

National Environmental Science Programme

Interim report Project 8.3.3: Genetic assessment of bushfire-impacted vertebrate species

October 2020

Interim report Project 8.3.3: Genetic assessment of bushfire-impacted vertebrate species October 2020

Authors:

Renee Catullo (University of Western Australia, Australian National University) Craig Moritz (Australian National University)

Mapping and individual assessment support by:

Leo Tedeschi (Australian National University) Rhiannon Schembri (Australian National University)

Expert input is gratefully acknowledged from:

Andrew Baker (Queensland University of Technology) Anna MacDonald (Australian National University/BioPlatforms Australia) Bernd Gruber (University of Canberra) Brian Arbogast (University of North Carolina Wilmington) Conrad Hoskin (James Cook University) Emily Roycroft (Australian National University) Greta Frankham (Australian Museum) Harry Hines (Queensland Parks and Wildlife Service) Jane Melville (Museum Victoria) Jason Bragg (Royal Botanic Gardens) Jennifer Pierson (ACT Parks & Wildlife) Jessica Worthington-Wilmer (Queensland Museum) Joanna Sumner (Museum Victoria) Jodi Rowley (Australian Museum) Katherine Farquharson (University of Sydney) Kevin Rowe (Museum Victoria) Kyle Armstrong (University of Adelaide) Leo Joseph (Australian National Wildlife Collection) Linda Neaves (Australian National University) Maggie Haines (Museum Victoria) Mark Eldridge (Australian Museum) Matthew Lott (Australian Museum) Michael Mahony (University of Newcastle) Mitzy Pepper (Australian National University) Patrick Couper (Queensland Museum) Paul Oliver (Queensland Museum) Peter Unmack (University of Canberra) Sam Banks (Charles Darwin University) Sarah Legge (Australian National University/NESP) Scott Keogh (Australian National University) Simon Ferrier (CSIRO) Sophie Mazard (Bioplatforms Australia) Steve Donnellan (South Australian Museum) Steven Cooper (University of Adelaide)

Cover image: Philoria kundagungan. Image: Liam Bolitho

Contents

1. Introduction	4
2. Project background	5
3. Assessment process	5
4. Information contained in assessment for each group and species	8
5. Summary by taxonomic group	
6. Summary recommendations	14
7. Future reporting	14
References	15
Appendix 1: Expert panel	16
Appendix 2. Species reviewed by expert panel. Prioritiser is the state or federal lister, or whether the species was suggested for review by the expert panel	17
Appendix 3: Assessment workflow followed by expert panels	
Appendix 4: Genetic samples needed by protected area (provided separately in an Excel file)	
Appendix 5: Species with detailed genetic assessments in the confidential appendix	

Kangaroo Island dunnart. Image: Jody Gates

1. Introduction

The 2019-20 bushfires had severe impacts on many animal species. Some of these species were considered threatened prior to the fires, and as a consequence of the fires may have lost a substantial proportion of their remaining population and habitat. For other species, not previously considered threatened, substantial reductions in population size and habitat may lead to their reassessment as threatened. As a result of the fires, the Department of Agriculture, Water and the Environment rapidly developed a draft framework to evaluate and prioritise emergency action for all vertebrate species whose distributions were substantially fire-affected (Legge *et al.*, 2020). The published draft framework ranks species for priority action utilising a combination of data: the overlap of the species with fire, pre-fire threat status, traits that influence during- and post-fire mortality, and the likelihood of species' recovery. This detailed prioritisation was carried out on threatened or migratory taxa with more than 10% of their known and likely distribution in fire-affected areas, and unlisted taxa where more than 30% of the distribution was fire affected. Both species and subspecies were assessed for birds.

The draft framework provides an important and consistent method for prioritising taxa for management interventions. However, ongoing genetic assessments of vertebrate species identify that the species and subspecies definitions on which the initial fire-affected distributions were calculated may in some cases be misleading. These genetic data reveal a number of issues that may lead to mis-prioritisation of species, or highly impacted species not being assessed. Genetic assessments of fire-affected species have revealed that:

- Some species are incorrectly defined using traditional (mostly morphological) taxonomy.
 - o A significant number of "species", particularly in morphologically uniform groups such as frogs and reptiles, are species complexes with one or more currently undescribed species.
 - o Subspecies often do not form unique genetic clades and can have less genetic divergence than geographic populations within subspecies.
- Species are not genetically uniform across geography. Well-defined species have multiple independently evolving segments, potentially recognisable as "important populations" under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act), that are not typically represented by taxonomy (e.g. defined as subspecies).
- The description of subspecies is not consistent across taxonomic groups, despite equivalent levels of genetic and/or morphological diversity (i.e. subspecies are more commonly formally described in birds than other taxonomic groups).

Correct identification of both taxonomic and genetic diversity has significant implications for the long-term recovery and persistence of fire-impacted species (Coates, Byrne and Moritz, 2018). Unrecognised cryptic diversity can lead to the unintentional loss of unknown species following catastrophic events. The maintenance of high levels of genetic diversity in and between populations helps species recover and avoid inbreeding depression. These issues are especially prevalent in low-dispersal species along the east coast of Australia where there are current and historical barriers to dispersal that contribute to the evolution of diversity between isolated populations. Consideration of this diversity is essential if we are to avoid "cryptic" extinction and so lose large components of the genetic diversity within species.

Over-splitting of taxonomic units, when this could deter managed admixture between threatened and declining populations, can also have detrimental effects for long term persistence. Declining populations are subject to the combined effects of inbreeding depression and genetic drift, which reduce the probability of survival. Management efforts such as genetic rescue endeavour to increase background genetic diversity within populations while maintaining adaptive differences through targeted translocations (Kriesner *et al.*, unpublished). Genetic rescue has been shown to increase the genetic diversity and abundance of threatened populations through increased offspring fitness, helping reduce the risk of extinction (Weeks *et al.*, 2017).

Understanding genetic diversity across species and populations therefore allows a more complete prioritisation and management of threatened species. It prevents the accidental loss of currently undescribed species or "important populations" within species by recognising highly distinct genetic units (Moritz, 1994). Acknowledging and understanding patterns of genetic diversity can also allow managers to make calculated decisions about admixture between specified taxonomic units in order to genetically rescue declining populations.

For many species, the ability to assess patterns of genetic diversity is limited by poor sampling of tissues. Most genetic studies rely on tissues stored in our history collections. However, the amount and geographic distribution of samples for many species is relatively low or patchily distributed. These gaps in sampling, or complete lack of sampling, can prevent the inclusion of valuable information about genetic diversity in conservation assessment.

2. Purpose of assessment

Genetic diversity is hugely important in recovery and long-term persistence of bushfire-affected species, and this assessment seeks to provide that information to relevant state and government agencies. This assessment focuses on species where genetic data, often so far unpublished, provides information that is relevant to prioritisation and management. These data include:

- Information on highly genetically divergence lineages that likely represent undescribed species;
- Identification of subspecies with little genetic support, where separate management should be reassessed;
- Detailed data on genetic diversity and genetic structure that is relevant to conservation management.

This initial report focuses on species that have pre-existing genetic data, and this genetic data identifies structure or endemism relevant to the prioritisation and management of fire-affected species. This assessment also provides links to relevant experts for each species, who may be contacted by management agencies for further detailed information. Through these data and links, we hope to promote the incorporation of new genetic and taxonomic knowledge in the conservation and recovery of bushfire-affected vertebrate species.

For many fire-impacted species, assessment of population genetic structure is not possible due to insufficient genetic samples available through state museum collections. Genetic samples (e.g., blood, toe clips, tail clips) are not taken when opportunities arise, and this reduces the ability of researchers to provide information relevant to conservation. For birds in particular, opportunistic sampling during monitoring is essential to genetic assessments as captures are rare. These sampling gaps are a significant barrier to genetic-informed conservation management. Therefore, each species assessment provides information on where additional sampling is necessary to improve our understanding of the population genetics of the species.

For species not in the initial assessment due to sampling limitations, we provide information on areas and species that require additional sampling, as well as geographically organised information on the areas where sampling is needed for further genetic assessment. We provide two types of data: first, identification of areas where few genetic samples exist across species and are therefore areas where we know little about the genetic value – and therefore conservation value – of the region; and second, a list by protected area of the species for which samples are needed. The purpose of this information is to enable targeted sampling of conservation-concern species by field teams assessing impacts of fires on wildlife in areas where the value of new genetic information is the greatest.

Following this report, additional sequencing of priority species requiring additional genetic data – those with sufficient existing samples or new samples from field surveys, and also considered to likely have significant genetic structure – is being undertaken over the next 6-10 months. This will include a targeted project on fire-affected species on Kangaroo Island (SA), comparing island vs nearby mainland populations, and further work on eastern forest species thought to have strong population structure. Additionally, we will target a small number of species for high resolution analysis of within-population diversity to inform genetic risk analyses. These species' assessments will be included in the final report. The final report will also focus on identifying areas with high levels of genetic diversity across all taxa. These hotspots of unique diversity should be considered for priority targeting of habitat restoration and future fire management.

3. Assessment process

In April 2020, the Centre for Biodiversity Analysis organised an online fire genetics workshop in response to the bushfire emergency. Experts on the taxonomy and genetic diversity of mammals, birds, fish, frogs, and reptiles were identified across Australia and invited to attend (Appendix 1). Attendees were provided the premise that the extensive fires have likely impacted cryptic species and evolutionarily significant units within species, which were invisible to the federal assessment team. By mapping these, we could provide useful guidance to short-term assessment and medium-long term restoration efforts.

Prior to the workshop, experts were requested to:

- 1. Review the priority assessment list (Legge *et al.,* 2020) and identify species for which there was relevant existing published or unpublished landscape genetic data,
- 2. Identify species that were not highly ranked and/or assessed, but existing genetic data identified potentially fire-impacted undescribed species, or species with high levels of genetic structure where unique genetic units were potentially fire-impacted,
- 3. Identify fire-impacted short-range endemic species with potential for genetic risk analysis, and
- 4. Identify fire-impacted species with no existing genetic data that were highly likely, due to their biology, to have significant genetic structure.

This assessment considered 202 species identified by state and federal agencies and experts for review at the workshop (Appendix 2). During the workshop, experts were divided by taxonomic group and asked to review the list of species relative to a specific workflow (Appendix 3). In short, this workflow requested experts assess if existing population genetic data was sufficient to understand the population structure, and if so, whether there were significant units of genetic data that were potentially fire-affected. If no or insufficient genetic data exists, the expert panel was asked to assess whether high levels of population genetic structure were likely based on the biology of the species. They were then asked to prioritise all genetic-data-deficient species for additional sequencing. Prioritisation for additional sequencing was based on a combination of species' conservation status, likely fire impact, likelihood of population genetic structure, and availability of existing tissue samples for sequencing.

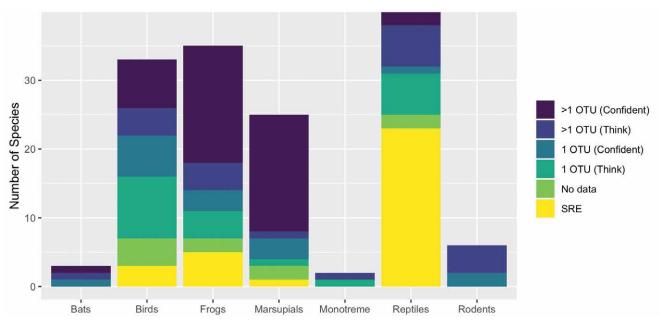

Of the 202 species on the list for review, 23.2% had no existing population genetic data to inform genetic structure (Table 1). Fifty-two percent of species had either just mitochondrial data, or a combination of nuclear and mitochondrial data. Single nucleotide polymorphism (SNP) data was available for 24% of species. SNP data has the most utility for conservation genetic assessments as it provides more robust fine-scale information on population structure, admixture between populations, and levels of genetic diversity and inbreeding within populations. Birds represented the most poorly sampled taxonomic group, with no population genetic data for 58% of reviewed species.

 Table 1. Summary of population genetic data available by taxonomic group (number of species), including those with no data, only mitochondrial data (mtDNA), mitochondrial plus nuclear data (nDNA) and single nucleotide polymorphism data (SNP).

 SNPs are considered the highest-grade population genetic data.

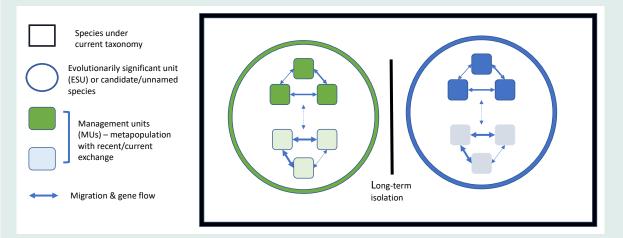
	No data	mtDNA	mtDNA+nDNA	SNP
Frogs (44)	4	14	9	17
Reptiles (55)	8	19	13	15
Mammals (40)	6	9	14	11
Birds (43)	25	7	7	4
Fish (20)	4	0	14	2

Short-range endemic species (SRE) located within fire zones were also reviewed by the relevant expert group. For these species, experts were asked to assess whether existing genetic data was able to be used for the assessment of the genetic risk to the persistence of the species. If not, the experts were asked to rank SREs for additional sequencing on the basis of current conservation status, possible fire-impact, and existing tissue samples. The purpose of reviewing these species, which are less likely to have significant genetic divergence among populations, is to provide information on genetic diversity within populations and the level of inbreeding depression. These data are particularly relevant to genetic rescue of small populations that have been isolated or decimated by fires.

Figure 1. Assessed species in fire-affected areas by taxonomic group, and expert opinion on genetic structure within them. Operational taxonomic units (OTU), including management units, evolutionarily significant units, subspecies, and undescribed species, indicate whether experts know (Confident) or believe (Think) there to be substantial genetic structure within the species. This interim report provides, in a confidential appendix, detailed assessments of genetic structure and mapping of conservation units (Box 1) for 59 species (listed in Appendix 5 on page 23), and information on high-value genetic populations where this is available. These are species for which existing genetic data provide relevant information for conservation management and monitoring priorities in bushfire-affected areas. Across these 59 assessments, as well as many of the other high priority species, samples are not available in all areas of the species' distribution. This report categorises these areas where genetic data is missing, first by summarising the areas with the poorest sampling across taxa, and also providing lists, by protected area, of species that require sampling.

Box 1. Definition and relevance of conservation units used in this report:

"Management units (MUs)" – Metapopulations with significant divergence at nuclear or mitochondrial loci.


"Evolutionarily Significant Units (ESUs)" – Historically isolated set of populations that are reciprocally monophyletic and show significant divergence.

"Subspecies" – Distinct populations within a species that are usually diagnosable using morphological or genetic characters.

"Candidate species" – A taxon considered by the expert to potentially meet the criteria for full species status, but further information is required for further taxonomic revision.

"Phrase named/undescribed species" – A taxon that is considered by the expert to meet the criteria for full species status but has never received a formal species description.

"Short range endemic (SRE)" – A taxon with a range size of <10,000 km², approximately 100 x 100 km.

Relevance to EPBC Act: "Important populations"

An 'important population' is a population that is necessary for a species' long-term survival and recovery. This may include populations identified as such in recovery plans, and/or that are:

- key source populations either for breeding or dispersal [i.e., source populations for viability of management units]
- populations that are necessary for maintaining genetic diversity, [ESUs] and/or
- populations that are near the limit of the species range [ESUs if important to overall adaptive diversity]

4. Information contained in assessment for each group and species

Each assessment (see Box 2) is structured to provide expert delineation of conservation units (Box 1), based on genetic data, within each individual species. Conservation units with high levels of known or potential fire impact are explicitly identified. Where available, information on high genetic-value populations, for example those with high diversity, is given. Uncertainties in the distribution of conservation units or the taxonomic status within or between species, and areas where more sampling is needed are also noted. Summary recommendations on conservation units and fire impact are provided for each assessment.

Box 2: Example species assessment

Alpine Water-skink Eulamprus kosciuskoi and Blue Mountains Swamp-skink Eulamprus leuraensis

Expert: Prof. Scott Keogh

Taxonomic and genetic diversity assessment

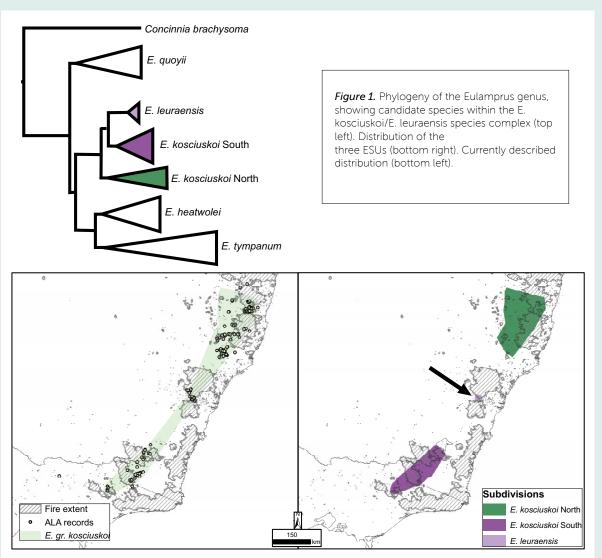
The Alpine Water-skink (*E. kosciuskoi*) is found throughout south-eastern Australia in several geographically isolated regions of the Great Dividing Range, from VIC to northern NSW. Despite multiple disjunct populations, it is currently regarded as a single species. The Blue Mountains Swamp-skink (*E. leuraensis*) is a closely related species restricted to high altitude swamps in the Blue Mountains. *Eulamprus leuraensis* is listed as Endangered in NSW under the Biodiversity Conservation Act and under the federal EPBC Act. *Eulamprus kosciuskoi* is listed as Critically Endangered in VIC under the Flora and Fauna Guarantee Act.

Recent genetic analyses do not support the current taxonomy of *E. kosciuskoi*. Pepper et al. (2018) sequenced mitochondrial DNA and hundreds of nuclear genes to analyse the phylogeographic structure of the *Eulamprus* genus. They found that *E. kosciuskoi* is paraphyletic. One lineage, *E. kosciuskoi* South, is more closely related to *E. leuraensis*. *Eulamprus kosciuskoi* South and *E. kosciuskoi* North are separated by the Hunter Valley (Pepper et al., 2018). Therefore, the *E. kosciuskoi/leuraensis* species complex includes three separate candidate species.

The Blue Mountains Swamp-skink displays strong genetic structuring across its range, with separate lineages on the Newnes Plateau and in the Blue Mountains. Individual populations of this species have low genetic diversity but are genetically distinct from nearby populations and should be considered MUs (Dubey & Shine, 2010; Dubey *et al.*, 2010).

Fire impact on conservation units

The *E. kosciuskoi* South candidate species is distributed in fire-affected areas in Kosciuszko National Park and Namadgi National Park, along with a smaller burnt area in the southern end of its range in Alpine National Park, Victoria. *Eulamprus kosciuskoi* North has had large sections of the eastern half of its range burnt by fires in the Barrington Tops, Werrikimbe, Washpool, Guy Fawkes River and Nymboida National Parks, and throughout the New England Tableland region. The Blue Mountains Swamp-skink *E. leuraensis* has had the majority of its small range burnt by fires in the Blue Mountains and Kanangra-Boyd National Parks. Several genetically distinct populations may have been badly impacted or destroyed.


Uncertainties, and priorities for sample collection and field assessment

The northern candidate species of the Alpine Water-skink, *E. kosciuskoi* North, likely represents an undescribed species with high conservation value. Field sampling of populations in this clade is recommended to assess fire impact; in particular, the Barrington Tops National Park is a priority area for population-monitoring due to the extensive fire impacts on this area. Likewise, post-fire sampling of the southern candidate species, *E. kosciuskoi* South, would be valuable, as this clade has had its range severely burnt. Estimates of genetic diversity in the Alpine Water-skink are limited, and additional sample collection for populations on some mountains may be valuable.

The Blue Mountains Swamp-skink is primarily distributed within fire-affected areas, and field sampling is recommended to assess the full impact of the fires on this species. Genetic and population assessments of the Newnes National Park populations using SNP data are a priority; samples for this are available and further collection is not necessary at this time.

Box 2, continued

Phylogeny and distribution maps

Summary recommendations

- Genetic analyses do not support the current taxonomy of the Alpine Water-skink. This species contains two distinct clades, of which the northern clade likely represents an undescribed species. Therefore, all three clades in this species complex should be managed and monitored independently as separate candidate species.
- Genetic and population assessments of the Blue Mountains Swamp-skink across its range would be valuable.

References

Dubey, S., & Shine, R. (2010). Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). *Molecular Ecology*, 19(5), 886-897. doi:10.1111/j.1365-294X.2010.04539.x

Dubey, S., Shine, R., & Birks, J. (2010). Plio-Pleistocene diversification and genetic population structure of an endangered lizard (the Blue Mountains water skink, Eulamprus leuraensis) in south-eastern Australia. *Journal of Biogeography*, 37(5), 902-914. doi:10.1111/j.1365-2699.2009.02266.x

Pepper, M., Sumner, J., Brennan, I. G., Hodges, K., Lemmon, A. R., Lemmon, E. M., . . . Keogh, J. S. (2018). Speciation in the mountains and dispersal by rivers: Molecular phylogeny of Eulamprus water skinks and the biogeography of Eastern Australia. *Journal of Biogeography*, 45(9), 2040-2052. doi:10.1111/jbi.13385

5. Summary by taxonomic group

Expert data on the genetic diversity of fire-affected vertebrate species reveals high levels of taxonomic instability (Table 2). This includes relatively high numbers of undescribed and candidate species, particularly in frogs, with fewer in mammals and reptiles. No undescribed species were identified in birds. Some subspecies designations were not supported by available genetic data, particularly in birds (designated by negative numbers in Table 2).

Substantial genetic structure was identified within species from all taxonomic groups (Figure 1, Table 2). Mammals and reptile species had particularly high prevalence of ESUs that should be taken into account when planning conservation of individual species. These data reflect the deep genetic structure that likely is a consequence of low dispersal in these taxa. This is also reflected in the high number of management units identified, which suggest that metapopulation genetic structure also exists within ESUs.

For birds with sufficient data, the evidence typically identified real but relatively shallow divergences in geographically separated populations (i.e. MUs). These data suggest many now fragmented bird populations were, until relatively recently, connected through occasional dispersal.

 Table 2. Sum of conservation units identified by experts in the 59 species assessed, by taxonomic group (number of species assessed under current taxonomy). See definitions in Box 1.

	Undescribed species	Candidate Species	Subspecies	ESU	MU
Frogs (18)	8	10	-2	7	>10
Reptiles (14)	1	3	-2	19	>18
Mammals (22)	2	5	1	40	>22
Birds (5)	0	0	-7	0	6

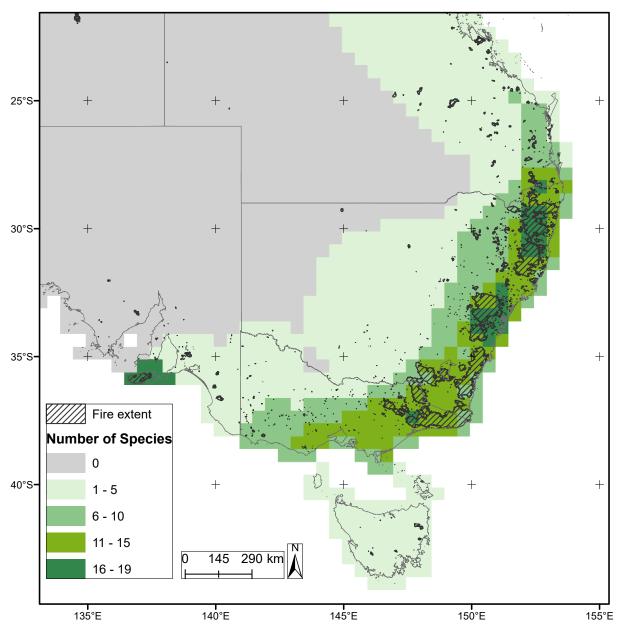

Individual species were prioritised by the relevant expert panel for additional genetic sequencing to determine population structure (Table 3). Species ranked the highest priority were those that are likely to have significant genetic structure or are short-range endemic species. The expert group identified 15 taxa, including endemic subspecies, from Kangaroo Island that warrant further genomic analysis to determine levels of genetic diversity and difference from the adjacent SA mainland (Table 3). This discrete project will inform genetic risk analysis and options for demographic and genetic rescue of island populations should surveys to assess fire impacts point to this need.

 Table 3.
 Species ranked by experts as a high priority for additional sequencing, or medium/high for Kangaroo Island. Species with some existing data and therefore included in initial assessments are marked with an asterisk. Kangaroo Island priorities are marked by a +.

	Genus	Species
Frogs	Crinia	signifera*
	Litoria	olongburensis*
	Mixophyes	iteratus
	Pseudophryne	pengilleyi
	Adelotus	brevis
	Crinia	tinnula*
	Limnodynastes	dumerilii*+
	Litoria	ewingii*+
	Philoria	kundagungan*
	Philoria	loveridgei*
	Philoria	pughi*
	Philoria	richmondensis*
	Philoria	sphagnicola*
	Litoria	piperata
	Pseudophryne	bibroni+
	Pseudophryne	corroboree
	Pseudophryne	dendyi

	Genus	Species
Reptiles	Anepischetosia	maccoyi
	Eulamprus	heatwolei*
	Eulamprus	kosciuskoi*
	Eulamprus	leuraensis*
	Eulamprus	tympanum*
	Pseudemoia	cryodroma*
	Pseudemoia	pagenstecheri A
	Saiphos	equalis
	Saltuarius	kateae
	Saltuarius	moritzii*
	Saltuarius	wyberba
	Cyclodomorphus	michaeli
	Coeranoscincus	reticulatus
	Harrisoniascincus	zia*
	Intellagama	leseurii
	Liopholis	whitii
	Phyllurus	caudiannulatus
	Phyllurus	platurus
	Pseudemoia	rawlinsoni
	Varanus	rosenbergi*+
Mammals	Antechinus	argentus*
	Antechinus	arktos*
	Cercartetus	nanus*+
	Cercartetus	lepidus*+
	Dasyurus	maculatus
	Petaurus	breviceps*
	Petrogale	penicillata*
	Pseudomys	fumeus*
	Antechinus	mimetes*
	Mastacomys	fuscus
	Potorous	longipes
	Potorous	tridactylus*
	Rattus	lutreolus+
	Sminthopsis	fulignosus aitkeni+
	Vespadelus	darlingtoni+
	Vespadelus	regulus+
Birds	Anthochaera	chrysoptera +
	Calyptorhynchus	lathami* +
	Hylacola	cauta halmaturina+
	Psophodes	nigrogularis lashmari*+
	Pezoporus	wallicus*
	Stipiturus	malachurus*+
	Zoothera	lunulata halmaturina+

Many priority species have sufficient existing genetic samples in museum collections for sequencing, but the majority of species require either targeted sampling from particular areas, or have very few existing samples across the range of the species. For each species, sampling gaps for tissue/blood samples were determined and are provided in Appendix 4. Areas with high-levels of sampling gaps are shown in Fig. 2 and these areas should be prioritised for additional collection of genetic samples across taxonomic groups. This map highlights that there are fire-affected areas where genetic data to assess conservation units is lacking across a high number of vertebrate taxa. Indeed, most of the poorly documented areas are substantially fire affected, including Kangaroo Island, the Blue Mountains, Washpool National Park, Main Range and the Border Ranges.

Figure 2. Map of sampling gaps, indicating the number of species needing genetic data collection in a grid cell. The value is the number of species needing tissue sampling out of a total of 67 species that have an assessment or are a high priority for assessment. A list of species needing collection by protected area is provided in Appendix 4, a searchable Excel file.

During the CBA expert panel assessment of species, many widespread (i.e non-SRE) species were identified as known (from genetic evidence) or very likely (based on species' biology) to be just one species and lacking multiple ESUs at least across the fire-affected areas (Table 4). These species should be assessed for fire impacts as a single entity. We note that for some, there is solid genetic evidence for multiple MUs reflecting limited dispersal among populations or recent isolation. For some taxa (e.g. *Isoodon obesulus*; Cooper *et al.*, 2020) there is evidence for substantial genetic structuring (i.e. multiple ESUs) in parts of the species range not affected by fire.

 Table 4. Species considered by expert panel to have low genetic divergence across their range as a whole or the fire zones in particular.

 The expert panel's confidence of this assessment is noted, whether "Confident" or "Think".).

	Genus	Species	Expert Assessment
Frogs	Litoria	aurea	Think
	Litoria	barringtonensis	Think
	Litoria	nudidigita	Think
	Litoria	subglandulosa	Think
	Taudactylus	pleione	Confident
	Uperoleia	martini	Confident
Reptiles	Acritoscincus	platynotus	Think
	Ctenotus	taeniolatus	Think
	Egernia	saxatilis	Think
	Lissolepis	coventryi	Think
	Morelia	spilota spilota	Confident
Bat	Pteropus	poliocephalus	Confident
Marsupials	Isoodon	obesulus obesulus	Confident
	Petaurus	norfolcensis	Think
	Phascolarctos	cinereus	Confident
Monotreme	Tachyglossus	aculeatus multiaculeatus	Think
Rodent	Pseudomys	oralis	Confident
Birds	Anthochaera	phrygia	Confident
	Calyptorhynchus	banksii banksii	Confident
	Climacteris	erythrops	Think
	Falco	hypoleucos	Confident
	Glyciphila	melanops	Confident
	Lathamus	discolor	Think
	Malurus	lamberti	Think
	Menura	alberti	Confident
	Origma	solitaria	Confident
	Pandion	haliaetus cristatus	Think
	Parvipsitta	pusilla	Think
	Petroica	phoenicea	Think
	Туtо	longimembris	Think
	Туto	novaehollandiae	Think
	Tyto	tenebricosa	Think

6. Summary recommendations

Assessments of fire impacts should rely on the corrected taxonomy as provided in this report, and consider likely fireimpacts on candidate species and/or ESUs within currently recognised taxa, these representing "important populations" as defined in the EPBC Act. Redefining the spatial overlap with fire for a number of re-defined taxa covered in this report will be required, which may result in their inclusion in the list of highly-ranked priority species. Where conservation units have extensive overlap with fire zones and are judged ecologically sensitive to fire, consideration should be given to formal status assessments under the Important Populations provision of the EPBC Act. This action may be particularly relevant to protecting conservation units with high genetic diversity, which are essential to the recovery and persistence of species.

Ongoing consideration of conservation status should be provided for high-priority taxa that experts consider likely to have significant genetic structure (Table 3), but do not have individual assessments in this report. Like the species included in this report, these species are likely to have additional conservation units, including candidate species and ESUs. These conservation units will require further priority assessment as genetic data becomes available.

High priority should be given to increasing available data on genetic diversity and distinctiveness for taxa (species, candidate species, ESUs) restricted to Kangaroo Island. Sampling from Kangaroo Island across priority species is relatively low (Fig. 2, Appendix 4), which currently prevents genetic assessment of conservation units. Further information on genetic diversity would also allow prioritisation of recovery actions, including determining which species require genetic rescue, and identifying the most appropriate mainland populations for augmenting Kangaroo Island populations. This is a particular priority for Kangaroo Island species of birds and some bats.

Bat species represent a significant gap in genetic assessments due to low numbers of samples available for genetic sequencing across the range of virtually all species that are potentially fire impacted. Where possible, genetic samples should be taken in order to enable similar assessments. This requires a conscious effort of field survey teams across the range of the fires in order to ensure genetic assessments are available in the future to help guide bat conservation. Bat species have not been included specifically in the list of samples needed by protected area (Appendix 4), as samples are generally needed for all bat species everywhere.

Field survey teams across the fire region should ensure monitoring occurs for small-range taxa (including both species and ESUs) that significantly overlap with fire zones. Targeted survey based on maps included in the individual species assessments will enable these regions to be prioritised. These assessments, while not publicly available due to the sensitivity of the data, can be accessed by relevant agencies by contacting the authors and providing information on the taxonomic groups and regions of interest.

Sampling of materials for genetic analysis in priority species and regions should target areas with substantial sampling gaps, especially where this involves multiple species (Fig. 2) and/or could strongly impact prioritisations. Samples may include, but are not limited to, toe, tail or ear clips, and blood samples. Samples of bird and bat species should be taken wherever possible due to the low existing sampling for most species. Engagement with taxon experts can help address the best method to take and preserve samples. Samples taken as part of monitoring should be given to the relevant state-based museum, as this will enable them to be preserved, databased, and therefore incorporated into broad-scale genetic analyses.

7. Future reporting

In the next stage of this project, high priority species with sufficient genetic samples will be sequenced in order to provide additional individual-species assessments in the final report. Target species will be from the high priority list (Table 3), and the individual species chosen will be based on a combination of stakeholder priority and availability of tissues samples. For target species identified with state and federal stakeholders, we will undertake to provide genetic risk assessments (Kriesner *et al.*, unpublished). Genetic risk assessment allows genetic interventions, such as translocations or captive breeding, to be undertaken for the persistence of species. Using the genetic data included here and generated prior to the final report, we will identify hotspots of endemism to inform selection of areas for investment, including rehabilitation and protection from future fires.

References

Coates, D. J., Byrne, M. and Moritz, C. (2018) 'Genetic Diversity and Conservation Units: Dealing With the Species-Population Continuum in the Age of Genomics', *Frontiers in Ecology and Evolution*, 6. doi: 10.3389/fevo.2018.00165.

Cooper, S. J. B. et al. (2020) 'Phylogeography of southern brown and golden bandicoots: implications for the taxonomy and distribution of endangered subspecies and species', *Australian Journal of Zoology*, 66(6), pp. 379–393. doi: 10.1071/ZO19052.

Kriesner, P. et al. (unpublished) Assessing genetic risks to Victorian flora and fauna.

Legge, S. et al. (2020) *Rapid analysis of impacts of the 2019-20 fires on animal species, and prioritisation of species for management response*. Department of Agriculture, Water and the Environment. Available at: http://www.environment. gov.au/system/files/pages/ef3f5ebd-faec-4c0c-9ea9-b7dfd9446cb1/files/assessments-species-vulnerability-fire-impacts-14032020.pdf.

Moritz, C. (1994) 'Defining "Evolutionarily Significant Units" for conservation', *Trends in Ecology & Evolution*, 9(10), pp. 373–375. doi: 10.1016/0169-5347(94)90057-4.

Weeks, A. R. et al. (2017) 'Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population', *Nature Communications*, 8(1), p. 1071. doi: 10.1038/s41467-017-01182-3.

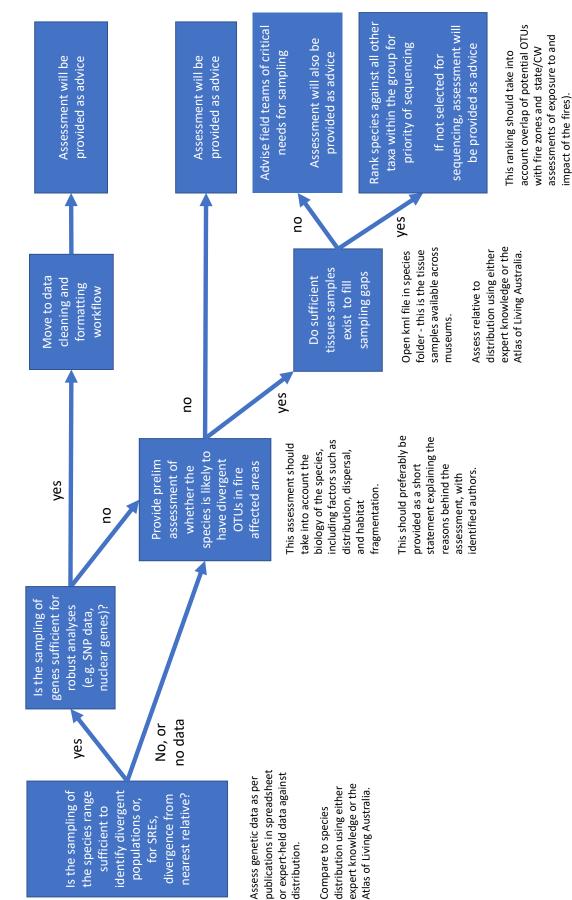
Antechinus argentus. Image: Gary Cranitch Qld Museum

Appendix 1: Expert panel

Name	Organisation/	Contribution
Leo Joseph	CSIRO	Expert panel - Birds
Andrew Baker	QUT	Expert panel - Mammals
Anna MacDonald	ANU/BPA	Expert panel - Mammals
Emily Roycroft	ANU	Expert panel - Mammals
Kevin Rowe	Museum Victoria	Expert panel - Mammals
Linda Neaves	ANU	Expert panel - Mammals
Mark Eldridge	Australian Museum	Expert panel - Mammals
Conrad Hoskin	James Cook University	Expert panel - Reptiles
Jane Melville	Museum Victoria	Expert panel - Reptiles
Joanna Sumner	Museum Victoria	Expert panel - Reptiles
Maggie Haines	Museum Victoria	Expert panel - Reptiles
Mitzy Pepper	ANU	Expert panel - Reptiles
Paul Oliver	Queensland Museum	Expert panel - Reptiles
Scott Keogh	ANU	Expert panel - Reptiles, Frogs
Jodi Rowley	Australian Museum	Expert panel - Frogs
Michael Mahony	Univ Newcastle	Expert panel - Frogs
Renee Catullo	ANU, CSIRO	Expert panel - Frogs
Steve Donnellan	Sth Australian Museum	Expert panel - Frogs
Peter Unmack	Univ Canberra	Expert panel - Fish
Jennifer Pierson	ACT Parks & Wildlife	Expert panel - Conservation Priorities
Sarah Legge	ANU/NESP	Expert panel - Conservation Priorities
Bernd Gruber	Univ Canberra	Expert panel - Spatial expertise
Jason Bragg	Royal Botanic Gardens	Expert panel - Spatial expertise
Sam Banks	CDU	Expert panel - Spatial expertise
Simon Ferrier	CSIRO	Expert panel - Spatial expertise
Katherine Farquharson	University of Sydney	BPA Threatened Species Advisor
Sophie Mazard	ВРА	BPA Genomics Advisor

Appendix 2: Species reviewed by expert panel. Prioritiser is the state or federal lister, or whether the species was suggested for review by the expert panel.

Group	Prioritiser	Genus	Species	Common name
Frog	VDEWLP	Litoria	aurea	Green & golden bell frog
	VDEWLP, NSW	Litoria	booroolongensis	Booroolong frog
	NSW	Litoria	brevipalmata	Green-thighed frog
	Expert	Litoria	caerulea	Green tree frog
	Expert	Litoria	chloris	Red-eyed tree frog
	VDEWLP	Litoria	citropa	Blue Mountains tree frog
	QLD	Litoria	cooloolensis	Cooloola sedge frog
	DEWA, NSW	Litoria	daviesae	Davies' tree frog
	Expert	Litoria	dentata	Bleating tree frog
	Expert	Litoria	ewingi	Southern brown tree frog
	QLD	Litoria	freycineti	Wallum rocketfrog
	Expert	Litoria	gracilenta	Dainty green tree frog
	DEWA, VDEWLP	Litoria	littlejohni	Littlejohn's tree frog
	VDEWLP	Litoria	nudidigita	Leaf green tree frog
	QLD, NSW	Litoria	olongburensis	Olongburra frog
	QLD	Litoria	pearsoniana	Cascade tree frog
	Expert	Litoria	peronii	Peron's tree frog
	DEWA, NSW	Litoria	piperata	Peppered tree frog
	DEWA, NSW, VDEWLP	Litoria	spenceri	Spotted tree frog
	DEWA, NSW	Litoria	subglandulosa	New England treefrog
	VDEWLP	Litoria	verreauxii	Verreaux's tree frog
	Expert	Litoria	barringtonensis	Barrington Tops tree frog
	QLD, NSW	Adelotus	brevis	Tusked frog
	NSW	Assa	darlingtoni	Pouched frog
	Expert	Crinia	signifera	Eastern common froglet
	QLD, NSW	Crinia	tinnula	Wallum froglet
	DEWA, NSW, VDEWLP	Heleioporus	australiacus	Giant burrowing frog
	Expert	Limnodynastes	dumerilii	Banjo frog
	DEWA, NSW, VDEWLP	Mixophyes	balbus	Southern barred frog
	dewa, qld, nsw	Mixophyes	fleayi	Fleay's frog
	DEWA, NSW	Mixophyes	iteratus	Giant barred frog
	DEWA, QLD	Philoria	kundagungan	Mountain frog
	Expert	Philoria	loveridgei	Loveridge's frog
	DEWA, NSW	Philoria	pughi	Pugh's frog
	DEWA	Philoria	richmondensis	Richmond Range sphagnum frog
	DEWA, NSW	Philoria	sphagnicola	Sphagnum frog
	NSW	Pseudophryne	australis	Red-crowned toadlet
	Expert	Pseudophryne	bibronii	Bibron's toadlet
	DEWA, NSW	Pseudophryne	corroboree	Southern corroboree frog
	VDEWLP	Pseudophryne	dendyi	Dendy's toadlet
	DEWA	Pseudophryne	pengilleyi	Northern corroboree frog
	DEWA	Taudactylus	pleione	Kroombit tinker frog
	VDEWLP	Uperoleia	martini	Martin's toadlet


Group	Prioritiser	Genus	Species	Common name
Reptiles	Expert	Acritoscincus	duperreyi	Bold-striped cool skink
	VDEWLP	Acritosincus	platynotus	Red-throated skink
	Expert	Anepischetosia	тассоуі	Maccoy's skink
	Expert	Calyptotis	lepidorostrum	Cone-eared calyptotis
	DEWA Prov	Calyptotis	ruficauda	Red-tailed calyptotis
	Expert	Calyptotis	scutirostrum	Scute-snouted calyptotis
	Expert	Calyptotis	temporalis	Broad-templed calyptotis
	DEWA, QLD	Coeranoscincus	reticulatus	Three-toed snake-tooth skink
	Expert	Concinnia	martini	Dark barsided skink
	VDEWLP	Ctenotus	taeniolatus	Copper-tailed skink
	VDEWLP	Cyclodomorphus	michaeli	Eastern she-oak skink
	DEWA, VDEWLP	Cyclodomorphus	praealtus	Alpine she-oak skink
	DEWA Prov	Drysdalia	rhodogaster	Mustard-bellied snake
	Expert	Egernia	cunninghami	Cunningham's skink
	DEWA	Egernia	roomi	Kaputar rock skink
	Expert	Egernia	saxatilis	Black rock skink
	Expert	Elseya	albagula	Southern snapping turtle
	Expert	Emydura	macquarii	Macquarie turtle
	VDEWLP	Eulamprus	heatwolei	Yellow-bellied water skink
	VDEWLP	Eulamprus	kosciuskoi	Alpine water skink
	DEWA, NSW	Eulamprus	leuraensis	Blue Mountains water skink
	Expert	Eulamprus	quoyii	Eastern water skink
	DEWA Prov	Eulamprus	tympanum	Southern water-skink
	DEWA Prov	Harrisoniascincus	zia	Rainforest cool-skink
	DEWA	Hoplocephalus	bungaroides	Broad-headed snake
	NSW	Hoplocephalus	stephensii	Stephens' banded snake
	VDEWLP	Intellagama	lesueurii howittii	Gippsland water dragon
	DEWA	Lampropholis	elongata	Long sunskink
	Expert	Lampropholis	guichenoti	Pale-flecked garden sunskink
	DEWA, VDEWLP	Liopholis	guthega	Guthega skink
	Expert	Liopholis	montana	Mountain skink
	Expert	Liopholis	whitii	White's skink
	VDEWLP	Lissolepis	coventryi	Swamp skink
	VDEWLP	Morelia	spilota spilota	Diamond python
	Expert NSW	Myuchelys	bellii	Western sawshell turtle
		Myuchelys	georgesi	Bellinger River snapping turtle
	DEWA, NSW	Myuchelys	purvisi	Manning River helmeted turtle
	DEWA, QLD	Nangura	spinosa	Nangur spiny skink
	Expert	Oedura	tryoni	Spotted velvet gecko
	Expert	Ophioscincus	ophioscincus	Yolk-bellied snake-skink
	DEWA, QLD	Phyllurus	caudiannulatus	Ringed thin-tail gecko
	DEWA, QLD	Phyllurus	kabikabi	Oakview leaf-tailed gecko
	DEWA Prov	Phyllurus	platurus	Broad-tailed gecko
	DEWA, VDEWLP	Pseudemoia	cryodroma	Alpine bog skink
	Expert	Pseudemoia	pagenstecheri A	Tussock skink
	DEWA Prov	Pseudemoia	rawlinsoni	Glossy grass skink
	QLD	Pygmaeascincus	sadlieri	Magnetic Island dwarf skink
	Expert	Rankinia	diemensis	Mountain dragon

Group	Prioritiser	Genus	Species	Common name
	Expert	Saiphos	equalis	Three-toed skink
	DEWA	Saltuarius	kateae	Kate's leaf-tail gecko
	DEWA Prov	Saltuarius	moritzi	Moritz's leaf-tailed gecko
	DEWA Prov	Saltuarius	wyberba	Granite leaf-tailed gecko
	Expert	Saproscincus	mustelinus/	Weasel skink
			oriarus	
	Expert	Saproscincus	rosei	Rose's shade skink
	Expert	Silvascincus	murrayi	Murray's skink
	NSW, SA	Varanus	rosenbergi	Rosenberg's goanna
	VDEWLP	Varanus	varius	Lace monitor
Birds	dewa, qld, nsw	Menura	alberti	Albert's lyrebird
	NSW	Calyptorhynchus	banksii banksii	Red-tailed black cockatoo (coastal subspecies)
	SA	Stagonopleura	bella samueli	Beautiful firetail (sfr, mlr, ki)
	NSW	Petroica	boodang	Scarlet robin
	DEWA, QLD, VDEWLP	Dasyornis	brachypterus	Eastern bristlebird
	SA	Hylacola	cauta halmaturina	Shy heathwren (ki)
	SA	Anthochaera	chrysoptera	Little wattlebird
	NSW	Daphoenositta	chrysoptera	Varied sittella
		,	chrysoptera	
	NSW	Ninox	connivens	Barking owl
	QLD	Cyclopsitta	diophthalma coxeni	Coxen's fig-parrot
	VDEWLP	Lathamus	discolor	Swift parrot
		Platycercus	elegans	Crimson rosella
	DEWA, VDEWLP	Climacteris	erythrops	Red-browed treecreeper
	DEWA, NSW	Callocephalon	fimbriatum	Gang-gang cockatoo
	DEWA Prov	Pycnoptilus	floccosus	Pilotbird
	NSW	Calamanthus	fuliginosus	Striated fieldwren
	SA	Calyptorhynchus	funerea	Yellow-tailed black cockatoo
	SA	Pandion	haliaetus cristatus	Eastern osprey
	NSW	Falco	hypoleucos	Grey falcon
	Expert	Malurus	lamberti	Variegated fairy-wren
	DEWA, QLD, NSW, VDEWLP (KI subsp - DEWA, SA)	Calyptorhynchus	lathami	South-eastern glossy black-cockatoo
	VDEWLP	Meliphaga	lewinii	Lewin's honeyeater
	NSW	Tyto	longimembris	Eastern grass owl
	DEWA, SA	Zoothera	lunulata halmaturina	Western bassian thrush
	NSW	Turnix	maculosus	Red-backed button-quail
	NSW	Ptilinopus	magnificus	Wompoo fruit-dove
	DEWA, QLD, SA,	Stipiturus	malachurus	Kangaroo Island subsp & southern emu-wren
	NSW	Turnix	melanogaster	Black-breasted button-quail
	SA	Glyciphila	melanops	Tawny-crowned honeyeater
			1110011003	

Group	Prioritiser	Genus	Species	Common name
	VDEWLP	Gerygone	mouki	Brown gerygone
	DEWA, SA	Psophodes	nigrogularis	Kangaroo Island western whipbird
			lashmari	
	NSW	Dromaius	novaehollandiae	Emu (NSW North coast)
	VDEWLP, NSW	Tyto	novaehollandiae	Masked owl
	DEWA Prov	Menura	novaehollandiae	Superb lyrebird
	NSW	Podargus	ocellatus	Marbled frogmouth
	NSW	Pachycephala	olivacea	Olive whistler
	SA	Lewinia	pectoralis	Lewin's rail
	NSW	Petroica	phoenicea	Flame robin
	DEWA, VDEWLP	Anthochaera	phrygia	Regent honeyeater
	NSW	Parvipsitta	pusilla	Little lorikeet
	QLD, NSW	Erythrotriorchis	radiatus	Red goshawk
	NSW	Petroica	rodinogaster	Pink robin
	DEWA, QLD, NSW	Atrichornis	rufescens	Rufous scrub-bird
	DEWA	Origma	solitaria	Rockwarbler
	VDEWLP, NSW	Ninox	strenua	Powerful owl
	VDEWLP, NSW	Tyto	tenebricosa	Sooty owl
	SA	Turnix	varius	Painted button-quail
	DEWA, QLD, VDEWLP	Pezoporus	wallicus	Ground parrot
Bat	NSW	Chalinolobus	dwyeri	Large pied wattled bat
	NSW	Chalinolobus	nigrogriseus	Hoary wattled bat
	VDEWLP	Falsistrellus	tasmaniensis	Eastern falsistrelle
	QLD	Hipposideros	diadema reginae	Diadem leaf-nosed bat
	NSW	Miniopterus	australis	Little bent-winged bat
	VDEWLP,NSW	Miniopterus	orianae	Eastern bent-winged bat
		,	oceanensis	
	NSW	Myotis	macropus	Large-footed myotis
	NSW	Ozimops	lumsdenae	Northern free-tailed bat
		(Mormopterus)		
	DEWA Prov	Phoniscus	papuensis	Golden-tipped bat
	DEWA, VDEWLP	Pteropus	poliocephalus	Grey-headed flying-fox
	VDEWLP	Rhinolophus	megaphyllus megaphyllus	Eastern horseshoe bat
	NSW	Scoteanax	rueppellii	Greater broad-nosed bat
	NSW	Syconycteris	australis	Eastern blossom-bat
	SA	Vespadelus	darlingtoni	Large forest-bat
	SA	Vespadelus	regulus	Southern forest-bat
	NSW	Vespadelus	troughtoni	Eastern cave-bat
Marsupial	VDEWLP	Acrobates	pygmaeus	Feather-tailed glider
· ·	NSW	Aepyprymnus	rufescens	Rufous bettong
	Expert	Antechinus	agilis	Agile antechinus
	DEWA	Antechinus	argentus	Silver-headed antechinus
	Expert	Antechinus	arktos	Black-footed dusky antechinus
	Expert	Antechinus	flavipes	Yellow-footed antechinus
	DEWA	Antechinus	mimetes	Mainland dusky antechinus
	Expert	Antechinus	mysticus	Buff-footed antechinus

Group	Prioritiser	Genus	Species	Common name
	Expert	Antechinus	stuartii	Brown antechinus
	Expert	Antechinus	subtropicus	Subtropical antechinus
	DEWA, NSW, VDEWLP	Burramys	parvus	Mountain pygmy possum
	Expert	Cercartetus	concinnus	Western pygmy possum
	SA	Cercartetus	lepidus	Little pygmy possum
	VDEWLP, NSW	Cercartetus	nanus	Eastern pygmy possum
	QLD	Dasyurus	hallucatus	Northern quoll
	DEWA, QLD, NSW, VDEWLP	Dasyurus	maculatus maculatus	Spotted-tailed quoll
	VDEWLP, NSW, SA	Isoodon	obesulus obesulus	Southern brown bandicoot
	DEWA, NSW	Notomacropus	parma	Parma wallaby
	VDEWLP	Perameles	nasuta	Southern long-nosed bandicoot
	DEWA, NSW, VDEWLP	Petauroides	volans	Greater glider
	DEWA, NSW, VDEWLP	Petaurus	australis	Yellow-bellied glider
	Expert	Petaurus	breviceps	Sugar glider
	NSW	Petaurus	norfolcensis	Squirrel glider
	DEWA, NSW, QLD, VDEWLP	Petrogale	penicillata	Brush-tailed rock-wallaby
	NSW	Phascogale	tapoatafa	Brush-tailed phascogale
	DEWA, VDEWLP, SA	Phascolarctos	cinereus	Коаla
	NSW	Planigale	maculata	Common planigale
	DEWA, VDEWLP, NSW	Potorous	longipes	Long-footed potoroo
	DEWA, QLD, NSW, VDEWLP	Potorous	tridactylus	Long-nosed potoroo
	DEWA, SA	Sminthopsis	fuliginosus aitkeni	Kangaroo Island dunnart
	VDEWLP, NSW	Sminthopsis	leucopus	White-footed dunnart
Monotreme	DEWA, SA, VDEWLP	Ornithorhynchus	anatinus	Platypus
	DEWA, SA	Tachyglossus	aculeatus multiaculeatus	Kangaroo Island echidna
Rodent	VDEWLP	Hydromys	chrysogaster	Water rat
	DEWA, NSW, VDEWLP	Mastacomys	fuscus mordicus	Broad-toothed rat
	Expert	Pseudomys	delicatulus	Delicate mouse
	DEWA, NSW, VDEWLP	Pseudomys	fumeus	Smoky mouse
	NSW	Pseudomys	gracilicaudatus	Eastern chestnut mouse
	DEWA, QLD, VDEWLP	Pseudomys	novaehollandiae	New Holland mouse
	DEWA, NSW, QLD	Pseudomys	oralis	Hastings River mouse
	SA	Rattus	lutreolus	Swamp rat

Appendix 3: Assessment workflow followed by expert panels

Appendix 4: URL to come?

Appendix 5: Species with detailed genetic assessments in the confidential appendix.

Common name	Scientific name
BIRDS	
Glossy black cockatoo	Calyptorhynchus lathami
Albert's lyrebird	Menura alberti
Superb lyrebird	Menura novaehollandiae
Eastern ground parrot	Pezoporus wallicus
Western ground parrot	Pezoporus flaviventris
Western whipbird	Psophodes nigrogularis
Western whipbird	Psophodes leucogaster
Southern emu-wren	Stipiturus malachurus
MAMMALS	
Agile antechinus	Antechinus agilis
Silver-headed antechinus	Antechinus argentus
Black-footed dusky antechinus	Antechinus arktos
Yellow-footed antechinus	Antechinus flavipes
Mainland dusky antechinus	Antechinus mimetes
Buff-footed antechinus	Antechinus mysticus
Brown antechinus	Antechinus stuartii
Subtropical antechinus	Antechinus subtropicus
Mountain pygmy possum	Burramys parvus
Western pygmy possum	Cercartetus concinnus
Little pygmy possum	Cercartetus lepidus
Eastern pygmy possum	Cercartetus nanus
Platypus	Ornithorhynchus anatinus
Greater glider	Petauroides volans
Yellow-bellied glider	Petaurus australis
Sugar glider	Petaurus breviceps
Brush-tailed rock wallaby	Petrogale penicillata
Koala	Phascolarctos cinereus
Long-nosed potoroo	Potorous tridactylus
Smoky mouse	Pseudomys fumeus
New Holland mouse	Pseudomys novaehollandiae
Hastings river mouse	Pseudomys oralis

Common name	Scientific name
REPTILES	
Alpine She-oak skink	Cyclodomorphus praealtus
Cunningham's skink	Egernia cunninghami
Yellow-bellied water-skink	Eulamprus heatwolei
Alpine water-skink	Eulamprus kosciuskoi
Blue Mountains swamp-skink	Eulamprus leuraensis
Southern water-skink	Eulamprus tympanum
Rainforest cool-skink	Harrisoniascincus zia
Broad-headed snake	Hoplocephalus bungaroides
Stephen's banded snake	Hoplocephalus stephensii
Nangura skink	Nangura spinosa
Alpine bog-skink	Pseudemoia cryodroma
Moritz's leaf-tailed gecko	Saltuarius moritzi
Orange-tailed shadeskink	Saproscincus rosei
Rosenberg's goanna	Varanus rosenbergi
FROGS	
Marsupial frog	Assa darlingtoni
Eastern common froglet	Crinia signifera
Wallum froglet	Crinia tinnula
Giant burrowing frog	Heleioporus australiacus
Eastern banjo frog	Limnodynastes dumerilii
Booroolong frog	Litoria booroolongensis
Bleating tree frog	Litoria dentata
Ewing's tree frog	Litoria ewingii
Littlejohn's tree frog	Litoria littlejohni
Olongburra frog	Litoria olongburensis
Whistling tree frog	Litoria verreauxii
Southern barred frog	Mixophyes balbus
Red and yellow mountain frog	Philoria kundagungan
Masked mountain frog	Philoria loveridgei
Pugh's Mountain Frog	Philoria pughi
Richmond range mountain frog	Philoria richmondensis
Sphagnum frog	Philoria sphagnicola
Brown broodfrog	Pseudophryne bibronii

Rockwarbler. Image: JJ Harrison CC BY-SA BY 4.0 Wikimedia Commons

Further information: http://www.nespthreatenedspecies.edu.au

This project is supported through funding from the Australian Government's National Environmental Science Program.

