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written to the non-dimensional form
AsKs=+% (A 1K) 2 (AzKp) (wit) F (7)) (2-72)2.
(- 4)

In case of perpendicula’r waves, non*—d':imensional coefficient is
calculated tobe F (7) (2—9¢) 2 =0.833. "
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AppendixIX Analysis of Interaction Equations

1 Construction of Single Equation
We wright down again the interaction equations (3 —3 —1) ~ (
3 — 3 —38) such that

d B o iAt
id—tl—= [Ty1b12+ T12b22+ T13b3%] B, +T{B;*BoBse
(X—1—-1)
dB -1 At
idt2 = [T21b12+ Tasbp?+ T23b3?] Bz‘*‘TeBstleel
(X—1-2)
and
dB -iAt
idt3 = [T31b12+ T3ob 2%+ T3sbs?] Bs+TsBz*BlB1el
(XK—1-3)

in which b,2=B,B.,*¥and A=w,+w;—ws—ws. Interaction
coefficients T, and symmetric matrix elements [ Tl = [T «] are real
constants to be calculated from wave-numbers. The method of solution
adopted here is that used by McGoldrick(1972) for second order non-
linear equations in the context of capirally-gravity waves.

Multiplying B1* to (IX— 1 — 1) we obtain

_ d B X iAt
1 Bi*d_tl: [T11b12+T12b22+T13b32] b12+T1B1*B1*Bnge

Taking the complex conjugate of this equation such as

: dle - 2 2 2 2 * %iAt
-1 Bld_t=[T11b1+T12b2 +Ty3b3?] b1+ T;B;B;By*"Bsre |
and subtracting this from the former equation, it reduces to

. db12 ' ¥
ldt = T, (R—R™ . (XK—2-1)

In this expression, a complex quantity R is introduced such as
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R=B*B*¥B.Bs exp (i At)

Similar relations are obtained by using (K—1—-2) , (X=1 —3) that

2
i 422" _ 1, (R-r® (K-2-2)
dat
. dbg? %
i 7Y = —Ts (R-R¥ (XK-2-3)

From the relations (X— 2 —1) ~ (X— 2 ~ 3) we have three integrals

012/ T1+b22/ To=const1i=512/"T+5:2/ T (XK-3-1)
b12/T1+b32/T3=COHSt2=‘b12/T1+632/T3 (IX—3—2)
b22/T2-—b32/T3=const3=’622/T2——‘632/T3 (X—3-3)

wvhere Bhn=Db, (0) ,(n=1,2,8), the initial value of b, (t) .

By use of these integral properties, a complex function Z (t) is

introduced such as

Z (t) =(D12-b413) /Ti= (b2—b32) /Typ= (b3&"632)//T&
(X—4)

We can easily calculate that

dZ/dt=i (R—R*¥) =—21Im (R) (XK-5)

In order to calculate the real part of R, we differentiate R with
respect to t, that is,

dR/dt=2B*B*ByBgzexp (i At) +B* B, Bgexp (i At)
+B1®ByBstexp (i At) +i AB;*B,Bgexp (iAt).

Substituting (IX—1—~1) ~ (IX—1 —3) to this expression, it is
vielded that

(312)
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dR/dt =iAR+2i [T11b12+ T12b22+Ty3b3%2] R+2iT1b12bp%b3?
—~1 [Ta1b12+ Toaba2+ Tosbs?] R—iTzb %b3?
~i [Ts1b124+ Taebo2+ Tzsbs?] R—iTsb *bp?

Taking the complex conjugate of this equation and adding them together,
the result. is expressed by ' '

d (R+R* /dt=iA (R—-R*’)
421 [T11b12+ T12b22+ T1sb3s?] (R—R*
~i[Ta1b12+ Tapbp?+ Tasbs?] (R—R¥
—i [T31b12+T32022+'f33b32] (R-R¥* .
C’onsiderixllg the relation (X—5) , it is transformed to |
d (R+R® /dt= {A+Tib:#2+Tebo?+ Tsbs? di/dt

where Tn=2 T1n— Ton— Tan . Next, b, (n=1,2,8)is eliminated by use
of (IX—47) , and we have :

d (R+R® Jdt= {A+T; (b12-T,Z) +T2 ('622+T2kZ)
+Ts (b32+TsZ2) )} dZ dt
In this formula, direct integrati-on is possible such that
JRe (R) =R+R*¥=H+ (A+T5:2+Tob,2+ Tsba?} Z
—+ {(T1T1—T2T2—TsTs} 2% (X—-7)

where H is a real constant determined by initial conditions.
In order to fulfil the apparent equality that

IR |2= {Re (R)} 2+ {Im (R)} 2,
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(314)

The relations (IX— 5) and (IX— 7 ) are connected to

4 (B12—T1Z) 2 (D24 TpZ) (H32+T32Z)

= (H+E8Z+9Z% 24+ (dzZ/dt)? (X—-8)
where £ andyp aré the coefficients determined in (IX—7) .
2 Analy#is of Resonant Growth . _

In the case that tertiary wave component does not exist
initially, we can set the constant H=0 and b32=0 in (IX— 8) so that
we investigate the equation of the form

(dZ/dt) %=1 (z) (X—-9)
wvhere f is‘a quaritic fun?tion of Z such as
£ (Z) =4 (H542-T,2) 2 (622%1‘22) TsZ
— [ {A+T1D:2+T25,% —%'{T1T1—T}T2_T¥1?} 23222-
(X—-10)
In general, real solution Z exists and can be solved by means of a

integration

t A d x
R e o3 -1

if £ (Xx) is positive at 0<x<2Z .
In order to obtain a formal solution, we must rearrange the

polynomial f (x) in its standard form such as (see Jeffreys & Jeffreys
(1972)) ,

f (x) =apx?*+aix®+asx2+azx=¢ (x)
and it is resolved to the factors such that

¢ (x) =¢, (x) ¢, (x)

vhere



$, (x) =ax?+bx+c and ¢» (x) =>;2+Bx .
A bilinear transformation of the variable is performed by
x=(Ay+B) /y+1, (]X—12)‘
in whi‘ch A and B are réal roots of the following equation,
(b—_a’,9>(2+2c;r‘+¢‘,9%-0 . | ‘,(IX—13)
In this procedure, integrant of (IX— 1 1) is transformed as

dx _ (A—B) dy
Ve (x) VP {y®+M} {y%+N}

(KX—-14)

There are several cases according to the signs of P=¢ (A) ,M=

¢1 (B) /¢1 (A) and N=¢o (B) /¢ (A) .

Casel; P>0, M=py2>0, N=-p2<90
In this case, (IX— 1 4) is rewritten by

(A—-B) dy
VP {y2+pu? {y®—v°}

F(y)dy= (X—15)
Transformation y?=»2/ (1 - u2)"i‘s adopted and

(A—'-B)'du ‘
VP {2+ v% (1 -u?) (1—-kKZ%u?

F (y) dy=
(X—-16)
results in the form of elliptic integral of first kind after some

manipulation. In this formula, ke2=py2/ {12+ v 2} is called the
generatrix of the integral.

Defining Q=vVP {u2+v2} / (A-B) ,integral (IX— 1 1) reduces to

u dv
Qt= X-1
and Iuﬂ vV (1—v?) (1-k?v?) ( R

ud=1-p2(A-2)2/(B—-2) 2, (X—1 8)
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From (IX— 1 7) , we obtain
vu=sn (Q.t+9 ;kz)
and from (X—18) ,
(A-2) /(B=2) =v-lcn (Qt+6;k?) (X-19)

in which s n and c n are the Jacobi's elliptic functions.
Thus, the formal solution of (IX— 9 ) is expressed by

A—sig(B) Br~lecn (Qt+6; k2
1—sig (B) v 'cn (Qt+6; K2

7 = , (K—-20)
vhere sig ( B) means the signum of B.

To satisfy the initial condition that Z =0 at t =0, constant & is
determined by

A—sig(B) By“lecn (6 ; k2 =0 . (XK—-21)

An example of this solution is shown in Fig— A — 1. In this Figure, the
variation of resonant wave amplitude A3 is described under the
conditions that Ay=4cm and A,=05cm initially with 7 =1.80. The solid
line is the solution obtained by the method discussed here. The symbol
QO is the numerical solution obtained in Chapter3 (Fig—3 —3 (c) ) .
Both results which are obtained independently, coincide appreciably.
Precision of the numerical procedure adopted in Chapter3 is confirmed
to be sufficient.

Casell; P>0, M=—142<0, N=—12<)
In this case, (IX— 1 4) is rewritten by

(A-B) dy
G ( dy = X—-2 2
R Y o v B S e ¢ )
Transformation y2=»2,/u? is adopted this time and
(B—A) du
G(y)dy_\/Pyz(l—Ua) (l_kZUE)
(XK—2 3)



results also in the form of elliptic integral and k2= p2/yp?2,
By the same procedure as in Casel, with Q=VP v2,/ (B—A) we have

A+Bylsn (Qt+6;k?)

Z:
1+yv~t'sn (Qt+0; k?)

(X-24)

To satisfy the initial condition that Z =0 at t =0, constant & is
determined by

A+By-t'sn (8 ;k? =0 . (X—25)

The transition from CaselI to Casell occures under the condition of
maximum growth of tertiary resonant wave which is clearly shown also by
the numerical solution discussed in Ch3 of this paper.

3 Non-Periodic Solution

If we change the initial condition 612 or b22, two types of
solution appear as interpreted in the previous section. Although both
types of solution are periodic, there exist an aperiodic solution just
at the critical region between Case I and Casell.

Returning to (IX—1 0) , if the relation

(A+T1DH12+T2b22 =+ {(T1T1—T2T2—TsTs} 12/ T1=0
(X—26)
is assumed to be realized, that is, the parameter b 2 say, is sought
so as to satisfy the following equation to the fixed b2, Ta Ta
(n=1,2,3) and A
A=—Tob22— % {(T1T1+TaT2+T:Ts} B:12/Ty .,

(XK-27)

the equation f (Z) =0 has a double root at Z=5,2/"T =58 and
f (Z) is represented by

f (2) =—aZ (Z—-B)2(Z—7) (X—2 8)
where :
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a=—4T®ToTs++ {T1T1+ToTo+TsTas} 2>0,

B=513/T1>0
and
7 =4T 2T 3b:%/ a >0

are the positive constants in this situation with B< 7.
In this special case, (IX— 9) is easily solved and the non-
periodic solution is obtained as follows,

/37t.anh2)tt _
(7 —=B8) +Btanh?)t
where A= {a B8 (y—8)} '8 /2.

(X - 2 9)

It is remarkable that Z approaches a constant B when t goes
to infinity and all the energy initially contained in the first primary
wave is transferred monotonically to the other components. Note that
maximum amplitude realized by tertiary resonant wave a3 is determined
only by the initial value of the first primary wave amplitude a, and is
independent of a, as discussed in Ch3. The condition (IX— 2 7) is
fulfiled even A =0 (exact resonance 7y =1.736) . In this condition, the
ratio of amplitudes of two primary waves is determined a, a;=3.16
55-+++-. To the values computed numerically in Ch3, it corresponds that
a1=1.5795+-+++cm and the asymptotic growth of tertiary wave would be
a3=1.332+++-+cm which are consistent with the numerical results.

For the case of wave instability problem, we can apply this
theory by the following manner. This time b2 is a primary wave and
b22=b3%2=bs? are two side band components recognized as small
perturbations. To the leading order, T1=T,p=T3=T=k,% /472 ,T,=
T2=T3=0 and A=0 so that (IX— 9) and (IX— 1 0 ) are reduced to

(dZ/dt) 2=4T4(Z-B8)2(Z+7y) 2. (X—30)

vhere 8=012/T, vy =0.2/T and B> 7. This equation is easily
solved as

Z=7 {exp (2B8T?2t) —1}
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and evolution of the amplitude of side band components is expressed in
terms of the steepness of primary wave such that

as (t) =asgexp {7z (21ky) 2ot} . (X—-31)

The growth rvate of side band components % (a;, kl) 201 ‘ob_tain‘ed in
this theory is in accordance with the Benjamin-Feir(1967) theory.
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Fig. -2-2 (a)

- Examples of the mesurement.
first primary wave is generated.
Upper six rows are wave records.
Lower two rows are records of stroke
of wave-makers.
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Fig. -2-2 (b)

Examples of the mesurement.

second primary wave is generated.
Upper six rows are wave record.
Lower two rows are records of stroke
of wave-makers.
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Fig. -2-2 (¢)

Examples of the measurement.

both primary waves are generated.
Upper six rows are wave records.
Lower two rows are records of stroke
of wave-makers.
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Fig. -2-3

Data collection system.
WG (wave gauge), AMP (amplifier), AD. C (AD

converter)

D. R. (data recorder), P.R. (printer), PLOT(plotter)
FDK (disquet)
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Fig. -2-4

Arrangement of the wave gauges (Case I)

For analysing the short term growth and

the direction of the resonant waves.
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Fig. -2-5

Arrangement of the wave gauges(Case II) .

For analysing the long term growth of
the resonant waves.
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Table-2-1 Elements of Mechanically
Generated Waves

1-ST PRIMARY WAVE 2-ND PRIMARY WAVE
PERIOD |- WAVE HEIGHT PERIOD WAVE HEIGHT 14
0. 93 1. 8917
0. 96 3~13 1. 77 2.65~10 1.845
0. 99 . 1.783
1. 02 L LT24
1.190 1.898
1..156 3~13" 2, 09 ~5 L.816
1. 19 : 1. 75§

PERIOD(sec), WAVE HEIGHT(cw), 7 =w /@,

E
{em? x sec)
1000

100

AT
I'NM1 LTI/ IPY

L A o g

SR
—

0 ot 2 3 4 5
f2 fT 2fi-f2 ¢t £(Hz)
1 ,
2f2 2f1
Fig. -2-6

An example of power spectrum. y=1.793, d=45m
f, : 1-st primary wave, 2f; : 2-nd harmonics

f, : 2-nd primary wave, 2f, : 2-nd harmonics
2f,-f, : tertiary resonant wave
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Fig, -2-7

Growth rate of the tertiary resonant waves.
G : the growth rate
vs . y of the most strong resonance
The solid curves are due to detuning effect.

Table;2—2 Observations of Initial Growth Rate

experiment(1936)

G 7 d
Longuet-Higgins (1962) 0.442 1.736
theoretical value
MacGoldrick et. al. 0.57 1.78 15m®
experiment (1966)
Tomita et.al. 0. 50 1.79 20.25 »

#The distance is converted to the size of

our experiment
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(332)
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Fig, -2-8

The principle of wave direction
measurement.

Ch 1 ~ Ch 3 on the array in a
obliquely incident wave

PI-rad

HOFTUY .
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0.6

0.4

0.2

WAVE DIRECTION 0 oot 1 2 3 4 5Hz

fa. fi fs

Fig. -2-9

Coherence between wave data at the locations 1 and 3 .
f, : 1-st primary wave

f, : 2-nd primary wave

f; : tertiary resonant wave
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~I'oo a1 2 3 4 5 Hz
fa fi fs

Fig. -2-10

Phase spectrum between wave data at the locations 1 and 3.
f, : 1-st primary wave

f, : 2-nd primary wave

f; : tertiary resonant wave
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Fig, -2-11

Phase differences along the linear array
(a) 1-st primary wave

{b) 2-nd primary wave

(c) tertiary resonant wave

a : angle between the resonant wave and 1-st wave ' (333)
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A3(cm)
2.5
2 -
1.5}
L v Fig. -2-12
B Long term variation.of A, (y=1.72)
=T S : Theory (Longuet-Higgins)
05} O Gy : _
___8__-———0" o B 8 ] :Experiment (cm) A, =2.29, A,=2.51
_—_',———”I' ' »| | | ' J' : <& : Experiment (cm) A;=2.84, A,=2.50
% 20 40 60 dim) Examples of linear growth of resonant waves
A3{cm)
2.5
21
.5
s - -Fig, -2-13
Long term variation of A; (y=1.72)
osb : Theory (Zakharov)
) R (] : Experiment (cm) A, =4.06, A,=251
--——-r’”""i—_-— ':' o I“"“Ef'"fr“~-—~FP , Example of weak resonance at the exact (linear)
% 20 40 60 gum  resonance condition
A3(cm)
2.5+
2 =
A
| 5 I~ / ~ /A\ //
/ -~
o R : Fig. -2-14
- Long term variation of A; (y=1.79)
el © [] : Experiment (cm) A, =180, A,=5.29
<& O 3 & - : Experiment (cm) A, =2.49, A,=5.03
05 A : Experiment (cm) A, =2.84, A,=5.12
D"”’D\D\Q_,_D-————G ‘Large resonant wave appears at the off
% ! 26 L 45 L Gb pTES) L— resonance condition.
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A3(cm)
2.5
2 -
1.5} -
Pid .
e — .
L - ’{,D/ o Fig. -2-15 o
//"/-U/ Long term variation of As(y=1.79)
osh //_"/-D/ ------- : Theory (Longqet'—Higgins)
s : Least square fitting
'y"’ ] : Experiment (cm) A,=3.36, A,=2.61
00 ' 2'0 ' N 4'0 ' ‘ 6'0 i) 1 An example of non-linear resonance
A3(cm)
2.5
2 -
1.5+
1} Fig. -2-16
Long term variation of A; (y=1.79)
o5l oo AN (] :Experiment (cm) A, =2.91, A,=5.07
’ TR ¢ : Experiment (cm) A, =3.24, A,=5.28
A : Experiment (cm) A, =3.44, A,=5.14
00 . 2'0 L 4'0 . 6'0 T I Decreasing of resonant wave amplitudes with fetch
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I+ Fig. -2-17
Long term variation of A; (y=1.82)
05 [] :Experiment (cm) A,=3.63, A,=5.38
< : Experiment (cm) A, =3.78, A,=5.40
. | | | . . A : Experiment (cm) A, =4.15, A,=541
00 20 40 60 dim}  Evidences of recurrence phenomena

(335)



86

(336)

A3(cm)
2.5
-

0 1 1 [ ] ] 1 1
(] 20 40 60 dim)

Fig, -2-18
Long term variation of A; (y=1.82)
[ : Experiment (cm) A, =4.76, A,=5.29
< : Experiment (cm) A, =5.47, A,=5.35
The largest amplitudes of resonant waves observed in the
experiment.
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Fig-2-19 (a) Photograph of the experiment.
Intersecting primary waves
Wave gauges are seen the left side of
the Figure.

§ Fig-2-19 (b) Photograph of the experiment.
Intersected waves (steep waves)
Short gravity waves or ripples are shown
on the surface. Local breaking takes place.

Fig-2-19 (c) Photograph of the experiment.

| Resonant wave residued in the basin.
Wave travels slightly oblique to the
absorbing beach.
The roof of pier is shown in the foreground.
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Fig.-3-1

Comparison of the Zakharov theory with the
experiments by McGoldrick et. al. (1966) at the
short fetch.

O, A : Experiments (a, is one half in the latter)
—— : Theory
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1.0 Al
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40 80 120 160 sec

Fig. -3-2 (a)
Solution of the Zakharov equation (y=1.735)
Initial values : A, =1.0cm
A,=5.0cm
A;=0.0cm
Growth of resonant wave is nearly straight.

cm
5.0 - A2

40}
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20 Al

A3 A3

1 1
40 80 120 160 sec

Fig. -3-2 (b)
Solution of the Zakharov equation (y=1.735)
Initial values : A, =2.0cm

A,=5.0cm

A;=0.0cm
Growth of resonant wave ceases at around 100
sec.
Initial growth rate coinsides with classical one.
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Fig. -3-2 ()

Solution of the Zakharov equation (y=1.735)
Initial values : A, =3.0cm

A,=5.0cm

A;=0.0cm
Recurrence phenomena appear.
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o) 1 I ! 1
40 80 120 160 secC

Fig. -3-2 (d)
Solution of the Zakharov equation (y=1.735)
Initial values : A;=4.0cm
»=5.0cm
A;=0.0cm
Resonant wave amplitude does not increase
proportional to the primary waves.



