Extensions of tempered modules

Eric Opdam

Universiteit van Amsterdam
September 14, 2011

We would like to discuss the following topics (and some applications). Let \mathcal{H} be an affine Hecke algebra.

- (with Solleveld) \mathcal{H} has finite global homological dimension.

We would like to discuss the following topics (and some applications). Let \mathcal{H} be an affine Hecke algebra.

- (with Solleveld) \mathcal{H} has finite global homological dimension.
- (with Solleveld) Let \mathcal{S} be the Schwartz algebra completion of \mathcal{H}, and U, V finite dimensional tempered modules. Then $\operatorname{Ext}_{\mathcal{H}}^{i}(U, V) \simeq \operatorname{Ext}_{\mathcal{S}}^{i}(U, V)$ (comparison theorem).

We would like to discuss the following topics (and some applications). Let \mathcal{H} be an affine Hecke algebra.

- (with Solleveld) \mathcal{H} has finite global homological dimension.
- (with Solleveld) Let \mathcal{S} be the Schwartz algebra completion of \mathcal{H}, and U, V finite dimensional tempered modules. Then $\operatorname{Ext}_{\mathcal{H}}^{i}(U, V) \simeq \operatorname{Ext}_{\mathcal{S}}^{i}(U, V)$ (comparison theorem).
- (with Solleveld) For U, V tempered irreducible modules: Explicit computation of Ext ${ }_{S}^{i}(U, V)$.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- $X \triangleleft W$ translation subgroup. We choose $S_{0} \subset S$ with $S \backslash S_{0}=\left\{s_{0}\right\}$ such that $W=X \rtimes W\left(S_{0}\right)$. Put $W_{0}:=W\left(S_{0}\right)$.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- $X \triangleleft W$ translation subgroup. We choose $S_{0} \subset S$ with $S \backslash S_{0}=\left\{s_{0}\right\}$ such that $W=X \rtimes W\left(S_{0}\right)$. Put $W_{0}:=W\left(S_{0}\right)$.
- Put $E=\mathbb{R} \otimes_{\mathbb{Z}} X$; then W acts on E as affine reflection group $W=W\left(\left(R_{0}^{\vee}\right)^{(1)}\right)$ for a uniquely determined root system $R_{0} \subset E$.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- $X \triangleleft W$ translation subgroup. We choose $S_{0} \subset S$ with $S \backslash S_{0}=\left\{s_{0}\right\}$ such that $W=X \rtimes W\left(S_{0}\right)$. Put $W_{0}:=W\left(S_{0}\right)$.
- Put $E=\mathbb{R} \otimes_{\mathbb{Z}} X$; then W acts on E as affine reflection group $W=W\left(\left(R_{0}^{\vee}\right)^{(1)}\right)$ for a uniquely determined root system $R_{0} \subset E$.
- In particular: $X=Q\left(R_{0}\right)$ (root lattice), $W_{0}=W\left(R_{0}\right)$.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- $X \triangleleft W$ translation subgroup. We choose $S_{0} \subset S$ with $S \backslash S_{0}=\left\{s_{0}\right\}$ such that $W=X \rtimes W\left(S_{0}\right)$. Put $W_{0}:=W\left(S_{0}\right)$.
- Put $E=\mathbb{R} \otimes_{\mathbb{Z}} X$; then W acts on E as affine reflection group $W=W\left(\left(R_{0}^{\vee}\right)^{(1)}\right)$ for a uniquely determined root system $R_{0} \subset E$.
- In particular: $X=Q\left(R_{0}\right)$ (root lattice), $W_{0}=W\left(R_{0}\right)$.
- Put $R=\left(R_{0}^{\vee}\right)^{(1)}=\left\{a=\alpha^{\vee}+k \mid \alpha \in R_{0}, k \in \mathbb{Z}\right\}$.
- Let (W, S) affine Coxeter group, with simple generators S. For simplicity we will assume W irreducible.
- $X \triangleleft W$ translation subgroup. We choose $S_{0} \subset S$ with $S \backslash S_{0}=\left\{s_{0}\right\}$ such that $W=X \rtimes W\left(S_{0}\right)$. Put $W_{0}:=W\left(S_{0}\right)$.
- Put $E=\mathbb{R} \otimes_{\mathbb{Z}} X$; then W acts on E as affine reflection group $W=W\left(\left(R_{0}^{\vee}\right)^{(1)}\right)$ for a uniquely determined root system $R_{0} \subset E$.
- In particular: $X=Q\left(R_{0}\right)$ (root lattice), $W_{0}=W\left(R_{0}\right)$.
- Put $R=\left(R_{0}^{\vee}\right)^{(1)}=\left\{a=\alpha^{\vee}+k \mid \alpha \in R_{0}, k \in \mathbb{Z}\right\}$.
- Write $S_{0}=\left\{s_{1}, \ldots, s_{n}\right\}$ and $F=\left\{a_{0}, a_{1} \ldots, a_{n}\right\} \subset R$ (fundamental affine roots).

Definition of affine Hecke algebra

Choose indeterminates v_{s} for $s \in S$ with $v_{s}=v_{s^{\prime}}$ if $s \sim w s^{\prime}$. Put $\Lambda=\mathbb{C}\left[v_{s}^{ \pm 1} \mid s \in S\right]$ (base ring). The affine Hecke algebra \mathcal{H}_{Λ} is the unital associative free Λ-algebra with basis $T_{w}(w \in W)$ subject to the relations:

- If $u, v \in W$ and $I(u v)=I(u)+I(v)$ then $T_{u} T_{v}=T_{u v}$.
- For all $s \in S:\left(T_{s}-v_{s}\right)\left(T_{s}+v_{s}^{-1}\right)=0$.

Definition of affine Hecke algebra

Choose indeterminates v_{s} for $s \in S$ with $v_{s}=v_{s^{\prime}}$ if $s \sim w s^{\prime}$. Put $\Lambda=\mathbb{C}\left[v_{s}^{ \pm 1} \mid s \in S\right]$ (base ring). The affine Hecke algebra \mathcal{H}_{Λ} is the unital associative free Λ-algebra with basis $T_{w}(w \in W)$ subject to the relations:

- If $u, v \in W$ and $I(u v)=I(u)+I(v)$ then $T_{u} T_{v}=T_{u v}$.
- For all $s \in S:\left(T_{s}-v_{s}\right)\left(T_{s}+v_{s}^{-1}\right)=0$.
- Given $q(s)^{1 / 2} \in \mathbb{C}^{\times}$such that $q(s)^{1 / 2}=q\left(s^{\prime}\right)^{1 / 2}$ if $s \sim w s^{\prime}$, we write (abusively) $\mathcal{H}=\mathcal{H}(W, q):=\mathcal{H}_{\Lambda}(W) \otimes_{\Lambda} \mathbb{C}_{q^{1 / 2}}$.
- W acts simply transitively on the set of connected components (alcoves) of $E \backslash \cup_{a \in R} H_{a}$ where $H_{a}=\{a=0\}$.
- W acts simply transitively on the set of connected components (alcoves) of $E \backslash \cup_{a \in R} H_{a}$ where $H_{a}=\{a=0\}$.
- Given $J \subset F$ define
$f_{J}:=\{x \in E \mid \forall a \in J: a(x)=0, \forall a \in F \backslash J: a(x) \geq 0\}$.
Then the f_{J} with $J \subset F$ are the faces of f_{\emptyset}.
- W acts simply transitively on the set of connected components (alcoves) of $E \backslash \cup_{a \in R} H_{a}$ where $H_{a}=\{a=0\}$.
- Given $J \subset F$ define $f_{J}:=\{x \in E \mid \forall a \in J: a(x)=0, \forall a \in F \backslash J: a(x) \geq 0\}$. Then the f_{J} with $J \subset F$ are the faces of f_{ϕ}.
- This gives E the structure of a simplicial complex Σ with W-action.
- W acts simply transitively on the set of connected components (alcoves) of $E \backslash \cup_{a \in R} H_{a}$ where $H_{a}=\{a=0\}$.
- Given $J \subset F$ define $f_{J}:=\{x \in E \mid \forall a \in J: a(x)=0, \forall a \in F \backslash J: a(x) \geq 0\}$. Then the f_{J} with $J \subset F$ are the faces of f_{ϕ}.
- This gives E the structure of a simplicial complex Σ with W-action.
- Choose orientations of the simplices of Σ such that W acts orientation preserving.
- W acts simply transitively on the set of connected components (alcoves) of $E \backslash \cup_{a \in R} H_{a}$ where $H_{a}=\{a=0\}$.
- Given $J \subset F$ define $f_{J}:=\{x \in E \mid \forall a \in J: a(x)=0, \forall a \in F \backslash J: a(x) \geq 0\}$. Then the f_{J} with $J \subset F$ are the faces of f_{ϕ}.
- This gives E the structure of a simplicial complex Σ with W-action.
- Choose orientations of the simplices of Σ such that W acts orientation preserving.
- Denote by $\left(C_{*}(\Sigma), \partial_{*}\right)$ be the corresponding augmented chain complex.
- Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$ and $k \in\{-1,0,1, \ldots, n\}$.
- Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$ and $k \in\{-1,0,1, \ldots, n\}$.
- Define $P_{k}(V) \subset \bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes C_{k}(\Sigma)$ by

$$
P_{k}(V)=\bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes \mathbb{C} f_{J}
$$

- Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$ and $k \in\{-1,0,1, \ldots, n\}$.
- Define $P_{k}(V) \subset \bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes C_{k}(\Sigma)$ by

$$
P_{k}(V)=\bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes \mathbb{C} f_{J}
$$

- Define $\epsilon\left(J, J^{\prime}\right) \in\{0, \pm 1\}$ by $\partial f_{J}=\sum_{J^{\prime}} \epsilon\left(J, J^{\prime}\right) f_{J^{\prime}}$. Define $d_{k}: P_{k}(V) \rightarrow P_{k-1}(V)$ for $k>0$ by

$$
d_{k}\left(h \otimes_{\mathcal{H}\left(W_{J}, q\right)} v \otimes f_{J}\right)=\sum_{J^{\prime}} h \otimes_{\mathcal{H}\left(W_{J^{\prime}}, q\right)} v \otimes \epsilon\left(J, J^{\prime}\right) f_{J^{\prime}}
$$

- Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$ and $k \in\{-1,0,1, \ldots, n\}$.
- Define $P_{k}(V) \subset \bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes C_{k}(\Sigma)$ by

$$
P_{k}(V)=\bigoplus_{J \subset F,|J|=n-k} \mathcal{H} \otimes_{\mathcal{H}\left(W_{J}, q\right)} V \otimes \mathbb{C} f_{J}
$$

- Define $\epsilon\left(J, J^{\prime}\right) \in\{0, \pm 1\}$ by $\partial f_{J}=\sum_{J^{\prime}} \epsilon\left(J, J^{\prime}\right) f_{J^{\prime}}$. Define $d_{k}: P_{k}(V) \rightarrow P_{k-1}(V)$ for $k>0$ by

$$
d_{k}\left(h \otimes_{\mathcal{H}\left(W_{J}, q\right)} v \otimes f_{J}\right)=\sum_{J^{\prime}} h \otimes_{\mathcal{H}\left(W_{J^{\prime}}, q\right)} v \otimes \epsilon\left(J, J^{\prime}\right) f_{J^{\prime}}
$$

and define $d_{0}: P_{0}(V) \rightarrow P_{-1}(V) \simeq V$ by:

$$
d_{0}\left(h \otimes_{\mathcal{H}}\left(w_{J, q)} v \otimes_{J}\right)=\left(\text { orientation }\left(f_{J}\right)\right) \pi(h) v \in V\right.
$$

Theorem (O., Reeder, Solleveld)

Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$.

- $\left(P_{*}(V), d_{*}\right)$ is an exact differential complex in $\operatorname{Mod}(\mathcal{H})$.

Theorem (O., Reeder, Solleveld)

Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$.

- $\left(P_{*}(V), d_{*}\right)$ is an exact differential complex in $\operatorname{Mod}(\mathcal{H})$.
- If none of the $q(s)$ are roots of 1 then $\left(P_{*}(V), d_{*}\right)$ is a projective resolution of V.

Theorem (O., Reeder, Solleveld)

Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$.

- $\left(P_{*}(V), d_{*}\right)$ is an exact differential complex in $\operatorname{Mod}(\mathcal{H})$.
- If none of the $q(s)$ are roots of 1 then $\left(P_{*}(V), d_{*}\right)$ is a projective resolution of V.

Proof.

Define (with $J \subset F$ such that $|J|=n-k$, and $w \in W$)

$$
\begin{aligned}
\phi_{k}: & C_{k}(\Sigma) \otimes V \\
& \xrightarrow{\sim} P_{k}(V) \\
w\left(f_{J}\right) \otimes v & \rightarrow T_{w} \otimes_{\mathcal{H}\left(W_{J}, q\right)} \pi\left(T_{w}^{-1}\right) v \otimes f_{J}
\end{aligned}
$$

Theorem (O., Reeder, Solleveld)

Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$.

- $\left(P_{*}(V), d_{*}\right)$ is an exact differential complex in $\operatorname{Mod}(\mathcal{H})$.
- If none of the $q(s)$ are roots of 1 then $\left(P_{*}(V), d_{*}\right)$ is a projective resolution of V.

Proof.

Define (with $J \subset F$ such that $|J|=n-k$, and $w \in W$)

$$
\begin{aligned}
\phi_{k}: & C_{k}(\Sigma) \otimes V \\
w\left(f_{J}\right) \otimes v & \xrightarrow{\sim} P_{k}(V) \\
w & \otimes_{\mathcal{H}\left(W_{J}, q\right)} \pi\left(T_{w}^{-1}\right) v \otimes f_{J}
\end{aligned}
$$

Now check that ϕ_{*} is an isomorphism of chain complexes from $\left(C_{*}(V) \otimes V, \partial_{*} \otimes \mathrm{id}_{V}\right)$ to $\left(P_{*}(V), d_{*}\right)$.

Theorem (O., Reeder, Solleveld)

Let $(\pi, V) \in \operatorname{Mod}(\mathcal{H})$.

- $\left(P_{*}(V), d_{*}\right)$ is an exact differential complex in $\operatorname{Mod}(\mathcal{H})$.
- If none of the $q(s)$ are roots of 1 then $\left(P_{*}(V), d_{*}\right)$ is a projective resolution of V.

Proof.

Define (with $J \subset F$ such that $|J|=n-k$, and $w \in W$)

$$
\begin{aligned}
& \phi_{k}: C_{k}(\Sigma) \otimes V \\
& w\left(f_{J}\right) \otimes v \xrightarrow{\sim} P_{k}(V) \\
& T_{w} \otimes_{\mathcal{H}\left(W_{J}, q\right)} \pi\left(T_{w}^{-1}\right) v \otimes f_{J}
\end{aligned}
$$

Now check that ϕ_{*} is an isomorphism of chain complexes from $\left(C_{*}(V) \otimes V, \partial_{*} \otimes \mathrm{id}_{V}\right)$ to $\left(P_{*}(V), d_{*}\right)$. Finally, if $\mathcal{H}\left(W_{J}, q\right)$ is semisimple for $J \neq F$ then $P_{k}(V)$ is projective for $k \geq 0$.

Corollary

The global homological dimension of \mathcal{H} is n.

Corollary

The global homological dimension of \mathcal{H} is n.

Corollary

If $(V, \pi) \in \operatorname{Mod}(\mathcal{H})$ is finitely generated then it admits a bounded projective resolution with finitely generated projective H-modules.

Corollary

The global homological dimension of \mathcal{H} is n.

Corollary

If $(V, \pi) \in \operatorname{Mod}(\mathcal{H})$ is finitely generated then it admits a bounded projective resolution with finitely generated projective \mathcal{H}-modules.

Corollary
$\left(P_{*}(\mathcal{H}), d_{*}\right)$ is a projective resolution of \mathcal{H} as $\mathcal{H} \otimes \mathcal{H}^{o p}$-module.

Let $q(s)>0$ for all $s \in S$ from now on.

Schwartz algebra completion \mathcal{S} of \mathcal{H}

Define $\mathcal{S}=\left\{s=\sum_{w \in W} c_{w} T_{w} \in \mathcal{H}^{*} \mid \forall n \in \mathbb{N}: p_{n}(s):=\right.$ $\left.\sup _{w \in W}\left\{\left|c_{w}\right|(1+l(w))^{n}\right\}<\infty\right\}$.

Let $q(s)>0$ for all $s \in S$ from now on.
Schwartz algebra completion \mathcal{S} of \mathcal{H}
Define $\mathcal{S}=\left\{s=\sum_{w \in W} c_{w} T_{w} \in \mathcal{H}^{*} \mid \forall n \in \mathbb{N}: p_{n}(s):=\right.$ $\left.\sup _{w \in W}\left\{\left|c_{w}\right|(1+I(w))^{n}\right\}<\infty\right\}$.

Theorem

\mathcal{S} is a nuclear Fréchet algebra.

The structure of \mathcal{S} is well understood via the Fourier transform:

Theorem (with Delorme)

$$
\mathcal{S} \cong \bigoplus_{(P, \delta) / \sim} C^{\infty}\left(T_{u}^{P}, \operatorname{End}\left(\mathcal{V}_{(P, \delta)}\right)\right)^{W_{(P, \delta)}}
$$

- $P \subset F_{0}$ runs over the subsets of F_{0}.
- T_{u}^{P} the group of (unitary) characters of the central subalgebra $\mathbb{C}\left[X^{P}\right]$ of \mathcal{H}^{P} of the "Levi subalgebra" $\mathcal{H}^{P} \subset \mathcal{H}$.
- $\left(V_{\delta}, \delta\right)$ is a discrete series module over the semisimple quotient \mathcal{H}_{P} of \mathcal{H}^{P}.
- $\mathcal{V}_{(P, \delta)}$ is a trivial vector bundle, with fiber at $t \in T_{u}^{P}$ given by $\operatorname{Ind}_{\mathcal{H}^{\mathcal{H}}}^{\mathcal{H}}\left(V_{\delta_{t}}\right)$. Here δ_{t} is the twist of δ by t.
- $W_{(P, \delta)}$ is a finite group acting projectively on $\mathcal{V}_{(P, \delta)}$ via (unitary) intertwiners.

Goal and motivation

We want to extend the results on projective resolutions of \mathcal{H} to Fréchet modules over \mathcal{S}. We intend to use the detailed structural information of \mathcal{S} compute Ext. This gives a useful interplay between homological algebra and harmonic analysis.

Example

Let (U, δ) be a discrete series module of \mathcal{H}. Then (U, δ) extends to a projective \mathcal{S}-module. Hence for all tempered \mathcal{H}-modules (V, π) we should have Ext ${ }_{\mathcal{S}}(U, V)=0$ for all $i>0$.

There are some difficulties to overcome.

- $\mathcal{H} \subset \mathcal{S}$ is not a flat extension.
- How to define $\operatorname{Ext}_{\mathcal{S}}^{i}(U, V)$ for $U, V \in \operatorname{Mod}_{\text {Fré }}(\mathcal{S})$? As usual, categories of topological modules are not abelian since images of continuous maps are not necessarily closed.
- Topologically free Fréchet modules $U:=\mathcal{S} \hat{\otimes} F$ (where F is a Fréchet space, and $\hat{\otimes}$ stands for the projective completed tensor product) are not necessarily projective in $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$, since subspaces are not necessarily complemented.

Solution (Mac Lane, Connes)

Only work with admissible exact sequences, i.e. exact sequences where all kernels are complemented (as subspaces). The category $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$ with the collection \mathcal{E} of admissible short exact sequences is exact in the sense of Quillen.

Solution (Mac Lane, Connes)

Only work with admissible exact sequences, i.e. exact sequences where all kernels are complemented (as subspaces). The category $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$ with the collection \mathcal{E} of admissible short exact sequences is exact in the sense of Quillen.

Corollary (Quillen)

There exists an abelian category \mathcal{A} and an equivalence $G: \operatorname{Mod}_{\text {Fré }}(\mathcal{S}) \rightarrow \mathcal{M}$ onto a full subcategory \mathcal{M} of \mathcal{A} which is closed for extensions, such that $G \mathcal{E}$ consists of the short exact sequences in \mathcal{A} whose objects are in \mathcal{M}.

Solution (Mac Lane, Connes)

Only work with admissible exact sequences, i.e. exact sequences where all kernels are complemented (as subspaces). The category $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$ with the collection \mathcal{E} of admissible short exact sequences is exact in the sense of Quillen.

Corollary (Quillen)

There exists an abelian category \mathcal{A} and an equivalence $G: \operatorname{Mod}_{\text {Fré }}(\mathcal{S}) \rightarrow \mathcal{M}$ onto a full subcategory \mathcal{M} of \mathcal{A} which is closed for extensions, such that GE consists of the short exact sequences in \mathcal{A} whose objects are in \mathcal{M}.

Definition of Ext

One now defines $\operatorname{Ext}_{\mathcal{S}}^{i}(U, V)$ using the abelian category \mathcal{A}.

Let $V \in \operatorname{Mod}_{F r e ́}(\mathcal{S})$; let $d_{k}: P_{k}^{t}(V) \rightarrow P_{k+1}^{t}(V)$ as before with

$$
P_{k}^{t}(V)=\bigoplus_{J \subset F,|J|=n-k} \mathcal{S} \hat{\otimes}_{\mathcal{H}\left(w_{J}, q\right)} V \otimes \mathbb{C} f_{J}
$$

Theorem

$\left(P_{k}^{t}(V), d_{*}\right)$ is an admissible projective resolution in $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$.

Proof.

Let $\gamma_{k}: C_{k}(\Sigma) \rightarrow C_{k+1}(\Sigma)$ be a contraction, and define $\tilde{\gamma}_{k}$ by:

$$
\begin{array}{ccc}
C_{k}(\Sigma) \otimes V \underset{\phi_{k}}{\sim} & P_{k}(V) \\
\gamma_{k} \otimes \operatorname{id}_{V} \downarrow \\
C_{k+1}(\Sigma) \otimes V \underset{\phi_{k+1}}{\sim} & P_{k+1}(V)
\end{array}
$$

Can choose γ_{k} so that $\tilde{\gamma}_{k}$ extends continuously to $P_{k}^{t}(V)$.

Corollary (global dimension $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$)

The global dimension of the exact category $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$ is n.

Theorem (Comparison Theorem)

Let U, V be finite dimensional tempered \mathcal{H}-modules. Then for all i we have:

$$
\operatorname{Ext}_{\mathcal{H}}^{i}(U, V) \simeq \operatorname{Ext}_{\mathcal{S}}^{i}(U, V)
$$

Proof.

The complexes $\operatorname{Hom}_{\mathcal{H}}\left(P_{*}(U), V\right)$ and $\operatorname{Hom}_{\mathcal{S}}\left(P_{*}^{t}(U), V\right)$ are equal.

The comparison theorem implies that if U is discrete series then $\operatorname{Ext}_{\mathcal{H}}^{i}(U, V)=0$ for all $i>0$. Let us be more ambitions and compute Ext between arbitrary irreducible tempered modules using the comparison theorem. Recall the structure theorem

$$
\mathcal{S} \cong \bigoplus_{(P, \delta) / \sim} C^{\infty}\left(T_{u}^{P}, \operatorname{End}\left(\mathcal{V}_{(P, \delta)}\right)\right)^{W_{(P, \delta)}}
$$

Let $t \in T_{u}^{P}$ and let ξ denote the triple $\xi=(P, \delta, t)$. Denote by $V_{\xi}:=\operatorname{Ind}_{\mathcal{H}^{P}}^{H}\left(V_{\delta_{t}}\right)$ the induced tempered module of \mathcal{H} which is the fiber of the vector bundle $\mathcal{V}_{(P, \delta)}$ at $t \in T_{u}^{P}$. Following Harish-Chandra, Knapp and Stein, Silberger, one proves:

Theorem (O.-Delorme)

- Let $W_{\xi} \subset W_{(P, \delta)}$ be the isotropy subgroup of $\xi=(P, \delta, t)$. There exists a canonical decomposition $W_{\xi}=W(\xi) \rtimes R_{\xi}$ where $W(\xi)$ is a real reflection group acting on the tangent space T_{ξ} of T_{u}^{P} at t, and R_{ξ} a group of outer automorphisms of W_{ξ}.

Theorem (O.-Delorme)

- Let $W_{\xi} \subset W_{(P, \delta)}$ be the isotropy subgroup of $\xi=(P, \delta, t)$. There exists a canonical decomposition $W_{\xi}=W(\xi) \rtimes R_{\xi}$ where $W(\xi)$ is a real reflection group acting on the tangent space T_{ξ} of T_{u}^{P} at t, and R_{ξ} a group of outer automorphisms of W_{ξ}.
- The normalized intertwining operators $I_{w} \in \mathrm{End}_{\mathcal{H}}\left(V_{\xi}\right)$ with $w \in W(\xi)$ act by scalar multiplications.

Theorem (O.-Delorme)

- Let $W_{\xi} \subset W_{(P, \delta)}$ be the isotropy subgroup of $\xi=(P, \delta, t)$. There exists a canonical decomposition $W_{\xi}=W(\xi) \rtimes R_{\xi}$ where $W(\xi)$ is a real reflection group acting on the tangent space T_{ξ} of T_{u}^{P} at t, and R_{ξ} a group of outer automorphisms of W_{ξ}.
- The normalized intertwining operators $I_{w} \in \operatorname{End}_{\mathcal{H}}\left(V_{\xi}\right)$ with $w \in W(\xi)$ act by scalar multiplications.
- The standard intertwining operators define an isomorphism $I: \mathbb{C}\left[R_{\xi}, \kappa_{\xi}\right] \rightarrow$ End $_{\mathcal{H}}\left(V_{\xi}\right)$, where κ_{ξ} is the 2-cocycle of R_{ξ} defined by projective action of the normalized intertwiners.

Theorem (Extended Knapp-Stein theorem, O.-Solleveld)

Let $m_{\xi} \in P\left(T_{\xi}\right)^{W(\xi)}$ be the ideal of $W(\xi)$-invariant polynomials on the tangent space T_{ξ}, vanishing at ξ. Put $E_{\xi}=m_{\xi} / m_{\xi}^{2}$, a real representation of R_{ξ}. Let R_{ξ}^{*} be a Schur-extension of R_{ξ} and let $p \in \mathbb{C}\left[R_{\xi}^{*}\right]$ be the central idempotent such that
$\mathbb{C}\left[R_{\xi}, \kappa_{\xi}\right]=p\left(\mathbb{C}\left[R_{\xi}^{*}\right]\right)$. Let $\widehat{\mathcal{Z}(\mathcal{S})}{ }_{W_{(P, \delta)} \xi}$ denote the formal completion of the center $\mathcal{Z}(\mathcal{S})$ of \mathcal{S} at the central character $W_{(P, \delta)} \xi$. Then

- ${\widehat{\mathcal{Z}}(\mathcal{S})_{W_{(P, \delta)}}} \simeq{\widehat{S\left(E_{\xi}\right)}}_{\xi}^{R_{\xi}}$.

Theorem (Extended Knapp-Stein theorem, O.-Solleveld)

Let $m_{\xi} \in P\left(T_{\xi}\right)^{W(\xi)}$ be the ideal of $W(\xi)$-invariant polynomials on the tangent space T_{ξ}, vanishing at ξ. Put $E_{\xi}=m_{\xi} / m_{\xi}^{2}$, a real representation of R_{ξ}. Let R_{ξ}^{*} be a Schur-extension of R_{ξ} and let $p \in \mathbb{C}\left[R_{\xi}^{*}\right]$ be the central idempotent such that
$\mathbb{C}\left[R_{\xi}, \kappa_{\xi}\right]=p\left(\mathbb{C}\left[R_{\xi}^{*}\right]\right)$. Let $\widehat{\mathcal{Z}(\mathcal{S})}{ }_{W_{(P, \delta)} \xi}$ denote the formal completion of the center $\mathcal{Z}(\mathcal{S})$ of \mathcal{S} at the central character $W_{(P, \delta)} \xi$. Then

- $\widehat{\mathcal{Z}(\mathcal{S})_{W_{(P, \delta)}}}{ } \simeq{\widehat{S\left(E_{\xi}\right)_{\xi}}}_{\xi}{ }_{\xi}$.
- The formal completion $\widehat{\mathcal{S}}_{W_{(P, \delta)} \xi}:=\widehat{\mathcal{Z}(\mathcal{S})_{\left.W_{(P, \delta)}\right)}} \otimes_{\mathcal{Z}(S)} \mathcal{S}$ is Morita equivalent to the ring $p^{*}\left(\widehat{S\left(E_{\xi}\right)} \rtimes R_{\xi}^{*}\right)$.

Theorem (O.-Solleveld)

Denote by Φ_{ξ} the Morita equivalence from $\operatorname{Mod}^{f d}\left(\widehat{\mathcal{S}}_{\left.W_{(P, \delta)}\right)}\right)$ to $\operatorname{Mod}^{f d}\left(p^{*}\left(\widehat{S\left(E_{\xi}\right)} \rtimes R_{\xi}^{*}\right)\right)$. Let π, π^{\prime} be irreducible modules over \mathcal{S}. If they have distinct central characters for the center $\mathcal{Z}(\mathcal{S})$ of \mathcal{S} then $\operatorname{Ext}_{\mathcal{H}}^{i}\left(\pi, \pi^{\prime}\right)=0$ for all $i \in \mathbb{Z}$. If both π, π^{\prime} have central character $W_{(P, \delta)} \xi$, then for all $i \in \mathbb{Z}$ we have
$\operatorname{Ext}_{\mathcal{H}}^{i}\left(\pi, \pi^{\prime}\right) \simeq\left(\Phi_{\xi}(\pi)^{*} \otimes \Phi_{\xi}\left(\pi^{\prime}\right) \otimes \bigwedge^{i}\left(E_{\xi}^{*}\right)\right)^{R_{\xi}}$

Theorem (O.-Solleveld)

Denote by Φ_{ξ} the Morita equivalence from $\operatorname{Mod}^{f d}\left(\widehat{\mathcal{S}}_{W_{(P, \delta)} \xi}\right)$ to $\operatorname{Mod}^{f d}\left(p^{*}\left(\widehat{S\left(E_{\xi}\right)} \rtimes R_{\xi}^{*}\right)\right)$. Let π, π^{\prime} be irreducible modules over \mathcal{S}. If they have distinct central characters for the center $\mathcal{Z}(\mathcal{S})$ of \mathcal{S} then $\mathrm{Ext}_{\mathcal{H}}^{i}\left(\pi, \pi^{\prime}\right)=0$ for all $i \in \mathbb{Z}$. If both π, π^{\prime} have central character $W_{(P, \delta)} \xi$, then for all $i \in \mathbb{Z}$ we have $\operatorname{Ext}_{\mathcal{H}}^{i}\left(\pi, \pi^{\prime}\right) \simeq\left(\Phi_{\xi}(\pi)^{*} \otimes \Phi_{\xi}\left(\pi^{\prime}\right) \otimes \bigwedge^{i}\left(E_{\xi}^{*}\right)\right)^{R_{\xi}}$

About the proof. The outline is clear: We apply the comparison theorem and then we would like to apply the formal completion functor $\widehat{\mathcal{Z}(\mathcal{S})}{\left.w_{(P, \delta)}\right)}^{\hat{\otimes}_{\mathcal{Z}(\mathcal{S})}}$ to the projective resolution $P^{t}(\pi)$ of π as \mathcal{S}-module in order to change to the base ring to $\widehat{\mathcal{S}}_{W_{(P, \delta)} \xi}$. Finally we apply the Morita equivalence and use Koszul resolutions to compute the Ext-groups for the cross product ring $\widehat{S\left(E_{\xi}\right)} \rtimes R_{\xi}^{*}$.

There are various technical difficulties to overcome, however:

- Show that formal completion is still exact in this non Noetherian context.

There are various technical difficulties to overcome, however:

- Show that formal completion is still exact in this non Noetherian context.
- Formal completion does not preserve continuous linear splittings.

There are various technical difficulties to overcome, however:

- Show that formal completion is still exact in this non Noetherian context.
- Formal completion does not preserve continuous linear splittings.
- One has to make of $\operatorname{Mod}_{\text {Fré }}(\mathcal{S})$ and $\operatorname{Mod}_{\text {Fré }}\left(\widehat{\mathcal{S}}_{W_{(P, \delta)} \xi}\right)$ smaller to resolve both issues, but keep them big enough to have enough projectives still. This can be done. We work with the category of \mathcal{S}-modules which are, as Fréchet spaces, direct summands of the Fréchet space $\mathcal{S}(\mathbb{Z})$ of sequences with fast decay and with $\widehat{\mathcal{S}}_{W_{(P, \delta)}}$-modules which are, as Fréchet spaces, quotients of $\mathcal{S}(\mathbb{Z})$ (then we can show exactness, while continuous linear splittings are automatic in the first category, and projective modules map to projective modules in the second).

Remarkably, for the Harish-Chandra-Schwartz algebra completion $\mathfrak{S}(G)$ of the Hecke algebra $\mathcal{H}(G)$ of a reductive p-adic group G the comparison theorem is known to be true as well, by a result of Ralph Meyer. In fact one can check that all the above arguments can be made to work in this context as well.

Theorem

If π, π^{\prime} be smooth tempered irreducible representations of G. If they are in distinct Harish-Chandra blocks then
Ext $_{\mathcal{H}(\mathcal{G})}^{i}\left(\pi, \pi^{\prime}\right)=0$ for all i. Else let π, π^{\prime} both be summands of the Harish-Chandra block $\operatorname{Ind}_{P}^{G}\left(\delta_{t}\right)$ for δ a discrete series character of the Levi factor L of a standard parabolic subgroup P of G, and t a unitary character of the center of L. Then $\operatorname{Ext}_{\mathcal{H}(\mathcal{G})}^{i}\left(\pi, \pi^{\prime}\right)=\left(\Phi_{\xi}(\pi)^{*} \otimes \Phi\left(\pi^{\prime}\right)^{*} \otimes \bigwedge^{i}\left(E_{\xi}^{*}\right)\right)^{R_{\xi}}$
where R_{ξ} is the Knapp-Stein analytic R-group for the tempered induction datum $\xi=(P, \delta, t)$.

As a consequence, we can compute the Euler pairing

$$
\left\langle\pi, \pi^{\prime}\right\rangle_{\mathcal{H}(G)}^{E P}:=\sum_{i \geq 0}(-1)^{i} \operatorname{dimExt} \operatorname{ti}_{\mathcal{H}(G)}^{i}\left(\pi, \pi^{\prime}\right) \in \mathbb{Z}
$$

between two tempered irreducible $\mathcal{H}(G)$-modules π and π^{\prime} :

Theorem

Let π, π^{\prime} be in the same Harish-Chandra block defined by the tempered induction datum $\xi=(P, \delta, t)$ then

$$
\begin{aligned}
\left\langle\pi, \pi^{\prime}\right\rangle \mathcal{H}_{\mathcal{H}(G)}^{E P} & =\frac{1}{\left|R_{\xi}\right|} \sum_{r \in R_{\xi}} \chi_{\Phi_{\xi}(\pi)}(r) \chi_{\Phi_{\xi}\left(\pi^{\prime}\right)}\left(r^{-1}\right) \operatorname{det}(1-r)_{E_{\xi}} \\
& =:\left\langle\phi_{\xi}(\pi), \Phi_{\xi}\left(\pi^{\prime}\right)\right\rangle \hat{R}_{\xi}
\end{aligned}
$$

The right hand side is called the elliptic paring of the (twisted) characters $\Phi_{\xi}(\pi), \Phi_{\xi}\left(\pi^{\prime}\right)$ of R_{ξ}.

For admissible representations π^{\prime}, π of G one defines:

$$
\left\langle\pi, \pi^{\prime}\right\rangle{ }_{G}^{E \|}:=\int_{\mathrm{EIII}(G)} \theta_{\pi}\left(c^{-1}\right) \theta_{\pi^{\prime}}(c) \mathrm{d} \mu_{e l /}(c)
$$

where $\operatorname{Ell}(G)$ is the set of regular elliptic conjugacy classes of G, and $\theta_{\pi}, \theta_{\pi^{\prime}}$ are the distributional characters of π and π^{\prime}, and $\mu_{\text {ell }}$ is the Weyl integration measure on the set of regular elliptic classes.

Theorem (Arthur)

For smooth tempered irreducible characters π, π^{\prime} of G one has $\left\langle\pi, \pi^{\prime}\right\rangle_{G}^{E I I}=0$ unless π, π^{\prime} are both in the same Harish-Chandra block defined by a tempered induction datum $\xi=(P, \delta, t)$ say. In that case one has $\left\langle\pi, \pi^{\prime}\right\rangle{ }_{G}^{E \|}=\left\langle\Phi_{\xi}(\pi), \Phi_{\xi}\left(\pi^{\prime}\right)\right\rangle{ }_{R_{\xi}}^{E \|}$.

Corollary (Kazhdan's orthogonality conjecture (Bezrukavnikov, Schneider-Stuhler))
For admissible characters π, π^{\prime} of G one has
$\left\langle\pi, \pi^{\prime}\right\rangle_{G}^{E I I}=\left\langle\pi, \pi^{\prime}\right\rangle_{\mathcal{H}(G)}^{E P}$.

Proof.

For smooth tempered irreducible characters this follows from Arthur's theorem and our computation of $\left\langle\pi, \pi^{\prime}\right\rangle_{\mathcal{H}(G)}^{E P}$. Clearly for both pairings parabolically induced characters are in the radical. By the Langlands classification the result therefore reduces to the tempered case.

