*When does the fetal period begin? - 1. 6 weeks - 2. 9 weeks - 3. 10 weeks - 4. 16 weeks *Add 2 weeks if calculating from the last menstrual cycle 6 weeks End of 8 Weeks 9 Weeks 11-12 Weeks 18 Weeks ### Risk of Birth Defects Being Induced Shenefelt: Teratology; 5: 103-118, 1972. Retinoic acid as a teratogen in hamsters ## Teratogenicity of Rubella Infection Prior to 8 weeks: 100% of infected infants had heart defects and/or deafness. At 11-14 weeks: 35% of infected infants had deafness and none had heart defects. ### Thalidomide and Birth Defects Forelimbs if started the drug in the 4th week Hindlimbs if started the drug in the 5th week ...But thalidomide also caused heart defects, ear defects, and GI tract defects! #### Heart Development late 3rd and early 4th weeks Cells in the primary heart field (PHF) are specified to pattern the heart Ramsdell et al., Development 133: 1399, 2006 #### Heart Development late 3rd and early 4th weeks #### Atrial and Ventricular Septa Formation: 5th and 6th weeks Cut #### Septum formation in the outflow tract: 4th to 8th weeks #### Congenital Heart Defects Are Heterogeneous in Origin & Occur during the (3rd-7th weeks) | Target Tissue | Cell Process | Normal Effect | Birth Defect | |--|--|--|--| | Cardiac Progenitor cells (Primary Heart Field [PHF]) | Laterality & patterning (Week 3) | Specification of the outflow tract ventricles & atria | DORV, TGA, I -TGA, ASD, VSD, atrial isomerism, ventricular inversion, dextrocardia & common truncus arteriosus | | Heart tube | Extracellular matrix (Weeks 3&4) | Looping | Dextrocardia | | Atrioventricular endocardial cushions | Cell proliferation & migration (Week 5) | Division of the AV canal;
Formation of the AV valves;
Formation of the
membranous IVS | VSDs, ASDs, mitral insufficiency, tricuspid atresia, positioning & leaflet defects | | Secondary heart field (SHF) | cell proliferation,
migration & viability
(Week 4) | Lengthening, positioning and division of the outflow tract | Tetralogy of Fallot, pulmonary stenosis & atresia, TGA, DORV | | Outflow tract
(Conotruncus) | Neural crest cell proliferation, migration & viability (Weeks 4-7) | Formation of the conotruncal endocardial cushions | Common truncus arteriosus | ## When it comes to development, timing is everything! - The embryonic period (3rd to 8th weeks) is the most sensitive time for causing structural birth defects - The fetal period (9th week to birth) is not very sensitive to teratogen induced birth defects, although some organs remain at risk, especially the brain - Some organs will be susceptible for long periods (the heart), others for shorter periods (the forelimb) - Not every organ will have the same sensitivity to a given concentration of a teratogen, but primordial cells and stages will be more susceptible than later stages (primordial heart and neural crest cells) - Multiple organs may be "hit" at the same time, sometimes resulting in the characteristics of a syndrome Why is Preconception care the way to prevent birth defects? # See Below!