
A SIMPLIFIED IDEA ALGORITHM

NICK HOFFMAN

Abstract. In this paper, a simplified version of the International Data En-

cryption Algorithm (IDEA) is described. This simplified version, like simplified

versions of DES [8] [12] and AES [6] [7] that have appeared in print, is intended
to help students understand the algorithm by providing a version that permits

examples to be worked by hand. IDEA is useful teaching tool to help students

bridge the gap between DES and AES.

1. Introduction

The International Data Encryption Algorithm (IDEA) is a symmetric-key, block
cipher. It was published in 1991 by Lai, Massey, and Murphy [3]. IDEA is a
modification of the Proposed Encryption Standard (PES) that was published in
1990 by Lai and Massy [1]; PES was designed as a replacement for the Data En-
cryption Standard (DES). The algorithm was modified and published in 1991 after
Biham and Shamir described the technique of differential cryptanalysis. The new
algorithm was called the Improved Proposed Encryption Standard (IPES); its name
changed to IDEA in 1992. IDEA is a candidate block cipher to the NESSIE Project.
NESSIE is a project within the Information Societies Technology (IST) Program
of the European Commission [3].

In the Second Edition (1996) of Applied Cryptography Bruce Schneier [9] de-
scribes IDEA as “... the best and most secure block algorithm available to the
public at this time;” however, in 1999 [10] he began to recommend newer algo-
rithms because IDEA “...isn’t very fast ... [and] IDEA is patented.”

Although IDEA did not replace DES, it was incorporated into Pretty Good
Privacy (PGP).

The algorithm is patented and licensed by MediaCrypt. MediaCrypt now offers
a successor algorithm IDEA NXT.

2. Description of the Encryption Algorithm

IDEA encrypts a 64-bit block of plaintext to 64-bit block of ciphertext. It uses
a 128-bit key. The algorithm consists of eight identical rounds and a “half” round
final transformation.

Today, because of 128-bit cryptosystems like AES, IDEA is obsolete, but its al-
gorithm can be a useful teaching tool to help students bridge the gap between DES,
which uses XOR but no algebraic operations, and AES, which requires understand-
ing of algebraic operations on finite fields. IDEA uses algebraic operations, but it
is only necessary to understand modular addition and modular multiplication to
understand the IDEA algorithm.

Key words and phrases. IDEA, symmetric-key ciphers, block ciphers.

1



2 NICK HOFFMAN

The algebraic idea behind IDEA is the mixing of three incompatible algebraic
operations on 16-bit blocks: bitwise XOR, addition modulo 216, and multiplication
modulo 216 + 1.

There are 216 possible 16-bit blocks: 0000000000000000, ..., 1111111111111111,
which represent the integers 0, ..., 216 − 1. Each operation with the set of possible
16-bit blocks is an algebraic group. Bitwise XOR is bitwise addition modulo 2,
and addition modulo 216 is the usual group operation. Some spin must be put on
the elements – the 16-bit blocks – to make sense of multiplication modulo 216 + 1,
however. 0 (i.e., 0000000000000000) is not an element of the multiplicative group
because it has no inverse, but by thinking of the elements of the group instead as
0000000000000001, ..., 1111111111111111, 0000000000000000, which now represent
the integers 1, ..., 216 − 1, 216, everything works for multiplication. 216 ≡ −1
mod 216 +1, and 0000000000000000 is its own inverse under multiplication modulo
216 + 1.

For a description of IDEA, we follow Schneier [9], who breaks the encryption
algorithm into fourteen steps. (Another source for the algorithm is [5].) For each
of the eight complete rounds, the 64-bit plaintext block is split into four 16-bit
sub-blocks: X1, X2, X3, X4. The 64-bit input block is the concatenation of the sub-
blocks: X1 ‖ X2 ‖ X3 ‖ X4, where ‖ denotes concatenation. Each complete round
requires six subkeys. The 128-bit key is split into eight 16-bit blocks, which become
eight subkeys. The first six subkeys are used in round one, and the remaining two
subkeys are used in round two. We will discuss the generation of the remaining
keys in the next section.

Each round uses each of the three algebraic operations: bitwise XOR, addition
modulo 216, and multiplication modulo 216 + 1.

Here are the fourteen steps of a complete round (multiply means multiplication
modulo 216 + 1, and add means addition modulo 216):

1. Multiply X1 and the first subkey Z1.
2. Add X2 and the second subkey Z2.
3. Add X3 and the third subkey Z3.
4. Multiply X4 and the fourth subkey Z4.
5. Bitwise XOR the results of steps 1 and 3.
6. Bitwise XOR the results of steps 2 and 4.
7. Multiply the result of step 5 and the fifth subkey Z5.
8. Add the results of steps 6 and 7.
9. Multiply the result of step 8 and the sixth subkey Z6.
10. Add the results of steps 7 and 9.
11. Bitwise XOR the results of steps 1 and 9.
12. Bitwise XOR the results of steps 3 and 9.
13. Bitwise XOR the results of steps 2 and 10.
14. Bitwise XOR the results of steps 4 and 10.

For every round except the final transformation, a swap occurs, and the input
to the next round is: result of step 11 ‖ result of step 13 ‖ result of step 12 ‖ result
of step 14, which becomes X1 ‖ X2 ‖ X3 ‖ X4, the input for the next round.

After round 8, a ninth “half round” final transformation occurs:



A SIMPLIFIED IDEA ALGORITHM 3

1. Multiply X1 and the first subkey.
2. Add X2 and the second subkey.
3. Add X3 and the third subkey.
4. Multiply X4 and the fourth subkey.

The concatenation of the blocks is the output.

3. Key Scheduling

Each of the eight complete rounds requires six subkeys, and the final transforma-
tion “half round” requires four subkeys; so, the entire process requires 52 subkeys.

The 128-bit key is split into eight 16-bit subkeys. Then the bits are shifted to
the left 25 bits. The resulting 128-bit string is split into eight 16-bit blocks that
become the next eight subkeys. The shifting and splitting process is repeated until
52 subkeys are generated.

The shifts of 25 bits ensure that repetition does not occur in the subkeys.
Six subkeys are used in each of the 8 rounds. The final 4 subkeys are used in

the ninth “half round” final transformation.

4. The Simplified Encryption Algorithm

The simplified IDEA encrypts a 16-bit block of plaintext to a 16-bit block of
ciphertext. It uses a 32-bit key. The simplified algorithm consists of four identical
rounds and a “half round” final transformation.

The simplified algorithm mixes three algebraic operations on nibbles (4-bit blocks):
bitwise XOR, addition modulo 24(= 16), and multiplication modulo 24 + 1(= 17).
There are 16 possible nibbles: 0000, ..., 1111, which represent 0, ..., 15, for addition
modulo 16. The 16 nibbles are thought of as 0001, ..., 1111, 0000, which represent 1,
..., 15, 16, for multiplication modulo 17. Notice that 0000, which is 16, is congruent
to -1 modulo 17. 0000 is its own inverse under multiplication modulo 17

The 32-bit key, say 11011100011011110011111101011001 is split into eight nib-
bles 1101 1100 0110 1111 0011 1111 0101 1001. The first six nibbles are used as the
subkeys for round 1. The remaining two nibbles are the first two subkeys for round
2. Then the bits are shifted cyclically 6 places to the left, and the new 32-bit string
is split into eight nibbles that become the next eight subkeys. The first four of these
nibbles are used to complete the subkeys needed for round 2, and the remaining four
subkeys are used in round 3. The shifting and splitting process is repeated until all
28 subkeys are generated.

The 32-bit key is 1101 1100 0110 1111 0011 1111 0101 1001.
Z1 Z2 Z3 Z4 Z5 Z6

Round 1 1101 1100 0110 1111 0011 1111
Round 2 0101 1001? 0001 1011 1100 1111
Round 3 1101 0110 0111 0111? 1111 0011
Round 4 1111 0101 1001 1101 1100 0110?
Round 5 1111 1101 0110 0111

Encryption key schedule
? denotes a shift of bits



4 NICK HOFFMAN

Six subkeys are used in each of the 4 rounds. The final 4 subkeys are used in
the fifth “half round” final transformation.

As an example, we will encrypt the plaintext message 1001110010101100 using
the key 110111000110111100111111.

The ciphertext message is 1011101101001011.

5. Simplified Decryption Algorithm

IDEA decrypts using the same steps as encryption, but new keys must be gen-
erated for decryption.

Ki
j denotes the j-th decryption key of decryption round i. Zi

j denotes the j-
th encryption key of encryption round i. For the first decryption round: K1

1 =
(Z5

1 )−1, where (Z5
1 )−1 denotes the multiplicative inverse of the first encryption

key of encryption round 5 – the “half round” final transformation – modulo 17;
K1

2 = −Z5
2 , where −Z5

2 denotes the additive inverse of the second encryption key
of encryption round 5 modulo 16; K1

3 = −Z5
3 ; K1

4 = (Z5
4 )−1; K1

5 = Z4
5 ; and

K1
6 = Z4

6 . The decryption keys are similarly generated in the remaining complete
decryption rounds. The decryption keys for the final transformation “half round”
are: K5

1 = (Z1
1 )−1, K5

2 = −Z1
2 , K5

3 = −Z1
3 , and K5

4 = (Z1
4 )−1.

Number in binary Integer Inverse in binary Inverse in integer
0000 0 0000 0
0001 1 1111 15
0010 2 1110 14
0011 3 1101 13
0100 4 1100 12
0101 5 1011 11
1100 6 1010 10
0111 7 1001 9
1000 8 1000 8
1001 9 0111 7
1010 10 0110 6
1011 11 0101 5
1100 12 0100 4
1101 13 0011 3
1110 14 0010 2
1111 15 0001 1

Inverses of nibbles for addition modulo 16



A SIMPLIFIED IDEA ALGORITHM 5

Number in binary Integer Inverse in binary Inverse in integer
0001 1 0001 1
0010 2 1001 9
0011 3 0110 6
0100 4 1101 13
0101 5 0111 7
0110 6 0011 3
0111 7 0101 5
1000 8 1111 15
1001 9 0010 2
1010 10 1100 12
1011 11 1110 14
1100 12 1010 10
1101 13 0100 4
1110 14 1011 11
1111 15 1000 8
0000 16 = -1 0000 16 = -1

Inverses of nibbles for multiplication modulo 17

For our example the decryption keys are:

K1 K2 K3 K4 K5 K6

Round 1 1000 0011 1010 0101 1100 0110
Round 2 1000 1011 0111 0100 1111 0011
Round 3 0100 1010 1001 0101 1100 1111
Round 4 0111 0111 1111 1110 0011 1111
Round 5 0100 0100 1010 1000

Decryption key schedule

Although it is difficult to “see through” the decryption process, a sense of what
happens can be obtained by doing an example by hand. Decryption is an example
of the “shoes and socks principle” – during decryption, the last encryption is the
first removed.

It worked! The original plaintext message 1001110010101100 is returned.

6. Design Principles

Shannon’s 1949 paper [11] set the standard for modern cryptosystems. It requires
confusion (i.e., there should not be a simple relationship between the ciphertext
and the key) and diffusion (i.e., ideally, every plaintext bit should influence every
ciphertext bit and every key bit should influence every ciphertext bit).

The IDEA algorithm achieves confusion by mixing the three operations bitwise
XOR, addition modulo 216, and multiplication modulo 216 + 1 on 16-bit blocks.
The operations are arranged so that the output of one operation is never the input
to another operation of the same type. The operations are incompatible in the
sense that no two of them satisfy a distributive law, for example, a ⊕ (b � c) 6=



6 NICK HOFFMAN

(a ⊕ b) � (a ⊕ c), and no two of them satisfy an associative law, for example,
a⊕ (b� c) 6= (a⊕ b)� c.

The IDEA algorithm achieves diffusion by the multiplication-addition structure
that appears, for example, in steps 7, 8, 9, and 10 of each round.

IDEA exhibits a generalization of the pure Feistel structure of DES by mixing
three algebraic operations. The three algebraic operations are relatively easy to
implement in software and hardware. Similar ideas appeared later in AES. Unlike
DES, IDEA avoids the need for “lookup tables.”

7. Conclusion

IDEA is a well-known cipher that has been analyzed by many researchers for
the past decade, and, yet, no attack against five or more of its 8.5 rounds has been
found. Due to its strength against cryptanalytic attacks and due to its inclusion in
several popular cryptographic packages, IDEA is widely used. [4]

The Simplified IDEA algorithm is not intended to be compared for efficiency or
security with simplified versions of DES or AES. The Simplified IDEA algorithm is
intended to help students understand the IDEA algorithm by providing a version
of IDEA that permits examples to be worked by hand and to provide a comparison
of the method of IDEA with the methods of DES and AES.

References

1. Lai, Xuejia, and Massey, James L., A Proposal for a New Block Encryption Standard, Advances

in Cryptology - EUROCRYPT ’90, Lecture Notes in Computer Science, Springer-Verlag, 1991:

389-404.
2. Lai, X., Massey, J., and Murphy, S., Markov Ciphers and Differential Cryptanalysis, Advances

in Cryptology – EUROCRYPT ’91, Lecture Notes in Computer Science, Springer-Verlag, 1991:

17-38.
3. Mediacrypt AG, The IDEA Block Cipher, submission to the NESSIE Project,

http://cryptonessie.org

4. Meier, W., On the Security of the IDEA block cipher, Advances in Cryptology
5. Menezes, A., van Oorschot, P., and Vanstone, S. 1996. Handbook of Applied Cryptography.

CRC Press. This book may downloaded from http://www.cacr.math.uwaterloo.ca/hac/

6. Musa, M., Shaefer, E., and Wedig S. 2003. A Simplified AES Algorithm and its Linear and
Differential Cryptanalysis. Cryptologia. 17 (2): 148 - 177.

7. Phan, R. 2002. Mini Advanced Encryption Standard (Mini-AES): A Testbed for Cryptanalysis

Students. Cryptologia. 26 (4): 283 - 306.
8. Schaefer, E. 1996. A Simplified Data Encryption Standard Algorithm. Cryptologia. 20 (1): 77

- 84.
9. Schneier, B. 1996. Applied Cryptography, Second Edition. Wiley.
10. Schneier, B. 1999. http://slashdot.org/interviews/99/10/29/0832246.shtml.

11. Shannon, Claude, Communications theory of Secrecy Systems, Bell systems Technical Jour-
nal. 28 (4): 656 - 715.

12. Trappe, W. and Washington, L. 2006. Introduction to Cryptography with Coding Theory,
Second Edition. Prentice Hall.

Department of Mathematics, Northern Kentucky University
E-mail address: hoffmannick@gmail.com






















