Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473

Abstract

Human thermogenic adipose tissue mitigates metabolic disease, thus raising much interest in understanding its development and function. Here, we show that human thermogenic adipocytes specifically express a primate-specific long noncoding RNA (lncRNA), LINC00473, which is highly correlated with UCP1 expression and is decreased in obesity and type-2 diabetes. LINC00473 is detected in progenitor cells, and increases following differentiation and in response to cyclic AMP (cAMP). In contrast to other known adipocyte long intergenic noncoding RNAs, LINC00473 shuttles out of the nucleus, colocalizes and can be cross-linked to mitochondrial and lipid droplet proteins. Up- or downregulation of LINC00473 results in reciprocal alterations in lipolysis, respiration and transcription of genes associated with mitochondrial oxidative metabolism. Depletion of PLIN1 results in impaired cAMP-responsive LINC00473 expression and lipolysis, indicating bidirectional interactions among PLIN1, LINC00473 and mitochondrial oxidative functions. Thus, we suggest that LINC00473 is a key regulator of human thermogenic adipocyte function and reveal a role for a lncRNA in interorganelle communication and human energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of gene expression in primary adipocytes from thermogenic and non-thermogenic human adipose tissue.
Fig. 2: LINC00473 expression is associated with thermogenic adipocyte development.
Fig. 3: Translocation of LINC00473 to mitochondria-lipid droplet interphase.
Fig. 4: Interactions among LINC00473, mitochondria and PLIN1.
Fig. 5: Functional role of LINC00473.
Fig. 6: Transcriptomic changes in response to modulation of LINC00473.
Fig. 7: Mechanisms of induction of LINC00473.
Fig. 8: Phylogenetic analysis and conceptual function model for LINC00473.

Similar content being viewed by others

Data availability

Sequences of all oligonucleotides used in this study are included in Supplementary Table 9. GEO accession numbers for the RNA-seq data in this manuscript are GSE150119 and GSE148896. Further information and requests for resources and reagents should be directed to, and will be fulfilled by, S.C. (silvia.corvera@umassmed.edu).

References

  1. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deshmukh, A. S. et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 30, 963–975 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Jespersen, N. Z. et al. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 24, 30–43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Min, S. Y. et al. Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat. Med. 22, 312–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanchez-Gurmaches, J., Hung, C. M. & Guertin, D. A. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 26, 313–326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tran, K. V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 24, 142–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mercer, T., Dinger, M. & Mattick, J. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 17, 756–770 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Ransohoff, J. D., Wei, Y. & Khavari, P. A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19, 143–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, X. Y., Li, S., Wang, G. X., Yu, Q. & Lin, J. D. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol. Cell 55, 372–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alvarez-Dominguez, J. R. et al. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 21, 764–776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai, Z. et al. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol. 15, e2002176 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Min, S. Y. et al. Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc. Natl Acad. Sci. USA 116, 17970–17979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nedergaard, J., Bengtsson, T. & Cannon, B. Three years with adult human brown adipose tissue. Ann. N. Y Acad. Sci. 1212, E20–E36 (2010).

    Article  PubMed  Google Scholar 

  23. Sidossis, L. S. et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 22, 219–227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patsouris, D. et al. Burn induces browning of the subcutaneous white adipose tissue in mice and humans. Cell Rep. 13, 1538–1544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muppirala, U. K., Honavar, V. G. & Dobbs, D. Predicting RNA–protein interactions using only sequence information. BMC Bioinformatics 12, 489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, Z. et al. cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth. J. Clin. Invest. 126, 2267–2279 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ward, M., McEwan, C., Mills, J. D. & Janitz, M. Conservation and tissue-specific transcription patterns of long noncoding RNAs. J. Hum. Transcr. 1, 2–9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Le Bras, A. The lncRNA CHROME regulates cholesterol homeostasis. Nat. Rev. Cardiol. 16, 71 (2019).

  31. Zhang, X. et al. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci. Transl. Med. 10, eaar5987 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Torarinsson, E., Sawera, M., Havgaard, J. H., Fredholm, M. & Gorodkin, J. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res. 16, 885–889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, L. et al. Long noncoding RNAs regulate adipogenesis. Proc. Natl Acad. Sci. USA 110, 3387–3392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong, Y. et al. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim. Biophys. Acta 1863, 409–419 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  35. Nuermaimaiti, N. et al. Effect of lncRNA HOXA11-AS1 on adipocyte differentiation in human adipose-derived stem cells. Biochem. Biophys. Res. Commun. 495, 1878–1884 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, W. et al. LncRNA Gm15290 sponges miR-27b to promote PPARgamma-induced fat deposition and contribute to body weight gain in mice. Biochem. Biophys. Res. Commun. 493, 1168–1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Li, M. et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim. Biophys. Acta 1859, 871–882 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Xiao, T. et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPalpha. Stem Cell Rep. 5, 856–865 (2015).

    Article  CAS  Google Scholar 

  39. Schmidt, E. et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat. Commun. 9, 3622 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pruunsild, P., Bengtson, C. P. & Bading, H. Networks of cultured iPSC-derived neurons reveal the human synaptic activity-regulated adaptive gene program. Cell Rep. 18, 122–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang, X. H. et al. Non-coding RNA LINC00473 mediates decidualization of human endometrial stromal cells in response to cAMP signaling. Sci. Rep. 6, 22744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kozak, U. et al. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol. Cell. Biol. 14, 59–67 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yubero, P. et al. Dominant negative regulation by c-Jun of transcription of the uncoupling protein-1 gene through a proximal cAMP-regulatory element: a mechanism for repressing basal and norepinephrine-induced expression of the gene before brown adipocyte differentiation. Mol. Endocrinol. 12, 1023–1037 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boutant, M. et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 36, 1543–1558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, J. et al. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim. Biophys. Acta 1853, 918–928 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Wikstrom, J. D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jespersen, N. Z. et al. Thermogenic genes are blunted whereas brown adipose tissue identity is preserved in human obesity. Preprint at bioRxiv https://doi.org/10.1101/2020.05.07.082057 (2020).

  50. Kaimal, V., Bardes, E. E., Tabar, S. C., Jegga, A. G. & Aronow, B. J. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 38, W96–W102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rojas-Rodriguez, R. et al. Adipose tissue angiogenesis assay. Methods Enzymol. 537, 75–91 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Green, C. J., Pedersen, M., Pedersen, B. K. & Scheele, C. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase. Diabetes 60, 2810–2819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kucukural, A., Yukselen, O., Ozata, D. M., Moore, M. J. & Garber, M. DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics 20, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kelstrup, C. D. et al. Limits for resolving isobaric tandem mass tag reporter ions using phase-constrained spectrum deconvolution. J. Proteome Res. 17, 4008–4016 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Tsunoda, T. & Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sustarsic, E. G. et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 28, 159–174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lundh, M., Plucinska, K., Isidor, M. S., Petersen, P. S. S. & Emanuelli, B. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Mol. Metab. 6, 1313–1320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH grant no. DK089101-04, to S.C. We acknowledge the use of services from the UMASS Bioinformatics Core, supported by NIH CTSA grant no. UL1 TR000161-05, and from the UMASS SCOPE core for high-resolution confocal imaging. K.-V.T. was supported by NIH grant no. 5T32HL120823-03. The Centre for Physical Activity Research is supported by grants from TrygFonden (nos. 101390 and 20045). During the study period, the Centre of Inflammation and Metabolism was supported by a grant from the Danish National Research Foundation (no. DNRF55). S.N. was further supported by the Danish Council for Independent Research, Medical Sciences (no. 4092-00492B) and by the Novo Nordisk Foundation (NNF18OC0052979). N.Z.J., C.N.-B. and T.J.L. were funded by the Danish Diabetes Academy supported by the Novo Nordisk Foundation. E.L.B., B.E. and M.L. were supported by internal funding from the Novo Nordisk Foundation Center for Basic Metabolic Research, an independent research centre at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (no. NNF18CC0034900).

Author information

Authors and Affiliations

Authors

Contributions

S.C. and S.N. supervised this work. K.-V.T., E.L.B., T.D., C.N.-B., S.Y.M., M.L., T.J.L., B.E., B.K.P., T.F., C.S., S.N. and S.C. conducted hypothesis generation, conceptual design, data analysis and manuscript preparation. K.-V.T., E.L.B., T.D., N.Z.J., C.N.-B., Q.Y., Z.Y., A.D., S.Y.M., R.R.-R., A.F., H.W., M.C.K.S., K.M., A.M.M., A.S.D., S.C. and S.N. conducted experiments and data analysis.

Corresponding author

Correspondence to Silvia Corvera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, KV., Brown, E.L., DeSouza, T. et al. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab 2, 397–412 (2020). https://doi.org/10.1038/s42255-020-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0205-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing