MATH 270
 SPRING 2003
 HOMEWORK 7

Due Friday March 14, 2003.

1. (10 pt) In the definition of well-ordering your book says that a well-ordered set is a totally ordered set, A with the property that every subset of A has a least element. Prove that the assumption " A is totally ordered" is not needed. That is, show that any partially ordered set, A, with the property that every subset of A has a least element is automatically totally ordered.
2. (3 pt) Show that a finite set is well-ordered if and only if it is totally ordered. Give an example of a finite set that is not well-ordered.
3. Let (A, \leq) be a poset. We now define a new relation on A (we call it \preceq) by declaring that for all $x, y \in A, x \preceq y$ if $y \leq x$. Show the following:
a) $(5 \mathrm{pt})$ Show (A, \preceq) is a poset.
b) (5 pt) Show that (A, \leq) is well-ordered if and only if (A, \preceq) has the property that every subset of A has a greatest element.
4. Give examples (and verify that they work) of:
a) (3 pt) A partially ordered set that is not totally ordered.
b) (3 pt$)$ A totally ordered set that is not well-ordered.
