

North Pacific Fisheries Commission

NPFC-2023-SC08-WP12

Overview surveys from 2021 to 2023 by Chinese research vessel ''Song Hang'' in the NPFC convention area

Qiuyun MA, Bilin LIU, Libin DAI

College of Marine Sciences, Shanghai Ocean University, China

Summary

A scientific survey program has been conducted by Chinese research vessel "Song Hang" in the northwest Pacific Ocean from 2021 to 2023. This comprehensive program covers fisheries resources, larval-juvenile, plankton, and environmental surveys. Fundamental data and biological tissue samples have been collected in these three years, which could improve our understanding for the marine ecosystem in NPFC convention area. This document introduces a briefly overview of this research and we hope to get suggestions to improve the 2024 survey.

Introduction

China has been conducting a five-year scientific survey program using its fishery research vessel "Song Hang" with mid-trawl as the main survey gear in the NPFC convention area from 2021 to 2025. This series of research surveys are supported by the Ministry of Agriculture and Rural Affairs (MARA) of China and conducted by Shanghai Ocean University. This research includes fisheries resources, larval-juvenile, plankton, and environmental surveys.

This survey is comprehensive covering several tasks, which are as below:

- a) Investigating population structure and spatial distribution of pelagic species.
- b) Evaluating the relative abundance of NPFC species based on the trawl and acoustic data.
- c) Collecting fishery-independent data, including length-frequency, length-weight

2nd Floor Hakuyo Hall Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato-ku, Tokyo 108-8477 JAPAN TEL +81-3-5479-8717 FAX +81-3-5479-8718 Email secretariat@npfc.int Web www.npfc.int data, and biological sampling of the main species in this ecosystem.

d) Collecting environment data and biology diversity for ecosystem modeling.

Through this project, we look forward to providing essential information to supplement the current scientific database of the SC and its subsidiary bodies in order to improve our understanding of the marine ecosystem in NPFC convention area.

Materials and Methods

Given the capacity and schedule of the "Song Hang" research vessel (3166 tons, 85meters-length), we surveyed about two months from mid-June to mid-August. This survey covered the area from 148°E to 165°E and from 35°N to 45°N on the high sea (Figure 1). This survey includes the fishery resources mid-trawling, squid jigging, egglarva-juvenile trawling, zooplankton and phytoplankton vertical trawling, environmental factors monitoring, acoustic survey, and environment-DNA research.

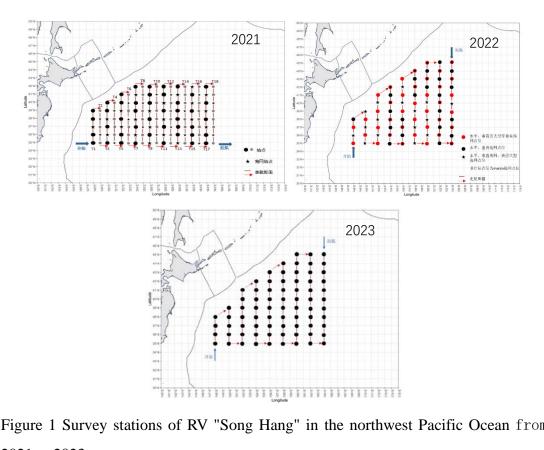


Figure 1 Survey stations of RV "Song Hang" in the northwest Pacific Ocean from 2021 to 2023.

Totally there are about 144 (2021), 76 (2022) and 70 (2023) stations, while the survey covers different objectives in each station. From 2021 to 2023, the fishery resources trawling stations numbers are 42, 36, and 39, respectively. Squid jigging was conducted in 15 stations of 2022, and 25 stations of 2023. At each station, the mid-trawling covers about 2~3 hours, with 4~5kn speed and the squid jigging for 5 hours. The catch was identified to species level, weighted, counted, and some important specimens will be measured for the biological information (growth, sex, maturity, feeding etc.)

For environment factors, we collect data on temperature, salinity, transparency, dissolved oxygen, pH, nitrogen, etc. Conductivity Temperature Depth (CTD 9-11Plus, Sea-Bird) and its MOUNTED SBE43 probe was used to collect 0-300m vertical hydrological data of the above information at each station. Water samples were collected in layers of 25m, 50m, 75m, 100m, 200m, and 300m, and 12 bottles *250ml/ bottle per station, used for multiple purposes, e.g. environment-DNA analysis.

Results

The trawling and squid jigging surveys collected many species, which are mainly fishes and cephalopoda (Tables 1-2). The dominate fishery species in trawling survey are Chub mackerel *Scomber japonicus*, Blue mackerel *Scomber australasicus*, Japanese sardine *Sardinops sagax*, and Japanese anchovy *Engraulis japonicus* (Figure 2), while the dominant species in squid jigging survey are Neon flying squid *Ommastrephes bartrami* and Boreopacific gonate squid *Gonatopsis borealis* (Figure 3).

The catch spatial distribution of mackerels and Japanese sardine were shown in the figures 4 and 5, while the length distribution of 2023 specimens were exhibited in the figure 6. The density of species could be estimated from both the trawling and acoustic survey (Figure 7). Through the acoustic analysis, the density of Chub mackerel was estimated to be 22.98t/nmi², while Blue mackerel's density was 3.52t/nmi², and the Japanese sardine was 211.31t/nmi².

Table 1 The fishes collected in the three years fishery resources survey by RV SongHang in the northwest Pacific.

Family	Species	2021	2022	2023
BATHYLAGIDAE	Dolicholagus longirostris			\checkmark
	Lipolagus ochotensis			\checkmark
	Brama japonica		\checkmark	\checkmark
	Brama myersi	\checkmark	\checkmark	\checkmark
BRAMIDAE	Oncorhynchus gorbuscha			\checkmark
	Taractes rubescens		\checkmark	
CARCHARHINIDAE	Prionace glauca	\checkmark	\checkmark	\checkmark
CENTROLOPHIDAE	Hyperoglyphe japonica			\checkmark
CLUPEIDAE	Sardinops sagax	\checkmark	\checkmark	\checkmark
DASYATIDAE	Pteroplatytrygon violacea	\checkmark		
ENGRAULIDAE	Engraulis japonicus	\checkmark	\checkmark	\checkmark
EXOCOETIDAE	Cypselurus oligolepis			\checkmark
ICOSTEIDAE	Icosteus aenigmaticus			\checkmark
LAMNIDAE	Lamna nasus			\checkmark
LAMPRIDIDA	Lampris guttatus			\checkmark
MOLIDAE	Mola mola		\checkmark	\checkmark
	Ceratoscopelus townsendi			\checkmark
	Diaphus garmani	\checkmark		
	Diaphus gigas			\checkmark
	Diaphus perspicillatus			\checkmark
	Diaphus suborbitalis			\checkmark
	Lampanyctus tenuiformis			\checkmark
	Myctophidae		\checkmark	\checkmark
	Myctophum asperum	\checkmark	\checkmark	\checkmark
MYCTOPHIDAE	Myctophum nitidulum	\checkmark		\checkmark
	Nannobrachium nigrum			\checkmark
	Notoscopelus caudispinosus			\checkmark
	Notoscopelus japonicus			\checkmark
	Notoscopelus resplendens	\checkmark		\checkmark
	Poropanchax normani			\checkmark
	Symbolophorus californiensis	\checkmark		\checkmark
	Tarletonbeania taylori			\checkmark
NOMEIDAE	Cubiceps whiteleggii		\checkmark	\checkmark
	Psenes arafurensis			\checkmark
	Psenes pellucidus		\checkmark	\checkmark
NOTOSUDIDAE	Scopelosaurus hoedti	\checkmark		\checkmark
OSTRACIONTIDAE	Lactoria diaphana			
PARALEPIDIDAE	Lestidiops jayakari jayakari			\checkmark

Family	Species	2021	2022	2023
	Lestrolepis intermedia			\checkmark
	Magnisudis indica	\checkmark		
REGALECIDAE	Regalecus russllii		\checkmark	
SALMONIDAE	Oncorhynchus gorbuscha			\checkmark
SCOMBERESOCIDAE	Cololabis saira	\checkmark		
SCOMBRIDAE	Diplospinus multistriatus			\checkmark
	Nealotus tripes		\checkmark	\checkmark
	Scomber australasicus	\checkmark		\checkmark
	Scomber japonicus	\checkmark	\checkmark	\checkmark
	Thyrsitoides marleyi			\checkmark
STOMIAS AFFINIS	Astronesthes quasiindicus			\checkmark
TETRAGONURIDAE	Tetragonurus cuvieri		\checkmark	\checkmark
TRACHIPTERIDAE	Tradhypterus ishikawae		\checkmark	\checkmark
TRICHIURIDAE	Assurger anzac	\checkmark		
XIPHIIDAE	Xiphias gladius			\checkmark
ZEIDAE	Zenopsis nebulosa	\checkmark	\checkmark	\checkmark

Family	Species	2021	2022	2023
ALLOPOSIDAE	Haliphron atlanticus		1	
AMPHITRETIDAE	Amphitretus pelagicus	1	1	
BOLITAEMIDAE	Japetella diaphana	1	1	
CRANCHIIDAE	Cranchia scabra			1
	Galiteuthis sp.		1	
	Leachia pacifica			1
	Liocranchia reinhardti		1	1
	Taonius pavo			1
ENOPLOTEUTHIDAE	Enoploteuthis chunii			1
ENOPLOTEUTHIDAE	Watasenia scintillans	1	1	1
GONATIDAE	Gonatopsis borealis	1	1	1
	Gonatopsis octopedatus	1	1	
OCTOPOTEUTHIDAE	Octopoteuthis sicula			1
OMMASTREPHIDAE	Eucleoteuthis luminosa		1	1
	Eucleoteuthis luminosa	1		
	Ommastrephes bartrami		1	
	Sthenoteuthis oualaniensis	1		
	Todarodes pacificus	1	1	1
ONYCHOTEUTHIDAE	Moroteuthis			1
	Moroteuthis robusta	1	1	
	Onychoteuthis borealijaponicus	1	1	
	Onychoteuthis compacta	1	1	1

Table 2 The cephalopoda collected in the three years fishery resources survey by RV Song Hang in the northwest Pacific.

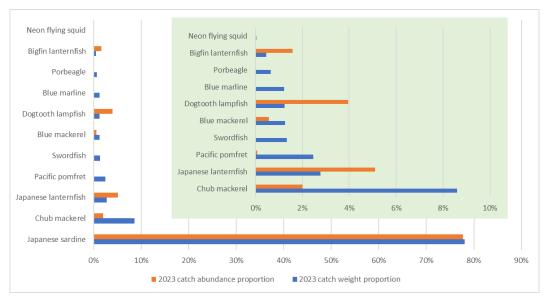


Figure 2 The catch weight and abundance proportions of main species in the 2023 trawling survey

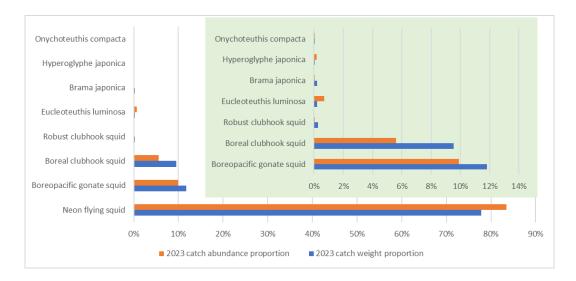


Figure 3 The catch weight and abundance proportions of main species in the 2023 squid jigging survey

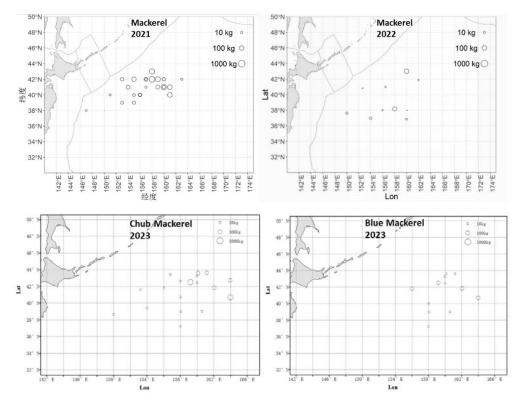


Figure 4 The catch distribution of mackerels surveyed in the three years fishery

resources survey by RV Song Hang in the northwest Pacific.

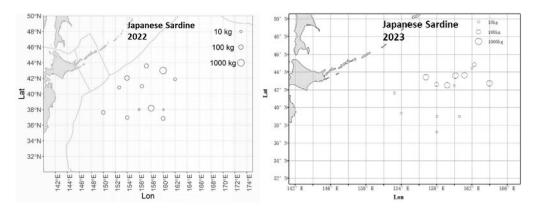


Figure 5 The catch distribution of Japanese sardine surveyed in the three years fishery resources survey by RV Song Hang in the northwest Pacific.

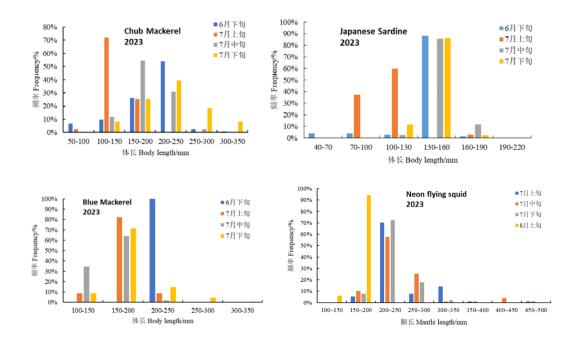


Figure 6 The length distribution of four main species surveyed in 2023 fishery

resources survey by RV Song Hang in the northwest Pacific.

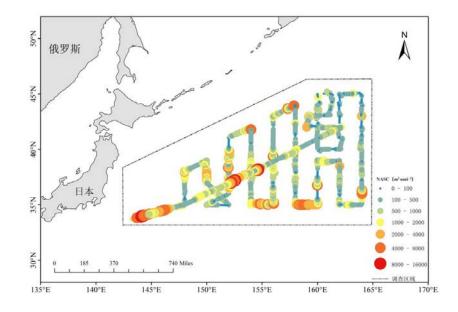


Figure 7 The spatial distribution of Nautical Area Scattering coefficient from the 2023 acoustic survey

Discussion

In the three years survey, more than 65 species were measured, with the associated environmental factors with multiple approaches. The main species surveyed in this research are Chub mackerel, Blue mackerel, Japanese sardine and Neon flying squid, with high priority in NPFC. Due to the gear limit and capacity of RV Song hang, Pacific saury and Japanese flying squid were seldom collected by this survey. Spatial distribution, abundance, and biology of the four main species would supplement the current scientific database of NPFC.

The collected fundamental data and biological tissue samples could support the study for the life history traits, population dynamics, spatial-temporal distribution, feeding ecology, interspecies relation, community ecology, the abiotic environment, etc. This information could improve our understanding for the marine ecosystem in the northwest Pacific Ocean. Currently, our project is still in the process to collect the data and materials. In this scientific meeting, comments and suggestions are specially needed and welcomed to improve the survey in 2024.

Acknowledgement

The document is supported by Program on the Survey, Monitoring and Assessment of Global Fishery Resources (Comprehensive scientific survey of fisheries resources at the high seas) sponsored by the Ministry of Agriculture and Rural Affairs, and the National Natural Science Foundation of China (32202934).