Peene, I., Veys, E. & De Keyser, F. Detection of specific antinuclear reactivities in patients with negative anti-nuclear antibody immunofluorescence screening test. Clin. Chem. 48, 2171–2176 (2002).

    CAS  PubMed  Google Scholar 

  31. Mahler, M. et al. International multicenter evaluation of autoantibodies to ribosomal P proteins. Clin. Vaccine Immunol. 13, 77–83 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fritzler, M. J., Choi, M. Y. & Mahler, M. The anti-nuclear antibody (ANA) test in the diagnosis of anti-synthetase syndrome and other autoimmune myopathies (AIM). J. Rheumatol. 45, 444–445 (2018).

    CAS  PubMed  Google Scholar 

  33. Ceribelli, A. et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis Res. Ther. 14, R97 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stuhlmüller, B., Schneider, U., González-González, J. B. & Feist, E. Disease specific autoantibodies in idiopathic inflammatory myopathies. Front. Neurol. 10, 4382019 (2019).

    Google Scholar 

  35. Pisetsky, D. S., Thompson, D. K., Wajdula, J., Diehl, A. & Sridharan, S. Variability in antinuclear antibody testing to assess patient eligibility for clinical trials of novel treatments for systemic lupus erythematosus. Arthritis Rheumatol. 71, 1534–1538 (2019).

    CAS  PubMed  Google Scholar 

  36. Pisetsky, D. S., Spencer, D. M., Lipsky, P. E. & Rovin, B. H. Assay variation in the detection of antinuclear antibodies in the sera of patients with established SLE. Ann. Rheum. Dis. 77, 911–913 (2018).

    CAS  PubMed  Google Scholar 

  37. Pregnolato, F., Borghi, M. O., Meroni, P. L. & Forum Interdisciplinare per la Ricerca sulle Malattie Autoimmuni (FIRMA) Study Group. Pitfalls of antinuclear antibody detection in systemic lupus erythematosus: the positive experience of a national multicentre study. Ann. Rheum. Dis. 78, e50 (2019).

    PubMed  Google Scholar 

  38. Pham, B. N., Albarede, S., Guyard, A., Burg, E. & Maisonneuve, P. Impact of external quality assessment on antinuclear antibody detection performance. Lupus. 14, 113–119 (2005).

    CAS  PubMed  Google Scholar 

  39. Van Blerk, M. et al. Current practices in antinuclear antibody testing: results from the Belgian External Quality Assessment Scheme. Clin. Chem. Lab. Med. 47, 102–108 (2009).

    PubMed  Google Scholar 

  40. Van Hoovels, L., Schouwers, S., Van den Bremt, S. & Bossuyt, X. Variation in antinuclear antibody detection by automated indirect immunofluorescence analysis. Ann Rheum Dis. 78, e48 (2018).

    PubMed  Google Scholar 

  41. van der Pol, P., Bakker-Jonges, L. E., Kuijpers, J. H. S. A. M. & Schreurs, M. W. J. Analytical and clinical comparison of two fully automated immunoassay systems for the detection of autoantibodies to extractable nuclear antigens. Clin. Chim. Acta. 476, 54–159 (2018).

    Google Scholar 

  42. Jeong, S. et al. Evaluation of an automated screening assay, compared to indirect immunofluorescence, an extractable nuclear antigen assay, and a line immunoassay in a large cohort of Asian patients with antinuclear antibody-associated rheumatoid diseases: a multicenter retrospective study. J. Immunol. Res. 2018, 9094217 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Robier, C., Amouzadeh-Ghadikolai, O., Stettin, M. & Reicht, G. Comparison of the clinical utility of the Elia CTD Screen to indirect immunofluorescence on HEp-2 cells. Clin. Chem. Lab. Med. 54, 365–370 (2016).

    Google Scholar 

  44. Otten, H. G. et al. Measurement of antinuclear antibodies and their fine specificities: time for a change in strategy? Clin. Exp. Rheumatol. 35, 462–470 (2017).

    PubMed  Google Scholar 

  45. Bentow, C. et al. Clinical performance evaluation of a novel, automated chemiluminescent immunoassay, QUANTA Flash CTD Screen Plus. Immunol. Res. 61, 110–116 (2015).

    CAS  PubMed  Google Scholar 

  46. Bizzaro, N. et al. The association of solid-phase assays to immunofluorescence increases the diagnostic accuracy for ANA screening in patients with autoimmune rheumatic diseases. Autoimmun. Rev. 17, 541–547 (2018).

    CAS  PubMed  Google Scholar 

  47. Op De Beéck, K. et al. Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis. Autoimmun. Rev. 12, 137–143 (2012).

    PubMed  Google Scholar 

  48. de Almeida Brito, F. et al. Diagnostic Evaluation of ELISA and chemiluminescent assays as alternative screening tests to indirect immunofluorescence for the detection of antibodies to cellular antigens. Am. J. Clin. Pathol. 145, 323–331 (2016).

    PubMed  Google Scholar 

  49. Orme, M. E., Andalucia, C., Sjölander, S. & Bossuyt, X. A hierarchical bivariate meta-analysis of diagnostic test accuracy to provide direct comparisons of immunoassays versus indirect immunofluorescence for initial screening of connective tissue diseases. Clin. Chem. Lab. Med. https://doi.org/10.1515/cclm-2020-0094 (2020).

  50. Orme, M. E., Andalucia, C., Sjölander, S. & Bossuyt, X. A comparison of a fluorescence enzyme immunoassay versus indirect immunofluorescence for initial screening for connective tissue diseases: systematic literature review and meta-analysis of diagnostic test accuracy studies. Best. Pract. Res. Clin. Rheumatol. 32, 521–534 (2018).

    PubMed  Google Scholar 

  51. Bossuyt, X. et al. Antinuclear antibodies by indirect immunofluorescence and solid phase assays. Ann. Rheum. Dis. 79, e65 (2019).

    PubMed  Google Scholar 

  52. Bossuyt, X. & Fieuws, S. Detection of antinuclear antibodies: added value of solid phase assay? Ann. Rheum. Dis. 73, e10 (2014).

    PubMed  Google Scholar 

  53. Meroni, P. L. et al. Unending story of the indirect immunofluorescence assay on HEp-2 cells: old problems and new solutions? Ann. Rheum. Dis. 78, e46 (2019).

    PubMed  Google Scholar 

  54. Pisetsky, D. S., Spencer, D. M., Rovin, B. & Lipsky, P. E. Role of ANA testing in the classification of patients with systemic lupus erythematosus. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-216259 (2019).

    Article  PubMed  Google Scholar 

  55. Pisetsky, D. S., Spencer, D. M., Lipsky, P. E. & Rovin, B. H. Response to ‘Antinuclear antibodies by indirect immunofluorescence and solid phase assays’ by Bossuyt et al. Ann. Rheum. Dis. 79, e66 (2019).

    PubMed  Google Scholar 

  56. Bizzaro, N. Can solid-phase assays replace immunofluorescence for ANA screening? Ann. Rheum. Dis. 79, e32 (2018).

    PubMed  Google Scholar 

  57. Pisetsky, D. S., Bossuyt, X. & Meroni, P. L. ANA as an entry criterion for the classification of SLE. Autoimmun. Rev. 18, 102400 (2019).

    CAS  PubMed  Google Scholar 

  58. Damoiseaux, J. et al. Autoantibodies in idiopathic inflammatory myopathies: clinical associations and laboratory evaluation by mono- and multispecific immunoassays. Autoimmun. Rev. 18, 293–305 (2019).

    CAS  PubMed  Google Scholar 

  59. Cavazzana, I. et al. Testing for myositis specific autoantibodies: comparison between line blot and immunoprecipitation assays in 57 myositis sera. J. Immunol. Methods 433, 1–5 (2016).

    CAS  PubMed  Google Scholar 

  60. Vulsteke, J. B. et al. Detection of myositis-specific antibodies. Ann. Rheum. Dis. 78, e7 (2019).

    PubMed  Google Scholar 

  61. Platteel, A. C. M. et al. Frequencies and clinical associations of myositis-related antibodies in The Netherlands: a one-year survey of all Dutch patients. J. Transl Autoimmunity 2, 100013 (2019).

    Google Scholar 

  62. Infantino, M. et al. Combining immunofluorescence with immunoblot assay improves the specificity of autoantibody testing for myositis. Rheumatology 58, 1239–1244 (2019).

    CAS  PubMed  Google Scholar 

  63. Picard, C. et al. Heterogeneous clinical spectrum of anti-SRP myositis and importance of the methods of detection of anti-SRP autoantibodies: a multicentric study. Immunol. Res. 64, 677–686 (2016).

    CAS  PubMed  Google Scholar 

  64. Kaji, K. et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res. 66, 575–584 (2014).

    CAS  Google Scholar 

  65. Hennes, E. M. et al. International Autoimmune Hepatitis Group. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 48, 169–176 (2008).

    PubMed  Google Scholar 

  66. Alvarez, F. et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 31, 929–938 (1999).

    CAS  PubMed  Google Scholar 

  67. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).

    Google Scholar 

  68. Martini, A. et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, Pediatric Rheumatology International Trials Organization International Consensus. J. Rheumatol. 46, 190–197 (2019).

    PubMed  Google Scholar 

  69. Fierz, W. & Bossuyt, X. Likelihood ratios as value proposition for diagnostic laboratory tests. J. Appl. Lab. Med. 5, 1061–1069 (2020).

    PubMed  Google Scholar 

  70. Choi, B. C. Slopes of a receiver operating characteristic curve and likelihood ratios for a diagnostic test. Am. J. Epidemiol. 148, 1127–1132 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.B. researched data for the article and wrote the article. P.L.M. and M.O.B. made substantial contributions to discussion of the content. E.D.L., M.O.B. and P.L.M. reviewed and edited the manuscript before submission

Corresponding author

Correspondence to Xavier Bossuyt.

Ethics declarations

Competing interests

X.B. has been a consultant for Inova Diagnostics and Thermo-Fisher and has received lecture fees from Inova Diagnostics, Menarini and Thermo Fisher. P.L.M. has been a consultant for Inova Diagnostics and Thermo-Fisher and has received lecture fees from Inova Diagnostics, and Thermo Fisher. E.D.L. and M.O.B. declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks L. Andrade, J. Damoiseaux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Specificity

The ability of a test to correctly exclude individuals who do not have the disease; the specificity is calculated as the fraction of individuals without the disease who test negative.

Sensitivity

The ability of a test to correctly detect patients with a disease; the sensitivity of a test is calculated as the fraction of patients with the disease who test positive.

Likelihood ratio

The ratio of the probability of a particular test result for a patient with a particular disease and the probability of the same test result for an individual without the disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossuyt, X., De Langhe, E., Borghi, M.O. et al. Understanding and interpreting antinuclear antibody tests in systemic rheumatic diseases. Nat Rev Rheumatol 16, 715–726 (2020). https://doi.org/10.1038/s41584-020-00522-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00522-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing