MATH 270 SPRING 2003 HOMEWORK 7

Due Friday March 14, 2003.

1. (10 pt) In the definition of *well-ordering* your book says that a well-ordered set is a totally ordered set, A with the property that every subset of A has a least element. Prove that the assumption "A is totally ordered" is not needed. That is, show that any partially ordered set, A, with the property that every subset of A has a least element is automatically totally ordered.

2. (3 pt) Show that a finite set is well-ordered if and only if it is totally ordered. Give an example of a finite set that is not well-ordered.

3. Let (A, \leq) be a poset. We now define a new relation on A (we call it \leq) by declaring that for all $x, y \in A$, $x \leq y$ if $y \leq x$. Show the following:

- a) (5 pt) Show (A, \preceq) is a poset.
- b) (5 pt) Show that (A, \leq) is well-ordered if and only if (A, \preceq) has the property that every subset of A has a greatest element.
- 4. Give examples (and verify that they work) of:
 - a) (3 pt) A partially ordered set that is not totally ordered.
 - b) (3 pt) A totally ordered set that is not well-ordered.