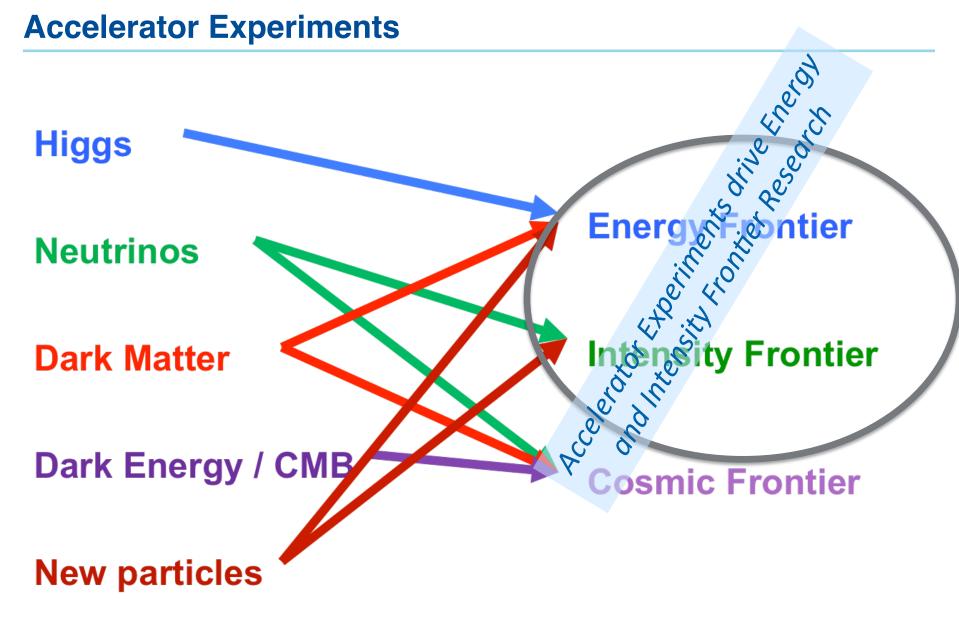


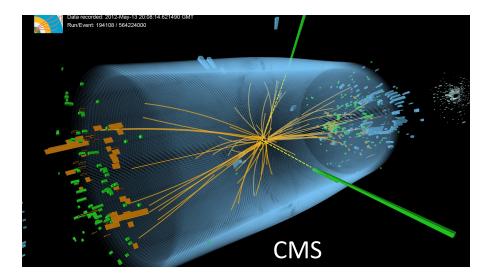
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

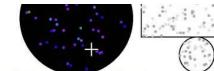
P5 Science Drivers: Accelerator Experiments

Panagiotis Spentzouris DOE SC Exascale Requirements Reviews: High Energy Physics June 10th, 2015

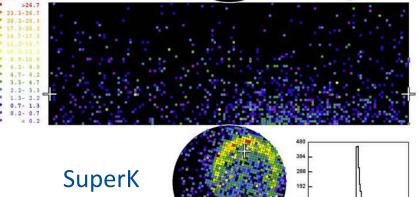

High Energy Physics Science Drivers

- At the Energy Frontier, high-energy particle beam collisions seek to uncover new phenomena
 - the origin of mass, the nature of dark matter, extra dimensions of space.
- At the **Intensity Frontier**, high-flux particle beams enable exploration of
 - neutrino interactions, to answer questions about the origins of the universe, matter-antimatter asymmetry, force unification.
 - rare processes, to open a doorway to realms to ultra-high energies, close to the unification scale
- At the **cosmic frontier** we seek to understand the nature of the contents of the universe: ordinary matter, dark mater and dark energy.


Accelerator Experiments



Where we are today


- Discovery of the Higgs particle at the CERN LHC, responsible for electroweak symmetry breaking and the mass of elementary particles
 - No physics beyond the "Standard Model" of HEP has been observed
- Neutrinos oscillate, thus have mass
 - No answers on mass hierarchy or symmetry properties
 - Potential explanation for matter anti-matter asymmetry observed in the universe!

Outer: 4 hits, 30 pE (in-time) Trigger ID: 0x03 D wall: 671.6 cm PC e-like, p = 618.1 MeV/c

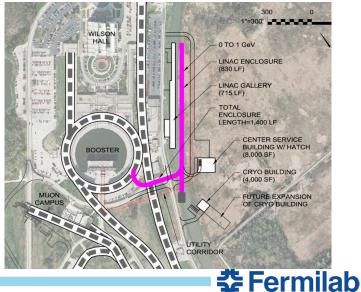
Charge (pe)

🛟 Fermilab

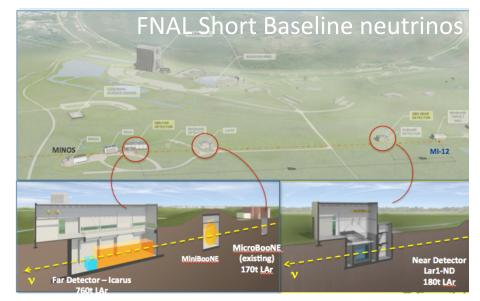
Next Steps (Energy Frontier)

- More powerful detectors & accelerators to facilitate discovery
 - CMS & ATLAS detectors at the LHC with higher energy and luminosity (major accelerator and detector upgrades)
 - a new larger hadron collider or a dedicated accelerator to study Higgs properties
- The US is playing a leading role in LHC upgrades and participates in designs for future machines
- Computing evolution essential for success
 - higher data rates, higher pile-up, will require utilization of new techniques and technologies
 - More powerful beams and complex detectors need higher fidelity numerical tools to design and optimize, to ensure program success!

Courtesy S. Myers (IPAC 2012)


CMS detector

Next Steps (Intensity Frontier)


- A high-intensity proton accelerator for
 - neutrino oscillation experiments
 - Mass hierarchy, matter-antimatter asymmetry
 - rare process experiments
 - New particles and interactions
- Staged approach at Fermilab: major complex improvements support
 - Short and long baseline neutrino program
 - Rare decay program
- BELLE2 at KEK (Japan), LHCb (CERN): heavy quark and tau lepton decays
- Computing evolution essential for success
 - Many experiments with different timelines, need a fully supported computing ecosystem for data analysis
 - More intense beams and large, complex detectors need higher fidelity numerical tools to design and optimize, to ensure program success!

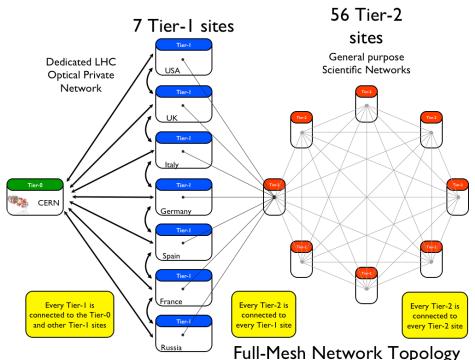
Next Steps (Intensity Frontier)

Many projects, different timelines,

🕻 🛟 🕻 Fermilab

7

NAL MI-LB neutrinos (IF) MINOS+, MINERVA, NOVA NAL Booster-SB neutrinos		2025			
 uBooNE, SBND, ICARUS (IF) FNAL Recycler-muons (IF) g-2 KEK-heavy flavors (IF) Belle II LHC beams: Run 2 ATLAS, CMS (EF) LHCb (IF) 	 Recycler-muons (IF) • Mu2e LHC Run 3 (phase 1 upgrade) 	Long Baseline Neutrino Facility (LBNF) • DUNE (IF) LHC Run3 (HL-LHC) 			

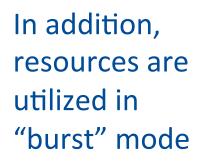

Computing paradigm

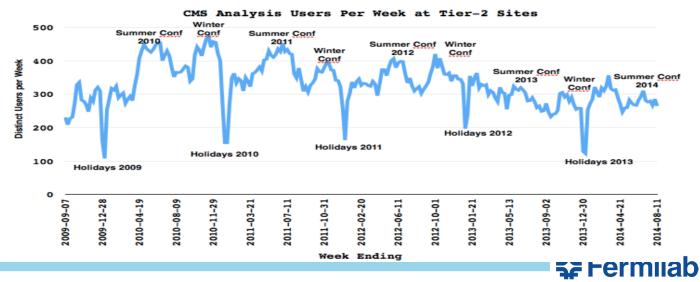
- A tiered architecture, with different reliability and availability requirements per tier, functioning as a coherent system
 - Tier-0: acquires, processes, archives, distributes raw data
 - Tier-1: receives subset of raw data & archives, provides compute resources for reconstruction & other processing, distributes data to Tier-2, receives and archives MC from Tier-2; user analysis
 - Tier-2: compute resources for user analysis, MC production; reconstruction and other processing
- Relies on GRID middleware and infrastructure, commodity compute resources, networking crucial for data and compute intensive workflows
- Resources either owned by the experiments (LHC) or deployed to cover the needs of specific program (e.g. IF experiments at FNAL)
 - Resource deployment objective to fully cover needs, peak demand offloading mostly within the HEP grid site ecosystem
 - Recently, some utilization of ASCR computing resources, for specific applications and with "special" workflow and workflow management

6/9/15

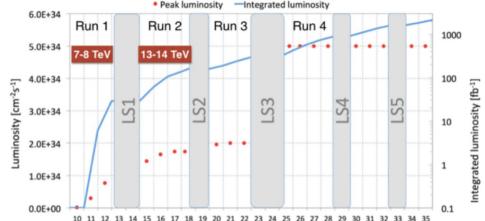
Computing paradigm

- Model evolved from the LHC computing design (CMS description at <u>http://cds.cern.ch/record/814248/files/</u> <u>note04_031.pdf</u>)
 - programmatically supported, formally defined (MOUs)
- IF experiments follow variants
 - E.g. the Fermilab Facility provides both Tier-0 and Tier-1 function to some experiments, Tier-1 to most
 - using Fermilab provisioned and hosted resources, or remote resources through the Open Science Grid (OSG).
 - E.g. Belle2 has a Tier-0 at KEK and a Tier-1 at PNNL (see "Computing Requirements Report" at <u>http://www.slac.stanford.edu/econf/</u> <u>C1307292/docs/submittedArxivFiles/</u> <u>1308.0672.pdf</u>)




CMS grid infrastructure

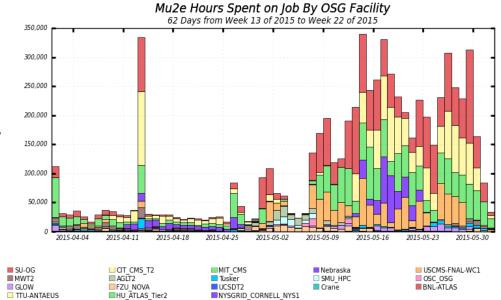
Current size of computing infrastructure


- World-wide CMS experiment: 100K cores, including Tier-1 and Tier-2 facilities
 - US CMS: 15K cores at Fermilab, 25K cores at Tier-2 and Tier-3 sites
- General purpose (non-CMS) at Fermilab: 12K cores
- Similar values for world-wide and US ATLAS, and for the ATLAS Tier-1 center (at BNL) and Tier-2 facilities

2020-2025 Compute and Data needs

- Two new programs are coming online, DUNE (long baseline neutrinos) and High-Luminosity LHC (HL-LHC), while new physics search programs using rare muon decays, and heavy quarks and tau leptons (Mu2e, Belle2) are operating
- Increased precision, higher luminosity, increased event complexity push computing needs to ~10X-100X of HEP infrastructure currently deployed
 - Lower value assumes optimized algorithms on new computing architectures and new approaches

HL-LHC only will require from ~10X (anticipated optimization) to ~30X (no optimization) increase of compute capacity and ~10X to ~18X increase in storage (from 72PB/yr total today) from Run2


Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Tape [PB]	2.8	2.8	2.8	2.8	19.24	54.43	103.55	153.89	204.64	255.39
Disk [PB]	4.00	4.00	5.00	8.00	27.98	79.17	115.68	153.10	190.82	228.55
CPU [kHepSPEC]	45.00	45.00	50.00	55.00	328.31	568.98	567.54	609.45	643.14	672.60

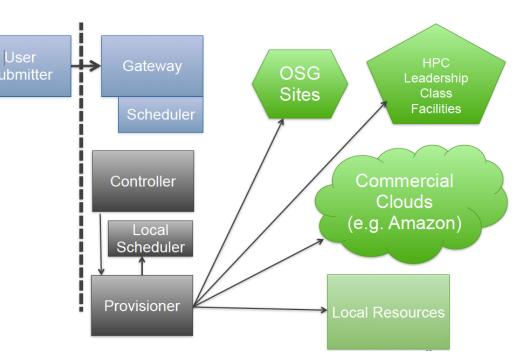

Belle2 computing requirements

2020-2025 Compute and Data needs

- Of course, new programs ramp up simulation campaigns much earlier than the beginning of data taking
 - Adding their own "cycles" of "burst usage" to those of operating experiments
- The need to provide "elasticity" in resource provisioning (to match "burst usage" patterns) becomes necessary

 Example: Mu2e experiment simulation campaign utilization of OSG resources through the Workflow management infrastructure and tools of the FNAL facility

6/9/15


Evolution of the computing paradigm

- Currently, Tier-0 and Tier-1 US HEP facilities support dedicated and shared resources, for data and compute intensive workflows
 - CPU, disk, hierarchical storage (including cache), tape, tape libraries; resources hosted at the facility or made available through OSG.
- Industry trend is to use Cloud services, either Infrastructure as a Service (IaaS), Platform as a Service (PaaS) or Software as a Service (SaaS)
 - Motivation includes high cost of provisioning and operating; need for redundancy or failover; ability to rapidly expand and contract resources; preference to purchase services (annual operating money) rather than make capital expenditures periodically; desire to pay only for the resources needed/used.
- Following this paradigm, US-HEP facilities could *incorporate and manage* "rental" resources, to achieve the "elasticity" that will satisfy demand peaks without overprovisioning local resources.
 - Options for obtaining access to such resources include experiment programmatic allocations at HPC facilities, access to HPC spare cycles, and commercial or academic cloud allocations
 - Model has to be studied for efficiency and cost-effectiveness

Example: the Fermilab HEPCloud Facility project

- HEPCloud Facility vision: a portal to a computing ecosystem of leadership and production class resources, either commercial or academic.
- Provides "complete solutions" to all users, with agreed upon levels of service
 - The Facility decides on routing to local or "rental" resources based on efficiency, cost, and workflow requirements
- Provide storage services appropriate to the system that the workflow is routed

Example: the Fermilab HEPCloud Facility project

- The goal is to integrate "rental" resources (such as Cloud and HPC resources) into the current Fermilab computing facility in a manner transparent to the user. Objectives include
 - A seamless user environment for all resource types, including necessary tools and infrastructure
 - The architecture, including network, needed to support required data rates.
 - The policies for efficiently using and prioritizing the use of different resources
 - The information security policies, procedures and monitoring.
- Partnership with resource providers to identify and perform necessary R&D essential for success
 - In the HPC case, will need to work both with ASCR research and facilities experts

Summary

- Over the next decade, two new major HEP accelerator based programs will be brought on-line: Dune and HL-LHC
- HEP will face significant computing challenges moving forward
 - Precision requirements lead to increased simulation needs
 - HL-LHC data volume and event complexity will push analysis needs and increase demand on central resources for analysis preparation (data reduction, ..)
- It will be advantageous for HEP to be able to utilize HPC resources outside "traditional" HPC workflows (accelerator, cosmology, LQCD), for simulation and analysis of experimental data.
- To achieve this goal we need to work in partnership with ASCR facilities and researchers to develop the infrastructure to
 - access HPC resources through the scientific workflows used by the experiments
 - move data in the HPC facility and distribute data out seamlessly to other facilities
 - optimize HEP software tools to take advantage of architectures that will be utilized in future HPC machines.

