Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent successes in heart failure treatment

Abstract

Remarkable recent advances have revolutionized the field of heart failure. Survival has improved among individuals with heart failure and a reduced ejection fraction and for the first time, new therapies have been shown to improve outcomes across the entire ejection fraction spectrum of heart failure. Great strides have been taken in the treatment of specific cardiomyopathies such as cardiac amyloidosis and hypertrophic cardiomyopathy, whereby conditions once considered incurable can now be effectively managed with novel genetic and molecular approaches. Yet there remain substantial residual unmet needs in heart failure. The translation of successful clinical trials to improved patient outcomes is limited by large gaps in implementation of care, widespread lack of disease awareness and poor understanding of the socioeconomic determinants of outcomes and how to address disparities. Ongoing clinical trials, advances in phenotype segmentation for precision medicine and the rise in technology solutions all offer hope for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modern history of heart failure treatment.
Fig. 2: Indications and mechanisms of action of heart failure medications.
Fig. 3: Phenomapping in heart failure.

Similar content being viewed by others

References

  1. Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  2. Ambrosy, A. P. et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63, 1123–1133 (2014).

    Article  PubMed  Google Scholar 

  3. Cowie, M. R. et al. Improving care for patients with acute heart failure: before, during and after hospitalization. ESC Heart Fail. 1, 110–145 (2014).

    Article  PubMed  Google Scholar 

  4. Mamas, M. A. et al. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland. Eur. J. Heart Fail. 19, 1095–1104 (2017).

    Article  PubMed  Google Scholar 

  5. Braunwald E. Heart Disease: a Textbook of Cardiovascular Medicine 4th ed. (WB Saunders, 1992).

  6. Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 27, 387–413 (2021).

    Article  Google Scholar 

  7. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, 1757–1780 (2022).

    Article  PubMed  Google Scholar 

  9. Owan, T. E. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 355, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    Article  PubMed  Google Scholar 

  11. US Food and Drug Administration. ENTRESTO (sacubitril and valsartan) tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207620s018lbl.pdf (2021).

  12. Tsao, C. W. et al. Heart Disease and Stroke Statistics—2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  13. Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 118, 3272–3287 (2023).

    Article  PubMed  Google Scholar 

  14. Roger, V. L. Epidemiology of heart failure: a contemporary perspective. Circ. Res. 128, 1421–1434 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Conrad, N. et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572–580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsao, C. W. et al. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 6, 678–685 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arulmurugananthavadivel, A. et al. Importance of diagnostic setting in determining mortality in patients with new-onset heart failure: temporal trends in Denmark from 1997 to 2017. Eur. Heart J. Qual. Care Clin. Outcomes 8, 750–760 (2022).

    Article  PubMed  Google Scholar 

  18. Rush, C. J. et al. Falling cardiovascular mortality in heart failure with reduced ejection fraction and implications for clinical trials. JACC Heart Fail. 3, 603–614 (2015).

    Article  PubMed  Google Scholar 

  19. Shen, L. et al. Declining risk of sudden death in heart failure. N. Engl. J. Med. 377, 41–51 (2017).

    Article  PubMed  Google Scholar 

  20. Pfeffer, M. A., Shah, A. M. & Borlaug, B. A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 124, 1598–1617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nayak, A., Hicks, A. J. & Morris, A. A. Understanding the complexity of heart failure risk and treatment in black patients. Circ. Heart Fail. 13, e007264 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tromp, J. et al. Post-discharge prognosis of patients admitted to hospital for heart failure by world region, and national level of income and income disparity (REPORT-HF): a cohort study. Lancet Glob. Health 8, e411–e422 (2020).

    Article  PubMed  Google Scholar 

  23. McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  24. Docherty, K. F., Vaduganathan, M., Solomon, S. D. & McMurray, J. J. V. Sacubitril/valsartan: neprilysin inhibition 5 years after PARADIGM-HF. JACC Heart Fail. 8, 800–810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Solomon, S. D. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Solomon, S. D. et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141, 352–361 (2020).

    Article  PubMed  Google Scholar 

  27. McGuire, D. K. et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 6, 148–158 (2021).

    Article  PubMed  Google Scholar 

  28. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  30. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Cunningham, J. W. et al. Dapagliflozin in patients recently hospitalized with heart failure and mildly reduced or preserved ejection fraction. J. Am. Coll. Cardiol. 80, 1302–1310 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Kosiborod, M. N. et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation 141, 90–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Packer, M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 20, 443–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Vaduganathan, M. et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400, 757–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Bassi, N. S., Ziaeian, B., Yancy, C. W. & Fonarow, G. C. Association of optimal implementation of sodium-glucose cotransporter 2 inhibitor therapy with outcome for patients with heart failure. JAMA Cardiol. 5, 948–951 (2020).

    Article  PubMed  Google Scholar 

  37. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  41. Tang, A. S. et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385–2395 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Clephas, P. R. D. et al. Efficacy of pulmonary artery pressure monitoring in patients with chronic heart failure: a meta-analysis of three randomized controlled trials. Eur. Heart J. ehad346 (2023).

  43. Rossi, A. et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97, 1675–1680 (2011).

    Article  PubMed  Google Scholar 

  44. Stone, G. W. et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379, 2307–2318 (2018).

    Article  PubMed  Google Scholar 

  45. Obadia, J. F. et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N. Engl. J. Med. 379, 2297–2306 (2018).

    Article  PubMed  Google Scholar 

  46. Grayburn, P. A., Sannino, A. & Packer, M. Proportionate and disproportionate Functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT trials. JACC Cardiovasc. Imaging 12, 353–362 (2019).

    Article  PubMed  Google Scholar 

  47. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Mehra, M. R. et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA 328, 1233–1242 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jawitz, O. K. et al. Increasing the United States heart transplant donor pool with donation after circulatory death. J. Thorac. Cardiovasc. Surg. 159, e307–e309 (2020).

    Article  PubMed  Google Scholar 

  51. Messer, S. et al. Outcome after heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 36, 1311–1318 (2017).

    Article  PubMed  Google Scholar 

  52. Jawitz, O. K., Bryner, B. S., Schroder, J. N. & DeVore, A. D. Donation after circulatory death heart transplantation in the United States: an early report of donor characteristics. JTCVS Tech. 12, 104–107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schroder, J. N. et al. Transplantation outcomes with donor hearts after circulatory death. N. Engl. J. Med. 388, 2121–2131 (2023).

    Article  PubMed  Google Scholar 

  54. Ommen, S. R. et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 142, e558–e631 (2020).

    PubMed  Google Scholar 

  55. Maron, M. S. et al. Phase 2 study of aficamten in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 81, 34–45 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Kittleson, M. M. et al. Cardiac amyloidosis: evolving diagnosis and management: a scientific statement from the American Heart Association. Circulation 142, e7–e22 (2020).

    Article  PubMed  Google Scholar 

  58. Grogan, M. et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J. Am. Coll. Cardiol. 68, 1014–1020 (2016).

    Article  PubMed  Google Scholar 

  59. Lane, T. et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation 140, 16–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Greene, S. J. et al. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF Registry. J. Am. Coll. Cardiol. 72, 351–366 (2018).

    Article  PubMed  Google Scholar 

  62. Brunner-La Rocca, H. P. et al. Contemporary drug treatment of chronic heart failure with reduced ejection fraction: the CHECK-HF Registry. JACC Heart Fail. 7, 13–21 (2019).

    Article  PubMed  Google Scholar 

  63. Teng, T. K. et al. Prescribing patterns of evidence-based heart failure pharmacotherapy and outcomes in the ASIAN-HF registry: a cohort study. Lancet Glob. Health 6, e1008–e1018 (2018).

    Article  PubMed  Google Scholar 

  64. Velazquez, E. J. et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med. 28, 568–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaduganathan, M. et al. Sacubitril/valsartan in heart failure with mildly reduced or preserved ejection fraction: a pre-specified participant-level pooled analysis of PARAGLIDE-HF and PARAGON-HF. Eur. Heart J. 44, 2982–2993 (2023).

  67. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Mebazaa, A. et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet 400, 1938–1952 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Randolph, T. C. et al. Utilization of cardiac resynchronization therapy in eligible patients hospitalized for heart failure and its association with patient outcomes. Am. Heart J. 189, 48–58 (2017).

    Article  PubMed  Google Scholar 

  70. van Veldhuisen, D. J. et al. Implementation of device therapy (cardiac resynchronization therapy and implantable cardioverter defibrillator) for patients with heart failure in Europe: changes from 2004 to 2008. Eur. J. Heart Fail. 11, 1143–1151 (2009).

    Article  PubMed  Google Scholar 

  71. Linde, C. et al. Gender, underutilization of cardiac resynchronization therapy, and prognostic impact of QRS prolongation and left bundle branch block in heart failure. Europace 17, 424–431 (2015).

    Article  PubMed  Google Scholar 

  72. Lyons, K. J. et al. Impact of current versus previous cardiac resynchronization therapy guidelines on the proportion of patients with heart failure eligible for therapy. JACC Heart Fail. 5, 388–392 (2017).

    Article  PubMed  Google Scholar 

  73. Felker, G. M. et al. Implantable cardioverter-defibrillator eligibility after initiation of sacubitril/valsartan in chronic heart failure: insights from PROVE-HF. Circulation 144, 180–182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kitzman, D. W. et al. Physical rehabilitation for older patients hospitalized for heart failure. N. Engl. J. Med. 385, 203–216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Agarwal, A., Yancy, C. W. & Huffman, M. D. Improving care for heart failure with reduced ejection fraction—a potential polypill-based strategy. JAMA 324, 2259–2260 (2020).

    Article  PubMed  Google Scholar 

  76. Vijay, A. et al. Polypill eligibility for patients with heart failure with reduced ejection fraction in the ASIAN-HF registry: a cross-sectional analysis. Glob. Heart 18, 33 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang, T. J. et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 90, 254–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Myhre, P. L. et al. Sex and race differences in N-terminal pro-B-type natriuretic peptide concentration and absolute risk of heart failure in the community. JAMA Cardiol. 7, 623–631 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Knudsen, C. W. et al. Impact of atrial fibrillation on the diagnostic performance of B-type natriuretic peptide concentration in dyspneic patients: an analysis from the breathing not properly multinational study. J. Am. Coll. Cardiol. 46, 838–844 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Tagore, R. et al. Natriuretic peptides in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1644–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parcha, V. et al. Obesity and serial NT-proBNP Levels in guided medical therapy for heart failure with reduced ejection fraction: insights from the GUIDE-IT trial. J. Am. Heart Assoc. 10, e018689 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kang, S. H. et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 101, 1881–1888 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Verbrugge, F. H. et al. Heart failure with preserved ejection fraction in patients with normal natriuretic peptide levels is associated with increased morbidity and mortality. Eur. Heart J. 43, 1941–1951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dokainish, H. et al. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob. Health 5, e665–e672 (2017).

    Article  PubMed  Google Scholar 

  85. Agarwal, A. et al. Guideline-directed medical therapy in females with heart failure with reduced ejection fraction. Curr. Heart Fail. Rep. 18, 284–289 (2021).

    Article  PubMed  Google Scholar 

  86. Agarwal, A., Husain, M., Datta, B., Kishore, S. & Huffman, M. Access to heart failure medicines in low and middle-income countries: an analysis of essential medicines lists, availability, price and affordability. Circ. Heart Fail. 15, e008971 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Teng, T. K. et al. Socioeconomic status and outcomes in heart failure with reduced ejection fraction from Asia. Circ. Cardiovasc Qual. Outcomes 14, e006962 (2021).

    Article  PubMed  Google Scholar 

  88. Andersen, J. et al. The mediating role of effective treatments in the relationship between income level and survival in patients with heart failure: a sex- and cohabitation-stratified study. Eur. J. Prev. Cardiol. 28, 78–86 (2021).

    Article  PubMed  Google Scholar 

  89. Lam, C. S. P. et al. Sex differences in heart failure. Eur. Heart J. 40, 3859–3868c (2019).

    Article  PubMed  Google Scholar 

  90. Savji, N. et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 6, 701–709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lau, E. S. et al. Infertility and risk of heart failure in the women’s health Initiative. J. Am. Coll. Cardiol. 79, 1594–1603 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sarma, A. A. et al. Multiple prior live births are associated with cardiac remodeling and heart failure risk in women. J. Card. Fail. 29, 1032–1042 (2023).

  93. Williams, D. et al. Preeclampsia predicts risk of hospitalization for heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 78, 2281–2290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jin, X. et al. Women’s participation in cardiovascular clinical trials from 2010 to 2017. Circulation 141, 540–548 (2020).

    Article  PubMed  Google Scholar 

  95. Dewan, P. et al. Differential impact of heart failure with reduced ejection fraction on men and women. J. Am. Coll. Cardiol. 73, 29–40 (2019).

    Article  PubMed  Google Scholar 

  96. Solomon, S. D. et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur. Heart J. 37, 455–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Kittleson, M. M. et al. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 81, 1835–1878 (2023).

    Article  PubMed  Google Scholar 

  98. Wu, S. S. et al. Reviving an R&D pipeline: a step change in the phase II success rate. Drug Discov. Today 26, 308–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Ezekowitz, J. A. et al. N-terminal pro-B-type natriuretic peptide and clinical outcomes: vericiguat heart failure with reduced ejection fraction study. JACC Heart Fail. 8, 931–939 (2020).

    Article  PubMed  Google Scholar 

  101. Lam, C. S. P. et al. Clinical outcomes and response to vericiguat according to index heart failure event: insights from the VICTORIA trial. JAMA Cardiol. 6, 706–712 (2021).

    Article  PubMed  Google Scholar 

  102. Mentz, R. J. et al. Randomized placebo-controlled trial of ferric carboxymaltose in heart failure with iron deficiency: rationale and design. Circ. Heart Fail. 14, e008100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vukadinovic, D. et al. Efficacy and safety of intravenous iron repletion in patients with heart failure: a systematic review and meta-analysis. Clin. Res. Cardiol. 112, 954–966 (2023).

  104. Kalra, P. R. et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 400, 2199–2209 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Ponikowski, P. et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396, 1895–1904 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Bavendiek, U. et al. Rationale and design of the DIGIT-HF trial (DIGitoxin to Improve ouTcomes in patients with advanced chronic Heart Failure): a randomized, double-blind, placebo-controlled study. Eur. J. Heart Fail. 21, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. van der Meer, P., Rienstra, M. & van Veldhuisen, D. J. A deleterious interaction between omecamtiv mecarbil and atrial fibrillation in patients with heart failure: an influence of digoxin? Eur. Heart J. 43, 2221–2223 (2022).

    Article  PubMed  Google Scholar 

  108. Pfeffer, M. A. et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation 131, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J. 43, 474–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Paulus, W. J. & Zile, M. R. From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ. Res. 128, 1451–1467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc Res. 117, e138–e140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jung, H. N. & Jung, C. H. The upcoming weekly tides (semaglutide vs. tirzepatide) against obesity: STEP or SURPASS? J. Obes. Metab. Syndr. 31, 28–36 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lam, C. S. P. et al. Myeloperoxidase inhibition in heart failure with preserved or mildly reduced ejection fraction: SATELLITE Trial Results. J. Card. Fail. S1071-9164, 00142-2 (2023).

  114. Kosiborod, M. N. et al. Design and baseline characteristics of STEP-HFpEF program evaluating semaglutide in patients with obesity HFpEF phenotype. JACC Heart Fail. 11, 1000–1010 (2023).

  115. Fudim, M. et al. Device therapy in chronic heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 931–956 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lam, C. S. P. & Solomon, S. D. Classification of heart failure according to ejection fraction: JACC review topic of the week. J. Am. Coll. Cardiol. 77, 3217–3225 (2021).

    Article  PubMed  Google Scholar 

  117. Cikes, M. & Solomon, S. D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur. Heart J. 37, 1642–1650 (2016).

    Article  PubMed  Google Scholar 

  118. McGowan, J. H. & Cleland, J. G. Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am. Heart J. 146, 388–397 (2003).

    Article  PubMed  Google Scholar 

  119. Shah, S. J. et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).

    Article  PubMed  Google Scholar 

  120. Tromp, J. et al. Multimorbidity in patients with heart failure from 11 Asian regions: a prospective cohort study using the ASIAN-HF registry. PLoS Med. 15, e1002541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Peters, A. E. et al. Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions. Cardiovasc. Res. 118, 3403–3415 (2023).

    Article  PubMed  Google Scholar 

  122. Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Omland, T. et al. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE trial. J. Am. Coll. Cardiol. 50, 205–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Zelniker, T. A. et al. Association of cardiac biomarkers with major adverse cardiovascular events in high-risk patients with diabetes: a secondary analysis of the DECLARE-TIMI 58 trial. JAMA Cardiol. 8, 503–509 (2023).

    Article  PubMed  Google Scholar 

  125. Ledwidge, M. et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Mohebi, R. et al. Effect of 2022 ACC/aHA/HFSA criteria on stages of heart failure in a pooled community cohort. J. Am. Coll. Cardiol. 81, 2231–2242 (2023).

  127. Wright, A. K. et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care 45, 909–918 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. McMurray, J. J. V. et al. Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease. Circulation 143, 438–448 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Felker, G. M. et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318, 713–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nayor, M. et al. Aptamer-based proteomic platform identifies novel protein predictors of incident heart failure and echocardiographic traits. Circ. Heart Fail. 13, e006749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, L. et al. Aptamer proteomics for biomarker discovery in heart failure with reduced ejection fraction. Circulation 146, 1411–1414 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Tromp, J. et al. World Heart Federation roadmap for digital health in cardiology. Glob. Heart 17, 61 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Adamson, P. B. Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: new insights from continuous monitoring devices. Curr. Heart Fail. Rep. 6, 287–292 (2009).

    Article  PubMed  Google Scholar 

  134. Krittanawong, C. et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021).

    Article  PubMed  Google Scholar 

  135. Abraham, W. T. et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387, 453–461 (2016).

    Article  PubMed  Google Scholar 

  136. Boehmer, J. P. et al. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSENSE Study. JACC Heart Fail. 5, 216–225 (2017).

    Article  PubMed  Google Scholar 

  137. Givertz, M. M. et al. Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 70, 1875–1886 (2017).

    Article  PubMed  Google Scholar 

  138. Hernandez, A. F. et al. Multiple cArdiac seNsors for mAnaGEment of heart failure (MANAGE-HF)—phase I evaluation of the integration and safety of the HeartLogic multisensor algorithm in patients with heart failure. J. Card. Fail. 28, 1245–1254 (2022).

    Article  PubMed  Google Scholar 

  139. Subedi, N., Rawstorn, J. C., Gao, L., Koorts, H. & Maddison, R. Implementation of telerehabilitation interventions for the self-management of cardiovascular disease: systematic review. JMIR Mhealth Uhealth. 8, e17957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ghazi, L. et al. Electronic alerts to improve heart failure therapy in outpatient practice: a cluster randomized trial. J. Am. Coll. Cardiol. 79, 2203–2213 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Mukhopadhyay, A. et al. Cluster-randomized trial comparing ambulatory decision support tools to improve heart failure care. J. Am. Coll. Cardiol. 81, 1303–1316 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Lee, D. S. et al. Trial of an intervention to improve acute heart failure outcomes. N. Engl. J. Med. 388, 22–32 (2023).

    Article  PubMed  Google Scholar 

  143. Taylor, K. S. et al. Diagnostic accuracy of point-of-care natriuretic peptide testing for chronic heart failure in ambulatory care: systematic review and meta-analysis. BMJ 361, k1450 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schneider, M. et al. A machine learning algorithm supports ultrasound-naive novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF. Int. J. Cardiovasc Imaging 37, 577–586 (2021).

    Article  PubMed  Google Scholar 

  145. Tromp, J. et al. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun. 13, 6776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tromp, J. et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health 4, e46–e54 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, J. et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 138, 1623–1635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Klersy, C. et al. Effect of telemonitoring of cardiac implantable electronic devices on healthcare utilization: a meta-analysis of randomized controlled trials in patients with heart failure. Eur. J. Heart Fail. 18, 195–204 (2016).

    Article  PubMed  Google Scholar 

  149. American Heart Association. IMPLEMENT-HF. Accessed on 15 May 2023 https://www.heart.org/-/media/Files/Professional/Quality-Improvement/Get-With-the-Guidelines/Get-With-The-Guidelines-HF/Implement-HF/AHA-IMPLEMENT-HF-Infographic.pdf (2021).

  150. DeVore, A. D. et al. Effect of a hospital and postdischarge quality improvement intervention on clinical outcomes and quality of care for patients With heart failure with reduced ejection fraction: the CONNECT-HF randomized clinical trial. JAMA 326, 314–323 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Frederix, I. et al. ESC e-Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur. J. Prev. Cardiol. 26, 1166–1177 (2019).

    Article  PubMed  Google Scholar 

  152. Cowie, M. R. & Lam, C. S. P. Remote monitoring and digital health tools in CVD management. Nat. Rev. Cardiol. 18, 457–458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cohn, J. N. et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a veterans administration cooperative study. N. Engl. J. Med. 314, 1547–1552 (1986).

    Article  CAS  PubMed  Google Scholar 

  154. Sacks, C. A., Jarcho, J. A. & Curfman, G. D. Paradigm shifts in heart-failure therapy—a timeline. N. Engl. J. Med. 371, 989–991 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. Tiew-Hwa Teng for help with formatting this paper for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn S. P. Lam.

Ethics declarations

Competing interests

C.S.P.L. is supported by a Clinician Scientist Award from the National Medical Research Council of Singapore; has received research support from Novo Nordisk and Roche Diagnostics; has received consulting fees from Alleviant Medical, Allysta Pharma, Amgen, AnaCardio AB, Applied Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, CardioRenal, Cytokinetics, Darma, EchoNous, Eli Lilly, Impulse Dynamics, Intellia Therapeutics, Ionis Pharmaceutical, Janssen Research & Development, Medscape/WebMD Global, Merck, Novartis, Novo Nordisk, Prosciento, Quidel Corporation, Radcliffe Group, Recardio, ReCor Medical, Roche Diagnostics, Sanofi, Siemens Healthcare Diagnostics and Us2.ai; and is a cofounder and nonexecutive director of Us2.ai. The employer of K.F.D., the University of Glasgow, has been remunerated by AstraZeneca for work relating to clinical trials. K.F.D. has received speaker’s honoraria from AstraZeneca, Pharmacosmos and Radcliffe Cardiology, has served on an advisory board for Us2.ai and Bayer AG, served on a clinical endpoint committee for Bayer AG, and has received grant support from Boehringer Ingelheim, Roche Diagnostics and AstraZeneca (paid to the institution of K.F.D.). J.E.H. is supported by National Institutes of Health grants R01 HL134893, R01 HL140224, R01HL160003 and K24 HL153669. J.E.H. has also received past research funding from Bayer, AG. J.J.V.M. has received support from a British Heart Foundation Centre of Research Excellence Grant RE/18/6/34217 and the Vera Melrose Heart Failure Research Fund; has received payments through Glasgow University from work on clinical trials, consulting and other activities from Amgen, AstraZeneca, Bayer, Cardurion, Cytokinetics, GlaxoSmithKline, KBP Biosciences and Novartis; has received personal consulting fees from Alnylam Pharma, Bayer, Bristol Myers Squibb, George Clinical PTY, Ionis Pharma, Novartis, Regeneron Pharma and River 2 Renal; has received personal lecture fees from Abbott, Alkem Metabolics, AstraZeneca, Blue Ocean Scientific Solutions, Boehringer Ingelheim, Canadian Medical and Surgical Knowledge, Emcure Pharma, Eris Lifesciences, European Academy of CME, Hikma Pharmaceuticals, Imagica Health, Intas Pharma, J.B. Chemicals and Pharma, Lupin Pharma, Medscape/theheart.org, ProAdWise Communications, Radcliffe Cardiology, Sun Pharma, The Corpus, Translation Research Group and Translational Medicine Academy; and is a director of Global Clinical Trial Partners. P.L.M. has received research support from AstraZeneca and received consulting fees from AstraZeneca, Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Novartis, Novo Nordisk, Orion Pharma, Pharmacosmos, Sanofi, Us2.ai and Vifor. T.O. has received research support from Abbott Diagnostics, ChromaDex, Novartis and Roche Diagnostics; consulting fees and/or speaker honoraria from Abbott Diagnostics, Bayer, CardiNor and Roche Diagnostics; and stock and stock options from CardiNor.

Peer review

Peer review information

Nature Medicine thanks Harriette Van Spall, Shelley Zieroth and Ambarish Pandey for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, C.S.P., Docherty, K.F., Ho, J.E. et al. Recent successes in heart failure treatment. Nat Med 29, 2424–2437 (2023). https://doi.org/10.1038/s41591-023-02567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02567-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing