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Outline

• ACR Fuel and RCS Design
• Fission-Product Release and Transport in Limited and 

Severe Core Damage Accidents
• Experimental Database
• Computer Codes
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ACR Fuel Channel Details

Annulus Gas Fuel

Heavy Water Moderator

Light Water Coolant Annulus Spacer

Calandria Tube Pressure Tube

Fuel is uranium oxide clad with Zircaloy-4

Moderator is unpressurized and below 100oC
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ACR Fuel Channel
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ACR Shield Plug

• The ACR shield 
plug is based on a 
flow through 
design

• The shield plug is 
attached in the 
bore of the end 
fitting to locate 
the fuel bundles
and to provide 
shielding
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ACR Reactor Coolant System Layout

Similar to LWR above the 
headers

Below headers, feeders and 
horizontal fuel channels 
instead of a pressure vessel
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Fission Product Release and Transport

• Fission product release from fuel and transport in the 
reactor coolant system are assessed to determine FP  
release into containment under accident conditions

• FP release and transport calculations are part of the 
source term analysis methodology

• FP release and transport simulations are used in 
estimating doses to the public, station staff and plant 
equipment
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Fission-Product Release Behavior

• Diffusion in fuel grains
− Fuel oxidation increases diffusion rate

• Accumulation and venting from grain boundaries
• Grain-boundary sweeping
• Accumulation on fuel surface and in fuel-clad gap
• Redox conditions (hydrogen vs. steam) of fuel 

environment after cladding failure affect volatility
− Noble gases (Kr, Xe) and volatile elements (I, Cs, Te, etc.) are 

released from the fuel in significant amounts at high temps.
− Other elements (e.g., Ru) may also be released if the fuel is 

exposed to oxidizing conditions for extended periods
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FP Release Phenomena (1)

• Athermal Release (knockout, recoil and fission-spike) 
• Diffusion (from fuel grains to grain boundaries)
• Grain-Boundary Sweeping / Grain Growth
• Grain-Boundary Bubble Coalescence / Tunnel 

Interlinkage
• Vapor Transport / Columnar Grains
• Fuel Cracking (thermal)
• Gap Transport (failed elements)
• Gap Retention
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FP Release Phenomena (2)

• Uranium Oxidation State 
− UO2-x ↔↔↔↔ UO2 ↔↔↔↔ UO2+x ↔↔↔↔ U4O9 ↔↔↔↔ U3O8

• UO2 – Zircaloy Interaction
• UO2 Dissolution in Molten Zircaloy
• Fuel Melting
• Fission Product Vaporization / Volatilization
• Matrix Stripping
• Temperature Transients
• Grain-Boundary Separation
• Fission-Product Leaching
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Fission-Product Transport Behavior

• Noble gases transported to the break
• Retention of other fission products can occur in the 

reactor coolant system between the fuel and the break 
location

• Aerosol deposition, especially in
− Complex geometries (e.g., end fittings)
− Condensing steam (e.g., in feeder pipes)
− Water-filled components (e.g., headers and steam generators)

• Fission-product vapor condensation
• Fission-product vapor reactions with piping surfaces
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RCS FP Transport Phenomena (1)

• Fuel Particulate Suspension
• Vapor Deposition and Revaporization of Deposits
• Vapor / Structure Interaction
• Aerosol Nucleation
• Aerosol Agglomeration

− Gravitational, Brownian motion (diffusional), turbulent, laminar, and 
electrostatic mechanisms

• Aerosol Growth / Revaporization
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RCS FP Transport Phenomena (2)

• Aerosol Deposition
− Thermophoresis, diffusiophoresis (Stefan flow), gravitational 

deposition, Brownian motion deposition, turbulent deposition, 
laminar deposition, electrophoresis, inertial deposition and 
photophoresis

• Aerosol Resuspension
• Pool Scrubbing
• Transport of Deposits by Water
• Chemical Speciation
• Transport of Structural Materials
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ACR Shield Plug

Fission products will 
be deposited in 
complex flow paths 
such as through the 
shield plug.
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FPR&T Experimental Database
• Laboratory separate-effects tests

− UO2 oxidation-volatilization studies
− Fission-product thermochemistry
− Aerosol deposition in CANDU fuel channel end fitting

• Hot-cell fission-product release tests
− FP release and transport from clad and unclad fuel samples 

under accident conditions (Canadian, ORNL VI, Vercors)
− Grain boundary inventory measurements
− Direct-electric-heating tests

• In-reactor tests under accident conditions
− Canadian severe-fuel-damage tests (BTF)
− International severe accident tests (ACRR ST, Phebus FP) 
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Knudsen Cell – Mass Spectrometer

• Used to measure vapor pressures and other 
thermodynamic properties of fuel and fission-product 
compounds at high temperatures
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Knudsen Cell - Mass Spectrometer

Cold Cathode GaugeCooled Shield

Turbo Pump

Turbo
Pump

Ionization Gauge

Quadrupole Mass Spectrometer
10-5 Pa

Bottom Aperture
Top Aperture

Tantalum
Knudsen Cell

Shutter
Sapphire Window

Ion Source

Mass Spectrometer Shutter

Shutter

Faraday Cage

to Induction Heater

10-5 to 10-6 Pa Pyrometer
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Systems Investigated with KC-MS

• Iodine volatility over CsI / UO2 / MoOx and CsI / U3O8

• Lanthanum volatility over lanthanum oxide / uranium 
dioxide solid solutions

• FP simulant volatility over SIMFUEL
• Vapor pressure and stability of cesium molybdate
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End Fitting Aerosol Deposition Rig
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Hot-Cell FP Release Tests

• FP release and transport from clad and unclad fuel 
samples under accident conditions
− > 300 tests performed
− Maximum temperatures:  670 to 2300 K
− Environments:  H2, Ar/H2, steam/H2, steam, air
− Heating rates:  0.2 to 50 K/s
− On-line gamma-spectroscopy for FP release measurements
− Post-test gamma-scanning for FP deposition measurements
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HCE4 Experiment Objectives

• Hot-Cell Experiment #4 (HCE4) was performed to 
provide data on fission-product releases (FPR) from 
CANDU fuel at 1650°C for validation of CANDU reactor 
safety codes

• Three sets of tests were performed to assess the 
effects of the following parameters on FPR:
− Gaseous environment (Ar/2%H2, steam/0.5%H2 and air)
− Fuel sample length (20 and 100 mm)
− Heating rate (0.2, 1-2 and 6 K/s)
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Schematic of HCE4 Hot-Cell Apparatus
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Fission-Product Release in J03 Test
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% FP Release (±1σ Uncertainties)

84 ± 286 ± 174 ± 20 ± 6137Cs

82 ± 284 ± 175 ± 12 ± 5134Cs

100 ± 1079 ± 3100 ± 1011 ± 4131I

0 ± 31 ± 313 ± 30 ± 4106Ru

73 ± 874 ± 10100 ± 118 ± 185Kr

6462636067125733Time /s

1650164016451620Temp /°C

Steam/H2Steam/H2AirAr/2%H2Environ.

J04J03J02J01Test
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Conclusions from Hot-Cell FPR Tests

• FP releases increase with increasing temperature
• FP releases depend on oxygen potential of the 

environment (hydrogen, steam, air)
− Noble gases and volatile FP (I, Cs, Te, etc.) are released 

rapidly under oxidizing conditions
− Releases of other FP (Ru, Ba, Nb, Sr, etc.) depend on the 

volatility of the stable condensed-phase species formed in the 
environment, e.g., Ru released under oxidizing conditions

− Non-volatile FP and actinides released by vaporization of the 
UO2 matrix
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Grain Boundary Inventory Tests

• Motivation
− Data for validation of fuel performance codes

• normal operating conditions
− GBI is released more rapidly under accident conditions

• safety analysis
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GBI Measurement Technique

• Heat to 500°C in Ar/H2, add air flow 
− Kr-85 GBI plus Kr-85 and Xe-133 500°C grain releases

• Heat to 1100°C in air
− Release remaining Kr-85 and Xe-133 in grain 

gas-monitoring 
γ-spectrometer

gas 
outlet 

module

sample

furnace

flow 
meters

charcoal 
filterAr/H2

air
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GBI Measurement Technique

As-received

1100°C air500°C airStart of 500°C air

Trace-reirradiated
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Central and Mid-Radial GBI
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GBI Conclusions

• GBI and total inventory show radial variation
• Peripheral GBI < 5%
• Central GBI starts to rise at 38 kW/m

− maximum of 90% for 58 kW/m high-burnup fuel
• High-GBI region expands with increasing power
• Absolute GBI saturates at center of fuel above 41 kW/m
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Direct-Electric-Heating Experiments

• Fuel heated using direct electrical current to obtain 
conditions expected in reactor accident scenarios:
− Rapid heating rates
− Large radial temperature gradients
− Original Zircaloy cladding
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Direct-Electric-Heating Apparatus
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Observations in DEH Tests

• Electric current flows mainly along fuel pellet axis
− Exaggerates radial fuel temperature gradients

• Switched DC current (0.5 Hz) used to minimize 
electrolysis

• Some noble gas FP releases observed
• Volatile FP (e.g., Cs) redistribute from pellet center to 

periphery but are not actually released
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Blowdown Test Facility

Research Program Goals
− Verify our understanding of fuel behavior and FP release and 

transport under high temperature conditions representative of 
severe-fuel-damage accident scenarios

− Provide data from integral in-reactor experiments for use in the 
validation of computer codes used for safety analyses and licensing 
of CANDU reactors
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NRU Reactor and BTF
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BTF-105B Objective

• Measure fission product release under high 
temperature conditions
− fuel-averaged temperature target of 1800-2000°C
− try to preserve element geometry to measure retained fission 

products and fuel performance
− compromise resulted in a target fuel-averaged temperature 

about 1800°C for 15 minutes
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BTF-105B Noble Gas Release Kinetics
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BTF-105B I and Cs Gamma Activities
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131I, 137Cs Along Fuel Element
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BTF-105B PIE, Elevation 105 mm
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BTF-105B Elev. 105 mm Density Scan
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BTF-105B Elev. 105 mm - 95Nb Activity
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BTF-105B Elev. 105 mm - 137Cs Activity
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Summary of BTF Test Conditions

~ 2400< 60~ 1500~ 20Time at high 
temperature after 
fuel failure (s)

~ 4200~ 2900~ 2100~ 70Transient 
duration (s)

~ 2100 (volume-
average)

~ 2100 (volume-
average)

~ 2100 (volume-
average)

≥ 2770 (peak)Maximum fuel 
temperature (K)

Saturated steamSaturated steamSaturated steamPressurized 
water

Pre-transient 
cooling

1 pre-irradiated1 fresh1 pre-irradiated1 pre-
irradiated,
2 fresh

Fuel elements

BTF-105B TestBTF-105A TestBTF-104 TestBTF-107 TestParameter
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Integral % FPR in the BTF Experiments

1.1 ± 0.3-2.5 ± 0.720.8 ± 1.3132Te

34 ± 7-59 ± 556 ± 3137Cs

21 ± 8< 2.020 ± 568 ± 34133I

21 ± 7< 2.033 ± 556 ± 2131I

11 ± 33 ± 27 ± 237 ± 288Kr

24 ± 7-47 ± 6-85Kr

25 ± 62 ± 110 ± 437 ± 385mKr

BTF-105BBTF-105ABTF-104BTF-107Isotope
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BTF Program Conclusions

• Data obtained for validation of CANDU fission-product 
behavior codes under severe-fuel-damage accident 
conditions

• Post-test simulations performed using CANDU safety 
analysis computer codes (CATHENA, ELOCA, SOURCE 
and SOPHAEROS)

• No new phenomena or phenomena interactions 
identified
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Outline

• ACR Fuel and RCS Design
• Fission-Product Release and Transport in Limited and 

Severe Core Damage Accidents
• Experimental Database
• Computer Codes
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SOURCE IST 2.0

• SOURCE IST 2.0 is the Canadian Industry Standard 
Toolset (IST) code for calculating fission-product 
release from fuel

• SOURCE IST 2.0 simulates all of the primary 
phenomena affecting FP release from CANDU fuel 
under accident conditions

• Release fraction is the key output of SOURCE
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SOURCE IST 2.0
• Basis Unit: A geometric subdivision of a fuel bundle.  

The smallest unit that the user has chosen to model.  It 
could be a fuel element, an axial segment, or an 
annulus within a fuel element or axial segment.  In the 
case of fragment tests, it could be the entire fragment.

• Bins (inventory partitions) (subdivisions of a basis 
unit):
− Grain Matrix
− Grain Boundary
− Fuel Surface
− Gap
− Released
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SOURCE IST 2.0

• Validation in progress:
− Canadian hot-cell FP release tests

• Steam:  UCE12 TF01, HCE2 BM5, HCE2 BM4, HCE4 J03, HCE3 
H03 & MCE2 TM19

• Air:  GBI3 DL5, HCE3 H02 & MCE1 T4
• Inert (Ar/H2):  UCE12 TU09, HCE1 M12 & MCE2 TM03

− International hot-cell FP release tests
• Vercors 04, Vercors 05 & ORNL VI-5

− Integral in-reactor tests
• BTF-104, BTF-105B & PHEBUS FPT1
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SOURCE IST 2.0 Validation

-20

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (s)

R
el

ea
se

 P
er

ce
nt

ag
e

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
em

pe
ra

tu
re

 (°
C

)

Cs-134 meas. Cs-134 calc. Temperature

Ar/H2 Steam
Ar/H2

Comparison of Measured and Calculated Cesium Release (10 Annulus Base
Case) as Functions of Time for HCE3 Test H03 (Steam, 1840°C).



Pg 54

SOPHAEROS-IST 2.0

• SOPHAEROS initially developed by IRSN (France) to 
simulate fission-product transport and retention in the 
RCS under LWR severe accident conditions

• SOPHAEROS-IST 2.0 adopted as Canadian Industry 
Standard Toolset code for calculating fission-product 
transport and retention in the RCS

• When development is complete, SOPHAEROS will 
simulate all of the primary phenomena affecting FP 
transport and retention in CANDU RCS under accident 
conditions

• Fractional retention is the key output of SOPHAEROS
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SOPHAEROS-IST 2.0

• Validation in progress:
− Canadian laboratory FP transport tests

• Mulpuru, End-fitting aerosol retention
− Canadian hot-cell FP release and transport tests

• HCE3 H01 & H03, HCE4 J01 & J03
− International FP transport tests

• LACE LA3B, Falcon ISP1 & ISP2, Marviken 2b & 7, DEVAP 23, 25 
& 26, STORM ISP, TUBA-D

− International hot-cell FP release and transport tests
• VERCORS 04 & HT1, ORNL VI-2 & VI-5

− Integral in-reactor tests
• BTF-104, BTF-105B, PHEBUS FPT0 & FPT1
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PHEBUS FP SOPHAEROS Validation 
Experiments

• PHEBUS FP in-reactor tests of fuel and FP behavior 
under LWR severe accident conditions

• Focusing on fuel relocation (molten pool formation), FP 
release, FP transport in RCS (including steam 
generator tube), and FP behavior in containment

• Two tests used for SOPHAEROS validation
− FPT0 – bundle of 20 fresh fuel rods, one Ag/In/Cd control rod, 

retention in steam generator tube simulated
− FPT1 – bundle of 18 previously irradiated fuel rods (23 

MWd/kgU), 2 fresh fuel rods, one Ag/In/Cd control rod, 
retention in whole circuit simulated
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SOPHAEROS-IST 2.0 Validation
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Summary

• Good technology base for understanding of fission-
product release and transport behavior in CANDU 
reactor accidents
− Phenomena
− Experimental database
− Computer codes

• Extension to ACR is straightforward
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