WASHINGTON PUBLIC POWER SUPPLY SYSTEM 4 ° **MAY 1981** MANAGING DIRECTOR **R. L. FERGUSON** DEPUTY MANAGING DIRECTOR A. SQUIRE INTERNAL AUDITING NUCLEAR SAFETY G. D. BOUCHEY DIRECTOR J. J. WENTZ MANAGER EXECUTIVE QUALITY ASSURANCE ASSISTANT D. A. THORESEN R. B. GLASSCOCK DIRECTOR WNP 3/5 PROGRAM **POWER GENERATION** WNP 2 PROGRAM WNP 1/4 PROGRAM K. T. PERKINS . R. S. LEDDICK DIRECTOR B.G. MATLOCK D. W. MAZUR DIRECTOR DIRECTOR DIRECTOR CONTRACTS & MATERIALS MGT. ADMINISTRATION TREASURY **PUBLIC AFFAIRS** MANAGEMENT POLICY TECHNOLOGY & INFORMATION & SYSTEMS J. D. PERKO TREASURER W. G. ALEXANDER DIRECTOR T. E. HUNT DIRECTOR **D. R FRINDT** P. K. SHEN DIRECTOR W. D. JANSEN DIRECTOR DIRECTOR NOTE: THE CHIEF COUNSEL AND THE CONTROLLER, BOTH OF WHOM REPORT TO THE DIRECTOR, ADMINISTRATION, REPORT DIRECTLY TO THE MANAGING DIRECTOR IN AREAS INVOLVING ATTORNEY/CLIENT OR FISCAL/CLIENT RELATIONSHIP WITH THE MANAGING DIRECTOR AND/OR BOARD OF DIRECTORS. ۰.

feer ? -

80 7 8 7 8

HOD

8109220156 8109 PDR ADDCK 050000 H

8103114

: .

1.

-

. .

, . . بد . .

•

, u

*

ROBERT L. FERGUSON

POSITION: MANAGING DIRECTOR

EDUCATION: BS

EXPERIENCE:

- 1978 1980 Deputy Assistant Secretary for U.S. Department of Energy, Nuclear Reactors Programs
 - RESOURCE PLANNING
 - MULTIPROGRAM MANAGEMENT
 - REACTOR CONSTRUCTION PLANNING
 - REACTOR OPERATIONS PLANNING
- 1973 1978 DIRECTOR, FAST FLUX TEST FACILITY, DOE
 - NUCLEAR REACTOR CONSTRUCTION
 - PROJECT MANAGEMENT
 - OPERATIONS PLANNING
- 1971 1973 Assistant Manager for Programs, Richland , AEC Office
 - FUEL DEVELOPMENT
 - FUEL CYCLE
 - NUCLEAR DEVELOPMENT
- 1961 1970 REACTOR SAFETY ENGINEER, CHICAGO OPERATIONS OFFICE AEC
 - REACTOR SAFETY
 - REACTOR OPERATIONS

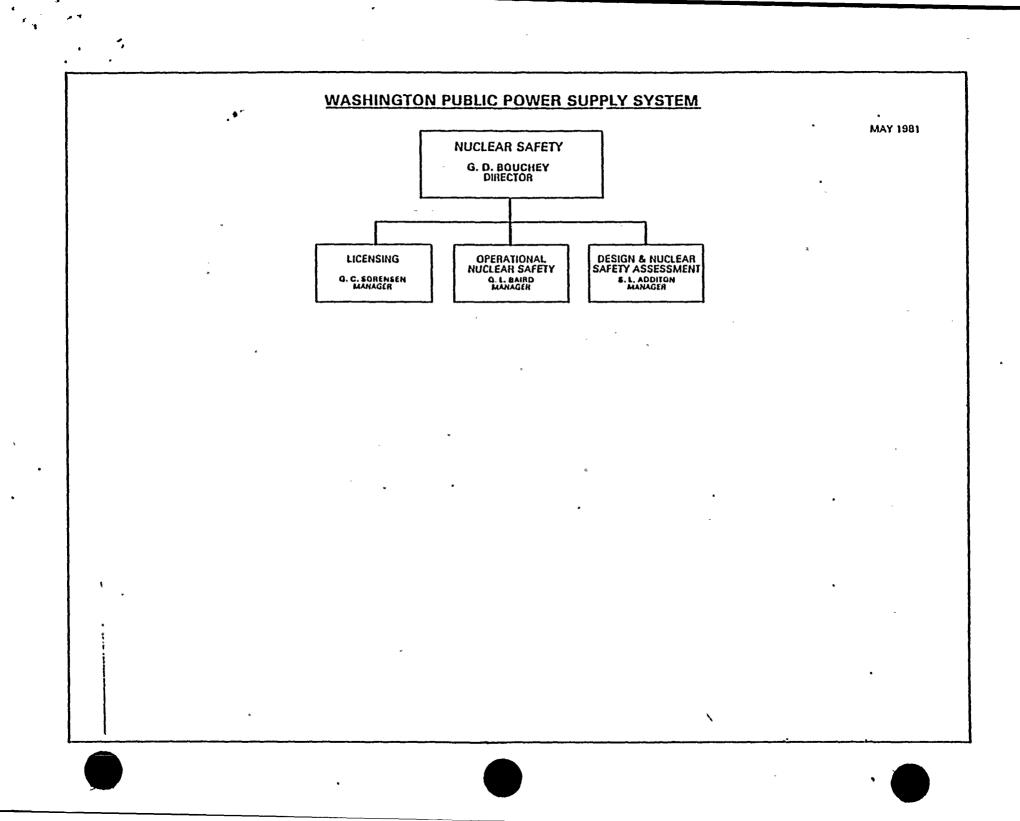
ALEXANDER SQUIRE

POSITION: DEPUTY MANAGING DIRECTOR EDUCATION: BS

EXPERIENCE:

- 1971 1979 PRESIDENT, WESTINGHOUSE HANFORD CORPORATION
 - REACTOR DESIGN AND CONSTRUCTION
 - REACTOR DEVELOPMENT
 - FUEL DEVELOPMENT AND FABRICATION
- 1968 1971 DIRECTOR OF PURCHASING AND TRAFFIC, WESTINGHOUSE ELECTRIC CORPORATION
 - PROCUREMENT
 - LOGISTICS
- 1962 1967 GENERAL MANAGER, PLANT APPARATUS DIVISION WESTINGHOUSE ELECTRIC CORPORATION
 - NUCLEAR EQUIPMENT AND APPARATUS DESIGN AND PROCUREMENT
 - NUCLEAR SYSTEMS CONSTRUCTION AND OPERATION
 - Control of Equipment and Manuals for Maintenance and Refueling of Naval Nuclear Reactors
- 1950 1961 PROJECT MANAGER, BETTIS ATOMIC POWER LABORATORY
 - Development, Design, Management of Installation and Testing of Naval Nuclear Reactors
 - Development of Original Materials, Welding, and Quality Control Specifications for Operating Reactors

.


.

· ·

4

.

•

.

. ſ • • • 9 -•

si . .

· · · ·

ب ب ~ **v**

G. DONALD BOUCHEY

POSITION: DIRECTOR, NUCLEAR SAFETY BSNE, MSNE, PHD EDUCATION: EXPERIENCE: 1975 - 1980 DIRECTOR, OPERATIONAL AND EXPERIMENTAL SAFETY DIVISION, FFTF PROJECT OFFICE O FFTF SAFETY AND LICENSING O FFTF CORE ENGINEERING REACTOR ENGINEER/SYSTEMS ENGINEER, U. S. 1972 - 1975 ENERGY RESEARCH & DEVELOPMENT AGENCY O FFTF DESIGN 1967 - 1972 SUPERVISOR, NUCLEAR REACTOR LABORATORY, UNIVERSITY OF TEXAS, AUSTIN, MECHANICAL ENGINEERING DEPARTMENT Research 0 o Licensed SRO O RADIATION DETECTION AND HEALTH PHYSICS O TEACHING

Page <u>1</u> of <u>1</u>

DEPART	IENT:NUCL	EAR SAFETY		AS OF	8/31/81		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G. D. Bouchey	BS Nuclear Eng. MS Nuclear Eng. PhD	Director, Nuclear Safety	10 mo./17 yr./18 yr.	Safety & Licensing Core Engineering Design	Research Radiation Detection Health Physics Research/Teaching	U. S. Dept. of Energy (FFTF)	Director, Operational & Exper- imental Safety Div.
S. E. Bussman	None	Administrative Assistant	1 yr./2 yr./3 yr.	Administration	Secretarial	Peppermill, Inc.	Office Manager
				*			
	-	-	•				
	-	• -					-
				· .			
		-					
						-	*
+ Registered P. JRegistered P	.E., Washington. E., other state(s)				<u></u>		
	1		<u></u>		•		
	-			• • •	ι.	به الله کر کور وی رو به	• •
					•	-	

,

Page <u>1</u> of <u>2</u>

ι, Ε Α.

	D	EPARTMEN	T: LICENSING			AS OF:	8/31/81		-
	NAME		DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV10US EMPLOYER	TITLE
	G. C. Sorens	en	BS Mechanical Engineering	Manager, Licensing	8 yr./7 yr./15 yr.	Licensing		Amphenol Sams Division	Project Engineer
	R. M. Nelson		BS Mechanical Engineering Nuclear Option	Manager, WNP-2 Project Licensing	2 mo./21 yr./21 yr.	Nuclear Eng. Mech. Eng. Design	NSSS Design NSSS Licensing Chemical Eng.		Senior Licensing Engineer
	A. G. Hosler		BS Electrical Eng. MS Nucl. Eng.	Manager, WNP-1/4 Priject Licensing	5 mo./18 yr./18 yr.	Licensing Nucl. Eng.	Analysis		Senior Development Engineer
~	K. W. Cook		BS Mechanical Eng. Nuclear Option MS Mechanical Eng. ABC Courses (GE)	Licensing	16 mo./20 yr./21 yr.	Nucl. Eng. Licensing		Electric Co.	Senior Licensing Engineer
	K. A. Hadley	()	BS Mechanical Eng. BS Industrial Eng. Naval Nuclear Power School	Engineer I	1 mo./15 yr./15 yr.	Mechanical Eng. Industrial Eng.	Operations/Maint./ Systems Generic Issues		Cognizant Design Engr.
~	R. G. Joshi		BS Electrical Eng. MS Nuclear Eng.	Senior Engineer	2 mo./14 yr./14 yr.	Licensing Eng. Nuclear Eng.	I&C Eng. Electrical Eng.	Stone & Webster Energy Corp.	Licensing Engineer
	P. L. Powell		BS Electrical Eng. Naval Nuclear Power School	Engineer I	4 yr./7 yr./11 yr.	Nuclear Eng. Electrical Eng.	Safety Analysis Administrative Eng.		Admin. Engineer
,	A. J. Moore		BS Physics Grad. Studies in Meterology	Project Engineer I	2 yr./12 yr./14 yr.	Operations at FFTF (Operator Training) NDE/NDT Training Lead Auditor	Quality Assurance		Reactor Operator
	+Registe √Registe	red P. I	E., Washington. E., other state(s):			;	· ·		
1					· · · · ·	× - + - + - + - + - + - + - + - + - + -			

. . .

Page 2 of 2

- ,

	ł .	1.000.000					
DEPARTM	ENT:	ICENSING	-	AS OF	8/31/81		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
C. D. Taylor	AA	Licensing Assistant, WNP-2	8 yr./ /8 yr.	FSAR Amendments	NRC Questions		*****
					•		
				х -			
•					N.		
							7
							ų
+ Registered P √Registered P	E., Washington. E., other state(s)			,			
✓ Kegistered P.	L., other state(s)	·					~

. n. -

,

-\ .

•

· .

.

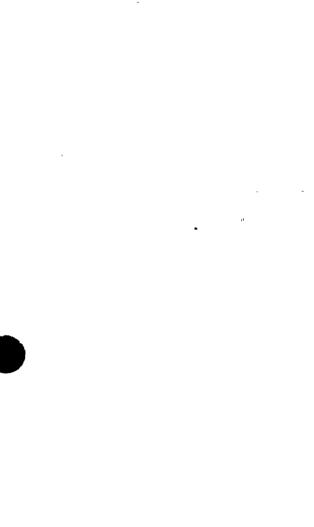
Page <u>1</u> of <u>2</u>

. ·

*

DEPARTM	IENT: OPERATIONAL	NUCLEAR SAFETY	-	AS OF	:8/31/81		-
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
Q. L. Baird	AB Mathematics MS Physics PhD Physics	Manager, Operational Nuclear Safety	6 mo./23 yr./24 yr.	Nuclear Eng. Reactor Physics	Nucl. Safety Tech. Reactor Operations	Westinghouse	Manager, Operational
C. H. McGilton	MS Metallurgy ORNL School of Reactor Tech. Licensed SRO on Cooper	Manager, SEG WNP-2	8 yr./10 yr./18 yr.	Reactor Operations Operations Supv. at WNP-2 (7 yr.)	Nuclear Eng.	Northern State Power	Nuclear Sfty Operations Engineer
S. C. Denison	BS Mechanical Eng.	Manager, SEG WNP-1/4	8 yr./9 yr./17 yr.	Nuclear Eng. Mechanical Eng.	Reactor Operations	lestinghouse	Senior Proj. Engineer
D. W. Coleman	BS Mechanical Eng. MS Mechanical Eng. Grad. work in , Nuclear Eng.	Manager, SEG WNP-3/5	6 mo./12 yr./13 yr.	Mechanical Eng.	Nuclear Eng.	U. S. Dept. of Energy	-
F. D. Frisch	BS Mechanical Eng. Licensed SRO at Millstone 1 & Pilgrim	Principal Engineer .	6 yr./15 yr./21 yr.	Mechanical Eng. Reactor Operations	Start-Up Testing		Start-Up Operations Super- intendent
R. G. DaValle	BS Engineering	Sentor Engineer	8 yr./7 yr./15 yr.	Reactor Operations Control Room Human Factors Review	General Eng.	Bechtel Power	
	BS Physics MS Physics PhD Physics Grad. work in Nuclear Eng.	Principal Engineer	4 mo./31 yr./31 yr.	Nuclear Eng. [;] Reactor Analysis [;] Safety Analysis	Nuclear Safety Tech.	Hest Inghous e	Principal Eng
+Registered P. √Registered P.	E., Washington. [E., other state(s);			. i	<u>.</u>	[I
		······································					

Page <u>2</u> of <u>2</u>


+ 5

- i

1

•

	DEPARTME	NT: OPERATIONA	AL NUCLEAR SAFETY	•	AS OF	: 8/31/81	~-	
	NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
~	M. D. Zentner	BS Physics MS Nuclear Eng.	Senior Engineer	1 mo./8 yr./8 yr.	Nuclear Eng. Physics	Reactor Analysis Reactor Operations	Brookhaven National Lab.	Research Engineer
+	R. H. Norris	BS Mechanical Eng. MS Mechanical Eng.	Principal Engineer	5 yr./10 yr./15 yr	Mechanical Eng.	Nuclear Eng. NSSS Design	General Electric Co.	Program Manager
1		-						
- - -		Ì						÷
ţ	,		н 	· · -	-	•	-	
	+ Registered P. √Registered P.	E., Washington. E., other state(s)			· · · · · · · · · · · · · · · · · · ·			

,

`

• .

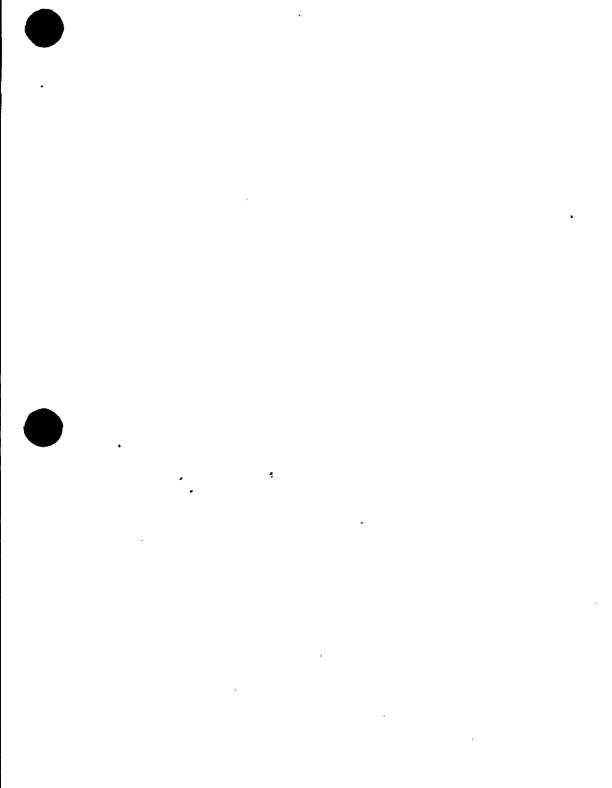
.

• · · ·

·

•

.


DEPARTMENT: DESIGN AND NUCLEAR SAFETY ASSESSMENT

AS OF: _____8/31/81__

	4	•					
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL . AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
S. L. Additon	BS Mathematics MS Nuclear Eng. BA	Manager, Design & Nuclear Safety Assessment	7 mo./13 yr./14 yr.	Thermal Hydraulic & Plant Dynamic Analysis	Nuclear Safety	Westinghouse	Manager, Systems Design
J. W. Sale	BS Mechanical Eng MS Mechanical Eng Reactor Operation		3 yr./18 yr./21 yr.	Mechanical Eng.	BOP System Design Fire Protection	Pacific Gas & Electric Co	Mechanical
	BA Physics/Math HS Physics	Manager, Nuclear Safety Analysis	1 yr./16 yr./17 yr.	Nuclear Eng. Transient Anal. (T-H Neutronic)	Risk Assessment	Babcock & Wilcox	Sentor Engineer
	BS Mathematics MS Nuclear Eng. PhD Mathematics	Manager, Nuclear Safety Standards & Technology	7 mo./16 yr./17 yr.	Mathematics Nuclear Eng.	Reactor Operations	U. S. Dept of Energy-FFTF	Safety & Operations Staff
C. J. Foley	BS General Eng. MS Nuclear Eng.	Principal Engineer	7 mo./15 yr./16 yr.	Mechanical Eng.	Nuclear Plant Start-Up Supv. (1975-1980)	Westinghouse	Principal Engineer
		Senior Engineer	6 mo./19 yr./20 yr.	BWR Systems	BOP	General Electric	Senior Project Eng.
f i	BS Electrical Eng. MS Structural Eng. PhD Material & Applied Mech.	Senior Engineer	4 yr./11 yr./15 yr.	Nuclear Fuel Safety Analysis		Nuclear Services Corp.	Nuclear Fuel Consultant
J. M. Henderson	BS Nuclear Eng.	Engineer I .	1 mo./9 yr./9 yr.	Nuclear Eng.	Computer Systems Nuclear Fuel	Westinghouse	Engineer I
+ Registered P. √Registered P.	E., Washington. E., other state(s).	ll			· · · · · · · · · · · · · · · · · · ·	· · ·	······································
	÷ s				, ,	, ,	

*

1 - 1

•

• •

•

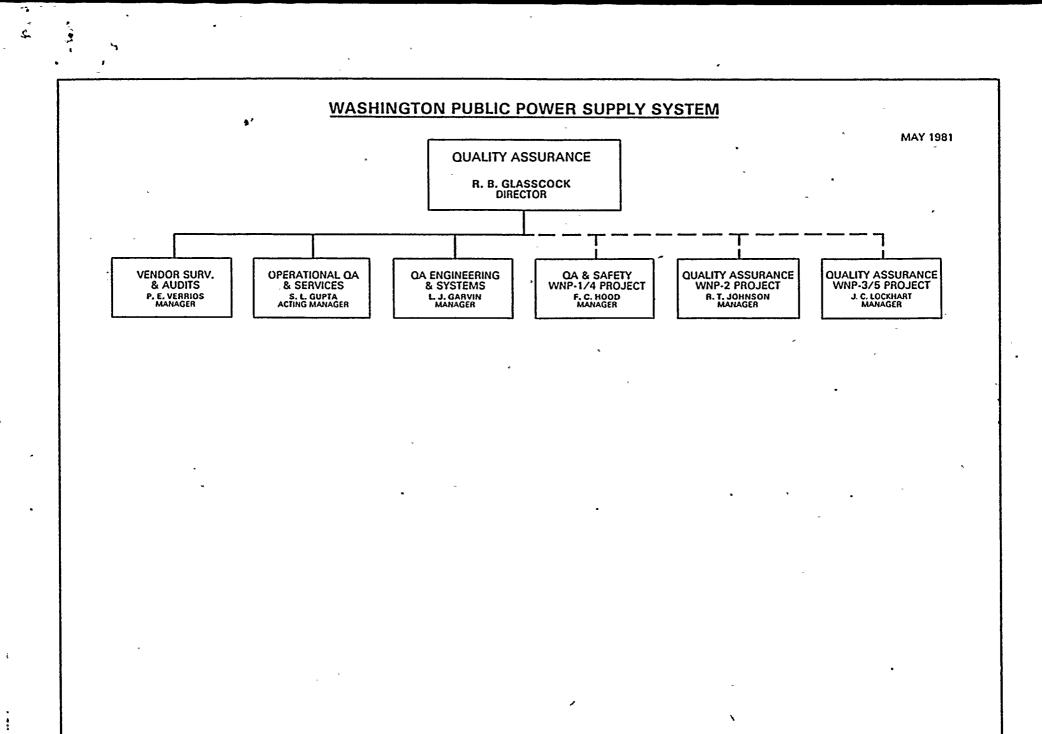
•

x

¢

• .

Page 2 of 2


2

DEPARTM	IENT: DESIGN AND N	UCLEAR_SAFETY_ASSESSMENT		AS OF:	8/31/81		# ~
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
P. R. Shire	BS Math/Chem/ Physics MS Nuclear Eng.	'Principal Engineer	5 mo./27 yr./27 yr.	Nuclear Eng. LWR/LMFRB Safety Analysis Neutronics/Therma Hydraulics Ana	Plant Heat Balance Generation Planning Computer Code Spec.	Westinghouse	Reactor Safety Eng.
J. S. Dukelow	AB Mathematics MA Mathematics MS Nuclear Eng.	Senior Engineer	4 mo./11 yr./11 yr.	Nuclear Eng. Thermal Hydraulics	Reliability Mathematics	HEDL	Reliability Engineer
D. L. Prezbindowsk	BS Engr. Science MS Nuclear Eng. PhD Nuclear Eng.	Sentor Engineer	5 mo./13 yr./13 yr.	Mechanical Eng. Nuclear Eng.	Core Physics & Shielding Calculations	Battelle	Sr. Patent∶ Engineer
B. L. Twitty	BS MS Radiochemistry MS Nuclear Eng. Certified in Health Physics	Principal Engineer	3 mo./25 yr./25 yr.	Reactor Control Inst. Startup - Accept.	Safety Anal., Health Physics, Plant Design, & Radiochemistry	Westinghouse	Sentor Engineer
	- - -	•		-		L	
		•	:			-	-
+ Registered P. √Registered P.	E., Washington. E., other state(s).	l	· · · · · · · · · · · · · · · · · · ·	i i	·	·····	
		۲ ن		1			

. ---. •

•

.

•

,

2

, .

, , • • и. • **3** 1 .

!

ROBERT B. GLASSCOCK

-	POSITION: EDUCATION: EXPERIENCE:	DIRECTOR, QUALITY ASSURANCE BSEE, PE
	-1976 - 1981	DIRECTOR, QUALITY ASSURANCE, D.O.E. FFTF Project Office
		 CONSTRUCTION ACCEPTANCE TESTING OPERATION RAND D PROGRAMS
	1972 - 1976	QUALITY ASSURANCE SPECIALIST, ENFORCEMENT DIVISION, NUCLEAR REGULATORY COMMISSION • CONSTRUCTION • OPERATION
	1958 - 1972	MANAGER, PROJECT QUALITY ASSURANCE, Aerojet General Corporation • Construction • Operation
	1955 - 1958	MANAGER CONTROL, ACF INDUSTRIES, BUFFALO Plant • Quality Control Direction

- 1950 1955 CHIEF, QUALITY CONTROL, AEC KANSAS CITY Field Offices
 - QUALITY CONTROL PLANNING AND DIRECTION

INFORMATION ON QUALITY ASSURANCE MANAGEMENT AND STAFF

.

Page <u>1</u> of <u>3</u>

DEPART	IENT: <u>Quality Ass</u>	urance		AS OF	: September 8, 1981		
NAME	i DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
Casavant, R. D.	(A.S.) Business Administration	QA Engineer I	3 mos/2.5 yrs/2.75 yrs.	Mechanical Systems	Business Admin.	Crosby Valve & Guage Co.	QA Supvr.
Chandon, H. C.	(B.S.) Electrical Engineering	Senior QA Engineer	3.5 yrs/19.5 yrs/ 23 yrs	QA Engineer	Electrical Engineer		Sr, QA Engr
Dunn, T. E.	(B.S.) Mechanical Engineering	Principal QA Engineer	1 mo/22 yrs/22 yrs	QA Program Develop- ment & Maintenance	Fuel Fabrication QA Programs	Battelle	Sr. Scienti:
Feldman, D. S.	(B.S.) Industrial Engineering	QA Engineer I	l yr/5 yrs/6 yrs	QA Operations	Power Plant Operations	U. S. Navy	QA Engineer
Garvin, L. J.	(B.S.) Chemical Engineering (B.S.) Nuclear Engineering) (B.S.) Metal. Engineering	Manager, Quality Performance & Measurements	2 yrs/17 yrs/19yrs	QA & Metallurgical Engineering	Nuclear Safety	USNRC	Reactor Inspector
Gross, V. R.		QA Engineer I	4 yrs/14 yrs/18 yrs	Mechanical/Elect.	I/C, Civil	UE&C	QA Superviso
Gupta, S. L.	(B.S.) Physics	Principal QA Engineer	2.5 yrs/17.5 yrs/ 20 yrs	Quality Assurance	a. Fueling & Re- fueling Operations b. Nuclear Plant Operations	Carolina Power & Light	
lenthorn, C. O.		Senior QA Engineer	1.5 yrs/31.5 yrs/ 33 yrs	Quality Assurance	Business Management	Self	QA Consultan
louchins, T. J.		lanager, Audits and Surveillance	7 yrs/19 yrs/26 yrs	Quality Assurance	, ∙Auditing 1	1	Site Surveillance Supervisor

-= + \$1 H

INFORMATION ON QUALITY ASSURANCE MANAGEMENT AND STAFF

Page _____ of _____

T = T

. at = 3

۰.

æ \mathcal{A}_{i}

	DEPARTHE	NT: <u>Quality Assu</u>	cance	AS OF:September_8, 1981_					
	NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
	Кооу, W.	(B.S.) Electrical Engineering	Principal QA Engineer	4.5 yrs/16.5 yrs/ 21 yrs	Test & Startup Electrical, Instrument, & Control	Chemical Analysis	MATSCO	Director of Containment Testing	
~	Krolicki, R. P.	AA-Radiogr. BA-Commerce MA-Economics	Principal QA Engineer	4 yrs/23 yrs/27 yrs	Quality Assurance, NDE	Welding	Florida Power & Light Co.	Senior QA Engineer	
	Lauck, J. A.	(B.S.) Accounting	QA Engineer I	1 mo/12 yrs/12.1 yrs	Mechanical-equip./ piping erection & testing	Welding/NDE	WBG #2	Procurement Engineer	
	Simons, R. M.		Manager, Quality Systems	1.5 yrs/22 yrs/ 23.5 yrs	QA Systems	NDE	Richland Engineering	QA Manager	
	Walker, J. M.		Senior QA Engineer	6 yrs/5.5 yrs/11.5 yrs	QA Surveillance/ Audits	QA Systems/Programs	Northeast Utilities Service Co.	Engineering Technician	
	Webster, R. D.	(BA) Education	QA Engineer I	6 mos/39.5 yrs/ 40 yrs	Systems Mechanical	Electrical	Westinghouse	QA Engineer	
	Winters, H. L.		QA Receiving Inspector	6 yrs/21 yrs/27 yrs	Receiving Inspection	Mechanical, Dimensional Measurements	HUICO	QA Inspector	
7	Wooley, G. H.	•	Manager, Vendor QA	4.5 yrs/5.5 yrs/ 10 yrs	QA General Administration, Supervisory	Mechanical, Welding, NDE	Bechtel	Vendor Surveillance Engineer	
	+ Registered P. √Registered P.	E., Washington. E., other state(s).			L		L		

1.4.4-5

٠,

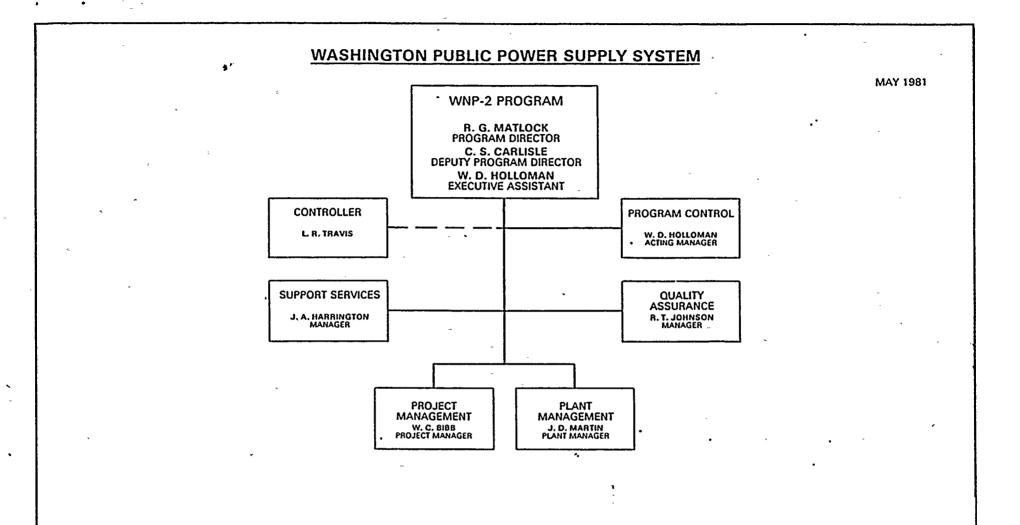
s

INFORMATION ON QUALITY ASSURANCE MANAGEMENT AND STAFF

Page <u>3</u> of <u>3</u>

×

el 4 Stateba


п. э.

	Dermitic				N5 01 .	September 0, 1901		
ŀ	NAME	: DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV10US EMPLOYER	TITLE
~	Zimmerschied, J. R.	(B.S.) Physics Engineering	Senior QA Engineer	3 yrs/9 yrs/12 yrs	QA Surveillance & Audits in piping & mechanical area	Programming and use of micro- processors	Bechtel Power Corp.	Project QA Engineer
						A		
		i			A		-	
				•				
~					•		-	
				•				
	+ Registered P.	E., Washington. E., other state(s).			-			
	√Registered P.	E., other state(s)	•					

DEPARTMENT: <u>Quality Assurance</u>

1

AS OF: September 8, 1981

8105041

 \vec{s}_{-}

ROBERT G. MATLOCK

POSITION: PROGRAM DIRECTOR, WNP-2

EDUCATION: BSME, PHD PHYSICS

EXPERIENCE:

1979 - 1980 DEPUTY DIRECTOR OF NUCLEAR REACTOR PROGRAMS FOR THE U.S. DEPARTMENT OF ENERGY

- Resource Planning
- MULTIPROGRAM MANAGEMENT
- OPERATIONS PLANNING
- 1966 1979 Argonne National Laboratory
 - 77 79 DIRECTOR OF FOSSIL ENERGY AND SOLAR ENERGY PROGRAMS
 - Program Developments
 - ENERGY RESOURCE ANALYSIS
 - LABORATORY WIDE TECHNICAL PROGRAM MANAGEMENT
 - 74 79 Project Manager for the Fast Reactor Safety Test Facility Project
 - SPECIFICATION AND REQUIREMENTS DEVELOPMENT
 - Design Development
 - Contract Management
 - SAFETY EVALUATION AND ENVIRONMENTAL REPORT PREPARATION
 - 73 74 EXECUTIVE ASSISTANT TO THE DIRECTOR OF REACTOR PROGRAMS
 - LABORATORY WIDE PROGRAM PLANNING AND MANAGEMENT
 - FACILITIES SAFETY REVIEW AND ASSESSMENT
 - 71 73 MANAGER ANALYSIS AND TEST PROGRAM ON EBR-II
 - ONGOING OPERATIONAL SAFETY ANALYSIS
 - TECHNICAL SPECIFICATION PREPARATION
 - SAFETY ANALYSIS REPORT REVISIONS
 - EXPERIMENT REVIEW AND APPROVAL
 - 66 71 FACILITY MANAGER/OPERATIONS MANAGER ON THE ZERO POWER PLUTONIUM REACTOR (ZPPR)
 - FACILITY CONSTRUCTION COMPLETION
 - SAFETY ANALYSIS REPORT PREPARATION
 - OPERATING MANUALS AND TECHNICAL SPECIFICATION PREPARATION
 - STAFFING AND TRAINING
 - FACILITY STARTUP AND OPERATION

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

. . .

÷.,

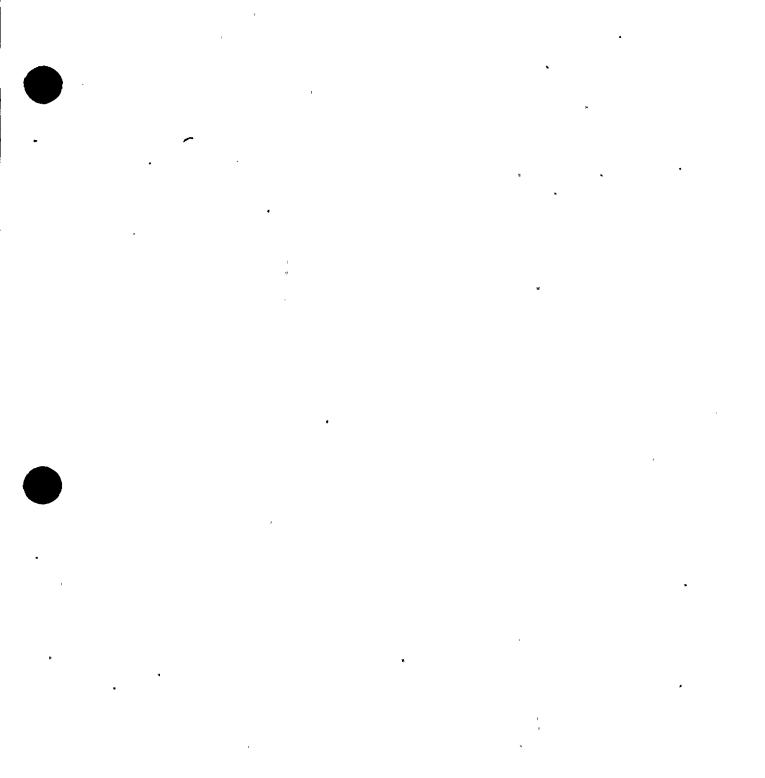
DEPARTMENT: WNP-2 PROGRAM DIRECTOR

.

AS OF: 9-1-81

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R.G. Matlock	BSME PH.D. Physics	Program Director, WNP-2	1 yr/20 yr/21 yr	Nuclear Reactor Design, Operations, Project Management	Nuclear Physics, Research & Develop- ment.		Deputy Dir- ector, for Nuclear Programs, Physicist, Program Di- rector, Project Mgr
			-		-		•
	-	_	•	-	-		i
		· · · · · · · · · · · · · · · · · · ·				•	
+ Registered P. √Registered P.	E., Washington. E., other state(s).		•	ł	. ,	· · · · · · · · · · · · · · · · · · ·	

INFORMATION ON WNP-2 MANAGEMENT AND STAFF


Page	1	of	1

*

÷ <u>*</u>_

DEPART	MENT: WNP-2 PRO	-2 PROGRAM DIRECTOR AS OF: _9/1/81			AS OF: _9/1/81			
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
C.S. Carlisle	BS Naval Science MS Business Admin	Deputy Program Director.	4 mos/35 yrs/35 yrs	1	Construction Project Management		25 yrs experience in nuclear submarine construct- ion, oper- ations, & mainte nance.	
+Registered P. √Registered P.	. E., Washington. . E., other state(s).				·	4	[

•

• р. .

. .

• • · · ·

DEPARTI	IENT:PROGRAM_CO	NTROL	-	_ AS OI	September 4, 1981		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
W.D. Holloman	i B.S. Eng. (Gen) (U.S. Naval Academ B.S. Eng. (M.E.) Nuclear Power	Executive Assistant y) Mgr. Program Control (Acting)	6 mos/26yrs/26yrs	Resource Mgmt.	Tech Management (Nuclear Pwr R&D)	AEC/DOE 6 yrs U.S. Navy 20 years	(Budget Offic
			- -			·	
							•
		•					
		•		: • - *			
+ Registered P	E., Washington. E., other state(s).						

-- ` / w • • 7 × 4 ÷ .

÷ 🔐

8

x -

NAME	IENT: <u>Programs's D</u> DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	: September 4, 1981 SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	, TITLE
J.R. Honekamp	B.S. & M.S. Chem Eng. PH.D Chem Eng. with minor in Nuclear Eng.	Technical Specialist	10 mo./20/21	Design and Testing of Nuclear Power Plants	Fuels and Materials Performance, and Operations	and Knolls Atomic Power Lab.	ll years experience in design and testing associated with Breeder Reactor Progra 9 years
		• •					experience in design, testing and operation of Haval Power Plants
•	-				·-	•	
-	E., Washington. E., other state(s).	•	· · · ·		•		

.

٠.

•

E - 3*

a_e

INFORMATION ON HNP-2 MANAGEMENT AND STAFF

Page _1___of ____

*

· .

DEPARTM	ENT: Project Qu	ality Assurance	AS OF: <u>9-4-81</u>					
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE.	
Roger T. Johnson	None .	WNP-2 Project QA Manager	HPPSS 8 years QA Mngmt. functions.	Nuclear Const. and Project Mgmt.	Mechanical systems design, installation and inspection,	Westinghouse Hanford	Project Engineer	
			9 years experience in Nuclear Const. and Project Mngmt.		and inspection,			
			17 years total experience.					
Richard E. Spence	B.S. Nuclear Engineering	QA Compliance Supervisor	l坫 yrs/14yrs/15yrs	Nuclear power plant const. and Quality Assurance.	Nuclear power plant test, startup and operations. Also, radiation protection	Engineering	Project QA Engineer	
Carl O. Wright	BSME	QE Supervisor	3yrs/7½yrs/10½yrs	Nuclear power plant const. Quality Assurance Audits/Survellances	Mechanical Engineering with power utilities	Bechtel 4½yrs.	SR QAE	
	,							
							;	
*			*			*		
						-		
+ Registered P. √Registered P.	E., Washington. E., other state(s);		· · · · · · · · · · · · · · · · · · ·	- ,	·····		

*	•	INFORMATION C	IN WNP-2 MANAGEMENT	AND STAFF		
DLPARTDENT	OPERATIONAL QUALITY ASSURANCE			د	AS OF:	9/8/81

	*	a	INFORMATION	ON WNP-2 MANAGEMENT A	ND STAFF	Pag	e of <u>`</u>		
,	. DLPARRIEN	I OPERATIONAL QU	ALITY ASSURANCE	•	AS OF:	9/8/81	ية 11 م منطق		-
	116MI.	DEGREC(S)	HPPSS POSITION TILLE	EXPERIENCE HPPSS70111ER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
	Joseph M. Graziani	B.S. Materials Engineering, 6/71	Operational QA Supervisor WNP-2	System	ion Field Engineerí.	Operational Quality Assurance Engineer	Bechtel Power Corp.	Electrical Field Engineer	
_		• ,		6 yrs 4 mo w/Bechtel 9 yrs. 2 mo - Total	(startup System com- pletion & Electrical check-out)	-Nuclear Management Plan for PRE-OP and operation phase		Startup.Systen Turnover Admin -strator	
							۲ ۲ ۲ ۲	Construction Completion Coordinator	T
		.						Lead Field . Cost Engineer	•
							٠ ٢	Field Cost Engineer	A
							· •		*
•		•			-		**		
Į									
				. <i>.</i>					,
	Registered P. E. Penistered P. L.	, Washington. a other state(s).	• • • • • • • • • • • • • • • • • • •					2	

2

•

INFORMATION ON WHP-2 MANAGEMENT AND STAFF

Page <u>1</u> of <u>1</u>

.

DEPARTMENT: SUPPORT SERVICES			AS OF: <u>September 1, 1981</u>				
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
J. A. Harrington	BA Business Acministrati	Manager, Support Service on Division	s 7 yrs/18 yrs/25 yrs	Business Management	Quality Assurance Nanagement	Bunker-RAMO Corporation	Reliability & Quality Control Manager
			· .				
	•	· .				×	•
+ Registered P.	E., Washington.	4 -					-
Registered P.	E., Washington. E., other state(s).				· · · ·		
, .	•	•	· ·		γ 4 8	•	

82 2

8

÷

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

.

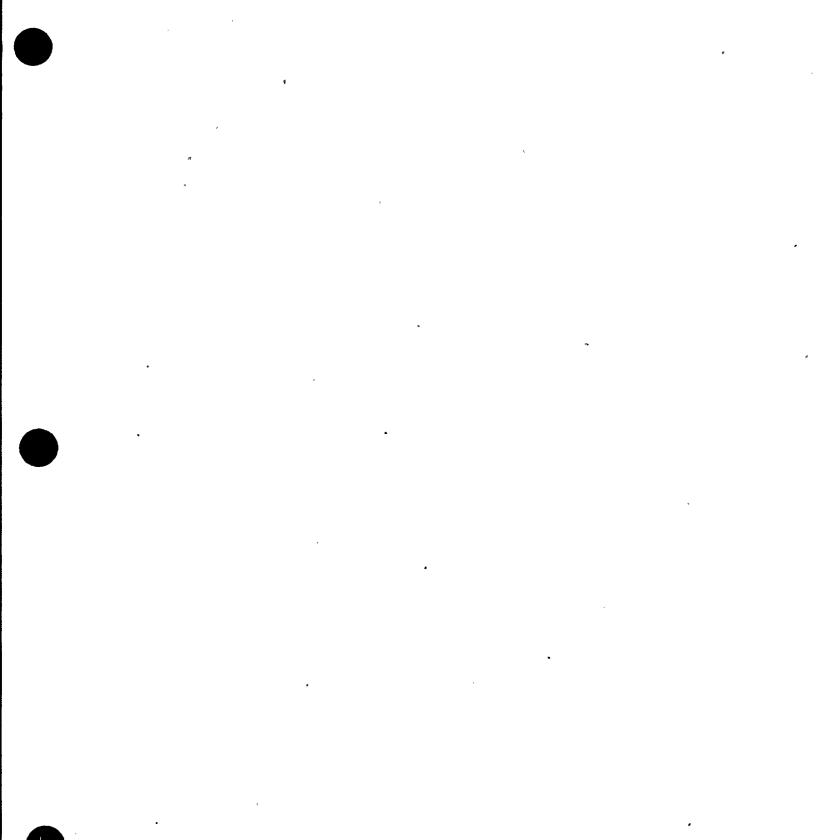
Page <u>1</u> of <u>1</u>

NAME	1		-				•	
	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
J. F. Peters	BA Psychology	Administration Manager WNP-2	5 yrs./6 yrs./11 yrs.	Commercial Nuclear Plant Administratic & Support Services	Operations and n Startup Manage- ment	Metropolitan Edison Co.	Station Administrate	
			·. ·					
			• •					
r	•							
	•					•		
					•	•		
					•			
+ Registered P. E √Registered P. E	E., Hashington. E., other state(s)		<u>ا</u> ــــــــــــــــــــــــــــــــــــ	······	· .:		• -	

1

. <u>Page 1 of 1</u>

DEPARTMENT:	WNP-2 RECORDS	MANAGENENT
-------------	---------------	------------


ĩ

ĩ

AS OF: September 1, 1981

NAME	. DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
.V. Anderson	BA History	Manager, Records Managemen	4yrs/3 yrs/7 yrs	Records Management	Archives Administrat	ion National Archives & Records	Records Management Intern
			· . ·			•	
					*	۰	
		•	· · ·		-	٢	•
		-	•	r.	•	•	
				4 -			
+ Registered P. √Registered P.	E., Washington. E., other state(s).	4 4 44		- ;*		•

and the second se

•

`

Page<u>l</u>of<u>l</u>

1

99 1

*

4.7

DEPARTMENT: Project Materials Management

.

.

AS OF: September 1, 1981

NAME	DEGREE	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPLE AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
D. R. Herling	AA Business Admin.	Manager, Project Materials Management, WNP-2	4 yrs/15 yrs/19 yrs	Procurement & Materials Mgmt. Process Plants & Nuclear Construction	Manufacturing	Davy McKee	Project Material Coordinator
				,			
				-			
	ž						
			· · · · · · · · · · · · · · · · · · ·				

يوني بو ۲۰ در ۲۰

• , , ,

· · · ·

- , **a**

• •

· · ·

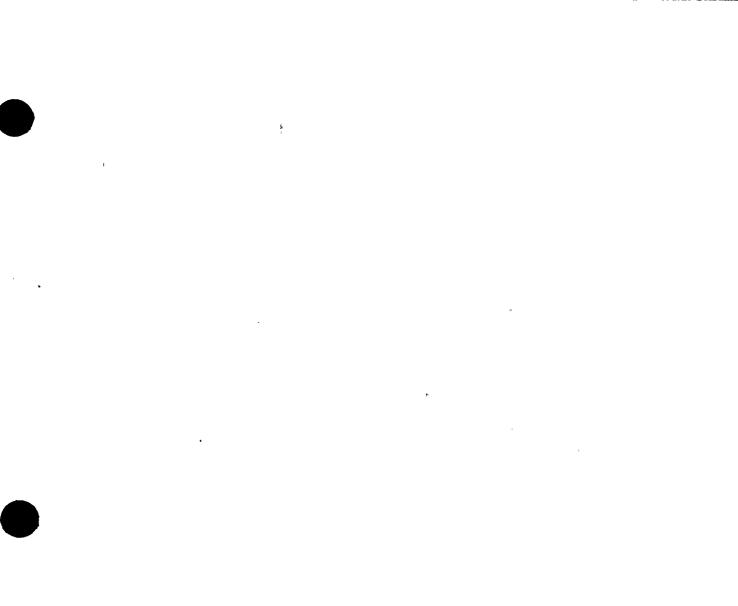
п

Page _1__ of _1__

DEPARTMENT: Business AS OF: September 1. 1981 PRINCIPAL AREA OF EXPERTISE SECONDARY AREA OF EXPERTISE EXPERIENCE WPPSS/OTHER/TOTAL PREVIOUS NAME DEGREE(S) WPPSS POSITION TITLE EMPLOYER TITLE ×. R. E. Baker BS Management & Military Science **Business Manager** 41/2 yrs/23 yrs/23 yrs Business CSTDC/Great American Ins. Construction Mgmt. Consultant Company MS Mech. Engineering + Registered P. E., Washington. √Registered P. E., other state(s). . . e 1 ۰. 28

Page ____ of ____

.


1. I I I I I I I I I I I I I I I I I I I		<u>.</u>	• • • • • • • • • • • • • • • • • • • •	AS OF: PRINCIPAL AREA OF	<u>9/4/81</u> SECONDARY AREA OF	PREVIOUS	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	EXPERTISE	EXPERTISE	EMPLOYER	TITLE
I. D. MARTIN	BS Industria) Management	WNP-2 Plant Manager	3 / 18 / 21	Reactor Operations	BWR Startup	US NRC	Reactor
	Brigham Young 1960						, Inspector
• • • •			•			General Elec. Browns Ferry	Ops. Mgr. Ops. Supt. Training Inst. Startup Test. Engr
. * [*] * *						GE-Hanford	Reactor Op Supervisor
			{ 			DUN	Reactor Oper Supervison
							• •
			, ,		•		
					-	•	•
		a					
•			ų		•		
+ Registered P.	E., Washington. E., other state(s).		L)l_		· I · _ · · · · · · · · · · · · · · · · · 	

1

DEPARTHE	ENT: TRAINING		•	· 'As of		· · ·	•••
	DEGREC(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EHPLOYER	TITLE
R. D. DAVIDSON	BS'in Science Education	WNP-2 Training Supervisor	6 / 9 / 15	Development and Managing Training Programs	Reactor Operation	General Elect.	Simulator Training Engineer
			• .		-	US Navy .	Reactor Oper/ Training
. 1. je	·	,	* * * * * *	•			• •
· ·	• •	· . ·	,#	,		\$\$.2.	
•	, * , *			•			
			•				
+ Registered P. E √Registered P. E	, Hashington. , other state(s).					·,	

•

.

•

, ,

• •

44

		INFORMATIO	N ON WHP-2 MANAGEMENT A	ND STAFF	Pa	ge of	
DEPART	IMENT:Plant_Te	chnica]		AS OF	: <u>September 4, 1981</u>		• •
11AN 15	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EHPLOYER	TITLE
K. D. Cowan Registered Prof. Engineer, Mech California	1).BS-Mech. Eng. 2) Masters-Bus. Administration	WNP-2 Plant Technical Superintendent	WPPSS-WNP-2 Project Engineering Manager 1½ years WPPSS-WHP-2 Plant Technical Supt. 1' year GE-Nuclear Energy Division 1) Project Eng. 2) Systems Eng. 3) Design Eng. 17 years total	Technical or Project Engi- neering Manage- ment	Mechanical Systems Engineering	General Electric - Nuclear Energy Division	Various- from Design Engineer to Project Engineer to Systems Engineer to Unit, Sub- section and Section Hanager
			•			,	
+ Registered P. (JRegistered P.	E., Hashington. E., other state(s).	-	اا		· · · ·	· ·	
	-	· · · · · · · · · · · · · · · · · · ·	•			*	

باستيله استعددهاي وي به كوره و

1 .

• •

· · ·

. •

.

Page <u>1</u> of <u>1</u>

DEPARTM	ENT:Operation	s/Maintenance	•	AS O	F: <u>September 3, 19</u>	<u>31</u>	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R. L. Corcoraņ	B.S.E.E.	Plant Operations Superintendent	8/7/15	Nuclear Plant Operations	Plant Technical/ Engineering	Dairyland Power Coop. LaCrosse BWR Gen. Station	Plant Tech. Supervisor/ Project Engr
J. W. Hedges	B.S.M.E. M.S. Geology	Plant Maintenance Supervisor	8/23/31	Nuclear Plant Maintenance	Plant Technical/ Engineering	UNI, N-Reacto	Sr. Engr. N-Reactor Maintenance
						· · · ·	•
-			•				
	-						
+Registered P. √Registered P.	E., Washington. E., other state(s).			· •			
			*			•	

.

•

•

۰. . . .

. • 4

· •

.

•

Page <u>1</u> of <u>1</u>

. - ' . . .

\$

. 2

DEPARTI	MENT: Project Mana	gement		AS OF	9/4/81		- · ·
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
W. С. Ві <u>р</u> ь	3 yrs towards EE degree Registered P.E., California	Project Manager, WNP-2	5 yrs/22 yrs/ 27 yrs	Startup/Ops/Power Production Mgr	Project Management	General Elect.	Area Mgr` Nuclear Services Midwest Reg. Site Mgr Cooper Nuc. Station
		•				4	•
- - -		•			-		• •
 		• •	• • •	× III	-	r. T	
+ Registered P. √Registered P.	E., Washington. E., other state(s).						
		<u></u>					

•}

ł

..

.

•

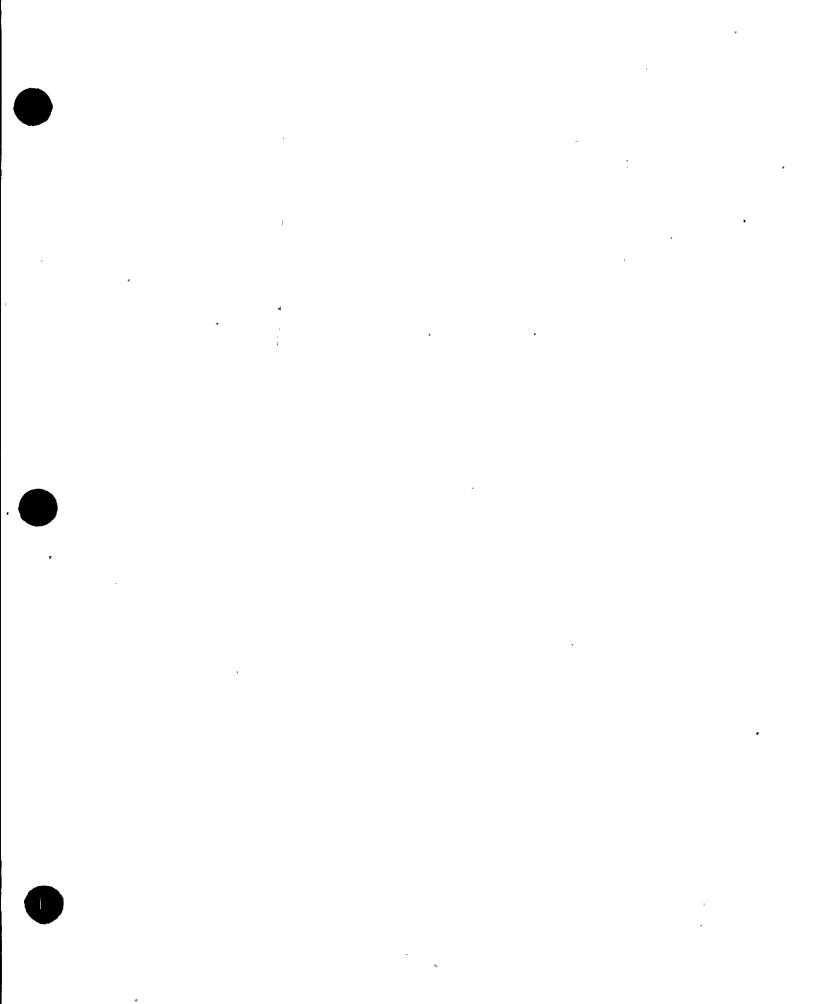
~

, , • • • · **·** · . . .

•

•

• -, **N** . A


×.

Page	 of	

DEPARTM	ENT:Test &	Startup		AS OF:			
- NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G. K. Afflerbach	BS Electrical Engineering	Deputy Project Manager, Startup, WNP-2	3 yrs/14.5 yrs/17.5 yrs	Nuclear plant startup,operation and maintenance	Nuclear plant retrofit & outage management	General Electric	Operations Manager
		•	· .				
•			· · · ·				•
			•	ف			
-					•		
				-			
					•		
+ Registered P. √Registered P.	E., Washington. E., other state(s)		L			-	L

ĭ

3

.

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
H.A. Crișp	B.S. Mining Eng. MS Petroleum Eng. MS Civil Eng.	Deputy Project Manager Construction	1 yr/25yrs/26yrs	Management of Plant Construction and Maintenance	······································	U.S. Navy	25 years experience in faciliti maintenance and const. last 7 yrs. associated with Nuclea or Nuclear Support Facilities
+ Registered P. E √Registered P. E	., Washington. ., other state(s).		·	• • •			

Ì

1

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
BA Holmberg	BS Marine Engrg.	Deputy Project Manager- Engineering	2.75/20/22.75	Management/Nuclear/ Operations	Mechanica]	U.S. Navy	Commander Navy
•							
			•				
					ej De		
							•
		•	•				
	•		•				
					,		
						• *	
-			•				
, .					·		
······································	E., Washington. E., other state(s).			[]		•	

د معنور به ۲۰۰۰ در معنور م معنور معن

•

.

•

,

1.1 41-1004(14)+16 8 3

••

•

,

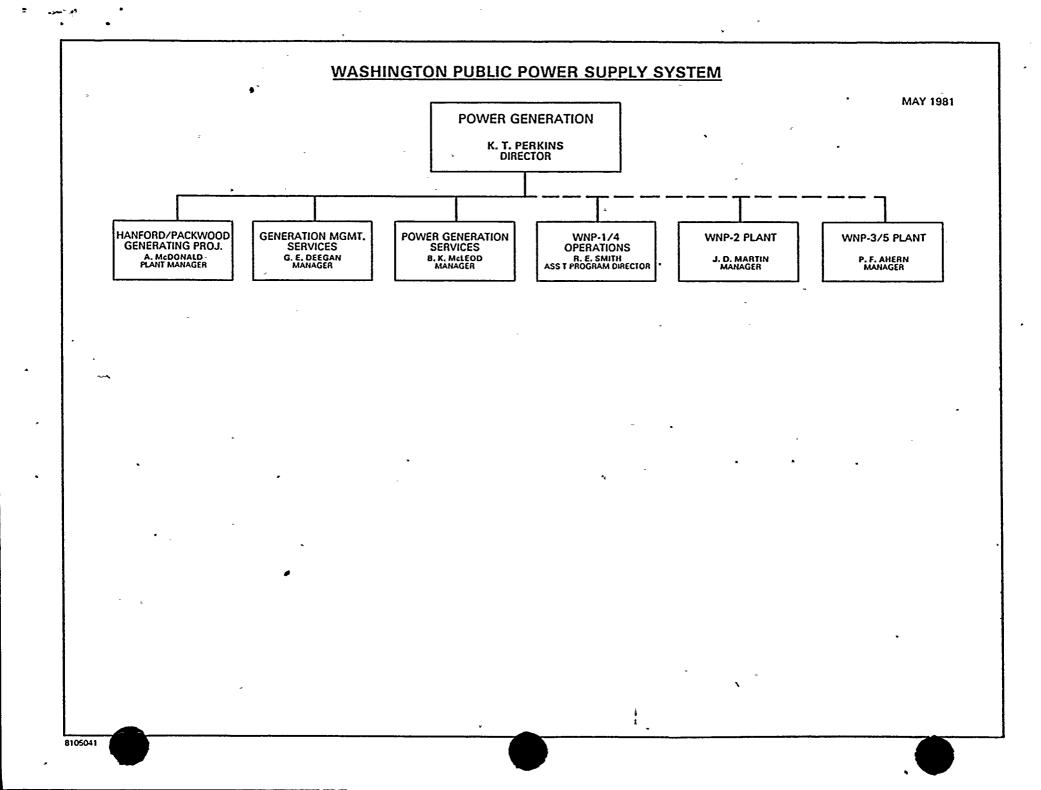
· · ·

વ

.

, • · · · ·

.


L.

	:	•	N ON WNP-2 MANAGEMENT	AND STAFF	P	age <u>1</u> of <u>1</u>	
DEPART	MENT: Project Fina	nce		AS O	F: September 8, 198	l	
NAME	DEGREE(S)	'HPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
L.R. Travis	B.S. Business Administration	Project Controller, WNP-2	3 yrs./31 yrs./34 yrs	Construction Financial Management	Manufacturing Financial Management	Kaiser Engineers	Administrative Manager
C.W. Robinson	B.S. Commerce & Finance	Project Accounting Manager, WNP-2	BRI-12 yrs./11 yrs./ 23 yrs.	Construction Accounting Mgt.	Construction Administration	The J. G. White Engineering Corp.	Field Office Manager
J.R. Dufort	B.S. Business Administration	Project [.] Budget Manager	2 yrs./37 yrs./39 yrs	. Budget & Cost Accounting	Cost Engineering	General Electric Company .	Senior Cost Engineer .
		-					•
		• •	· ·	• *			
		•	· ·				
		-			•		
			•				
		•	· ·	<i>x</i>			
		<i>w</i>			•		
			· · ·	•			
+Registered P. ∢Registered P.	E., Washington. E., other state(s).		· · · · · · · · · · · · · · · · · · ·	x x pt -			
•	1	•					•2.3
va − <u>-</u>		1. 21 	n , ~ , w ,	N° 5 - 44 135 - 44 4	а 44 — 4+400000 эхжал	17 mille hermited h	
						· • • • • • • • • • • • • • • • • • • •	- E 1,5 m
					· · · ·	-	

٠.

٠,

--

· ' · · · **ð** .

. . ·

x and the second s

* * * . . . , **f** . . .

*

KENWOOD T. PERKINS

POSITION: DIRECTOR, POWER GENERATION

EDUCATION: BA, PE

EXPERIENCE:

Ś

1971 - 1980 MANAGER, STARTUP AND OPERATIONAL SERVICES, NUCLEAR SERVICES CORPORATION

2

- STARTUP CONSULTANT
- 1969 1971 PRESIDENT, TECHNICAL EQUITIES CORPORATION, SAN JOSE
 - MANAGEMENT
- 1955 1969 MANAGER IN ATOMIC POWER EQUIPMENT DEPARTMENT, GENERAL ELECTRIC, SAN JOSE
 - STARTUP
 - OPERATOR TRAINING
 - SIMULATOR DESIGN, CONSTRUCTION AND OPERATION
- 1954 1955 LEAD ENGINEER, KNOLLS ATOMIC POWER LABORATORY
 - DESIGN
 - STARTUP AND PREOPERATIONAL TESTING
- 1944 1954 Lead Engineer, Dupont and General Electric, Oak Ridge
 - STARTUP AND OPERATION PRODUCTION REACTOR
 - DESIGN AND CONSTRUCTION LIAISON
 - 1941 1943 ENGINEER, METALLURGICAL LABORATORY, UNIVERISTY OF CHICAGO/DUPONT
 - FUEL ELEMENT DEVELOPMENT

.

9

:

ł.

, ×.

-

и

1 • '

INFORMATION ON POWER GENERATION MANAGEMENT AND STAFF

Page <u>1</u> of <u>3</u>

DEPARTMENT: POWER GENERATION DIRECTORATE

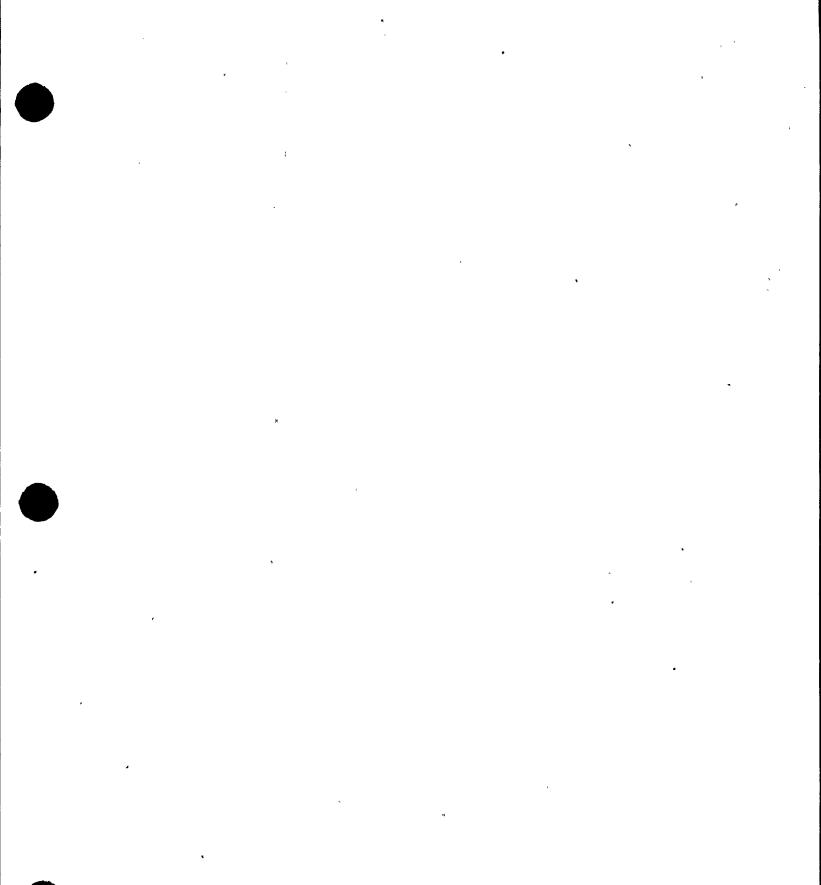
AS OF: <u>August 31, 1981</u>

NAME	E DEGREE(S) WPPSS POSITION TITLE		(S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL				SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
DEEGAN, G. E.	BS-Math & Physics	Manager, Generation Mgmt. Services	1.5/29.5/31	Mgmt. of Reactor Operations/Maint.	Nuclear & Liquid Metal R&D Mgmt.	Argonne Nat'l. Lab	EBR-II Opera- tions Mgr.			
HANNAH, K. J.	BS-Welding & Metallurgical Engineering	Supv., Nondestructive Examination & Inspection	4/15/19	Nondestructive Examination; Pre- service & Inser- vice NDE Evalua- tion; Registered Quality Engineer	Failure Analysis in BWR Systems	Industries;	Mat'ls. & Chemistry;			
HOLDER, J. R.	BS-Math & Engineering ·	Program Manager, Power Generation	2/9/11	Nuclear Power Plant Operations/ Startup & Testing/ Management; Opera- tional Design Re- view; Startup & Operational Pro- grams Development & Management		Carolina Power å Light	Plant Supt.; Plant Startuy Engr.; Sr. Engr.; Refue ing Engr.; Nuclear Engr Sr. Reactor Engr.			
HOLZENDORF, W. F.	HS; 1 Yr. College; Navy Huclear Power School; Navy Engineering Offi- cer School	Acting Supv., Maintenance Services (Sr. Mainten- ance Specialist)]/23/24	Mechanical/Systems	Operations Engineer	Westinghouse Hanford; U.S. Navy	Operation Support Engr Seaman			
ITTNER, J. P.	BS-Harine Engineering	Principal Engineer	6.5/95/16	Nuclear Operations & Startup; Train- ing Simulator Pro- ject Management.	Reactor Operations; Nuclear Technology/ Systems Trng.; Plan ning & Scheduling	cox; First Atomic Ship	Engr./Techn1 Support Supv			
KUBENKA, J. H.	BS-Occupational Education	Supv., Support Training	1/15/16	Reactor Operations/ Maintenance/Train- ing; Project Engr.	Computer Programming & Statistical Analy sis	United Nuclear Corp.; US Navy	Trng. Rep.; Nuclear Powe School_Advis			

INFORMATION ON POWER GENERATION MANAGEMENT AND STAFF

DEPARTNENT:	POWER	GENERATION	DIRECTORATE

AS OF: August 31, 1981


. . .

811 ET

201 . A

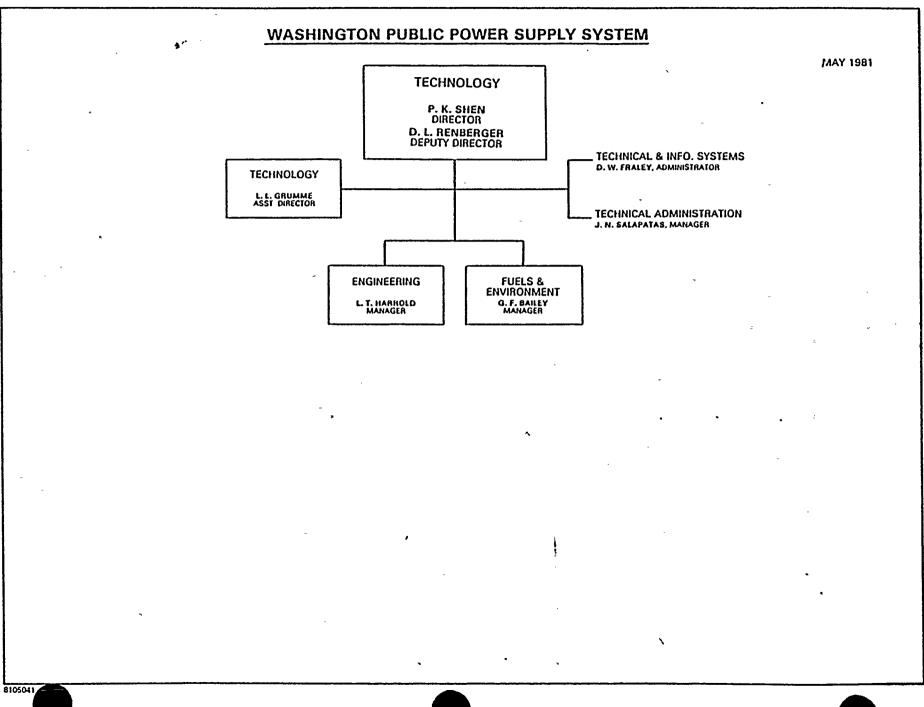
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY . AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
NCLEOD, B. K.	Navy Nuclear Re- actor Program -	Manager, Power Generation Serviçes	8/12/20		Nuclear/Industrial Safety; Training	General Elec- tric Co.; U.S.	Mgr.; Princip Reactor Insp.
NOYES, C. R. t√√	BSME; MSNE; Registered Pro- fessional Engr. (3 states)	Manager, Power Generation Maintenance	Nos /24/24	neer; Nuclear	Master Precision Machinist; Special Tool Design	Power Dist.;	Nuclear Lab Tech./Machinis Nuclear Engr. Asst.; Engrg. Supv.
PARTRICK, R. E.	BS-Naval Science; Navy Nuclear Power School	Supv., Generation Coordin- ation	6.5/6.5/13	Reactor Operations, Maintenance			Maint. Dev. Engr. Sr.
PERRY, J. F.	65 Units of College-Math & Engineering	Supv., Simulator Training Systems	5/10/15	Electronics Tech- nician; Simulator Procurement & Operations	Previously licensed as SRO on Indian Point	New York; U.S.	Sr. Simulator Instructor; Reactor Opera tor
ROSENECK, J. B.	USN-ETA/ETV/NPTU; GE-STE/BWRTC	Supv., Operational Train- ing	2.5/85/21	Nuclear Analyst; Reactor Plant Engineering; Reactor Core De- sign & Analysis; Plant Operation; Shift Test Engr.; Shift Supv.,; USN/ RO/RT; Startup Engineer; Supv., Turnover	Computer Programming Electronic Mainten- ance	GE-NEBG & KAPL U.S. Havy .	Shift Supv.; Shift Test Engr.; Reacto Control LPO
Registered P. Registered P.	E., Washington, E., other state(s)	· · ·	.a 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ور میں اور ہوتا ہے۔ اور میں اور ہوتا ہے اور	-

5.00

- · · ·

INFORMATION ON POWER GENERATION MANAGEMENT AND STAFF

Page <u>3</u> of <u>3</u>


- DEPARTMENT: POWER GENERATION DIRECTORATE

.

. . . . AS OF: <u>August 3, 198</u>]

•

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
TERRASS, H. S.	BS-Naval Science; MBA; Navy Advanced Nuclear Power School	Principal Engineer	3.5/17/20.5	Nuclear Engineer- ing; PE/Nuclear; Education & Train- ing; Nuclear Plant Operations (BWR & PWR)	Nuclear Plant Test- ing & Maintenance (BWR & PWR)	U.S. Navy; IBM; Nuclear Services Corp.; California Energy Commis- sion	Specialist Er
СНИВВ, К. L.	Technical Insti- tute Graduate; GE-Computer Main- tenance	Supv., Instrument Hainten- ance & Calibration	3/23/26	port	Computer Maintenance Standards Laboratory Supervision; Instru- ment Technical In- struction	Hanford; Bat-	Calibration & Computer Main tenance Mgr. Computer Main tenance Spec. Computer Fiel Engr.; Instru ment Technic
			•				
		• •	•			,	
					,		

×.

r.

* ı

, 1

, , • . . <u>بر</u>

5. *i*

•

PETER K. SHEN

POSITION:

DIRECTOR, TECHNICAL

EDUCATION: BS, MS, PHD

EXPERIENCE:

1975 - 1980 DEAN AND RESIDENT DIRECTOR, JOINT CENTER FOR GRADUATE STUDY, RICHLAND, WA

- Research
- TEACHING
- FUEL CYCLE DEVELOPMENT

1973 - 1975 SUPERVISING ENGINEER, SOUTHERN CALIFORNIA EDISON CO.

- NUCLEAR ANALYSIS
- FUEL MANAGEMENT
- LICENSING
- 1970 1973 ENGINEER, SOUTHERN CALIFORNIA EDISON CO.
 - NUCLEAR FUEL CYCLE MANAGEMENT
 - NUCLEAR ANALYSIS

Page 1 of 1

INFORMATION ON TECHNOLOGY MANAGEMENT AND STAFF

\$

•••

DEPARTHENT: TECHNOLOGY

AS OF: 7/31/81

101 01	DEGREE (S)	NPPSS POSITION TITLE	EXPERIENCE WPPSS/OMER/TOTAL	PRINCIPÀL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
+ P. K. Shen	BS Chemica],Engr. MS Chemical Engr. PhD Nuc. Engr.	Director; Technology	l yr./l4 yr./l5 yr.	Reactor Analysis, Nuclear Systems Design, Nuclear Reactor Safety, Nuclear Fuel Mgmt.	Reactor Operation, Licensing, Nuclear Waste, Radiation Effect Materials	Univ. of Washington	Dean and resident Director, Professor Nuclear Engineering
D. L. Renberger	BS Nuclear Engr.	Deputy Director, Technology 	10 yr./13 yr./23 yr.	Nuclear Plant Systems Performance and Testing	Nuclear Safety and Licensing	Douglas Ųnitęd Nuc.	Supervisor Regulatory Unit
- L. L. Grumme	BS Nuclear Engr.	Assistant Director, Technology	10 yr./11 yr./21 yr.	Nuclear Fuel pro- curement Nuclear Fuel Mgmt. Management		Douglas United Nuc.	Sr. Engr.
+- J. N. Salapatas	BS Industrial Eng 4S Management	^{r.} Manager, Technical Admin.	lyr./25 yr./26 yr.	Project Management Proj. Controls/ Nuclear Engr. & Construction	Management Systems, Organization Plan- ning and Developmen and Training	Power & Ligh	Manager, t Project Control Services
D. W. Fraley	BS Engineering Sciences DhD Systems Engineering	Administrator, Technical and Information Systems	4 mo./12 yr./12 yr	Systems Analysis, Decision Analysis, Operations Research Applied to Nuc. Industry	Computer Science, Information Systems Hardware & Analysis		Sr. Research Scientist, Nuclear Energy Systems

1.

. . .

الاستانية الأفار فالمناس والراري والا

Page 1 of 1

A80475

Ĵ,

INFORMATION	ON	ENGINEERS	IN	ENGINEERING	DIVISION

DEPARTMENT:	Engineering Div (42100)	vision Staff		AS O	<u></u>		
<u>N/MI</u>	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OMER/TOTAL	PRINCIPAL AREAL OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV LOUS EMPLOYER	TITLE
CL Fies	BSEngPhys, MSNE, MBA	Program Mgmt Spec	7 10 17	Program Hgmt		Westinghso	Sr Engr
✓ LT Harrold	BSME, BAEcon	Engr'g Division Manager	8 8 16	Mechanica l	ISI	DUN	Sr Engr
1		п				_	
			,		-		
		•	e .		-		- 1
Registered P.B. t Registered P.B.	, Mashington. , other state(s).				a na an an an ann a gunnin a' ann ann ann, a marta a Marta an A		

a 1

2 --

€ ø

• * *•

в

.

4

.

ų

×

· · ·

,

۶ , , , , , , ,

•

l'age _1__ of _2___

. A ...

. .e

2 ŧ

٠...

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:	incering ·	AS OF:7-31-81							
NAND:	(42500).	WPPSS POSITION TITLE	EXI WPPSS/	erteno omer/		PRINCIPAL ARUA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
WD Bainard	BSChE	Consulting Engr	9.25	20	29.25	Corrosion	Water Quality/N-C	אטמ	Sr Engr
D Burns	BSMet1, PhD	Supv, Materials & Components	3,75	5	8.75	Hetallurgy	Welding	II. Rsch Inst	Rsch Htlgst
tIM Bosi	BSME, MSME	Sr Engr	0	9	9	Engr'g Mechanics	lleat Transfor	Westinghse	Sr Engr
NK Chakravorty	PhD/Str.Dyn.	Principal Engr	2.75	7	9.75	Earthquake Engr'g	Structural Dynamics	Stonc/Webstr	Prin Engr
JR Cole	BSME	Engr I	.5	9	9.5	Hachine Design		WSH	Sr Engr
DW Cutting	BSMetE	Principal Engr	1.75	13	14.75	Welding	Metallurgy	WGC	Chief Wldg E
1M Erwin	BSMetE	Associate Engr	.5	0	.5	Weid'g/Hetallurgy	Welding processes	MI NavShpyd	Engr in Trng
the Good	BSME, MSCE	Supv, Engr'g Mechanics	3	17	20	Structural Dynamics	Seismic/Soil Mech.	Stone/Webstr	Lead Engr
TF lloyle	BSME	Senior Engr	3	7	10	ISI/PSI/NDE	Welding	IL Pwr	ISI Engr
JD llusted	AAS	Engr'g Assistant	1.75	.25	2	Engr'g Documentn		UNI .	Lab Tech
PJ Inserra	BSEngTech	Associato Engr	1	.25	1.25	Welding	Metallurgy	DiabloCanyor	QA Inspctr
RJ Lauzon	BSME	Senior Engr	2	20	22	Welding	Piping	Consultant	Self-Employd
✓ RL Loundagin	BSHE	Senior Engr	3.5	24	27.5	Piping (ASME)	Stress Analysis	ואט	Sr Engr
RA Hoen	BSMetE	Scnior Engr 🧉	1.5	18	19,5	Metallurgy	ASME	Westinghse	Sr Engr
tEL Morales	BSMIE	Senior Engr	3.75	13.5	17,25	Stress Analysis	Piping	Stearns-Rgrs	Engr III
✓ JC Mowery	BSHE	Principal Engr	8.75	12	20,75	Piping	Systems Engr'g	IUICO	Proj Engr
IN Hurdock	BSME	Engr I	.5	10.5	11	NDT (Ultrasonics)		NucEngySvcs	NDE Engr

۶

х. 4

/ Registered P.E., Mashington. † Registered P.E., other state(s).

- 1 /

•

. 、

4

, ,

Page 2 of 2

.

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

ð

.

-

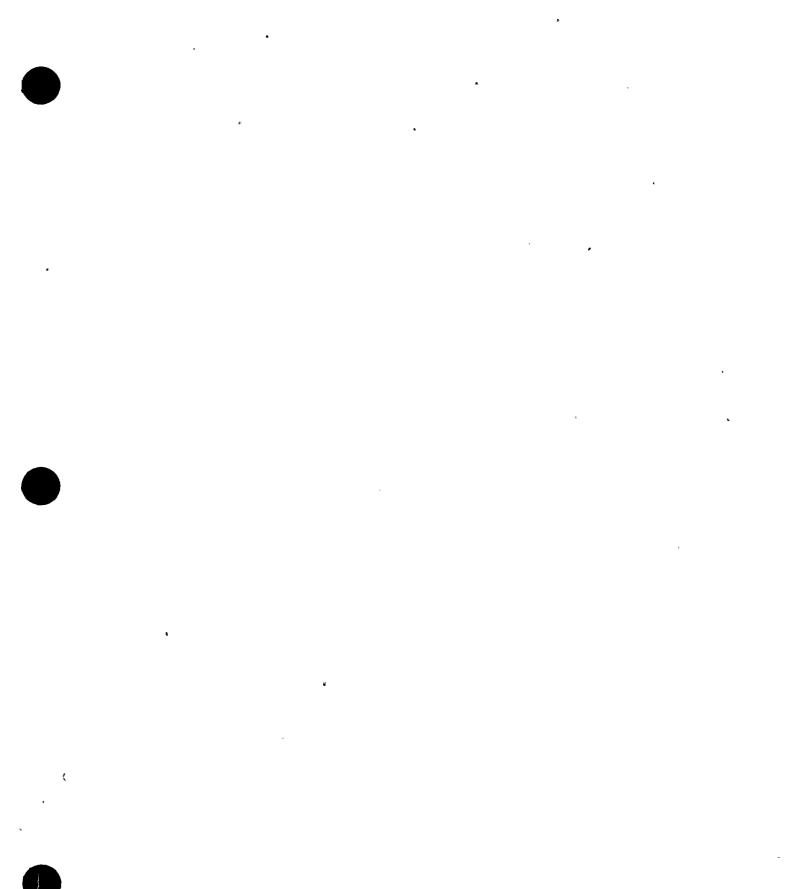
٦

.

6

ŝ

....


4

DEPARTMENT:	Hechanical Engr	r'g - Confinúed	AS OF:						
ИЛИН	(42500).	NUPSS POSITION TITLE	EXI MPPSS/	PERIEN OTHER	се 7тотлі.	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV LOUS EMPLOYER	TITLE
✓ JE Parker	BSHE	Senior Engr	5.5	6	11.5	Rotating Equipt	Systems Engr'g	GE	Serv Engr
√tDW Porter	BSNE	Managor, Mechanical Engr'g	4.75	3.5	8.25	ISI/PSI/NDE	Systems Engr'g	Bechtel	Sr Nuc Engr
LR Prill	BSME	Engr I	.25	9	9.25	Ops/Maint/Design	Personnel Trng	US Navy	Sub Officer
DP Ramey	BSChE	Engr I	.75	5	5.75	IS1/PSI	*	Rockwell	Plt Engr
the Reis	BAMath, MSNE	Engr I	1.25	4	5.25	Systems Engr'g	ISI/PSI/NDE	PG&E	T&SU Engr
CD Scott	BSME	Engr II	1,25	3	4.25	Piping Systems	licat Transfor	WSH	Engr
	BSME	Senior Engr	4,25	8.5		ISI/PSI/NDE	Piping *	Bechtel	Pipg Engr
K Singh		Schief Engr							
			-				1		
						•			
æ						-			
									•
							· ·		-
							<u></u>		
Registered P.E	., Washington.							2	-
· Registered P.R	., other state(s).						ه چې تونون د د پرون د د د د د د د د د د د د د د د د د د د		

.

v #1 #1

.

.

Page 1 of 2

.

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

1

.

t

DEPARTMENT:	Civil Engineering	& Services		AS O	F:7-31-81		
инли	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
PJ Adair	None	Sr Engr'g Records Analyst	6.25 0 6.25	Documentation			
AR Bright	BCS	Sr Admin Engr	4.75 15 19.75	Engr'g Admin	Accounting	Boeing	QA Supv
KM Jrun	BASecEduc	Engr'g Records Analyst II	1.5 9.25 10.75	Equipt Qualif	Documentation	срсо	Plt Clerk
BM Burnside	None	Engr'g Records Analyst I	1.25 4 5.25	Documentation	Comp Applic	B&R	Technician
PE Campbell	ASNucTech	Engr'g Records Analyst 11	0 3 3			Westinghse	Technician
KN Chick	BSAnthrp	Engr'g Records Analyst I	3.5 3 6.5	Equipt Qualif	Comp Applic		
MA Coffman	M	Engr'g Records Analyst II	0 4 4	Documentation		Westinghse	Technician
CR DePoe	None	Senior Engr	3.25 21.5 24.75	Hechanical	Electrical	SD St Univ	Manager
VK Duggal	BAArcht	Senior Designer	2 11 13	Design/Drafting		B&R	Designer
√tWC Flynn	BSCE	Senior Engr	2.75 21 23.75	Fac Des/Install	Struct Design	Pt/Olympia	Chief Engr
FV Gomulka	BA Hum.Resc	Engr'g Records Analyst I	1.25 1.5 2.75	Documentation	Comp Applic	Westinghse	Data Clerk
WS Hardy	None	Engr'g Records Analyst II	2.25 3 5.25	Documentation		Bechtel	Elect Clork
NII Kempt	BSEE	Senior Engr	3.25 18 21.25	Electrical		Vitro	Sr Engr
Wil Knolle	None	Engr I	3.5 37 40.5	Elect Eng/Design	Cost Estimating	Vitro	Sr Estmtr
LE Maravilla	None	Admin Specialist	7.75 4 11.75-	Administration	Secretarial	Juv Court	Sec'y
KF HcAndrew	AAS Tech Illust	Engr'g Asst (Drafting)	3.75 7 10.75	Design/Drafting		Bovee/Crail	Drafter
 Registered P.E. Registered P.E. 	, Washington. , other state(s).		•		• 9 x		

الورواف والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم

l'ago <u>2</u> of <u>2</u>

as somed

. • •

5

211

-

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:	Civil Engrig & Svcs	- CONTINUED		AS OF: 7-31-81					
NANI	(42600) , DEGREE (S)	WPPSS POSITION TITLE		PERTI 70111	ENCE ER/TUTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
BM Nichols	None	Sr Engr'g Records Analyst	5.5	17	22,5	Documentation	Engr'g Admin	City/Rch1d	Sec'y
EV Norris	BAArcht	Senior Engr	1.25	30	31.25	Architectural		Rockwell	Proj Engr
CO Romine	BSER	Supv, Engr'g Services	4	10	14	Engr'g Admin	14C -	Miles Labs	Mgr
tER Rybarski	BSCH	Principal Engr	8,75	25	33.75	Civil		West inghse	Sr Engr
JR Smith	None	Senior Designer	1.25	14	15,25	Design/Drafting		Rockwell	Designer
/ IIW Stivers	BSCE	Supv, Civil & Facs Engr'g	8.25	27	35,25	Civil	Structural	Westinghse	Sr Engr
/tWK Stockdale	BSCE,MSCE,PhD	Manager, Civil Engr'g & Svcs	3.5	27	30.5	Struct. Dynamics	Civil/Soil Dynamcs	US Army	Colonel
tliE Wellsfry	BSCE	Senior Engr	3.5	15	18.5	Civil	Structural .	Cty/Fremont	Engr
Cl. Whitcomb	BSEduc	Sr Engr'g Records Analyst	5.5	4	9.5	Documentation	Engr'g Admin		
									-
							٣		
							·		
×							-		r
							-		-
	·						I	ļ	
✓ Registered P.E † Registered P.E	., Washington. ., other state(s).								

۲

•

- 1

Page 1 of 2

• •

*

. . . .

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

.

.

RL ADDOLLDELE<	NANU	2700) .	WPPSS POSITION TITLE		PERTEN Tormer	:II /TUTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
RD BASSBASEIngr 1Interest of the strest of	RL Abbott	BSEE	Senior Engr	2.25	12	14.25	Elect Controls	Equipt Qualif	B&W	Sr Engr
FM BasicBolle, MSRLSchlof EngrSchlof Engr11.007.11.0Spectra and sF. F. F	RD Bass	BSEE	Engr I	.5	6	6.5	I&C Engr		Westinghse	Adv Engr
Six LastBall, FisherSupp. Electrical mag. gFisher ofFisher of <t< td=""><td>t M Basu</td><td>BSEE, MSEE</td><td>Senior Engr</td><td>1,25</td><td>6</td><td>7,25</td><td>Systems Engr'g</td><td>Equipt Qualif</td><td>Ebasco</td><td>Engr</td></t<>	t M Basu	BSEE, MSEE	Senior Engr	1,25	6	7,25	Systems Engr'g	Equipt Qualif	Ebasco	Engr
EP BollerAktledetronEngr 11Fig 11Fig 10Fig 110File </td <td>SR Basu</td> <td>BSEE, MSEE</td> <td>Supv, Electrical Engr'g</td> <td>2.25</td> <td>15</td> <td>17.25</td> <td>Elect Systems</td> <td>Licensing</td> <td>Bechtel/B&R</td> <td>Supv</td>	SR Basu	BSEE, MSEE	Supv, Electrical Engr'g	2.25	15	17.25	Elect Systems	Licensing	Bechtel/B&R	Supv
AIR ComptonBSHNysSonior EngrBillDiff <th< td=""><td>EF Boler</td><td>AAElectron</td><td>Engr II</td><td>1.5</td><td>10</td><td>11.5</td><td>Simulators</td><td>Electron Hardware</td><td>ษพ</td><td>Inst Tech</td></th<>	EF Boler	AAElectron	Engr II	1.5	10	11.5	Simulators	Electron Hardware	ษพ	Inst Tech
MR FaraonoBSEEEngr I4.75 610.75Equipt QualifElect Field Engr'gBechtolFid EfRE GreenNoneSonior Engr5.25 1116.25I& Engr'gSystems Engr'gGEEngrFR GuyorBSEEConsulting Engr71825SimulatorsElectricalMestinghseSr EngrtAN JoshiBSEESenior Engr2.25 2022.25I& SystemsEquipt QualifBechtolSr EngrJD LodgeBSEE, MSNESenior Engr1.51011.5SimulatorsElectricalMestinghseSim IJT PersonBSEEEngr II022Elect DistrbEG&GEngr'JE RhondsBSEESupv, Equipt Qualif Engr'g53.58.5Equipt QualifElectricalBechtolFid IRC RuckdescholBSEESenior Engr01818SystemsHestinghseSr Engr	MR Compton	BSPhys	Senior Engr *	5.25	9	14.25	Computers	Simulators	Battelle	Dvlpt Engr
Hit ParaonoDSEEEngr IEngr IEngr IEngr ItRE GreenNoneSonior Engr5.251116.251&C Engr'gSystems Engr'gGEEngrFR GuyerBSEEConsulting Engr71825SimulatorsElectricalWestinghseSr EntAN JoshiBSEESenior Engr2.252022.251&C SystemsEquipt QualifBechtelSr EnJD LodgeBSEE, HSNESenior Engr1.51011.5SimulatorsElectricalWestinghseSim IJT PersonBSEEEngr II022Elect DistrbEG&GEngr'JE RhoadsBSEESupv, Equipt Qualif Engr'g53.58.5Equipt QualifElectricalBechtelFld IRC RuckdeschelBSEESenior Engr01818SystemsWestinghseSr Engr	AJ Ebens	BSME, MSME	Program Hgmt Spec	6.75	10.25	17	Program Mgmt	Contract Admin	Westinghso	Proj Engr
FR GuyerBSEEConsulting Engr71825SimulatorsElectricalMostinghseSr EndrtAN JoshiBSEESenior Engr2.252022.25I&C SystemsEquipt QualifBechtelSr EndrJD LodgeBSEE, MSNESenior Engr1.51011.5SimulatorsElectricalWestinghseSim IJT PersonBSEEEngr II022Elect DistrbEG&GEngrJE RhondsBSEESupv, Equipt Qualif Engr'g53.58.5Equipt QualifElectricalBechtelFId IRC RuckdeschelBSEESenior Engr01818SystemsNestinghseSr Endr	WE Faraone	BSEE	lingr I	4.75	6	10.75	Equipt Qualif	Elect Field Engr'g	Bechtel	Fld Engr
FR GuyerBSEEConsulting Engr710<	tRE Green	None	Senior Engr	5.25	11	16.25	I&C Engr'g	Systems Engrig	GE	Engr
TAN JOSH1ISEESenior Engr1.51011.5SimulatorsElectricalWestinghseSim isJD LodgeBSEE, HSNESenior Engr1.51011.5SimulatorsElectricalWestinghseSim isJT PersonBSEEEngr II022Elect DistrbEGGEngr'JE RhoadsBSEESupv, Equipt Qualif Engr'g53.58.5Equipt QualifElectricalBechtelFld isRC RuckdeschelBSEESenior Engr01818SystemsWestinghseSr Engr	FR Guyer	BSEE	Consulting Engr	7	18	25	Simulators	Electrical	Westinghse	Sr Engr
JT PersonBSEEEngr II022Elect DistrbEG&GEngrJE RhoadsBSEESupv, Equipt Qualif Engr'g53.58.5Equipt QualifElectricalBechtelFld IRC RuckdeschelBSEESenior Engr01818SystemsWestinghsoSr En	tAN Joshi	BSEE	Senior Engr	2.25	20	22.25	I&C Systems	Equipt Qualif	Bechtel	Sr Engr
JF Person BSEE Lingr II C L L L L L JE Rhoads BSEE Supv, Equipt Qualif Engr'g 5 3.5 8.5 Equipt Qualif Electrical Bechtel Fld I RC Ruckdeschel BSEE Senior Engr 0 18 18 Systems Westinghso Sr En	JD Lodge	BSEE, HSNE	Senior Engr	1.5	10	11.5	Simulators	Electrical	Westinghse	Sim Engr
SEE Roads SSEE Supple Equipe Quart Lingt g Solution Supple Equipe Quart Lingt g RC Ruckdeschol BSEE Senior Engr 0 18 18 Systems	JT Person	BSEE	Engr II	0	2	2	Elect Distrb.		EG&G	Engr
RC Riickdeschei bolle Schior Liigi	JE Rhoads	BSEE	Supv, Equipt Qualif Engr'g	5	3.5	8,5	Equipt Qualif	Electrical	Bechtel	Fld Engr
	RC Ruckdeschel	BSEE	Senior Engr	0	18	18	Systems		West inghse	Sr Engr
t U Shah BSEE, HSInstE Manager, Elect/I&C Engr'g 4.25 13 17.25 I&C Sfty/Relibity NucSvc/3H Sr Co	t U Shah	BSEE, MSInstE	Manager, Elect/I&C Engr'g	4.25	13	17.25	1&C	Sfty/Relibity	NucSvc/3M	Sr Const.

+ + 7

÷

-

.

† Registered P.E., other state(s).

•

•

•

Page 2 of 2

٠

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

1 N 1

•

.....

NAME	DEGREE (S)	WPPSS POSITION TITLE	EX WPPSS	PERIER 70111EE	VCE R/TUTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV IOUS EMPLOYER	TITLE
JP Starr	None	Engr I	5.75	20	25.75	Simulators	Electrical	Westinghse	Engr
JL Sullivan	BSEE	Senior Engr	1.25	20	21.25	Equipt Qualif	Reliability Engr'g	lloffman	Load Engr
DT Thonn	BSEE	Principal Engr	8.5	22	30.5	lilect Systems	Protective Relay	ARCHO/GE	Spec -
CJ Zeamer	BSNETech	Engr I	.5	20	20.5	Equipt Qualif	Maintenance/Elect	B&R	Engr
	-								
						-			
							-		
			1						
						۰ <u>-</u>		-	
							-		
		•							
1				, 	*				
* Registered P.E † Registered P.E	L., Washington. L., other state(s).	<i>ب</i>							

, ,

•

.

.

• "

۰ ۰ •

.

к

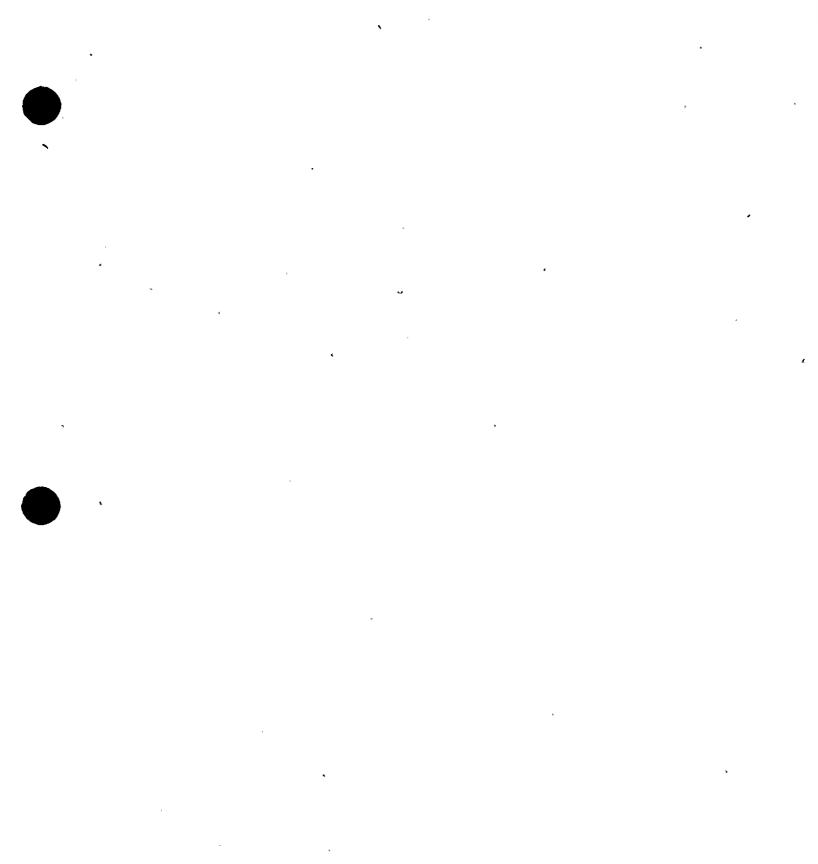
•

, ,

Page 1 of 2

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:	Nuclear Enginee	ring .		AS OF:7-31-81					
NAF#3	(42800).	WPPSS POSITION TITLE		PERTENC	CU TUTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
tSM Berry	BSME	Engr 1	1.25	10	11.25	Systems Engrig	Fuel Handling	Rockwell	Sr Engr
DE Bush	BSChE, MSNE, PhD	Principal Engr	4.75	12	16.75	Thermal Hydraulics	Containment Perf.	Stone/Wbstr	Sr Engr
tLC Chan	BSME	Engr 1	0	7.5	7.5	Nechanical Systems	Thermilydr Analysis	CT Main	Mech Engr
tKR Conn	BSAE, MSAE	Engr I	4.25	19.5	23.75	Systems Analysis	lleat Balance	Gilbert Asc	Sr Engr
tGL Gelhaus	BSEPhys, MSNE	Manager, Nuclear Engr'g	7.25	7	14.25	Safety Analysis	Fuel Mgmt	TVA/BNW	Nuclear Engr
RL licid	BSME	Principal Engr	7.5	13	20.5	Syst Perf Analysis	Component Design	Westinghse	Sr Engr
TW Horning	BSBE, MSNE	Engr I	0	5	5	Program Mgmt	Sfty/Environ Mntrg	Westinghse	Mgr,CS Anly
TH Kcheley	BSME	Engr I	0	10	10	lleat Transfer		Ecodyne	R&D Engr
Wil Kelso	BSME	Program Mgmt Spec	3.75	17	20.75	Fuel Handling		Rockwell	Sr Engr
DB Kreig	BSME	Associate Engr	0	2	2			NM Rsch Fac	Rsch Asst
KS Lund	BSNE	Associate Engr :	.25	.75	5 1			PS NavShpyd	Eng Tech
tFJ Markowski	BSME, MSME	Senior Engr	1.75	15	16.75	Reliability	Plt Transt Analys	Westinghse	Sr Engr
TB McCall	BSEE,MSNE, PhD	Program Mgmt Spec	.25	18	18.25	Pit Analy/Design		Westinghso	Prin Engr
DM Hyers	BSEngPhy, MSNE	Supv, Systems & Reliablty	0	10	10	Syst Analy/Design		Rogers/Asc	Sr Mgr
BI) Ngo	BSME *	Associate Engr	.25	0	.25	Mechanical		,	
RJ Nicklas	BSChE, MBA	Supv, Nuclear/Chem Engr'g	7.75	12.5	20.25	Nuclear/Chemical	Systems Engr'g	WI-Mich Pwr	Engr
		li I							
/ Registered P.E † Registered P.E	., Washington. ., other state(s).		-l						


÷

Ý

Page 2 of 2

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

-	(42800) . DEGREFI(S)	NPPSS POSITION TITLE	IIX WPPSS	PERTE 701TH	NCE R7TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
il Owen	BSChE	Senior Engr	8,25	25	33.25	Radiation Protect.		UNI	Sr HP
W Roberts	BSChE	Engr I *	5.25	8	13.25	Corrosion		ARCHO	Sr Engr
& Steelman	BSEcon, BSAcroE	Engr I	3.5	2	5.5	Computer Engr'g			*
T Steen	BSME	Engr I	3.5	5	8.5	Radwasto	Systems Engr'g	Cmwlth Edisn	Gen Engr
JP Thorpe	BSNE	Engr I	1	4	5	Shielding	Fuels Cycles	NN Shpbldg	Engr
WW Waddel	BSEPhys, MSNE	Supv, Tech Programs	7	13	20	Program Mgmt			
-									
							× •		
					2				
			ļ		-	-	-		
						-			
									Į
					-	}			
/ n t	<u>l</u>		l						l
F Registered P.	E., Mashington. E., other state(s).	-							

·

•

.

INFORMATION ON ENGINEERS IN TECHNICAL DIVISION

PAGE 1 OF 7

DEPARTMENT: FUELS & ENVIRONMENT DIVISION

AS OF: AUGUST 5, 1981

1

.

Name	Degree(s)	WPPSS Position Title	E NPPSS	xperien Other	<u>ce</u> Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title	-
GF Bailey (√)	BS Chemical Engineering BS Business NS Nuclear Engineering	Hanager, Fuels & Environment Division	7	16	23	Nuclear Engi- neering/ Nanagement	Energy Alterna tives/Environmental Engineering	Westing- house Hanford	Hanager, Environmental Engineering	•
RG Spencer		Technical Division Administrative Specialist	7	26¼	331 ₂	Financial	Administrative	UNC	Manager, Cost and Property	

✓ Registered PE in Washington

Name	Degree(s)	WPPSS Position Title	WPPSS	<u>Other</u>	<u>lotal</u>	Expertise	of Expertise	Employer	Title	
JR Worden	BS/MS Physics	Manager, Fuel Supply	7	`17	24	Fuel Manage- ment	Nuclear Analysis	West/BNW/GE	Fuel Project Engineer	
BK Boyd	BS Met`Engr MS Engr Mgt	Supervisor, Fuel Services	41 ₂	17	215	Fuėl Contract Admin. (Tecḥ)	Fuel Quality Assurance	Argonne/ Texas Instruments/ GE	Procurement Engineer	
LS Pace	BS Mathematics	Fuel Cost Engineer	5		5	Fuel Cost	Project Planning and Scheduling			
JE Sammis	BS Ceramic Engineer	Fuel Project Engineer	7	6	131	Fuel Contract Admin (Tech)	Fuel Development	West.Hanf./ BNW	Fuel and Core Component Procurement Engineer	
WG Jolly	·BA Math · MA Econ	Economic Evaluations Engineer	łź	5	51 ₂	Economic ,Analysis	Budget Forecast-	West.Hanf.	Economic Studies r Engineer	
JR Young (√,+)	BS CE SM CE MBA	Principal Special . Studies Engineer	4	° 29	33	Engineer . Studies/ Management	Cost Benefit Analysis/Environ- mental Assessment/ Economic Analysis	BNW/DUN/GE	Staff Engineer	

1

.

•*

, e.

بمرجع متعلمة والمعلين

٠ ۲ . ¥

, **'**

. . ·

•

•

۰. .

.

ŝ

✓ Registered PE in Washington
+ Registered PE in other state(s)

. .

r · · · •

. ,

. .

INFORMATION ON ENGINEERS IN TECHNICAL DIVISION

PAGE _ 5 OF _ 7

.

AS OF:

AUGUST 5, 1981

		•	•			D . (/)	т.	•	
Name	Degree(s)	WPPSS Position Title	E WPPSS	xperien Other	ice Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title
KA McGinnis	BS Ag Econ MS Ag Econ	Economics Evaluations Engineer	μ_{i}	4	5., ,	Economics	Engineer'Econo- mics/Socioecono- mics	BNW	Economist .
KR Wise (√)	BS Mechanical Engineering MS Hechanical Engineering	Supervisor, Environ- mental Engineering	. ;8	7	15	Supervision	Environmental Engineering	Westinghouse Hanford	Development Engineer
W Davis, III	BS Biology MS Ecology MS Management Science	Supervisor, Environ- mental Science	2	11	13	Ecology	Statistics	Yankee Atomic Electric Company ^.	Environmental Scientist
RA Chitwood	BA Physics Chemistry Mathematics	Manager, Environmental Programs	10	15	25	Environmental/ Regulatory Nanagement	Siting/Licensing Management	DUN	Senior Engineer
JP Chasse (†)	BS CE MS CE-Water Resources Engineering	Senior Environmental Engineer	4	7+	11	Environmental Engineering		US EPA .	Civil/Environmental Engineer
AC Rutz	BS Biology MPH-Water Quality Environ- mental Chemistry	Environmental Engineen	~ 2	8	10	Environmental Engineering	Water Quality/ Environemntal Chemistry	Klamath County, OR	Director of Environ- mental Health
		· · ·				• • • • •	· · · Jo Control	· · · · ·	

/ Registered PE in Washington
+ Registered PE other state(s)

DEPARTHENT:

ENVIRONMENTAL PROGRAMS DEPARTMENT

1

4.1.1

· . ·

· · .

н Н

. , . *.* • •

· · · · · ·

	и		INF	ORMATIO	N ON ENG	INEERS	IN TECHNICAL DIV	ISION		PAGE OF
•	DEPARTMENT:	ENVIRONMENTAL PI	ROGRAMS DEPARTMENT		•		1	AS O	F:AUGU	ST_5, 1981
	Name	Degree(s)	NPPSS Position Title	<u>E</u> WPPSS	xperience Other	e lotal	Principal Area of Expertise	, Secondary Area of Expertise	Previous Employer	Title
	MK Thompson	BS Geology Grad Study in Hydrology i	Environmental Engineer	11/2	3 res. 4 ind. & gov't	⁸¹ 3	Hydrology Geology	Permitting and Regulatory Com- pliance		Engineering Geologist/ Senior Hydrologist
	C Van Hoff		Senior State Liaison Specialist	4	5 、	9	Regulatory Interface	Legislative Re- viewer	Idaho	Legislative Assistant
	JC Kutt	BS Chemistry	Environmental Scientist	3 mo	10	10	Chemistry	Environmental Scientist	Battele NW Laboratory	Scientist ' ••••
	GS Jeane	Minor Chemistry BS Fisheries	Environmental Engineer – Biologist	5	6 ¹ 2 .	114	Mitigation Fisheries Pollution	Water Quality	Washington State Department of Ecology	Environmentalist
•	WA Kiel	BS Geology BS Ocean- ography	Geologist	5 ¹ 5			Environmental Geology			•••
•	AM Lee	MUP Urban Planning; BA Urban and Regional Planning	Socioeconomic Coordi- nator	3	1 .	4	Socioeconomic Ponitoring Mitigation •	Land Use (physi- cal planning)	Washington State Office of Community Development	
	ML Miller	BS Physical Science HS Health Physics	Environmental Scien- tist ;	14	3	4	Health Physics	Computer Programmer	Exxon	•

2 . 4

٠.

INFORMATION ON ENGINEERS IN TECHNICAL DIVISION

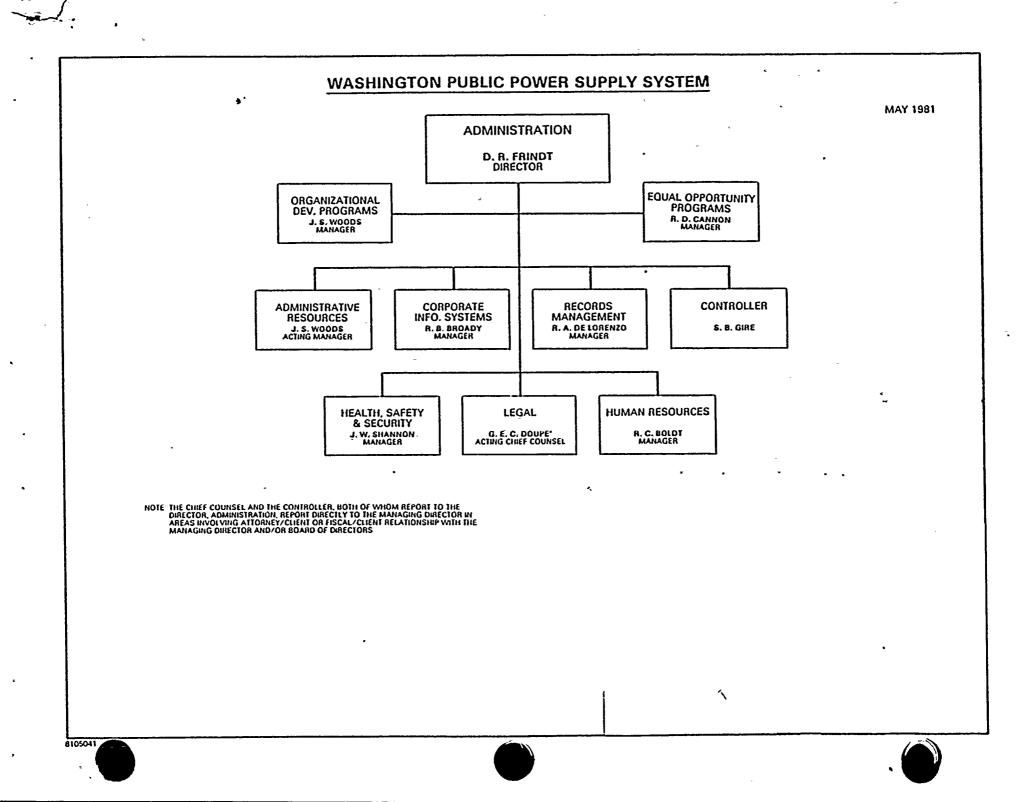
PAGE _____ OF ____

DEPARTHENT: ENVIRONMENTAL PROGRAMS DEPARTMENT

.

AS OF: AUGUST .5, 1981

*


			Experienc		Principal Area of	Secondary Area	Previous	
Name	Degree(s)	WPPSS Position Title	WPPSS Other	Total	Expertise	of Expertise	Employer	Title
JE Mudge	PhD MS MEd BS	Senior Environmental Scientist	3 · 8	11	Aquatic Ecology.	Physiology Bio- assay	Metropoli- tan Edison Company/ Texas In- strument Inc.	Supervisor, Radiation Safety and Environmental Engineer/Aquatic Ecology Task Leader
FD Quinn	BS Meteorology 2+ Yrs Grad School	Senior Environmental Scientist	1 - 20	21	Air Pollution Meteorology	Scientific Systems Analyst	USAF/Air Wea. Svc.	Technical Division Meteorological Systems Analyst
LS Schleder	AA Zoology, Environ- mental Studies	Environmental Techni- cian	2 11 (8mos Security for WPPSS)	13 Guard	Environmental Technician	Security Guard	Industrial Fiberglass/ Shelbies Fiberglass	Miscellaneous Fabrica- tion
	7	•				•		×

Page 1 of 1

4

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

	INP-2 ENGINEERING	·				AS OF:	8-6-81		
6 NAME	2900 DEGREE(S)	WPPSS POSITION TITLE	EXI WPPSS/	PERIEN(CE TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV IOUS EMPLOYER	TITLE
HL Bennett	BSME	Senior Engineer	5.25	21	37	HVAC	Valves	Industrial Pipe/Supply	Equipt Engr
+r∕NA Crisp	_BSME,MSPE, MSCE	Project Engineering Manage- ment Specialist	ı	25	26	Civil/Structural/ Management	Systems	U. S. Navy	Captain/Navy
+√EA Fredenburg	BSCE, MBA	Principal Engineer	5.25	6	11.25	Structural	Cont.Des/Prog Mgmt	Bechtel	Sr. Engr. 🦿
PW Harness	BSME	Manager, Field Engineering (Acting)	8.75	5	13.75	Systems Engrg.	Rotating Equipm't.	UNC	Plant Engineer
BA Holmberg	BS Marine Engr.	Deputy Project Manager-Engrg.	2.75	20	22.75	Management/Nuclear/ Operations	Mechanical	U.S. Navy	Commander/Navy
+ JH Ralphs	BS Engineering MS Gen. Engrg.	Senior Engineer	·3.5	25	28.5	Mechanical	Chemica]	Bechtel	Sr. Field Engr
TA Stanley	BSME	Project Engrg. Mgmt Spec.	4.25	8.5	12.75	Systems	Construction Engrg.	ITT	Project Engr.
DC Timmins	BS Physics	Project Engrg Mgmt Spec	5.3	7.7	13	Nuclear/Mech.	Chemical Engrg/ Shielding	Bechtel	Supeřvisor Nuclear Analys
✔ LW Vance	BSCE	Project Engrg Mgmt Spec	6	10	16	Civil	Highway	Wash. State Dept.Transpo	Sr. Engineer rtation
✔MF Wiitala	BSEE	Principal Engineer	9	25	34	Electrical	, 	Westinghouse	Sr. Engineer
			-				-		
		<u> </u>	I			J	<u></u>	<u></u>	

DWIGHT R. FRINDT

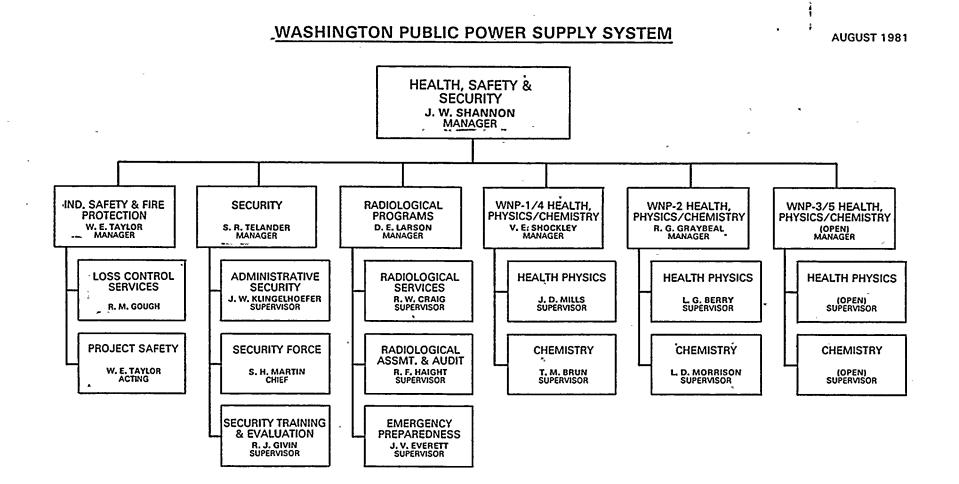
POSITION: DIRECTOR, ADMINISTRATION

EDUCATION: BA, MBA

EXPERIENCE:

1979 - 1981 BUSINESS CONSULTANT

Management


- 1977 1979
- CHIEF OPERATING OFFICER, STANDARD EQUIPMENT INC.
- MANAGEMENT
- LOGISTICS
- CONTRACT ADMINISTRATION

• FINANCING

1971 - 1977 VICE PRESIDENT, STANDARD EQUIPMENT INC.

- HEAVY CONSTRUCTION FIELD MANAGEMENT
- 1970 1971 OPERATIONS MANAGER, MULLEN CORPORATION
 - CONSTRUCTION MANAGEMENT
- 1968 1970 GENERAL MANAGER, MULLEN MINING DIVISION

• MINING PROJECT DIRECTION

\$ ²¹

1

...

8109042 ~~

.

٠

۲ n

۲

a,

• ı 3 1

.,

•

JOHN (JACK) W. SHANNON

	POSITION: EDUCATION: EXPERIENCE:	Manager, Health, Safety & Security BS Health Physics (Equivalency)
	1974 - 1981	MANAGER, HEALTH, SAFETY & SECURITY, WASHINGTON PUBLIC POWER SUPPLY SYSTEM • ENVIRONMENTAL • EMERGENCY PREPAREDNESS • CHEMISTRY/RADIOCHEMISTRY • RADIATION PROTECTION • INDUSTRIAL SAFETY & FIRE PROTECTION • SECURITY
ų	1964 - 1974	HEALTH & SAFETY SUPERVISOR, DAIRYLAND POWER COOPERATIVE PLANT FIRE PROTECTION TRAINING INDUSTRIAL SAFETY CONSTRUCTION LACBWR HEALTH PHYSICS REPORT WRITING
	1961 - 1964	Technician - Irradiation & Coolant Testing, General Electric Company • Component Testing • Reactor Operation & Maintenance • Sodium Technology
	1959 - 1960	SENIOR HEALTH PHYSICS ANALYST, ATOMICS INTERNATIONAL RADIATION & CONTAMINATION CONTROL WASTE DISPOSAL
	- 1956 - 1960	STATION AGENT, WEST COAST AIRLINES

1951 - 1956 CHEMICAL OPERATOR, GENERAL ELECTRIC COMPANY

.

- CHEMICAL SEPARATION
- RADIOACTIVE WASTE
- STARTUP & OPERATIONS

Page <u>1</u> of <u>1</u> DEPARTMENT: HEALTH, SAFETY & SECURITY AS OF: August 1981 PRINCIPAL AREA OF EXPERTISE SECONDARY AREA OF EXPERIENCE PREVIOUS NAME DEGREE(S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EMPLOYER TITLE J.W. Shannon **BS Physics** Manager, Health, Safety & Security 7 yr./23 yr./30 yr. Chemical Processing Dairyland Operational Testing Power Radiation Protection Cooperative Emergency Prepared-Construction Supervisor, Health & (equivalency) Startup Operations Safety Dept. ness + Registered P. E., Washington. ✓Registered P. E., other state(s).

.

Page <u>1</u> of <u>2</u>

DEPARTMENT: INDUSTRIAL SAFETY & FIRE PROTECTION

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
W.E. Taylor		Manager, Industrial Safety & Fire Protection	1/21/22 yrs.	Fire & Radiation Protection Health & Safety Programs Fire & Radiation Testing	Laboratory Operations Emergency Prepared- ness Reactor Testing	Westinghouse Hanford	Manager, Health & Safety Grou
R.M. Gough	AD Fire Protec- tion BS Trade & Industrial	Supervisor, Loss Control Services	7/13/20 yrs.	Fire Protection/ Industrial Safety	Firefighting Nuclear Operations, Research, & Construction	Westinghouse	Industrial Safety & Fire Prot. Specialist
J.C. Bell	BS Mathematics	Supervisor, WNP-2 Safety	12 yrs.	Nuclear Operations Construction, & Research	Turbine Manufactur- ing Utility Market Plan- ning	Westinghouse Electric	Generation Engineer
M.J. Hoylman		Specialist I	4 mo./11/11 yrs.	Occupational Health Testing Emergency Medicine Industrial Safety	struction	Kaiser Engineers	Safety Supervisor
D.T. Evans	BS Mechanical Engineering	Senior Engineer-Fire Protection	2 mo./9/9 yrs.	Design	Systems Evaluation	Western Div. Naval Facili- ties Engineer- ing	Assistant Branch Head
G.E. Towne	US Air Force	Senior Specialist	3/29/32 yrs.	mented Hanford Fire Training Manual, Supply System Fire	Developed & implemen- ted Hanford Emergency Reserve Procedures, Radiation Casualty Handling for DSHS	Rockwell Han- ford Co.	Manager, Fire Equip. Services
+ Registered P. √Registered P.	E., Washington E., other state(s)	· · · · · · · · · · · · · · · · · · ·		· ····	· · · · · · · ·	· · · · · · · · · · · ·	••••••

.

,'

ч

•

p

* • • • • . .

• .

(

•

Page <u>2</u> of <u>2</u>

DEPARIMENT: INDUSTRIAL SAFETY & FIRE PROTECTION

ŝ

í

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
K.C. Blefler		Training Specialist I	1 mo./22/22 yrs.	Emergency Medical & Fire Protec- tion	Emergency Medical Technician Certified Instructor in First Aid	Columbia Oil Co.	Vending Supervisor
D.G. Parthree		Supervisor, WNP-1/4 Safety & Fire Protection	1 mo./19/19 yrs.	Operation •	Industrial Safety Fire Protection Emergency Prepared- ness	Gibbs & Hill/ D.U.C.I.	Manaqer, Loss Prevention
R.A. Fisher		Specialist I	1/21/22 yrs.	Nucl./Chem. Opera-	Fire Detection Test- ing Equipment & Design for Fire Protection	Interlakes School	Custodian
D.A. Smith	BA Psychology	Supervisor, WNP-3/5 Safety	3/5/8 yrs.	Power Plant Con- struction Safety	Fossile Fuel Con- struction Safety	WSH/Boecon/ GERI, HNP-2	Safety Mgr.
- -							
			*	-	·		
t Registered P. √Registered P.	E., Washington. .E., other state(s).	- 	• • •	· -	• •		

Page 1 of 1

DEPARTMENT:	WIP-2 HEALTH PHYSICS/CHEMISTRY	
-------------	--------------------------------	--

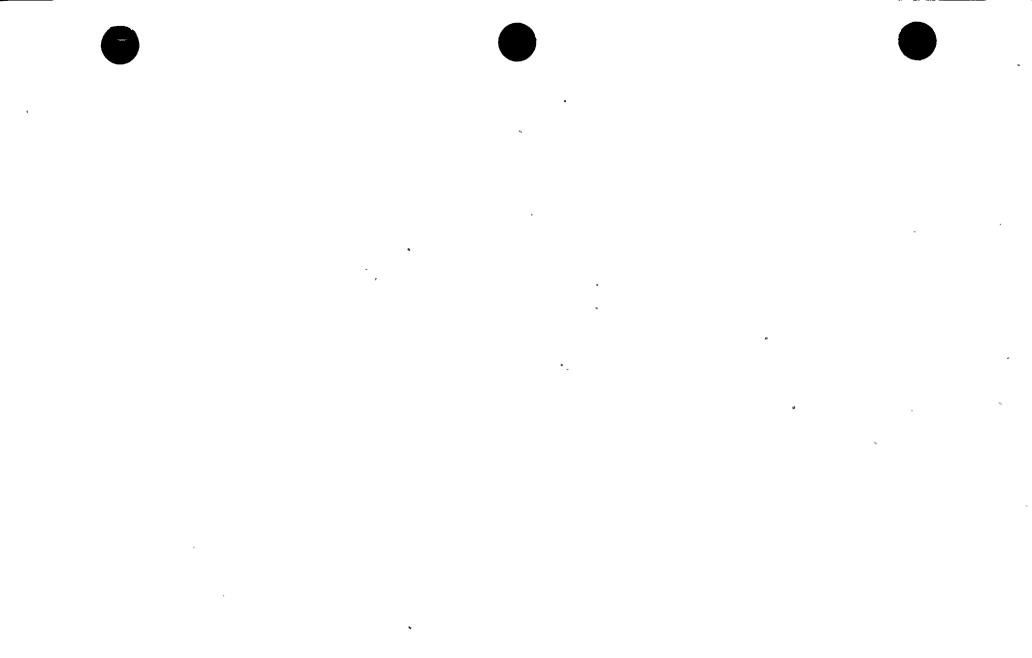
AS OF: August 1981

NAME	. DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R.G. Graybeal	BS Education	Manager, Health Physics/ Chemistry, WNP-2	6/21/27 yrs.	Construction, Startup & Operations	Industrial Safety Programs	Iowa Electric Light & Power	Radiation Protection Engineer
L.D. Morrison	BS Biochemistry	Chemistry Supervisor	2/2/4 yrs.	Laboratory Analysis	Plant Chemistry Control	US Testina Co.	-
L.G. Berry		Health Physics Supv.	2 mo./12/12 yrs	down Activity Surveys	Plant Radiation Surveillance Health Physics Pro- gram	Lawrence Livermore Lab.	Health & Safety Tech- nician
				*	-	-	
			,				
							-
			,				
x x x		и	· ·		- -		
+ Registered P √Registered P	. E., Washington E., other state(s)	· · · · · · · · · · · · · · · · · · ·	· · · · ·		·· · · · ·	548 5 5 5 •	
-					•	•	

1

<u>م</u>

٠


[•] Page <u>1</u> of <u>1</u>

DEPARTMENT:	WNP-1/4 HEALTH PHYSICS/CHEMISTRY

· ·

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
V.E. Shockley	BS Geology	Manager, Health Physics/ Chemistry, WNP-1/4	2 yrs./20/22 yrs.	Radiological & Safety Hazards Analysis	Respiratory & Con- tamination Monitor- ing	Consumers Power Co.	Plant Health Physicist
J.D. Mills		Health Physics Supv.	1/22/23 yrs.	Fuel, Air & Radia- tion Analysis Nuclear Rockets Testing	Radiation & Contami- nation Surveys	Consumers Power Co.	Supv., Radiation Protection
R.M. Brun	US Navy Nuclear Training School	Chemistry Supv.	2/16/18 yrs.	tor Engineering Lab.	Chemistry & Radio- chemistry Analysis Plant Policy Admin- istration	Consumers Power Co.	Supv., Chemical & Radiation Protection
						×	
	1		•		ŕ		
			• • •		•		
+Registered P √Registered P	l .¡E., Washington. .¡E., other state(s).	·	•	ļ	•		

.

· · · · · ·

*

Page <u>1</u> of <u>1</u>

DEPARTMENT: SECURITY

.

.

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
S.R. Telander	USAF Nuclear Weapons, Security Police Officer Academy, Missile Staff Officer	Manager, Security Dept.	4/20/24 yrs.	Operational Physi- cal Security Management		USAF	Nuc. Secur- ity & Law Enforcement Officer
S.H. Martin	BS Business Mgmt.	Security Force Chief	3/26/29 yrs.	Operational Physi- cal Security Management	 ⁻	USAF	Deputy Chie of Security Police
D.H. Vorhets	AA Business Mgmt.	Security Force Captain	3/23/26 yrs.	Operational Physi- cal Security Management	Systems & Equipment Specifications	USAF	Chief, Security Police
R.J. Marzańo	BA Police Science	Security Force Captain	3/24/27 yrs.	Operational Physi- cal Management	Security Force Technical Training	USAF	Colonel, Security Police
J.W. Klingelhoefer, Jr.	BS Engineering	Administrative Security Supervisor	2/7/9 yrs.	Nuclear Security	Army Artillery	NUSAC, Inc.	Sr. Techni- cal Associ- ate
R.J. Giviň	BS Law Enforce- ment MS Criminal Justice	Supv., Security Training & Evaluation	3/6/9 yrs.		Security Force Training	US Military Police	Curriculum Officer
2 2 1			•		د		
			· · · · · · · · · · · · · · · · · · ·				
<pre>+ Registered P.: √Registered P.;</pre>	E., Washington E., other state(s).	· · · · · · · · · · ·		1	·• ·•••	· ···	••

١

Page <u>1</u> of <u>3</u>

ų

DEPARTM	IENT: RADIOLOGICA	L_PROGRAMS		AS OF	August 1981		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
D.E. Larson	US Navy Nuclear Power School College equival- ency	Manager, Radiological Programs	7/13/20 yrs.	Health Physics Radiological Pro- tection	Engineering Lab. Technician	LaSalle Boil- ing Hater Reactor	Sr. Health Physics Technician
J.V. Everett	BS Computer Science/Physics MS Nuclear Engineering/Healt Physics	Supv., Emergency Preparedness	3/2/5 'yrs.	Emergency Planning	Radiological Engineer	Vallecitos Nuclear Center	Radiological Engineer
J.R. Allen	BS Physics ME Nuclear Engineering/Healt Physics	Emergency Planning Specialist	1/3/4 yrs.	Emergency Plan & Procedure prepara- tion	Radiation Specialist	USNRC	Radiation Specialist
D.H. Oatley	BS Biology MS Health Physics	Emergency Planning Specialist II	1/4/5 yrs.	Health Physics	Emergency Prepared- ness Planning Radiological Engineering Design	Portland General Electric	Health Physics Engineer
A.F. Klauss		Emergency Planning Specialist	3/9/12 yrs.	Law Enforcement	Emergency Planning	PA State Police	Trooper
D.H. Mannion	BS Business Administration MS Management	Emergency Planning Specialist	4 mo./10/10 yrs.		Nuclear Weapons Operations	US Army	Executive Officer
R.F. Haight	BS Physics MS Physics	Supv., Dose Assessment & Audit Section	3/7/10 yrs.	Health Physics	Pathway Modeling, Dose Assessment	UNC Nuclear	Sr. Health Physicist
t Oppleton t D							
vRegistered P.	E., Washington. E., other state(s).			د بر 			
•							

۰.

Page ____ of ____

DEPARTMENT:	RADIOLO	DGICAL	PROGRAMS
-------------	---------	--------	----------

I

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G.V. Oldfield.	BA Physics MPH	Health Physicist	2/7/9 yrs.	Emergency Response & Preparedness	ALARA Design Review	UNC Nuclear Industries	Sr. Health Physicist
D.B. Ottley	BS Physics	Health Physicist	2/4/6 yrs.	Radiation Control	Risk Assessment Emergency Prepared- ness	UNC Nuclear	Safety Engineer
J.O. Parry	BS Applied Physics	Health Physicist	1/6/7 yrs.	Health Physics	ALARA Review	Commonwealth Edison	Supv. Rad. Protection Chemistry
R.W. Craig	⁶ College equival- ency Health Physics	Supv., Radiological Programs	4/18/22 yrs.	Construction Startup Operations	Critical Facility/ Fuel Fabrication	Dairyland Power Coopera- tive	H/P Technician
C.A. Graybeal	AA	Dosimetry Analyst	1/2/3 yrs.	Recording Radiation Exposure	Respiratory Pro- tection Records	Richland School	Secretary
J.D. Artis III	AA Envir. HP/C BS Envir. Science Grad Studies	Dosimetry Analyst	1/6/7 yrs.		External Dosimetry Neasurement Program	District USAF	Sergeant
T.J. Froelich	BS Physics MS Envir. Health Science	Health Physicist I	1/7/8 yrs.	Health Physics	Power Plant Con- struction	Battelle	Research Scientist
Y.E. Derrer		Training Spec. I	5 mo./11/11 yrs.		Radiological Medical Fields	Public Service Co. of Colorado	Health Physics Technician
R.C. McGillic	US Navy Nuclear Power School	Training Spec. I	14/10/114 yrs.		Training, Health Physics	Health Physics Systems, Inc.	Sr. Health Physicist

24 L

Page 3 of 3

RADIOLOGICAL PROGRAMS . **DEPARTMENT:** AS OF: August 1981 SECONDARY AREA OF EXPERTISE ţ PRINCIPAL AREA OF EXPERTISE EXPERIENCE PREVIOUS EMPLOYER NAME DEGREE(S) WPPSS/OTHER/TOTAL WPPSS POSITION TITLE TITLE G.D. Rhinehart, Jr. US Navy Nuclear Power School Training Spec. I Operations Radiation Pro-1/10/11 yrs. Safety H.P. Technician Omaha Public Power District Fire Protection tection R.E. Broz BS Physiology Training Spec, I 1 mo./10/10 yrs. Health Physics Emergency Prepared-State of WA Health ness Physicist + Registered P. E., Washington. ✓Registered P., E., other state(s).

i -

, ·

• 4

· ·

.

•

.

. .

.

•

•

a a

. r Ъ

.

CIFORMATION ON NUCLEAR SAFETY MANAGEMENT AND STAF

4

Page 1 of 1

8/31/81 DEPARTMENT: NUCLEAR SAFETY AS OF: . PRINCIPAL SECONDARY AREA OF EXPERTISE EXPERIENCE AREA OF PREVIOUS WPPSS POSITION TITLE TITLE NAME DEGREE(S) EXPERTISE EMPLOYER WPPSS/OTHER/TOTAL G. D. Bouchey BS Nuclear Eng. Director, Nuclear Safety 10 mo./17 yr./18 yr. Safety & Licensing Research U. S. Dept. Director, MS Nuclear Eng. Core Engineering Radiation Detection of Energy Operational PhD 🖞 Design Health Physics (FFTF) & Exper-Research/Teaching imenta] Safety Div. S. E. Bussman None Administrative Assistant 1 yr./2 yr./3 yr. Administration Secretarial Office Peppermill, Inc. Manager + Registered P. E., Washington. √Registered P. E., other state(s). ۰ · ·

, •

Υ. .

•

• . • 2 1 ., ,

- K

μ

٩.

•

2 v •

.

•

CINFORMATION ON NUCLEAR SAFETY MANAGEMENT AND STA

• ?

Page <u>1</u> of <u>2</u>

5

DEPARTME	ENT: LICENSING		,	AS OF	8/31/81		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G. C. Sorensen	, BS Mechanical Engineering	Manager, Licensing	8 yr./7 yr./15 yr.	Licensing	Mechanical Engineering	Amphenol Sams Division	Project Engineer
R. M. Nelson	BS Mechanical Engineering Nuclear Option	Manager, WNP-2 Project Licensing	2 mo./21 yr./21 yr.	Nuclear Eng. Mech. Eng. Design	NSSS Design NSSS Licensing Chemical Eng.	General Electric Co.	Senior Licensing Engineer
A. G. Hosler	BS Electrical Eng. MS Nucl. Eng.	Manager, WNP-1/4 Priject Licensing	5 mo./18 yr./18 yr.	Licensing Nucl. Eng.	Analysis	Westinghouse	Senior Development Engineer
	BS Mechanical Eng. Nuclear Option MS Mechanical Eng. ABC Courses (GE)	Manager, WNP-3/5 Project Licensing	16 mo./20 yr./21 yr.	Nucl. Eng. Licensing	Mech. Eng. Safety Eval.	General Electric Co.	Senior Licensing Engineer
	BS Mechanical Eng. BS Industrial Eng. Naval Nuclear Power School	Engineer I	1 mo./15 yr./15 yr.	Mechanical Eng. Industrial Eng.	Operations/Maint./ Systems Generic Issues	Westinghouse	Cognizant Design Engr
R. G. Joshi	BS Electrical Eng. MS Nuclear Eng.	Senior Engineer	2 mo./14 yr./14 yr.		I&C Eng. Electrical Eng.	Stone & Webster Energy Corp.	Licensing Engineer
P. L. Powell	BS Electrical Eng. Naval Nuclear Power School	Engineer I	4 yr./7 yr./11 yr.	Nuclear Eng. Electrical Eng.	Safety Analysis Administrative Eng.	Vestinghouse	Admin. Engineer
	BS Physics Grad. Studies in Meterology	Project Engineer I	2 yr./12 yr./14 yr.	Operations at FFTF (Operator Training) NDE/NDT Training Lead Auditor	Quality Assurance		Reactor Operator
+ Registered P. √Registered P.	E., Washington. E., other state(s).	7			_		
		ار ۱ ۱		. 1			

• •

• A.

- 8

-. X , • N

işi

. . • . , Į - , • • .

x - · · ·

. .

.

•

FORMATION ON NUCLEAR SAFETY MANAGEMENT AND STAF

:

••

___¥ ____

ر .

۰,

۰, ۵

\$

•		CFORMATION ON NU	ICLEAR SAFETY MANAGEME	NT AND STAF	Pag	ge of _2	
DEPARTME	NT:	ICENSING		AS OF:		-	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
C. D. Taylor · :	AA	Licensing Assistant, WNP-2	8 yr./ /8 yr.	FSAR Amendments	NRC Questions		
							-
·					-		
							-
	;						
					-		
+ Registered P. √Registered P.	E., Washington. E., other state(s)	·	<u> </u>				
I			ĩ				

. • •

•

.

. .

. . .

•

DRMATION ON NUCLEAR SAFETY MANAGEMENT AND STAFF

Page <u>1</u> of <u>2</u>

DEPARTM	ENT: <u>OPERATIONAL</u>	NUCLEAR SAFETY	•	AS OF	: 8/31/81		
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
Q. L. Baird	AB Mathematics MS Physics PhD Physics	Manager, Operational Nuclear Safety	6 mo./23 yr./24 yr.	Nuclear Eng. Reactor Physics	Nucl. Safety Tech. Reactor Operations	Westinghouse	Manager, Operational
C. H. McGilton	MS Metallurgy ORNL School of Reactor Tech. Licensed SRO on Cooper	Manager, SEG WNP-2	8 yr./10 yr./18 yr.	Reactor Operations Operations Supv. at WNP-2 (7 yr.)	Nuclear Eng.	Northern States Power	Nuclear Sfty Operations Engineer
S. C. Denison	BS Mechanical Eng.	Manager, SEG WNP-1/4	8 yr./9 yr./17 yr.	Nuclear Eng. Mechanical Eng.	Reactor Operations		Senior Proj. Engineer
D. W. Coleman	BS Mechanical Eng. MS Mechanical Eng. Grad. work in , Nuclear Eng.	Manager, SEG WNP-3/5	[•] 6 mo./12 yr./13 yr.	Mechanical Eng.	Nuclear Eng.	U. S. Dept. of Energy	
F. D. Frisch	BS Mechanical Eng. Licensed SRO at Millstone 1 & Pilgrim	Principal Engineer	6 yr./15 yr./21 yr.	Mechanical Eng. Reactor Operations	Start-Up Testing	Electric Co.	Start-Up Operations Super- intendent
R. G. DaValle	BS Engineering	Senior Engineer	8 yr./7 yr./15 yr.	Reactor Operations Control Room Human Factors Review	General Eng.	Bechtel Power	
	BS Physics MS Physics PhD Physics Grad. work in Nuclear Eng.	Principal Engineer	4 mo./31 yr./31 yr.	Nuclear Eng. Reactor Analysis Safetý Analysis	Nuclear Safety Tech.	Westinghouse	Principal Eng
<pre>+ Registered P. √Registered P.</pre>	E., Washington. E., other state(s)	·	······································		1		
	~			-			

۰.

2**9** 4 1 ب و ره • .

n e service a se

· · .

•• a .

.

8

×

•

• • • • • • • •

CAFORMATION ON NUCLEAR SAFETY MANAGEMENT AND STAF

.

2

Page <u>2</u> of <u>2</u> **OPERATIONAL NUCLEAR SAFETY** 8/31/81 DEPARTMENT: AS OF: PRINCIPAL SECONDARY EXPERIENCE AREA OF AREA OF PREVIOUS NAME DEGREE(S) WPPSS POSITION TITLE TITLE WPPSS/OTHER/TOTAL EXPERTISE EMPLOYER EXPERTISE M. D. Zentner V **BS** Physics Senior Engineer 1 mo./8 yr./8 yr. Nuclear Eng. Reactor Analysis Brookhaven Research MS Nuclear Eng. Physics **Reactor** Operations National Lab. Engineer + R. M. Norris BS Mechanical Eng. Principal Engineer 5 yr./10 yr./15 yr. Mechanical Eng. Nuclear Eng. General Program MS Mechanical Eng. NSSS Design Electric Co. Manager + Registered P. E., Washington. VRegistered P. E., other state(s).

<u>.</u>

× ,

* • • · *

. . .

,

.

`

•• .

.

.

۲ ۲ ۲

,

. . e

• • •

NFORMATION ON NUCLEAR SAFETY MANAGEMENT AND STATE

AS OF:

8/31/81

DESIGN AND NUCLEAR SAFETY ASSESSMENT

DEPARTMENT:

+

Page <u>1</u> of <u>2</u>

	NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL . AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
	S. L. Additon	BS Mathematics MS Nuclear Eng. BA	Manager, Design & Nuclear Safety Assessment	7 mo./13 yr./14 yr.	Thermal Hydraulic & Plant Dynamic Analysis	Nuclear Safety	Westinghouse	Manager, Systems Design
	J. W. Sale	BS Mechanical Eng MS Mechanical Eng Reactor Operation		3 yr./18 yr./21 yr.	Mechanical Eng.	BOP System Design Fire Protection	Pacific Gas & Electric Co	
	R. O. Vosburgh	BA Physics/Math MS Physics	Manager, Nuclear Safety Analysis	1 yr./16 yr./17 yr.	Nuclear Eng. Transient Anal. (T-H Neutronic)	Risk Assessment	Babcock & Wilcox	Senior Engineer
	S. M. Baker	BS Mathematics MS Nuclear Eng. PhD Mathematics	Manager, Nuclear Safety Standards & Technology	7 mo./16 yr./17 yr.	Mathematics Nuclear Eng.	Reactor Operations	U. S. Dept of Energy-FFTF	
	C. J. Foley	BS General Eng. MS Nuclear Eng.	Principal Engineer	7 mo./15 yr./16 yr.	Mechanical Eng.	Nuclear Plant Start-Up Supv. (1975-1980)	Westinghouse	Principal Engineer
	R. A. Hazen	None	Senior Engineer	6 mo./19 yr./20 yr.	BWR Systems	BOP	General Electric	Senior Project Eng.
,		BS Electrical Eng. MS Structural Eng. PhD Material & Applied Mech.		4 yr./11 yr./15 yr.	Nuclear Fuel Safety Analysis	Material & Stress Analysis Structural Design	Nuclear Services Corp.	Nuclear Fuel Consultant
-	J. M. Henderson	BS Nuclear Eng.	Engineer I	1 mo./9 yr./9 yr. '	Nuclear Eng. Instrumentation	Computer Systems Nuclear Fuel	Westinghouse	Engineer I
			. •			· · · · · · · · · · · · · · · · · · ·		
	+Registered P. √Registered P.	E., Washington. E., other state(s)	•				•	
•							1	

.

r . د به بود میریاند بیان · · ·

.

, , , . , .

• 1 а Ф .

•

EORMATION ON NUCLEAR SAFETY MANAGEMENT AND STAF

ť.,

Page _2 of _2

* _ 1 _ _

, - , h

	DEPARTM	ENT: <u>DESIGN AND N</u>	UCLEAR_SAFETY_ASSESSMENT		AS OF:	8/31/81		
	NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS - EMPLOYER	TITLE
	P. R. Shire	BS Math/Chem/ Physics MS Nuclear Eng.	Principal Engineer	5 mo./27 yr./27 yr.	Nuclear Eng. LWR/LMFRB Safety Analysis Neutronics/Therma Hydraulics Ana.	Plant Heat Balance Generation Planning Computer Code Spec.		Reactor Safety Eng.
	J. S. Dukelow	AB Mathematics MA Mathematics MS Nuclear Eng.	Senior Engineer	4 mo./11 yr./11 yr.	Nuclear Eng. Thermal Hydraulics	Reliability Mathematics	HEDL	Reliability Engineer
	D. Li Prezbjindowski	BS Engr. Science MS Nuclear Eng. PhD Nuclear Eng.	Senior Engineer	5 mo./13 yr./13 yr.	Mechanical Eng. Nuclear Eng.	Core Physics & Shielding Calculations	Battelle	Sr. Patent Engineer
✓ _	B. L. Twitty	BS MS Radiochemistry MS Nuclear Eng. Certified in Health Physics		3 mo./25 yr./25 yr.	Reactor Control Inst. Startup - Accept.	Safety Anal., Health Physics, Plant Design, & Radiochemistry	Westinghouse ,	Senior Engineer
	1					•		
			-		• ÷		ų	
		1999-1990 1997 - 19				•		
:	+Registered P. √Registered P.	E., Washington. E., other state(s).						
×			1					

· · ·

TRMATION ON QUALITY ASSURANCE MANAGEMENT AND STA

. · · · ·

i.

Page <u>1</u> of <u>3</u>

WPPSS POSITION TITLE S QA Engineer I cal Senior QA Engineer cal Principal QA Engineer ial QA Engineer I 1 Manager, Quality Performance & Measurements	EXPERIENCE WPPSS/OTHER/TOTAL 3 mos/2.5 yrs/2.75 yrs. 3.5 yrs/19.5 yrs/ 23 yrs 1 mo/22 yrs/22 yrs 1 yr/5 yrs/6 yrs 2 yrs/17 yrs/19yrs	PRINCIPAL AREA OF EXPERTISE Mechanical Systems QA Engineer QA Program Develop- ment & Maintenance QA Operations QA & Metallurgical Engineering	QA Programs Power Plant Operations	PREVIOUS EMPLOYER Crosby Valve & Guage Co. Bechtel Power Corp. Battelle U. S. Navy USNRC	TITLE QA Supvr. Sr. QA Engr. Sr. Scientist QA Engineer Reactor Inspector
cal Senior QA Engineer cal Principal QA Engineer ial QA Engineer I 1 Manager, Quality Performance & Measurements	yrs. 3.5 yrs/19.5 yrs/ 23 yrs 1 mo/22 yrs/22 yrs 1 yr/5 yrs/6 yrs 2 yrs/17 yrs/19yrs	QA Engineer QA Program Develop- ment & Maintenance QA Operations QA & Metallurgical	Electrical Engineer Fuel Fabrication QA Programs Power Plant Operations	& Guage Co. Bechtel Power Corp. Battelle U. S. Navy	Sr. QA Engr. Sr. Scientist QA Engineer Reactor
cal Principal QA Engineer ial QA Engineer I 1 Manager, Quality Performance & Measurements	23 yrs 1 mo/22 yrs/22 yrs 1 yr/5 yrs/6 yrs 2 yrs/17 yrs/19yrs	QA Program Develop- ment & Maintenance QA Operations QA & Metallurgical	Fuel Fabrication QA Programs Power Plant Operations	Corp. Battelle U. S. Navy	Sr.Scientist QA Engineer Reactor
ial QA Engineer I 1 Manager, Quality Performance & Measurements	1 yr/5 yrs/6 yrs 2 yrs/17 yrs/19yrs	ment & Maintenance QA Operations QA & Metallurgical	QA Programs Power Plant Operations	U. S. Navy	QA Engineer Reactor
Manager, Quality Performance & Measurements	2 yrs/17 yrs/19yrs	QA & Metallurgical	Operations		Reactor
Performance & Measurements	2 yrs/17 yrs/19yrs		Nuclear Safety	USNRC	
QA Engineer I	4 yrs/14 yrs/18 yrs	Mechanical/Elect.	I/C, Civil	UE&C	QA Supervisor
Principal QA Engineer	2.5 yrs/17.5 yrs/ 20 yrs	Quality Assurance	a. Fueling & Re- fueling Operations b. Nuclear Plant Operations	Carolina Power & Light	Senior QA Engineer
Senior QA Engineer	1.5 yrs/31.5 yrs/ 33 yrs	Quality Assurance	Business Management	Self	QA Consultant
Manager, Audits and Surveillance	7 yrs/19 yrs/26 yrs	Quality Assurance	Auditing	UE&C	Site Surveillance Supervisor
•	Principal QA Engineer Senior QA Engineer	Principal QA Engineer Senior QA Engineer Manager, Audits and Surveillance Principal QA Engineer 1.5 yrs/31.5 yrs/ 33 yrs 7 yrs/19 yrs/26 yrs	Principal QA Engineer Senior QA Engineer Manager, Audits and Surveillance Principal QA Engineer 2.5 yrs/17.5 yrs/ 1.5 yrs/31.5 yrs/ Quality Assurance 3 yrs 7 yrs/19 yrs/26 yrs Quality Assurance	Principal QA Engineer Senior QA Engineer Manager, Audits and Surveillance Principal QA Engineer Manager, Audits and Surveillance Principal QA Engineer 1.5 yrs/31.5 yrs/ Quality Assurance Quality Assurance Quality Assurance Quality Assurance Quality Assurance Auditing Auditing	Principal QA Engineer Senior QA Engineer Audits and Surveillance Principal QA Engineer Auditing Principal QA Engineer Auditing Principal QA Engineer Auditing Principal QA Engineer Auditing Principal QA Engineer Auditing Principal QA Engineer Auditing Principal QA Engineer Principal Qa Engineer Principa

• •

. •

, , * * * ** ** * * * *

· · · · · · ·

,

10 - 1 e 14

• .

• • • • •

· · · · · ·

, ,

CORMATION ON QUALITY ASSURANCE MANAGEMENT AND STA

Page _____ of _____

. . . .

<u>_</u>*

. .

DEPARTMENT: <u>Quality Assurance</u>

÷ •

AS OF: <u>September 8, 1981</u>

	NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
	Kooy, W.	(B.S.) Electrical Engineering	, Principal QA Engineer	4.5 yrs/16.5 yrs/ 21 yrs	Test & Startup Electrical, Instrument, & Control	Chemical Analysis	MATSCO	Director of Containment Testing
V	Krolicki, R. P.	AA-Radiogr. BA-Commerce MA-Economics	Principal QA Engineer	4 yrs/23 yrs/27 yrs	Quality Assurance, NDE	Welding	Florida Power & Light Co.	Senior QA Engineer
	Lauck, J. A.	(B.S.) Accounting	QA Engineer I	1 mo/12 yrs/12.1 yrs	Mechanical-equip./ piping erection & testing	Welding/NDE	WBG #2	Procurement Engineer
	Simons, R. M.		Manager, Quality Systems	1.5 yrs/22 yrs/ 23.5 yrs	QA Systems	NDE	Richland Engineering	QA Manager
	Walker, J. M.		Senior QA Engineer	6 yrs/5.5 yrs/11.5 yrs	QA Surveillance/ Audits	QA Systems/Programs	Northeast Utilities Service Co.	Engineering Technician
	Webster, R. D.	(BA) Education	QA Engineer I	6 mos/39.5 yrs/ 40 yrs	Systems Mechanical	Electrical	Westinghouse	QA Engineer
	Winters, H. L.	·	QA Receiving Inspector	6 yrs/21 yrs/27 yrs	Receiving Inspection	Mechanical, Dimensional Measurements	HUICO -	QA Inspector
~	Wooley, G. H.	•	Manager, Vendor QA	4.5 yrs/5.5 yrs/ 10 yrs	QA General Administration, Supervisory	Mechanical, Welding, NDE	Bechtel	Vendor Surveillance Engineer
	+ Registered P. √Registered P.	E., Washington. E., other state(s)	L		·	· · · · · · · · · · · · · · · · · · ·		

· · ·

3

. • •

•

ž

.

C RMATION ON QUALITY ASSURANCE MANAGEMENT AND STR

Page ______ of _____

AS OF: September 8, 1981

- 5,

.

=

4

s • •

DEPARTMENT: <u>Quality Assurance</u>

: E

1	NAME	: DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
~	Zimmerschied, J. R.	(B.S.) Physics Engineering	Senior QA Engineer	3 yrs/9 yrs/12 yrs	QA Surveillance & Audits in piping & mechanical area	Programming and use of micro- processors	Bechtel Power Corp.	Project QA Engineer
	,	*						
	ŗ			`	•	、	· · ·	
		-	•		•			-
	-				-	•		
			,	-				
	+Registered P. E √Registered P. E	E., Washington. E., other state(s).						

A T

۹

.

•

.

k

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

 \bigcirc

.

Ċ

AS OF: 9-1-81

Page <u>1</u> of <u>1</u>

DEPARTMENT: WNP-2 PROGRAM DIRECTOR

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R.G. Matlock	BSME PH.D. Physics	Program Director, WNP-2	1 yr/20 yr/21 yr	Nuclear Reactor Design, Operations, Project Management	Nuclear Physics, Research & Develop- ment.		Deputy Dir- ector, for Nuclear Programs, Physicist, Program Di- rector, Project Mgr
		, , , ,	- - -		- 		•
•					-		•

Ó

1

ц

ع عام دانده المراجع الم المراجع анти с X, до X в в с 144 у 11 к. ч

¥11 - 8 . સ 'ા ¥66 . · •

, .

. . •

· · ·

· · · · · · · · · · ·

•

.

`

N

•

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

ð

Page <u>1</u> of <u>1</u>

DEPARTM	IENT: WNP-2 PROC	GRAM DIRECTOR		. AS OF	:9/1/81		
NAME	, DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
C.Ş. Carlisle	BS Naval Science MS Business Admin	Deputy Program Director, WNP-2	4 mos/35 yrs/35 yrs	Nuclear plant operations and maintenance	Construction Project Management	U.S. Navy	25 yrs experience in nuclear submarine construct- ion, oper- ations, & mainte- nance.
		- -				•	•
	E., Washington. E., other state(s).	π.					

• • • 4 E % (

• `

Y ''

,

.

4

•

1

x

۵ e

.

•

I s.,

, ii • .

`

,

and the second second

. .

-	1.			1	*****	•			·	- aye	
۷	د. ا	DEPARTMENT:	PROGRAM CO	NTROL	·			F:	September 4,	1981	
							PRINCIPAL		SECONDARY		
,	: NAME		DEGREE(S)	WPPSS POSITION	NTITLE	EXPERIENCE WPPSS/OTHER/TOTAL	AREA OF EXPERTISE		AREA OF EXPERTISE	•	
Ì	*					*	J	-1			~

2

•

.

I : NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
	B.S. Eng. (Gen) (U.S. Naval Academ B.S. Eng. (M.E.) Nuclear Power	Executive Assistant y) Mgr. Program Control (Acting)	б mos/26yrs/26yrs	Resource Mgmt.	Tech Management (Nuclear Pwr R&D)	AEC/DOE 6 yrs. U.S. Navy 20 years	(Budget Officer) (Line Officer)
		•			·		
		•	•	-			•
					, ,	т. Т	
+ Registered P. E. √Registered P. E.	., Washington. ; ., other state(s).				-	Ţ	

1

2.3

.

. . .

. . .

•

•

•

• • • • • • •

•

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

Programs's Directors

DEPARTMENT:

AS OF: September 4, 1981

Page 1 of 1

PRINCIPAL SECONDARY EXPERIENCE AREA OF AREA OF PREVIOUS NAME DEGREE(S) WPPSS/OTHER/TOTAL WPPSS POSITION TITLE EXPERTISE EXPERTISE EMPLOYER TITLE J.R. Honekamp B.S. & M.S. Chem Technical Specialist 10 mo./20/21 Design and Testing Fuels and Materials Argonne 11 years Eng. PH.D Chem of Nuclear Power Performance, and National Lab experience Eng. with minor Plants Operations in design in Nuclear Eng. and Knolls and testing Atomic Power associated Lab. with Breeder Reactor Program 9 years experience in design, testing and operation of Naval ۰. Power Plants + Registered P. E., Washington. VRegistered P. E., other state(s).

.

• •

.

·

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

2	6	

Page <u>1</u> of ____

DEPARTM	ENT: Project Qua	ality Assurance	- ·	AS OF		01 <u></u>	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
Roger T. Johnson	None .	WNP-2 Project QA Manager	WPPSS 8 years QA Mngmt. functions. 9 years experience in Nuclear Const. and Project Mngmt. 17 years total	Nuclear Const. and Project Mgmt.	Mechanical systems design, installation and inspection.	Westinghouse Hanford	Project Engineer
Richard E. Spence	B.S. Nuclear Engineering	QA Compliance Supervisor	experience. 1½ yrs/14yrs/15yrs	Nuclear power plant const. and Quality Assurance.	Nuclear power plant test, startup and operations. Also, radiation protection	Engineering	Project QA Engineer
Carl O. Wright	BSME	QE Supervisor	3yrs/7½yrs/10½yrs	Nuclear power plant const. Quality Assurance Audits/Surveillances	Mechanica] Engineering with power utilities	Bechtel 4 ¹ gyrs.	SR QAE
		,	. ·				
+ Registered P	F. Washington:		-	<i>.</i>	•	-	
√Registered P.	E., Washington: E., other state(s)			· · · · · · · · · · · · · · · · · · ·	· · ·		<u>.</u>

5

7

. .

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

• ,

Page 1

9/8/81

AS OF:

of

n , 5,

DEPARTMENT; OPERATIONAL QUALITY ASSUMME

· ·

:

NAMI,	•	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
Joseph M.	Graziani	B.S. Materials Engineering, 6/71	Operational QA Supervisor WNP-2	2 yrs 10 mo. w/Suppl System 6 yrs 4 mo w/Bechtel 9 yrs. 2 mo - Total	Nuclear Construct- ion Field Engineer, (startup System com- pletion & Electrical check-out)	Operational Quality Assurance Engineer -Nuclear Management Plan for PRE-OP and operation phase	Bechtel Power Corp.	Electrical Field Engineer Startup System Turnover Admin -strator
								Construction Completion Coordinator Lead Field Cost Engineer
. •				•			••••	Field Cost Engineer
					-			
••		е 1	-				•	
Regis Regis	tored P. E tered P. E	., Washington. .; other state(s).	· · ·		<u> </u>	· · ·		
٤		•						

,

· .

.

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

 \bigcirc

ŧ.

1		
\sim		
_		

Page <u>1</u> of <u>1</u>

* • .

1

Ξ,

.

DEPARTM	ENT:SUPPORT_SERV	ICES		AS OF	:	1	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
J. A. Harrington	BA Business Administratic	Manager, Support Service n Division	s 7 yrs/18 yrs/25 yrs	Business Management	Quality Assurance Management	Bunker-RAMO Corporation	Reliability & Quality Control Manager
	•				•		
	х	- -	-		, *	-	•
				•	•		
+ Registered P. → Registered P.	E., Washington. E., other state(s).	·]		· · , 、	; ,	•	
	* *		· , .		1		

· .

• •

•

• •

. . .

•

. · · · · ·

• • . · · · · · . и К

a da se Tanàna T

-

.

•

INFORMATION ON WNP-2 MANAGEMENT AND STAFF

Administration

DEPARTMENT:

(1	
, ``	1	

.

Page <u>1</u> of <u>1</u> AS OF: September 3, 1981

Ó

.

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS	TITLE
J. F. Peters	BA Psychology	Administration Manager WNP-2	5 yrs./6 yrs./11 yrs.	Commercial Nuclear Plant Administration & Support Services	Operations and Startup Manage- ment	Metropolitan Edison Co.	Station Administrate
• •	•						
	•		• •			-	•
		, ,		×			•
:		4					•
+ Registered P. √Registered P.	E., Washington. E., other state(s).	•	•	• • • • •	• **		
•	8	•					

.

,

i w Ŕ r - , , ,

.

. u a

. 1 . . ۰ ۰

. , **9**00 . . .

WNP-2"RECORDS MANAGEMENT

DEPARTMENT:

AS OF:

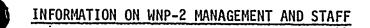
September 1, 1981

12 6 00

Page <u>1</u> of <u>1</u>

; .

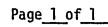
SECONDARY AREA OF EXPERTISE PRINCIPAL EXPERIENCE AREA OF PREVIOUS EMPLOYER NAME DEGREE(S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE TITLE T.V. Anderson BA History Manager, Records Management 4yrs/3 yrs/7 yrs Records Management Archives Administration National Records Archives & Management Intern Records + Registered P. E., Washington. VRegistered P. E., other state(s). 1.2.5 •


. --. , ,

n staar e soor e soo

· · · ·

.


•

Ô

DEPARTMENT: Project Materials Management

AS OF: September 1, 1981

NAME	DEGREE	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPLE AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
D. R. Herling	AA Business Admin.	Manager, Project Materials Management, WNP-2	4 yrs/15 yrs/19 yrs	Procurement & Materials Mgmt. Process Plants & Nuclear Construction	Manufacturing	Davy McKee	Project Material Coordinator
	1	-			-		· · · · · · · · · · · · · · · · · · ·
-			*			-	
							- • •
					-		•
							• • •
-		· · · · · · · · · · · · · · · · · · ·					

4 r. • • • • ×

•

1

•

•

, 1 7**9**-7 1 ,

·

•

• •.

DEPARTMENT: Business

8	
Ŭ	

Page <u>1</u> of <u>1</u>

 \bigcirc

AS OF: September 1, 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R. E. Baker	BS Management & Military Science	Business Manager	4½ yrs/23 yrs/23 yrs	Business	Construction Mgmt.	CSTDC/Great American Ins.	Consulta
	MS Mech. Engineeri	ng ·				Company	
		•					
						•	
			•				
					·		
•							•
-		* •	· · ·				,
						•	
					-		
					-	•	
		• .*	-				
v					•		
+Registered P. √Registered P.	E., Washington. E., other state(s).	,			* 53		

3 |9 |3

7 • •

. K **€**

u

•

,

÷

۰

ι.

•

.

~ • : *_

Ċ

OPERATIONS

.

1

DEPARTMENT:

.

9/4/8]

Page <u>1</u> of <u>1</u>

C

14.

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL · AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
. D. MARTIN	BS Industria] Management	WNP-2 Plant Manager	3 / 18 / 21	Reactor Operations	BWR Startup		
	Brigham Young , 1960					US NRC	Reactor Inspector
•						General Elec. Browns Ferry	Ops. Mgr. Ops. Supt Training Inst. Startup Test. Eng
3 Y .						GE-Hanford	Reactor (Superviso
-		•	4			DUN	Reactor Oper Superviso
	•						· ,
•			• •			-	×
+ Registered P.	E., Washington. E., other state(s).						

1

, <u>1</u>

*1

. •

.

, ¢

•

•

(

h

.

. ,

>

.

.

• •

• • • · · ·

00

Page _1__ of __1__

: -

. •

DEPARTM	ENT: TRAINING		1	As of	9/4/81	•	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R. D. DAVIDSON	BS'in Science Education	WNP-2 Training Supervisor	6 / 9 / 15	Development and Managing Training Programs	Reactor Operation	General Elect.	Simulator Training Engineer
			•			US _. Navy .	Reactor Oper/ Training
		,					
Y		•					
		•		•			
					-		
					•		
+ Registered P. E →Registered P. E	, Washington. , other state(s).		;			•.	:
			· · · · · · · · · · · · · · · · · · ·	i			· · · ·

• u.

3

, * . • •

×

*

•

٠

•

•

.

. . .

•

1

1. Termusta fara

Page ____ of __

DEPAR	MENT: <u>Plant Te</u>	chnical	_	AS OF	: September 4, 1981		. • .
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
K. D. Cowan	1).BS-Mech. Eng. 2) Masters-Bus. Administration	WNP-2 Plant Technical Superintendent	WPPSS-WNP-2 Project Engineering Manager 1½ years WPPSS-WNP-2 Plant Technical Supt. 1 year	Technical or Project Engi- neering Manage- ment	Mechanical Systems Engineering	General Electric - Nuclear Energy Division	Various- from Design Engineer to Project Engineer to
Registered Prof. Engineer, Mech California			<pre>GE-Nuclear Energy Division 1) Project Eng. 2) Systems Eng. 3) Design Eng. 17 years total</pre>				Systems Engineer to Unit, Sub- section and Section Manager
•	:		•.	-			
-			-				
+ Registered R (VRegistered R	E., Washington. E., other state(s).		.L		······		
	• •						· ·

DEPARTMENT:

Operations/Maintenance

.

Page <u>1</u> of <u>1</u>

AS OF: <u>September 3, 1981</u>

, (7 4, 1

		ι 				<u> </u>	4
NAME	DEGREE(S)	: WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
R. L. Corcoraņ	B.S.E.E.	Plant Operations Superintendent	8/7/15	Nuclear Plant Operations	Plant Technical/ Engineering	Dairyland Power Coop. LaCrosse BWR Gen. Station	Plant Tech. Supervisor/ Project Engi
J. W. Hedges	B.S.M.E. M.S. Geology	Plant Maintenance Supervisor	8/23/31	Nuclear Plant Maintenance	Plant Technical/ Engineering	UNI, N-Reactor	Sr. Engr. N-Reactor Maintenance
		×					•
		· -					-
					• .		
+Registered P. √Registered P.	E., Washington. ´ E., other state(s).		· · · · · · ·		· · ·		
		- -		, ,		<u></u>	

a • • •

. . •

•

.

, . .

• • • ··· • .

AS OF:

9/4/81

Page <u>1</u> of <u>1</u>

• * *

. .

DEPARTMENT: Project Management

Ō

NAME	DEGREE(S)	WPPSS POSITION TITLE	• EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
W, C. Biþb	3 yrs towards EE degree Registered P.E., California	Project Manager, WNP-2	5 yrs/22 yrs/ 27 yrs	Startup/Ops/Power Production Mgr	Project Management	General Elect.	Nuclear Services Midwest Reg.
-		•	· · ·				Site Mgr Cooper Nuc. Station
•	、 、		v v	· •	, . ,		•
		•					•
, ••			•		-		
1				-	•	-	
+ Registered P., √Registered P.,	E., Washington. E., other state(s).		· · · · ·				
•				•	-	••	

* * . .

•

. ,

. .

.

ŀ

. - Beca-

N. •

. -. î

× . . . i'

Õ

Test & Startup

DEPARTMENT:

í.

\odot	

Page ____ of ____

.

AS OF:

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G. K. Afflerbach	BS Electrical Engineering	Deputy Project Manager, Startup, WNP-2	3 yrs/14.5 yrs/17.5 'yrs	Nuclear plant startup;operation and maintenance	Nuclear plant retrofit & outage management	General Electric	Operations Manager
		· ·				•	
			· .				
-							
							•'
· .					•		
					-		
+Registered P. √Registered P.	E., Washington. E., other state(s).	l					

.

· . , , , ,

• ·

• • • ••• » • •

•

.

• *** a. . .

•

e e

17

i.

Page <u>1</u> of <u>1</u>

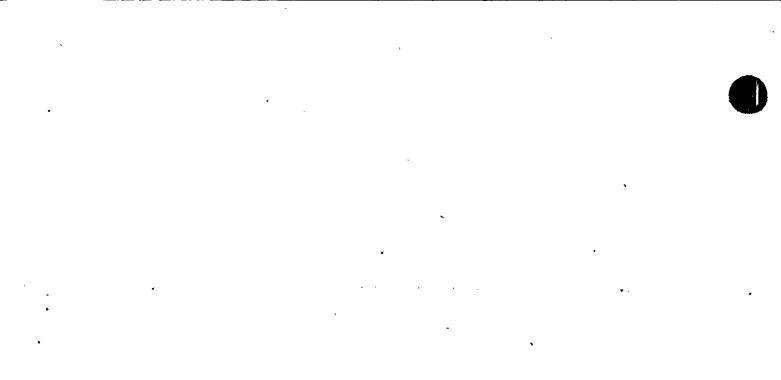
DEPARTM	ENT: <u>Constructio</u>	n_Management	. .	AS OF:	: <u>September 4, 198</u>	0 L	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
H.A. Crisp	B.S. Mining Eng. MS Petroleum Eng. MS Civil Eng.	Deputy Project Manager Construction	1 yr/25yrs/26yrs	Management of Plant Construction and Maintenance		U.S. Navy	25 years experience in facilitie maintenance and const. last 7 yrs. associated with Nuclear or Nuclear Support Facilities
<pre>+ Registered P.</pre>	E., Washington. E., other state(s).	·		· · ·	الوين A		
•	-	• ? •					τ

•

AS OF: <u>9/4/81</u>

Page <u>1</u> of <u>1</u>

1


. .

DEPARTMENT:

..

. معند ا WNP-2 Project Engineering 62900

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
BA Holmberg	BS Marine Engrg.	Deputy Project Manager- Engineering	2.75/20/22.75	Management/Nuclear/ Operations	Mechanica]	U.S. Navy	Commander/ Navy	
		•						
							•	
							•	
		· ·	•				· .	
							z	
			•					
			х					
+ Registered √Registered	P. E., Washington. P. E., other state(s).			× • •	• ~ ~ ~		•	
	•]							

.

DEPARTMENT: Project Finance

Page <u>1</u> of <u>1</u>

AS OF: September 8, 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
L.R. Travis	B.S. Business Administration	Project Controller, WNP-2	3 yrs./3] yrs./34 yrs	Construction Financial Management	Manufacturing Financial Management	Kaiser Engineers	Administrativ Manager
C.W. Robinson	B.S. Commerce & Finance	Project Accounting Manager, WNP-2	BRI-12 yrs./11 yrs./ 23 yrs.	Construction Accounting Mgt.	Construction Administration	The J. G. White Engineering Corp.	Field Office Manager
J.R. Dufort	B.S. Business Administration	Project Budget Manager	2 yrs./37 yrs./39 yrs	. Budget & Cost Accounting	Cost Engineering	General Electric Company	Senior Cost Engineer .
•		•					•
	· ·				•		
					•		
+ Registered P. √Registered P.	E., Washington. E., other state(s)					<u> </u>	
							•

· · · * * * ۰ ۲ • . ***** -

.

. . .

• • • •

.

INFORMATION ON POWER GENERATION MANAGEMENT AND

POWER GENERATION DIRECTORATE

DEPARTMENT:

Page <u>1</u> of <u>3</u>

AS OF: <u>August 31, 1981</u>

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
DEEGAN, G. E.	BS-Math & Physics	Manager, Generation Mgmt. Services	1.5/29.5/31	Mgmt. of Reactor Operations/Maint.	Nuclear & Liquid Metal R&D Mgmt.	Argonne Nat'l. Lab	EBR-II Opera- tions Mgr.
HANNAH, K. J.	BS-Welding & Metallurgical Engineering	Supv., Nondestructive Examination & Inspection	4/15/19	Nondestructive Examination; Pre- service & Inser- vice NDE Evalua- tion; Registered Quality Engineer	Failure Analysis in BWR Systems	GE; Automation Industries; Lockheed Mis- siles & Space; Rocketdyne	Sr. Engr.; Mat'ls. & Chemistry;
HOLDER, J. R.	BS-Math & Engineering ·	Program Manager, Power Generation	2/9/11	Nuclear Power Plant Operations/ Startup & Testing/ Management; Opera- tional Design Re- view; Startup & Operational Pro- grams Development & Management		Carolina Power & Light	Plant Supt.; Plant Startur Engr.; Sr. Engr.; Refuel- ing Engr.; Nuclear Engr.; Sr. Reactor Engr.
	HS; 1 Yr. College; Navy Nuclear Power School; Navy Engineering Offi- cer School	Acting Supv., Maintenance Services (Sr. Mainten- ance Specialist)	3/23/24	Mechanical/Systems	Operations Engineer	Westinghouse Hanford; U.S. Navy	Operation Support Engr.; Seaman
	BS-Marine Engineering	Principal Engineer	6.5/95/16	Nuclear Operations & Startup; Train- ing Simulator Pro- ject Management.	Reactor Operations; Nuclear Technology/ Systems Trng.; Plan ning & Scheduling	cox; First	Engr./Technida Support Supv;
	BS-Occupational Education :	Supv., Support Training	1/15/16 ·	Reactor Operations/ Maintenance/Train- ing; Project Engr.	& Statistical Analy	Corp.; US Navy	Trng. Rep.; Nuclear Power School Advisor
Registered P. Registered P.	E., Washington. E., other state(s).	-			۰ .		

и , • • × • • • • . · · · ۰ ۰

×

.

, , ,

·

,

INFORMATION ON POWER GENERATION MANAGEMENT AND

\$

į.

Page 2 of 3

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
icLEOD, B. K.	Navy Nuclear Re- actor Program	Manager, Power Generation Serviçes	8/12/20	Nuclear Power Plant Operations; Quality Assurance	Nuclear/Industrial Safety; Training	Corp.; NRC;	Safety/Licensi Mgr.; Principa Reactor Insp.; Shift Mgr.; Reactor Operat
NOYES, C. R. t√√	BSME; MSNE; Registered Pro- fessional Engr. (3 states)	Manager, Power Generation Maintenance	Mos /24/24	Mechanical Engi- neer; Nuclear Engineer; Nuclear & Mechanical Main- tenance; Reactor Operations; Navy Nuclear Programs	Master Precision Machinist; Special Tool Design		
PARTRICK, R. E.	BS-Naval Science; Navy Nuclear Power School	Supv., Generation Coordin- ation	6.5/6.5/13	Reactor Operations, Maintenance	Maintenance Engrg. Mgmt.	Westinghouse Hanford	Maint. Dev. Engr. Sr.
PERRY, J. F.	65 Units of College-Math & Engineering	Supv., Simulator Training Systems	5/10/15	Electronics Tech- nician; Simulator Procurement & Operations	Previously licensed as SRO on Indian Point	Con Edison of New York; U.S. Navy	
ROSENECK, J. B. : : :	USN-ETA/ETV/NPTU; GE-STE/BWRTC	Supv., Operational Train- ing	2.5/18.5/21	Nuclear Analyst; Reactor Plant Engineering; Reactor Core De- sign & Analysis; Plant Operation; Shift Test Engr.; Shift Supv.,; USN/ RO/RT; Startup Engineer; Supv., Turnover	Computer Programming Electronic Mainten- ance		Shift Supv.; Shift Test Engr.; Reactor Control LPO

۹ ۱ • ` • د . . × • •

、

,

•

• •

-

INFORMATION ON POWER GENERATION MANAGEMENT AND

·· ,

Page <u>3</u> of <u>3</u>

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
ERRASS, M. S.	BS-Naval Science; MBA; Navy Advanced Nuclear Power School	Principal Engineer	3,5/17/20,5	Nuclear Engineer- ing; PE/Nuclear; Education & Train- ing; Nuclear Plant Operations (BWR & PWR)	ing & Maintenance (BWR & PWR)	U.S. Navy; IBM; Nuclear Services Corp.; California Energy Commis- sion	Specialist
IUBB, K. L.	Technical Insti- tute Graduate; GE-Computer Main- tenance	Supv., Instrument Mainten- ance & Calibration	3/23/26	Nuclear Plant Sup- port	Computer Maintenance Standards Laboratory Supervision; Instru- ment Technical In- struction	Hanford; Bat-	Calibration Computer Ma tenance Mgr Computer Ma tenance Spe
		•					Computer Fi Engr.; Inst ment Techni
		×	• ; •	•	-	v	
				•	-		
	. 1	、	-				
		· · ·					、

. • 4 • ٠ . **.**"

*

. • · · · · • -

-. . . , . . ı • • • .

-

• •

INFORMATION ON TECHNOLOGY MANAGEMENT AND STA

DEPARTMENT:	TECHNOLOGY		AS OF:				
NAME	DEGREE (S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPÁL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE , ·
+ P. K. Shen 	BS Chemica <u>l</u> Engr. MS Chemical Engr. PhD Nuc. Engr.	Director; Technology	1 yr./14 yr./15 yr.	Reactor Analysis, Nuclear Systems Design, Nuclear Reactor Safety, Nuclear Fuel Mgmt.	Reactor Operation, Licensing, Nuclear Waste, Radiation Effect Materials	Univ. of Washington	Dean and resident Director, Professor Nuclear Engineering
D. L. Renberger	BS Nuclèar Engr.	Deputy Director, Technology	10 yr./13 yr./23 yr.	Nuclear Plant Systems Performance and Testing	Nuclear Safety	Douglas United Nuc.	Supervisor Regulatory
L. L. Grumme	BS Nuclear Engr.	Assistant Director, Technology	10 yr./11 yr./21 yr.	Nuclear Fuel pro- curement Nuclear Fuel Mgmt. Management	Reactor Operations Environmental Li- censing Nuclear Safety		Sr. Engr 🥍
J. N. Salapatas	BS Industrial Eng MS Management	r. Manager, Technical Admin.	lyr./25 yr./26 yr.	Project Management Proj. Controls/ Nuclear Engr. & Construction	Management Systems, Organization Plan- ning and Developmen and Training	Power & Ligh	Manager, t Project Control Services
D. W. Fraley	BS Engineering Sciences PhD Systems Engineering 	Administrator, Technical and Information Systems	4 mo./12 yr./12 yr.	Systems Analysis, Decision Analysis, Operations Research Applied to Nuc. Industry	Computer Science, Information Systems Hardware & Analysis		Sr. Research Scientist, Nuclear Energy Systems
✓ Registered P.E. † Registered P.E.	, Washington.			1 -		· · · · · · · · · · · · · · · · · · ·	

Page 1 of 1

دها أنجم م

•

۰,

•

51 **a**., , , **, , , , ,** , , ,

•.

۲. . .

•

•

•

.

•

•

λ , Я Ş -

Page <u>1</u> of <u>1</u>

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT: Engineering Division Staff

AS OF: 7-31-81

0

	42100).	WPPSS POSITION TITLE	NPPS	EXPERIER SS/OTHER	<u>NCE</u> R/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
CL Fies	BSEngPhys, MSNE, MBA	Program Mgmt Spec	7	10	17	Program Ngmt		Westinghse	Sr Engr
✓ LT Harrold	BSME, BAEcon	Engr'g Division Manager	8	8	16	Mechanical	ISI	DUN	Sr Engr
1									
							-		
								-	
				`				1	
							*		
								τ.	
Registered P.E.	Washington.	,	l		و المراجع موجود موجود مراجع المراجع الم				
<pre>/ Registered P.E., † Registered P.E.,</pre>	other state(s).			• 					

171

: : :

ъ.

. t. -y. , , z

, *_____

,

.

•

'e

;

÷. Ъ.

 $\mathcal{A}_{n}^{(1)}$

, . ,

5 1

÷.,

Page 1 of

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

٠ 1.

DEPARTMENT:	Mechanical Engi 2500)	neering				AS OF	:		
NAME -		WPPSS POSITION TITLE	EXF WPPSS/	PERIENC		PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
√ WD Bainard	BSChE	Consulting Engr	9.25	20	29.25	Corrosion .	Water Quality/N-C	DUN	Sr Engr
Ð Burns	BSMet1, PhD	Supv, Materials & Components	3.75	5	8.75	Metallurgy	Welding	IL Rsch Inst	Rsch Mtlgst
†DM Bosi	BSME, MSME	Sr Engr	0	9	9	Engr'g Mechanics	lleat Transfer	Westinghse	Sr Engr
MK Chakravorty	PhD/Str.Dyn.	Principal Engr	2.75	7	9.75	Earthquake Engr'g	Structural Dynamics	Stone/Webstr	Prin Engr
JR Cole	BSME	Engr I	.5	9	9.5	Machine Design		WSH	Sr Engr
DW Cutting	BSMetE	Principal Engr	1.75	13	14.75	Welding	Metallurgy	WGC	Chief Wldg Eng
TM Erwin	BSMetE	Associate Engr	.5	0	.5	Weld'g/Metallurgy	Welding processes	MI NavShpyd	Engr in Trng
√tHE Good	BSME, MSCE	Supv, Engr'g Mechanics	3	17	20	Structural Dynamics	Seismic/Soil Mech.	Stone/Webstr	Lead Engr
TF Hoyle	BSME	Senior Engr	3	7	10	ISI/PSI/NDE	Welding	IL Pwr	ISI Engr
JD Ilusted -	AAS	Engr'g Assistant	1.75	. 25	2	Engr'g Documentn		UNI	Lab Tech
PJ Inserra	BSEngTech	Associate Engr	1	.25	1.25	Welding	Metallurgy	DiabloCanyor	QA Inspctr
RJ Lauzon	BSME	Senior Engr	2	20	22	Welding	Piping	Consultant	Self-Employd
√ RL Loundagin	BSME	Senior Engr	3.5	24	27.5	Piping (ASME)	Stress Analysis	UNI	Sr Engr
RA Moen	BSMetE	Senior Engr	1.5	18	19.5	Metallurgy	ASME	Westinghse	Sr Engr
+EL Morales	BSME	Senior Engr	3.75	13.5	17.25	Stress Analysis	Piping	Stearns-Rgrs	Engr III
√ JC Mowery	BSME	Principal Engr	8.75	12	20.75	Piping	Systems Engr'g	IIUICO	Proj Engr
DA Murdock	BSME	Engr I	.5	10.5	11	NDT (Ultrasonics)		NucEngySvcs	NDE Engr
<pre>/ Registered P.E., † Registered P.E.,</pre>									

я

.

a a Nationa

· • • •

,

. .

.

,

x

.

•

• •

• ••• • • • • •

3 . . .

,

•

•

•

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:

Ι.

.^

(42500)

Mechanical Engr'g - CONFINUED

AS OF: 7-31-81

PRINCIPAL SECONDARY AREA OF EXPERIENCE AREA OF PREV IOUS NAME DEGREE (S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EXPERTISE EMPLOYER TITLE Serv Engr ✓ JE Parker BSME Senior Engr Rotating Equipt Systems Engr'g GE 5.5 6 11.5 √tDW Porter BSNE Manager, Mechanical Engr'g 4.75 3.5 8.25 ISI/PSI/NDE Systems Engr'g Bechtel Sr Nuc Engr Sub Officer Ops/Maint/Design Personnel Trng US Navy LR Prill BSME ,25 Engr I 9 9.25 Rockwell Plt Engr BSChE ISI/PSI .75 5.75 DP Ramey Engr I 5 ____ PG&E T&SU Engr BAMath, MSNE Systems Engr'g ISI/PSI/NDE tMP Reis Engr I 1.25 5.25 4 WSH lleat Transfer Engr CD Scott BSME Engr II 1.25 4.25 Piping Systems 3 Pipg Engr K Singh Senior Engr 8.5 12.75 ISI/PSI/NDE Piping Bechtel BSME 4.25 ٠ ✓ Registered P.E., Washington. † Registered P.E., other state(s).

Page 2 of 2

•

. .

- *

24

•

• •

ι.-

、 、 、

•

· -, , .

. • •

ŀ . ·

Page 1 of 2

÷

ŝ . . .

> • ٠,

, « . . .

•

÷.

•

•

2.2

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

Civil Engineering & Services DEPARTMENT:

(42600)

AS OF:

7-31-81

PRINC1PAL SECONDARY EXPERIENCE AREA OF AREA OF PREVIOUS NAME DEGREE (S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EXPERTISE EMPLOYER TITLE Sr Engr'g Records Analyst 6.25 0 6.25 Documentation ____ ____ PJ Adair None QA Supv Sr Admin Engr Engr'g Admin Accounting Boeing BCS 4.75 15 19.75 AR Bright CPCO Plt Clerk Engr'g Records Analyst II Documentation KM Brun BASecEduc 1.5 9.25 10.75 Equipt Qualif Technician Comp Applic B&R Documentation BM Burnside None Engr'g Records Analyst I 1.25 4 5.25 Westinghse Technician 3 3 PE Campbell **ASNucTech** Engr'g Records Analyst II 0 ____ Equipt Qualif Comp Applic ----Engr'g Records Analyst I 3 6.5 3.5 ____ KN Chick BSAnthrp Technician Westinghse Engr'g Records Analyst II Documentation MA Coffman AA 0 4 4 Mechanical SD St Univ Manager Senior Engr 24.75 Electrical CR DePoe None 3,25 21.5 B&R Designer Design/Drafting BAArcht Senior Designer 2 11 13 VK Duggal ____ Pt/Olympia Chief Engr √tWC F1ynn 23.75 Fac Des/Install Struct Design BSCE Senior Engr 2.75 21 Data Clerk Documentation Comp Applic Westinghse Engr'g Records Analyst I 1.25 1.5 2.75 FV Gomulka BA Hum.Resc Bechtel Elect Clerk Engr'g Records Analyst II Documentation 2.25 5.25 WS Hardy None 3 Vitro Sr Engr Electrical BSEE Senior Engr 3.25 18 21.25 NII Kempt Elect Eng/Design Vitro Sr Estmtr Engr I 3.5 37 40.5 Cost Estimating WH Knolle None Juv Court Sec'y Admin Specialist 11.75 Administration Secretarial 7.75 - 4 LE Maravilla None Bovee/Crail Drafter AAS Tech Illust Engr'g Asst (Drafting) Design/Drafting 10.75 3.75 7 KF McAndrew . Registered P.E., Washington.

+ Registered P.E., other state(s).

. .

、 、 、

•

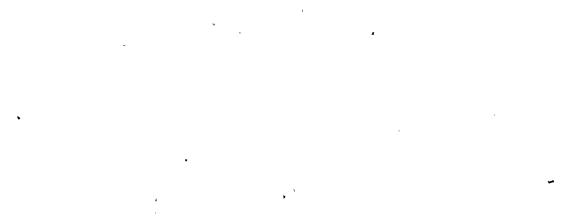
.

а Г. Т. Т. Т. Т.

·

AS OF:

7-31-81


Page 2 of 2

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT: Civil Engr'g & Svcs - CONTINUED

(42600)

PRINCIPAL SECONDARY AREA OF EXPERIENCE AREA OF PREVIOUS WPPSS/OTHER/TOTAL NAME DEGREE (S) WPPSS POSITION TITLE **EXPERTISE** EXPERTISE EMPLOYER TITLE 22.5 Documentation Engr'g Admin City/Rchld Sec'y Sr Engr'g Records Analyst 5.5 17 **BM Nichols** None Rockwell Proj Engr Architectural EV Norris Senior Engr 31.25 1.25 30 BAArcht ____ Mile's Labs Mgr Engr'g Admin BSEE Supv, Engr'g Services **J**BI CO Romine 4 10 14 Sr Engr Westinghse ∕tER Rybarski BSCE Principal Engr 8.75 25 33.75 Civi1 Rockwell Designer Senior Designer 1.25 14 Design/Drafting JR Smith 15.25 None _ _ _ _ _ Westinghse Sr Engr **V**-IIW Stivers BSCE Supv, Civil & Facs Engr'g 8.25 27 35.25 Civil Structura1 US Army Colonel Struct. Dynamics Civil/Soil Dynamcs Manager, Civil Engr'g & Svcs 30.5 VtWK Stockdale BSCE, MSCE, PhD 3.5 27 Cty/Fremont Engr Civil Structural tHE Wellsfry BSCE Senior Engr 3.5 15 18.5 Engr'g Admin CL Whitcomb BSEduc Sr Engr'g Records Analyst 5.5 9.5 Documentation 4 ----Registered P.E., Washington. † Registered P.E., other state(s).

٠

.

۲Þ • .

·

.

•

4

• • •

٠

ж. ч

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:	Electrical/I&C	Engineering				AS 01	:7-31-81		
NAME	DEGREE (S)	WPPSS POSITION TITLE		PERIEN /OTHER	CE /TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREV LOUS EMPLOYER	TITLE
RL Abbott	BSEE	Senior Engr	2.25	12	14.25	Elect Controls	Equipt Qualif	BEW	Sr Engr
, RD Bass	BSEE	Engr I	.5	6	6.5	I&C Engr		Westinghse	Adv Engr
† M Basu	BSEE, MSEE	Senior Engr	1.25	6	7.25	Systems Engr'g	Equipt Qualif	Ebasco	Engr
†SR Basu	BSEE, MSEE	Supv, Electrical Engr'g	2.25	15	17.25	Elect Systems	Licensing	Bechtel/B&R	Supv
EF Boler	AAElectron	Engr II	1.5	10	11.5	Simulators	Electron Hardware	UW	Inst Tech
MR Compton	BSPhys	Senior Engr	5.25	9	14.25	Computers	Simulators	Battelle	Dvlpt Engr
√ AJ Ebens	BSME, MSME	Program Mgmt Spec	6.75	10.25	17	Program Mgmt	Contract Admin	Westinghse	Proj Engr
WE Faraone	BSEE	Engr I	4.75	6	10.75	Equipt Qualif	Elect Field Engr'g	Bechtel	Fld Engr
†RE Green	None	Senior Engr	5.25	11	16.25	I&C Engr'g	Systems Engr'g	GE	Engr
FR Guyer	BSEE	Consulting Engr	7	18	25	Simulators	Electrical	Westinghse	Sr Engr
tAN Joshi	BSEE	Senior Engr	2.25	20	22.25	I&C Systems	Equipt Qualif	Bechtel	Sr Engr
JD Lodge	BSEE, MSNE	Senior Engr	1.5	10	11.5	Simulators	Electrical	Westinghse	Sim Engr
JT Person	BSEE	Engr II	0	2	2	Elect Distrb.		EG&G	Engr
√ JE Rhoads	BSEE	Supv, Equipt Qualif Engr'g	5	3.5	8.5	Equipt Qualif	Electrical	Bechtel	Fld Engr
RC Ruckdeschel	BSEE	Senior Engr	0	18	18	Systems	· · · ·	Westinghse	Sr Engr
† U Shah	BSEE, MSInstE	Manager, Elect/I&C Engr'g	4.25	13	17.25	I&C	Sfty/Reliblty	NucSvc/3M	Sr Const.
			•						
✓ Registered P.E., † Registered P.E.,	Washington. other state(s).	L	L				\$ \$	•	

Page 1 of 2

٢

7

. •

5

. . ¥. **.** . . ۴ 4 --8 . , . e e e e

· · · · · · ·

, [.]

*

.

•

•

r N

•

.

(* * * *

Page 2 of 2

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:

. ...

Elect/I&C Engr'g - CONTINUED

AS OF:

7-31-81

(42700) PRINCIPAL SECONDARY EXPERIENCE AREA OF AREA OF PREVIOUS NAME DEGREE (S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EXPERTISE EMPLOYER TITLE Engr Electrical Westinghse 5.75 20 25,75 Simulators JP Starr None Engr I Reliability Engr'g | Hoffman Lead Engr Senior Engr 1.25 20 21,25 Equipt Qualif JL Sullivan BSEE Elect Systems Protective Relay ARCHO/GE Spec 22 30.5 ✓ DT Thonn BSEE Principal Engr 8.5 Equipt Qualif Maintenance/Elect B&R Engr 20 20.5 **BSNETech** Engr I .5 CJ Zeamer

✓ Registered P.E., Washington.

† Registered P.E., other state(s).

.

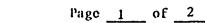
2

•

÷

,

4 4


•

, ,

.

• •

.

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:

Nuclear Engineering (42800)

AS OF:

7-31-81

PRINCIPAL SECONDARY EXPERIENCE AREA OF AREA OF **PREVIOUS** NAME DEGREE (S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EMPLOYER TITLE EXPERTISE Fuel Handling Systems Engr'g Rockwell Sr Engr **†SM Berry** BSME Engr I 1.25 10 11.25 Stone/Wbstr Sr Engr DE Bush BSChE, MSNE, PhD Principal Engr 4.75 12 16.75 Thermal Hydraulics Containment Perf. **†LC** Chan BSME 7.5 7.5 Mechanical Systems ThermHydr Analysis CT Main Mech Engr Engr I 0 **†KR Conn** BSAE, MSAE Systems Analysis Heat Balance Gilbert Asc Sr Engr 19.5 23.75 Engr I 4.25 TVA/BNW BSEPhys, MSNE Manager, Nuclear Engr'g Fuel Mgmt Nuclear Engr Safety Analysis **†GL Gelhaus** 7.25 7 14.25 Principal Engr Component Design Sr Engr RL Heid BSME 20.5 Syst Perf Analysis Westinghse 7.5 13 Mgr,CS Anly Program Mgmt Westinghse TW Horning BSBE, MSNE Engr I 0 5 5 Sfty/Environ Mntrg BSME Heat Transfer Ecodyne R&D Engr TH Keheley Engr I 0 10 10 _____ Sr Engr WH Kelso BSME Program Mgmt Spec 20.75 Fuel Handling Rockwell 3.75 17 ----Rsch Asst DB Kreig 2 2 NM Rsch Fac BSME Associate Engr 0 ----____ PS NavShpyd Eng Tech Associate Engr KS Lund BSNE .25 .75 1 ----Westinghse Sr Engr †FJ Markowski BSME, MSME Senior Engr 1.75 15 16.75 Reliability Plt Transt Analys Program Mgmt Spec Plt Analy/Design Westinghse Prin Engr TB McCall BSEE, MSNE, PhD .25 18 18.25 Supv, Systems & Reliablty Rogers/Asc Sr Mgr BSEngPhy, MSNE 10 10 Syst Analy/Design DM Myers 0 ____ Mechanical BD Ngo BSME Associate Engr .25 0 .25 _____ ____ ____ Nuclear/Chemical WI-Mich Pwr BSChE, MBA Supv, Nuclear/Chem Engr'g 7.75 12.5 20.25 Systems Engr'g Engr **RJ Nicklas** Registered P.E., Washington.

† Registered P.E., other state(s).

в

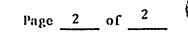
-

, .

، م

- -.

•



.

•

• · · ·

· · ·

.

÷.

۹.

• •

INFORMATION ON ENGINEERS IN ENGINEERING DIVISION

DEPARTMENT:

۲4

Nuclear Engr[†]g - CONTINUED (42800)

\$

AS OF: 7-31-81

· SECONDARY PRINCIPAL EXPERIENCE AREA OF AREA OF PREVIOUS WPPSS/OTHER/TOTAL NAME DEGREE (S) EXPERTISE WPPSS POSITION TITLE **EXPERTISE** EMPLOYER TITLE FE Owen BSChE Senior Engr 8.25 25 33.25 Radiation Protect. UNI Sr HP ARCHO Sr Engr WW Roberts BSChE .8 Corrosion Engr I 5,25 13.25 MR Steelman BSEcon, BSAeroE Engr I 3.5 2 5.5 Computer Engr'g ____ -----Cmwlth Edisn Gen Engr RT Steen BSME Engr I 3.5 5 8.5 Radwaste Systems Engr'g Fuels Cycles NN Shpbldg Engr JP Thorpe . BSNE Engr I Shielding 1 4 5 WW Waddel BSEPhys, MSNE Supv, Tech Programs Program Mgmt 7 13 20 _ _ ~ ~ ~ · • ۰. Registered P.E., Washington. † Registered P.E., other state(s).

.

`

•

ņ . . .

•

• . . 1 1 1 . \$. .

ж ,

r

.

s.

a 🖡

. ı

*

•

-

· · · , **.**

INFORMATION ON ENGINEERS IN TECHNICAL DIVI

.

Õ

DEPARTMENT: FUELS & ENVIRONMENT DIVISION

AS OF: AUGUST 5, 1981

κ.

Name	Degree(s)	WPPSS Position Title	<u>E</u> WPPSS	xperier Other	ice Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title
GF Bailey (√)́	BS Chemical Engineering BS Business MS Nuclear Engineering	Manager, Fuels & Environment Division	7	16	23	Nuclear Engi- neering/ Hanagement	Energy Alterna tives/Environmental Engineering	Westing- house Hanford	Manager, Environmental Engineering
RG Spencer		Technical Division Administrative Specialist	7	.26 ¹ 5 .	33½	Financial	Administrative	UNC	Manager, Cost and Property
					•	• •		•	
, ,			•-		:	•	·		• •
			•			· · ·			•
	•		•			•	•		-
¢			,						• • •
√ Registered P	E in Washington		·		ч		• .		, , <u>.</u>
		•		,		• *			

•					xperten		Area or	Secondary Area	Previous		
.`	Name	<pre>Degree(s)</pre>	WPPSS Position Title	WPPSS	<u>Other</u>	Total	Expertise	of Expertise	Employer	Title	, :
	JR Worden	BS/MS Physics	Manager, FC upply	7	· 17	24	Fuel Manage- ment	Nuter Analysis	West/BNW/GE -	Fuel Project Enginee)
•	BK Boyd	BS Met Engr MS Engr Mgt	Supervisor, Fuel Services.	41 ₂	17	21½	Fuél Contract Admin. (Tech)	Fuel Quality Assurance	Argonne/ Texas Instruments/ GE	Procurement Engineer	****
	LS Pace	BS Mathematics	Fuel Cost Engineer	5		5	Fuel Cost	Project Planning and Scheduling	,		
	JE Sammis	BS Ceramic Engineer	Fuel Project Engineer	7	6	134	Fuel Contract Admin (Tech)	Fuel Development	West.Hanf./ BNW	Fuel and Core Component Procurement Engineer	
	WG Jolly	•BA Math • MA Econ	Economic Evaluations Engineer	1 ₂	5	51 ₂	Economic Analysis	Budget Forecast-	West.Hanf.	Economic Studies 👘 r	
•	jR Young (√,+)	BS CE SM CE MBA	Principal Special . Studies Engineer	<u>-</u> 4	⁻ 29	33	Engineer Studies/ Management	Cost Benefit Analysis/Environ- mental Assessment/ Economic Analysis	BNW/DUN/GE	Staff Engineer	

••

à.

.) ;

2

arti.

-

×* -

•...

Registered PE in Washington
 Registered PE in other state(s)

 Δ^{+}

•

) • • •

w

٠ ř et ٠

•

. .

•

,

•

INFORMATION ON ENGINEERS IN TECHNICAL DIV

PAGE 5

34 e.

DEPARTMENT: ENVIRONMENTAL PROGRAMS DEPARTMENT

Ċ

AS OF. AUGUST 5 1001

N3 01.	AUGUST 3	1981	
	•		

Name	Degree(s)	WPPSS Position Title		<u>xperien</u> Other	ce Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title
KA McGinnis _.	BS Ag Econ MS Ag Econ	Economics Evaluations Engineer	1 ¹ 2	4	5.	Economics	Engineer Econo- mics/Socioecono- mics	BNW .	Economist
KR Wise (√)	BS Mechanical Engineering MS Mechanical Engineering	Supervisor, Environ- mental Engineering	. :8	7	15	Supervision	Environmental Engineering	Westinghouse Hanford	Development Engineer
W Davis, III	BS Biology MS Ecology MS Management Science	Supervisor, Environ- mental Science .	2	11	13	Ecology	Statistics	Yankee Atomic Electric Company	Environmental Scientist
RA Chitwood	BA Physics Chemistry Mathematics	Manager, Environmental Programs	10	15	25	Environmental/ Regulatory Management	Siting/Licensing Management	DUN	Senior Engineer
JP Chasse (†)	BS CE MS CE-Water Resources Engineering	Senior Environmental Engineer	4	7+	11	Environmental Engineering	•	US EPA .	Civil/Environmental Engineer
AC Rutz	BS Biology MPH-Water Quality Environ- mental Chemistry	Environmental Engineer	2 ·	8	10	Environmental Engineering	Water Quality/ Environemntal Chemistry	Klamath County, OR	Director of Environ- mental Health
		· · · -				1. m. m. a. a. a.	· · · Ji. Gentro)	· · ·	

✓ Registered PE in Washington + Registered PE other state(s)

INFORMATION ON ENGINEERS IN TECHNICAL DIV

PAGE _6__ OF

DEPARTMENT:

ENVIRONMENTAL PROGRAMS DEPARTMENT

AS OF: _____AUGUST 5, 1981

Name	Degree(s)	WPPSS Position Title	E WPPSS	xperienc Other	e Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title
MK Thompson	BS Geology Grad Study in Hydrology	Environmental Engineer	1½	3 res. 4 ind. & gov't	8 ¹ 2	Hydrology Geology	Permitting and Regulatory Com- pliance	Utah Dept. of Natural Resources	Engineering Geologist/ Senior Hydrologist
C Van Hoff		Senior State Liaison Specialist	4	5 ⁻	9	Regulatory Interface	Legislative Re- viewer	State of Idaho	Legislative Assistant
JC Kutt	BS Chemistry	Environmental Scientist	3 mo	10 -	10	Chemistry	Environmental Scientist	Battele NW Laboratory	Scientist
GS Jeane	Minor Chemistry BS Fisheries	Environmental Engineer - Biologist	5	6 ¹ 2	11½	Mitigation Fisheries Pollution	Water Quality	Washington State Department of Ecology	Environmentalist
WA Kiel	BS Geology BS Ocean- ography	Geologist	5 ¹ 2			Environmental Geology			·
AM Lee	MUP Urban Planning; BA Urban and Regional Planning	Socioeconomic Loordi- nator	3	1.	4	Socioeconomic Monitoring Mi ion	Land Use (physi- cal`planning)	Washington State Office of Community Development	Administrative Intern
ML Miller	BS Physical Science MS Health Physics	Environmental Scien- , tist :	11 ₂	3	4.	Health : Physics .	Computer Programmer	Exxon	

•

,

1

•

,

.

تر ا

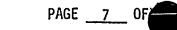
.

· · · · · ·

•

)i :

.


•

,

x

*

INFORMATION ON ENGINEERS IN TÉCHNICAL DIV

•

DEPARTMENT: _____ENVIRONMENTAL PROGRAMS_DEPARTMENT

AS OF: AUGUST .5, 1981

Name	Degree(s)	WPPSS Position Title	Experience WPPSS Other Total	Principal Area of Expertise	Secondary Area of Expertise	Previous Employer	Title
JE Mudge	PhD MS MEd BS	Senior Environmental Scientist	3 • 8 • 11	Aquatic Ecology.	Physiology Bio- assay :	Metropoli- tan Edison Company/ Texas In- strument Inc.	Supervisor, Radiation Safety and Environmental Engineer/Aquatic Ecology Task Leader
FD Quinn	BS Meteorology 2+ Yrs Grad School	Senior Environmental Scientist	1 20 21	Air Pollution Meteorology	.Scientific Systems Analyst	USAF/Air Wea. Svc.	Technical Division Meteorological Systems Analyst
LS Schleder	AA Zoology, Environ- mental Studies	Environmental Techni- cian i	2 11 13 (8mos Security Guard for WPPSS)	Environmental Technician	Security Guard	Industrial Fiberglass/ Shelbies Fiberglass	Miscellaneous Fabrica- tion
		۰ ۱	· · ·	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	•		
	T	•	• • •			· •	, ,

•

.

•

•

•

,

INFORMATION ON ENGINEERS IN ENGINEERING DI λN Page 1 of

.

DEPARTMENT:	NP-2 ENGINEERING	·				AS OF:	8-6-81		-	*
6 NAME	DEGREE(S)	WPPSS POSITION TITLE		PERIENC /OTHER/		PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE	
HL Bennett	BSME	Senior Engineer	5.25	21	37	HVAC	Valves	Industrial Pipe/Supply	Equipt Engr	-
+v/HA Crisp	BSME,MSPE, MSCE	Project Engineering Manage- ment Specialist	1	25	26	Civil/Structural/ Management	Systems	U. S. Navy	Captain/Navy	
+vEA Fredenburg	BSCE, MBA	Principal Engineer	5.25	6	11.25	Structural	Cont.Des/Prog Mgmt	Bechtel	Sr. Engr.	-
PW Harness	BSME	Manager, Field Engineering (Acting)	8.75	5	13.75	Systems Engrg.	Rotating Equipm't.	UNC	Plant Engineer	
BA Holmberg	BS Marine Engr.	Deputy Project Manager-Engrg.	2.75	20	22.75	Management/Nuclear/ Operations	Mechanical ⁻	U.S. Navy	Commander/Navy	ь 5
JH Ra]phs	BS Engineering MS Gen. Engrg.	Senior Engineer	3.5	25	28.5	Mechanical	Chemical	Bechtel	Sr. Field Engr	
TA Stanley	BSME	Project Engrg. Mgmt Spec.	4.25	8.5	-12.75	Systems	Construction Engrg.	ITT	Project Engr.	
DC Timmins	BS Physics	Project Engrg Mgmt Spec	5.3	7.7	13	Nuclear/Mech.	Chemical Engrg/ Shielding	Bechtel	Supeŕvisor Nuclear Analysį	
✔ LW Vance	BSCE	Project Engrg Mgmt Spec	6	10	16	Civil	Highway	Wash. State Dept.Transpo	Sr. Engineer	*
✔ MF Wiitala	BSEE	Pridcipal Engineer	9	25	34	Electrical		Westinghouse	Sr. Engineer	
			-		٣					
✓ Registered P. + Registered P.	<pre>FE., Washington E., Other State(s) & *</pre>		1 <u>.,</u>			J	L		、	

·'|

* ٠ . • .

×,

B

TION: ON HEALTH, SAFETY & SECURITY MANAGEMENT AND FF

Page <u>1</u> of <u>1</u>

INF

AS OF:	August	1981
--------	--------	------

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	* PREVIOUS EMPLOYER	TITLE			
J.W. Shannon .	BS Physics (equivalency)	Manager, Health, Safety & Security	7 yr./23 yr./30 yr.	Construction Startup Operations	Chemical Processing Operational Testing Radiation Protection Emergency Prepared- ness	Power	Supervisor, Health & Safety Dept.			
		·	- *							
		. ``	÷	• •		ι,	-			
	- -					-				
		,		·						
+ Registered P. √Registered P.	+ Registered P. E., Washington. √Registered P. E., other state(s).									

. (_) н Н - 4 . . • i Ui

.

संख्यान (म.£.स.)।

183 - P.1. , , , . i.

• • • • •

e 2. j

• .

۲

e

D

ę

و د

TION ON HEALTH, SAFETY & SECURITY MANAGEMENT ANI

Page <u>1</u> of <u>2</u>

DEPARTMENT: INDUSTR

INDUSTRIAL SAFETY & FIRE PROTECTION

AS OF: August 1981

	÷ •					•	
NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
W.E. Taylor		Manager, Industrial Safety & Fire Protection	1/21/22 yrs.	Fire & Radiation Protection Health & Safety Programs Fire & Radiation Testing	Laboratory Operations Emergency Prepared- ness Reactor Testing		Manager, Health & Safety Gro
R.M. Gough	AD Fire Protec- tion BS Trade & Industrial	Supervisor, Loss Control Services	7/13/20 yrs.		Firefighting Nuclear Operations, Research, & Construction	Westinghouse	Industrial Safety & Fire Prot. Specialist
J.C. Bell	BS Mathematics	Supervisor, WNP-2 Safety	12 yrs.	Construction, & Research		Westinghouse Electric	Generation Engineer
M.J. Hoylman		Specialist I	4 mo./11/11 yrs.	Emergency Medicine	struction	Kaiser Engineers	Safety Supervisor
D.T. Evans '	BS Mechanical Engineering	Senior Engineer-Fire Protection	2 mo./9/9 yrs.		Systems Evaluation	Western Div. Naval Facili- ties Engineer- ing	Assistant Branch Hea
G.E. Towne	US Air Force	Senior Specialist	3/29/32 yrs.	mented Hanford Fire Training Manual, Supply System Fire	Developed & implemen- ted Hanford Emergency Reserve Procedures, Radiation Casualty Handling for DSHS	Rockwell Han- ford Co.	Manager, Fire Equip Services
+ Registered P. JRegistered P.	E., Washington E., other state(s)	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · , · · · .	······································	• •

• , , **,**

• · · · · ,

۲ ۳ ŀ

.

۰ ۰

e.

. ,

, * .

¥

.

i de la companya de · · . 4

TION ON HEALTH, SAFETY & SECURITY MANAGEMENT ANE

Page <u>2</u> of <u>2</u>

August 1981

AS OF:

DEDISTURNE.	THOUGTOTAL CAREN			•
DEPARTMENT:	INDUSTRIAL SAFETY	ደ	FIDE	DDATECTIAN
		<u>~</u>	LANE	FRUICUIUN

:

PRINCIPAL SECONDARY EXPERIENCE AREA OF AREA PREVIOUS NAME DEGREE(S) WPPSS POSITION TITLE WPPSS/OTHER/TOTAL EXPERTISE EXPERTISE EMPLOYER TITLE K.C. Bleiler Training Specialist I -----1 mo./22/22 yrs. Emergency Medical Emergency Medical Columbia Oil Vending & Fire Protec-Technician Supervisor Co. Certified Instructor tion in First Aid D.G. Parthree Supervisor, WNP-1/4 1 mo./19/19 yrs. Nuclear Construc-Industrial Safety Gibbs & Hill/ Manager, Safety & Fire Protection tion, Startup & Fire Protection D.U.C.I. Loss Operation Emergency Prepared-Prevention ness R.A. Fisher Specialist I 1/21/22 yrs. Industrial Fireman Fire Detection Test- Interlakes Custodian Nucl./Chem. Opera-ling School tor Equipment & Design for Fire Protection D.A. Smith BA Psychology Supervisor, WNP-3/5 3/5/8 yrs. Power Plant Con-Fossile Fuel Con-WSH/Boecon/ Safety Mgr. Safety struction Safety struction Safety GERI, HNP-2 + Registered P. E., Washington. \checkmark Registered P. E., other state(s).

، • • • • • • • • .

• . .

•

· · ·

· . , , , . . , , , , · ·

• • • •

. ... INPORTION ON HEALTH, SAFETY & SECURITY MANAGEMENT AND

Page 1 of 1

AS OF: August 1981

FF

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS Employer	TITLE
R.G. Graybeal	BS Education	Manager, Health Physics/ Chemistry, WNP-2	6/21/27 yrs.	Construction, Startup & Operations	Industrial Safety Programs	Iowa Electric Light & Power	Radiation Protection Engineer
L.D. Morrison	BS Biochemistry	Chemistry Supervisor	2/2/4 yrs.	Laboratory Analysis	Plant Chemistry Control	US Testing Co.	Research
L.G. Berry		Health Physics Supv.	2 mo./12/12 yrs.	Operation & Shut- down Activity Surveys	Plant Radiation Surveillance Health Physics Pro- gram	Lawrence Livermore Lab.	Scientist Health & Safety Tech- nician
						-	-
			_				
					-		-
-						`	
			. ·				
			• •	·			
+ Registered P. √Registered P.	E., Washington E., other state(s).	• • • • • • • • •	·	·····	··· · · · ·	· · · · · · · · · · · · · · · · · · ·	• •
			•			.	

• • • •

ι .

<u>.</u>

, •

.

1 . 4 . 34

TION ON HEALTH, SAFETY & SECURITY MANAGEMENT AN IN

• Page ____ of ____

DEPARTMENT:

Ĵ.

WNP-1/4 HEALTH PHYSICS/CHEMISTRY

AS OF: August 1981

NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
V.E. Shockley	BS Geology	Manager, Health Physics/ Chemistry, WNP-1/4	2 yrs./20/22 yrs.	Radiological & Safety Hazards Analysis	Respiratory & Con- tamination Monitor- ing	Consumers Power Co.	Plant Health Physicist
J.D. Mills		Health Physics Supv.	1/22/23 yrs.	Fuel, Air & Radia- tion Analysis Nuclear Rockets Testing	Radiation & Contami- nation Surveys	Consumers Power Co.	Supv., Radiation Protection
R.M. Brun	US Navy Nuclear Training School	Chemistry Supv.	2/16/18 yrs.	Mechanical Opera- tor Engineering Lab. Technician	Chemistry & Radio- chemistry Analysis Plant Policy Admin- istration	Consumers Power Co.	Supv., Chemical & Radiation Protection
			- -				
		·				L.	
			•				
+Registered P √Registered P	. E., Washington. . E., other state(s)	•					

· · · · · ---1 44 н соорона и Конструкции и соорона и

e an egyan e a

•

, a

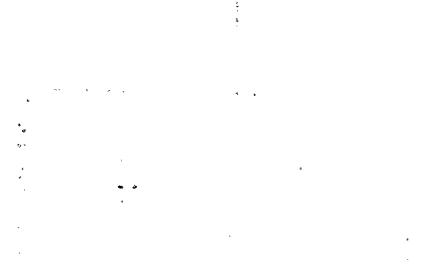
•

. .

· · · · · · e i j

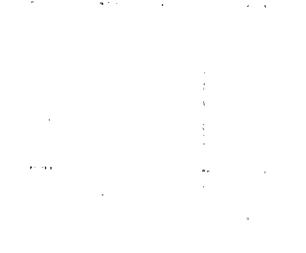
INTERIOR ON HEALTH, SAFETY & SECURITY MANAGEMENT ANI

Page <u>1</u> of <u>1</u>


AS OF: <u>August 1981</u>

DEPARTMENT: SECURITY

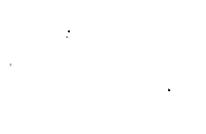
:

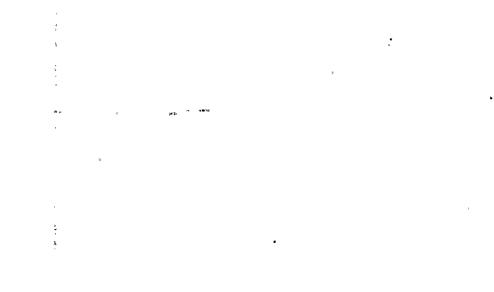

• NAME	DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
S.R. Telander	USAF Nuclear Weapons, Security Police Officer Academy, Missile Staff Officer	Manager, Security Dept.	4/20/24 yrs.	Operational Physi- cal Security Management		USAF	Nuc. Security & Law Enforcement Officer
S.H. Martin	BS Business Mgmt.	Security Force Chief	3/26/29 yrs.	Operational Physi- cal Security Management		USAF	Deputy Chio of Security Police
D.M. Vorheis	AA Business Mgmt [.] .	Security Force Captain	3/23/26 yrs.	Operational Physi- cal Security Management	Systems & Equipment Specifications	USAF	Chief, Security Police
R.J. Marzano	BA Police Science	Security Force Captain	3/24/27 yrs.	Operational Physi- cal Management	Security Force Technical Training	USAF	Colonel, Security Police
J.W. Klingelhoefer, Jr.	BS Engineering	Administrative Security Supervisor	2/7/9 yrs.	Nuclear Security	Army Artillery	NUSAC, Inc.	Sr. Techni cal Associ ate
R.J. Givin'	BS Law Enforce- ment MS Criminal Justice	Supv., Security Training & Evaluation	3/6/9 yrs.	Training Systems Engineer, Instal- lation [.] Physical Security Officer	Security Force Training	US Military Police	Curriculum Officer
	-		· •		-		
+ Registered P. ↓ Registered P.	E., Washington E., other state(s).			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·	ļ

u a


· ·

ĸ





· · ·

مريا ورواحي المحرفين والمحرفين

غ در

TION ON HEALTH, SAFETY & SECURITY MANAGEMENT AN

.

×

.

Page <u>1</u> of <u>3</u>

DEPARTMENT: RADIOLOGICAL PROGRAMS			AS OF: August 1981						
NAME	DEGREE(S)	WPPSS POSITION TITLE	<u>EXPERIENCE</u> WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE		
D.E. Larson	US Navy Nuclear Power School College equival- ency	Manager, Radiological Programs	7/13/20 yrs.	Health Physics Radiological Pro- tection	Engineering Lab. Technician	LaSalle Boil- ing Water Reactor	Sr. Health Physics Technician		
J.V. Everett	BS Computer Science/Physics MS Nuclear Engineering/Healt Physics	Supv., Emergency Preparedness	3/2/5 yrs.	Emergency Planning	Radiological Engineer	Vallecitos Nuclear Center	Radiologica Engineer		
J.R. Allen	BS Physics ME Nuclear Engineering/Health Physics	Emergency Planning Specialist	1/3/4 yrs.	Emergency Plan & Procedure prepara- tión	Radiation Specialist	USNRC	Radiation Specialist		
D.H. Oatley	BS Biology MS Health Physics	Emergency Planning Specialist II	1/4/5 yrs.	Health Physics	Emergency Prepared- ness Planning Radiological Engineering Design	Portland General Electric	Health Physics Engineer		
A.F. Klauss		Emergency Planning Specialist	3/9/12 yrs.	Law Enforcement	Emergency Planning	PA State Police	Trooper		
D.H. Mannion	BS Business Administration MS Management	Emergency Planning Specialist	4 mo./10/10 yrs.	Nuclear Weapons Programs	Nuclear Weapons Operations	US Army	Executive Officer		
R.F. Haight	BS Physics MS Physics	Supv., Dose Assessment & Audit Section	3/7/10 yrs.	Health Physics	Pathway Modeling, Dose Assessment	UNC Nuclear	Sr. Health Physicist		
+ Registered P. √Registered P.	E., Washington. E., other state(s).								

- 1 mi -

IN TION ON HEALTH, SAFETY & SECURITY MANAGEMENT AND

Page _2__ of _3__

DEPARTM	ENT: <u>RADIOLOGICAL</u>	PROGRAMS	- ·	AS OF	August 1981		
NAME	DEGREE(S)	WPPSS POSITION TITLE	<u>EXPERIENCE</u> WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G.V. Oldfield	BA Physics MPH	Health Physicist	2/7/9 yrs.	Emergency Response & Preparedness	ALARA Design Review	UNC Nuclear Industries	Sr. Health Physicist
D.B. Ottley	BS Physics	Health Physicist	2/4/6 yrs.	Radiation Control	Risk Assessment Emergency Prepared- ness	UNC Nuclear	Safety Engineer
J.O. Parry	BS Applied Physics	Health Physicist	1/6/7 yrs.	Health Physics	ALARA Review	Commonwealth Edison	Supv. Rad. Protection Chemistry
R.W. Craig	College equival- ency Health Physics	Supv., Radiological Programs	4/18/22 yrs.	Construction Startup Operations	Critical Facility/ Fuel Fabrication	Dairyland Power Coopera- tive	H/P Technician
C.A. Graybeal	AA	Dosimetry Analyst	1/2/3 yrs.	Recording Radiation Exposure	Respiratory Pro- tection Records	Richland School District	Secretary
J.D. Artis III	AA Envir. HP/C BS Envir. Science Grad Studies	Dosimetry Analyst	1/6/7 yrs.	Chemical Testing of Water & Waste Water	External Dosimetry Measurement Program	USAF	Sergeant
T.J. Froelich	BS Physics MS Envir. Health Science	Health Physicist I	1/7/8 yrs.	Health Physics	Power Plant Con- struction	Battelle	Research Scientist
Y.E. Derrer		Training Spec. I	5 mo./11/11 yrs.	Health Physics	Radiological Medical Fields	Public Service Co. of Colorado	Health Physics Technician
R.C. McGillic	US Navy Nuclear Power School	Training Spec. I	1½/10/11½ yrs.	Engineer Officer of the Watch	Training, Health Physics	Health Physics Systems, Inc.	Sr. Health Physicist
+ Registered P. √Registered P.	E., Washington E., other state(s).				· · · · · · · · ·		

∎ ÷ , • i ÷.

,

4

ş

•

v., * • т 1 1 1 1 1 1 1 ٦ وا r.

-

, , , .

.

٠ . ,

ale.

بر. ا

8. 4y

. *

IN TION ON HEALTH, SAFETY & SECURITY MANAGEMENT AND FF

Page 3 of 3

DEPARTME	NT: RADIOLOGICAL	PROGRAMS	- ·	AS OF	: <u>August 1981</u>		-
NAME	! DEGREE(S)	WPPSS POSITION TITLE	EXPERIENCE WPPSS/OTHER/TOTAL	PRINCIPAL AREA OF EXPERTISE	SECONDARY AREA OF EXPERTISE	PREVIOUS EMPLOYER	TITLE
G.D. Rhinehart, Jr.	US Navy Nuclear Power School	Training Spec. I	1/10/11 yrs.	Operations Radiation Pro tection	Safety Fire Protection	Omaha Public Power District	H.P. Technician
R.E. Broz	BS Physiology	Training Spec. I	1 mo./10/10 yrs.	Heàlth Physics	Emergency Prepared- ness	State of WA	Health Physicist
		÷		•			
、			,				
						-	
			· .	-			
•							
:		۰. • <u>.</u>					
+ Registered P. √Registered P.;	E., Washington. E., other state(s).		•	y z		`	

• •

ž

.

,

.) • - .

Î,

.

•

· ·

•

1-5,571.8

> Ø

52

∳(ž)

\$. . .

ł

Q. 040.075

Provide a table that lists all equipment including instrumentation and vital support systems equipment required to achieve and maintain hot and/or cold shutdown. For each equipment listed:

8110160456

- a. Differentiate between equipment required to achieve and maintain hot shutdown and equipment required to achieve and maintain cold shutdown;
- b. Define each equipment's location by fire area;
- c. Define each equipment's redundant counterpart;
- d. Identify each equipment's essential cabling (instrumentation, control and power). For each cable identified: (1) describe the cable routing (by fire area) from source to termination, and (2) identify each fire area location where the cables are separated by less than a wall having a three-hour fire rating from cables for any redundant shutdown system; and,
- e. List any problem areas identfied by d.2 above that will be corrected in accordance with Section III.G.3 of Appendix R (i.e., alternate or dedicated shutdown capability).

Response

The method utilized to assure that all equipment, including instrumentation and vital support system equipment required to achieve and maintain hot and/or cold shutdown, remains available during a fire is described below.

The plant was divided into distinct fire areas; the boundary walls, floor and ceiling of which are capable of containing any fire internal to the area. Each fire area is then reviewed and analyzed individually.

Two methods of analysis are available; the particular analytical method chosen depends upon the nature of the fire area. For the case where redundant systems required to achieve and maintain hot and/or cold shutdown are located in independent fire areas, a Redundant Area concept was utilized for analysis. For the case where redundant systems required to achieve and maintain hot and/or cold shutdown are located in the same fire area, a Dedicated Shutdown concept was utilized.

• i a • , <u>~1</u> 1 • . `

`

11

.

4 , ,

A dedicated flowpath consisting of a list of systems required to shutdown the plant was developed. Criteria included a loss of offsite power, no single failure (other than a single fire and its effects), and that manual operation after 72 hours was acceptable.

To show the redundant equipment and differentiate between equipment required to achieve and maintain hot shutdown and equipment required to achieve and maintain cold shutdown, Table 040.075 is divided into groups of systems, categorized by their functions, as described below.

040.075.la,b	RHR System
040.075.2a,b	SW System
040.075.3a,b	RCIC System
040.075.4a,b	Nuclear Boiler System
040.075.5	Miscellaneous Systems
040.075.6	HVAC Systems

Instruments and process components including pumps, heat exchangers, fans and remote operated valves are designated in the above tables for each of the modes of reactor shutdown, as follows:

Symbol	Definition
VC	Remote operated valve is closed and serves as the pressure boundary for the dedicated flow path per- taining to this mode.
VO	Remote operated valve is open as part of the dedicated flow path for this mode.
EO	Equipment other than valves which is required to be operational in this mode.
NR	Remote operated valve, instrument or equipment not required for this mode.
IO	Instrument is required to be operational for this mode.

The following illustrates specific examples from Table 040.075.1:

(1) Motor operated valve RHR-V-24B is required to be open for mode A-1 only (event to hot shutdown).

1

.

.

<u>1.</u> • и 1 • • 1

1

7, . .

.

- (2). Motor operated valve RHR-V-42B is required to be open for mode A-2 only (hot shutdown to cold shutdown).
- (3) Motor operated valve RHR-V-3B is required to be open for both modes A-1 and A-2.
- (4) Motor operated valve RHR-V-16B serves as a pressure boundary and must remain closed during both operating modes.

The table also lists the fire zones for each dedicated piece of equipment as well as tabulating its redundant counterpart.

Conduit and tray layout working drawings were marked up to show the boundaries of each fire area. Areas were identified on the drawings • with a fire area designation tag that was unique for each area. Based on a preliminary review of the area, the drawings were marked up to identify it as a Divisional area or a General area. Divisional areas were those areas where review indicated that virtually all equipment in the area was assigned to one of the three major safety-related electrical separation divisions (Divisions 1,2 or 3). The room was then assigned to that division, and analysis proceeded utilizing the Redundant Area method. General areas were those areas where review indicated that there was significant mixing of equipment assigned to more than one of the three major safety-related electrical separation divisions. Analysis for these areas utilized the Dedicated Shutdown method.

Areas analyzed via the Redundant Area method were reviewed, and raceway working drawings marked up to identify all cables and equipment located therein that are not compatible with (intrude upon) the electrical division to which the room has been assigned. Intruding equipment and cables are then analyzed to verify that the effects of fire upon them do not defeat the overall capability of the safety-related systems of the intruding divisions to achieve safe shutdown. If the plant can be safely shut down, then no fix is required. If the plant cannot be safely shut down, then the intruding cables and/or equipment must be protected in accordance with the guidelines of Appendix R or relocated to another fire Any relocated equipment must then be included in the analysis area. for the fire area into which it was relocated. This method takes advantage of the separation of redundant equipment into different fire areas that is an inherent part of plant layout and design.

a

Areas analyzed via the Dedicated Shutdown method were reviewed, and raceway drawings marked up, to identify all cables and equipment located therein which are part of the Dedicated Shutdown System. The Dedicated Shutdown method involved selecting systems necessary to achieve and maintain hot and/or cold shutdown, and protecting minimum specified equipment within those systems to insure that these dedicated systems are available for safe shutdown. Any dedicated shutdown equipment, and dedicated shutdown cables that are required to be functional, identified in an area analyzed via this method must be protected in accordance with the guidelines of Appendix R or relocated to a divisional fire area. Any relocated equipment must then be included in the analysis for the fire area into which it was relocated.

a. For areas analyzed via the Redundant area method, a table listing specific equipment required to achieve and maintain hot and/or cold shutdown is not appropriate. Basic plant design dictates that shutdown can be achieved utilizing equipment of only two of the three major electrical separation divisions. The intent of redundant analysis is not to show that a minimum amount of equipment remains available to achieve shutdown. Rather, it takes no credit for operation of equipment of the division to which the fire area is assigned, and verifies that loss of equipment in the other two divisions does not occur to the extent that their overall capability to provide for safe shutdown is defeated. Table 040.075.9 lists the plant systems contained in the safety-related electrical separation divisions.

Table 040.075.7 and 040.075.8 list all electrical equipment and cables that are a part of the Dedicated Shutdown System.

Differentiation between equipment needed to achieve and maintain hot and/or cold shutdown is not provided for the Redundant Area method of analysis, since there is no specific equipment listing. Tables 040.075.1 thru 6 provide this differentiation for mechanical/nuclear equipment of the Dedicated Shutdown System. Since virtually all dedicated electrical equipment supports both hot and cold shutdown, no distinction is made.

Tables 040.075.1 thru 6 list the fire areas of all dedicated shutdown equipment except electrical distribution equipment.

- b. Table 040.075.7 indicates the fire area location of all safety-related electrical equipment in the plant. Table 040.075.10 indicates the physical location of all fire areas. The equipment that is a part of the Dedicated Shutdown System is so noted.
- c. Tables 040.075.1 thru 6 indicate redundant counterparts for Dedicated Shutdown System equipment, except for electrical distribution system equipment.

Discussion of redundant electrical equipment counterparts can only be discussed in general terms. This applies to both the Redundant Area and Dedicated Shutdown concepts. The overall plant design provides for redundancy of the major safety-related electrical divisions as follows:

Division 1: Redundant counterpart is the Divisions 2 and 3 combination.

Division 2: Redundant counterpart is Division 1.

Division 3: Redundant counterpart is Division 1.

At the electrical distribution system source end (standby ac diesel-generators and standby dc batteries), identification of directly redundant counterparts are relatively straightforward. However, downstream in the distribution system, a specific discussion of electrically redundant counterparts becomes less meaningful, particularly in the two major electrical divisions (Divisions 1 and 2). This occurs because the duality existing in the electrical distribution system equipment layout does not necessarily follow through to the connection of loads (pumps, fans, valves, etc.) to this equipment. For this reason, indication of specific electrical distribution system redundant counterparts is not provided.

- d. Specific identification of essential cabling is not required in connection with the Redundant Area method, due to the analytical concept utilized. Table 040.075.8 provides identification of power, control and instrumentation cabling required for operation of Dedicated Shutdown System equipment. The following should be noted:
 - 1. Division 1 dc supplied RCIC equipment has power train cabling tracked back only as far as the battery. Battery capacity is sufficient to meet system operational needs.

÷

.

• •

۰**۰** . . •

, |

• \$

-

•

ä

- 2. Division 1 ac supplied values have power train cabling tracked back only as far as the immediate supply source (mcc). These values are not required to change position for shutdown.
- 3. In the interest of providing a complete listing of cables and facilitating a manageable study, all power, control and instrumentation cabling directly required for operation of Dedicated Shutdown equipment has been included in the cable listing. These cables have also been marked on raceway drawings and identified in the dedicated fire area analysis. However, there are cases where protection of cabling is not, in fact, required.

For example, a three phase MOV that is open for power operation, hot shutdown and cold shutdown (See Table 040.075.1 thru 6) does not require protection of power cabling. Detailed analysis of Dedicated Fire Areas will identify cases such as this.

Intruding and Dedicated Shutdown cabling and equipment for which analysis indicates protection is required will be either:

- 1. Relocated to another (acceptable) fire area.
- 2. Separated or protected in accordance with Appendix R, Section III.G.
- e. Complete details of analysis, identification of problem areas, and description of corrective measures will be provided in the Fire Hazards Shutdown Analysis to be included in Appendix F.

TABLE 40.75.1a

EQUIPMENT LIST - DEDICATED FLOW PATH RESIDUAL HEAT REMOVAL SYSTEM

(B&R Dwg. M-521)

	RHR-HX-1A RHR-P-2A
RUR-P-2B RUR Pump "B" EO EO R-IV RU	
RIR-V-3B HX Outlet VO VO R-IV R	RHR-V-3A
	RIIR-V-4A
RUR-V-6B Shutdown Water Supply VC VC R-IV R	RIIR-V-6A
RHR-V-11B Isolation . VC VC R-XVII R	RHR-V-11A
	RIIR-V-16A
	NONE
	RIIR-V-24A
	RIIR-V-26A
	RIIR-V-27A
RHR-V-42B LPCI Isolation VC VO R-I RH	RIIR-V-42A
RHR-V-47B HX Inlet VO VO R-IV R	RHR-V-47A
RHR-V-48B HX Bypass VC VC R-IV R	RIIR-V-48A
RIR-V-49 HX Warmup VC VC R-IV H	IONE
	RIIR-V-52A
	RIIR-V-53A
RUR-V-60B Sample Line Block . VC VC R-IV R	RIIR-V-60A
RIR-FCV-64B Hinimum Plow VO R-IV R	RIIR-FCV-64A
RIIR-V-74B IIX Vent VC R-IY R	RIIR-V-74A
	NONE

WNP-2

•

* **A**

.

м

. ħ

÷ .

•

. *

TABLE 40.75.1b

INSTRUMENT LIST - DEDICATED FLOWPATH RESIDUAL HEAT REMOVAL SYSTEM

(B&R Dwg. M-521)

Instrument Tag No.	Description	Event to Not Shutdown (Mode A-1)	llot Shutdown to Cold Shut- down (Mode A-2)	Pire Area of Dedicated Component	Redundant Counterpart Tag No.
E12-FE- N014B	Orifice Plate	10	10	R-I	NONE
C61-FT-N001	Plow Transmitter	10	10	later	E12-FT-N015B
C61-FI-R005	Plow Indicator	10	IO	RC-IX	E12-FI-R603B

040.075-8

,

*

×

• •

• *

1

·

,

. 1

,

TABLE 40.75.2a

EQUIPMENT LIST - DEDICATED PLOWPATH SERVICE WATER SYSTEM

(B&R Dwg. M-524)

Tag No.	Description	Event to Not Shutdown (Mode A-1)	llot Shutdown to Cold Shut- down (Mode A-2)	Pire Area of Dedicated Component	Redundant Counterpart
SW-P-1B	Standby Service Hater Pump	EO	EO	SW-II	SW-P-1A
S¥-V-2B	SW-P-1B Discharge	vo	vo	SW-II	SW-V-2A
SW-V-4B	Diesol "B" Return	vo	VC	DG-III	SH-V-4A
DCW-V-6B1	Diesel "B" Heat Exchangers Cooling Supply	vo	NR	DG-111	DCW-V-6A1
DCW-V-6B2	Diesel "B" Heat Exchangers Cooling Supply	vo	NR	DG-III	DCH-V-675
SW-TCV-11B	Control Room Cooling -	vo	vo	RC-XII	SW-TCV-11A
SW-V-12B	Spray Pond Return	vo	VC	SW-II	SW-V-12A
SH-V-24B	RHR "B" Pump Room Cooling	vo	vo	R-IV	SH-V-24A
SH-V-34	RCIC Pump Room Cooling	vo	VC	R-VI	NONE
SW-PCV-38B	Loop Pressure Control	vo	vo	SW-II	SW-PCV-38A
RIIR-V-68B	RIR HX Outlet	vo	vo	R-IV	RHR-V-68A
SH-V-69B	Cooling Towar Return	vc	vo	SW-II	SW-V-69A
SW-V-75B	Puel Pool Emergency Make up	vc	vc	R-I	SH-V-75A
SW-V-90	DG "B" Cable Cooling	vc	vc	TG-I	NONE
SW-V-187B	FPC Supply	ve	VC	R-XIV	SH-V-187A
SW-V-188B	FPC Return	vc	VC	R-XIV	SW-V-188A

4

Ť

+

TABLE 40.75.2b

INSTRUMENT LIST - DEDICATED FLOWPATH SERVICE WATER SYSTEM

(B&R Dwg. M-524)

Tag No.	Description .	Event to Hot Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart Tag No.
SW-PI-32BR	Pressure Indicator	10	10	RC-IX	SW-PI-32B
SW-PT-32BR	Pressure Transmitter	10	10	SW-II	SW-PT-32B
SW-TE-1BR	Temperature Element	10	10	SW-II	SW-TE-1C
SW-TI-1BR	Temperature Indicator	10	10	RC-IX	SW-TI-1C
SW-LTD-1BR	Level Transducer	10	10	SW-II	SW-LTD-1C
SW-LT-1BR	Level Transmitter	10	10	SW-II	SW-LT-1C
SW-LI-1BR	Level Indicator	10	10	RC-IX	SW-LI-1C

1

÷

TABLE 40.75.3a

EQUIPMENT LIST - DEDICATED PLOWPATH REACTOR CORE ISOLATION COOLANT SYSTEM

(B&R Dwg. M-519)

Tag No.	Description .	Event to Not Shutdown (Mode A-1)	llot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart
RCIC-P-1	RCIC Pump ·	EO .	NR	R-IV	NONE
RCIC-P-2.	Condenser Vacuum Pump	EO	NR	R-VI	NONE
RCIC-P-4	Condenser Condensate Pump	EO	NR	R-VI	NONE
RCIC-HX-1	Barometric Condenser	EO	NR	R-VI	NONE
RCIC-TK-1	Vacuum Tank	EO	NR	R-VI	NONE
RCIC-VT-1	RCIC Turbine	EO	NR	R-VI	NONE
RCIC-V-8	Outboard Containment Isolation	vo	NR	R-I	NONE
RCIC-V-63	Inboard Containment Isolation	vo	vc	R-II	NONE
RCIC-V-64	Outboard Containment Isolation (RHR-HT-EX)	vc	vc	R-I	NONE
RCIC-V-45	Turbine Isolation	vo	NR	R-VI	NONE
RCIC-V-1	Turbine Trip	vo	NR	R-VI	NONE
RCIC-V-2	Turbine Governing	vo	NR	R-VI	NONE
RCIC-V-68	Turbine Exhaust	oy	vc	R-I	NONE
RCIC-V-69	Vacuum Pump Exhaust .	vo	vc	R-VI	NONE
RCIC-V-76	Inboard Containment Isolation Valve By-pass	vc	VC	R-II	NONE
RCIC-V-10	Cond. Storage TK Supply	VC	NR	R-VI	NONE
RCIC-V-13	RCIC Injection to RPV	vo	vc	R-I	NONE
RCIC-V-19	Minimum Flow	vo	vc	R-VI	NONE
RCIC-V-22	Cond. Storage TK Return	VC		5 W	
RCIC-V-31	Suppression Pool Supply	•	NR	R-YI	NONE
		vo	VC	R-VI	NONE
RCIC-V-46	Turbine Lube Oil Cooling	vo	NR	R-VI	NONE
RCIC-V-80	Outboard Isolation Containment Vacuum	VC /	VC	R-I	NONE

111

TABLE 40.75.3b

INSTRUMENT LIST - DEDICATED FLOWPATH REACTOR COOLANT INJECTION SYSTEMS

(B&R Dwg. M519-RCIC)

Tag No.	Description	Event to Hot Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart Tag No.
E51-FE-N001	Plow Element	10	10	R-VI	NONE
E51-FT-N003	Flow Transmitter	10	10	R-I	NONE
C61-FIC-R001	Flow Controller	10	IO	RC-IX	E51-FIC-R600
C61-SQRT- K001	Square Root Extractor	10	10	RC-IX	E51-SQRT-K601
C61-FI-R001 -1	Flow Indicator	10	10	RC-IX	E51-FI-R601-1
C61-SI-R003	Speed Indicator	10	10	RC-IX	E51-C002

040.075-12

TABLE 40.75.4a

EQUIPMENT LIST - DEDICATED FLOWPATH NUCLEAR BOILER SYSTEM

(B&R Dwg. M-529)

Tag No.	Description	Event to Not Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart
RPV	Reactor Pressure Vessel	EO	EO	R-II	NONE
**MS-RV-4A	MS/SRV Valve	NR	vo	R-II	MS-RV-4B
**MS-RV-4C	MS/SRV Valve	NR	NR	R-II	MS-RV-3D
**MS-RV-4D	MS/SRV Valve	NR	NR ·	R-II	MS-RV-5C
MS-V-22A	Isolation Valve	VC	vc	R-II	NONE
MS-V-22B	Isolation Valve	VC	vc	R-II	NONE
MS-V-22C	Isolation Valve	VC	vc	R-II	NONE.
MS-V-22D	Isolation Valve	VC	vc	R-II	NONE
					•

Ψ

**3 valves required for Mode A-2, i.e., for RHR "Special Shutdown Cooling"

TABLE 40.75.4b

INSTRUMENT LIST - DEDICATED FLOWPATH NUCLEAR BOILER SYSTEM

(B&R Dwg. M-529)

Tag No.	Description	Event to Hot Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart Tag No.
B22-LIS- No37A	Level Indicating Switches	IO	10	R-I	B22-LIS-37B
B22-LIS- N037C	Level Indicating Switches	IO	ТО	R-I	B22-LIS-37D
B22-LITS- N026D	Level Transmitter	. 10	IO	R-I	NONE
C61-LI-R010	Level Indicator	10	10	RC-IX	NONE
C61-PT-N006	Pressure Transmitter	, 10	10	R-I	B22-PT-N51A
C61-PI-R011	Pressure Indicator	10	10	RC-IX	B22-PR-R603

.

) . . .

ئە: •

.

•

•

•

TABLE 40.75.5

INSTRUMENT LIST - DEDICATED FLOWPATH MISCELLANEOUS SYSTEMS

•

CMS-TE-19R, Temperature ElementsIOIOR-IICMS-TE-20, 36,40 SPTM-TE-1A/1B37R, 39R,41R, 42R,43R,44RIOIORC-IXCMS-MV/I-20, 36,4037R, 39R,41R, 42R,43R,44RIOIORC-IXCMS-MV/I-20, 36,40CMS-TI-19R, Temp. Indicators 37R, 39R,41R, 42R,43R,44RIOIORC-IXCMS-TI-20, 36,40CMS-TI-19R, Temp. Indicators 37R, 39R,41R, 42R,43R,44RIOIORC-IXCMS-TI-20, 36,40CMS-PT-2R,6R Pressure Trans.IOIOR-ICMS-PT-1, 5CMS-LT-2R CMS-FI-2R,6R Press. IndicatorsIOIOR-IVCMS-LT-1CMS-PI-2R,6R Press. IndicatorsIOIORC-IXCMS-LT-1CMS-PI-2R,6R Press. IndicatorsIOIORC-IXCMS-LT-1CMS-PI-2R,6R Press. IndicatorsIOIORC-IXCMS-LR/PR-3	Tag No. ·	Description	Event to Hot Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart Tag No.
CM-MV/1-19R, NV to current converters10101036,4037R,39R,41R, 42R,43R,44R1010RC-IXCMS-TI-20, 36,40 SPTM-TR-1/2CMS-PT-2R,6R Pressure Trans.1010R-ICMS-PT-1, 5CMS-LT-2RLower Trans.1010R-IVCMS-LT-1CMS-PI-2R,6R Press. Indicators1010RC-IXCMS-PR-1CMS-PI-2R,6R Press. Indicators1010R-IVCMS-LT-1CMS-PI-2R,6R Press. Indicators1010RC-IXCMS-PR-1	·37R, 39R, 41R,		10	10	R-II	36,40
CMS-TI-19R, Temp. IndicatorsIOIORC-IXCMS-TI-20, 36,40 36,40 SPTM-TR-1/237R,39R,41R, 42R,43R,44RIOIOR-ICMS-PT-2R,6R Pressure Trans.CMS-PT-2R,6R Pressure Trans.IOIOR-ICMS-PT-1, 5CMS-I.T-2RLower Trans.IOIOR-IVCMS-LT-1CMS-PI-2R,6R Press. IndicatorsIOIORC-IXCMS-PR-1	37R, 39R, 41R,			10	RC-IX	
CMS-PT-2R, 6R Pressure Trans.IOIORCMS-LT-2RLower Trans.IOIOR-IVCMS-LT-1CMS-PI-2R, 6R Press.IndicatorsIOIORC-IXCMS-PR-1	37R, 39R, 41R,			10	RC-IX	36,40
CMS-PI-2R, 6R Press. Indicators IO IO RC-IX CMS-PR-1	CMS-PT-2R,6R	Pressure Trans.	10	10	R-I	CMS-PT-1, 5
CMS-PI-2R, 6R Fress. Indicators	CMS-LT-2R	Lower Trans.	10	10	R-IV	CMS-LT-1
CUC-II-2P Lovel Indicators IO IO RC-IX CMS-LR/PR-3	CMS-PI-2R,6R	Press. Indicators	10	10	RC-IX	CMS-PR-1
	CMS-LI-2R	Level Indicators	10	10	RC-IX	CMS-LR/PR-3

.

--+

÷

:

10

TABLE 40.75.6

EQUIPMENT LIST - DEDICATED FLOWPATH HVAC SYSTEMS

.

Tag No.	Description	Event to Hot Shutdown (Mode A-1)	Hot Shutdown to Cold Shut- down (Mode A-2)	Fire Area of Dedicated Component	Redundant Counterpart
-	Reactor Building				
RRA-FN-3 RRA-FN-6 RRA-FN-10 RRA-FN-12 RRA-FN-14	RHR Pump Room "B" Fan Coil Unit RCIC Pump Room Fan Coil Unit Div. II MCC Room Fan Coil Unit Div. I MCC Room Fan Coil Unit H ₂ Recombiner MCC Room Fan Coil Unit	E0 E0 E0 E0 E0	EO NR EO NR EO	R-IV R-VI R-XVIII R-XX R-XIX	RRA-FN-2 RRA-FN-4 RRA-FN-11 NONE RRA-FN-13
	Control Building				
WMA-PN-51B WMA-TIC-11B WMA-FN-52B WMA-AD-52-1 WMA-AD-52-2 WMA-FN-53B	Cable Spreading Room Air Handling Unit Return Air Damper	E0 E0 E0 E0 E0 E0	E0 E0 E0 E0 E0 E0	RC-XII RC-XII RC-XII RC-XII RC-XII RC-XII	WMA-FN-51A WMA-TIC-11A WMA-FN-52A NONE NONE WMA-FN-53A .
	Pump Houses				• •
PRA-FN-1B	SSW "B" Pump Fan Coil Unit Diesel Generator Building	EO	. EO •	SW-II	PRA-FN-1A
	<u>Div. II</u>				
DMA-FN-22 DMA-FN-21 DEA-FN-22 DEA-FN-21	DG & Elect. Rm Air Handling Unit DG Room Air Handling Unit Day Tank Room Exhaust Fan DG Room Exhaust Fan	EO EO EO EO	EO EO EO EO	DG-III DG-III DG-III DG-III	DMA-FN-12 DMA-FN-11 DEA-FN-12 DEA-FN-11

.

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
DG-I °	DG	DG-3 & AUX. EQPI	r. 441' & 455'	3
DG-I	DG	MC-4A	441' & 455'	3
DG-I	DG	PP-4A	· 441' & 455'	3
DG-I	DG	ELP-4A	441' & 455'	3
DG-I	DG	,TR-4A	441' & 455'	3
DG-I	DG	DGHV-III	441' & 455'	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
DG-I	DG	SM-4	441' & 455'	3
DG-I	DG	TR-4-41	441' & 455'	3
DG-I	DG	B1-HPCS	441' & 455'	3
DG-I	DG	C1-HPCS	441' & 455'	3
DG-I	DG	H22-P028	441' & 455'	3
DG-II °	DG	DG-1 & AUX. EQPI		1
DG-II	DG	DG-1-7	441' & 455'	1
DG-II	DG	PP-7A-A-A	441' & 455'	1
DG-II	DG	TR-7A-A-A	441' & 455'	1
DG-II _.	DG	ELP-7A-A	441' & 455'	1
DG-II	DG	TR-7A-A	441' & 455'	1
DG-II	DG	MC-7A-A	441' & 455'	1
DG-II	DG	DGHV-I	441' & 455'	1
DG-III		DG-2 & AUX. EQP1		2
DG-III	DG	DG-2-8	441' & 455'	2
DG-III	DG	MC-8A-A	441' & 455'	2
DG-III	DG	ELP-8A-A	441' & 455'	2
DG-III	DG	TR-8A-A	441' & 455'	2 2 2 2 2 2 2 2 2 2 2
DG-III	DG '	PP-8A-A-A	441' & 455'	2
DG-III	DG	TR-8A-A-A	441' & 455'	2
DG-III	DG	- DGHV-II	441' & 455'	2

* See Sh. 2 for additional equipment in these areas.

* Indicates equipment is a part of the dedicated shutdown system.

040.075-17

*

.

Į. ¥. ¥10 n. na ak

Pro a managere

. -.

ņ . , а — _____а -____а -____а

.

•

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
DG-IV	DG	NONE	441'	-
DG-V	DG	NONE	441'	-
DG-VI	DG	NONE	441'	-
DG-VII	DG	NONE	441'	
DG-VIII	DG	NONE	441'	-
DG-IX	DG	NONE	441'	-
DG-X	DG	NONE	455'	-
DG-II	DG	DP-S1-1E	441'	1
DG-III	DG	DP-S1-2E	441'	2
DG-I	DG .	"PNL HPCS"	441' & 455'	3
DG-I	DG	"ENG&GEN AUX LOAD AC PNL"	441' & 455'	[.] 3

040.075-18

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
SW-I	SWIA	IR-26	431' & 441'	2
SW-I	SWIA	PP-7A-G	431' & 441'	1
SW-I	SWIA	TR-7A-F	431' & 441'	1
SW-I	SWIA	PP-7A-B	431' & 441'	1
SW-I	SWIA	IR-21 & 24	431' & 441'	1&3
SW-I	SWIA	SUPV. PNLS S-1 & S-3	431' & 441'	1 & 3
SW-II	SWIB	IR-25	431' & 441'	1
SW-II	SWIB	IR-22	431' & 441'	2 *
SW-II	SWIB	PP-8A-G	431' & 441'	2 *
SW-II	SWIB	PP-8A-B	431' & 441'	2 *
SW-II	SWIB	TR-8A-F	431' & 441'	2 *
SW-II	SWIB	SUPV. PNL S-2	431' & 441'	2 *

040.075-19

•

1

. ,

٠.

.

I

•

•

.

•

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
TG-I TG-I TG-I TG-I	TG TG TG TG	IR-81 IR-82 IR-83 IR-84	471' 471' 471' 471'	RPS DIVISIONS 4 thru 7
TG-II	TG	NONE .		. –
TG-III	TG	NONE		-
TG-IV	TG	NONE		-
TG-V	TG	NONE		-
TG-VI	TG	NONE		-
TG-VII	TG	NONE		-
TG-VIII	TG	NONE	*	- 、
TG-IX	TG	NONE		~ _
TG-X	TG	NONE		-

040.075-20

*

.

٩

•

·

.

٠

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

AREA	BLDG	EQUIPMENT	ELEV	DIV
S-I	SERVICE	NONE	-	
S-II	SERVICE	NONE	` _	•
S-III	SERVICE	NONE	-	
S-IV	SERVICE	NONE	-	
s-v	SERVICE	NONE	-	
S-VI	SERVICE	NONE	-	
S-VII	SERVICE	NONE	-	
CW-I	CIRC. WTR.	NONE	<u> </u>	
CW-II	PUMPHOUSE	NONE	-	
CT→I	C.T. BLDG #1 ,	NONE	-	
CT-II	C.T. BLDG #2	NONE	-	
-	MAKEUP WTR PUMPHOUSE	NONE	-	
-	COND STOR TNK & YARD AREA	NONE	-	
-	WELL WATER PUMPHOUSES NO. 1, 2, & 3	NONE	-	

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

	AREA	BLDG	EQUIPMENT	ELEV	DIV	
	RC-I	RW	NONE	437' thru 501'	-	
	RC-II	RW	NONE	484'		
	RC-III	RW	NONE	467' thru 525'	-	
ار	RC-IV RC-IV RC-IV RC-IV RC-IV	RW RW RW RW	DP-S1-1 DP-S2-1 MC-S1-1D C2-1	467' 467' 467' 467'	1 1 1 1	ן א א
	RC-IV RC-IV RC-IV RC-IV	RW RW RW RW	C1-1 C0-1A C0-1B PP-7A	467' 467' 467' 467'	1 1 1 1	
	RC-IV RC-IV RC-IV	RW RW RW	TR-7A MC-7A IN-3	467' 467' 467'	1 1 1	
	RC-V RC-V RC-V RC-V	RW RW RW RW	B2-1 B1-6 B0-1A B0-1B	467' 467' 467' 467'	1 1 1 1	*
	RC-VI RC-VI RC-VI	RW RW RW	B1-2 B0-2A B0-2B	467' 467' 467'	2 2 2	*
	RC-VII RC-VII RC-VII RC-VII RC-VII	RW RW RW RW RW	DP-S1-2 MC-S1-2D C1-2 C0-2A C0-2B	467' 467' 467' 467' 467' 467'	2 2 2 2 2	*
	RC-VII RC-VII RC-VII RC-VII	RW RW RW .	MC-8A IN-2 TR-8A PP-8A	467' 467' 467' 467	2 2 2 2 2 2 2 2 2 2 2 2	*

*

*

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
RC-VIII	RW	SM-8	467 '	2 *
RC-VIII	RW	TR-8-81 & NR-T81	467'	2 *
RC-VIII	RW	SL-81	467 '	2 ·* 2 *
RC-VIII	RW	SL-83	467'	2 *
RC-VIII	RW	TR-8-83 & NR-T-83	467'	2 *
RC-IX	RW	C61-P001	467'	1 & 2 *
RC-IX	RW '	BD - "RS"	467'	1 & 2 *
RC-IX	RW	PP-7A-F	467'	1 *
RC-IX	RW	DP-S1-1D	467'	1 *
RC-IX	RW	DP-S1-2D	467'	2 *
RC-IX	RW	PP-8A-F	467 '	2 *
RC-X	RW	-See Note #1-	501'	See Note #1
RC-XI	RW	COHV-1	525'	1
RC-XI	RW	COHV-3	525'	
RC-XI	RW	WOA-SR-18A	525'	
RC-XI	RW	WOA-SR-18B	525'	
RC-XI	RW	MC-7F	525'	1
RC-XII	RW	MC-8F	525'	2 *
RC-XII	RW	COHV-2	525'	2 *·
RC-XII	RW	COHV-4	525'	
RC-XII	RW	WOA-SR-19A	525'	
RC-XII	RW	WOA-SR-19B	525'	
RC-XIII	RW	NONE	484', 501	, 525'
RC-XIV	RW	SM-7	441'	1
RC-XIV	RW	TR-7-71 & NR-T71	467'	1
RC-XIV	RW	SL-73	467'	1
RC-XIV	RW	SL-71 ·	467'	1
RC-XIV	RW	TR-7-73 & NR-T73	467'	1

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	<u>ELEV</u> <u>DIV</u>
RC-XV	RW	NONE	437' thru 501'
RC-XVI	RW	NONE	437' thru 525'
RC-XVII	RW	NONE	437' thru 501'
RC-XVIII	RW	NONE	467' & 484'
RC-XIX	RW	NONE	467'

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
R-I	RB	MC-7B	522'	1
R-I	RB	ELP-7B-B	471'	1
R-I	RB	ELP-7B-A	606'	1
R-I	RB	PP-7A-E	471'	1
R-I	RB	PP-8A-E	471'	2
R-I	RB	SH-9	471'	1
R-I	RB	SH-10`	471'	2 2 1
R-I	RB	SH-11	522'	2
R-I	RB	SH-12	522'	1 1
R-I	RB	MC-7B-A	522'	1
R-I	RB	MC-7B-B	572'	1
R-I	RB	ELP-8B-A	606'	2
R-I	RB	IR-61	422'	1
R-I	RB	IR-62	471'	1
R-I	RB	IR-63	501'	2 2
R-I	RB	IR-64	501'	2
R-I	RB	IR-65	471'	1
R-I	RB	IR-66	501'	1
R-I	RB	IR-67	548 '	. 1
R-I	RB	IR-68	548 '	2 2 2 1
R-I	RB	IR-69	522'	2
R-I	RB	IR-70	522'	2
R-I	· RB	IR-71	522 '	
R-I	RB	IR-73	522'	1
R-I	RB	IR-74	522'	2
R-I	RB	H22-P001	471	
R-I	RB	H22-P002	522	
R-I	RB ·	H22-P004	522'	1
R-I	· RB	H22-P005	522'	

()

¥ 1

• •

ł

. 1 1 -

N 1 1

ł

.

• ,

WNP-2.

TABLE 040.75-7

LOCATION OF MAJOR SAFETY RELATED

ELECTRICAL DISTRIBUTION EQUIPMENT

AREA	BLDG	EQUIPMENT	ELEV	DIV
R-I	RB	H22-P006	471'	
R-I	RB	H22-P007	522'	
R-I	RB	H22-P009	471'	
R-I	RB	H22-P010	471'	
R-I '	RB	H22-P011	548'	
R-I	RB	H22-P015	501'	
R-I	RB	H22-P017	471'	
R-I	RB	H22-P018	501'	1
R-I	RB	H22-P021	. 501'	2
R-I	RB	H22-P022	471'	
R-I,	RB	H22-P024	471'	
R-I	RB	H22-P025	501'	
R-I	RB	H22-P026	522'	
R-I	RB	H22-P027	522'	
R-I	RB	H22-P029	471'	
R-I	RB	H22-P030	501'	
R-I	RŚ	H22-P031	501'	
R-I '	RB	H22-P032	501'	
R-I	RB	H22-P033	501'	
R-I	RB	CMS-SR-13	548'	1
R-I	RB	CMS-SR-14	548	· 2
R-I	RB	CMS-SR-20	548'	
R-I	RB	CMS-SR-21	548'	v ¹ 4
R→I	RB	CMS-SR-32A	548'	
R-I	RB	CMS-SR-32B	548'	
R-I	RB	CMS-SR-33A	548	
R-I	RB	CMS-SR-33B	548 '	
R-I	RB	CRD-IR-1A	422'	
R-I `	RB	CRD-IR-1B	422'	

()

ч

· •

•

е 1 - 2

4

ī.

4

ĥ

ł 1 -• . ę

7 16

,

٠

-

1

WNP-2 TABLE 040.75-7

ELECTRICAL DISTRIBUTION EQUIPMENT

DIV

1

1

1

*

*

*

22222222

1

1

AREA	BLDG	EQUIPMENT	ELEV
R-I	RB	CRD-IR-1C	422'
R-I	RB	CRD-IR-1	522'
R-I	RB	CRD-IR-2	522'
R-I	RB	CRD-IR-3	522'
R-I	RB	ELP-8B-B	471'
R-I	RB	TR-7B-A	606'
R-I	RB	TR-8B-A	606'
R-I [.]	RB	TR-8B-B	471'
R-I	RB	TR-7B-B	471'
R-I	RB	SGT-EHC-1A1 CP	572'
R-I	RB	SGT-EHC-1B1 CP	572'
R-I	RB	SGT-FU-1A CP	572 '
R-I	RB	CAC-HR-1A CP	572'
R-II thru R-XVII	RB	NONE	
R-XVIII	RB	MC-8B `	522'
R-XVIII	RB	MC-8B-A	522'
R-XIX	RB	MC-8B-B	572'
R-XIX	RB	SGT-EHC-1A2 CP	
R-XIX	RB	SGT-EHC-1B2 CP	
R-XIX	RB	CAC-HR-1B CP	
R-XIX	RB	SGT HUMID TRANS PNL	
R-XIX	RB	SGT-FU-1B	
R-XX	RB	MC-S2-1A	471'
R-XX	RB	VB–1A	471'

e -1

4

. ... ગ 1 # - - -

٩ •

•

,

pt.

ø

*

*

WNP-2 TABLE 040.75-7

NOTES:

#1 Safety Related Equipment in the Main Control Room is too numerous to provide a detailed listing. They include the following:

> NSSS Control Boards * (Div. 1 thru 7) BOP Control Boards * (Div. 1 thru 3) Relay Panel RC-1 and RC-2 * (Div. 1 & 2) Supervisory Cabinets CS-1, 2*, 3 (Div. 1 thru 3) DP-SO-1A & DP-SO-1B (Div. 1 & 2) PP-7A-A & PP-8A-A * (Div. 1 & 2) DP-S1-1A * & DP-S1-2A * (Div. 1 & 2) Instrument Racks COHV-5A & 5B *

#2 This equipment connects to Mechanical, Instrumentation, and HVAC equipment that is part of the dedicated shutdown system

Equipment is Either:

Power Ckts:

- a. Directly connected to the components
- b. Part of the power train from the equipment to the dc. source (Div. 2) or battery source (Div. 1)

Control Ckts:

Part of the complete control circuit required for device operation.

£1

040.075-29

.

ч

¥

:

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA <u>TYPF</u>	POWER SOURCF	ELECTRICA ONE-LINF	AL DRAWINGS <u>VIRING</u>	BLOCK	REMARKS
RCIC-P-1 (E51-C001) Controls							Turbine Driven Pump
RCIC-P-2 (E51-C002)	1M21A-180 181 182	P C C	MC-S2-1A DP-S2-1 BATT B2-1	E505	2-22-2205 E519-347	E878-49 -	
RCIC-P-4 (E51-C004)	1M21A-190 191 192	P C C	MC-S2-1A DP-S2-1 BATT B2-1	E505	2-22-2205 E519-34A	E878-49	
RCIC-V-1 (w/E51-C002)	1M21A-10 11,12,13 14,15,16	P C C	MC-S2-1A DP-S2-1 BATT B2-1 BATT B1-1	E505	2-22-220f	F880-2 F878-49	Turb Trip/Throttle MOV
	1RC1C-27	с	MC-S1-1D DP-S1-1 HB-P621 Bus A		2-72-7203		(1D11A-9 DP-S1-1A)
RCIC-V-2 (E51-C002)	1RC1C-31 32		MC-S1-1D DP-S1-1 ; BATT B1-]		2-22-1209 2-22-2206 2-42-0203 E540-8	•	Hydraulic Oper Vlve (Turb gov valve) Mtd on Trip & Throttle V
RCIC-V-8 (E51-F008)	1M11D-50 51 52 53	P C C C	MC-S1-1D DP-S1-1 BATT B1-1	E505	2-22-2206 E519-34A F522	E878-51 E880-2	
	54	С			v		
RCIC-V-10 (E51-F010)	1M11D-30 31 32 33	P C C C	MC-S1-1D DP-S1-1 BATT B1-1	E505	2-22-2206 F519-34A	E878-51 E880-2	

•

.

040.075-30

.

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA TYPE	POWFR SOURCF	ELECTRI <u>ONE-LINF</u>	CAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
RCIC-V13 (E51-F013)	1M21A-120 121 122	P C C	MC-S2-1A DP-S2-1	E505	2-22-2206 E522	E878-49 F880-2	
	124 125	с с	BATT B2-1				
RCIC-V-19	1M21A-130	Р	MC-S2-1A	E505	2-22-2206		
(E51-F019)	131	С	DP-S2-1		F519-34A	E880-2	
	132 134	С	BATT B2-1		2500		
	134	с с	BATT B2-1		F522		
RCIC-V-22	1M21A-140	P	MC-S2-JA	E505	2-22-2206		
(E51-F022)	141 142	C C	DP-S2-1			E880-2	
	142	c	BATT B2-1				
RCIC-V-31	1M11D-10	P	MC-S1-1D	E505	2-22-2206	F878-51	•
(E51-F031)	11	С	DP-S1-1		F519-34A	E880-2	
•	12	C					
	13 IRC1C-28 •	C C	BATT B1-1		F522		1D11A-9
	INCIC-28	C		•	E537-28		10118-9
RCIC-V-45	1M21A-170	Р	MC-S2-1A	E505	2-22-2206	F878-49	
(E51-F045)	171	С	DP-S2-1				
	172	С	BATT B2-1		E519-24	E880-2	
	173	c	VO 01 10		E537-7A		
	174	C	MC-S1-1D DP-S1-1		E519-34A		
	1RC1C-24,34	Ċ	BATT B1-1	E540-6	2-22-2202		1 D 11A-9
RCIC-V-46	1M11D-170	Р	MC-S1-1D	E505	2-22-2206	E878-51	See PED 218-E-2137
(E51-F046)	160 .	С	DP-S1-1		F519-34A	E880-2	
	1	С	BATT B1-1				
RCIC-V-63	2MBBA-360	Р	MC-88-A	E503-7	2-22-2206	F878-36	
(E51-F063)	361	С	MC-8B		E519-34A	E880-2	
	362	J.	SL-81		E522		
	363		DG-2.		2-42-0204		
	364 365						
	365					-	
•							

WNP-2

Ô

• •

*

.

· · ·

,

N -

.

• • • • •

. .

•

· ·

TABLE 040.75-8

:

	EQUIPMENT	CABLE NO'S	CA <u>TYPF</u>	POWFR SOURCF	ELECTRIC <u>ONE-LINF</u>	AL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
L.	RCIC-V-64 (E51-F064)	1M21A-160 161 162 163 164	P C C C C	MC-S2-1A DP-S2-1 BATT B2-1	E505	2-22-2206 E519-34A E522	F878-49 E880-2	
**	RCIC-V-68 (E51-F068)	1M11D-150 151 152 153	P C C C	MC-S1-1D DP-S1-1 BATT B1-1	E505	2-22-2206 E519-34A E522	E878-49 E880-2	
	RCIC-V-69 (E51-F069)	1M21A-200 201 202 203 204 207 208	P 0 0 0 0 0 0 0 0	MC-S2-1A DP-S2-1 BATT B2-1	E505	2-22-2206 5519-34A 5522	E878-49 E880-2	
	RCIC-V076 (E12-F076)	2M8BA-440,441 442 443 444 BRC1C-9010	P C C C C	MC-8B-A MC-8B SL-81 DG-2	E503-7	2-22-2206 F519-1 E522 E539-40	E878-36 F880-2	Alarm
	RCIC-HX-1				*			Heat Exchanger No Direct Elect. Connections
	RCIC-TK-1						E880-2	Tank No Direct Elect. Connections
	RCIC-VT-1							Steam Turbine NO Direct Flect. Connections

•

1

;

.

~

.

· ·

.

2

•

<u>ـ</u>

,

1

\$

. • • • •

•

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWFR SOURCP	FLECTRIC <u>ONE-LINE</u>	CAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
RCIC Barometric	IRC1C-29	С		E505	F539-22 E537-7A	E880-2	Hi Lev. Cont
Condenser Pkg		٨	MC-S1-1D DP-S1-1 BATT B1-1	, ,	2-22-2203		H13-P621 Bus A
RCIC-FE-1 (E51-N001)							Orifice No Flectrical Connections
RCIC-FT-3 (E51-N003)	IRC1C-35 36	S S	RS BD MC-S1-1D	E505	2-22-2205 2-42-0203 E539-16		H22-P017-H13-P612 Indic.
			DP-S1-1 BATT B1-1		E539-18 E539-28		AD11A-9005 (RC1C-35)
RHR-P-2B (E12-C002)	25M8-50 51	r P P	SM-8 DG-2	F502-2	E517-13 2-17-0705 2-17-0715	E876-5 F882-4	
•	25M8-54,55 56,57	с					
RHR-V-3B	2M8BB-140	Р	MC-8B-B MC-8B	E503-12	E519-34A 2-17-0713	E878-53 E880-10	
(E12-F003B)	141 142 143	C C	NC-88 SL-81 DG-2		2-17-0713	£880-10	·
RIR-V-4B	2M8BA-20	P	MC-8B-A MC-8B	E503-7	E522 2-17-0713	F878-34 F878-36	
(E12-F004B)	22 23	C C	SL-81		2-42-0207	F880-10	
	24 17	с с	DG-2				

•

• •

.

•

•

¥

I

1

4 * 14. 1

•

4

v

•

TABLE 040.75-8

		CA TYPF	POWFR SOURCF	FLFCTRI ONF-LINE	CAL DRAWINGS WIRING	BLOCK
EQUIPMENT	CABLE NO'S	TIPF	SOOKCE	ONE-BIND	MINING	<u>DHOON</u>
RHR-V-6B	2M8BA-10	P	MC-8B-A	E503-7	E519-1	F878-36
(E12-F006B)	12,13	С	MC-8B			
、	14,15,16	С	SL-81, DG-2		E519-34A	E880-10
	17,18	с с	DP-S1-2D	E50	2-17-0713	
	2RHR-41	С	DP-S1-2			
	BRHR-9035,9036	С	BATT B1-2		2-42-0207	
RHR-V-11B	2M8BA-230	Р	MC-8B-A	E503-7	E519-34A	E878-36
(E12-F011B)	232	С	MC-8B		2-17-0713	F880-10
(233	С	SL-81		2-42-0207	
	234	С	DG-2	•		
RHR-V16B	2M8BA-140	Р	MC-8B-A	E503-7	F519-34A	E878-36
(E12-F016B)	142	С	MC-8B		F522	E880-10
(===/	143	С				
	144	С	SL-81		2-17-0713	
	132	С	DG-2		2-17-0715	
RHR-V-23	1M21A-40 -	P	MC-S2-1A	E505	E522	E878-49
(E12-F023)	41	⁺ C	DP-S2-1		2-06-0907	F880-2
	42	С	BATT B2-1			
	43	С				
RHR-V-24B	2M8BA-90	Р	MC-8B-A	E503-7	B519-34A	F878-36
(E12-F024B)	92	С				
•	93	С	MC-8B		E522	E880-10
	94	С	SL-81		2-17-0713	
	16	с	DG-2		2-42-0208	
RIIR-V-26B	2M8BA-160	Р	MC-8B-A	E503-7	E519-34A	F878-36
(E12-F026B)	162	С	MC-8B		2-17-0713	E880-10
•	163	С	SL-81	•	2-42-0208	
	164	С	DG-2			
RIIR-V-27B	2M8BA-150	Р	MC-8B-A	E503-7	E519-34A	E878-36
	152	С	MC-8B		E522	E880-10
	153	С	SL-81		2-17-0706	
	154	С	DG-2		2-17-0713	•
	15	С				

REMARKS

,

2DI2D-5 C61 Pool Supply Alarms

.

. 1 .

4 ;

ł Î ļ 1. i I * *

•

-7

•

1

н

	TABLE 040.75-8						
EQUIPMENT	CABLE NO'S	CA <u>TYPF</u>	POWFR SOURCF	ELECTRI ONE-LINE	CAL DRAWINGS WIRING	BLOCK	REMARKS
RHR-V-42B (E12-P042B)	2M8BA-100 102 103 104	P C C C	мс-8в-а мс-8в Рр-8а-а	E503-7 E508-1	E519-34P F522 2-17-0705 2-17-0714	E878-36 F880-10	
	2RHR-78	Ŭ	DG-2	E537-6A	2-42-0208		2P8AA-8
RIIR-V-47B (E12-F047B)	2M8BB-120	Р	МС-8В-В МС-8В	E503-12	E519-34A 2-17-0713	E878-53 E880-10	
	2M8BB-121 122,123	С	SL-81 DG-2		2-42-0209		
RHR-V-48B (E12-F048B)	2M8BB-130	Р	МС-8В-В МС-8В	E503-12	E519-1 E519-34A	E878-53 E880-10	
-	2M8BB-131 132,133	С	SL-81 DG-2		2-17-0713 2-42-0209		
RHR-V-49 (E12-F-49)	2M8BB-230	P	МС-88-в МС-8в	E503-12	E519-1 2-06-0907	F878-53 F880-2	
	2M8BB-231 232,233,234	С	SL-81 DG-2		2-42-0209		
RHR-V-52B (E12-F052B)	2M8BB-250	Р	МС-8В-В МС-8В	E503-12	F519-1 F519-34A	F878-53 E880-10	
	2M8BB-251 252,253	с	SL-81 DG-2		2-17-0713 2-42-0208		
RHR-V-53B (E12-F053B)	1M7BA-580 581	P C	MC-7B-A MC-7B	E503-7	F519-1 E519-34A	F878-28 E880-10	Per PED
(E12-10228)	581 582 583	C C C	SL-71 SM-7	- '	2-42-0208	F990-10	218-F-1759
	555	v	DG-7		2-07-0714		
RHR-V-60B (E12-F060B)	2NS4-1,29	С		E504	E537-6A E537-6C	E880-2	
•					2-06-0908 2-06-0907	•	
** ••					E539-21	-	Power Supply

040.075-34

.

.

.

WNP-2

TABLE 040.75-8

:

EQUIPMENT	CABLE NO'B	CA <u>TYPF</u>	POWFR SOURCE	ELFCTRIC ONF-LINE	CAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
RHR-FCV-64B (E12-F064B)	2M8BA-390 391 392	P C C	MC-88-A MC-88	E503-7	F522 . 2-17-0714	F878-36 E880-10	
	BRHR-9036	Ū	56-81 DG-2		F540-11		Alarm
RHR-V-68B (E12-F068B)	2M8BB-220	-	мс-88-в мс-8в	E503-12	F519-34A 2-17-0714	E878-53 F880-10	
	2M8BB-221 222,223,224,	С	SL-81 DG-2		2-42-0210	F876-5	
RHR-V-74B (E12-F074B)	2M8BB-150 151 152	P C C	MC-8B-8 MC-8B SL-81	E503-12	2-17-0714	E878-53 E880-10	
RHR-V-115	2RHR-34 2M8BB-270	C P	DG-2 MC-8B-B	E503-12	0 19 0910	8030 53	Pos Indicator
(E12-F094)	2M8BB-271	r C	MC-88-8 MC-88 SL-81	£303-12	2-17-0713	F878-53 F880-10	
	272	č	DG-2				•
RHR-HX-1B							Heat Fxchanger No Direct Flect. Connections
RHR-FE-14B (E12-N014B) RHR-FT-15B	2RHR-35	S	H13-P613 PP-8A-A MC-8A SL-83 SM-8	E504	2-17-0707	M521-H5	Non Elect Per Flow (Actuates RHR-FT-15B
			DG-2				2P8AA-006

.

7

040.075-35

2

? -

;

WNP-2

Ō

•

.

. . .

,

, 4 .

4

đ

-

•

.

.

•

A

,

	TABLE 040.75-8						
EQUIPMENT	CABLE NO'B	CA <u>TYPF</u>	Power Source	flectri(<u>one-line</u>	CAL DRAWING <u>HIRING</u>	BLOCK	REMARKS
SW-P-1B	2SM8-80	P	SM-8 DG-2	E502-2	E517-14	F876-5 E886-5	
	25M8-81,84 85,86,87, 88,89,93	с					
	BSM8-9089	с				r .	Mislabelled CA should be Div 2
SW-V-2B	2887-40 2887-41,42 43,44,45, 46,47	° P C	MC-8A SL-83 DG-2	E503-6	E527-7 E527-6	F878-32 F886-5	
SW-V-4B	2M8AA-160	Р	MC-8A-A MC-8A	E503-9	E519-9	E878-33 E883-2	
	2M8AA-161 162,163	С	SL-83 DG-2				e e
SW-V-6B-1 (SW-V-216)	2DG2-19	С	See Remarks	53-00-0054 ~		F883-2	Furnished as part of Vendor Pkg. Powered from same source as other DG components.
SW-V-6B-2 (SW-V-217)	2DG2-21	С	See Remarks	53-00-0055		' F883-2	Furnished as part of Vendor Pkg. Powered from same source as other DG components.
SW-TCV-11B	2COV2-20,21	С	COHU-2,5 PP-8A-F	E508-1	E519-18	F885-4	Per PED 218-E-1782, SW-TCV-11B contains
SW-PS-11B	2002-22,26	С	PP-8A-A MC-8A		E538-28 E537-22A	E885-5 E878-41	Int'les from SW-PS-11B & WMA-TIC-11B
WMA-TIC-11B	2COV5-3	С	SL-83 SM-8 DG-2		E535-61C		

٤

.

WNP-2

¢

e

.

040.075-36

2

.

٠

WNP-2

TABLE 040.75-8

ы •

3

4

1-100-1 B

т .

•

ł

•

•

.

EQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWER SOURCE	ELECTRI ONE-LINF	ICAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
SW-V-12B	2M8A-50	Р	MC-8A SL-83	E503-6	E527-7 E527-6	F878-32 F886-5	
	2M8A-51,52,53 54,55,56	C	DG-2		6327-0	E860-3	
SW-V-24B	2M8BA-280	P	MC-8B-A MC-8B	E503-7	F519-9	E678-36 F878-32	
	2M8BA-281, 282,283,284	С	SL-81 DG-2			E885-17	
SW-V-34	AP7CA-9108	С	PP-7CA-A	E508-2	E519-9 E535-65E	E878-49	Sol. Vlv.
	ARC1C-9051 9052	С					
SW-PCV-38B	BIR22-9060	с	IR-22 PP-8A-A		E527-8	F886-5	IR-22
	9061		PP-8A-G MC-8A		E536-6C	F885-23	
	9062		SL-83 DG-2				
SW-V-69B	2M8A-60	P	МС-ВА	E503-6	E527-7	F878-32 E886-5	
	61,62,63,64 65,67,68	с с	SL-83 DG-2			E860-2	
SW-V-75B	2M8BA-490	P	NC-88-A MC-88	E503-7	F519-257.	E878-36A	PED 5192
	2M8BЛ-491 492	С	SL-81 DG-2				Fuel Pool Upgrading
SW-V-90	2M8AA-320	P	мс-8а-а мс-8а	E503-9	E519-20	E878-33	•
	2M8AA-321,322 323	С	SL-83 DG-2				

.

1 • •

-1

۶ ,

. .,

~

.

÷

.

•

ţ

Ŧ

040.075-38

:

.

.

TABLE 040.75-8

<u>EQUIPMENT</u>	CABLE NO'S	CA <u>TYPF</u>	POWER SOURCE	FLECTRICA	L DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
SW-V-187B	2M8BA-570	Р	MC-8B-A MC-8B	E503-7	E519-25A	E878-36A	PFD 218-E-5192
	2M8BA-571,572	с	SL-81 DG-2				×
SW-V-188B	2M8BB-320	P	MC-8B-B MC-8B	E503-12	E519-25A	E878-53A	PED-218-F-5192
	2M8BB-321 322	С	SL-81 DG-2				
SW-PT-32BR	2IR22-1	S	PP-8A-G PP-8A-B MC-8A SL-83		M634 24-RS53	E885-29	IR-22 & PNL 52
(For supv PNL S2)	2MISC-1	S	SM-8 DG2-8				Data Bus Cable
SW-PI-32BR	- BMISC-9200	S	РР-8А-А Мс-8А Sl-83		M634 24-RS53	F886-5	BD RS, CS2
(For supv PNL CS2)	2MISC-150	S	SM-8 DG-2				Data Bus Cable
SW-TE-1BR (Local)	ACOMA-9254	S	PP-8A-G PP-8AB MC-8A SL-83 SM-8 DG-2		M634- 24-RS52	F886-5	Supv PNL S2 (Analog cables are "A")
SW-TI-1BR	EMISC-9200	S	DP-S1-2D DP-S1-2 BATT B1-2 PP-8A-F PP-8A-A MC-8A SL-83,SM-8,D52	-8	M634- 24-RS52	F886-5	BD 'RS'
SW-LTD-1BR	BIR22-9077	S	PP-8A-G PP-8A-B DG-2		M634- 24-RS51	F885-23	IR-22 CA by vendor

.

•

t.

•

.

.

0

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWER SOURCE	FLFCTRICA <u>ONF-LINE</u>	L DRAWINGS WIRING	BLOCK	REMARKS
SW-LT-1BR	BIR22-9078 BIR22-9052	S C	PP-8A-G PP-8A-B MC-8A SL-83 SM-8 DG2-8		M634- 24-R551	F.886-5 -	IR-22
SW-LI-1BR	BMISC-9200	S	DP-S1-2D DP-S1-2 BATT B1-2 PP-8A-F PP-8A-A MC-8A,51-83 SM-B,DG-2	•	M634- 24-RS51	F886-5	BD 'RS'
NS-RV-4A (B22-F013S)	2ADS-29	C2	H13-P628 Bus "B" DP-51-2A DP-51-2 BATT B1-2	E509	2-06-1006 E539-4,38	F880-1	2D12A-5
MS-RV-4C (B22-F013M)	2ADS-25	с		E509			
MS-RV-4D (B22-F013P)	2ADS-27	с	Ļ	E509	Ļ	Ļ	
MS-V-22A (B22-F022A)	2NS4-11,21,22	С		E504	2-06-0909 2-06-0904 E539-37,36 21	F880-2	
MS-V-22B (B22-F022B)	2NS4-9,19,20	С,		Ļ	Ļ	↓ .	

WNP-2

U

040.075-39

i

2

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWER SOURCE	ELECTRICAL	L DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
MS-V-22C (B22-F022C)	2NS4-10,17,18	С		E504	2-06-0909 2-06-0904 E539-37,36	E880-2	
MS-V-22D (B22-F022D)	2NS4-8,15,16	C .		Ļ	Ļ	Ļ	6 ;
MS-LIS-37A (B22-LIS-N037A)	IRCIC-18	C C	DP-S1-1A DP-S1-1D MC-S1-1D BATT B1-1	E504	2-22-2202 2-06-1004		H22-P026 ID11A-8
MS-LIS-37B (B22-LIS-N037B)	2RHR-11 2ADS-40 2RCIC-14	C C C	H13-P618 Bus ."B" PP-8AA DP-S1-2A	Ţ	2-17-0705 2-06-1004 E539-3 2-22-2204	F880-10 F880-1	BP8AA-9008

0

A

A

,¹⁴

•

I.

•

I. ١ • .

-

.

ł

. .

:

TABLE 040.75-8 POWFR CA ELECTRICAL DRAWINGS EQUIPMENT CABLE NO'S TYPE SOURCE ONE-LINF WIRING BLOCK REMARKS (C61-P001) RS BD 2-42-0201 E509 C61-FIC-R001 (Internal) RS BD 2-42-0203 DP-S1-1D 1011D (Internal) Init Cables 2-42-0203 C61-SQRT-K001 RS BD DP-S1-1D 1RC1C-35 S 36 S 1011D C61-FI-R001-1 RS BD DP-S1-1D 1D11D (Internal) Init. Cable 1RC1C-15,41 C61-SI-R003 RS BD DP-S1-1D 1011D-1RC1C-14 C61-LITS-N026D 6NS4-2 RS BD E508-1 2-06 S -0925 PP-7A-F (MS-LITS-26D) ANS4-9003 S (B22-N026D) 1P7AF C61-LI-R010 Internal RS FD PP-7A-P 1P7AF C61-PT-N006 ANS4-9004 S RS BD PP-7A-F

040.075-41

 \mathbf{x}

1

WNP-2

:

•

	TABLE 040.75-8			•			
EQUIPMENT	CAPLE NO's	CA <u>TYPF</u>	POWFR SOURCE	FLFCTRI ONE-LINF	CAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
C61-PI-R011	Internal		RS BD PP-7A-F	E508-1	2-42-0203		(C61-P001) RS BD 197AF-1
C61-FT-N001	1RHR-60	ຮໍ	RS BD PP-7A-F	E508-1	2-42-0203		(C61-P001) RS BD
C61-FT-R005	Internal		RS ED PP-7A-F	E508-1	2-42-0203		(C61-P001) PS BD 2P8AF-1 1P7AF-1
	e .						
CMS-PT-2R	BMISC-9201	S	RS BD PP-7A-F	E508-1	M634-43- RS53	E885-32	IR-68
CMS-LT-2R (Local)	BMISC-9202	S	RS BD PP-7A-F	E508-1	M634-43 RS60 E538-40	ÈF885-17	BD 'RS"
CMS-PI-2R	Initiating Cable BMISC-9201		rs BD PP-7A-F	E508-1	M634-43- RS58	F885-32	BD 'RS'

, ×

.

4

٠

٠

= - E + ī n Ne

6

*

•

'a

.

.

.

TABLE 040.75-8

		CA	POWER	ELFCTR	ELFCTRICAL DRAWINGS					
EQUIPMENT	CABLE NO'S	TYPE	SOURCE	ONE-LINE	WIPING	BLOCK	REMARKS			
CMS-LI-2R	Initiating Cable - BMISC-9202	, S	BD RS PP-8A-F PP-8A-A MC-8A SI-83 SM-8 DG-2	E508-1	M634-43 RS60	F885-17	BD 'RS' 2P8AF-2			
CMS-PT-6R	BMISC-9201	S	BD RS PP-8A-F	E508-1	M634-43- RS59	F885-17	IR-68			
CMS-PI-6R	↓ .	S	BD RS PP-8A-F	E508-1	M634-43- RS59	F885-17	BD 'RS'			
CMS-TE-19R	2CACS-331 322 BCACS-9250		BD RS PP-8A-F	F508-1	M634-43- J53 & 43-RS-51	E888-6 F885-17	TCG2 Via TB,R315			
CMS-MV/I-19R	Initiating BCACS-9250	S	BD RS PP-8A-F	E508-1	M634-43- J54 & 43-RS-5]		BD 'RS'			
CMS-TI-19R	Initiating BCACS-9250	S	BD RS PP-8A-F	E508-1	M634-43- RS51	E885-17 ·	PD 'RS'			
CMS-TE-37R	1CACS-332 Acacs-9201		BD RS PP-8A-F	E508-1 ,	M634-43- RS52	E888-6 E885-17	Via-TP-R314			

é

- 4

TABLE 040.75-8

Equipment	CABLE NO'S	CA TYPE	POWFP SOURCE	FLECTRIC ONF-LINE	CAL DRAWINGS <u>WIPING</u>	BLOCK	REI	ARKS		
CMS-MV/I-37R	ACACS-9201	S	BD RS PP-8A-F		M634-43 RS52		BD	'RS'	-	
CMS-TI-37R (Internal)	Init. ACACS-9201		BD RS PP-8A-F		M634-43- RS52		BD	' RS '	•	•.
CMS-TE-39R	2CACS-9250 BCACS-9250	S S	BDG2 BDRS		M634-43 RS53	F888-6 E885-17	BD	RS		
CMS-MV/1-39R	Initiating BCACS-9250	S	BD RS PP-8A-F	-	M634-43- RS53		ED	'G2 '		
CMS-TI-39R	Initiating BCACS-9250		BD RS PP-8A-F		M634-43- RS53		BD	'RS'		
CMS-TE-41R	ACACS-9203	ָ s	BD RS PP-8A-F		M634-43- RS-54	F888-6 F885-17	BD	RS		
CMS-MV/I-141R	Initiating ACACS-9203		BD RS PP-8A-F		M634-43 RS54		ED	'RS'		

• :

1

Wind by a

- and the second

•

•

*

, N 4 1 Y

• •

P

•

WNP-2

TABLE 040.75-8 CA POWER FLFCTRICAL DRAWINGS TYPE SOURCE EQUIPMENT CABLE NO'S ONF-LINE WIPING BLOCK REMARKS CMS-TI-41R BD RS M634-43-BD 'RS' Initiating ACACS-9203 RS54 S PP-8A-F CMS-TE-42R 2CACS-143 S BD RS M634-43-F888-6 E885-17 BD 'RS' BCACS-9251 S PP-8A-F J64 E545-13 CMS-MV/I-42R Initiating BD RS M634-43-BD 'RS' BCACS-9251 PP-8A-F RS57 CMS-TI-42R BD RS M634-43-BD 'RS' Initiating BCACS-9251 PP-8A-F RS57 E888-6 CMS-TE-43R 2CACS-144 S BD RS M634-43-BCACS-9250 PP-8A-F RS-55 E885-17 E545-13 . Initiating BCACS-9250 BD RS M634-43 BD 'RS' CMS-MV/I-43R S PP-8A-F RS55 M634-43-BD 'RS' CMS-TI-43R Initiating BD RS BCACS-9250 S PP-8A-F RS55

040.075-45

.....

.

ĩ

רו

2

i

•

,

a

, *

•

.

,

.

TABLE 040.75-8

<u>1</u>	SQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWER SOURCE	ELECTRIC	AL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
t	CMS-TE-44R	ACACS-9203	s	RS BD PP-8A-F		M634-43- RS56	P882-6 E885-17	
(CMS-MV/I-44R	Initiating ACACS-9203	٠	.RS BD PP-8A-F		M634-43- RS56		BD 'RS'
(CMS-TI-44R	Initiating ACACS-9203		RS BD PP-8A-F		M634-43- RS56		BD 'RS'
Į	RRA-FN-3	2M8B-150	Р	MC-8B SL-81	E503-8	E519-12 E521-20	E878-35 E876-5	
•	s	2M8B-151,152	С	SM-8 DG-2			•	
I	RA-FN-6	2M8B-450	P	MC-8B SL-81	E503-8	E519-12 F521-20	E878-35	
		2M8B-451 452	с с	SM-8 DG-2				
1	RRA-FN-10	2M8B-100	P	MC-8B SL-81	E503-8	F519-13	E878-35	•
		2M8B-101 102 103	C C C	SM-8 DG-2				Includes DMPR Cont. ROA-AD-10
5	мл-FN-51B	2M8F-20	Р	MC-8F SL-83	E503-11	E519-17	F878-41	
		2M8F-21	С	SM-8 DG-2				

۱٤

WNP-2

.

p. 1 1

*

٠

.

Ъ

P

1.

į

040.075-47

.

	TABLE 040.75-8	-		۵		•	•
EQUIPMENT	CABLE NO'S	· CA <u>TYPF</u>	POWFR SOURCE	FLFCTRI ONF-LINE	CAL DRAWING <u>WIRING</u>	S BLOCK	REMARKS
WMA-FN-52B	2M8F-30	Р	MC-8F	E503-11	E519-17	E878-41	
	2M8F-31,32	с	SL-83 SM-8 DG-2		•	F885-5	
WMA-AD-52-1	2COV2-50,51	c.	Cohv-? PP-8A-F		F519-17 E508-1	E885-5	2P8AF-4
WMA-AD-52-2	2COV2-55,56	с	COHV-2 PP-8A-F		E519-17 E508-1	F885-5	2P8AF-4
WMA-FN-53B	2M8P-50	Р	MC-8F	E503-11	E519-17	E878-41	
	2M8F-51,55	с	SL-83 SM-8 DG-2			£885-5	
WMA-TIC-11B	2COV5-3 See SW-TCV-11B	с	Cohv-5 PP-8A-A		E519-18		2P8AA-110
PRA-FN-1B	2M8AA-180	P	MC-8A-A	E503-9	E527-10	F878-33	
	2M8AA-181,182 183	С	MC-8A SL-83 SM-8 DG-2	-		E876-5 E886-5	
DMA-FN-22	2M8AA-20	Р	мс-8а-а мс-8а	E503-9	E519-20	E878-33	
,	2мваас	С	SL-83 SM-8 DG-2			E885-7	

C

*

,

•

•

. . .

.

.

,

.

•

.

•

,

REMARKS

.

	TABLE 040.75-8					
	*	СЛ	POWER	ELECTR	ICAL DRAWING	s
EQUIPMENT	CABLE NO'S	TYPE	SOURCE	ONE-LINE	WIRING	BLOCK
DMA-FN-21	2M8AA-10	Р	мс-8а-а мс-8а	E503-9	E519-20	E878-33 E885-7
		_	SL-83			
	2M8AA-11	С	SM-8 DG-2			
DEA-FN-22	2M8AA-60	Р	мс-8а-а мс-8а	E503-9	E519-21	F878-33 F885-7
		_	SL-83	,		
	2M8AA-61	С	SM-8 DG-2			
DEA-FN-21	2M8AA-30	Р	MC-8A-A MC-8A SL-83	E503-9	E519-20	E878-33 E885-7
	2M8AA-31, 32	С	SL-83 SM-8 DG-2			
RRA-FN-14	2M8BB-110	Р	MC-8B-B	J03-12	E519-13	
w/ROA-SPV-14	111	ċ	MC-8B			
	112	С	SL-81 SM-8			
	113	С	DG-2			

WNP-2

6

4

.

TABLE 040.75-8

		CA	POWFR	FLFCTRI	CAL DRAWINGS	;	
EQUIPMENT	CABLE NO'S	TYPE	SOURCE	ONF-LINE	WIRING	BLOCK	REMARKS
E51-N009A	1RC1C-19		H13-P621 Bus A MC-S1-1D DP-S1-1 BATT B1-1		2-22-7202		
E51-N009B	1RC1C-20		H13-P621 Bus A		2-22-2202	(r	
E51-N006	1RC1C-21		H13-P621 Bus A		2-22-2202		
B22-N024D	1RC1C-33		H13-P621 Bus A		2-22-2202		

1

۰,

, · · •

•

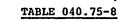
×

مید , .

. . • .

· · · ·

Ô



.

TABLE 040.75-8

EQUIPMENT	CABLE NO'S	CA <u>TYPE</u>	POWFR SOURCE	FLECTRI ONF-LINE	CAL DRAWING WIRING	S <u>BLOCK</u>	REMARKS
BATT B1-1 DP-S1-1 MC-S1-1D	1D11-1, 1D11-11 1D11-3	P P		E505 E505	*		
BATT B1-2 DP-S1-2 DP-S1-2A DP-S1-2D	2D12-1,11 2D12-6 2D12-7	P P P		E505 E509 E509		:	
BATT B2-1 DP-S2-1 DP-S2-1A	1D21-1,4 1D21-3 1M21A-80	P P P		E505 E505 E509	•		
H13-P621 H22-P026	1D11A-9 1D11A-8	P P	DP-S1-1A DP-S1-1A				
SL-81 SL-83 SM-8 C61-P001 RC-2 COHV-5B H13-P683 H22-P017 IR-22 S2 COHV2	2D12D-2 2D12D-3 2D12D-4 2D12D-5 2P8AA-27 2P8AA-36 2P8AA-8 2P8AA-6 2P8AG-1 2P8AG-3 2P8AF-4	00400000000	DP-S1-2D + PP-8AA + PP-8A-G PP-8A-F	E509 508-1 508-3 508-1		877-5 877-5 876-5 880-3 886-5 885-4	DC Pwr Supply
	- Vili - 3	~	•••••••••	500 I			

		CA	POWFR	FLFCTRI	CAL DRAWING	GS	
EQUIPMENT	CABLE NO'S	TYPF	SOURCE	ONE-LINE	WIRING	PLOCK	PFMARKS
DG-2	2DG2-10	н		502-2			
SM-8	2SM8-110	н		502-2			
SL-81	2SM28-10	н		502-2			
	2SM8-40	н		502-2			н
MC-8B	2SL81-10	Р		503-8			
MC-8B-A	2M8B-10	P		503-7			
MC-8B-B	2M8B-20	P		503-12			
SL-83	25M8-10	Н		502-2			
MC-8F	2SL83-20	P		503-11			
MC-8A	2SL83-10	Р		503-6			
PP-8A-A	2MBA-70	Р		508-1			
PP-8A-F	2P8A-4	P		508-1			
PP-8A-B	2M8A-140	Р		508-3			
PP-8A-G	2PBAB-2,50	P		508-3			
SL-81	2SL81-3	Р	٩	502-2		877-5	Gnd. Res.
μ	2SL8-75	С				•	
SL-83	2SL83-3	P		502-2		877-5	Gnd. Res.
	25	С					

040.075-51

. . . .

WNP-2

-

Ô

٢

*

,

•

54

. u t

•

-•

*

•

*

040.075-52

з^л

	TABLE 040.75-8		•		*		
EQUIPMENT	CABLE NO'S	CA <u>TYPF</u>	POWER SOURCE	ELECTRI <u>ONF-LINE</u>	CAL DRAWINGS <u>WIRING</u>	BLOCK	REMARKS
Diesel Gen 2	2DG2-23 24 25 26 31 36 41 44 45 47 50				v	883-2	CT Leads
	2M12D-10 11 20 21 30 31 40 41	P C P C P C P C	MC-S1-2D MC-S1-2D MC-S1-2D MC-S1-2D			883-2	-
	25M28-11 14 25M8-211	C C				₩ 883-2 ↓	

• • • , L

• •

•

*

•

;

.

۶

•

TABLE 040.75-8

		CA	POWFR	FLECTRI	CAL DRAWING		· ·
EQUIPMENT	CABLE NO'B	TYPF	SOURCE	ONE-LINE	WIRING	BLOCK	REMARKS
Diesel Gen. 2	2SM8-35	с				883-2 1	
	115	С					
	116	С					
	208	С					
	209	С					
	210	С				: ♥	
	BSL83-9047	с				883-2	Cont. POA-FN-1B
	BSM3-9019	С				- 883 ∽ 2	
	BSM8-9209	С				883-2	
	9240	С				1	
	9241	С				+	•

35

. .

٤

, • • р --

•

WNP-2

TABLE 040.75-8 -

NOTES

- 1. Cables listed are those required for operation of equipment and instrumentation identified in Burns & Roe technical memorandum No. 1227.
- 2. Cables listed are external to PGCC.
- 3. Miscellaneous independent circuits related to dedicated shutdowr equipment but not required for equipment power or control operation are not listed. Examples of such circuits are motor and equipment heater circuits, alarm and annunciator circuits, large motor ammeter circuits, etc.

All dedicated shutdown equipment is assumed to be in a mode compatible with plant power operation at the time the postulated fire occurs. No equipment is postulated to be in a test position at the time of the event.

- 5. Cable types indicate cable function as follows:
 - P Power
 - C Control and instrumentation

Simple circuits having combined power and control functions (e.g. Solenoids) are listed as control circuits.

040.075-54

.

TABLE 040.75-9

ASSIGNMENT OF EQUIPMENT OF DIVISION SEPARATION

erator
attery
ol
rvice
ng and System
51
-

040.075-55

٩.

TABLE 040.75-9

· ASSIGNMENT OF EQUIPMENT OF DIVISION SEPARATION

DIVISION 1

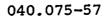
Control Room, Cable Spreading, Diesel-Generating and Switchgear HVAC System (Division 1)

DIVISION 2

Control Room, Cable Spreading, Diesel-Generating and Switchgear HVAC System (Division 2)

DIVISION 4	DIVISION 5	DIVISION 6	DIVISION 7
RPS - A1	RPS - A2	RPS - B1	RPS - B2

040.075-56



•

TABLE 040.75-10

LIST OF FIRE AREAS

RB		REACTOR BLDG
RW	-	RADWASTE AND CONTROL BLDG
DG		DIESEL GENERATOR BLDG
TG	-	TURBINE GENERATOR BLDG
SB	-	SERVICE BLDG
SW1A	-	SERVICE WATER PUMPHOUSE 1A
SW1B	-	SERVICE WATER PUMPHOUSE 1B
CW		CIRCULATING WATER PUMPHOUSE
CT1	-	COOLING TOWER ELEC. BLDG. NO. 1
CT2		COOLING TOWER ELEC. BLDG. NO. 2
MWPH		MAKEUP WATER PUMPHOUSE
CST-TY		CONDENSATE STORAGE TANK AREA AND SWITCHYARD

,

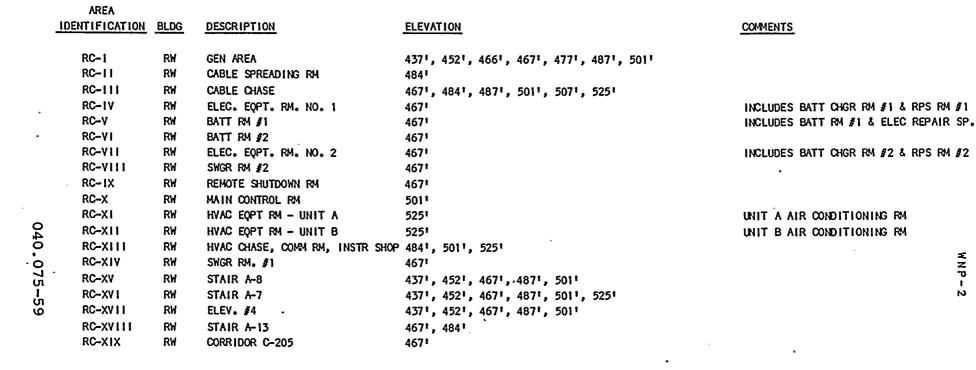
COMMENTS

TABLE 040.75-10

AREA	h		
IDENTIFICATION	BLDG	DESCRIPTION	ELEVATION
R - 1	RB	GEN EQPT AREA & STAIR S-3	422', 441', 471', 501', 522', 548', 572', 606'
R-11	R8	PRIMARY CONTAINMENT	422', 441', 471', 499', 501', 519', 522', 541',
•			548', 567', 572', 606'
R-111	R8	HPCS PUMP RM	422', 441'
R-IV	RB	RHR HT EXCH B & PUMP RM R-1	422', 441', 471', 501', 522', 548', 572'
R-V	RB	RHR HT EXCH A & PUMP RM R-2	422', 441', 471', 501', 522', 548', 572'
R-VI	RB	RCIC PUMP RM R-3	422', 441'
R-VII	RB	RHR PUMP RM R-4	422', 441'
R-V111	RB	LPCS PUMP RM R-5	422', 441'
R-IX	RB	STAIR A-6	422', 441', 471', 501', 522', 548', 572', 606'
R-X	RB	ELEV #3	422', 441', 471', 501', 522', 548', 572', 606'
R-XI	RB	STAIR A-5	422', 441', 471', 501', 522', 548', 572', 606'
R-XII	RB	ELEV #1	422', 441', 471', 501', 522', 548', 572', 606'
R-XIII	RB	NOT USED	-
R-XIV	RB	FUEL POOL COOL HX RM A	5481
R-XV	RB	LOBBY FOR STAIR A-5 & ELEV #1	422'
R-XVI	RB	NOT USED	-
R-XVII	RB	SOUTH VALVE RM	471'
R-XVIII	RB	DIV. 2 MCC RM	5221
R-XIX	RB	H2 RECOMB CONT RM DIV. 2	572'
R-XX	RB	DIV.1 MCC RM	4711

• · .

4


-. 4 •

. •

· · ·

• .

.

• . . • .

• , · · · · ·

AREA

IDENTIFICATION DESCRIPTION BLDG ELEVATION DG HPCS DG RM 441', 455' DG 1A DG RM

DG-I DG-II 441', 455' 441', 455' 441' DG-III DG 1B DG RM DG-IV 1A DIESEL OIL TNK PMP RM DG DG-V DG 1B DIESEL OIL TNK PMP RM 441' DG-VI DG HPCS DIESEL OIL TNK PMP RM 441' DG-VII HPCS DIESEL OIL DAY TNK RM 441' DG DG-VIII DG 1A DIESEL OIL DAY TNK RM 441' DG 1B DIESEL OIL DAY TNK RM 441' DG-IX DG-X DG FIRE DELUGE EQPT. RM 455'

WNP-2

AREA	BLDG	DESCRIPTION	ELEVATION	COMMENTS
TG-1	TG	GEN AREA	441', 471', 501'	*
TG-11	TG	TURB OIL STOR RM	441*	INCORP INTO TG-1
TG-111	TG	STAIR A-1	441', 471', 501'	
TG-IV	TG	ELEV #3	441', 471', 501'	
TG-V	TG	AUX BOILER RM	441	INCORP INTO TG-1
TG-VI	TG	STAIR A-3	441', 471', 501'	
TG-VII	TG	H2 SEAL OIL RM	441*	INCORP INTO TG-I
TG-VILI	TG	STAIR A-4	· 441', 471', 501'	
TG-IX	TG	TURB OIL RES RM	4711	INCORP INTO TG-1
TG - X	TG	TRANSFORMER RM	4411	INCORP INTO TG-1

*Area TG-1: Includes Main Plant Corrisdors and Reactor Bidg. Main Steam Tunnel

•

AREA IDENTIFICATION BLDG DESCRIPTION ELEVATION COMMENTS S-1 SB GEN AREA 4201, 4411, 4561 INCLUDES S-11,-111,-1V,-V,-V1,-V11 S-11 **S**8 CHLORINE RM 4201 INCORP INTO S-I S-111 SB 4201, 4411 STAIRWAY A-10 INCORP INTO S-1 S-1V **SB** STAIRWAY A-9 4201, 4411 INCORP INTO S-1 S-V **S**8 441', 456' STAIRWAY A-14 INCORP INTO S-I S-VI SB QUAL ASSUR VAULT INCORP INTO S-1 4561 S-VII 4561 SB HVAC RM INCORP INTO S-1

AREA IDENTIFICATION	BLDG	DESCRIPTION	ELEVATION	COMMENTS
SW-1 SW-11	SWIA SWIB	PUMP AREA	431', 441' 431', 441'	
CST-TY	-	COND STOR TWK BASIN AND SWITCHYARD	441'	NOT ADDRESSED IN FINAL REPORT
CW-1 CW-11	CWPH CWPH	DIESEL FUEL STORAGE PUMP AREA	ABOVE 448' ABOVE 448', BELOW 448'	-
CT-1 CT-11	COOL TWR ELEC BLOGS	GEN. AREA GEN. AREA	448 ¹ 448 ¹	
мирн	Makeup wtr Pumphouse	GEN. AREA	375'	
₩ ₩ -11	WELL WATER PUMPHOUSE NO. 2	SEPARATE PUMPHOUSE IN OUTDOOR AREA		

.

n mente dell'est k £ \$ } ŧ :

L : -4 ***

i V

*

Q. 040.076

Page 1 of 3

Provide a table that lists Class 1E and non-Class 1E cables that are associated with the essential safe shutdown systems identified in Q. 040.075. For each cable listed (see note below):

- a. Define the cables' association to the safe shutdown system (common power source, common raceway, separation less than the IEEE Standard 384 quidelines, cables for equipment whose spurious operation will adversely affect shutdown systems, etc.).
- b. Describe each associated cable routing (by fire area) from source to termination; and,
- c. Identify each location where the associated cables are separated by less than a wall having a three-hour fire rating from cables required for or associated with any redundant shutdown system.

NOTE: Option (a) of Q. 040.077 is considered to be one method of meeting the requirements of Section III.G.3 Appendix R. If option (a) is selected, the information requested in items (a) and (c) above should be provided in general terms and the information requested by (b) above need not be provided.

Response

Circuits referred to in Appendix R as being associated with essential safe shutdown systems are referred to as "Allied Circuits" on WNP-2. The choice of the term "Allied Circuits" was arbitrary, and was made for the sole purpose of facilitating a fire hazards shutdown analysis free of misinterpretation. The term "Associated" is reserved for use in conjunction with circuits defined as "Associated" under the guidelines of Regulatory Guide 1.75.

The manner in which Allied Circuits impact the fire hazard shutdown analysis for any specific fire area is dependent upon the type of analysis being utilized for the particular fire area (Refer to Question 040.075 for a discussion of fire hazard shutdown analysis methodology).

For the case of a fire area analyzed by means of the Redundant Fire Area method, direct consideration of all Allied Circuits is not required. Analysis for divisional fire areas is dependent only upon review of the impact of fire upon intruding Class 1E and Associated Circuits. In fact, all Associated Circuits of the electrical separation divisions which are not compatible with the fire area divisional assignment are the Allied Circuits, although they are not referred to as such. Analysis of only the intruding

Associated Circuits is required for the Fire Hazards Shutdown Analysis contained in Appendix F, with the exception of the analysis of the potential for "bridging" of Associated Circuits across the plant electrical separation divisions. Analysis of the "bridging" circuit condition is presently being addressed as part of an overall electrical separation review for WNP-2 (Reference: B&R Richland Office, BOP Separation Study - Task 3670). This subject is being addressed and resolved with NRC Offices separately from the Appendix F (Reference: NRC to WPPSS letter, "Staff Response to the Presently Proposed Cable Separation Criteria for the WNP-2 Facility", dated May 4, 1981 and GO2-81-146).

For the case of a fire area analyzed by means of the Dedicated Shutdown System method, consideration of all Allied Circuits is required. A listing of Allied Circuits will be provided in the Fire Hażards Shutdown Analysis to be included in Appendix F. That listing will indicate whether the Allied Circuit is a Class 1E, Associated or non-Class 1E circuit. Analysis will be provided.

a. A review is presently in progress to determine all Dedicated Shutdown System Allied Circuits allied by virtue of common power supply. Allied Circuits of this type are common to all fire areas which utilize the dedicated shutdown method. These circuits will be identified, reviewed for impact on the dedicated shutdown system, and modified if required. Data and results will be incorporated into Appendix F.

A review to determine all Dedicated Shutdown System Allied Circuits allied by virtue of location and routing cannot be completed until a final determination is made regarding the exact method of protecting dedicated shutdown cables for the particular fire area involved. Rerouting of dedicated cables, for example, could affect the Allied Circuit listing for the fire area. Circuits allied by virtue of location and routing will be unique for each area utilizing the dedicated shutdown method. A review of these circuits will be provided later; data and results will be incorporated into Appendix F.

- b. Source to termination cable routing data will not be provided for intruding Associated Circuits (Redundant Fire Area method) or Allied Circuits (Dedicated Shutdown method). However, analysis performed in accordance with the Dedicated Shutdown method will address the following:
 - 1. Common Power Supply: Question 040.075, Table 040.75-7 identifies all electrical distribution system components which are power sources for dedicated shutdown system equipment. Table 040.75-8 identifies the dedicated shutdown cables receiving power from those sources. Any other cables powered from those sources are, therefore, allied. These circuits can be checked at the source to determine their potential for impact on dedicated shutdown circuits, and corrective measures taken as required.

040.076-2

- 2. Location and Routing: For circuits allied by virtue of locating and routing, the circuit source will be identified and reviewed to assure that fire initiated impacts on the Allied Circuit cannot impact the dedicated shutdown circuits. The fire area location of the circuit power source will be provided to assure that any protective electrical components (fuses, etc.) upon which analysis depends are not located in the same fire area as the fire itself.
- c. As indicated above, Allied Circuits need not be considered directly for fire areas analyzed via the Redundant Area method.

The dedicated shutdown analysis is utilized only in general fire areas where there are significant amounts of cabling of more than one electrical separation division. Since virtually all dedicated shutdown circuits are Class 1E, an Allied Circuit can only be allied with and contain the potential for impact upon one of the safety related divisions in the area (Refer to electrical separation criteria contained in Chapter 8.3, and "bridging" analysis discussed above, for verification).

Therefore, in every general fire area in which Allied Circuits exist, Allied Circuits are not separated by a wall having a three-hour fire rating from cabling of a division that is redundant to the division with which they are allied. The separation provided is in accordance with the criteria contained in Chapter 8.3.

This situation could also exist in Divisional Fire Areas, although to a much lesser degree. Again, however, divisional cable separation in accordance with Chapter 8.3 is provided. WNP-2

Q. 040.077

Page 1 of 2

Provide one of the following for each of the circuits identified in Q. 040.076 item (c):

- a. The results of an analysis that demonstrates that failure caused by open, ground, or hot short of cables will not affect its association shutdown system (see note below).
- b. Identify each circuit requiring a solution in accordance with Section III.G.3 of Appendix R; or,
- c. Identify each circuit meeting or that will be modified to meet the requirements of Section III.G.3 of Appendix R (i.e., three-hour wall, 20 feet of clear space with automatic fire suppression, or one-hour barrier with automatic fire suppression).

NOTE: Option (a) above is considered to be one method of meeting the requirements of Section III.G.3 Appendix R. If option (a) above is selected, the information requested in Q. 040.076 items (a) and (c) should be provided in general terms and the information requested by Q. 040.076 item (b) need not be provided.

Response

The method utilized for the Fire Hazard Analysis of a particular fire area determines the method and extent to which Allied Circuits are analyzed.

As indicated in Question 040.076, all Associated Circuits that are not compatible with the divisional assignment of a divisional fire area are Allied Circuits. This is a result of the assumption that all Class LE cabling, except that corresponding to the fire area divisional assignment, is required for shutdown, unless otherwise justified (intruding cables). However, the only Allied Circuits of concern are those Associated Circuits located in the fire area undergoing analysis. These intruding circuits are all individually analyzed to determine the effects their fire related failures might have on the Class LE systems, and the acceptability/unacceptability of those effects.

As indicated in Question 040.076, all circuits allied with the Dedicated Shutdown System undergo analysis.

a. The results of all analysis will be provided in the Fire Hazards Shutdown Analysis contained in Appendix F.

040.077-1

•

· · . ,

•

•

Page 2 of 2

The effects of opens, shorts, grounds and hot shorts upon the load side portions of intruding Associated Circuits (Redundant Area method) or Allied Circuits (Dedicated Shutdown method) is of no consequence. Neither analytical method depends upon functionality of this equipment to achieve shutdown. Malfunction of the load side components cannot defeat the safe shutdown systems.

The upstream effects of open intruding Associated Circuits (Redundant Area method) on the shutdown systems do not require analysis. If the circuit was of a type that a simple open could defeat functionality of Class 1E equipment, it would have been designated as a Class 1E circuit, not as an Associated Circuit. Specific review of the upstream effects of open Allied Circuits (Dedicated Shutdown method) on the dedicated shutdown systems will be addressed as part of the analysis discussed in Question 040.076a.

The upstream effects of a shorted or grounded intruding Associated Circuit (Redundant Area method) do not require analysis. All Associated Circuits associated by virtue of power supply are provided with fuses or other devices to isolate them from the upstream Class 1E system and limit the effects of events in the downstream Associated Circuits from causing unacceptable consequences in the upstream Class IE Associated Circuits associated by virtue of location systems. and routing can only cause impact to the upstream non-Class 1E systems; these systems are not utilized for shutdown. As a part of the analysis discussed in Question 040.076a., all Allied Circuits (Dedicated Shutdown method) will be reviewed to determine that upstream protective devices (fuses or other devices) are provided to prevent faulted circuits from causing impact to the dedicated shutdown system. For the case of circuits allied by virtue of location or routing, it will also be verified that the protective devices are not located in the same fire area in which the fire is occurring.

The above statements regarding shorted or grounded circuits applies to hot shorts also.

b,c. The analysis to be provided in Appendix F will identify all circuits requiring resolution in accordance with Appendix R requirements.

040.077-2

Q. 040.078

Page 1 of 3

To assure compliance with GDC 19, we require the following information be provided for the control room. If credit is to be taken for an alternate or dedicated shutdown method for other fire areas (as identified by Q. 040.075 item (c) or Q. 040.077 item (b)) in accordance with Section III.G.3 of new Appendix R to 10CFR Part 50, the following information will also be required for each of these plant areas.

- a. A table that lists all equipment including instrumentation and vital support system equipment that are required by the primary method of achieving and maintaining hot and/or cold shutdown.
- b. A table that lists all equipment including instrumentation and vital support system equipment that are required by the alternate, dedicated, or remote method of achieving and maintaining hot and/or cold shutdown.
- c. Identify each alternate shutdown equipment listed in item (b) above with essential cables (instrumentation, control and power) that are located in the fire area containing the primary shutdown equipment. For each equipment listed provide one of the following:
 - 1. Detailed electrical schematic drawings that show the essential cable that are duplicated elsewhere and are electrically isolated from the subject fire areas, or
 - 2. The results of an analysis that demonstrates that failure (open, ground, or hot short) of each cable identified will not affect the capability to achieve and maintain hot or cold shutdown.
- d. Provide a table that lists Class 1E and non-Class 1E cables that are associated with the alternate, dedicated, or remote method of shutdown. For each item listed, identify each associated cable located in the fire area containing the primary shutdown equipment. For each cable so identified, provide the results of an analysis that demonstrates that failure (open, ground, or hot short) of the associated cable will not adversely affect the alternate, dedicated, or remote method of shutdown.

Response

Page 2 of 3

See response to Question 040.075 for a general discussion of the methodology utilized in the Fire Hazard Shutdown Analysis.

a. Tables 040.075-1 thru 7 list all equipment required for operation of the Dedicated Shutdown System. This is the equipment required for achieving and maintaining hot and/or cold shutdown in the event of fires occurring in general fire areas. The fire area location of all equipment is indicated on the Tables.

No listing is provided for equipment required to achieve and maintain hot and/or cold shutdown in the event of a fire in divisional fire areas (Redundant Area method). This list would include every safety related component in the plant. This is a result of the analysis methodology that given a fire in an area assigned to one safety related division, all equipment in the other safety related divisions is required, unless otherwise specifically justified (intruding cables and equipment).

b. The question of alternate, dedicated or remote methods of achieving and maintaining hot and/or cold shutdown does not apply to areas analyzed by means of the Redundant Area method (Divisional Fire Areas).

General fire areas analyzed by means of the Dedicated Shutdown method depend upon that dedicated shutdown system to achieve and maintain hot and/or cold shutdown. See item (a) response above. It is, therefore, the primary method of achieving shutdown; it is also the only analytically guaranteed method of achieving a fire related shutdown.

c. There is no alternate shutdown system utilized in the WNP-2 Fire Hazard Shutdown Analysis.

d. See response to Question 040.076 and 040.077.

The above provides response to this question's request for data regarding the shutdown systems for "other fire areas" (other than the Main Control Room).

The Main Control Room represents a unique case in terms of fire analysis. Dedicated shutdown components have the capability of control from either the Main Control Room or the Remote Shutdown Room. Transfer switches located in the Remote Shutdown Room transfer control to that location in the event of a catastrophic fire in the Main Control Room. Credit is taken for operator action to manually initiate reactor SCRAM and MSIV closure prior to

040.078-2

leaving the Main Control Room. Main Control Room fire analysis consists of verification that the effects of fire in the Main Control Room cannot disable dedicated shutdown component operability following transfer of plant control to the Remote Shutdown Room.

Basic circuit design and layout for nuclear/mechanical dedicated shutdown components (pumps, valves, etc.) routes cabling from remote devices to the Remote Shutdown Room boards C61-P001 (NSSS) and RS (BOP) for control at that location. Circuitry is then extended into the Main Control Room for control from that location also. For normal plant operation, the Remote Shutdown Room transfer switches remove the Remote Shutdown Room control switches from the circuits (through open transfer switch contacts) and insert the Main Control Room control switches (through closed transfer switch contacts). To transfer dedicated shutdown component control to the Remote Shutdown Room, the transfer switch contact positions reverse.

Initial analysis of the capability to achieve cold reactor shutdown in the event of a Main Control Room fire assumes that:

- a. The entire Main Control Room is lost (not considered credible).
- b. Operators SCRAM the reactor and initiate MSIV closure as they evacuate the area.

Analysis then verifies the following:

- a. Dedicated shutdown component cabling from remote locations does not route to the Remote Shutdown Room via the Main Control Room.
- b. Dedicated shutdown component circuitry contains the previously described transfer arrangement (pumps, valves, etc.)
- c. Dedicated shutdown components which do not contain the previously described transfer arrangement (fans, diesel generators, etc.) can be controlled from an alternate remote location, and are not disabled by the effects of Main Control Room fire.

The controls and displays are listed in FSAR Section 7.4.1.4.

040.078-3

Q. 040.079

١

Page 1 of 11

2

The residual heat removal system is generally a low pressure system that interfaces with the high pressure primary coolant system. To preclude a LOCA through this interface, we require compliance with the recommendations of Branch Technical Position RSB 5-1. Thus, this interface most likely consists of two redundant and independent motor operated valves with diverse interlocks in accordance with Branch Technical Position ICSB 3. These two motor operated valves and their associated cable may be subject to a single fire hazard. It is our concern that this single fire could cause the two valves to open resulting in a fire-initiated LOCA through the subject high-low pressure system interface. To assure that this interface and other high-low pressure interfaces are adequately protected from the effects of a single fire, we require the following information:

- a. Identify each high-low pressure interface that uses redundant electrically controlled devices (such as two series motor operated valves) to isolate or preclude rupture of any primary coolant boundary.
- b. Identify each device's essential cabling (power and control) and describe the cable routing (by fire area) from source to termination.
- c. Identify each location where the identified cables are separated by less than a wall having a three-hour fire rating from cables for the redundant device.
- d. For the areas identified in item (c) above (if any), provide the bases and justification as to the acceptability of the existing design or any proposed modifications.

Response

The major reactor pressure boundary high pressure/low pressure a. interface valves have been reviewed per Branch Technical Position RSB 5-1. Using these criteria, check valves in series with motor operated valves (MOV's) are acceptable. А fire could open only the MOV. Many occurrences of this combination of check and MOV exist in the Core Spray, Feedwater, and Residual Heat Removal Systems, among others. A pneumatic operator is usually associated with the check valve. This operator is for testing purposes only and can neither unseat nor prevent from seating the valve flapper when a differential pressure exists across the valve. Hence, a fire-caused failure of the solenoid actuators for the pneumatic operators on these check valves cannot cause the valves to open inadvertently and thus cannot degrade the reactor coolant pressure boundary.

040.079-1

ч - _____,

Page 2 of 11

In addition to the above, five pairs of values all associated with the RHR System as high/low pressure interface values, consist of two remotely operated values in series. The first pair of these values are in the shutdown cooling suction line. The second and third pair are in the lines of each RHR loop for shutdown return. The fourth and fifth pair are in the lines to each RHR heat exchanger for use in the steam condensing mode. The value numbers are given in Table 040.79-1.

The shutdown cooling suction valves (RHR-V-8, 9) are in separate divisions and separate fire zones. The inboard (upstream) isolation valve (RHR-V-9) is in Div. 2 and is located in the inerted containment where a fire cannot be postulated. RHR-V-8 is in Div. 1 located outside containment.

The upstream shutdown cooling return valves (RHR-V-53A, B) are in the same division (Div. 1), but separated by the diameter of the containment vessel. The inboard (downstream) by-pass valves (RHR-V-123A, B) are located in the inerted containment where a fire cannot be postulated. They are both in Div. 2.

The steam condensing mode valves constitute a high-low pressure interface between the main steam and the RHR piping. For RHR Loop A should both motor operated valves be driven open, i.e. RHR-V-52A and RHR-V-87A, adequate over protection exists via relief valves RHR-RV-55A and RHR-RV-95A to prevent rupture of the downstream RHR piping. For loop B, the same protection exists via RHR-RV-55B and RHR-RV-95B for the RHR piping downstream of condensing mode motor operated valves RHR-V-52B and RHR-V-87B should they both be driven open.

Isolation upstream of valves RHR-V-52A and B is provided by the RCIC steam isolation valves RCIC-V-64 (Div. 1) and RCIC-V-63 (Div. 2), and the 1" by-pass RCIC-V-76 (Div. 2). Should a fire open RHR-V-52A and RHR-V-87A or RHR-V-52B and RHR-V-87B, a plant operator would close the inboard RCIC valves, isolating the RHR valves from the reactor pressure boundry. The requirement for this action by a plant operator is deemed highly unlikely since the outboard isolation valve RCIC-V-64 is normally maintained in a closed position.

b. Identification of power and control cabling for the valves listed in Table 040.79-1, as well as data regarding the cable routing, is provided in the following tables:

040.079-2

Page 3 of 11

Valve Pair

Table

RHR-V-8/RHR-V-9	040.79-2
RHR-V-52A/RHR-V-87A	040.79-3
RHR-V-52B/RHR-V-87B	040.79-4
RHR-V-53A/RHR-V-123A	040.79-5
RHR-V-53B/RHR-V-123B	040.79-6

Cabling for circuits which enter the Main Control Room and do not wire directly to a benchboard or vertical panel assembly is tracked only as far as the termination cabinet within the Main Control Room.

c. Review of Table 040.79-2 thru 6 indicates that cabling for both valves (of any valve pair) routes through the following common fire areas:

Valve Pair	Common Fire Areas				
RHR-V-8/9 .	R-I, RC-II, RC-III, RC-IX, RC-X				
RHR-V-52A/87A	R-I, RC-II, RC-III, RC-X				
RHR-V-52B/87B	R-I, R-IV, R-XIX, RC-II, RC-III, RC-IX, RC-X				
RHR-V-53A/123A	R-I, RC-III, RC-X				
RHR-V-53B/123B	R-I, RC-II, RC-III, RC-X				

d. The availability of full flow relief valves discussed in item a. precludes any problem with high pressure-low pressure interface valves RHR-V-52A/87A and RHR-V-52B/87B.

Protection of one of the two valves of any pair of the remaining pairs of valves listed in Table 040.79-1 is required to assure that both valves from any one pair cannot concurrently open. Protection of cabling for valves RHR-V-9/123A/123B will be included in plant revisions determined to be required as a result of the 10CFR50, Appendix R Fire Hazards shutdown analysis.

Protection of power cabling is not required since the valve is not required to change position.

040.079-3

WNP-2

Page 4 of 11

Protection of control cabling will address the following cables:

Fire area R-I: RHR-V-9: 2M8BA-312,-314,-316 RHR-V-123A: 2M8BA-502,-503 RHR-V-123B: 2M8BA-432,434 Fire area RC-II: RHR-V-9: 2M8BA-314,-315,-316 RHR-V-123A: 2M8BA-502 RHR-V-123B: 2M8BA-434 Fire area RC-III:RHR-V-9: 2M8BA-314,-316 RHR-V-123A: 2M8BA-502 RHR-V-123B: 2M8BA-434 Fire areas RC-IX, RC-X: RHR-V-9, RHR-V-123A, and RHR-V-123B Cabling terminates in these areas. Resolution is presently being discussed with General Electric Co. and will be provided in a subsequent amendment.

040.079-4

. · · · • . • ¢ . ` . , •

r 4

0

TABLE 040.79-1

HIGH-LOW PRESSURE INTERFACE WITH REDUNDANT ELECTRICALLY CONTROLLED DEVICES

DESCRIPTION

Steam Condensing

Shutdown Cooling (Suction)

040.079-5

Shutdown Cooling (Return)

UPSTREAM COMPONENT

RHR-V-52A (Motor operated 8" globe)

RHR-V-52B (Motor operated 8" globe)

RHR-V-9 (Motor operated 20" gate)

RHR-V-53A (Motor operated 12" globe)

RHR-V-53B (Motor operated 12" globe)

DOWNSTREAM COMPONENT

RHR-V-87A* (Motor operated 8" globe)

RHR-V-87B* (Motor operated 8" globe)

RHR-V-8 (Motor operated 20" gate)

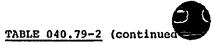
RHR-V-123A (Motor operated 1" gate by-pass around 12" check valve RHR-V-50A)

RHR-V-123B (Motor operated 1" gate by-pass around 12" check valve RHR-V-50B) <u>و</u>

Page 5 of ll

* Alternate downstream components. RHR-FCV-51A and RHR-FCV-51B are electrically controlled, air operated valves.

040.079-6


TABLE 040.79-2

VALVE DATA		~	·····	CABLE DATA	<u> </u>	
Valve	Description	Cable No.	Туре	Function	Fire Areas	Raceway
RHR-V-8 (E12-F008)	125 Vdc Div. I RHR Suction Cooling	1M21A-20 -	Р	Power Supply: MC-S2-1A, Part B to valve	R-XX, R-I	T&C
	Valve	1M21A-21	С	Control: MC-S2-1A, Part B to pos. sw. on valve	R-XX, R-I	T&C
		1M21A-22	С	Control: MC-S2-1A, Part B to Remote Shutdown Pnl.C61-P001	R-XX, R-I, RC-III, RC-II, RC-IX	Т
		1M21A-23	С	Control: Remote Shutdn. Pnl.C61-P001 to Term.Cab. H13-P684G Mod. 13	RC-IX, RC-II, RC-X	T
		1M21A-24	с	Control: MC-S2-1A, Part B to Remote Shutdn. Pnl. C61-P001	R-XX, R-I, RC-III, RC-II, RC-IX	т
		AIVD-9093	С	Indic: Valve Position Indication TB-R370 to pos.sw.	R-I	T&C
	-	1RHR-20	С	Control: Limit sw. Int'lk to El2-C002A(RHR-P-2A) stop ckt. Cont. Rm. Term Cab. H13-P684F Mod.24 to valve El2-F008 operator	RC-X, RC-II, RC-III, R-I	T&C
RHR-V-9 (E12-F009)	480 Vac. Div. II RHR Suction Cooling Valve	2M8BA-310	P	Power Supply: MC-8B-A to Penetration Assembly	R-XVIII, R-I	т
	VALVA	2M8BA-311	P	Power Supply: Penetration Assembly to valve	R-II	C
		2M8BA-312	С	Control & Indic.: MC-8B-A to Penetration Assembly	R-XVIII, R-I	т
		2M8BA-313	С	Control & Indic.: Penetration Assembly to valve	R-II	С
		2M8BA-314	С	Control & Indic.: MC-8B-A to to Remote Shutdn. Pnl. C61-P001	R-XVIII, R-I RC-III, RC-II, RC-IX	T ,
		2M8BA-315	с	Control & Indic.: Rem. Shutdn. Pnl. C61-P001 to Term. Cab. H13-P683 Mod. 42	RC-IX, RC-II,. RC-X	т

5

VALVE DATA

Description

-,

<u>Valve</u> RHR-V-9 (Cont'd)

		CABLE DATA		
Cable No.	Туре	Function	Fire Areas	Raceway
2M8BA-316	С	Indication: MC-8B-A Remote Shutdn. Pnl. C61-P001	R-XVIII, R-I, RC-III, RC-II, RC-IX	
2RHR-19	C	Pump El2-C002B valve stop control. TB-C513 to valve operator	R-II	с
2RIIR-47	С	Pump El2-C002B valve stop control. Cont. Rm. to Penetration Assembly.	RC-X, RC-II, RC-III, R-I	т
BIVD-9143	C	Indication: TB-C533 to pos.sw. valve RHR-V-9	RC-II	С
BIVD-9160	с	Indication: TB-C523 to TB-C533	R-II	с
BIVD-9087	С	Indication: Vert. Bd. "S" to TB-R323	RC-X, RC-II, RC-III, R-I	т

040.079-7

P-Power Supply Cable C-Control Cable T-Tray C-Conduit

WNP-2

040.079-8

-

3

a

.

.

TABLE 040.79-3

VALVE	DATA	x x x + + + + +	· · ·	CABLE DATA		
<u>Valve</u>	Description	Cable No.	Туре	Function	Fire Areas	Raceway
RIIR-V-52A (E12-F052A)	480 Vac. Div. I RHR Isolation Valve	1M7BB-190	P	Pwr. Supply MC-7B-B to valve	R-I	T&C
		1M7BB-191	С	Control MC-7B-B to pos. sw. on valve	R-I	T&C
		1M7BB-192	С	Control & Ind.: from Term. Cab. H13-P684B to MC-7B-B	R-I, RC-III, RC-II, RC-X	Т.
RHR-V-87A	480 Vac. Div. I	1M7BB-200	P	Pwr. supply MC-7B-B to valve	R-I	T&C
(E12-F087A)	RHR Steam Line Isolation Valve	1M7BB-201	с	Control MC-7B-B to valve	R-I	T&C
		1м7вв-202	С	Control & Ind.: from Term. Cab. H13-P684B to MC-7B-B	R-I, RC-III, RC-II, RC-X	T

• '

P-Power Supply Cable C-Control Cable T-Tray C-Conduit

4

Ľ

e

WNP-2

• •.

TABLE 040.79-4

•

-

VALVE I	DATA	<u></u>	·	CABLE DATA		
Valve	Description	Cable No.	Type	Function	Fire Areas	Raceway
RHR-V-52B	480 Vac. Div. II RHR Isolation Valve	2M8BB-250	P	Power Supply: MC-8B-B to valve	R-XIX, R-I, R-IV	T&C
		2M8BB-251	С	Control: MC-8B-B to valve	R-XIX, R-I, R-IV	тес
·	3	2M8BB-252	С	Control: MC-8B-B to Remote Shutdn. Pnl. C61-P001	R-XIX, R-I, RC-III, RC-II, RC-IX	т
		2M8BB-253	C	Control: Remote Shutdn. Pnl. C61-P001 to Term Cab. H13-P683B	RC-IX, RC-II, RC-X	т
RIIR-V-87B	480 Vac. Div. II RHR Steam Line Valve	2M8BB-210	Р	Power Supply: MC-8B-B to valve	R-XIX, R-I R-IV	T&C
		2M8BB-211	С	Control: MC-8B-B to valve	R-XIX, R-I, R-IV	тес
		2M8BB-212	С	Control: MC-8B-B to Remote Shutdn. Pnl. C61-P001	R-XIX, R-I, RC-III, RC-II, RC-IX	т
	•	2M8BB-213	с	Control: Remote Shutdn. Pnl. C61-P001 to Term. Cab. H13-P683B	RC-IX, RC-II, RC-X	т

P-Power Supply Cable C-Control Cable T-Tray C-Conduit

040.079-9

.

i.

Page 9 of 11

ù

TABLE 040.79-5

	VALVE DATA				CABLE DATA		
	Valve	Description	Cable No.	Type	Function	Fire Areas	Raceway
	RHR-V-53A (E12-F053A)	480 Vac. Div. I	1M7BA-130	P	Power Supply: MC-7B-A to valve	R-I	T&C
	(EIZ-F055A)	RHR Injection Valve	1M7BA-132	С	Control: MC-7B-A to valve	R-I	T&C
			1M7BA-133	С	Control: NC-7B-A to Term. Cab. H13-P684B	R-I, RC-III, RC-II, RC-X	T
040.	RIIR-V-123A (E12-F099A)	480 Vac. Div. II RHR Valve	2M8BA-500	P	Power Supply: for vlv. MC-8B-A to TB-R321	R-XVIII, R-I	т
.079			2M8BA-501	P	Power Supply: TB-C521 to valve	R-II	С
079-10			2M8BA-502	С	Control: MC-8B-A to Term. Cab. H13-P683F	R-XVIII, R-I, RC-III, RC-II, RC-X	
			2M8BA-503	с	Control: MC-8B-A to TB-R313	R-XVIII, R-I	т
			2M8BA-504	с	Control: TB-C513 to valve .	R-II	с
			2M8BA-507	с	Term. Cab. K2 to Relay Cab. RC-2	RC-X	С

P-Power Supply Cable C-Control Cable T-Tray C-Conduit

2

٩.

•

. •

.

•

4 -.

· · · ·

.

4

TABLE 040.79-6

VALVE DATA		CABLE DATA						
Valve	Description	Cable No.	Туре	Function	Fire Areas	Raceway		
RHR-V-53B	480 Vac. Div. I	1M7BA-580	Р	Power Supply: MC-7B-A to valve	R-I	таС		
(E12-F053B)	RHR Injection Valve	1M7BA-581	с	Control: MC-7B-A to pos.sw. on valve	R-I	T&C		
		1M7BA-582	C .	Control: MC-7B-A to Rem. Shutdn. Pnl. C61-P001	R-I, RC-III, RC-II, RC-IX	т		
		1M7BA-583		Control: Remote Shutdn. Pnl. C61-P001 to Term. Cab. H13-P684B	RC-IX, RC-II, RC-X	T		
RHR-V-123B	480 Vac. Div. II	2M8 BA-430	P	Power Supply: MC-8B-A to TB-R321	R-XVIII, R-I	т		
(E12-F099B)	RHR Valve			for valve	•			
		2M8BA-431	P	Power Supply: TB-C521 to valve	R-II	С		
		2M8BA-432	С	Control: MC-8B-A to TB-R313 for valve	R-XVIII, R-I	т		
		2M8BA-433	С	Control: TB C513 to pos. sw. on valve	R-II	C .		
		2N8BA-434	С	Control: MC-8B-A to Term. Cab. Hl3-P683F	R-XVIII, R-I, RC-III, RC-II RC-X	Т		

P-Power Supply Cable C-Control Cable T-Tray C-Conduit

.

.

.

1111

-

1 T

-

i

.....

10 c) 41- ap

Page 11 of 11

ų

-

.

•••

٠

٦

.

WNP-2

8111190471

Q. 010.035 (3.4.1)

The FSAR states that the "Seismic Category I piping and electrical conduit penetrations that are below grade ... are ... not sealed against groundwater pressure." Demonstrate that the safety functions would not be compromised by water flowing into the building through these piping and conduit penetrations as the result of the following events:

- a. Another compartment is flooded and water is flowing out of the building through the piping and conduit penetrations, resulting in saturated ground conditions.
- b. A non-Seismic Category I tank ruptures emptying all of its contents.

Response:

Please refer to revised 3.4.1.4.2, page 3.4-4 for the information requested.*

The design and installation of the boots at pipe penetrations and of the silicon foam at conduit penetrations, described in 3.4.1.4.2, provide waterproof penetrations that are capable of preventing the compromise of safety functions by events such as those stated in the question.

The response to Question 010.010 has been similarly revised.*

*Draft FSAR page changes attached.

REPLACE WITH ATTACHED INSERT (A). July 1978

The lowest floor surface in the reactor building is the top of the foundation mat at elevation 422'-3" MSL. Since this is above the design basis groundwater level, the structure will be unaffected by the force effects of buoyancy and static water due to groundwater at elevation 420 feet MSL.

Groundwater elevation 420 feet MSL has been compared with foundation levels of Seismic Category I structures and it has been found that waterproofing is not required.

Seismic Category I piping and electrical conduit penetrations that are below grade are above the design basis groundwater table and are therefore not sealed against groundwater pressure.

The only materials underlying the site that might exhibit unfavorable response to seismic or other events under saturated soil conditions are the loose to medium dense, fine to coarse sand with scattered gravel, in the upper approximate 40 feet of the soil profile. These are removed and recompacted as structural fill, as described in 2.5.4.8 and 2.5.4.12. Structural fill supports the Seismic Category I structures, including the turbine generator building and service building, in the central plant complex. Structural fill, as required, is also utilized below the other Seismic Category I and safety-related structures including underground piping and electrical duct banks. The structural fill is compacted to a minimum of 75% relative density and an average relative density of not less than 85%.

To evaluate the possible effects of a gross rise in groundwater levels, Shannon and Wilson, soil consultants, performed a series of repetitive triaxial tests in identical soils in the dry and saturated states and concluded that saturation would not necessitate changes in allowable bearing pressures or settlement calculations as discussed in 2.5.4.10.

To provide conservatism in the design of structures, the seismic dynamic reponse of the structures and components is examined over a range of soil shear moduli, as discussed in 2.5.4.7.

According to 3.6, Groundwater, of the Shannon and Wilson Supplementary Soil Investigation in Appendix 2.5F, the compacted backfill discussed above will eliminate

Insert to Page 3.4-4:

Seismic Category I piping and electric conduit penetrations that are below grade are above the design basis groundwater table, and sealing against groundwater pressure is therefore not required. However, all pipes penetrating exterior walls are water-proofed sealed by boots installed on both sides of the wall penetration; all electrical conduit penetrations are through-wall sealed using silicon foam, also a waterproof sealer.

$\frac{2 \ 010.10}{(3.4.1)}$

Demonstrate that all piping and electrical penetrations in safety-related structures that are below the level of the Probable Maximum Flood are water-tight.

Response:

As stated in 3.4.1.4.1 the plant site grade is higher than the design basis flood elevation resulting from the probable maximum precipitation (PMP) event. Due to the short duration of the PMP flood, the ground water level at the plant site is not affected. As stated in 3.4.1.4.2, piping and electrical penetrations are above the design basis groundwater level and was therefore not scaled against groundwater pressure

required - However, all pipes pendrating exterior walls. are uster - proofed sealed by boots installed on both sides of the wall penetration ; all electrical conduct penetrations are through-inall saaled using silicon (van , also a waterproof Sealer -

Sealing

Q. 010.036 (3.5.1) RSP

It is the Staff's position that all safety-related equipment shall be appropriately protected against the effects of internally generated missiles in accordance with Title 10, Code of Federal Regulations Part 50, Appendix A, General Design Criteria 4. The effects of internally generated missiles such as valves stems, bonnets, control rod drive mechanisms, and high pressure accumulators impacting onto safety-related equipment must be evaluated. Appropriate protection must be provided to assure that a missile will not prevent a safe shutdown of the plant or result in uncontrolled release of radioactivity during normal operation. or during the most severe design basis accident with the most limiting single active failure. Describe the means provided for assuring protection of safety-related equipment from all internally generated missiles.

Response:

The preferred method of protecting safety-related equipment from internally generated missiles is by separation and redundancy. In addition, potential missile sources have been oriented away from essential equipment wherever practical.

A pipe break/missile study evaluation is currently underway at WNP-2. This study will consider the effects of postulated valve stem, bonnet, control rod drive mechanism, and high pressure accumulator missiles. Appropriate protection will be provided where necessary.

Preliminary results scheduled for submittal in the last quarter of 1981 will address effects inside of containment and will also delineate methodology used in the study. A follow-up submittal will identify effects on the remaining areas outside of containment. Upon completion, the study will provide assurance that essential systems have been adequately protected from internally generated missiles.

Q. 010.037 (3.5.1.2)

Regulatory Guide 1.70, Revision 3, Section 3.5.1.2, requires that the structures, systems, and components protected by physical barriers should be identified. The discussion and the figures in the FSAR do not indicate where, if at all, physical missile barriers are used.

Identify all structures, systems, and components that are protected by physical barriers. Provide a description of the types of physical barriers that are employed at your plant.

Response:

At WNP-2, the preferred method of protecting essential systems and components from internally generated missils is by separation and redundancy. In addition, potential missile generating sources have been oriented away from essential systems and components wherever practical. This is discussed in 3.5.1.1 and 3.5.1.2.

The potential missiles described in 3.5.1.2 were investigated and found not to prevent safe cold shutdown. Therefore, specific missile barriers were not required.

The pipe break/missile study evaluation currently underway at WNP-2 will consider some additional types of internall generated missiles. This expanded scope may require barriers for protection of essential systems and components. The expanded approach for internally generated missiles, criteria for required barriers, and systems requiring protection will be provided by amendment to the FSAR in the last quarter of 1981.

Q. 010.038 (3.5.1.2)

Section 3.5.1.1.2 of the FSAR states that missile trajectories are selected to encompass the most adverse conditions. It is not clear from the information provided in the FSAR what the trajectories of the credible primary missiles would be and what systems might be disabled by the missiles.

Provide the bases for selection of the probable missile trajectories and show the trajectories on the appropriate FSAR figure. Include a discussion on the system, component, or structure that could be damaged or disabled by a missile. The extent of damage from each missile should be discussed.

Response:

The pipe break/missile study evaluation currently under way for WNP-2 will provide the answer to NRC Question 010.038. FSAR Section 3.5 will be revised as appropriate in the last quarter of 1981. Q. 010.039 (3.5.1.2)

Section 3.5.1.1.3.2 states that thermowells and sample probes do not present potential hazards as postulated missiles affecting safe shutdown.

WNP-2

Provide justification to support this position on the thermowells and sample probes.

Response:

As stated in the response to NRC Question 211.013, themowells and sample probes were investigated for their potential of becoming postulated missiles.

Thermowells in high energy systems were found to have connections holding the thermowell to the system that were conservative by many folds. Some thermowells and sample probes are discounted as potential missiles if the piping system pressures are low and there are large factors of safety against failure. The remaining thermowells and sample probes are still postulated as missiles. All equipment that could be contacted by the missile, assuming a 10° half angle cone for the target area, was assumed to fail.

Potential thermowell missiles were found not to prevent safe cold shutdown or the release of unacceptable amounts of radioactive materials assuming a single active component failure and loss of offsite power.

At WNP-2, sample probes are one-inch or less in diameter and meet the requirements of Regulatory Guide 1.11. Pipe breaks were not postulated in lines one-inch or less as recommended in Branch Technical Positions APCSB 3-1 and MEB 3-1. Q. 010.040 (3.5.1)

The FSAR states that the water lines are "...tornado-hardened". State your criteria for protecting pipes located outside buildings from tornado missiles, including depth below grade requirements and provide drawings which show all pertinent tornado protection features as necessary.

Response:

As stated in Section 3.5.3, buried safety-related piping required for safe shutdown is ensured adequate protection from tornado-generated missiles. Analysis of potential damage is performed using "Tornado Design Considerations for Nuclear Power Plants" by Bates and Swanson, 1967 (Reference 3.5-8). A 5-foot embedment depth is calculated to be acceptable to ensure pipe integrity.

The standby service water piping exits the pumphouses at a centerline elevation of 435'3" and immediately turns down at a 45° angle to elevation 432 feet., where the piping is routed to the reactor building in high relative density Quality Class Srade level is at 440'6", providing an embedment I backfill. depth of over 7 feet from the top of the pipe. Where the pipe exits the pumphouses, a 1-1/2" asphaltic concrete road with a 6" base coarse and 2" leveling coarse bed provides additional protection from tornado-generated missiles. Additionally, the two standby service water loops are separated by at least 20 feet to preclude loss of redundancy. The standby service water pumphouses, shown in Figures 3.5-48 and 3.5-49, are protected from tornado-generated missiles. The standby service water piping and the tower makeup water system from the river are the only safety-related water piping systems outside of tornadoprotected buildings. The tower make-up system is only required in the event that the spray ring headers in the ultimate heat sink are lost in the tornado. The tower make-up piping to the river also satisfies the five foot embedment criteria. Protection from tornadoes and tornado missiles in regard to such piping has also been previously addressed in response to Questions, 010.024 and 010.027.

Though not technically a piping system in line with this question, the control room remote air intakes are, of course, located remote to tornado-hardened buildings. The intake structures themselves are tornado hardened, however, (see Figure 3.8-59) and the piping from the structures meets the five foot embedment criteria.

WNP-2

• . v , , · · · · · · · .

•

. . 2

.

.

. •

,

It should be noted that Chapters 3.5 and 3.6 will be revised in line with the on-going pipe break/missile study. The information in the response to this question will be more clearly incorporated into the FSAR text at that time.

¥.

. .

Q. 010.041 (4.6)

Demonstrate that the scram discharge system meets the criteria enumerated in the Generic Safety Evaluation Report BWR Scram Discharge System, dated December 1, 1980.

Response:

The scram discharge system for WNP-2 has been evaluated against the Generic Safety Evaluation Report, "BWR Scram Discharge System", dated December 1, 1980. In short, the evaluation indicated that the WNP-2 scram discharge system needed upgrading in the following areas:

- 1) Addition of redundant vent and drain isolation valves;
- Addition of redundant and diverse level instrumentation for scram;
- Relocation and repiping of instrument piping directly to the scram instrument volume;
- 4) Addition of new surveillance and operating procedures.
- A summary of our evaluation results is provided below:

FUNCTIONAL CRITERIA

 The scram discharge volume (SDV) shall have sufficient capacity to receive and contain water exhausted by a full reactor scram without adversely affecting controlrod-drive scram performance.

WNP-2 Compliance:

WNP-2's SDV system is currently designed to meet the 3.34 gallons per drive requirement specified in the GE Design Specification 22A4260. This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

SAFETY CRITERIA

 No single active failure of a component or service function shall prevent a reactor scram, under the most degraded conditions that are operationally accepted.

WNP-2 Compliance:

The WNP-2 system has been designed to meet single failure criteria. The SDV is designed with an integral instrument volume (IV) which provides direct and immediate detection of liquid accumulation. The SDV instrumentation is redundant and single failure proof (including partial loss of service functions). 2. No single failure shall result in uncontrolled loss of reactor coolant.

WNP-2 Compliance:

A redundant air-operated vent valve and drain valve will be added on the SDV in series to insure system isolation during reactor scrams. This includes independent solenoid valves for each set of air-operated vent and drain valves.

The scram discharge system instrumentation shall be 3. designed to provide redundancy, to operate reliably under all conditions, and shall not be adversely affected by hydrodynamic forces or flow characteristics.

WNP-2 Compliance:

Six additional diverse level sensors will be added to the SDV system to ensure diversity and redundancy in level monitoring and scram functions. Common cause failures will be considered in the selection of the instruments. This is in agreement with Alternative 3 of the "Acceptable Compliance" statement for this item in the Generic SER.

System operating conditions which are required for scram 4 . shall be continuously monitored.

WNP-2 Compliance:

The addition of the level switches described in 3 above and periodic surveillance testing of the instruments will provide a continuous means of monitoring the SDV liquid level and insuring instrument reliability. This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

5. Repair, replacement, adjustment, or surveillance of any system component shall not require the scram function to be bypassed.

WNP-2 Compliance:

During routine surveillance testing, instrument repair or calibration the associated logic will be placed in a halfscram (1 out of 2) configuration, in accordance with the plants technical specifications.' This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

WNP-2.

OPERATIONAL CRITERIA

- Level instrumentation shall be 'designed to be maintained, tested, or calibration during plant operation without causing a scram;
- The system shall include sufficient supervisory instrumentation and alarms to permit surveillance of system operation;
- 3. The system shall be designed to minimize the exposure of operating personnel to radiation;
- 4. Vent paths shall be provided to assure adequate draining in preparation for scram reset;
- 5. Vent and drain functions shall not be adversely affected by other system interfaces. The objective of this requirement is to preclude water backup in the scram instrument volume which could cause spurious scram.

WNP-2 Compliance:

- The system logic is designed as a one out of two, twice configuration. Each of the associated instrument channels is capable of being separately isolated for maintenance, testing or calibration without inadvertently scramming the reactor.
- 2. The SDV is provided with a high liquid level alarm on each IV to alert the operator to liquid accumulation in the SDV.
- 3. The SDV system has been designed in accordance with GE design specification 22A4260 to minimize the exposure of operating personnel to radiation. In addition, the system is being reviewed as part of the WNP-2 ALARA program.
- 4. The SDV vents directly to the reactor building atmosphere and is independent from other plant vent system.
- 5. The vent and drain system for the SDV is totally independent from other plant systems, and is therefore not susceptible to blockage or water buildup through system interfaces.

DESIGN CRITERIA

1. The scram discharge headers shall be sized in accordance with GE OER-54 and shall be hydraulically coupled to the instrumented volume(s) in a manner to permit operability of the scram level instrumentation prior to loss of system function. Each system shall be analyzed based on a plant-specific maximum inleakage to ensure that the system function is not lost prior to initiation of automatic scram. Maximum inleakage is the maximum flow rate through the scram discharge line without control-rod motion summed over all control rods. The analysis should show no need for vents or drains.

WNP-2 Compliance:

WNP-2's IVs have been designed as vertical extensions attached directly to the SDV. This configuration provides a direct hydraulic couple between the SDV and IVs and insures immediate and continuous liquid level monitor in the SDV. This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

2. Level instrumentation shall be provided for automatic scram initiation while sufficient volume exists in the scram discharge volume.

WNP-2 Compliance:

WNP-2's SDV is adequately coupled to the IV to allow proper instrument operation. The SDV instrument setpoint for scram was established to insure an available volume of 3.34 gallons per drive (185 drives). This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

3. Instrumentation taps shall be provided on the vertical instrument volume and not on the connected piping.

WNP-2 Compliance:

All the WNP-2 SDV instrumentation will be relocated and repiped directly to the IV instead of the vent and drain piping. Procedures will be modified to include functional testing of SDV level instrumentation after each scram. This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

• • •

•

``,

•

· · · -

-

•

4. The scram instrumentation shall be capable of detecting water accumulation in the instrumented volume(s) assuming a single active failure in the instrumentation system or the plugging of an instrument line.

WNP-2 Compliance:

The addition of the redundant and diverse instruments described under Safety Criterion 3 and rerouting of the instrument piping to the IV provide an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

5. Structural and component design shall consider loads and conditions including those due to fluid dynamics, thermal expansion, internal pressure, seismic considerations, and adverse environments.

WNP-2 Compliance:

The WNP-2 SDV design compliance with the laiest GE design criteria as outlined in GE Design Specification 22A4260. In addition, the system will be reviewed as part of the equipment qualification program.

6. The power-operated vent and drain valves shall close under loss of air and/or electric power. Valve position indication shall be provided in the control room.

WNP-2 Compliance:

WNP-2's present design configuration meets these requirements.

7. Any reductions in the system piping flow path shall be analyzed to assure system reliability and operability under all modes of operation.

WNP-2 Compliance:

WNP-2's SDV header system is designed as a continually expanding path from the 185 3/4" individual scram discharge (withdrawal) lines to one of two integrated SDV/ IV systems (one system per approximately half the drives). Each integrated SDV/IV system consists of a continuously downsloping piping run expanding from the SDV (consisting

of seven 6" return headers from the individual hydraulic control unit (HCU) banks to an 8" combined return header) to the 12" vertically oriented IV. The location where blockage need be assumed (piping less than 2" diameter) is in the 3/4" discharge line from the individual HCU. Blockage here would only cause failure of one control rod to insert. This is an acceptable consequence for a single failure and has been evaluated as part of the plant design basis. Accordingly, this design complies with the "Acceptable Compliance" statement for this item in the Generic SER.

8. System piping geometry (i.e., pitch, line size, orientation) shall be such that the system drains continuously during normal plant operation.

WNP-2 Compliance:

The WNP-2 SDV has been designed to insure a positive downward slope of scram header and drain piping.

3

l'n'

9. Instrumentation shall be provided to aid the operator in the detection of water accumulation in the instrumented volume(s) prior to scram initiation.

WNP-2 Compliance:

Each IV is provided with high liquid level and rod block . instrumentation attached directly to it. The generic SER states that this is acceptable.

Vent and drain line valves shall be provided to contain 10. the scram discharge water, with a single active failure and to minimize operational exposure.

WNP-2 Compliance:

As stated under Safety Criterion 2, redundant air-operated vent and drain valves will be provided for system isolation. This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

SURVEILLANCE CRITERIA

1. Vent and drain valves shall be periodically tested.

WNP-2 Compliance:

The vent and drain valves will be tested in accordance with the plant technical specification to verify valve closure in less than 30 seconds (current GE specification). This is an acceptable means of compliance as documented in the "Acceptable Compliance" statement for this item in the Generic SER.

2. Verifying and level detection instrumentation shall be periodically tested in place.

WNP-2 Compliance:

The SDV instrumentation will be tested in accordance with the plants technical specification which will include post scram testing to verify instrument operability.

3. The operability of the entire system as an integrated whole shall be demonstrated periodically and during each operating cycle, by demonstrating scram instrument response and valve function at pressure and temperature at approximately 50% control-rod density.

WNP-2 Compliance:

Surveillance testing will be performed in accordance with the plants technical specifications.

¹The plant technical specifications will be based on the Standard Technical Specifications for Boiling Water Reactors, NUREG-0123, provided by the NRC.

WNP-2

WNP-2

Q. 010.042 (4.6) RSP

Demonstrate that a slow or partial loss of air pressure to the scram discharge valves will not result in the following:

- Rapid filling of both the scram discharge volume and the instrument volume due to the lifting of most or all scram discharge valves, with consequent loss of adequate scram discharge volume.
- 2) Loss of reactor coolant due to the combination of lifting of most or all scram discharge valves, without compensating closure of the vent and drain valves, with consequent environmental effects inside containment.

Unless it can be demonstrated that no adverse effects can result, a system shall be provided and described in this section to protect against these two conditions.

Response:

- 1) The WNP-2 scram discharge instrument volume (IV) is adequately hydraulically coupled to the scram discharge volume (SDV), i.e., the IV is connected directly to the SDV with piping of a diameter equal to or greater than the diameter of the SDV headers. This allows for direct and immediate detection of liquid buildup so that the ability to scram is ensured, even in the event of lifting of most or all of the scram valves, when the water buildup reaches scram initiation level in the IV.
 - Note: The basis of the instrument volume high level scram setpoint and the IV/SDV physical arrangement provides for scram action before significant scram discharge volume reduction occurs which could affect scram capability.
- 2) The partial loss of air pressure does not result in the uncontrolled release of reactor coolant to the reactor building should all or most of the scram discharge valves lift. When the water buildup reaches scram initiation level in the IV, a scram signal is produced.

J

This will cause the air supply to the vent and drain valves to vent, thereby ensuring that the vent and drain valves close and isolate. For leakage rates which do not result in buildup in the IV, the leak will drain to the reactor building equipment drain system. The drain system will alarm for leakage rates greater than five (5) gallons per minute. The operator can then take appropriate action, e.g., isolate the leak, scram the reactor, increase air pressure, etc., as required.

See response to Question 010.042 for additional information.

Q. 010.044 (4.6.1.1.2.4)

Table 1.3-8 indicates specific design changes from the PSAR to the FSAR for the CRD system. The design changes for the CRD return line modification addressed in Question 211.019, have not been included in the text description of the FSAR and Figures 4.6-5a, 4.6-5b, and 4.6-6a have not been revised. Revise the text description in the FSAR to reflect the specific design changes in Table 1.3-8 for the CRD system and modify the above figures accordingly.

Response:

Figures 4.6-5a, 4.6-5b, 4.6-6a, 4.6-6b, and 4.6-6c are revised to reflect the CRD return line modification. Figures 4.6-6d and 4.6-6e are deleted. Also, text sections 4.6.1.1.2.4, 4.6.1.1.2.4.1, 4.6.1.1.2.4.2.3, 4.6.1.1.2.4.2.4 and 4.6.2.3.2.2.8 are revised accordingly. Text section 4.6.1.1.2.4.2.5 is deleted.*

*FSAR revised page changes attached.

FSAR REVISIONS

- e. Metal piston rings are Haynes 25 alloy.
- f. Certain wear surfaces are hard-faced with Colmonoy 6.
- g. Nitriding by a proprietary new Malcomizing process and chromium plating are used in certain areas where resistance to abrasion is necessary.
- h. The drive piston head is made of Armco 17-4Ph.

Pressure-containing portions of the drives are designed and fabricated in accordance with requirements of Section III of the ASME Boiler and Pressure Vessel Code.

4.6.1.1.2.4 Control Rod Drive Hydraulic System

The control rod drive hydraulic system (Figures 4.6-5a, b) supplies and controls the pressure and flow to and from the drives through hydraulic control units (HCU). The water discharged from the drives during a scram flows through the HCUs to the scram discharge volume. The water discharged from a drive during a normal control rod positioning operation flows through the HCU, the exhaust header, and into is returned to the cooling water header. There are as many HCUs as the number of control rod drives.

4.6.1.1.2.4.1 Hydraulic Requirements

Dapproximately

The CRD hydraulic system design is shown in Figures 4.6-5a, b, and 4.6-6. The hydraulic requirements, identified by the function they perform, are as follows:

> a. An accumulator hydraulic charging pressure of approximately 1400 to 1500 psig is required. Flow to the accumulators is required only during scram reset or system startup. water header

Heus of nonmoving drives.

b. Drive, pressure of approximately 260 psi above reactor vessel pressure is required. A flow rate of approximately 4 gpm to insert a control rod and 2 gpm to withdraw a control rod is required.

c. Cooling water to the drives is required at approximately 20 psi above reactor vessel pressure and at a flow rate of 0.20 to 0.34 gpm per drive unit. (Cooling water to a drive can be interrupted for short periods without damaging the drive.)

The drive beader pressure will be no more than d. 5 psi/above the cooling water header pressure, (The/pressure in this/line must be kept/as low as possible (to avoid (interference with normal) drive movement.)

de. The scram discharge volume is sized to receive and contain all the water discharged by the drives during a scram; a minimum volume of 3.34 gal. per drive is required (a excluding the instrument volume).

4.6.1.1.2.4.2 System Description

The CRD hydraulic systems provide the required functions with the pumps, filter, valves, instrumentation, and piping shown in Figures 4.6-5a, b and described in the following paragraphs.

Duplicate components are included, where necessary, to assure continuous system operation if an in-service component requires maintenance.

4.6.1.1.2.4.2.1 Supply Pump

One supply pump.pressurizes the system with water from a condensate supply header which takes suction from the condensate treatment system and/or condensate storage tanks depending on plant operation. One spare pump is provided for standby. A discharge check valve prevents backflow through the nonoperating pump. A portion of the pump discharge flow is diverted through a minimum flow bypass line to the condensate storage tank. This flow is controlled by an orifice and is sufficient to prevent immediate pump damage if the pump discharge is inadvertently closed.

Condensate water is processed by two filters in the system. The pump suction filter is a disposable element type with a 25-micron absolute rating. A 250-micron strainer in the filter bypass line protects the pump when the filter is being serviced. The drive water filter downstream of the pump is a cleanable element type with a 50-micron absolute rating. A differential pressure indicator and control room alarm monitor the filter element as it collects foreign materials.

> 4.6-10 211.130-3

Accumulator Charging Pressure 4.6.1.1.2.4.2.2

Accumulator charging pressure is established by the discharge pressure of the system supply pump. During scram the scram inlet (and outlet) valves open and permit the stored energy in the accumulators to discharge into the drives. The resulting pressure decrease in the charging water header allows the CRD supply pump to "run out" (i.e., flow rate to increase substantially) into the control rod drives via the charging water header. The flow sensing system upstream of the accumulator charging header detects high flow and closes the flow control valve. This action maintains increased flow through the charging water header.

Pressure in the charging header is monitored in the control room with a pressure indicator and high pressure alarm.

During normal operation the flow control valve maintains a constant system flow rate. This flow is used for drive flow, drive cooling, and system stability.

4.6.1.1.2.4.2.3 Drive Water Pressure - drive/cooling water.

Drive water pressure required in the drive header is maintained by the drive pressure control valve, which is manually adjusted from the control room. A flow rate of approximately 6 gpm (the sum of the flow rate required to insert and withdraw a control rod) normally passes from the drive water pressure stage through two solenoid operated stabilizing valves (arranged in parallel) and then goes into the cooling water header. The flow through one stabilizing valve equals the drive insert flow; that of the other stabilizing valve equals the drive withdrawal flow. When operating a drive, the required flow is diverted to that drive by will closing the appropriate stabilizing valve. Thus, flow through the drive pressure control valve 'is always constant. the 🛥 drive/cooling water

drive direct Flow indicators in the drive water header and in the line control uni downstream from the stabilizing valves allow the flow rate exhaust through the stabilizing valves to be adjusted when necessary. Solenoid Differential pressure between the reactor vessel and the valves. drive pressure stage is indicated in the control room.

time, ope

4.6-11

711.13.0-

4.6.1.1.2.4.2.4 Cooling Water Header

The cooling water header is located just upstream of the return line control valve. An automatic pressure regulating valve controls the pressure in this header, which is set to produce the desired cooling water flow to the drives. A flow indicator in the control room monitors cooling water flow. A differential pressure indicator in the control room indicates the difference between reactor vessel pressure and drive cooling water pressure. Although the drives can function without cooling water, seal life is shortened by long term exposure to reactor temperatures. The temperature of each drive is recorded in the control room, and excessive temperatures are annunciated.

Ada Insert. A

4.6.1.1.2.4.2.5 Return Line

The return line routes excess flow from the control rod drive hydraulic system (water not used for charging of accumulators, movement of drives or cooling) through the reactor water cleanup system to the reactor feedwater line. A pressure control valve in this line is manually adjusted from the control room to produce the desired pressure. The flow through this valve is virtually constant. Therefore, once adjusted, the drive pressure control valve and the return water control valve can maintain their required pressure independent of reactor pressure.

4.6.1.1.2.4.2.6 Scram Discharge Volume

The scram discharge volume consists of header piping which connects to each HCU and drains into an instrument volume. The header piping is sized to receive and contain all the water discharged by the drives during a scram, indepof the instrument volume.

During normal plant operation the scram discharge volume is empty, and vented to atmosphere through its open vent and drain valve. When a scram occurs, upon a signal from the safety circuit these vent and drain valves are closed to conserve reactor water. Lights in the control room indicate the position of these valves. INSER . A

The cooling water header is located downstream from the drive/cooling pressure valve. The drive/cooling pressure control valve is manually adjusted from the control room to produce the required drive/cooling water pressure balance.

The flow through the flow control valve is virtually constant. Therefore, once adjusted, the drive/cooling pressure control valve will maintain the correct drive pressure and cooling water pressure, independent of reactor vessel pressure. Changes in secting of the pressure control valves are required only to adjust for changes in the cooling requirements of the drives, as the drive seal characteristics change with time. A flow indicator in the control room monitors cooling water flow. A differential pressure indicator in the control room indicates the difference between reactor vessel pressure and drive cooling. water pressure. Although the drives can function without cooling water, seal life is shortened by long term exposure to reactor temperatures. The temperature of each drive is indicated and recorded, and excessive temperatures are annunciated in the control room.

211.130-6.

, ,

. .

5

• h

• , •

•

.

. • ÷

1 .

• •

Ŧ , · · · •

ø

If the plug were to blow out while the drive was latched, there would be no control rod motion. No pressure differential would exist across the collet piston to unlatch the collet. As in the previous failure, reactor water would flow past the velocity limiter, down the annulus between the drive and thermal sleeve, through the vessel ports and drilled passage, through the ball check valve cage and out the open plug hole to the drywell. The leakage calculations indicate the flow rate would be 350 gpm. This calculation assumes liquid flow, but flashing of the hot reactor water to steam would reduce this rate to a lower value. Drive temperature would rapidly increase and initiate an alarm in the control room.

If the plug failure were to occur during control rod withdrawal, (it would not be possible to unlatch the drive <u>after</u> such a failure) the collet would relatch at the first locking groove. If the collet were to stick, calculations indicate the control rod withdrawal speed would be 11.8 feet per second. There would be a large retarding force exerted by the velocity limiter due to a 35 psi pressure differential across the velocity limiter piston. Drive Cooling Water

4.6.2.3.2.2.8 <u>Drive</u> Pressure Control Valve Closure (Reactor Pressure, 0 psig)

The pressure to move a drive is generated by the pressure drop of practically the full system flow through the drive/cooling water pressure control valve. This valve is either a motor operated valve or a standby manual valve; either one is adjusted to a fixed opening. The normal pressure drop across this valve develops a pressure 260 psi in excess of reactor pressure.

drive/cooling water

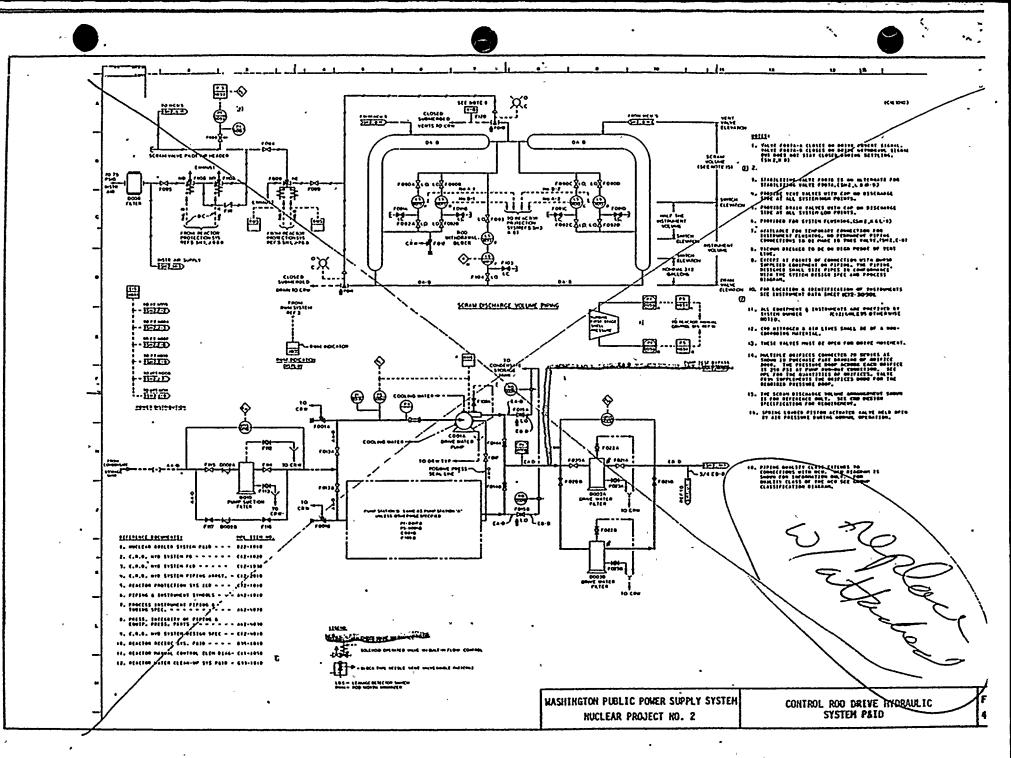
If the flow through the drive pressure control valve were to be stopped, as by a valve closure or flow blockage, the drive pressure would increase to the shutoff pressure of the supply pump. The occurrence of this conditon during withdrawal of a drive at zero vessel pressure will result in a drive pressure increase from 260 psig to no more than 1750 psig. Calculations indicate that the drive would accelerate from 3 in./sec to approximately 6.5 in./sec. A pressure differential of 1670 psi across the collet piston would hold the collet unlatched. Flow would be upward, past the velocity limiter piston, but retarding force would be negligible. Rod movement would stop as soon as the driving signal was removed.

4.6-31

211.130-7

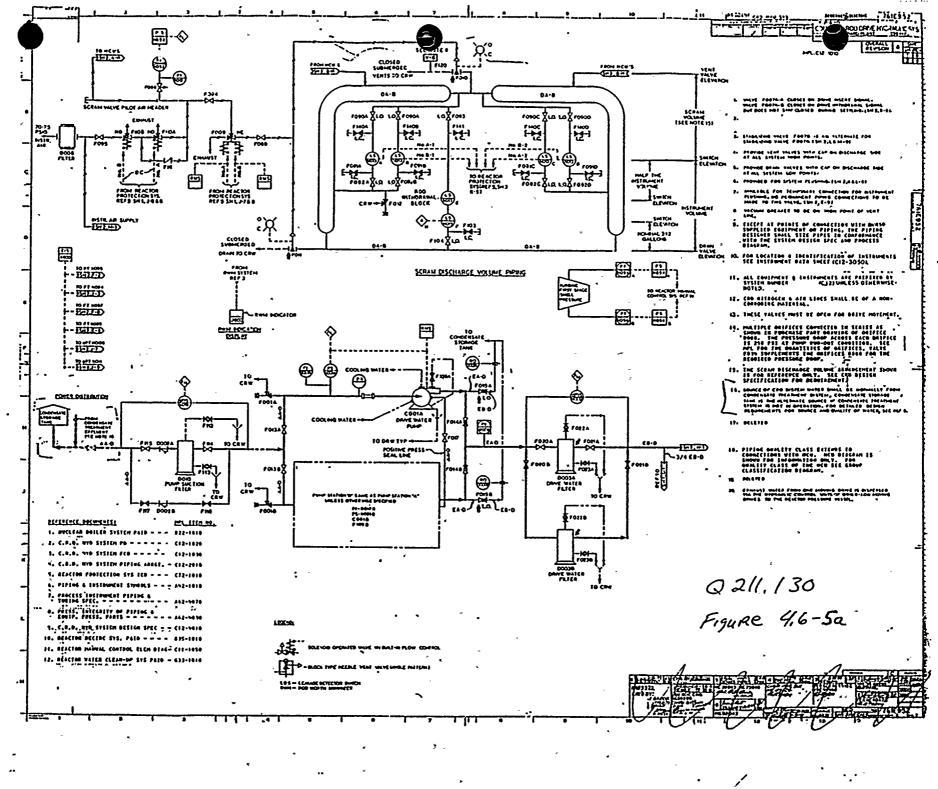
• • . 4 •

• 4


.

· · · · · ·

•

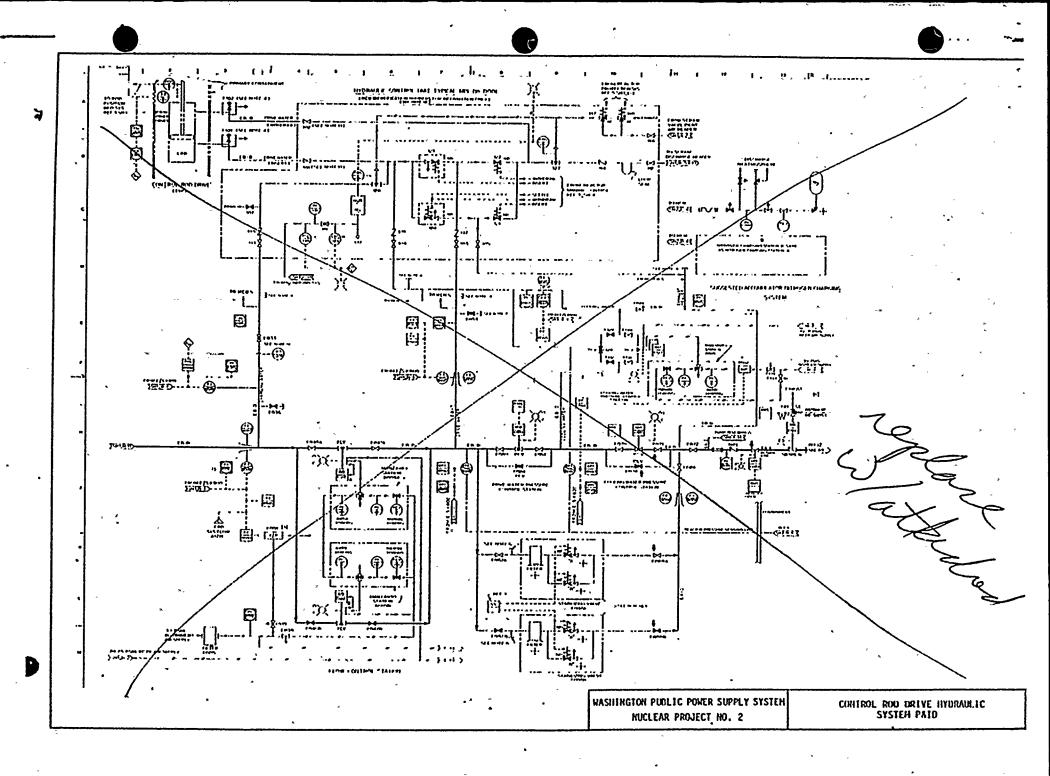

,

•

٩.

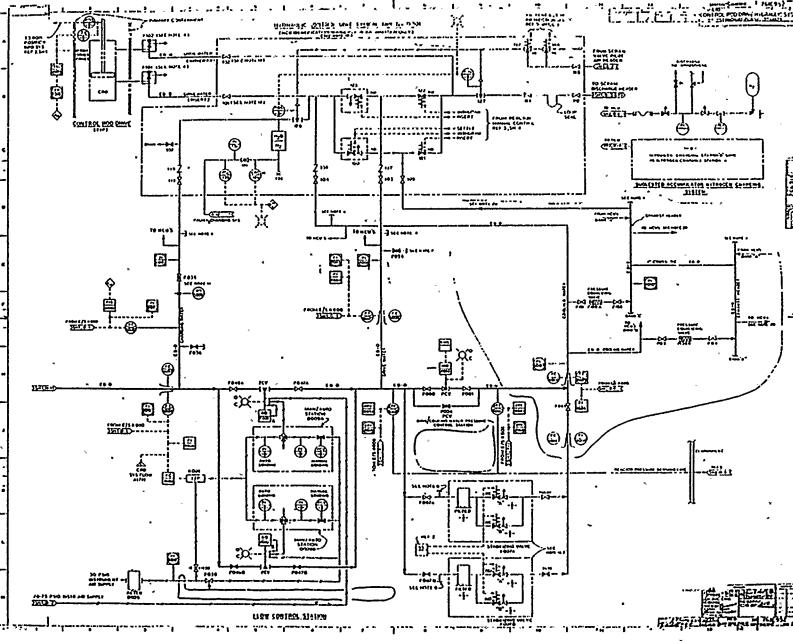
*


```


1

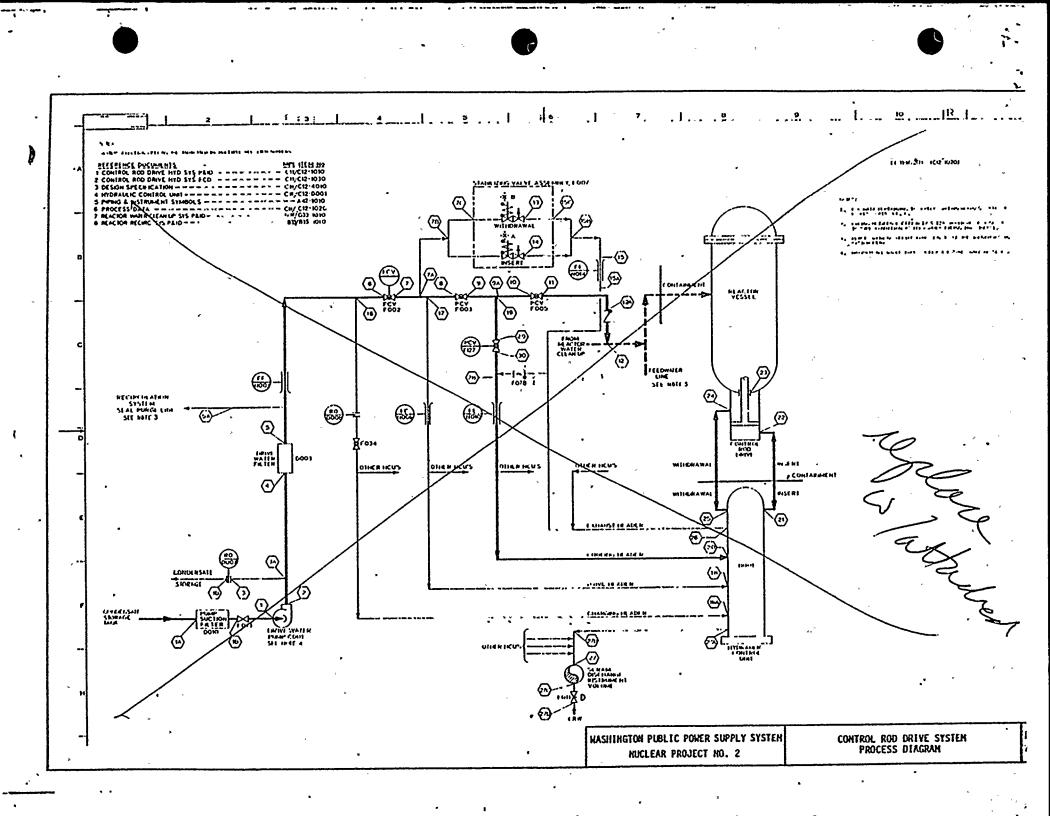
.

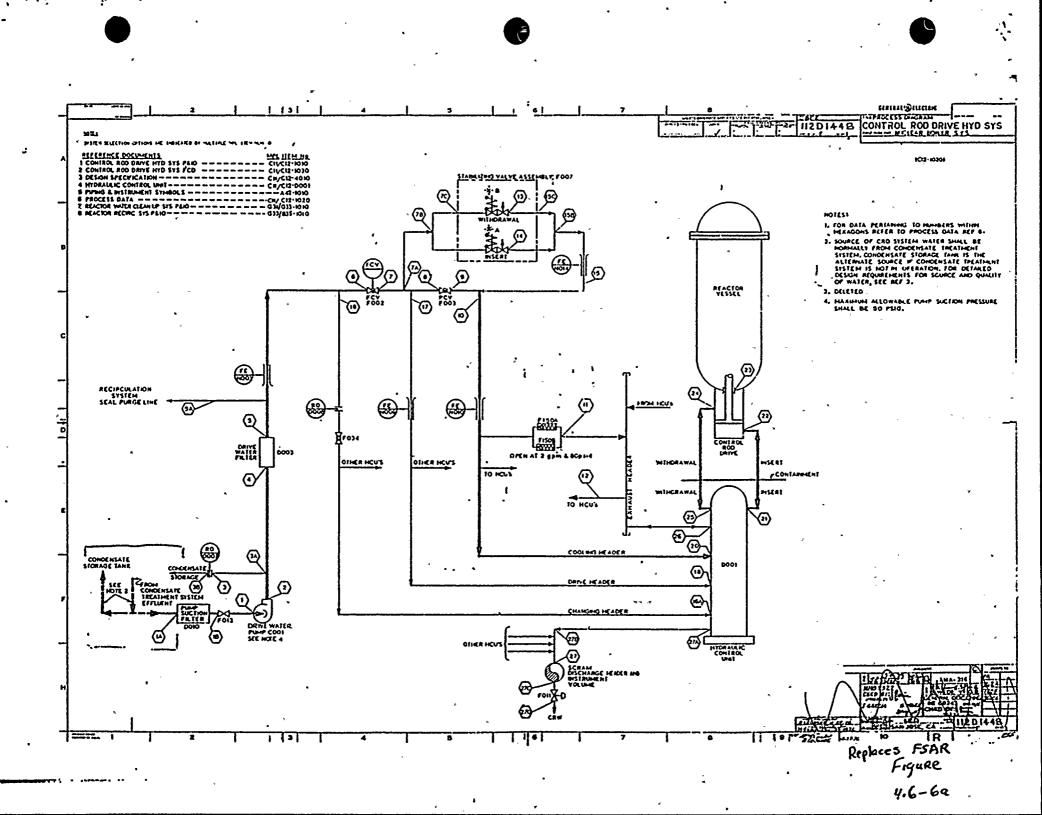
· · ·


· · · · · · • • • • • 

,




A JUNIA ....


•



Replaces FSAR Figure 4.6-56

9





WASHINGTON PUBLIC 12 NUCLEAR PROJECT MODE A NORMAL OPERATION LOCATION 58 18 2 3 6 POWER 17.9 71.9 71.9 FLOW. GPM 106.9 106.9 105.9 19.0 87.9 87.9 10.0 77.9 PR+60 PP+260 1429 PR+2C0 1401 1388. 1388. 1383 PRESS. PSIG 21 19. 1429 NO. SUPPL LOCATION 20 10 11 17 12 56.9 .34MAX FLOW, GPM \$5.0 15.0 15.0 2.0 4.0 6.0 0. PR+20.MAX 106: PR+60. PR+15 PRESS. PSIG PR+60. PR+50 PR+50.MAX PR+20.MAX PR+20 MAY ·N ~ S LOCATION 28 79 30 21 22 25 25 24 77 SYSTEM .34MAX 56.9 56.9 FLOW. GPM 34MAX 0 ٥ 62.9 34MAX Δ PR+14. 0 PR+60. PR+20.MAX PRESS. PSIG PR+14 PR -RR PRF20.MAX PR+20.MAX CONDITION5 DRIVES LATCHED. 1. MODE A SIZES THE COOLING WATER HEADERS HINIMUM BEQUIRED PRESSURE AT POSITION 1A IS SHOWN. PRESSURE OF REACTOR (PR) AT 1000 PSIG. MAXIMUM COOLING FLOW TO DRIVES. 2. 3. PRESSURE AT EQUATION 16 SHALL NOT EXCEED 1510 PSIG PRESSURE AT LOCATION 28 SHALL NOT EXCEED PR+20. LIKE LOSS FROM LOCATION 30 TO LOCATION 20 SHALL NOT MODE B ROD INSERTION EXCEED 3 PSIG. LOCATION CONTROL ROD DRIVE 14 1 . Ħ . -. . Ħ 90 . FLOW, GPM Į1 71 11 . . . \* PRESS. PSIG . -11 . . . LOCATION 10 11 12 13 14 15 16 18 19 20 Ħ -. FLOW. GPM . Ħ 4.0 15 0 2.0 4.0 -6 80 Ħ . . PR+260 8 PRESS. PSIG . 10 PR+250. LOCATION 21 22 23 24 25 27 26 28 29 30 FLOW, GPM 4.0 4.0 . 56.9 1.3 .7 7 . . SYSTEM . PRESS. PSIG PRIS . -. PR+90. PR+20.MAX PR+20\_MAX PRH20 MAX PR+20.MAX CONDITIONS: 1. DRIVES INSERTING. 2. PRESSURE OF REACTOR (PR) AT 1000 PSIG. 3. MAXIMUM DRIVING FLOW TO DRIVES MODE B SIZES THE DRIVE WATER HEADERS FOR REVISIONS SEE SHEET 1 J. W. W. W. THIS SIEET TO BE USED WITH PROGESS DIAGRAM 11201448 FIGURE .6-65

8

٠

g

Ĵ.

£

.

ī

2

l

والمتراك المرعر التراج

**4** ¥

|   |               |          |             |           |          |          |                                       |                                       |            |            |            |                |                | .1                  |                |          |                                                                                                                               |
|---|---------------|----------|-------------|-----------|----------|----------|---------------------------------------|---------------------------------------|------------|------------|------------|----------------|----------------|---------------------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------|
| + |               |          | 2           |           | <u> </u> | 1 1 2    | <u> </u>                              |                                       | 4          |            | 5          |                | <u> </u>       | <u>!!•</u>          |                |          | 7 0 1 1 9 1 ELEMAN SUICIDE                                                                                                    |
|   |               | RHAL C   | PERATI      | 0N        |          |          | r                                     | T                                     | r          |            |            | ·              | I              |                     | r              | r        |                                                                                                                               |
|   | LOCATION ()   | 14       |             | 1         | <u>,</u> |          |                                       | 5^                                    |            |            |            |                |                |                     |                | <u> </u> | CONDITIONS                                                                                                                    |
|   | FLOW , GPH    | - 22     |             | 33        | 20       |          | 73                                    | 10                                    |            | 63         | 57         | 57             | 63             |                     | <u>•··</u>     | 2        | 1 I. DALIVES LATCHED<br>2. PAESSURE OF REACTOR IPALAT 1000 PSIS.                                                              |
|   | PRESSURE PSIS | 21       | <u>  19</u> | 1407      | 1487     | 1476     | 1462                                  | 1462                                  | 1455       | PR - 260   | PR + 260   | PR - 30        | PA - 30        |                     | . **           | PR - 30  | MODE & SIZES THE COOLING WATER HEADERS.                                                                                       |
| 1 |               |          | 13          | 16        | 17       | 16       |                                       | 20                                    | 21         | 22         | 23         | 24             | 25             | 26                  | 27             |          | LINE LOSS FROM LOCATION TO LOCATION 20 SMULL NOT EXCEED 3 PSIS.                                                               |
|   | 1.0V. 44      | •        | <u> </u>    | <u> </u>  | •        | <u> </u> |                                       | 24 HAX                                | .34 HAX    | 34 84.     | ,34 NAX    | 0              | •              | •                   | <u> </u>       |          |                                                                                                                               |
| • | PRESSURE PSIA | PR + 30  | PR + 30     | 1455      |          |          | [                                     | PR + 15                               | 11.11      | PR + 1+    | PR         | PR             | L              | <b>FN</b>           | <u> </u>       | <u> </u> |                                                                                                                               |
|   |               | O INSE   | 1           | <u> </u>  | <u> </u> |          |                                       |                                       | ·          |            |            |                |                |                     | r              | ·        | I I I I I I I I I I I I I I I I I I I                                                                                         |
|   | LOCATION      |          |             |           | 3        |          |                                       | 54                                    | <u> </u>   | 7          |            | 9              | 8              |                     | 12             | <u> </u> | CorolTions1                                                                                                                   |
| 7 | FLOW . CPH    | 23       | 93          | >>        | 50       | 73       | 73                                    | 0                                     | <b>63</b>  | 63         | \$7        | \$7            | 30             | 0                   | .7             | 2        | A I. DAIYE INSERTING<br>( 2) PACSSURE OF REACTOR IPRI AT 1000 PSIG.<br>3. MAJING DRING PLOW TO DAIYES                         |
|   | PRESSURE PSIE | 21       | [ <u>13</u> | 1487      | 1487     | 1476     | 1465                                  | 1462                                  | 1455       | PR + 260   | PR + 260   | FA - 30        | PR - 30        | en . 4              | ****           | PR • 20  | HODE & SIZES THE DRIVE WATER HEADERS,                                                                                         |
| - | LOCATION      | - 14     | 18          | к         | 17       | 10       |                                       | 20                                    | 21         | 22         | 23         | 24             | 25             | 25                  | 27             | <u> </u> | , · · · · · · · · · · · · · · · · · · ·                                                                                       |
|   | TLOW . CPU    | •        | 2           | •         | •        | •        |                                       | <u> </u>                              | · ·        | •          | د.         | .,             |                | .7                  | •              |          | · · · · · · · · · · · · · · · · · · ·                                                                                         |
|   | PRESSURE PSIE | 11.30    | PR + 30     | 1455      | PR + 260 | PA + 250 |                                       | PR + 15                               | PR- 31     | PR - 30    | M          | PR + 20<br>MAX | PR + 20<br>MAX | Mint.               | <u> </u>       | <u> </u> | J · · ·                                                                                                                       |
|   | HODE C SC     | RAM      | ·           | ·         | •        | e        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |            |            |            |                | <b></b>        | <u> </u>            | ·              | ;        |                                                                                                                               |
| - | LOCATION O    | M        | <u> </u>    | 2         | 3        | •        |                                       | -                                     | c          | 7          | •          | 3              | 6              | • 11                | 12             | 13       |                                                                                                                               |
| 뒭 | 1.0W. OFH     | 45       | 45          | 45        | 20       | 25       | 25                                    | 10                                    | 15         | 13         | 15         | 15             | 18             | 13                  | 11.3           | •        | CONDITIONSI<br>I, DRIYTS SCRAMMING<br>2, PRESSURE OF REACTOR IPRI AT 1000 PSIG.                                               |
| 1 | PRESSURE PSIS | 21       | 21          | 1550      | 1350     |          | l                                     | <u> </u>                              |            | l          |            | <u> </u>       |                | "\$ <u>₹</u> ₹,     | BOTE D         | I        | 2. PRUSSURE OF REACTON INTER AT DOD VELOCITY OF AS INCHES PER SECOND.                                                         |
| 1 | LOCATION ()   | 14       | 15          | 14        | 17       | 18       |                                       | 20                                    | 21         | n          | 23         | 24             | . 25           | 26                  | 27             | <u> </u> | NOOL C SIGES THE INSULT AND ATTICHING EINES.                                                                                  |
| ł | FLOW . 474    | 0        | •           | •         | 0.       | 0        |                                       | 0                                     | 30         | 30         | -7.6       | 30             | 30             | 0.1 . SEE<br>HOTE 3 | APPROX<br>8565 |          |                                                                                                                               |
|   | -             |          | ·           |           |          |          |                                       |                                       | 1167 MIN   | 731 MIR    | -          | 256 WAX        | 34             |                     | 65 WAX         |          | ]                                                                                                                             |
|   | HODE 0 . S    |          | NPLETE      | •         | _        |          |                                       |                                       |            |            |            |                |                |                     | usif 10        |          | -                                                                                                                             |
| 1 | LOCATION ()   | I IA     | 1           | <u> </u>  | ,        | •        | . 5                                   | 54                                    | <u>ن</u>   | 7          |            | ,              | oi I           | u                   | 12             | 13       | 1                                                                                                                             |
| - | LON. CH       | 200      | 200         | 200       | 20       | 180      | 100                                   | 10                                    | 15         | 15         | 15         | 15             | 13             | 15                  | 11.3           | •        | L CONDITIONSI<br>1. SCRANNING OF DRIVES COMPLETED<br>2. PRESSURE OF REACTOR ITRI AT OF510.<br>3. MAINEN CRD SUPPLY PUMP FLOT. |
|   |               | 21       | 13          | 1210      |          |          | <u> </u>                              | 1                                     | <u> </u>   | >FR        | >PR        | 248            | HA             | >+n                 | >+FR           | <u> </u> | 3. MARTHUM CHO SUFFET FUMP FLOT.                                                                                              |
|   |               | <u> </u> |             | <u></u>   | <u></u>  | r        | <u></u>                               | <u></u>                               | <u></u>    | ,          | <u> </u>   |                | <u></u>        |                     |                | r        | NOTE I MINIMUM ACCUMULATOR PRECIMAGE PRESSURE IS 545 PSID.                                                                    |
| 1 |               | 0        |             | 16<br>155 | 17       | 18       | <b> </b>                              | 20                                    | 31         | 22         | 23         | 24             | 25             | 26                  | 27             | <u> </u> | - , .                                                                                                                         |
|   | TREASURE PSIL |          |             | 34.0      | <u> </u> |          |                                       | <b></b>                               | 6.92<br>76 | C.92<br>76 | 0.32<br>PR | BOTE S         | BOLE B         | 0.1                 | S MAX          | {        | 1                                                                                                                             |
| - |               | L        | <u> </u>    |           | 1        | I        | I                                     | .I                                    | 1          | <u> </u>   |            |                | 1              | 1<br>07£ 10         |                | <u>}</u> |                                                                                                                               |
| ļ |               |          |             |           |          |          |                                       |                                       |            |            |            | L              |                |                     |                | 3        |                                                                                                                               |
| н |               |          |             |           |          |          |                                       |                                       |            |            |            |                |                |                     | 3              |          |                                                                                                                               |
|   |               | •        |             |           |          | •        |                                       |                                       |            | •          | •          | •              |                |                     |                |          | I CARCUN UNIT BOOM STATE THE TABLE                                                                                            |
|   | ì             |          |             |           |          |          |                                       |                                       |            |            |            |                |                | •                   |                |          |                                                                                                                               |
| 1 | <b>X12</b> 1  |          | 2           |           | 1        | 113      | IT I                                  |                                       | 4          | _1         | 8          |                |                | 141                 | T              |          | 7   <u>5        </u> 10    <u>R</u>                                                                                           |
|   |               |          |             |           |          |          |                                       |                                       |            |            |            |                |                | •                   |                |          | Valaces ESAR                                                                                                                  |
|   |               |          |             |           |          |          |                                       |                                       |            |            |            |                |                |                     |                |          | Replaces FSAR<br>Figure<br>4.6-66                                                                                             |
|   |               |          |             |           |          |          |                                       |                                       |            |            |            |                |                | •                   |                |          | 4.6-66                                                                                                                        |
|   |               |          |             |           |          |          |                                       |                                       |            |            | •          | •              |                |                     |                |          |                                                                                                                               |

WASHINGTON PUBLIC POWER . 7 Neplay allahap NUCLEAR MODE C SCRAM PROJECT 8 5 5A 6 LOCATION 14 1 2 3 . . . ..... . . 11 R FLOW GPM . . 11 H PRESS. RSIG 14 NO. · 20 SUPPLY 18 19 15 16 17 LOCATION 13 14 10 11 12 -..... . 0 R 11 . . . . FLOW. GPM ñ -. PRESS. PSIG n . . \* . . ŝ SYSTEM , 27 29 30 28 24 25 26 LOCATION 21 22 23 . . . N ÁPPROX.5476 29.6 FLOW, GPM f 90. **`9**0. -3.6 29.6 . . 7.7 1167.MIN 731 .MIN 256. MAX 94. PRESS. PSIG CONDITIONS: 1. DRIVE SCRAMMING MODE C. STZES THE INSERT AND WITHORAW LINES PRESSURE OF REACTOR (PR) AT 1000, PSIG FLOWS BASED ON MAXIMUM ROD VELOCITY OF 85 INCHES PER SECOND. 2. . . ٠ •1 1 SCRAM COMPLETED MODE D 9 . 7 8 5 5A -6 2 3 LOCATION 18 1 CONTROL 5. 5. 181. 5. 5. 200. 18. 181. FLOW. GPM 200. 200. 10. 1010 PR 1141. 1064. 1010. PR PRESS. PSIG -4. 1141. 988 PR 6. 20 19 LOCATION +18 15 16 :17 10 11 12 13 14 ROD 166. 1 1 FLOW. GPM 5. 5. -5. . PR PR . 988 PR PRESS. PSIG DRIVE 30 29 22 24 25 26 27 28 LOCATION 21 23 FLOW. GPM 0 ŀ 0.95 0.95 1.48 -0.53 -0.53 8 65.MAX 65 .MAX **х**б 65.MAX SÝSTEM PRESS. PSIG 76. CONDITIONS: 1. SCRAMUNG OF DRIVES COMPLETED. 2. PRESSURE OF REACTOR (PR) AT 0 PSIG. 3. MAXIMUM CRD SUPPLY PUMP FLOW. MODE D SIZES THE PUMP SUCTION LINE MINIMUM ACCUMULATOR PRECHARGE PRESSURE IS 565. PSIG. SEE SHEET 1 FOR REALISIONS

4.6-6c FIGURE

|        |       |         |          |        | 1     |       |                |            | r                                |                  |             |                                    |               |
|--------|-------|---------|----------|--------|-------|-------|----------------|------------|----------------------------------|------------------|-------------|------------------------------------|---------------|
| 1      | 2     | 1       | 1 1 2 1  | .1     | 4     |       | 5              |            | 1101                             |                  | 7           | <u> </u>                           | 0             |
|        |       |         |          | -      |       |       |                |            |                                  |                  |             |                                    |               |
|        |       |         |          |        |       |       | NOTE           | s:         |                                  |                  |             |                                    |               |
| \$A-18 | , 181 | 26      | 34-38    | 67     | 74-78 | 78-76 |                |            | PRESSURE OF TH                   | E REACTOR        | 1           |                                    |               |
| 130    | 130   | 1750    | 1750     | 1790   | 1750  | 1750  | 2, MAXI<br>3HT | NUN OPERA  | TING TEMPERATU<br>TSTEN OPERATIN | HES<br>O TENPEHA | IURE VILL N | T EXCEED 150 DE                    | [a. <b>r.</b> |
| 130    | 150   | 135     | 150      | 130    | 150   | 130   | 1 180          | 4 LOCATION | LOCATION                         | TH THE PO        |             | N TENP, IDEG, F.                   |               |
| •      | •     | 2       | <u> </u> | LS     | •     | 0.75  | M001           |            | 22                               |                  |             | 200<br>516<br>516                  |               |
| 10-20  | 8-12  | 138-150 | 15-158   | 18-164 | 17-18 | 12-26 | ]              |            | 24<br>25<br>27                   |                  |             | 546<br>546<br>280, *<br>280<br>200 |               |
| 1750   | 1750  | 1750    | 1750     | 1730   | 1750  | 1750  | - MOOI         |            | 23<br>24<br>25                   |                  |             | 280                                |               |

150

1

54

1750

150

.75

1201448AD

7. MAXIMUM ALLOWABLE PUMP SUCTION PRESSURE SHALL BE SO PSID.

eintent@itterne PROCESS DIAG BATA- ----

Constant Providence

-

R

1201448

14103402 000 001 Livn 1 4164

<u>Citri</u>

10

Replaces FSAR Figure 4.6.6C

101

П

CONTROL ROD GRIVE HYD SYSTEM

- PROCESS DIAGRAM HIDIANS SHALL BE USED WITH AND FORM PART OF THIS PROCESS DATA. IF THERE ARE ANY CONFLICTS BETWEEN THE PROCESS DIAGRAM AND THIS PROCESS DATA. THE PROCESS DATA SHALL OWERR.
- DURING SCRAW, THIS FLOW WILL BE DIRECTED INTO THE SCRAW DIS-CHARGE YOLUNE, FOLLOWING SCRAW, THIS FLOW WILL DECLIBE AS YALTE FOZ CLOSEE AND AS THE SCRAW DISCHARE YOLUNE PARS-SURJICES TO ECHAL THE REACTOR PAESURE, AFFER THE SCRAW DISC CHARGE YOLUNE AND THE REACTOR VISION AND THE SCRAW DISC CHARGE VOLUME AND THE REACTOR VISION AND THE SCRAW DISC LIEGO, FLOW WILL BE DIVERTED TO THE REACTOR VISION THE CHARCE COD VIDENAE LINES AT A FLOW RATE OFFENDENT OR THE REACTOR MELSING.

RESSURE: J.C. I.J. APPROX, IS OPH AT "O" PSIG. REACTOR PRESSURE. IDJ APPROX, 6 OPH AT "DOO" PSIG. REACTOR PRESSURE.

- IO. THIS VALUE APPLIES INNEDIATELY FOLLOVING COMPLETION OF SCAAN. PRESSURE BILL SUBSEQUENTLY EQUALIZE WITH REACTOR PRESSURE.
- II. DESIGN PRESSURE AND TEMPERATURE SNOWN IN "TACLE I" IS FCR INFORMATION OFLY AND IS THE BASIS FOR DESIGN OF BWYS SUP-PLICE COLIFMERT. ESTIMATED LINE SIZES AND FOR INFORMATION ONLY, ACTUAL LINE SIZES AS DETERMINED BY THE FIFING DESIGNER SULL, WEET THE FROCESS DATA HYDRINALE REQUIRENTS.
  - 12, ALL VALUES SHOWN IN MCOES & B. C. AND D ARE NOWINAL UNLESS-OTHERWISE NOTED.

. . SEE CRO SYSTEM DESIGN SPECIFICATION.

150

2++

21-22

1730

150

TABLE I

LOCATION

DESIGN PRESS.

DESIGN TEMP. ESTIMATED LINE LOCATION

DESIGN PRESS.

DESIGN TEMP.

SILE CINCHESS

LOCATION

DESIGN PRESS. (PSIG.)

DESIGN TEMP.

ESTINATED LINE

1=12 1

\*\* 2 INCH HEADER TO EACH HALF OF THE TOTAL QUANTITY OF HOURS.

150.

4

24-25

1730

330

0.75

2

130

0.75

274-278

1230

280

0.75

150

1

278-27

1250

280

٠

131

130

2

27-276

1250

280

ю

150

÷

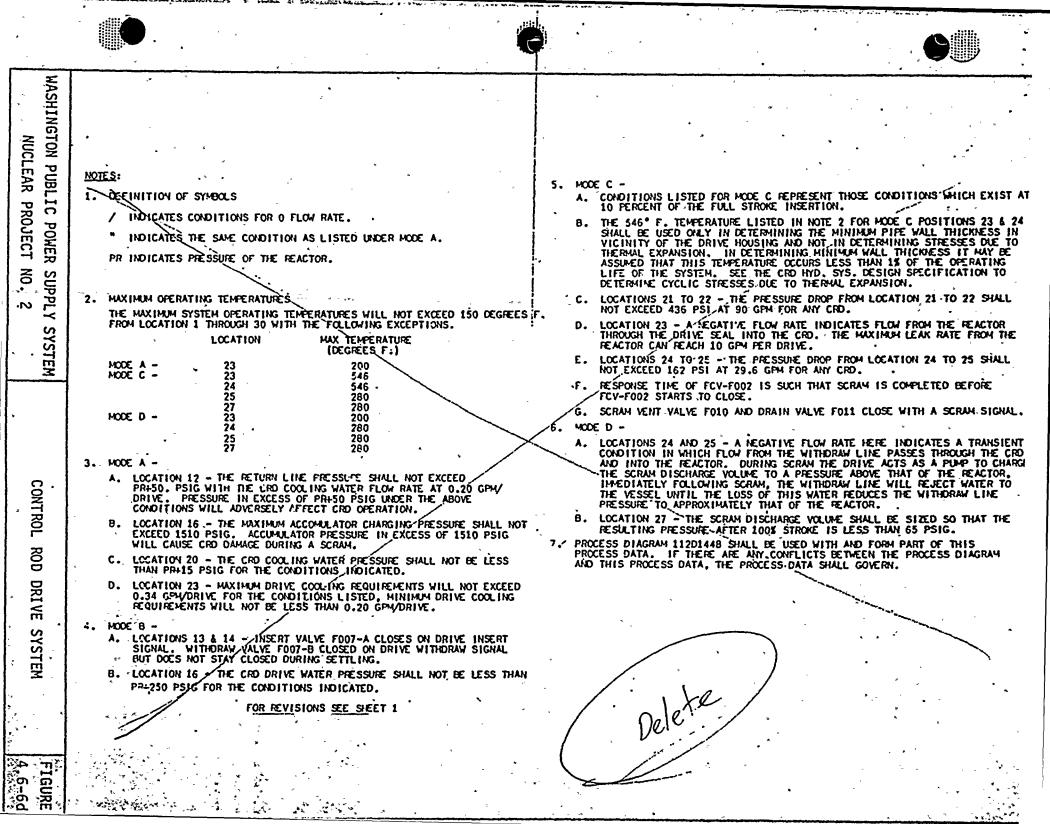
270-270

1250

280

2

| •        | LOCATION | MAXIMUM TEMP, IDEG, F. |
|----------|----------|------------------------|
| 100E A - | 20       | 200                    |
| M00E C - | 22       | 546<br>546             |
|          | 25       | 280. *                 |
| NCOE 0 - | 23       | 200 280                |
|          | 25       | 280                    |


3. HOOE A -

- A MAXIMAM CHARGES WATCE PHESSURE SHALL BE 1000 PSIC HOMMAL, ACCUMULATOR PRECHARGE PPESSURE SHALL BE 575 PSIC HOMMAL, 300 PSIG MAARANA AT 70" F.
- B. DELLIED
- C. LOCATION 20 THE CRO COOLING WATER PRESSURE SHALL NOT BE LESS THAN PR + 13 PSIG. FOR THE CONDITIONS INDICATED.
- D. LOCATION 23 MAXIMUM DRIVE COOLING REQUIREMENTS WILL NOT EXCEED 0.34 OF WORKYE FOR THE CONDITIONS LISTED. WINNEW DRIVE COOLING REQUIREMENTS WILL NOT BE LESS THAN 0.30 GFW CRITE. .
- 4. NODE 8 -
  - A LOCATION IT AND IN INSERT VALVE ROOT A CLOSES ON DRIVE INSERT SIGNAL BITCORAN VALVE FOOT & CLOSES ON DRIVE BITCORAN SIGNAL BUT DOES NOT STATY CLOSED DURING SETTALING.
  - B. LOCATION 18 THE CRO DRIVE WATER PRESSURE SHULL NOT BE LESS THAN PR 250 PSIG. FOR THE CONDITIONS INDICATED.

S. MODE C -A DELETED

- A DELETIO 5. THE 346 DEG. F. TEMPERATURE LISICO IN HOTE 2 FOR MODE C POSITIONS 5. THE 346 DEG. F. TEMPERATURE LISICO IN HOTE 2 FOR MODE C POSITIONS 5. AND 24 SHALL DE USEO ORLY IN DETERMINE AD NOT IN DITERMINENT STRESSES IN TELEVITY OF THE DRIVE MOUSTIGA AD NOT IN DETERMINENT STRESSES DUC TO THERMAL SEARNEOR. IN DETERMINING MINIMUM WALL INCOMPESS IT MAY DE ASSUNG OT THAT FINS THE MERATARA OCCUME LESS THAN I PERCENT OF THE OPERATURO LIFE OF THE SYSTEM. SEE THE CRO WTD. SYSTEM DESIGN SPECIFICATION TO DETERMINE CYCLIC STRESSES DUE TO THERMAL EXPANSION.
- C. LOCATION 21 TO 22 THE PRESSURE DROP FROM LOCATION 21 TO 22 SHALL NOT EXCEED 475 FSI AT 50 OPH FOR ARY CRD.
- A COCATION 23 A MEGATIVE FLOW RATE MONCATES FLOW FROM THE REACTOR THROUGH THE CRIVE STALL MITO THE CHO, THE MANMAN LEAK RATE FROM THE THE REACTOR CAN REACH IN GON PER DUNC.
- E. LOCATION 24 TO 25 THE PRESSURE DROP FROM LOCATION 24 TO 23 SHALL NOT EXCELD 162 PSI AT 30 6PM FOR ANY CRO.
- F, RESPONSE THE OF FCY-FOOD IS SUCH THAT SCHAM IS COMPLETED BEFORE FCY-FOOD STARTS TO CLOSE.
- 6. SCRAM ORAIN VALVE FOR AND YENT VALVE FORD CLOSE WITH A SCHAM SIGNAL
- 6. MODE D -A DELETED
  - B. LOCATION 27 THE SCRAM DISCHIACE VOLUME SHALL BE SIZED SO THAT THE RESULTING PRESSURE AFTER JOG PERCENT STROKE IS LESS THAM 45 PSIG.

1 11 4



WASHINGTON PUBLIC POWER NUCLEAR PROJECT NO. SUPPLY DESIGN PRESSURE & TEMPERATURE GIVEN BELOW IS FOR INFORMATION ONLY AND IS THE BASIS FOR DESIGN OF BWRS SUPPLIED ŝ EQUIPMENT. ESTIMATED LINE SIZES ARE FOR INFORMATION ONLY. ACTUAL LINE SIZES AS DETERMINED BY THE PIPING DESIGNER SHALL MEET THE PROCESS DATA HYDRAULIC REQUIREMENTS. SYSTEM LOCATION 14-18 18--1 2---6 3A-38 6---9A 7A-78 78-7C 11-12A 15A-15B 158-150 94-11 DESIGN PRESS. (PSIG) 150. 150. 1750. 1750. 1750. 1750. 175d. 1750. 1750. 1750. 1750. DESIGN TEMP. (DEG F) 150. 159. 150. . 150. 150. 150. 150. 150. 150. 150. 150. ESTIMATED LINE SIZE (INCHES) d.75 1 3.0' 1.0 0.75 4.0 4.0 2.0 1.0 2.0 1.5 1.0 . 1 CONTROL LOCATION 21-22 12A-12 17-18 19-20 27A-278 · 278-27 27-270 270-270 16-16A 26-26A 24-25 ... DESIGN PRESS. (PSIG) 1750. 1750. 1750. 1750. 1750 1750. 1250. 1250. 1250. 1250. .... DESIGN TEMP. (DEG F.) 150. 150. 150. 150. 280. 280. 280. . 150. 150. 280. ROD ESTIMATED LINE SIZE . :2.0 3.0 2.0 1.0 1.0 1.0 0.75 0.75 10.0 (INCHES) ... DRIVE .SEE CRD SYSTEM DESIGN SPECIFICATION. .. TO SAVE CONDITIONS AS THE FEEDWATER PIPING (BY OTHERS) +++2" HEADER TO EACH OF THE TOTAL QUANTITY OF HOU'S. SYSTEM 4.6-6e FIGURE

# e. 010.045 (4.6.1.1.2.4.1)

The scram discharge volume header piping is sized to receive and contain all water discharged by the control rod drives during a scram, independent of the instrument volume. Show quantitatively how a minimum volume of 3.34 gallons per drive is required since approximately 4 gpm is required to insert the rods with up to an additional 0.34 gpm required for cooling.

#### Response:

The 3.34 gallon minimum volume requirement is in no way related to the 4 gpm drive insert flow rate or the 0.34 gpm cooling water flow rate. The nominal 4 gpm drive insert flow is the volumetric flow rate delivered to the underside of the control rod drive (CRD) piston to displace the piston in the upward direction and achieve normal rod insertion at about 3 inches per second. The 0.34 gpm cooling water is also delivered to the underside of the drive piston and from here it is discharged to the reactor pressure vessel (RPV) via an engineered flow path up through the annular thermal sleeve region between the CRD piston mechanism and the CRD housing. On the other hand, the scram discharge volume is sized to provide a low pressure discharge point for the volume of water above the drive piston displaced during the period of scram insertion and an additional, conservatively defined, maximum leakage from the RPV to the top of the drive piston during the scram. The volume of water over the drive piston of a fully withdrawn CRD is D.76 gallons. To this is added a conservative 10 gpm leakage flow from the RPV for an extended period of 10 seconds. (Normal full rod insertion is complete in less than 3 seconds.) Finally, some more volume is added to accommodate the air potentially trapped in the SDV so as to assure that the SDV pressure at 10 seconds after the time of scram initiation is  $\leq 65$  psig The sum of the 0.76 gallons displaced from the top of the drive piston, the 10 seconds of 10 gpm post-scram leakage flow from the RPV and the free volume required for the air trapped in the SDV adds up to the specified minimum value of 3.34 gallons per CRD.

# Q. 010.046 (4.6.1.1.2.4.2.2)

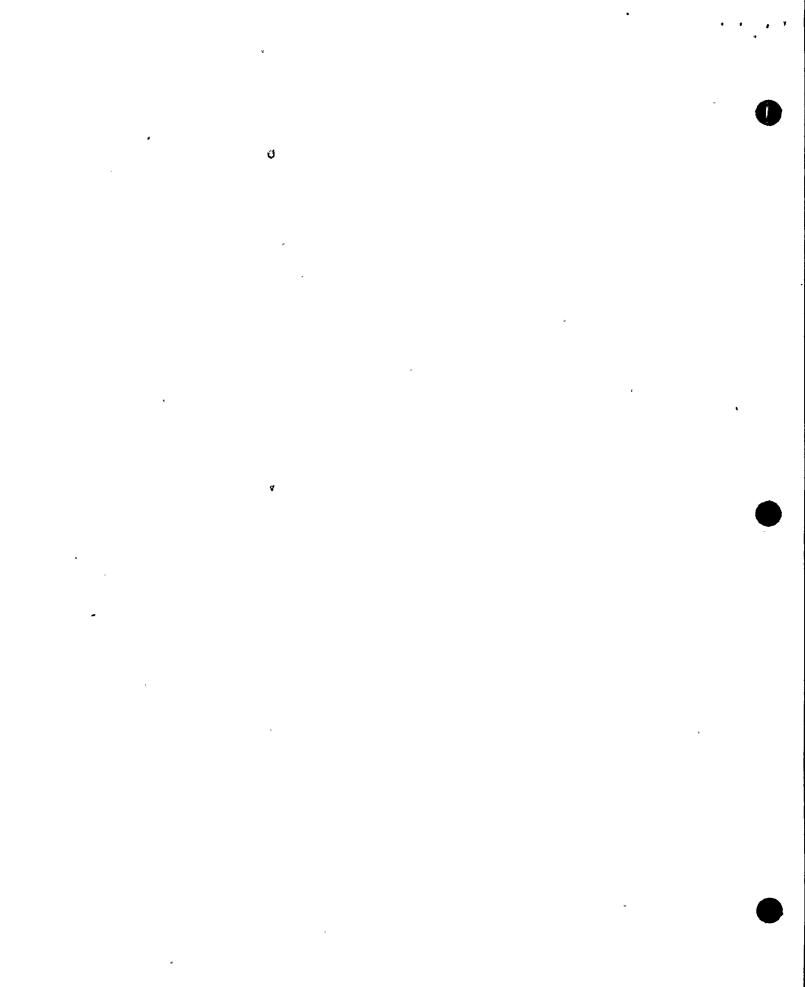
In Figure 4.6-5b and Drawing M528, pressure transmitter (NOD5) transmits a signal to a pressure switch (N6DD) in the process instrumentation panel in the control room, which energizes an annunciator in the control room at any time pressure in the charging header falls below the setpoint. Explain why an alarm on high is indicated for the pressure switch (N6OD) instead of an alarm on low which would provide protection against charging header pressure falling below the setpoint.

#### Response:

The charging water header of the Control Rod Drive (CRD) is monitored for high pressure since high charging water header pressure indicates the existence of an abnormal condition in the CRD hydraulic system (e.g., such as a failed close flow control valve). The pressure indicating switch on the charging water header (C11-N600) is set to actuate the control room annunciator if the charging water header pressure exceeds a nominal 1510 psig setpoint, (the alarm is actuated on an increasing pressure). Neither sustained high charging water pressure nor CRD drive water pump operation is required to successfully scram the plant. Each of the control rod drives has its own hydraulic control unit (HCU) which operates independently of any Scram is achieved on either HCU accumulator others. pressure or a combination of accumulator pressure and reactor pressure. Each HCU is safety grade and has its own accumulator. The condition of the accumulators is continuously monitored by the Reactor Manual Control System. Loss of pressure and/or leakage from any of the accumulators is detected by PSL-130 and LDS-129, respectively, for each accumulator, as shown in Figure 4.6-5b. Both occurrences are annunciated and a light signal identifies the particular scram accumulator. This instrumentation, existing locally at each HCU, provides the necessary indication of accumulator charge pressure irrespective of the pressure in the nonessential charging water header.

# Q. 010.047 (4.6.1.1.2.4.2.4)

Revised FSAR Figure 4.6-5b (Amendment 16) does not appear to show valves F129, F130, F131, and F132. The applicant should explain if this is what is meant in the response by "removing the discrepancy identified above". In addition, the revised FSAR page was not provided as stated in the response. The applicant should provide the revised FSAR page and describe the revision.


Response:

FSAR Figure 4.6-5b (Amendment 16) does not show valves F129, F130, F131, and F132 because these valves were removed from the CRD system when the CRD return line to the RPV was eliminated.

What is meant by "removing the discrepancy identified above" in the response to Question 211.134 (later changed to O10.047) is that by submitting revised FSAR Figure 4.6-5b the discrepancy identified in Question O10.047 between the FSAR text, M528 (FSAR 3.2-4) and FSAR Figure 4.6-5b was resolved.

The words "revised FSAR page change attached" referred to FSAR Figure 4.6-5b.

#### WNP-2



.

# Q. 010.048 (4.6.1.1.2.4.3.9)

The text description of the scram accumulator indicates that a check valve in the accumulator charging line prevents loss of water pressure in the event supply pressure is lost. The symbol for valve 111 in Figure 4.6-5b and Drawing M528 appears to be that of a normally open globe valve instead of a stop-check globe valve. Explain this apparent discrepancy.

## Response:

There is no disagreement between 4.6.1.1.2.4.3.9 of the FSAR text and Figure 4.6-5b and Drawing M528 concerning value 111. "A check value in the accumulator charging line prevents loss of water pressure in the event the supply pressure is lost" refers to value 115 and to the "charging water". Value 111 is closed only when the pressure instrumentation is being serviced and when the nitrogen charging station is being connected and disconnected.\*

\*Draft FSAR page change attached.

scram valve operators. This prevents the inadvertent scram of a single drive in the event of a failure of one of the pilot valve solenoids.

# 4.6.1.1.2.4.3.7 Scram Inlet Valve

The scram inlet valve opens to supply pressurized water to the bottom of the drive piston. This quick opening globe valve is operated by an internal spring and system pressure. It is closed by air pressure applied to the top of its diaphragm operator. A position indicator switch on this valve energizes a light in the control room as soon as the valve starts to open.

4.6.1.1.2.4.3.8 Scram Exhaust Valve

The scram exhaust value opens slightly before the scram inlet value, exhausting water from above the drive piston. The exhaust value opens faster than the inlet value because of the higher air pressure spring setting in the value operator.

4.6.1.1.2.4.3.9 Scram Accumulator

The scram accumulator stores sufficient energy to fully insert a control rod at lower vessel pressures. At higher vessel pressures the accumulator pressure is assisted or supplanted by reactor vessel pressure. The accumulator is a hydraulic cylinder with a free-floating piston. The piston separates the water on top from the nitrogen below. A check valve in the accumulator charging line prevents loss of water pressure in the event supply pressure is lost.

During normal plant operation, the accumulator piston is seated at the bottom of its cylinder. Loss of nitrogen decreases the nitrogen pressure, which actuates a pressure switch and sounds an alarm in the control room.

To ensure that the accumulator is always able to produce a scram, it is continuously monitored for water leakage. A float type level switch actuates an alarm if water leaks past the piston barrier and collects in the accumulator instrumentation block.



Page 1 of 5

*0/0.049* <u>2.211.006</u> (5.2.5) (7.6.2) (12.3.4)

Provide a detailed discussion of the sensitivity and response times of the containment airborne radiation monitoring systems for a number of containment background activity levels. The background activity levels which should be considered are those levels in the containment that would result from leakage through the RCPB assuming: (1) relatively clean water in the reactor coolant system at the initial operation of the WNP-2 facility at power; and (2) the maximum level of activity in the reactor coolant permitted by the WNP-2 Technical Specifications. In responding to this item, assume both the normal and the maximum leakage rates identified in your response to Question 211.115. Indicate your assumptions in estimating the response times of the containment airborne radiation monitoring systems (e.g., the preset alarm level for higher background leakage and the plateout factor).

WNP-2

# Response:

The two types of radiation monitors used in the WPPSS Nuclear Project No. 2, for monitoring the drywell atmosphere, are the particulate monitor and the noble gas monitor. The sensitivity of these two types of monitors is given in Figure 211.006-1 and 211.006-2. The same detector is used in both monitors. The detector's noise level is about 25 cpm. The minimum detectable concentration is based on doubling the background count rate. The count ratemeter range and the minimum sensitivity of both types of monitors are:

#### Noble Gas

Count Ratemeter Range:

'1.4 x  $10^{-7}$  /µci/cc - 1.4 x  $10^{-1}$  /µci/cc for Kr-85 Minimum Detectable Concentration:

 $3.6 \times 10^{-7}$  /µci/cc

for Kr-85

AMENDMENT NO. 17 July 1981

Page 2 of 5

### Particulate

WNP-2

Ratemeter Range:

2.9 x  $10^{-12}$  /µci/cc - 2.9 x  $10^{-6}$  /µci/cc for Sr/Y-90 Minimum Detectable Concentration:

$$7.4 \times 10^{-12}$$
 /4 ci/cc

for Sr/Y-90

The quantity of drywell atmosphere that flows through the filter of the particulate monitor and then through the 2.2 liters chamber of the noble gas monitor is 3 cfm. The drywell atmosphere sample is returned to the drywell. (The free volume of the drywell is 200,540 ft<sup>3</sup>). There is a charcoal filter after the particulate and before the noble gas detector. The filter efficiency of the particulate filter is assumed to be 100 percent. Similarly, the efficiency of the charcoal filter is assumed to be 100 percent.

The 2-inch diameter scintillation crystal, of the particulate detector, is 1/4-inch away from the face of the filter tape. The filter tape is 2.5 inches wide and moves at 1"/hr.

As per the response to Question 211.005, the total minimum identifiable and unidentifiable leakage rate is taken to be 2.1 gpm. The total maximum identifiable and unidentifiable leakage rate is taken to be 5.5 gpm. The leakage is measured at drywell environmental conditions and thus the water density is assumed to be 19/cc. Based upon potential sources of leakage (such as number and nominal size of valves), it is estimated that 38.5 percent of the leakage is due to steam. leakage. Collection of the identifiable leakage is not sealtight and thus, volatile radioisotopes can escape into the drywell atmosphere. Water leakage is assumed to be flashing, and that there is an instantaneous mixing of the volatile radioisotopes with the drywell atmosphere. It is assumed that the noble gases are in the steam phase and the small guantities of noble gases in the liquid phase are neglected. the other hand, it is assumed that the quantities of particulate radioisotopes in the steam phase are small and thus, are neglected.

Decay was considered for the radioisotopes in the drywell and for those radioisotopes accumulated on the particulate filter. No decay was considered, however, for the radioisotopes while in transit to the detectors and while in the noble gas detector chamber (for the atmosphere in the chamber, exchange rate is 1.55 seconds). It is assumed that plating, settling,



#### Page 3 of 5

impingement, etc., reduce the specific concentration of particulate isotopes in the drywell atmosphere by a factor of 1000 before the air flow reaches the filter of the particulate monitor.

In order to be responsive to the question, the source concentrations used in this analysis were taken to be those in Table 5 of ANS/ANSI N237-1976, reduced by 1/100, as representative of "relative clean water in the reactor coolant". The design basis concentrations, as per General Electric specification document No. 22A2703F; Revision 3, were used as representative of the maximum expected level of radioactivity within the reactor coolant.

The criterion used, as an indication of leakage increase, is the doubling of the background count rate within one hour for 1 gpm (additional) leakage. Each detector was evaluated with respect to responding to the criterion. See Table  $2\frac{11.006-1}{0.0.049}$ 

In summary, the particulate monitor will meet the requirements stated in Regulatory Guide 1.45 for the minimum activity concentration of radioisotopes in the reactor coolant. For the cases where it is assumed that the design basis activity exists in the reactor coolant, the background activity exceeds the particulate monitor range. However, the detector can be desensitized accordingly. It can be shown that if a reactor coolant activity is selected based upon the guidance contained in Regulatory Guide 1.45; i.e., if "a realistic primary coolant radioactivity concentration" is used, e.g., equal to that given in Table 5 in ANS/ANSI N237-1976, and expanding the criterion of double background count rate to the desensitized monitor, the requirements stated in the regulatory guide will be met.

The noble gas monitor, however, even though its sensitivity is consistent with Regulatory Guide 1.45 requirements, would not be capable of detecting the additional 1 gpm leakage within one hour utilizing the criterion of double background count as positive indication. The noble gas monitor does, however, provide the most reliable and fastest means of ascertaining increased activity within containment with unidentified leakages higher than 1 gpm.

> 2<del>11.006-</del>3 *010.049*

۰ ۲

•

-

.

.

# sylee

۰ ۰

·

.

0

Page 4 of 5

#### 010.049 TABLE 211-006-1

WNP-2

#### RESULTS OF MONITOR ANALYSIS.

#### RESULTS OF ANALYSIS FOR NOBLE GAS MONITOR

When the background of about. 5 cpm is added to the detector's noise level of ~25 cpm. the total cpm by the detector before the event is about 30. With the increase of 1 apm leakage, the count rate would Increase one hour after the event to only about 32 cpm.

When the background of about 12 cpm is added to the detector's noise level of ~25 cpm, the total cpm by the detector before the event is about 37. With the increase of 1 gpm leakage, the count rate would Increase, one hour after the event, to only 39 cpm.

When the background of about 81 cpm is added to the detector's noise level of N25 cpm, the total cpm by the detector, before the event, is about 106. With the increase of 1 gpm leakage, the count rate would Increase, one hour after the event, to only about 136 cpm.

When the background of about 213 cpm is added to the detector's noise level of A/25 cpm, the total cpm by the detector, before the event, is about 238. With the increase of 1 gpm leak- enough, it would take about age, the count rate would increase, one hour after the event, to only about 269 cpm.

### RESULTS OF ANALYSIS FOR PARTICULATE MONITOR

The background count rate would double as a result of 1 apm unidentified leakage within about 46 minutes.

The background count rate would double as a result of 1 gpm unidentified leakage within about 49 minutes.

The background count rate exceeds the detector's sensitivity. Analysis shows that if the detector's sensitivity were high enough, it would take about 51 minutes for the background count rate to double.

The background count rate exceeds the detector's sensitivity. Analysis shows that if the detector's sensitivity were high 53 minutes for the background count rate to double.



CASE

a. Minimum ectivity in reactor coolant

Minimum backb. ground leak rate c. Duration of back-

- ground leakage = one day
- d. Unidentified leakage of 1 gpm. is introduced.
- Minimum activity 'in reactor coolant b. Maximum background

leak rate

- Duration of background leakage = one day
- Unidentified leakage of 1 gpm is introduced.
- a. Maximum activity in reactor coolant b. Minimum background
- leak rate Duration of back-C.
- ground leakage = one day
- d. Unidentified leakage of 1 gpm is introduced.
- a. Maximum activity in reactor coolant Maximum background b.
- leak rate
- Duration of background leakage = one day
- Unidentified d. leakage of 1 gpm is Introduced.

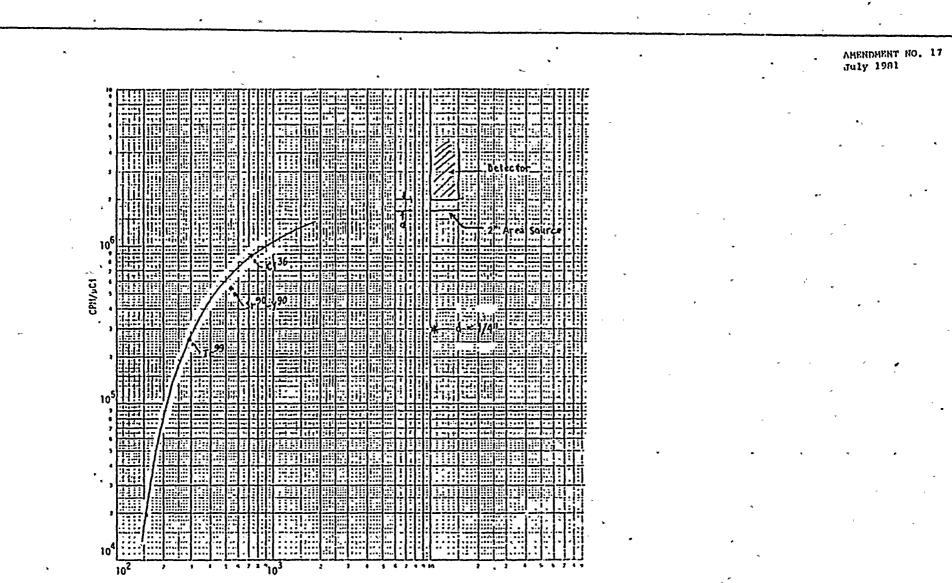




WNP-2

. .

AMENDMENT NO. 17 July 1981


# 010.049

Page 5 of 5

,

|    |                                                    | ·                                                                        |                                                        |
|----|----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|
|    | CASE .                                             | RESULTS OF AVALYSIS FOR<br>NOBLE GAS MONITOR                             | RESULTS OF ANALYSIS FOR<br>PARTICULATE MONITOR         |
| •  | Minimum activity in                                | When the background of about                                             | The background count rate                              |
|    | reactor coolant<br>Kinimum background<br>leak rate | 10 cpm is added to the detec-<br>tor's noise level of ~25 cpm,           | will double as a result<br>of 1 gpm unidentified       |
| :. | Duration of back-                                  | the total cpm by the detec-<br>tor, before the event, is                 | leakage, within abut 51<br>minutes.                    |
| ì  | ground leakage ≖<br>109 days                       | about 35. With the increase<br>of 1 gpm leakage, the count               |                                                        |
| •  | Unidentified<br>leakage of 1 gpm                   | rate would increase, one hour<br>after the event, to only about          |                                                        |
|    | is introduced.                                     | 36 cpm.                                                                  | •                                                      |
| •  | Minimum activity in                                | When the background of about                                             | The background count rate                              |
|    | reactor coolant                                    | 25 cpm is added to the detec-                                            | would double as a result                               |
| •  | Maximum background                                 | tor's noise level of 4 25 cpm,<br>the total cpm by the detector,         | of the 1 gpm unidentified<br>leakage, within about 53  |
| •  | Duration of back-                                  | before the event, is about 50.                                           | minutes.                                               |
|    | ground leakage ≖<br>100 days                       | With the increase of 1 gpm <sup>2</sup><br>leakage, the count rate would |                                                        |
| •  | Unidentified                                       | · increase, one hour after the                                           | = h                                                    |
|    | leckage of 1 gpm<br>is introduced.                 | event, to only about 52 cpm.                                             |                                                        |
| •  | Maximum activity in                                | When the background of about                                             | The background count rate                              |
|    | reactor coolant<br>Minimum background              | 165 cpm is added to the detec-<br>tor's noise level of 125 cpm,          | exceeds the detector's                                 |
| •  | leak rate                                          | the total cpm by the detector,                                           | sensitivity. Analysis<br>shows that if the detec-      |
| •  | Duraton of back-                                   | before the event, is about 190.                                          | tor's sensitivity were                                 |
|    | ground leakage =                                   | With the increase of 1 gpm                                               | high enough, it would take                             |
|    | 100 days<br>Unidentified                           | leakage, the count rate would                                            | about 57 minutes for the                               |
| •  | leckage of 1 gpm                                   | , increase, one hour after the<br>event, to only about 219 cpm.          | background count rate to<br>double.                    |
|    | is introduced.                                     |                                                                          | ·                                                      |
|    | Maximum activity in                                | When the background of about                                             | The background count rate                              |
|    | reactor coolant<br>Maximum background              | 431 cpm is added to the detec-<br>tor's noise level of ~25 cpm,          | exceeds the detector's sensitivity. Analysis           |
|    | leak rate                                          | the total cpm by the detector,                                           | shows that if the detec-                               |
|    | Duration of back-<br>ground leakage =              | before the event, is about 456.                                          | tor's sensitivity were                                 |
|    | 100 days                                           | With the increase of 1 gpm<br>leakage, the count rate would              | high enough, it would take<br>about 58 minutes for the |
| •  | Unidentified                                       | increase, one hour after the                                             | background count rate to                               |
|    | leakage of 1 gpm<br>is introduced.                 | event, to only about 485 cpm.                                            | double.                                                |
|    |                                                    | ,                                                                        |                                                        |
|    |                                                    |                                                                          | •                                                      |
|    |                                                    | •                                                                        | 1                                                      |

2<del>11:006-</del>5 010.049



# Hax Energy Kev

WASHINGTON PUBLIC POWER SUPPLY SYSTEM NUCLEAR PROJECT NO. 2 11GUR PARTICULATE SYSTEM REPLICIENCY 906-

010.0

| ،د ع<br>-                             | ``· | <br>AMENDMENT NO. 17<br>July 1981 |
|---------------------------------------|-----|-----------------------------------|
|                                       |     | AHENDMENT NO17<br>July 1981       |
| * * * * * * * * * * * * * * * * * * * |     |                                   |

۸

WASHINGTON PUBLIC POWER SUPPLY SYSTEM NUCLEAR PROJECT NO. 2 GASEOUS EFFLINENT SYSTEM EFFICIENCY 241. 006-2

010.04

.!

. .

.

•

۰. ۲

۰ .

۰ ۰

. .



# Q. 010.050 (5.2.5)

The response to Question 211.007 requires additional information. It is unclear how the comparison will be made between the radioactivity monitoring and the sump level monitoring.

Describe briefly the mechanics of making these data comparisons. What calibration and operability verification tests will be performed for each independent leakage detection system? Which leakage detection system is to be used as the reference for comparison with the other systems? Do the radiation monitoring systems have radioactive sources (check sources) built into the systems?

### Response:

Radiation monitors are useful as leak detection devices because of their sensitivity and rapid response to leaks. After several weeks of full power operation, a set level of background radiation will be established. Any sudden or unexplained increase in background radiation would indicate a possible primary coolant leak within the primary containment. If an increase is noted, a comparison with other leak detection devices having a relationship to each other will be made, particularly the equipment and floor drain flow rate monitors, and the reactor building sump pumps activation on high sump level. Using the flow rate monitors as a reference, the comparisons provide independent indications of a leak within the primary containment.

The radiation monitoring channels are redundant, allowing cross-checks between channels. Each channel is equipped with test sources and purge systems so that proper operation of each individual channel can be verified from the detector through to the indicator.

A discussion of calibration and operability verification tests for the leak detection system is discussed in 7.6.2.4.a.



• , .

,

£\*

.

,

.

•

•

.

WNP-2

Q. 010.051 (5.2.5)

Identified leakage is determined during preoperational testing or is measurable during reactor operation. Will the identified leakage be measured regularly and recorded? If so, provide the frequency that these data will be recorded and indicate what procedural guidelines are to be used to change the magnitude of the base identified leakage rate?

# Response:

The identified leakage is measured continuously and the leakage rate will be calculated and recorded on a frequency of at least once per day in accordance with the plant technical specifications. The procedures describing how the identified leakage rate is determined will include provisions for showing the identified leakage rate numbers not exceeded the maximum allowable value of 25 gpm.

Each equipment leak-off connection has been provided with a temperature element which will identify to the operator that a higher than normal temperature exists at that particular location.

11)

Q. 010.052 (5.2.5)

Standard Review Plan 5.2.5 specifies that unidentified Leakage should be collected separately from the identified Leakage so that a small unacceptable unidentified Leak is not masked by Larger acceptable identified Leakage. Section 5.2.5 of the FSAR does not clearly indicate that separate collection of identified and unidentified Leakage is provided.

Provide assurances that identified and unidentified Leakage will be collected separately. If separate collection is not to be provided, provide justification for use of a common collection reservoir and show that a small unidentified Leak of about 1 gpm would be recognized within one hour.

#### Response:

Identified and unidentified Leakage are collected separately. Identified Leakage is collected, monitored, and indicated by the Equipment Drain System (see FSAR Figure 3.2-9) while the unidentified Leakage is collected, monitored, and indicated by the Floor Drain System (see FSAR Figure 3.2-10). Section 5.2.5.6 refers, in part, to 7.6.1.3 for further explanation. In subsections 7.6.1.3.4, 7.6.1.3.5 and 7.6.1.3.6 of this section, the two separate collection systems are described.





. •

•

.

~

1

•

4

v

4

# Q. 010.053 (5.2.5)

Provide a list of all indications available to the control room operator for evaluating and detecting unidentified leakage. Show haw the operator will determine the amount of leakage by observing the indications that are available to him, including the need for unit conversion (count rate to gpm, etc). If the monitoring is computerized, discuss the backup procedures available should the computer become inoperative.

Response:

The following indications are available to the Control Room Operator for evaluating and detecting unidentified leakage:

| 1.  | Drywell Pressure Recorders                                        | -3 to +3 psig<br>•0 to 25 psig<br>0 to 180 psig     |
|-----|-------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | Drywell Temperature Recorders .                                   | 50° - 400° F                                        |
| 3.  | Drywell Floor Drain Total Flow<br>Recorder                        | 0 - 30 GPM                                          |
| 4 - | Reactor Building Floor Drain<br>Sump Fillup Rate Timer            | 0 - 30 Min.                                         |
| 5.  | Drywell Cooler Cooling Water<br>Differential Temperature Recorder | 0 - 150° F                                          |
| 5.  | Reactor Vessel Water Level<br>Recorders                           | -353.2" to - 153.2"<br>-185" to +25"<br>-35 to +85" |
| 7.  | Drywell Atmosphere Radiation<br>Monitors                          | $1 - 10^6$ CPS                                      |
|     |                                                                   | i i                                                 |

The indications listed above have no definitive correlation between their engineering units. For example, a specific count rate indicated by the Drywell Atmosphere Radiation Monitors cannot be directly converted to a leak rate in GPM, nor can a high drywell temperature be converted to an equivalent GPM leak rate. The indications listed are provided as an early warning to the operator os a potential leak. The actual unidentified leak rate is determined by observing the drywell floor drain system flow rate on flow recorders provided in the Control Room. The monitoring is not computerized.

۲

۴

.

.

.

.

•

# Q. 010.056

Your response to question 010.021 is completely inadequate. your design should be modified to provide one of the following alternatives:

- A Seismic Category I, Quality Group C, tornado mis-, sile protected Spent Fuel Pool Cooling System including the Secondary Fuel Pool Heat Exchanger Cooling System.
- 2. A Seismic Category I, Quality Group C, tornado misprotected, make-up water supply to the Spent Fuel Pool and HVAC (the HVAC design environment should be 212°F and 100% humidity). The structure above the refueling floor should be seismic Category I and tornado missile protected.
- 3. A Seismic Category I, Quality Group C, make-up water supply to the Spent Fuel Pool and the recults of an analysis which verifies that with the loss of the structure above the refueling floor, cooling with only the Seismic Category I make-up, and the most unfavorable atmospheric diffusion conditions (X/Q) that the site boundary does will not exceed 25% of the limits specified in Title 10, Code of Federal Regulations, Part 100.

#### Response:

A Seismic Category I, Quality Group C, tornado missile protected Spent Fuel Pool Cooling System has been provided which satisfies Alternative I. See revised Section 9.1.3.\*

The valves piping, and components of the cooling portion of the Fuel Pool Cooling and Cleanup System are located within the Reactor Building and are protected form tornado generated missiles. The cooling portion of the system is Seismic Category I, and will automatically isolate from the non-seismic clean-up portion of the system on low fuel pool water level. Remote-manual startup from the main control room of redundant active components of the cooling portion of the system is pro-Safety grade cooling water to the heat exchangers vided. and fuel pool makeup water is available from the stand- . by service water (SW) system and can be initiated by remote-manual operation from the main control room. The active components of the cooling portion of the system are powered from Class IE sources.

The response to to question 010.021 has been revised to refer to this response.\*

\*FSAR draft page change attached.

٩

w

٠

•

.

e

ч - , ---.

٠

Ŧ

• u.



WNP-2

# 9.1.3 SPENT FUEL POOL COOLING AND CLEANUP SYSTEM

# 9.1.3.1 Design Bases

The fuel pool cooling and cleanup system has been designed to comply with the objectives set forth in Regulatory Guides 1.13, Revision 1 and 1.26 Revision 3 to the extent specified in the following subsections. The system and equipment are designed to the classifications given in Tables 3.2-1 and 9.1-2. During normal reactor operation

- A'fre system is designed to remove the decay heat released from the spent fuel elements and maintain a specified fuel pool water temperature, water clarity, and water level by accomplishing the following:
  - a. Minimizing corrosion product buildup and controlling fuel pool water clarity so that fuel assemblies can be efficiently handled under water.
  - b. Minimizing fission product concentration in the fuel pool water thereby minimizing the release of fission products from the pool to the reactor building environment.
  - c. Monitoring surge tank water level to thereby maintain a pool water level above the fuel sufficient to provide shielding for normal building occupancy and to control make-up flow rate from the condensate transfer system.
  - d. Maintaining the fuel pool water temperature below 125°F under normal operating conditions. The maximum heat load in the fuel pool under normal operating conditions occurs at the end of the 12th refueling cycle at which time there are 2068 fuel assemblies in the high density fuel racks. The estimated refueling data is given in Table 9.1-3.

9.1.3.2 System Description 9.1.3.2. [Normal Operation

Incert

The fuel pool cooling and cleanup system flow diagram is shown on Figure 9.1-4. System performance data are summarized in Table 9.1-1. Major components of the system are summarized in Table 9.1-2. The system is designed to dissipate the fuel pool heat load during equilibrium or non-equilibrim fuel cycle conditions. Page Following any seismic event or major plant disturbance, i.e., during abnormal operation, the system is designed to prevent fuel pool boiling and maintain adequate water level in the spent fuel pool by means of the following: Automatic isolation on low fuel pool water level of the Seismid cooling portion of the system a. from the non-seismic, cleanup portion of the system: Remote-manual startup from the control room of redundant, active components of the fuel pool cooling portion of the system and initiation of safety grade cooling water, i.e., standby service. water (SW), to the fuel pool heat exchangers. colinar Remote-manual, redundant SW system make-up to the C. fuel pool and fuel pool level monitoring from the control room., 21 . f



\*

,

٠

•

•

.

٩

¥

٠

.

.

If required, heat removal capacity is available for the full core removal load during either of these periods, in addition to the spent fuel load already stored. The system design heat load is based on the data given in Table 9.1-3.

The system cools the fuel storage pool by transferring the spent fuel decay heat through a heat exchanger to the reactor building closed cooling water system. Water purity and clarity in the storage pool, reactor well, and dryer-separator pit are maintained by filtering and demineralizing the bool water through a filter demineralizer. In addition to fuel pool water demineralization, the system will be used on occasion to demineralize suppression pool water.

The pool cooling and cleanup system consists of two 50% capacity circulating pumps, two 50% capacity heat exchangers, two 100% filter demineralizers, two skimmer surge tanks, and the required piping, valves, and instrumentation. The pumps circulate the pool water in a closed loop, taking suction from the surge tanks, circulating the water through the heat exchangers and filters, and discharging it through diffusers at the bottom of the fuel pool and reactor well. The water flows from the pool surface through scuppers and skimmer weirs to the surge tanks. Make-up water for the system is transferred from the condensate storage tank to a skimmer surge tank to make up evaporative losses. The fuel pool pumps and heat exchangers are located in the reactor building beneath the fuel pool.

Fuel pool water is continually recirculated except when draining the reactor well and dryer-separator pit. The operating temperature of 125°F is permitted to rise to 150°F when the circulating flow is interrupted for draining the reactor well and dryer-separator pit, or when larger than normal batches of fuel are stored. The fuel pool cooling and cleanup system is interconnected with the residual heat removal system to supplement the pool cooling during refueling in the event that a larger than normal batch of fuel is stored.

To establish a circulating pattern of flow in the reactor well and storage pool, the diffusers and skimmer drains are placed to sweep particles dislodged during refueling operations away from the work area and out of the pool.

Fuel pool water clarity and purity is maintained by a combination of filtering and ion exchange. The filter demineralizer maintains a total heavy element content (Fe, Cu, Hg, Ni, etc.) of 0.1 ppm or less with a pH range of 6.0 to 7.5.



Particulate material is removed from the water by the pressure precoat filter demineralizer units. The finely divided disposable filter medium is replaced when the pressure drop is excessive or the ion exchange resin is depleted. The spent filter medium is backwashed to the waste sludge phase separator tank for processing in the solid radwaste handling system. New filter medium is mixed in a precoat tank and is transferred as a slurry by a precoat pump where the solids deposit on the filter elements. The holding pump connected to each filter demineralizer maintains circulation through the filter in the interval between the precoating operation and the return to normal system operation. A strainer is provided in the effluent stream of the filter demineralizers to limit the migration of the filter material.

The two filter demineralizer units are located separately in shielded cells in the radwaste building. Sufficient clearance is provided in the cells to permit removal of the filter elements from the vessels. Each cell contains only the filter demineralizer and its associated piping. All valves are located on the outside of one shielding wall of the cell, together with necessary piping and headers, instrument elements, and controls.

Instrumentation is provided for both automatic and remote manual operation. Indication is provided in the control room and pump room. Surge tank high and low water level switches are provided. A local level indicator is provided to monitor reactor well water level. Control of flow to or from the reactor well can be accomplished during refueling. A fuel pool high/low water level switch operates a local indicator light and sounds an alarm in the control room whenever the level is either too high or too low. The trip point is adjustable over the range of the skimmer weir adjustment.

The pumps are controlled from <u>either</u> the pump room or the vicinity of the fuel pool filters. <u>Sump lew curtices pres</u> <u>entre automatically control filters</u>. A pump low discharge pressure alarm annunciates in the control room and in the pump room. The controls for the remote controlled fuel pool discharge valves are located on a rack in the pump room and mile The open or closed condition of each of these valves is in- control your. dicated by a light in the pump room and in the pump room.

The flow rate through the filter demineralizers is indicated by a flow indicator on the pump room panel.



A high rate of leakage through the refueling bellows assembly, drywell to reactor seal, or the fuel pool gates is indicated by lights on the operating floor instrument racks and is alarmed in the control room.

The filter demineralizers are controlled from a local panel. Differential pressure and conductivity instrumentation is provided for each unit to indicate when backwash is required. Suitable alarms, differential pressure indicators, and flow indicators are provided to monitor the condition of the filter demineralizers.

# 9.1.3.3 Safety Evaluation

The maximum possible heat load will be the decay heat of one full care load of the fuel due to an emergency dump into the pool plus the remaining decay heat of previously discharged batches of fuel. The residual heat removal system. (RHR) can be operated in parallel with the fuel pool cooling and cleanup system during this condition when the pool has a greater than normal load and when its temperature exceeds 125°F. The RHR system can be used in parallel with the fuel pool cooling system to remove abnormal heat loads, as well as during the normal refueling mode. The RHR system will not be initiated unless the reactor is in a cold shutdown condition. The operator must insert spool pieces in supply and discharge piping and open normally closed valves to permit the use of this system for supplementary cooling.

pormally

The fuel pool heat exchangers are/cooled by the reactor building closed cooling water system to prevent contamination outside the reactor building in the event of a fuel pool heat exchanger tube failure. The system can maintain the fuel pool water temperature below 125°F when removing the nominal heat load from the pool with the reactor building closed cooling water temperature at its maximum of 95°F. The fuel pool water temperature is permitted to rise to approximately 150°F while the system water flow is diverted from the pool to drain the reactor well and dryer-separator pit, or when larger than normal batches of spent fuel are stored in the pool.

There are no connections to the fuel storage pool which could allow the fuel pool to be drained below the pool gate between the reactor well and the fuel pool. Two diffusers are placed in both the reactor well and the fuel pool to distribute the return water as efficiently and with as little turbulance as possible. Diffusers are placed to minimize stratification of

•

()

•

× • · · · · · · • • 

.

•

•

.

\* •

.

۲ ۲ ۲ ۲ ۲ 

.

Page 9.1-26 inserts:

;

#### 

- The portion of the FPC system which is required for cooling the fuel pool is located within the reactor building and is - designed to SeismicAl Criteria. The portion of the FPC system which is used for fuel pool cleanup is located within the rad-- waste building and is isolable from the reactor building by means of two. SeismicAl Isolation valves per line located - within the reactor building. The isolation valves are either check valves or motor operated gate valves. The motor opera-- ted valves close automatically on a fuel pool low water level condition.

The redundant, active components required for fuel pool cooling are powered from division 1 and 2 power sources. Following a loss of off-site power, these components can be energized from on-site emergency power. On a loss of reactor building closed cooling (RCC) to the fuel pool heat exchangers, the RCC lines to the heat exchangers can be isolated by redundant, Seismic AT, motor operated gate valves powered from separate Class' 12 power supplies. Standby service water (SW) can be supplied to the heat exchangers through motor operated valves which are normally key locked closed. Radiation detectors are located on the SW return lines. Operation and monitoring of fuel pool cooling portion of the FPC system can be done entirely from the control room.

All components required for fuel pool cooling are qualified to the reactor building accident environment or else, they are located in enclosed rooms meeting the criteria set in (3.11.4.2. The fuel pool equipment room located on the 548 foot location is provided with both division 1 and 2 reactor building emergency cooling system.

During abnormal operation the SW system is available to cool the fuel pool heat exchangers preventing any boiling of the fuel pool. The SW pressure is higher than the fuel pool pressure; thus, any leakage will be into the fuel pool system. In addition, radiation monitors on the SW return line will detect any gross tube or tube sheet failure. • . . . \*

•

•

,

•

٠

. ,

•

L.

WNP-2



ivert I

add

notes as

ghown on

either temperature or contamination. A check value is connected to each pipe outside the pool to prevent the pool water from being siphoned out of the pool and uncovering the spent fuel. Flow control values at the operating floor enable the operator to achieve optimum recirculation patterns to control and maintain the specified water quality and operational conditions.5

A make-up water valve controlled by tank level switches supplies condensate from the condensate transfer system to the pool to replace evaporative and leakage losses. The backup source of make-up water is from the Seismic Category I, Safety Class 3 standby service water system. This connection supplies <u>make-up water to provent the uncovering of</u> the spent fuel. By use of the standby service water as makeup, the fuel pool will be cooled by evaporation of the pool

Each filter demineralizer is capable or continual performance, at a fuel performance of 1905 of rated flew and will maintain water conditions as specified in 9.1.3.2.

The following components of the fuel pool cooling and cleanup system (FPC) are designed to ASME Section III, Class 3: fiel pool cooling pumps, filter demineralizers, pumps, valves, and piping, FPC piping, and fuel pool heat exchanger. The system heat exchangers are also designed to the standards of the Tubular Exchangers Manufacturers Association, Class R. Piping in the reactor building is controlled and supported to Seismic Category I requirements. The water lines between the fuel pool and RHR systems are designed to ASME Section III, Class 3, Seismic Category I requirements. The FPC pumps are not designed to Seismic Category I requirements. Condensate piping in the reactor building is controlled and supported

A radiological evaluation of the cleanup system is presented in Chapter 12.

From the foregoing analysis, it is concluded that the fuel pool cooling and cleanup system meets its design basis and satisfies the requirements of Regulatory Guide 1.13, Revision 1 with exceptions as noted in this section.

Poge 9.1-27 ----- All piping connecting to the fuel pool, Tactor well, and dryer separator pool and their respective liner drains are SeismfcAT up to and including either the normally closed, manually operated drain valve or the normally open, redundant isolation valves which can isolate the nonseismic portion of the system. Since the fuel pool system is at low temperature and pressure (moderate energy system) postulated breaks in the Seismic, I portion are limited to cracks. Category Fuel pool cooling can be established and monitored from the control room following a design basis LOCA. Entry to the reactor building is not required. One of the two redundant trains is adequate to prevent fuel pool boiling by a large margin. Due to the large thermal capacity of the fuel pool, sufficient operator time is available after a LOCA or any other event for the operator to take action. 

Attachment II For page 9.1-27 : [ Each filter démineralizer is capable' of continual [ performance at a normal fuel pool water flow nate of 575 april or a maximum fuelpool. Water Now rate of 1000 gpm, and will f maintain water conditions as specified in: 9.1.3 2. ----· ···· · ···· · 

· • •

, . •

•

,

.

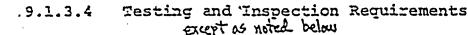
•

, .

•

u

`


\*

. ,

2

in .

•



No special testsAare required because at least one pump, heat exchanger, and filter demineralizer are continuously in operation while fuel is stored in the pool. Duplicate components are operated periodically to handle abnormal heat loads or to replace a unit for servicing. Routine visual inspection of the system components, instrumentation, and trouble alarms are adequate to verify system operability.

SW flow to the fuel pool heat exchanger and operabulity of the values which intertie the SW and RCC systems are tested in conjunction with testing of the SW system.

9.1-28

.

• • •

,

. •

.

, t

•

ĸ

.

# TABLE 9.1-2

. .

# FUEL POOL COOLING AND CLEANUP SYSTEM EQUIPMENT DATA

WNP-2

# Fuel Pool Heat Exchangers

Number 2 Tube, and Shell Type Material Tube/Shell SS/CS  $4.0 \times 10^{6}$ Capacity, Btu/hr/heat exchanger Cooling Water Flow, gpm/heat exchanger 575 ASME/III-Class 3 and Code and Standards TEMA-Class R Seismic Category Fuel Pool Circulation Pumps Number 2 Type Borizontal, centrifugal Material SS 575 Flow, gpm Head, Ft of H20 160 Motor Size hp 40 ... I Seismic Category Code ASME/III-Class, 3 Fuel Pool Filter Demineralizer Number 2 Design Flow Rate, gpm 1000 Design Pressure, psig 150 Design Temperature, 150 CS-Plastic Lined Material Code ASME/III-Class 3 Seisnic - Category II Piping and Valves Design pressure, psig 150/300 Design Temperature, 220 Material CS Code ASME/III-Class 3 Sciamic Category Fuel pool cooling porteon : Cleanur porteon : J T

9.1-65

· · · .

· •

.

•

.

.

4

· •

WNP-2



<u>Q. 010.021</u> (9.1.3)

Provide a cooling system and a source of makeup water for the spent fuel pool which are both designed to Seismic Category I criteria in accordance with the staff positions contained in Regulatory Guide 1.13, Revision 1, "Spent Fuel Storage Facility Design Basis," December 1975.

# Response:

WNP-2 has a Seismic Category I source of makeup water for the spent fuel pool from the Seismic Category I standby service water service system. This is shown on Figure 9.1-4 and stated in 9.1.3.3. Cooling under emergency conditions for the fuel pool is supplied by evaporation of pool water. Regulatory Guide 1.13, Rev. 1, makes no specific statements about requiring a Seismic Category I spent fuel pool cooling system. As a result, WNP-2 meets the applicable criteria of the Regulatory Guide and the intent of the question. However, further evaluation of the design in this area is ongoing due to the interaction of fuel pool cooling and post-LOCA secondary containment pressure-temperature response. (See the response to Question 342.018).

See the usponse to quotion 10.56

.

.

× \* ; •"i • τ Ý ı

٠

¢

• · e e

.

**\$** 

ł ۲ i



Q. 010.057 (9.1.3)

Verify that your use of the phrase "... controlled and supported to Seismic Category I requirements" means that it meets all requirements for Seismic Category I qualification.

Response:

The cooling portion of the Fuel Pool Cooling and Cleanup System, including valves, piping, and components, meets all Seismic Category I requirements. See revised Section 9.1.3.\* Non-Seismic Category I piping systems in the Reactor Building are nevertheless supported to the same Seismic Category I requirements. (See Notes 10 and 32 to Table 3.2-1.)

\*Draft FSAR page change attached.







.

.

Ç



# 9.1.3 SPENT FUEL POOL COOLING AND CLEANUP SYSTEM

#### 9.1.3.1 Design Bases

The fuel pool cooling and cleanup system has been designed to comply with the objectives set forth in Regulatory Guides 1.13, Revision 1 and 1.26 Revision 3 to the extent specified in the following subsections. The system and equipment are designed to the classifications given in Tables 3.2-1 and 9.1-2. During normal reside operation

A the system is designed to remove the decay heat released from the spent fuel elements and maintain a specified fuel pool water temperature, water clarity, and water level by accomplishing the following:

- a. Minimizing corrosion product buildup and controlling fuel pool water clarity so that fuel assemblies can be efficiently handled under water.
- b. Minimizing fission product concentration in the fuel pool water thereby minimizing the release of fission products from the pool to the reactor building environment.
- c. Monitoring surge tank water level to thereby maintain a pool water level above the fuel sufficient to provide shielding for normal building occupancy and to control make-up flow rate from the condensate transfer system.
- d. Maintaining the fuel pool water temperature below 125°F under normal operating conditions. The maximum heat load in the fuel pool under normal operating conditions occurs at the end of the 12th refueling cycle at which time there are 2068 fuel assemblies in the high density fuel racks. The estimated refueling data is given in Table 9.1-3.

9.1.3.2 System Description 9.1.3.2. Normal Operation

The fuel pool cooling and cleanup system flow diagram is shown on Figure 9.1-4. System performance data are summarized in Table 9.1-1. Major components of the system are summarized in Table 9.1-2. The system is designed to dissipate the fuel pool heat load during equilibrium or non-equilibrim fuel cycle conditions.



Insert

9.1-23

۹ ۹ ۱ ۱ ۱ ۱ ۱

. . .

. . ·

6

|                                                                                                             |                     |                                         |                  | •                                      | · .                                                     |                                        | •                                      |
|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------------|----------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------|
| 2°                                                                                                          |                     | •                                       |                  | •                                      |                                                         | •                                      | :                                      |
| •                                                                                                           | •                   | ``.                                     |                  | •                                      | • •                                                     |                                        |                                        |
|                                                                                                             |                     | a                                       |                  | ,                                      | • •                                                     |                                        |                                        |
| Page 9.!                                                                                                    | -23 v               | nseit:                                  |                  |                                        | ,                                                       | • 4                                    |                                        |
|                                                                                                             |                     |                                         |                  |                                        |                                                         |                                        |                                        |
| Follow                                                                                                      | ving an             | v seismic e                             | vent or          | maior plant                            | . disturbance,                                          | i.e.                                   |                                        |
| during<br>fuel                                                                                              | g abnor:<br>pool bo | mal operati<br>iling and m              | on, the laintain | system is d<br>adequate wa             | lesigned to pr<br>ater level in                         | event                                  | 3                                      |
| ·                                                                                                           |                     | -                                       |                  | e following:                           |                                                         |                                        |                                        |
| • • • • • • • • • • • • • • • • • • •                                                                       | 2.                  | of the Sei                              | smidt            | ooling porti                           | el pool water<br>on of the sys                          | tem                                    |                                        |
|                                                                                                             | <del></del>         | system;                                 | ion-seis         | mic, cleanup                           | p portion of t                                          | he                                     |                                        |
|                                                                                                             | b.                  |                                         |                  |                                        | ne control roc                                          |                                        | •                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                       |                     | •                                       |                  |                                        | of the fuel r                                           | •                                      | •                                      |
|                                                                                                             |                     | satety gra                              | ede cool         | ing water, s                           | n and initiat:<br>i.e., standby                         | service.                               | ······································ |
| ويترجعهم والمراجع |                     |                                         |                  | • • •                                  | heat exchange                                           |                                        |                                        |
|                                                                                                             | c.                  | fuel pool                               | and fue          | dundant SW s<br>1 pool level           | system make-up<br>monitoring                            | p to the<br>from the                   |                                        |
|                                                                                                             |                     | control ro                              | oom., .          |                                        | ۰۰ .<br>۱۹<br>۱۹ - ۲۰ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲ |                                        |                                        |
|                                                                                                             |                     |                                         | •                |                                        | ·                                                       |                                        |                                        |
| · · · · · · · · · · · · · · · · · · ·                                                                       |                     |                                         |                  | ······                                 | * v                                                     | ······                                 |                                        |
|                                                                                                             |                     | ·····                                   |                  | ,<br>                                  | · · · · · · · · · · · · · · · · · · ·                   | · · · · · · · · · · · · · · · · · · ·  |                                        |
| • • • • • • • • • • • • • • • • • • •                                                                       |                     | •<br>•                                  |                  | x                                      | ۴<br>۰.۰ ۰                                              |                                        |                                        |
| , <u> </u>                                                                                                  | · · ·               | • • • • • • • • • • • • • • • • • • • • |                  | ······································ |                                                         |                                        |                                        |
| <u> </u>                                                                                                    |                     | , <u>,,,,,</u> ,                        | <u></u>          |                                        |                                                         |                                        |                                        |
| •••••••••••••••••••••••••••••••••••••••                                                                     |                     |                                         |                  | ····                                   |                                                         |                                        |                                        |
|                                                                                                             |                     |                                         | •                |                                        |                                                         | ······································ | <del>~~~</del>                         |
| . <u></u>                                                                                                   |                     |                                         |                  |                                        | · · · · · · · · · · · · · · · · · · ·                   | <u></u>                                |                                        |
| ••••••••••••••••••••••••••••••••••••••                                                                      |                     |                                         |                  |                                        | ······································                  | •                                      |                                        |
|                                                                                                             |                     |                                         |                  |                                        | <u> </u>                                                |                                        |                                        |
|                                                                                                             |                     |                                         |                  | · · · · · · · · · · · · · · · · · · ·  |                                                         |                                        |                                        |
| ······································                                                                      |                     |                                         |                  |                                        |                                                         | •                                      |                                        |
| ·                                                                                                           |                     |                                         |                  |                                        | •                                                       |                                        | <del></del>                            |
| • •                                                                                                         | •<br>               | ^                                       |                  |                                        |                                                         |                                        |                                        |

If required, heat removal capacity is available for the full core removal load during either of these periods, in addition to the spent fuel load already stored. The system design heat load is based on the data given in Table 9.1-3.

The system cools the fuel storage pool by transferring the spent fuel decay heat through a heat exchanger to the reactor building closed cooling water system. Water purity and clarity in the storage pool, reactor well, and dryer-separator pit are maintained by filtering and demineralizing the pool water through a filter demineralizer. In addition to fuel pool water demineralization, the system will be used on occasion to demineralize suppression pool water.

The pool cooling and cleanup system consists of two 50% capacity circulating pumps, two 50% capacity heat exchangers, two 100% filter demineralizers, two skimmer surge tanks, and the required piping, valves, and instrumentation. The pumps circulate the pool water in a closed loop, taking suction from the surge tanks, circulating the water through the heat exchangers and filters, and discharging it through diffusers at the bottom of the fuel pool and reactor well. The water flows from the pool surface through scuppers and skimmer weirs to the surge tanks. Make-up water for the system is transferred from the condensate storage tank to a skimmer surge tank to make up evaporative losses. The fuel pool pumps and heat exchangers are located in the reactor building beneath the fuel pool.

Fuel pool water is continually recirculated except when draining the reactor well and dryer-separator pit. The operating temperature of 125°F is permitted to rise to 150°F when the circulating flow is interrupted for draining the reactor well and dryer-separator pit, or when larger than normal batches of fuel are stored. The fuel pool cooling and cleanup system is interconnected with the residual heat removal system to supplement the pool cooling during refueling in the event that a larger than normal batch of fuel is stored.

To establish a circulating pattern of flow in the reactor well and storage pool, the diffusers and skimmer drains are placed to sweep particles dislodged during refueling operations away from the work area and out of the pool.

Fuel pool water clarity and purity is maintained by a combination of filtering and ion exchange. The filter demineralizer maintains a total heavy element content (Fe, Cu, Hg, Ni, etc.) of 0.1 ppm or less with a pH range of 6.0 to 7.5.



Particulate material is removed from the water by the pressure precoat filter demineralizer units. The finely divided disposable filter medium is replaced when the pressure drop is excessive or the ion exchange resin is depleted. The spent filter medium is backwashed to the waste sludge phase separator tank for processing in the solid radwaste handling system. New filter medium is mixed in a precoat tank and is transferred as a slurry by a precoat pump where the solids deposit on the filter elements. The holding pump connected to each filter demineralizer maintains circulation through the filter in the interval between the precoating operation and the return to normal system operation. A strainer is provided in the effluent stream of the filter demineralizers to limit the migration of the filter material.

The two filter demineralizer units are located separately in shielded cells in the radwaste building. Sufficient clearance is provided in the cells to permit removal of the filter elements from the vessels. Each cell contains only the filter demineralizer and its associated piping. All valves are located on the outside of one shielding wall of the cell, together with necessary piping and headers, instrument elements, and controls.

Instrumentation is provided for both automatic and remote manual operation. Indication is provided in the control room and pump room. Surge tank high and low water level switches are provided. A local level indicator is provided to monitor reactor well water level. Control of flow to or from the reactor well can be accomplished during refueling. A fuel pool high/low water level switch operates a local indicator light and sounds an alarm in the control room whenever the level is either too high or too low. The trip point is adjustable over the range of the skimmer weir adjustment.

The pumps are controlled from either the pump room or the vicinity of the fuel pool filters. <u>Supplemention pres</u> entropy of the fuel pool filters. <u>Supplemention pres</u> charge pressure alarm annunciates in the control room and in the pump room. The controls for the remote controlled fuel pool discharge valves are located on a rack in the pump room and mile The open or closed condition of each of these valves is in- control wom. dicated by a light in the pump room and in the control room.

The flow rate through the filter demineralizers is indicated by a flow indicator on the pump room panel. A high rate of leakage through the refueling bellows assembly, drywell to reactor seal, or the fuel pool gates is indicated by lights on the operating floor instrument racks and is alarmed in the control room.

The filter demineralizers are controlled from a local panel. Differential pressure and conductivity instrumentation is provided for each unit to indicate when backwash is required. Suitable alarms, differential pressure indicators, and flow indicators are provided to monitor the condition of the filter demineralizers.

# 9.1.3.3 Safety Evaluation

The maximum possible heat load will be the decay heat of one full core load of the fuel due to an emergency dump into the pool plus the remaining decay heat of previously discharged batches of fuel. The residual heat removal system (RHR) can be operated in parallel with the fuel pool cooling and cleanup system during this condition when the pool has a greater than normal load and when its temperature exceeds 125°F. The RER system can be used in parallel with the fuel pool cooling system to remove abnormal heat loads, as well as during the normal refueling mode. The RER system will not be initiated unless the reactor is in a cold shutdown condition. The operator must insert spool pieces in supply and discharge piping and open normally closed valves to permit the use of this system for supplementary cooling.

The fuel pool heat exchangers are Acooled by the reactor building closed cooling water system to prevent contamination outside the reactor building in the event of a fuel pool heat exchanger tube failure. The system can maintain the fuel pool water temperature below 125°F when removing the nominal heat load from the pool with the reactor building closed cooling water temperature at its maximum of 95°F. The fuel pool water temperature is permitted to rise to approximately 150°F while the system water flow is diverted from the pool to drain the reactor well and dryer-separator pit, or when larger than normal batches of spent fuel are stored in the pool.

There are no connections to the fuel storage pool which could allow the fuel pool to be drained below the pool gate between the reactor well and the fuel pool. Two diffusers are placed in both the reactor well and the fuel pool to distribute the return water as efficiently and with as little turbulance as possible. Diffusers are placed to minimize stratification of





ŧŕ 1r

Ũ

, V w

ly,

Q

Į

1 7 ů,

ı' Ľ,

4

Page 9.1-26

:

(2)

#### 

The portion of the FPC system which is required for cooling the fuel pool is located within the reactor building and is - designed to SeismicAl criteria. The portion of the FPC system which is used for fuel pool cleanup is located within the rad-- waste building and is isolable from the reactor building by means of two. SeismicAl isolation valves per line located - within the reactor building. The isolation valves are either check valves or motor operated gate valves. The motor opera-- ted valves close automatically on a fuel pool low water level condition.

The redundant, active components required for fuel pool - cooling are powered from division 1 and 2 power sources. - Following a loss of off-site power, these components can be - energized from on-site emergency power. On a loss of reactor building closed cooling (RCC) to the fuel pool heat. - exchangers, the RCC lines to the heat exchangers can be isolated by redundant, Seismic AP, hotor operated gate valves - powered from separate Class 12 power supplies. Standby service water (SW) can be supplied to the heat exchangers through - motor operated valves which are normally key locked closed. Radiation detectors are located on the SW return lines. - Operation and monitoring of fuel pool cooling portion of the FPC system can be done entirely from the control room.

All components required for fuel pool cooling are qualified to the reactor building accident environment or else, they are located in enclosed rooms meeting the criteria set in (3.11.4.2. The fuel pool equipment room located on the 548 foot location is provided with both division 1 and 2 reactor building emergency cooling system.

During abnormal operation the SW system is available to cool the fuel pool heat exchangers preventing any boiling of the fuel pool. The SW pressure is higher than the fuel pool pressure; thus, any leakage will be into the fuel pool system. In addition, radiation monitors on the SW return ine will detect any gross tube or tube sheet failure.



Fineert I

add

notes as

shown on

either temperature or contamination. A check value is connected to each pipe outside the pool to prevent the pool water from being siphoned out of the pool and uncovering the spent fuel. Flow control values at the operating floor enable the operator to achieve optimum recirculation patterns to control and maintain the specified water guality and operational conditions.

- Inold

vel-pool

HOUTES P. .....

A make-up water valve controlled by tank level switches supplies condensate from the condensate transfer system to the pool to replace evaporative and leakage losses. The backup source of make-up water is from the Seismic Category I, Safety Class 3 standby service water system. This connection supplies, ensugh water to prevent the uncovering of the spent fuel. By use of the standby service water is make up, the fuel pool will be cooled by evaporation of the pool

Each filter demineralizer is capable or continual performance, at a fuel peol where filter rate of 1965 of rated filter and will maintain water conditions as specified in 9.1.3.2.

system (FPC) are designed to ASME Section III, Class 3: frei pool cooling pumps, filter demineralizers, pumps, valves, and piping, FPC piping, and fuel pool heat exchanger. The system heat exchangers are also designed to the etandards of the Tubular Exchangers Manufacturers Association, Class R. Piping in the reactor building is controlled and supported to Seismic Category I requirements. The water lines between the fuel pool and RHR systems are designed to ASME Section III, Class 3, Seismic Category I requirements. The FPC pumps are not designed to Seismic Category I requirements. Condensate piping in the reactor building is controlled and supported

A radiological evaluation of the cleanup system is presented in Chapter 12.

From the foregoing analysis, it is concluded that the fuel pool cooling and cleanup system meets its design basis and satisfies the requirements of Regulatory Guide 1.13, Revision 1 with exceptions as noted in this section.

- All piping connecting to the fuel pool, Hactor well, and dryer separator pool and their respective liner drains are Seismfch Tup to and including either the normally closed, manually operated drain valve or the normally open, redundant isolation valves which can isolate the nonseismic portion of the system. Since the fuel pool system is at low temperature and pressure (moderate energy system) postulated breaks in the Seismic, I portion are limited to cracks. Eaterory Fuel pool cooling can be established and monitored from the control room following a design basis LOCA. Entry to the reactor building is not required. One of the two redundant trains is adequate to prevent fuel pool boiling by a large margin. Due to the large thermal capacity of the fuel pool, sufficient operator time is available after a LOCA or any other event for the operator to take action. 

· Attachment II For page 9.1-27 . [ Each Cilter démineralizer is capable of continual fiperformance at a normal fuel pool water flow instead 575 april or a maximum fuelpool. I maintain water conditions as specified fin 9.1.3.2. \_\_\_\_\_

•

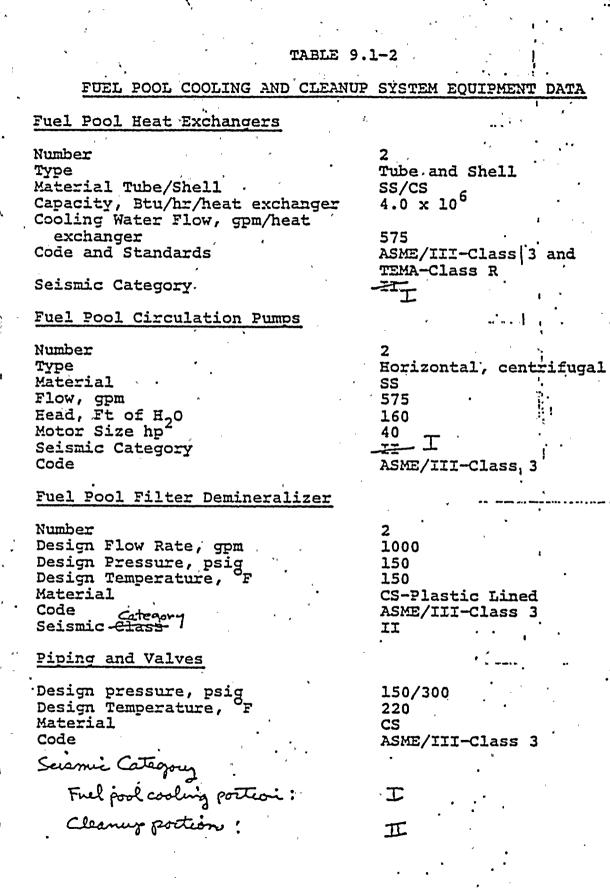
•

r r fa

· ,

. n •

٥


. я

.9.1.3.4 Testing and Inspection Requirements except as noted below

No special testsAare required because at least one pump, heat exchanger, and filter demineralizer are continuously in operation while fuel is stored in the pool. Duplicate components are operated periodically to handle abnormal heat loads or to replace a unit for servicing. Routine visual inspection of the system components, instrumentation, and trouble alarms are adequate to verify system operability.

WNP-2

SW flow to the fuel pool heat exchanges and operability of the values which intertie the SW and RCC systems are tested in conjunction with testing of the SW system.



WNP-2

9.1-65

, ó .

**~** X

•

. , ;

.

### Q. 010.058 (9.2.2)

Since the non-safety-related reactor building component cooling water system provides cooling for the reactor recirculation pumps, state the length of time that the pumps can be left without component cooling water flow before significant seal damage can occur, with consequent potential primary coolant leakage:

a) if pumps are kept running; andb) if pumps are turned off.

#### Response:

Recirculation pump seal cooling is provided by both closed cooling water to the pump seal heat exchanger and control rod drive seal purge flow. If an event occurs where both pump seal cooling sources are lost, the pump seals will heat up, causing pump seal deterioration when temperatures exceed 250°F. Vendor test data, taken while operating at approximately 530°F and 1040psia, indicate that the seals will reach 250°F approximately 7 minutes after a total loss of cooling. This will occur whether or not the pump is running.

Similar test data indicate that if one of the two seal cooling sources is operating, the pump seal temperatures will remain below 250°F and no seal deterioration should occur.

If both pump seal cooling sources fail, resulting in extreme degradation of the pump seals, the primary coolant loss has been analyzed to be less than 70 gpm. Refer to NEDO-24083, "Recirculation Pump Shaft Seal Leakage Analysis", November 1978 (Licensing Topical Report). This small amount of primary coolant leakage will be compensated for by normal or emergency water level controls. Consequently, no hazard to the health and safety of the public will result from total loss of recirculation pump seal cooling.

The position discussed above has been presented to NRC in FSAR Appendix B, response to NUREG 0737, item II.K.3.25.



٠

Ý

# ' . .

0

**0** . .

.

.

•

.

•

•

•

# Q. 010.059

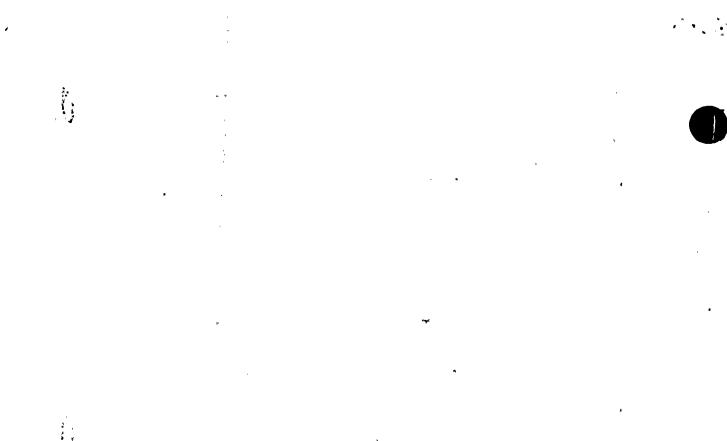
Regulatory Guide 1.27 requires that there be sufficient water in the spray ponds for 30 days of cooling without make-up. Discuss how you will monitor the build-up of sediment on the floor of the ponds so as to assure available of the 30 day water supply. Describe how you will clean the spray ponds without losing redundancy or degradation of the system.

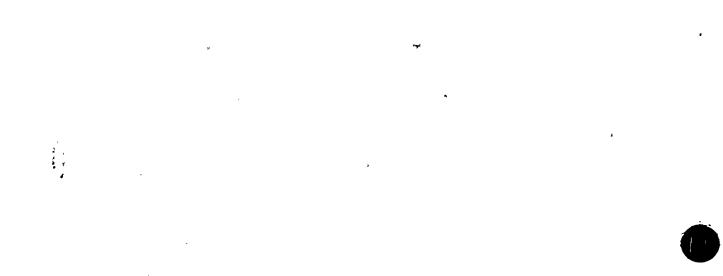
#### Response:

Sediment build-up on the floor of the spray ponds will be monitored once every 3 months from fuel load to the first refueling outage, when the frequency of monitoring will be adjusted based on operating experience. Sediment depth will be limited to an average of 0.5 feet based on the assumption made in Section 9.2.5.3a for spray pond thermal analysis.

Sediment will be removed by sludge pumps utilizing hand held suction lines. Make-up water will be supplied by normal pond make-up. This method will allow cleaning of the spray ponds without losing redundancy or degradation of the system.

# Q. 010.060


The FSAR states there is "...a suction head of at least 20 feet during RCIC operation" from the condensate storage tank at elevation 443'0" and the RCIC impeller elevation 427'3". Discuss how the 15'9" elevational difference between the condensate storage tank and the RCIC impeller satisfies the 20' requirement.


#### Response:

The 15'9" elevation difference stated in the question is the distance between the bottom of the condensate storage tank (CST) (el. 443'0") and the RCIC pump impeller (el. 427'3"). The RCIC pump does not take suction from the bottom of the CST, but rather from the side of the tank at elevation 445'4" (centerline of the suction pipe). The RCIC suction automatically transfers to the suppression pool when the water level in CST reaches an elevation of 447'4" (low-low-level). Therefore, the minimum static head when the RCIC pump is taking suction from the CST is at least 20 feet (el. 447.4" minus 427'3").

FSAR Section 9.2.6.5 states that at least 20 feet of "suction" head is available between the low-low setting and the RCIC pump impeller. Although this statement is correct, it has been revised to say "static head" instead of "suction head" to avoid confusion.\* The suction head available to the RCIC pump when the suction transfers at low-low-level in the CST is calculated using the equation for net positive suction head (NPSH) as shown in our response to FSAR Question 022.038. Assuming a water temperature of 100°F, there is about 48 feet of NPSH available at the centerline of the pump suction which more than satisfies the 21 feet of NPSH required by the RCIC pump.

\* Draft revised FSAR page change attached.







Revise for SCN-8+

System logic diagrams are given in Chapter 7.

9.2.7 STANDBY SERVICE WATER SYSTEM

9.2.7.1 Design Bases

a. The standby service water system (SW) is designed to remove heat from plant systems which are required for a safe reactor shutdown following a LOCA.

- b. The system is designed to remove reactor: decay heat from the residual heat removal system during normal plant shutdown.
- c. The system is designed to perform its required cooling water function following a LOCA, assuming a single active failure
- d. The system is designed to provide a means of flooding the vessel and containment, if required during the post-LOCA period.
- e. The system is designed to provide makeup source of water for ensuring fuel pool evaporative cooling following a LOCA in conjunction with a design basis earthquake.

f. The system is designed to Seismic Category I and ASME Code, Section III, Class 3 requirements with the exception of that portion to and from the plant cooling towers, which is designed to ANSI B31.1 and Seismic Category II requirements.

## 9.2.7.2 System Description

The standby service water system includes vertical service water pumps located adjacent to the two spray ponds in two



9.2-27

## Q. 010.061

The nitrogen bottles with its associated equipment and containment instrument air system shall be a minimum of Quality Group C.

#### Response:

All components of the containment instrument air system from and including the outboard containment isolation valves to the main steam isolation, safety relief, and automatic depressurization (ADS) valve operators in containment are Quality Group B. The portion of the system associated with the backup supply of nitrogen to the ADS valve operators is Quality Group C from the outboard containment isolation valves to and including the solenoid pilot valves (CIA-SPV-1A through 15A and -1B through -19B) which are mounted adjacent to the pressure reducing valves for the nitrogen bottles. See Figure 9.3.2.

The nitrogen bottles and associated control valves are standard, commercially available units that meet the requirements of Department of Transportation (COT) and Compressed Gas Association (CGA) standards. The nitrogen bottle units are mounted per Siesmic Category I, Quality Class I requirements. This type of nitrogen bottle assembly has proven highly reliable based on years of reactor operating experience.

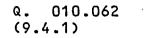
The remaining components of the containment instrument air system, which are Quality Group D, are not essential for safe operation of the plant.





• •

•


•

. 

. •

• , 

• --



In your response to question 010.29 there seems to be a contradiction between the thickness of the air intake roof slab and the height of the top of the roof slab above grade. Please clarify your numbers and provide physical drawing(s) of the air handling system with details of the remote air intake structures.

#### Response:

The remote air intake structure is a buried structure. Only a portion (15") of the 24 inch thick roof slab projects above grade. Please refer to sections 4298 and 4299 of figure 3.5.52.



# Q. 010.063

Discuss the control room environment which will result from the most extreme ambient and accident conditions (including the worst single failure for the HVAC). Note: The temperature/humidity for all operating/accident conditions shall be maintained within the comfort zone as defined by ASHRAE. This requirement applies to all areas which require operating personnel.

#### Response:

To maintain the control room at an ambient conditions which is compatible to the comfort zone defined in ASHRAE redundant seismic and environmentally qualified liquid chillers are being incorporated into the control room HVAC design. Paragraph 9.4.1 and 6.4 will be updated when this design is completed. The control room is the only area with essential equipment where personnel are routinely required during accidents. WNP-2.

# Q. 010.064

Discuss the effects of a potential failure of the nonseismic Category I heaters in the standby service water pumphouse under the most adverse environmental conditions on the operability of the pumps.

#### Response:

The standby service water pumphouse electric unit heaters are designed to maintain the building above freezing during extreme environmental condition. Failure of the unit heaters during a seismic event would not degrade the operability of the pumps. If the pumps are required to operate following a seismic event, the heat generated from the pump motor is sufficient to maintain the building above freezing. Annunciation is provided in the main control room when temperature in the pump room drops to 35°F. Appropriate action can be taken from the control room such as starting of the standby service water pump to prevent pipe freezing.

0

# Q. 010.065

Your responses to question 010.034 regarding the potential flooding of safety related equipment due to a circulating water failure are inadequate. An analysis shall be conducted in accordance with Standard Review Plant 10.4.5, "Circulating Water System", which assumes:

- 1) An expansion joint break (note: an incident of this type occurred at an operating BWR).
- 2) No credit shall be taken for isolation valve closure unless these valves are designed to safety grade requirements.

Response:

b

Please see revised section 10.4.5.3.\*

\* Draft FSAR page changes attached.

#### 10.4.5.3 Safety Evaluation

The circulating water system is a non-safety related system. Consequently, the circulating water system is not designed to Seismic Category I requirements. Refer to 9.2.5 for a description of the ultimate heat sink which is designed to perform safety-related functions.

The condenser design assures that the pressure on the tube side is always maintained higher than the pressure on the shell side, thus eliminating leakage into the circulating water system should tube failure occur. Consequently, the design of the circulating water system precludes radioactive leakage into the system.

Periodic injection of chlorine is performed for biocide treatment, and sulfuric acid is added for scale-corrosion control within the circulating water system. An analysis of the transportation, handling, storage, and utilization of chlorine is presented in 6.4.

A detailed evaluation was performed to determine the effects of a postulated failure in the circulating water system inside the turbine building; For this vanalysis, a moderate energy crack was postulated to occur in the circulating water system barrier, (e.g., the rubber expansion joints) at the inlet to the main condenser. The inlet side was selected because it yields the severest results. For the loweling areliation, a complex curving for the loweling areliation.

The entire condenser area is drained by means of sumps (see Figure 9.3-9), each equipped with duplex pumps. Sumps T-2 and T-3, servicing the inlet and outlet of the condenser, each have 50 gpm pumps. Each of these sumps is equipped with a level alarm and is therefore capable of detecting a circulating water system barrier failure. The level alarm will annunciate in the main control room upon reaching high level, providing a means of detecting the postulated failure within 5 minutes.

# Renération Break

The crack area for this postulated failure was assumed to be equal to 1/2 the pipe diameter times 1/2 the pipe wall thickness.

$$A = \frac{\alpha}{2} \times \frac{\tau}{2}$$
 (see 3.6.2.1.4.2.b)

÷

.

4

,

•

0

•

.

÷

e

•

•

۷

.

۰

.

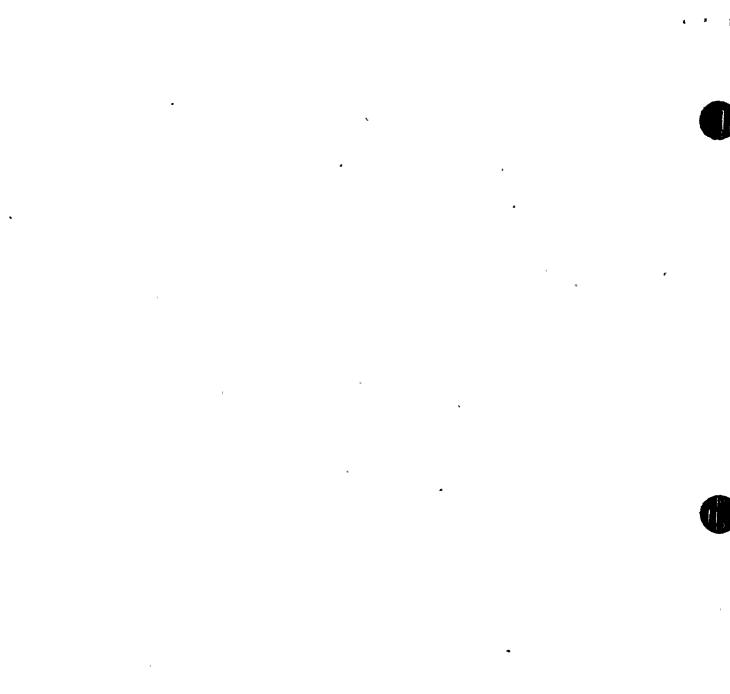
.

Ъ.

.

•




In the first 5 minutes after a crack, 8,435 gallons of water will spill into the inlet basin. The capacity of each basin and its capability to store excess flow were calculated to be as follows:

- a. Inlet basin: 22,500 gallons from El. 436 to El. 441
- b. Outlet basin: 27,500 gallons from El. 436 to El. 441
- c. Net volume under condenser: 180,500 gallons from El. 433 to El. 441.

The time required to fill the inlet basin, after a postulated crack occurs, is computed to be 13.3 minutes. This includes the 50 gpm outflow from the sump pump. The circulating water leakage flow will continue for 6.7 minutes after filling the inlet basin, until reaching the total estimated shutoff time of 20 minutes. It can be assumed that 10% of this water will flow out over the floor at El. 441, and the remainder, about 10,170 gallons, will flow into the condenser basin area. During this same time period, 4 sump pumps in the condenser basin area will have alternately pumped out 670 gallons, leaving 9500 gallons or 0.42 feet of water in the condenser basin. The rate of rise of water, therefore, is 0.021 ft/min during the first 20 minutes after the postulated crack occurs. Note that on high sump level, both pumps run simultaneously rather than alternately, thus doubling the calculated outflow capacity.

After the valves are closed, the water contained in the condenser unit water box will continue to discharge to the area. The quantity of water remaining is estimated to be 87,000 gallons. The flow will vary with a diminishing head, the head going from about 25 feet to zero feet. Using a 20 ft head and the same orifice flow criteria, the rate of flow will be approximately 819 gpm, discharging the remaining water in about 106 minutes. There will be an outflow from all the sump pumps of 150 gpm, with 10% of the flow from the crack again assumed to flow out over the floor. The water will accumulate in the condenser basin at about After 106 minutes, the water level in this basin 590 gpm. will rise an additional 2.77 feet, 🔂 0.0261 ft/min. The total height of water when the discharge has stopped is therefore 3.19 feet to El. 436.19. This devotion of the

will be non states impacts on safety related equipment from. this event



.

# ٠,

1

. (

, CINSERT from attached page]

There are no safety-ralated system components that could be affected by the flood elevation established above. Additionally, there are no safety-related electrical systems or system components that could be potentially submerged. In addition the circulating water piping is located in a large room containing little other equipment and no safetyrelated equipment. Accordingly, spray effects are of no consequence. The pipes exit the rooms below grade in their routing to and from the cooling towers. Also, the floor onto which water would spill in event of a break is grade level As a result, excess water would accumulate either in drainage basins or leak outside the building.

Discharge operation of water accumulated under the condenser shall be performed in accordance with radioactivity checking requirements for sump discharges.

#### 10.4.5.4 Tests and Inspections

All system components, except the condenser, are accessible during operation and may be inspected visually. The circulating water pumps are tested in accordance with the Hydraulic Institute Standards.

ٽ ۽<u>.</u>

4

· · ·

4 • ۰ ,

•

• •

.

·\*

•

.

•

•

e.

•

, ·

•

-

,

Insert to 10.4.5.3

#### Boundary Evaluation

A complete circumferential expansion joint break in the circulating water system would result in the release of large amounts of water into the turbine-generator building. The water would fill the net volume under the condensor, tripping the sump high level alarms which annunciate in the main control room. Remote-manual operation of the circulating | water pumps and butterfly valves is provided in the main control room tob mitigate the accident.

Disregarding operator action; however, the following evaluation is provided: Water would spill across the grade level floor of the turbinegenerator building at elevation 441 ft., exiting through the railroad bay and access doors. Water could flow into the reactor building stairwells and elevator shafts from the 441 ft. elevation down to the 422 ft elevation, eventually filling the stairwells and elevator shafts with water. There is no safety-related equipment located in the stairwells or elevator shafts. The access doors to the ECCS pump rooms at elevation 422 ft. are sealed watertight and designed to withstand a static head of 44 ft. of water. All penetrations into the reactor building below the 471 ft. elevation are sealed watertight. Water would not affect any safety related equipment in the reactor building.

Water could also spill across the grade level floor into the Radwaste /control`building. The basement level of this building is 437 ft. It is thus possible to flood this level with four feet of water before the water would exit at grade level (441 ft) through access doors. There are no safety-related components which would be affected by this flooding.

The railroad bay and access doors of the turbine-generator building are not watertight and are not designed to withstand any static head of water, therefore no significant depth of water could accumulate in the turbine-generator building. All safety-related equipment in the turbine-generator building is located above the 471 ft. elevation and would not be affected.

In conclusion, a complete circumferential expansion joint break in the circulating water system inside the turbine-generator building would have no effect on safety-related equipment.



.

. .

.

, · · ·

. .

**)** 

, ; 4

.

. · ·

•

•

•

 $\frac{Q.\ 010.34}{(10.4.5)}$ 

Your response to Item 010.09 is unacceptable. Specifically, your analysis of flooding due to failure of the circulating water system is based on a crack whose area is equal to onequarter of the pipe diameter times the pipe thickness (.5t X .5d). Provide an analysis of flooding due to a postulated failure of the expansion joint in the circulating water system assuming a double-ended guillotine break at this location.

## Response:

The original response to Item 010.09 has been rewritten for clarity (see 10.4.5).

The double-ended guil lotine break referred to above was not considered. The circulating water system is a moderate energy system by definition. Therefore, in accordance with NRC Standard Review Plan Section 3.6.1,/3.6.2, and 10.4.5, and the associated Branch/Technical Position MEB 3-1, the criteria for a postulated fai/ure shall be a through - wall leakage crack of the type addressed in the written response (10/4.5). In any case, as stated at the end of 10.4.5, circulating water piping is located remote from any safety-related equipment. The piping is located in a large room containing little other equipment and no safety-related equipment. Accordingly, safetyrelated equipment is not valuerable to environmental effects of a circulating water pipe rupture. The pipe exits the room below grade in its routing to and from the cooling towers. It should be also noted that the condenser is located on grade Therefore, water above the floor elevation/will drain level. outside and not collect other than in collection basins.

See serviced FSAR section 10-4-5-3\_

•

<u>-</u> - 3

¥....

• • •

· ·

· · ·

۰ ۰

۰ ۰

0

\*

.

4

•

# #BII1090513

MECHANICAL ENGINEERING BRANCH MEETING FOR WNP-2

September 29, 30, October 1, 1981

### SUMMATION OF. ITEM. DISPOSITION

- 1. Open pending submittal of final pipe break studies
- 2. Closed
- 3. Closed
- 4. Closed
- 5. Closed
- 6. Closed
- 7. Closed
- 8. Closed
- 9. Closed Response spectrum comparison
- 10. Closed
- 11. Closed
- 12. Closed
- 13. Closed Computer program audit
- 14. Closed
- 15. Closed
- 16. Closed
- 17. Closed
- 18. Closed
- 19. Closed
- 20. Closed
- 21. Closed
- 22. Closed
- 23. Closed
- 24. Closed
- 25. Closed
- 26. Closed Show Mark III steel containment data
- 27. Closed
- 28. Closed
- 29. Closed
- 30. Closed

NEGULATION LUCAL FILE COPY



•



## SUMMATION OF ITEM DISPOSITION

' (Continued)

31. Closed > · 32. Closed

33. Closed

34. Closed

35. Closed

36. Closed

37. Closed

38. Closed

50. C105cu

39. Closed

40. Closed

41. Closed

42. Closed

43. Closed

44. Closed

45. Closed

46. Closed

47. Closed

48. Closed

49. Deferred to 10/9/81 meeting in NRC Offices

50. Open - pending completion of Supply System commitment.

• . • ٠

. • \* • . . . • ٩

. 1 •

• v •

, , ,

• • e.

• .

.'

• · · ·

•

### DEFINITION OF SYMBOLS

P The Purchaser has sole responsibility.

- Pl The principal responsibility lies with the Purchaser, but certain requirements which affect the safety or performance of the nuclear system will be furnished by General Electric. Design specifications and procedures prepared by the Purchaser will be made available to General Electric for review and comment.
- P2 The principal responsibility lies with the Purchaser, but General Electric may review and comment on the Purchaser's detail design including test specifications and test results to determine compatibility with General Electric's requirements. In addition, General Electric may furnish information as indicated under Pl, as appropriate.

GE General Electric Company has sole responsibility.

GE1 The principal responsibility lies with General Electric, but the Purchaser may furnish information on operating principles and procedures, general design guides or other plant requirements, and may review and comment.

A. 3-1

**REGULATORY DOCKET FILE COPY** 



φ**γ** 

\* 1

•

· · · · · ·

,

•

ĸ .

и

. . л1 , , · · · · .

• ,

•

. x

٠





GE2 The principal responsibility lies with General Electric, but the Purchaser may review and comment to determine basic compatibility with the Purchaser's responsibility. In addition, the Purchaser may furnish information as indicated under GE1, as appropriate.

### DEFINITION OF COLUMN HEADINGS

<u>Scope Design</u> — This denotes responsibility for supplying pertinent design criteria and engineering data required for the design analysis and calculations to establish the essential parameters and requirements for detail equipment and plant design. This includes the preparation of outline and arrangement drawings, specifications, piping and instrumentation diagrams, process flow diagrams, functional diagrams, and heat balances.

<u>Detail Design</u> — This denotes responsibility for finalizing the equipment and plant design by performing the necessary analysis and calculations and by preparing the necessary drawings, specifications and instructions, such as detail construction and fabrication drawings, final arrangement and assembly drawings; purchasing, installation and testing specifications, and operating instructions.



|                   |            | •                                                                                                              | · · · ·                                                       | Scope<br>Design | Detail<br>Design |
|-------------------|------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|------------------|
| •                 | <b>L</b> . | the second s | CTOR VESSEL AND INTERNALS<br>tion B.2)                        | •               | '                |
| •                 |            | А.                                                                                                             | Reactor vessel                                                | GE              | GE               |
|                   | •          | . B. ,                                                                                                         | Vessel thermal insulation                                     | Pl              | PZ BSR           |
|                   | 1          | c.                                                                                                             | Vessel supports                                               | GE1             | GE2              |
|                   |            | <b>D.</b>                                                                                                      | Stabilizers (vessel to sacrificial shield)                    | GE1             | GE2              |
|                   |            | E.                                                                                                             | Reactor internals                                             | GE              | GE               |
|                   |            | F.                                                                                                             | Control rod drive housing and supports                        | GE              | GE               |
|                   |            | G.                                                                                                             | In-core housing                                               | GE '            | GE               |
|                   |            | H.                                                                                                             | Refueling bellows (vessel to containment seal)                | <br>Pl          | P2 B≰R           |
|                   |            | I. ·                                                                                                           | Instrumentation .                                             | GE              | GE               |
| $\Theta$          |            | J.                                                                                                             | Interconnecting instrument wire, cable<br>and tubing          | Pl              | P2 BAR           |
|                   | •          | к.                                                                                                             | Vessel pedestal and shield wall<br>(sacrificial)              | Pl              | P2 B4E           |
| •                 | •          | L.                                                                                                             | Foundations                                                   | Pl              | P2 B48           |
|                   |            | м.                                                                                                             | Seismic analyses (reactor vessel and internals)               | GE              | GE               |
| •                 | •          | N.                                                                                                             | Seismic analyses (accommodation of vessel with its internals) | Pl              | P2 BAR.          |
|                   |            | 0.                                                                                                             | Containment cooling                                           | . P1            | P2 BAR           |
| ,                 | II.        | the second s | CTOR WATER RECIRCULATION SYSTEM<br>tion B. 3)                 |                 | • •              |
|                   | ×          | А.                                                                                                             | Pumps and motors                                              | GE              | GE .             |
| •                 |            | в.                                                                                                             | Pump hangers and supports                                     | GE1             | GE2              |
|                   |            | c.                                                                                                             | Recirculation piping and fittings                             | GE              | ĢE               |
|                   |            | D.                                                                                                             | Piping suspension and restraints                              | GE1             | GE2              |
| $\bigcirc$ ·      |            | E.                                                                                                             | Valves                                                        | GE              | GE <sup>;</sup>  |
|                   |            | F.                                                                                                             | Pump and piping thermal insulation                            | P1              | P2 BaR           |
|                   |            | G.                                                                                                             | Instrumentation                                               | GE              | GE               |
| WPPSS /<br>12/1/0 |            | -                                                                                                              | A. 3-3                                                        | •               |                  |

E

\*\*\*\*

-

-

٠,

|     |           |              | · · ·                                                                                  |                 | •            |        |
|-----|-----------|--------------|----------------------------------------------------------------------------------------|-----------------|--------------|--------|
| • • |           |              |                                                                                        | Scope<br>Design | Deta<br>Desi |        |
| II. |           | CTOF         | WATER RECIRCULATION SYSTEM                                                             |                 |              |        |
| •   | H.        | Inte         | rconnecting wire, cable and tubing                                                     | Pl              | P2           | Burg   |
|     | I.        | Fou          | ndation and supporting steel                                                           | P1              | P2           | BZR    |
|     | <b>J.</b> | Seis         | mic analyses*                                                                          | Pl              | P2           | 6 * R  |
|     | ĸ.        | Coo          | ling water                                                                             | PI              | P2           | BAR    |
|     | L.        | Wat          | er sampling                                                                            | Pl .            | P2           | BZR    |
|     | м.        | Con          | tainment cooling                                                                       | P1              | P2           | B # R  |
| Ш,  | MAI       | N STI        | EAM LINE (Section B.4)                                                                 | _               | 、            |        |
|     | А.        | sec          | de drywell (from reactor vessel to<br>ond isolation valve outside primary<br>tainment) |                 |              |        |
|     |           | 1.           | Piping                                                                                 | GE1             | GE2          | 1      |
|     |           | 2.           | Instrumentation                                                                        | GE              | GE           |        |
| -   | *         | 3.           | Interconnecting wire, cable and '<br>tubing                                            | ·<br>Pl         | . P2         | B≠R    |
|     |           | 4.           | Thermal insulation                                                                     | Pl              | P2           | 63R    |
| •   |           | 5.           | Isolation valves                                                                       | GE              | GE           |        |
|     |           | 6.           | Safety and relief valves                                                               | GE              | GE           |        |
| ٠   |           | 7.           | Piping suspension system                                                               | GE1             | GE2          | •      |
|     |           | 8.           | Seismic analyses*                                                                      | P1              | P2,*         | Bar.   |
|     |           | 9.           | Foundations and supporting steel                                                       | Pl              | P2           | 6 2 R. |
|     |           | 10.          | Drain lines                                                                            | Pl              | P2           | \$ * R |
|     | в.        | Othe         | er steam piping                                                                        | P 1             | P            | Bar    |
|     | c.        | Seis         | mic analyses                                                                           | P1              | P2           | Bae.   |
|     | D.        | Turl<br>syst | bine generator and steam bypass<br>em                                                  | Pl              | P2           | BaR.   |
|     |           |              |                                                                                        |                 |              |        |

\*GE will accommodate seismic loads resulting from the Purchaser's analyses.

A.3-4

1 N<sup>2</sup>

,

•

i

\* 'r •

٠

|       |     | · · · · · ·                                       | Scope<br>Design | Detail<br>Design |
|-------|-----|---------------------------------------------------|-----------------|------------------|
| · Ш.  | MAI | N STEAM LINE (Continued)                          |                 |                  |
|       | E.  | Steam sampling                                    | Pl              | P2               |
|       | F.  | Plant d-c power                                   | Pl              | <b>P2</b>        |
|       | G.  | Plant air                                         | Pl              | P2               |
| •     | H.  | Containment drywell cooling                       | Pl              | P2               |
| . IV. | CON | TROL ROD DRIVE SYSTEM (Section B. 5)              |                 |                  |
|       | А.  | Control rods                                      | GE              | GE               |
| I     | в.  | Control rod drives                                | GE              | GE               |
| -<br> | с.  | Control rod drive hydraulic system                |                 | 1                |
|       |     | 1. Control rod drive feed pumps and motors        | GE              | GE               |
|       | •   | 2. Hydraulic control unit                         | GE              | GE               |
|       |     | 3. Scram discharge header                         | PÌ              | P2 B=?.          |
|       |     | 4. Piping, hangers and valves                     | Pl.             | P2 B4R           |
| •     |     | 5. Foundations and supports                       | Pl              | P2 Bar           |
|       | D.  | Instrumentation and readout                       | GE              | GE               |
|       | E.  | Interconnecting instrument wire, cable and tubing | ·P1             | P2 B = R         |
|       | F.  | Seismic analyses*                                 | PI              | P2 .             |
|       | G.  | Cooling water                                     | Pl              | P2               |
|       | н.  | Standby power                                     | P1              | P2               |
|       | I.  | Plant air                                         | Pl              | P2 -             |
|       | J.  | Compartment ventilation, cooling and heating      | Pl              | P2               |
|       | к.  | Containment cooling                               | Pl              | P2 V             |
|       | L.  | Containment accommodation                         | Pl              | P2 <sup>V</sup>  |

\*Accommodation of GE supply.



A. 3-5

• • • •

\*\* .

.

· . . • • • .

• , • • •

•

•

.

• • • 

|              |                                                | × ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scope<br>Design                  | Deta<br><u>Desi</u>              |                       |
|--------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------|
| 7 <b>.</b> ' |                                                | V PRESSURE CORE SPRAY SYSTEM<br>tion C. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                  |                       |
|              | А.                                             | Pumps and motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GE                               | GE                               |                       |
|              | в.                                             | Piping, valves, hangers and thermal insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •<br>Pl                          | P2                               | B द्वर                |
|              | с.                                             | Foundations and supports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pl                               | P2                               | BAR.                  |
|              | D.                                             | Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GE                               | GE                               |                       |
|              | E.                                             | Interconnecting instrument wire, cable and tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pl                               | PZ                               | BKR                   |
|              | F.                                             | Seismic analyses*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pl                               | P2                               | BIR.                  |
|              | G.                                             | Compartment ventilation, cooling and heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pl ·                             | P2                               | .                     |
|              | H.                                             | Containment drywell cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pl                               | PZ                               |                       |
|              | I.                                             | Emergency equipment cooling water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pl                               | P2                               |                       |
|              | J.                                             | Containment accommodation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . Pl                             | ٣2 <sup>°</sup>                  | V                     |
| VI.          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                  |                       |
| I.           |                                                | H PRESSURE CORE SPRAY SYSTEM<br>tion C. 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                |                                  |                       |
| Ί.           |                                                | كالأعاد الشاها المعادي فالمناجع والمعادي المعادي والمعادي والمعادي والمتعاد والمعاد | GE                               | GE                               | B4C.                  |
| T.           | (Sec                                           | tion C. 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GE<br>Pl                         | GE<br>P2                         | BAR.<br>BAR           |
| Ί.           | (Sec                                           | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 1                                | -<br>-                |
| Ί.           | (Sec<br>A.<br>B.                               | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal<br>insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pl                               | P2                               | BAR                   |
| Ί.           | (Sec<br>A.<br>B.<br>C.                         | tion C. 3)<br>Pumps and motors<br>Piping, <u>valves</u> , hangers and thermal<br>insulation<br>Foundations and supports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pl<br>. Pl                       | P2<br>P2                         | BAR                   |
| Τ.           | (Sec<br>A.<br>B.<br>C.<br>D.                   | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal<br>insulation<br>Foundations and supports<br>Instrumentation<br>Interconnecting instrument wire, cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pl<br>Pl<br>GE                   | P2<br>P2<br>GE                   | BAR<br>BAR. 1         |
| Ί.           | (Sec<br>A.<br>B.<br>C.<br>D.<br>E.             | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal<br>insulation<br>Foundations and supports<br>Instrumentation<br>Interconnecting instrument wire, cable<br>and tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pl<br>Pl<br>GE<br>Pl             | P2<br>P2<br>GE<br>P2             | BAR<br>BAR. 1         |
| Τ.           | (Sec<br>A.<br>B.<br>C.<br>D.<br>E.<br>F.       | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal<br>insulation<br>Foundations and supports<br>Instrumentation<br>Interconnecting instrument wire, cable<br>and tubing<br>Diesel generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pl<br>Pl<br>GE<br>Pl<br>GE       | P2<br>P2<br>GE<br>P2<br>GE       | BAR<br>BAR. •<br>BAR. |
| Τ.           | (Sec<br>A.<br>B.<br>C.<br>D.<br>E.<br>F.<br>G. | tion C. 3)<br>Pumps and motors<br>Piping, valves, hangers and thermal<br>insulation<br>Foundations and supports<br>Instrumentation<br>Interconnecting instrument wire, cable<br>and tubing<br>Diesel generator<br>Diesel fuel storage tanks and transfer                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pl<br>Pl<br>GE<br>Pl<br>GE<br>Pl | P2<br>P2<br>GE<br>P2<br>GE<br>P2 | BAR<br>BAR. •<br>BAR. |

\*Accommodation of GE supply.

•

-4.6 11.0

A.3-6

WPPSS 12/1/0

|   | • · · · |                                                                                                                |                                                      | Scope<br>Design | Detail<br><u>Design</u> · |
|---|---------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|---------------------------|
|   | ·VI.    | الكبير التكبير اختليني ا                                                                                       | PRESSURE CORE SPRAY SYSTEM                           |                 |                           |
|   | 、       | к.                                                                                                             | Seismic analyses*                                    | Pl              | PZ B PR                   |
|   |         | L.                                                                                                             | Standby power                                        | Pl              | P2                        |
| - |         | м                                                                                                              | Compartment ventilation, cooling and heating         | P1 .            | P2 .                      |
|   |         | N.                                                                                                             | Containment drywell cooling                          | Pl              | P2                        |
|   | 4       | ο.                                                                                                             | Emergency equipment cooling water                    | Pl'             | P2                        |
|   |         | P.                                                                                                             | Containment accommodation                            | P1              | P2 🏹                      |
|   | VII.    | the second s | DUAL HEAT REMOVAL SYSTEM<br>ion C.4)                 | •               |                           |
|   |         | <b>A.</b>                                                                                                      | Heat exchangers                                      | GEI             | GE                        |
|   |         | в.                                                                                                             | Pumps and motors                                     | GE              | GE ·                      |
| - |         | с.                                                                                                             | Service water pumps and motors                       | Pl              | P2 B≠€.                   |
|   |         | D.                                                                                                             | Piping, valves, hangers and thermal insulation       | Pl              | P2 B22                    |
|   |         | E.                                                                                                             | Foundations and supports                             | Pl              | P2 5 *R                   |
| • | ·       | ·F.                                                                                                            | Instrumentation (less service water instrumentation) | GE              | GE                        |
|   |         | G.                                                                                                             | Interconnecting instrument wire, cable<br>and tubing | Pl              | P2 B≠R.                   |
|   |         | H.                                                                                                             | Instrumentation for service water supply             | Pl              | P2 j                      |
| • |         | I.                                                                                                             | Seismic analyses*                                    | Pl ·            | P2                        |
|   |         | J.                                                                                                             | Cooling water                                        | P1'             | P2                        |
|   | · (     | К.                                                                                                             | Standby power                                        | Pl              | P2                        |
|   |         | L.                                                                                                             | Compartment ventilation, cooling and (heating        | Pl              | P2·                       |
| , |         | м.                                                                                                             | Containment cooling                                  | Pl              | P2                        |
| • |         | N.                                                                                                             | Emergency equipment cooling water                    | Pl              | P2                        |
|   |         | 0.                                                                                                             | Containment accommodation                            | Pl.             | P2 V                      |
|   |         |                                                                                                                |                                                      |                 |                           |

\*Accommodation of GE supply.

,

£

A.3-7

. . т , • · · · · ·

۰. •

· · ŕ ye.

\* 4 .

. • 1 ,

•

|       |                                                                                                                |                                                      | Scope<br>Design | Deta<br>Desi |              |  |  |
|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|--------------|--------------|--|--|
| VIII. | the second s | ACTOR CORE ISOLATION COOLING<br>TEM (Section C. 5)   | X               |              | I            |  |  |
|       | А.                                                                                                             | Pump and turbine drive                               | GE              | GE           |              |  |  |
|       | <b>B</b> . <sup>'</sup>                                                                                        | Piping, valves, hangers and thermal insulation       | Pl              | P2           | B≠R.         |  |  |
|       | c.                                                                                                             | Foundations and supports                             | Pl              | P2           | B+R          |  |  |
|       | D.                                                                                                             | Instrumentation                                      | GE              | GE           |              |  |  |
|       | E.                                                                                                             | Interconnecting instrument wire, cable and tubing    | Pl              | P2           | BZR          |  |  |
|       | F.                                                                                                             | Seismic analyses*                                    | Pl              | P2           | • 1          |  |  |
|       | G.                                                                                                             | Plant d-c power                                      | Pl              | P2           | •            |  |  |
|       | н.                                                                                                             | Compartment ventilation, cooling and heating         | Pl              | P2           |              |  |  |
|       | I.                                                                                                             | Containment cooling                                  | Pl              | P2           | !<br>;       |  |  |
|       | J                                                                                                              | Makeup water volume                                  | Pl              | P2           | 1            |  |  |
|       | к.                                                                                                             | Emergency equipment cooling volume                   | Pl              | P2           | 1            |  |  |
|       | L.                                                                                                             | Containment accommodation                            | Pl              | .P2          | $\checkmark$ |  |  |
| IX.   | STANDBY LIQUID CONTROL (Section C.6)                                                                           |                                                      |                 |              |              |  |  |
|       | А.                                                                                                             | Storage tank                                         | GE              | GE           |              |  |  |
|       | в.                                                                                                             | Test tank                                            | GE              | GE           |              |  |  |
|       | c.                                                                                                             | Pumps and motors                                     | GE              | GE           | · <b>.</b>   |  |  |
|       | D.                                                                                                             | Piping, hangers and thermal insulation               | Pl              | P2           | Bar          |  |  |
|       | E.                                                                                                             | Explosive valves                                     | GE              | GE           | -            |  |  |
|       | F.                                                                                                             | All other valves                                     | Pl í            | P2           | 6 £ R        |  |  |
|       | G.                                                                                                             | Foundations                                          | Pl              | P2           | BER          |  |  |
|       | н.                                                                                                             | Instrumentation .                                    | GE              | GE           |              |  |  |
|       | I.                                                                                                             | Interconnecting instrument wire, cable<br>and tubing | Pl              | P2           | BEC          |  |  |

A.3-8

WPPSS 12/1/0

֥ ,

,

¥

, A

ь ч ×. ŕ , ŧ •

•

÷

|     | •                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|     |                                                                                                                                                          | Scope<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detail<br>Design                 |
| IX. | STANDBY LIQUID CONTROL (Continued)                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| ,   | J. Sodium pentaborate solution                                                                                                                           | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 Bal                           |
|     | K. Seismic analyses*                                                                                                                                     | , Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2 /                             |
| . w | L. Water quality                                                                                                                                         | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 /                             |
|     | M. Containment accommodations                                                                                                                            | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 6                             |
| x.  | REACTOR WATER CLEANUP SYSTEM<br>(Section C. 7)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|     | A. Filter/demineralizer (including filter/<br>demineralizer units, precoat tank, hold-<br>ing pump, precoat pump agitators, post<br>strainer and valves) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GE                               |
| -   | B. Regenerative heat exchanger                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| •   | C. Nonregenerative heat exchanger                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|     | D. Cleanup recirculating pumps and motors                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| •   | E. Piping, valves, hangers and thermal insulation                                                                                                        | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Р2 вне                       |
|     | F. Foundations and supports                                                                                                                              | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2<br>P2<br>GE<br>GE<br>GE<br>GE |
|     | G. Instrumentation                                                                                                                                       | GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GE                               |
| •   | H. Interconnecting instrument wire, cable and tubing                                                                                                     | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PZ Bar                           |
| · • | I. All resins                                                                                                                                            | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 BAR                           |
| •   | J. Seismic analyses*                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P Gil                            |
| •   | K. Cooling water                                                                                                                                         | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2                               |
|     | L. Standby power                                                                                                                                         | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2                               |
|     | M. Containment cooling                                                                                                                                   | tions $P1$ $P2$<br>P2 $P1$ $P2$ $P2P$ SYSTEM<br>cluding filter/<br>coat tank, hold-<br>agitators, post<br>GE $GEaiger$ $GE$ $GEthanger GE1 GEGE$ $GEand thermalP1 P2 6 \times 2P1$ $P2$ $"GE$ $GEGE$ $GEent wire, cableP1 P2 \beta \times 2P1 P2 \beta \times 2P1$ $P2$ $P1$ $P2P1$ $P2$ | P?                               |
|     | N. Makeup water volume                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| •   | O. Containment accommodation                                                                                                                             | · Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2                               |

\*Accommodation of GE supply. -1

WPPSS 12/1/0

A. 3-9

L.

.

s . •

· · ·



| •          |                                                                                                                                                             |                      |              |                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------------------|
|            | · · · · · · · · · · · · · · · · · · ·                                                                                                                       |                      |              | • •                     |
| •          |                                                                                                                                                             |                      | • •          |                         |
| 3          |                                                                                                                                                             | Scope                | Detail       | •                       |
| XI.        | OFFGAS SYSTEM - AIR EJECTOR (Section C.                                                                                                                     | <u>Design</u><br>.8) | Design       | · .                     |
|            | A. Pumps and motors                                                                                                                                         | GE                   | GÉ           | -                       |
|            | B. Process equipment                                                                                                                                        | :<br>GE              | GE           |                         |
| ••••       | C. Filter holders and elements                                                                                                                              | PI                   | P2           | BAR.                    |
|            | D. Piping, valves, hangers and thermal<br>insulation                                                                                                        | Pl                   | <b>P2</b>    | B-1C.                   |
|            | E. Shielded vault                                                                                                                                           | PI.                  | P2           | B ≠ R.                  |
| •          | F. Instrumentation                                                                                                                                          | GE                   | GE           | н <sup>3</sup> өнө<br>4 |
|            | G. Interconnecting instrument wire,<br>cable and tubing                                                                                                     | . Pl                 | P2 6         | 5 # 12 ·                |
| r<br>,     | H. Seismic analyses#                                                                                                                                        | PI .                 | P            |                         |
|            | L All others                                                                                                                                                | P                    | P,           |                         |
| זידעי      |                                                                                                                                                             | •                    | •            |                         |
| · XII.     |                                                                                                                                                             | • • •                | • •          | •••                     |
|            | A. Tanks at radwaste facility<br>1. Filter aid tank and agitator                                                                                            | GE                   | GE           |                         |
| Cin.       | 2. Precoat tank and agitator                                                                                                                                | GE                   | GE           |                         |
|            | 3. Cleanup phase separator                                                                                                                                  | GE                   | . GE<br>GE   | • -                     |
|            | 4. Feed concentrate tank                                                                                                                                    | GE<br>P              | ישט<br>י ס'  | 1.7                     |
| •          | <ul> <li>5. Waste sludge phase separator</li> </ul>                                                                                                         | GE L                 | GE '         | 26, 36                  |
|            | 6. All others                                                                                                                                               | Pl                   | P            | <b>€</b> -              |
| •          | · E. Floor drain filter and equipment                                                                                                                       | GE .                 | GE           |                         |
| <b>.</b> . | C. Waste collector filter and equipment                                                                                                                     | GE                   | GE           | •                       |
| -          | D. Waste collector and floor drain                                                                                                                          | · GE                 | GE           | • •                     |
| •          | demineralizer and equipment                                                                                                                                 |                      | , waana<br>, | • • •                   |
| •          | E. Sump heat exchangers                                                                                                                                     | . Pl                 | P2           |                         |
| •          | E. Resins                                                                                                                                                   | P1 ,                 | P2           |                         |
| •          | G. Decontamination solution waste<br>concentrator and equipment                                                                                             | GE.                  | GE           | •                       |
| •          | H. Mixer                                                                                                                                                    | ₽´.                  | P            | . <b>7-</b> ``          |
|            | ·                                                                                                                                                           |                      |              | • • •                   |
| R R        | Accommodation of GE supply.<br>Revised 3/20/72 (Reference C.O. No. 7)<br>Revised 4/29/74 (Reference C.O. No. 26)<br>Revised 1/13/75 (Reference C.O. No. 36) | •                    | · ·          |                         |
|            | A, 3 - 10                                                                                                                                                   |                      |              | •                       |

,

|                |                 | •                                                 | Scope<br><u>Design</u> | Detail<br><u>Design</u> | • . |
|----------------|-----------------|---------------------------------------------------|------------------------|-------------------------|-----|
| XII.           | RAI             | DWASTE DISPOSAL SYSTEM (Cont.)                    |                        |                         |     |
|                | I.              | Centrifuge                                        | GE                     | GE                      |     |
| •              | J.              | Conveyor system                                   | P                      | P                       |     |
|                | K.              | Hydraulic press                                   | Pl                     | P2                      |     |
| la 🖉           | I.,             | Detergent drain filter.                           | GE                     | GE .                    |     |
| · ·            | M.              | Surge hoppers and equipment                       | · P                    | P 😚                     |     |
| •              | N               | Condensate phase separator                        | GE                     | GE                      |     |
|                | σ.              | Instrumentation                                   | GE                     | GE                      |     |
| · ·            | P.              | Interconnecting instrument wire, cable and tubing | Pl                     |                         | -   |
| • •            | <del>ب</del> ک. | Control Valves                                    | . GE                   | GE                      | -   |
| :              | R.              | Piping, valves, hangers and thermal insulation    | P1                     | . P2                    |     |
| · .            | s.              | Foundations                                       | Pl                     | P2 .                    |     |
| <del>~</del> · | T.              | Local panels and racks                            | GE .                   | GE                      |     |
|                | ·υ.             | Scismic analyses*                                 | Pl                     | P                       |     |
|                | v.              | Cooling water                                     | · Pl                   | 'P2'                    | ı   |
| •              | w.              | Makeup water volume                               | ,Fl                    | P2                      | •   |
| XIII           | . <u>to</u>     | OLS AND SERVICING EQUIPMENT (Sect                 | ion D)                 | · •                     |     |
| *              | A.,             | Fuel servicing                                    | GE                     | . GE                    |     |
| •              | B.,             | Servicing aids .                                  | . GE                   | GE                      |     |
| · ·            | С.              | Reactor vessel servicing                          | GE                     | GE                      | ÷   |
| •              | ຸ ກ.            | In-vessel servicing                               | GE                     | GE                      |     |
| •              | E.              | Refueling equipment                               | . GE                   | GE                      |     |
| `••            | F.              | Storage equipment                                 | GE.                    | GE                      |     |
| •              | Ġ.              | Under-vessel servicing                            | GE                     | GE <sup>.</sup>         |     |
|                | н.              | All others                                        | , 'P                   | P                       |     |
|                | ·I.             | Seismic analyses*`                                | Pl                     | P                       |     |

\*

Accommodation of GE supply. Revised 3/20/72 (Reference C.O. No. 7)

A.3-11

|       |                              |                                                                                                                                            |                 | •                          |
|-------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|
| . • • |                              | •                                                                                                                                          | Scope<br>Design | Detail<br><u>Design</u>    |
| XIV.  | NEU.                         | ITRON MONITORING SYSTEM (Section E.2)                                                                                                      |                 | • •                        |
| •     | A.                           | Sensors and signal conditioning                                                                                                            | · .<br>GE       | GE                         |
|       | в.                           | Sensor drive systems and tubing                                                                                                            | GE ·            | GE '                       |
|       | C.                           | Interconnecting instrument wire and cable                                                                                                  | Pl              | P2                         |
|       | D.                           | Seismic analyses*                                                                                                                          | Pl              | P2                         |
| •     | Ε.                           | Plant d-c power                                                                                                                            | Pl              | P2                         |
|       | · -<br>F.                    | 24-volt d-c system                                                                                                                         | PI              | P2                         |
|       | <sup>,</sup> G.              | Containment cooling                                                                                                                        | Pl              | P2                         |
| •     | н.                           | Containment accommodation                                                                                                                  | Pl              | P2                         |
| xv.   | REA                          | CTOR PROTECTION SYSTEM (Section E. 3)                                                                                                      |                 |                            |
|       | 'А.                          | Sensors and logic equipment                                                                                                                | GE              | GE                         |
|       | в.                           | Protection system M-G`set                                                                                                                  | GE              | GE                         |
|       | <b>C.</b>                    | Interconnecting instrument wire, cable<br>and tubing                                                                                       | Pl              | P2                         |
| •     | . ; .<br>D.                  | Seismic analyses≠                                                                                                                          | Pİ              | P2                         |
|       |                              |                                                                                                                                            |                 |                            |
|       | , E.                         | Standby power                                                                                                                              | Pl              | P2                         |
| •     | , E.<br>F.                   | Standby power<br>Containment cooling                                                                                                       | Pl<br>Pl        |                            |
| XVI.  | F.                           | · · · · ·                                                                                                                                  | •               | P2                         |
| XVI.  | F.                           | Containment cooling                                                                                                                        | •               | P2                         |
| XVI.  | F.<br>FEE                    | Containment cooling<br>DWATER CONTROL SYSTEM (Section E.4)                                                                                 | Pl              | P2<br>P2                   |
| XVI.  | F.<br><u>FEE</u><br>A.       | Containment cooling<br><u>DWATER CONTROL SYSTEM</u> (Section E. 4)<br>Flow nozzles<br>Interconnecting instrument wire, cable               | PI<br>GE1       | P2<br>P2<br>GE             |
| XVI,  | F.<br><u>FEE</u><br>A.<br>B. | Containment cooling<br><u>DWATER CONTROL SYSTEM</u> (Section E. 4)<br>Flow nozzles<br>Interconnecting instrument wire, cable<br>and tubing | PI<br>GE1<br>P1 | P2<br>P2<br><br>GE .<br>P2 |

N

•

- ...

WPPSS 12/1/0 ÷

].

e

۹,

`.



| , |             | t           | •                                                                                                              | • • • •                                                                   | Scope<br>Design | Detail<br>Design |
|---|-------------|-------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|------------------|
|   | XVI.        |             | DWAT<br>tinued)                                                                                                | ER CONTROL SYSTEM (Section E. 4)                                          | ,               |                  |
|   |             | F.          | Feed                                                                                                           | water sampling                                                            | PI              | P2               |
|   |             | G.          | Plant                                                                                                          | air                                                                       | Pl              | P2               |
|   |             | н.          | Conta                                                                                                          | inment cooling                                                            | Pl              | P2               |
| - | xvII.       |             | N STE.                                                                                                         | AM LINE RADIATION MONITORING<br>5)                                        |                 | N,               |
|   | I.          | А.          | Main                                                                                                           | steam line radiation monitors                                             | GE              | GE               |
|   |             | <b>B.</b> , |                                                                                                                | connecting instrument wire, cable<br>ubing                                | Pl              | P2               |
|   |             | c.          | Seisr                                                                                                          | nic analyses*                                                             | P1              | P                |
|   | 1           | D.          | 24-vo                                                                                                          | olt d-c system                                                            | Pl              | <b>P2</b>        |
| × |             | E.          | All o                                                                                                          | thers                                                                     | P               | P                |
| • | XVIII.      | _           | the second s | R - NUCLEAR STEAM SUPPLY<br>Section E.6)                                  |                 | *                |
|   |             | А.          | Equi                                                                                                           | oment .                                                                   | GEL             | GE               |
|   |             | в.          | Inter<br>cable                                                                                                 | connecting instrument wire and                                            | Pl              | P2               |
| 1 |             | с.          | Prog                                                                                                           | ramming                                                                   | GE1             | GE               |
|   |             | D.          | Seisn                                                                                                          | nic analyses≠                                                             | Pl              | P                |
| - | XIX.        | PAN         | ELS,                                                                                                           | CABINETS AND RACKS (Section E.7)                                          | ÷               |                  |
|   |             | <b>A.</b>   | Contr<br>panel                                                                                                 | rol and auxiliary equipment room                                          |                 | T                |
|   |             |             | 1.                                                                                                             | Nuclear system •                                                          | GE1             | GE               |
|   |             |             | 2.                                                                                                             | Interconnecting instrument wire,<br>cable and tubing (external to panels) | Pl,             | - P2             |
|   | 1           | ,           | 3.                                                                                                             | Compartment ventilation, cooling and heating                              | Pl              | P2               |
|   | <del></del> | *Ac         | comm                                                                                                           | odation of GE supply.                                                     | _               | •                |

÷ . •

WPPSS 12/1/0

Ŋ

3

A.3-13

I. 

.

· · · t t • 

. . 2

v

ų

.

-. •

.

X

|          |              |                                                                              | Scope<br>Design | Detail<br>Desig |
|----------|--------------|------------------------------------------------------------------------------|-----------------|-----------------|
| ,<br>KIX | PAN          | VELS, CABINETS AND RACKS (Continued)                                         | 'n              |                 |
|          | đ            | 4. All others                                                                | Pl              | P2              |
| •        | в.           | Local panels and racks                                                       |                 |                 |
|          |              | 1. Nuclear system                                                            | GE ·            | GE              |
| •        |              | 2. Interconnecting instrument wire,<br>cable and tubing (external to panels) | Pl              | P2              |
|          | •            | 3. All others                                                                | P               | P               |
|          | с.           | Seismic analyses*                                                            | Pl              | P2              |
| X.       |              | CESS RADIATION INSTRUMENTATION<br>FIONAL) (Section G. 1)                     | •               |                 |
|          | А.           | Elevated release point exhaust monitors                                      | GE              | GE              |
|          | В.           | Offgas radiation monitors                                                    | GE              | GE              |
|          | с.           | Liquid process radiation monitors                                            | GE              | GE              |
|          | D.           | Reactor building vent plus exhaust plenum                                    | GE              | GE              |
| Γ        | E.           | Building ventilation exhaust sampler                                         | GE              | GE ·            |
|          | F.           | Carbon bed vault radiation monitor                                           | GE              | GE              |
|          | G.           | Interconnecting instrument wire, cable and tubing                            | Pl              | P2              |
|          | н.           | Seismic analyses*                                                            | Pl              | P               |
| •        | I.           | 24-volt d-c system                                                           | Pl ·            | P2              |
|          | J.           | All others                                                                   | P<br>           | P               |
| XI.      | ARE<br>(Sect | A RADIATION MONITORING (OPTIONAL)<br>tion G. 2)                              |                 | •               |
|          | А.           | Instrumentation                                                              | GE              | GE              |
|          | в.           | Panel                                                                        | GE              | GE              |
| ۰.       | с.           | Interconnecting wire and cable                                               | P               | P               |
| <u> </u> | *Ac          | commodation of GE supply.                                                    |                 |                 |

A. 3-14

.....

WPPSS 12/1/0

|          |                                                         | •                                     |             |
|----------|---------------------------------------------------------|---------------------------------------|-------------|
| è.       | · · · ·                                                 | Scope                                 | Detail      |
|          | •                                                       | Design                                | Design      |
| XXII.    | ENVIRONS MONITORING (OPTION<br>(Section G.3)            | AL)                                   | *           |
|          | A. Instrumentation                                      | GE                                    | GE          |
|          | B. Panel .                                              | GE                                    | · GE ·      |
| •        | C. Interconnecting wire and cable                       | es P.                                 | ₽.          |
| •        | D. Station structures                                   | . P                                   | P           |
| · xxIII. | COMPUTER - BALANCE-OF-PLA<br>(OPTIONAL) (Section G.5)   | <u>NT</u>                             |             |
|          | *•                                                      |                                       | ,           |
|          | A. Equipment, except Turbine<br>Sequence Monitor System | GE1                                   | GE 24       |
| • •      | 1. Turbine Sequence<br>Monitor System                   | P                                     | P           |
| <u> </u> | B. Interconnecting instrument wi<br>and cable           | re :<br>Pl                            | P2          |
| 0.       | C. Programming                                          | GE1                                   | GE          |
| · · ·    |                                                         | · , ·                                 | •           |
| XXIV.    | OTHER PLANT SYSTEMS AND<br>EQUIPMENT                    | P1                                    | р.          |
| <b>a</b> |                                                         | •                                     |             |
| •        | • • • • •                                               | • •                                   |             |
|          |                                                         |                                       |             |
| . •      |                                                         | •                                     | * * * *     |
| •        |                                                         |                                       | • • • • • • |
| ,        |                                                         | · · · · · · · · · · · · · · · · · · · | · ·         |
| •        | •                                                       |                                       | •           |
| : · ·    |                                                         | , • • •                               | ••••        |
| · · ·    |                                                         | _ *                                   |             |
| Revise   | ed 4/22/74 (Reference C.O. No. 24)                      | •                                     |             |
|          |                                                         | •                                     | • •         |
|          |                                                         | •                                     | •           |

ſ

A.3-15

.

• . . -4 1 .

\*

••

.

•

.

.

\*

• • •

.

**b** 

d de

ä

• •

--

•

\*

ষ

•

• • • • • •

٠

a .

### 3.6.2 <u>Determination of Break Locations and Dynamic Effects</u> Associated with the Postulated Rupture of Piping

### Question 1

In order for us to complete our review, the applicant should provide a summary of the data developed to select postulated break locations including, for each point, the calculated stress intensity, the calculated cumulative usage factor, and the calculated primary plus secondary stress range. This data is required for review to ensure that the pipe break criteria have been properly implemented. Figures 3.6-11 through 3.6-36 are not completed.

### Response:

### ا به ماده این از میکند. این از ماده این میکند این میکند این میکند. این از ماده این میکند این میکند این میکند.

Postulated pipe break locations were selected on a basis of significant change in flexibility in high energy piping systems. Examples of change in flexibility are pipe fittings (elbows, tees and reducers) and circumferential connections to valves and flanges. This method of selection was chosen since it was conservative and most expedient, not requiring the availability of detailed stress analysis of the piping systems. The use of this criteria could only result in the need for too many pipe whip restraints rather than too few. In cases where the design and installation of appropriate pipe whip restraints might prove to be difficult, an option always remained to evaluate the need for the restraint on the basis of stress criteria when the final stress analysis became available. The significance of the use of flexibility criteria for postulated pipe break locations is that it permitted the design of pipe whip restraints. (if required) at an early date in the project.

Following selection of postulated break points, it was necessary to determine the movement of the pipe due to jet reaction. It was not always necessary to provide a pipe whip restraint for every postulated break. Where it was determined that the movement of the pipe did not strike any piping system and/or equipment necessary for safe shutdown of the reactor or necessary to mitigate the consequences of a LOCA and where the whipping pipe would not directly strike the primary containment vessel, then pipe whip restraint was not required. Where pipe whip restraint was required, the pipe whip restraint was designed to meet the unique conditions for the postulated break. ....

1









بة 1

•

a.

٢

\* ÷

м

.

. .

١ •

• ¤ ۱

г ÷ . ٤.

\*

WNP-2

As indicated above, stress criteria referred to in the question did not enter into the establishment of the basic design for WNP-2. However, additional studies are now underway wherein stress criteria for determination of break locations are being applied. Stress-related information used in connection with these studies will be provided when it becomes available upon the completion of these studies.

Summation - In connection with the additional studies discussed in paragraph 3 of the response, the results of these studies will be supplied in the FSAR together with specific stress criteria to complete Figures 3.6-11 through 3.6-36.

### WNP-2

### 3.6.2 Determination of Break Locations and Dynamic Effects Associated with the Postulated Rupture of Piping

### Question 2

It is the staff's position that breaks must be postulated at any location where the cumulative usage factor exceeds 0.1. At these locations, both circumferential and longitudinal pipe breaks should be postulated, unless it can be clearly shown that the high usage factor is due primarily to stresses in only one principle direction. The applicant's response to Q. 110.012 states that the rules set forth in 3.6.2.1.4.1e (1) and (2) exempt certain break orientations based solely on stress and are independent of calculated cumulative usage factor. Clarification of this area is required.

### RESPONSE

Where cumulative usage factor is a determinant in establishing a postulated break location, then to determine whether both a circumferential and longitudinal break need be postulated, the stresses in the two directions are compared.

FSAR page change (3.6-30a) agreed.

"(1) If the result of a detailed stress analysis indicates that the maximum stress range in the axial direction is at least 1.5 times that in the circumferential direction, only a circumferential break is postulated. Where usage factor is a determinant in establishing a postulated break location, the fatigue dominant stresses are examined as indicated above to determine whether longitudinal, circumferential or both are postulated"

Summation - This item is closed.





•

•

\* •

. 1 ٠ .

.

.

1 . . K 7





### AMENDMENT NO. 9 April 1980



(1) If the result of a detailed stress analysis indicates that the maximum stress range in the axial direction is at least 1.5 times that in the circumferential direction, only a circumferential break is postulated. Where there for for is a detain which it establishing a postalented break location. The factions deposite to detain which as indication above to detain which are postulated.

MEB Guirstian 2

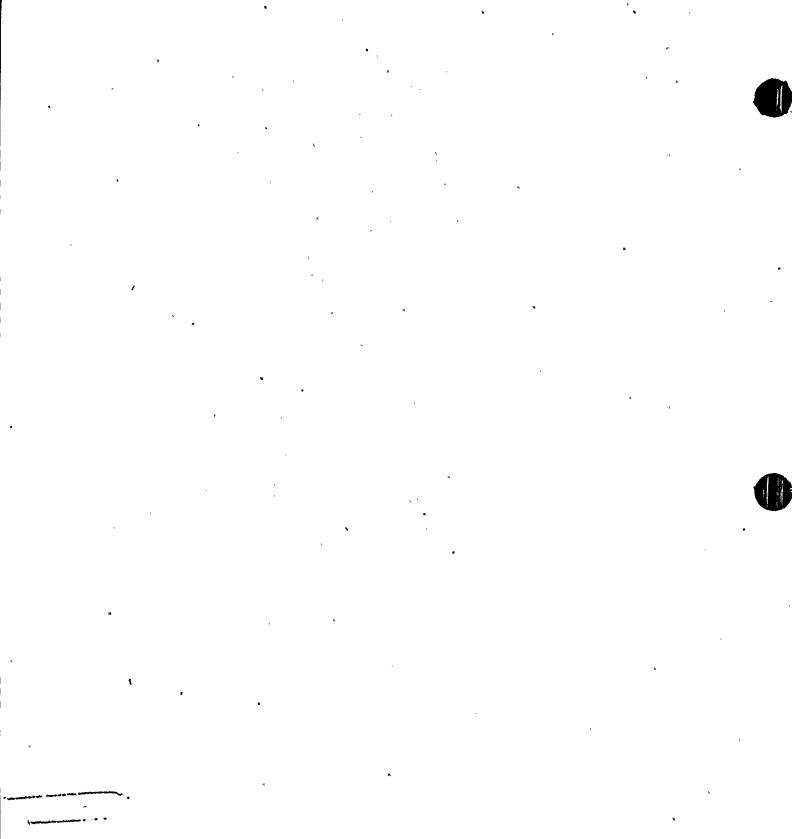
### 3.6.2 <u>Determination of Break Locations and Dynamic Effects</u> Associated with the Postulated Rupture of Piping

### Question 3

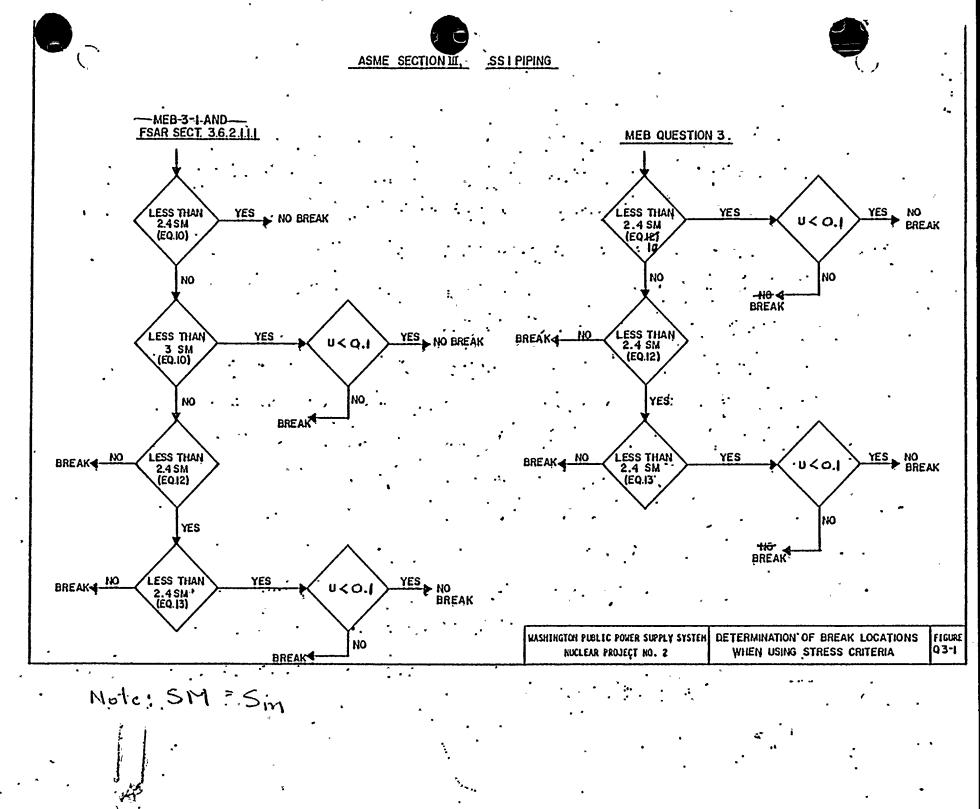
For ASME, Section III, Class 1 piping designed to Seismic Category I standards, breaks due to stress are to be postulated at the following locations:

> a. If Eq. (10), as calculated by Paragraph NB-3653, ASME Code Section III, exceeds 2.4 Sm, then Eqs. (12) and (13) must be evaluated. If either Eq. (12) or (13) exceeds 2.4 Sm, a break must be postulated. In other words, a break is postulated if

Eq. (10) >2.4 S<sub>m</sub> and Eq. (12) >2.4 S<sub>m</sub> or Eq. (10) >2.4 S<sub>m</sub> and Eq. (13) >2.4 S<sub>m</sub>


b. Breaks must also be postulated at any location where the cumulative usage factor exceeds 0.1.

The above criteria is evaluated under loadings resulting from normal and upset plant conditions including the OBE. Any deviations from the above criteria must be justified.


### Response :

WNP-2 will determine break locations for ASME, Section III, Class L piping consistent with the NRC position given in Branch Technical Position MEB 3-1.

Summation - This item is closed.



· · ·





ø

\*

•

e It

٩

•

•

٠

•

I ÷

٠

## 3.6.2 <u>Determination of Break Locations and Dynamic Effects</u> Associated with the Postulated Rupture of Piping

### Question 4

- A. For those portions of ASME Section III, Class 1 piping discussed in FSAR Section 3.6.2.1.2.1 and seismic Category I standards and included in the break exclusion area, breaks need not be postulated providing all of the following criteria are met:
  - a. Eq. (10) as calculated by Faragraph NB-3653, ASME Code, Section III, does not exceed 2.4 Sm.
  - b. If Eq. (10) does exceed 2.4 Sm, then Eqs. (12) and (13) must be evaluated. If neither Eq. (12) or (13) exceeds 2.4 Sm, a break need not be postulated. In other words, a break need not be postulated if:

Eq. (10) > 2.4  $S_m$  and Eq. (12) < 2.4  $S_m$  and

Eq.  $(13) < 2.4 S_m$ 

- c. The cumulative fatigue usage factor is less than 0.1.
- d. For plants with isolation values inside containment, the maximum stress, as calculated by Eq. (9) in ASME Code Section III, Paragraph NB-3552 under the loadings of internal pressure, deadweight and a postulated piping failure of fluid systems upstream or downstream of the containment penetration area must not exceed 2.25  $S_m$ .

The above criteria is evaluated under loadings resulting from normal and upset plant conditions including OBE.

In addition, augmented inservice inspection is required on all ASME Class 1, 2 and 3 piping in the break exclusion area. It is not clear whether footnote (a) on page 3.6-28 of the • •

• . . . · • 

· \* ۰ ۰ ۰ 

\* · ·

2 •

.



FSAR is applicable to Section 3.6.2.1.2.2. The applicant must provide assurances that their criteria for piping in the break exclusion areas complies with the requirements outlined above and those of Standard Review Plan 3.6.3: A list of all systems included in the break exclusion areas must be included in the FSAR. In addition, break exclusion areas should be shown on the appropriate piping drawings.

- B. a. Document the method used to verify that the stresses in welded flued head fittings meets the limits specified in MEB 3-1. Indicate on which piping system the welded flued heads are used.
  - b. Describe the inservice inspection of the welded flued head fittings.

### Response:

 Footnote (a) on page 3.6-28 is not applicable to 3.6.2.1.2.2.
 The revision to page 3.6-28 indicates the systems with break exclusion areas between primary containment isolation valves.
 These systems are ASME Section III Class 1 systems.

\*With respect to loadings resulting from postulated piping failure outside the exclusion area (Section B.l.b.(1)(d) of MEB 3-1) detailed analyses were performed for the main steam and feedwater systems for breaks inside and outside of containment. These analyses have confirmed the acceptability of main steam and feedwater systems and have been used to conclude that detailed analyses for smaller lines are not required. . . . .

,

3



Please refer to revised FSAR page 3.6-28 for a list of all systems included in the break exclusion area. See Figures 3.6-147a through 3.6-147e for break exclusion areas.

- B.a. A project unique analysis of the welded flued head fitting in the mainsteam penetration has been performed to assure meeting the code stress limits and the NRC criteria for the break exclusion area and documented in the WNP-2 Stress Report. In addition, GE has demonstrated the physical integrity of the WNP-2 flued head by a bounding generic finite element analysis on a similar configuration; this is documented in the GE Report NEDO-23652.
  - b. The flued head to process pipe weld is examined volumetrically from axial and perpendicular surfaces using ultrasonic methods. By using 45 and 60 degree shear wave from the perpendicular surface and 0 degree longitudinal wave from the axial surface complete coverage of the weld is assured. Details of the examination are contained in procedure UTP-33, which is contained in the WNP-2 PSI Program Plan. In addition, surface examination will be performed on the accessible portion of the weld.

Summation - This item is closed.

۰. . . U, 4 ٩ • ٠ \* , 24 + •

٠

.

### AMENDMENT NO. 9 April 1980

ADEIT 195

3.6.2.1.2.1 Postulated Pipe Break Locations in ASME Section III Class I Piping Between Primary Containment Isolation Valves

WNP-2

No pipe breaks are postulated in the portion of piping between primary containment isolation valves, if any of the following apply:

- (1) Sn does not exceed 2.4Sm.
- (2) S<sub>n</sub> exceeds 2.4S<sub>m</sub> but does not exceed 3S<sub>m</sub>, and the Cumulative Usage Factor (U) does not exceed 0.1.
- (3)  $S_n$  exceeds  $3S_m$ , but  $S_e$  and  $S_r$  are each less than 2.4 $S_m$ , and U does not exceed 0.1.

The stress levels in the ASME Section III Class I containment penetration high energy piping are maintained at or below these limits and therefore, breaks are not postulated.<sup>(a)</sup> See 3.6.2.1.2.3 for further discussion of containment penetration piping.



3.6.2.1.2.2 Postulated Pipe Break Locations in ASME Section III Class 2 and 3 Piping Between Primary Containment Isolation Valves

See 3.6.2.1.1.2 b. (2) for stress criteria applicable to. ASME Section III Class 2 and 3 piping between containment isolation valves.

The stress levels are maintained at or below these limits and therefore breaks are not postulated. See 3.6.2.1.2.3 for further discussion of containment penetration piping.

3.6.2.1.2.3 Primary Containment Penetration Piping

Primary containment penetrations, in order to maintain containment integrity, are designed with the following characteristics:

3.6-28

 <sup>(</sup>a) A program for augmented inservice inspection will be included in the WNP-2 Inservice Inspection Program Plans to provide one hundred percent volumetric examination; each inspection interval of all pressure boundary welds in Class I high energy piping exceeding one inch nominal diameter between containment isolation valves for which no breaks are postulated.





## Insert to Page 3.6-28:

Piping systems which may have break exclusion areas between primary containment isolation valves are those determined by examining the list of high energy piping systems (see 3.6.2.1 and Table 3.6-2). Systems which do not pass through primary containment are excluded. In addition, systems which are not pressurized between the isolation valves during normal plant operation (see 3.6.2) are excluded. The remaining systems, those which may have break exclusion areas between primary containment isolation valves, are listed in Table 3.6-18. Break exclusion areas for these systems are shown on Figures 3.6-147 a through 3.6-147e.



è

\*

•

,

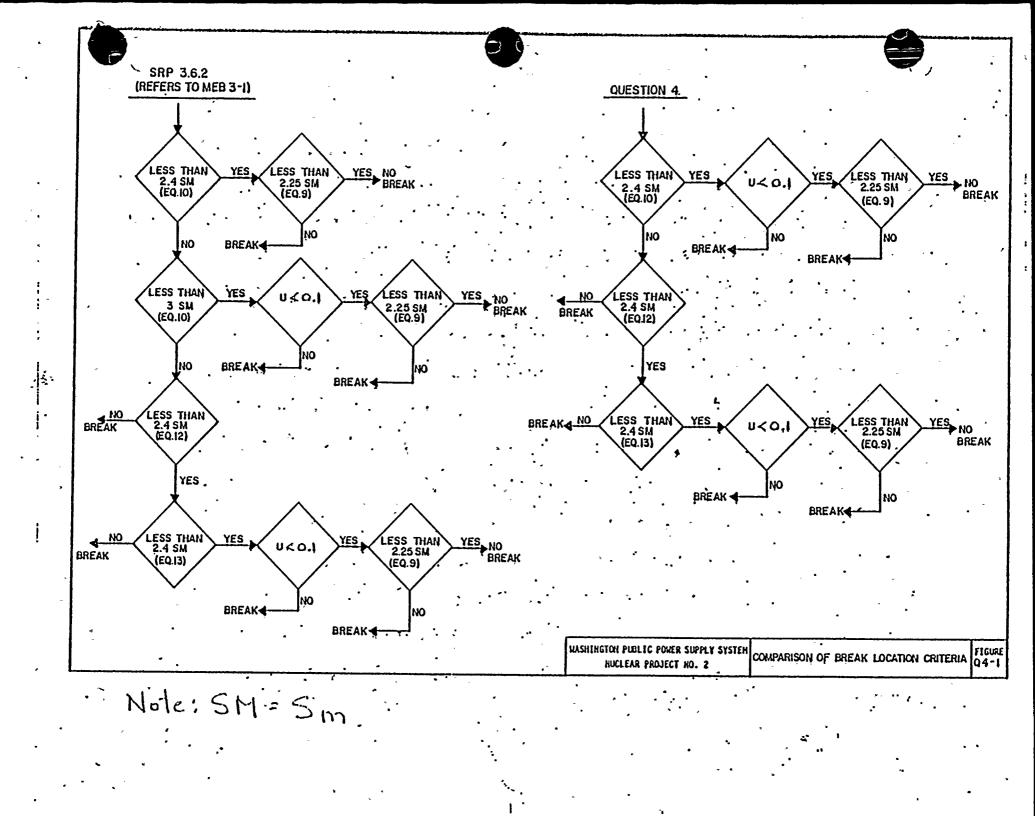
• • • •

•

.

٠






# TABLE 3.6-18

## PIPING SYSTEMS CONTAINING BREAK EXCLUSION AREAS BETWEEN PRIMARY CONTAINMENT ISOLATION VALVES

| PIPING SYSTEM                                              | PIPE SIZE  |
|------------------------------------------------------------|------------|
| Main Steam Loop A<br>Main Steam Loop B                     | 26"<br>26" |
| Main Steam Loop C                                          | 26"        |
| Main Steam Loop D<br>Reactor Feedwater Line A              | 26"<br>24" |
| Reactor Feedwater Line B<br>RHR Condensing Mode/           | 24"        |
| RCIC Turbine Steam                                         | 10"/4"     |
| Reactor Water Cleanup<br>Main-Steam-Valves-Drainage-Piping | 6"<br>3"   |





.

.

ж м м



÷



\* • . \*

• ň a ه i. • ' .

٣ . •

۲

,

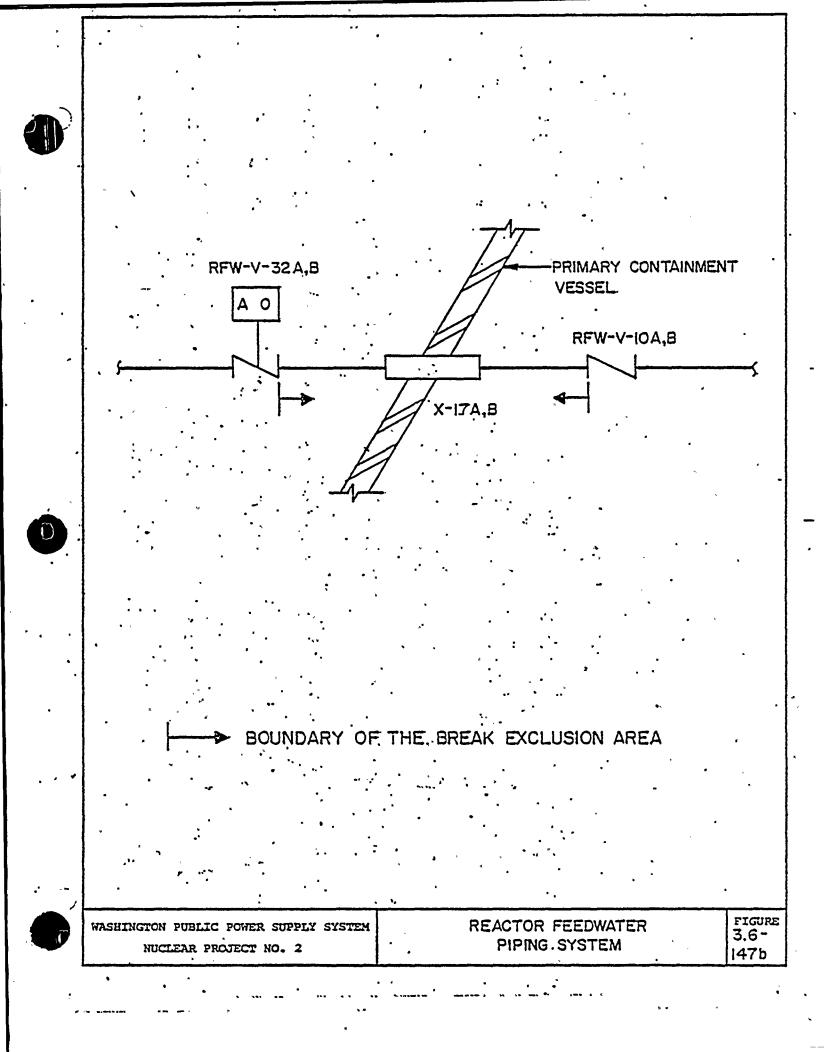
•

. v ٠

, . ,

.

ı


0

.

•

, ۲

•



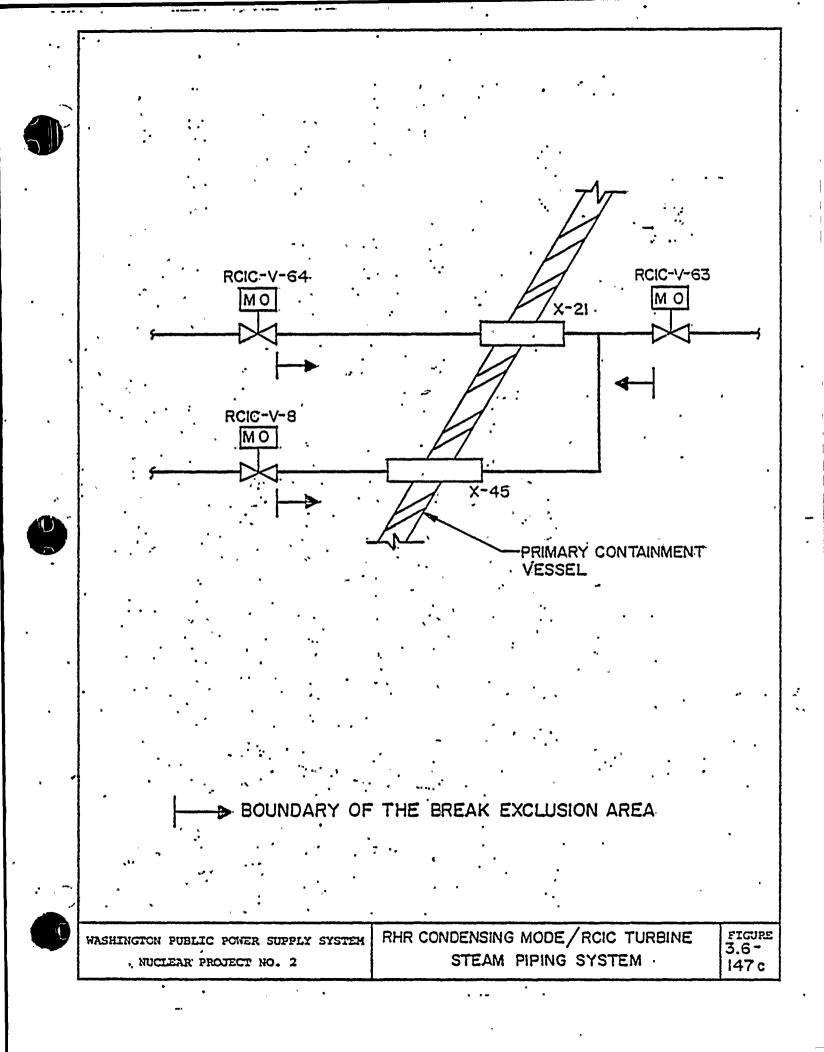
• • • •

, a

¥\* 

• · • ۰ **۰** . . . .

.


. ۰ ، . ۰ ، . ۰ ، . ۰ ، . , . . • 

· • . . .

,

۰ , ,





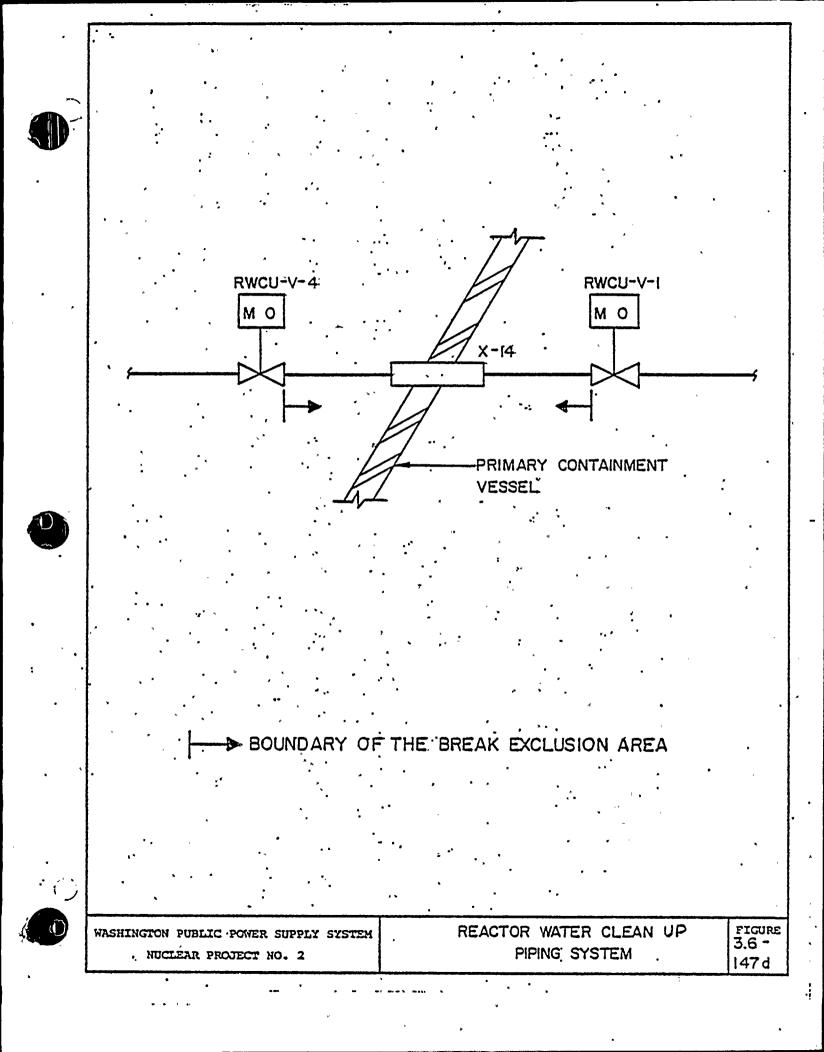
• g .

ς. 

•

ŧ

1


•

11 • .

• 'B' • . ٠

•



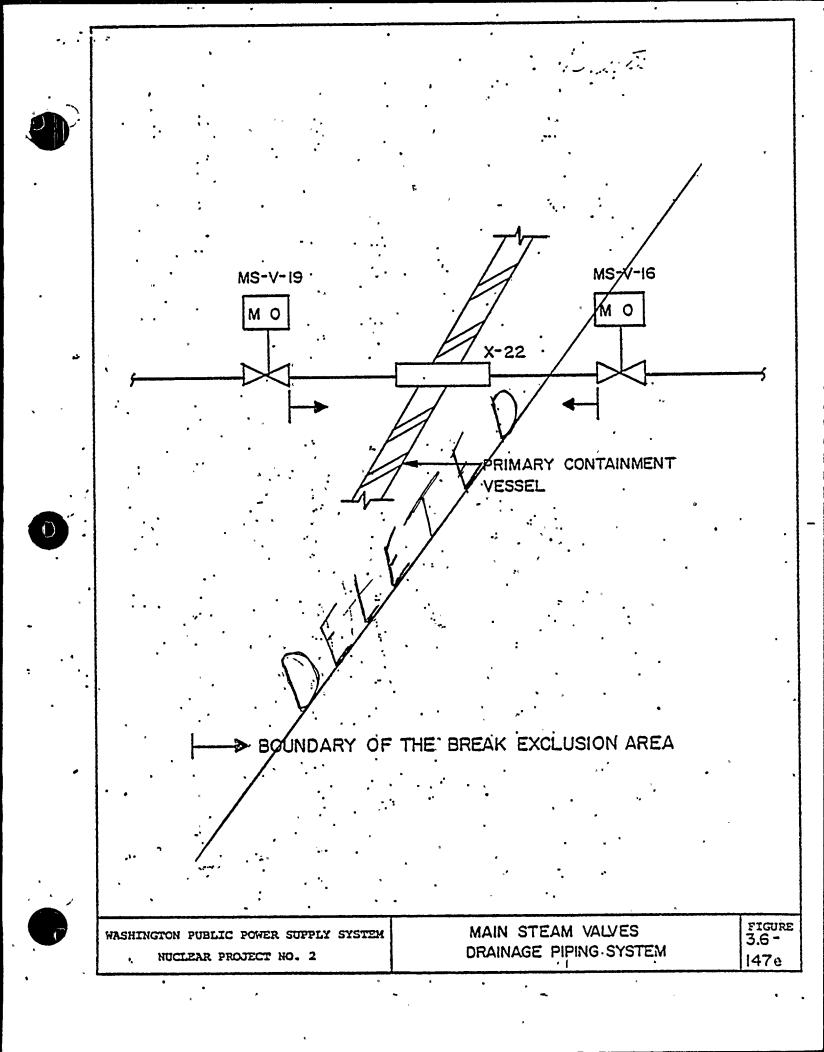


11

• •

r,

. 6ª ••


۳.,

+

÷



2



` •

• 

• · · · · · , 

. .





.

### WNP-2 DSER



QUESTION NO. 5 (3.6.2)

Any instances with limited break openings or break opening times exceeding one millisecond must be identified. Any analytical methods, representing test results or based on a mechanistic approach, used to justify the above must be provided and explained in detail. This applies to containment and annulus pressurization as well as general pipe break.

#### RESPONSE

In all analyses, except annulus pressurization analyses, full break with area equivalent to the pipe cross section is postulated to occur instantanesouly. No mechanistic approach is used.

In analyses related to annulus pressurization, the instantaneous approach is used in jet impingement and pipe whip restraint loads calculation. For the pressure time history, the recirculation line is postulated to break instantaneously producing full blowdown force. Subsequently, the broken end is assumed to separate in a finite time based on momentum and energy consideration. These analyses will be documented in detail as an appendix to the FSAR in the New Loads update.

Summation - This item is closed.

, · ĸ ı •

,

.,

1 , • , \*

,

4

J

-••

,



## 3.6.2 Determination of Break Locations and Dynamic Effects Associated with the Postulated Rupture of Piping

### Question 6

a — a a ai

...

Expand paragraph 3.6.2.5.4. Ile to provide assurance that sufficient protection has been provided to preclude the pipe break damage for main steam and reactor feedwater piping , inside the main steam tunnel.

### Response:

Please refer to revised 3.6.2.5.4.11 for the information requested.

Summation - This item is closed.





41

ŧ

÷

• .

•

WNP-2

AMENDMENT NO. 9 April 1980



c. Verification of Pipe, Whip Protection Adequacy

Sufficient pipe whip protection is provided for the RPV head vent piping to assure safety as defined in 3.6.2.5.2. There are no safety. related systems in the vicinity of the RPV head vent piping and pipe whip restraints are provided to protect the primary containment structure.

3.6.2.5.4.11

Inser

Main Steam and Reactor Feedwater Piping Inside Main Steam Tunnel

a. System Arrangement

The four, 26-inch main steam and two, 24-inch reactor feedwater lines inside the main steam tunnel originate at the primary containment penetrations and run horizontally to the end of the tunnel. At this point, the six lines drop vertically and are then routed horizontally within the turbine generator building. An isolation valve is located in each line just beyond the penetration.

b. Pipe Whip Protection

The postulated pipe breaks and pipe whip restraints for the main steam and reactor feedwater lines inside main steam tunnel, are shown in Figures 3.6-33a and 3.6-34a. Where breaks are postulated, the six lines are restrained to prevent unacceptable motion. The restraints are mounted on steel structures which then tie into the concrete walls and floors.

c. Verification of Pipe Whip Protection Adequacy

Sufficient pipe whip protection is provided for the main steam and reactor feedwater lines inside the main steam tunnel to assure safety, as defined the main steam tunnel to assure safety, as defined

The bacig for providing Brotoution in this real is to prevent pipe whip impact with adjacent isolation valves and to provent give break damage occalation. The six lines and the six isolation valves in this area are located in close provimity to each other. A pipe break in one of

3.6-70

y - • i J

\* •

• 7 .

•

\* • .

, • · · · ·

s

● <sup>1</sup>3

ب الا • .



.

### AMENDMENT NO. 9 April 1980

the six lines, if unrestrained, may result in pipe whip impact with adjacent isolation valves, possibly rendering them inoperative. Futhermore, unrestrained motion may cause impact with other lines, which may result in escalation of pipe breaks. Such a condition may unacceptably increase the severity of the initial pipe break.

3.6.2.5.4.12

Residual Heat Removal System (RHR) - Low • Pressure Core Injection

a. System Arrangement

The RHR/LPCI piping consists of three, 14-inch loops whose arrangement is the same for two loops with the third loop being the mirror image of the other two. The piping originates at the reactor vessel at elevation 552 ft., rises vertically to elevation 563 ft. where there is a horizontal section with a check valve. This valve is normally closed, limiting the high energy portion of each loop. After the valve, the normally unpressurized section of piping drops to an elevation just below the main steam relief valve platform where it is routed to a penetration through primary containment at elevation 534 ft.

### Pipe Whip Protection

The postulated pipe breaks and pipe whip restraints for the three RHR/LPCI mode piping loops are shown in Figures 3.6-20a, 3.6-21a and 3.6-22a. Where pipe breaks are postulated, the three piping loops are restrained to prevent unacceptable motion. The restraints for this system are mounted onto the sacrificial shield wall and also on structures which tie back to the sacrificial shield wall.

c. Verification of Pipe Whip Protection Adequacy

Sufficient pipe whip protection is provided for the RHR/LPCI mode piping to assure safety as defined in 3.6.2.5.2. The pipe whip restraints

3.6-71

.

e



• .



# Insert to Page 3.6-70:

Pipe whip restraints are provided to prevent pipe whip impact with the main steam or feedwater isolation valves. In addition, impact with adjacent main steam or feedwater lines is prevented. Refer to Figures 3.6-6g through 3.6-6k.



### QUESTION NO. 7

Provide justification for utilizing the load factor of 1.15 for the equivalent static load method. The acceptance criteria of SRP 3.7.2 for the equivalent static load method is to apply a load factor of 1.5.

## RESPONSE

- a. Paragraph 3.7.2.1.8.2 has been revised to clarify the alternate simplified method of analyses. (See attached revision).
- b. A summary from the study performed to verify the adequacy of the alternate simplified method is attached.

Summation - This item is closed.





1 ч. ,

и 1 2 ۰, .

. n \_ . • • • -, Ą

1

t • • n \_i i, i ¥ , ; .

• . . • н н . •

· · · • • •



WNP-2

AMENDMENT NO. 8 February 1980



insert

An alternate simplified method of dynamic analysis is used for cold and/or limber piping systems. This is the Equivalent Static Load Method for piping. This method consists of applying constant horizontal and vertical load factors conservatively derived from seismic floor response spectra.

The description of the method sis as follows: Enveloped seismic building response spectra are derived from widened seismic floor response spectra. (The widening of the building response spectra is described in 3.7.2.5).

The piping is supported seismically such that the piping fun-

The piping is supported setsmiculty such and <u>fundamental</u> <u>damental frequency is higher than the building fundamental</u> <u>frequency</u> is fundamental mode of all piping systems is above the spectral peak of the case is necessary. peals of the seismic response spectrum.

The piping systems are then represented by simply analytical models, e.g., simply supported beams. Initial maximum seismic support spans are analytically determined from the above model for the piping fundamental frequency. These maximum spans are modified, if required, so as not to exceed a conservative value of maximum stress based on ASME Code allowables, and a limiting piping deflection between supports.

nining froquency The building aggelerations at the mined from the enveloped seismic building response spectra. These accelerations are increased by a minimum factor of 1.15 to include the effect of higher modes of Vibration. These. Attached increased accelerations (g-values) are the load factors.

> The horizontal and vertical loading factors are combined in the same way as described above for the detailed dynamic andiyoio-

#### 3.7.2.1.8.3 Dynamic Analysis of Equipment

Equipment is idealized by a mathematical model consisting of lumped masses connected by elastic members or springs. Results for selected Category I equipment are given in Table 3.9-2. The dynamic response of the system is calculated by using the response spectrum method of analysis. When the equipment is supported at two or more points at different elevations, the response specrum analysis is performed by using the response spectra at the elevation near the center of gravity of the equipment as the design spectra for the NSSS equipment, and for balance of plant using the envelope of response spectra for supports. Modal maxima are combined as described in 3.7.2.1.5. The analyses are performed assuming the horizontal ground motion to act in either of two orthogonal directions, North-South and East-West. Maximum stresses . 1

۲ ,

a e • -9 1 , . ł

•,

•

•

.

ņ . , e •

L ٠

n

-• .

,

.

,

resulting from any one horizontal or vertical excitation are considered to act simultaneously and the absolute values are added directly, as described in 3.7.2.6 and 3.7.2.7.

The relative displacements between anchors are determined from the dynamic analysis of the structures. All cases of relative displacement between anchors are considered. If significant, these relative displacements are then used in a static analysis to determine additional stresses imposed on equipment. Further details are given in 3.7.2.1.8.3.1 for the NSSS equipment and 3.7.3.9 for all other equipment. The cases where the relative displacements between anchors are insignificant and

**n** Ŀ · . = • . 9 • **>** ,

÷

٢ -. . .

1 ٠

• ы

• .

3

-

# Insert to Page 3.7-15

In the application of the alternate simplified method on WNP-2, a conservative static "g" loading was chosen for all piping systems when this approach was used irrespective of the building or building elevation. This simplifies the work and results in different amounts of conservatism for different piping systems. To confirm the adequacy of the alternate simplified method, a study is performed for several representative piping systems. Pipe stress and pipe support loads are calculated for these representative systems using response spectrum analysis methods. Results are examined to confirm that pipe stresses are within allowables and pipe support loads are less than these calculated using the simplified method.



• v

. •

,

÷

. , , t

**4**. r п

•

• . . . .

4

\* + ,

.

•

.

•

•

, , .

•

'n.,

•

• ч

. ۲ ۲

.

 $\hat{}$ 

## Justification

A study was conducted to demonstrate that the equivalent static analysis criteria employed on WNP-2 is conservative as compared to response spectrum analysis methods.

A. Approach

Dynamic response spectra analysis was performed on the sample problems. The results from the equivalent static method and response spectrum method were compared.

- B. Piping Systems Studied \*
  - 1. Six (6) Seismic Category I piping systems were selected as representative systems.
  - 2. The piping systems chosen represent a variety of sizes from 3" to 24" pipe diameters.
  - 3. Two systems were chosen from each of the Seismic Category I structures; the Reactor Building, the Service Water Pump House and the Diesel Generator Building.
- C. Results of the Study

The results of the equivalent static analysis and the response spectrum analysis were compared for each piping system studied and is summarized as follows:

- 1. Where piping system design was established by the equivalent static analysis criteria, analyses using the response spectrum method have shown that stresses are well within code allowables in all cases.
- 2. A total of 192 pipe supports were compared. A summary of Support Loads for 30 of the 192 supports is shown in Table 1 and lists in ascending order the load ratio for the five (5) supports with the smallest load ratio in each system. The minimum ratio (load ratio) of equivalent static method/response spectrum method shown in Table 1 is 1.80.
- D. <u>Conclusion</u> The Equivalent Static Analysis Criteria used in piping analysis on the WNP-2 project is conservative and provides an adequate basis for piping system design.
- \* Additional considerations factored into the study to ensure that the six systems chosen for study represent a conservative basis for comparison:
  - Piping systems located at higher elevations in the building were chosen for study, since seismic response spectra at higher elevations are larger, in order to represent a conservative basis for comparison.
  - (2) Piping systems which are extensive in length and thereby exhibiting a variety of configurations and spans were chosen.





, • >

e ,ŧ

.

1

ų

.

,

•

w

**`**,

.

72

v

•

TABLE 1 - RESULT OF STUDY

Attachment 1

| · · ·                                                                            |                                   | •••                                            | Calculated Load (1b) Equiv. Sta       |                                      |                                              |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|--|--|--|
| System                                                                           | Location                          | Support<br>Mark #                              | Equiv.**<br>Static<br>Method          | Response<br>Spectrum<br>Method       | tic Method<br>Response<br>Spectrum<br>Method |  |  |  |
| Diesel<br>Gener-<br>ator<br>Air<br>Intake                                        | Diesel<br>Gener-<br>ator<br>Bldg. | DE-7<br>DE-7<br>DE-8<br>DE-14<br>DE-14         | 4696<br>4860<br>3120<br>4124<br>10505 | 2347<br>2281<br>1411<br>1780<br>2960 | 2.0<br>2.1<br>2.2<br>2.3<br>3.5              |  |  |  |
| Loop B<br>Return<br>DG ENG<br>1B<br>DMA-CC-<br>21                                | Diesel<br>Gener-<br>ator<br>Bldg. | SW-261<br>SW-263<br>SW-253<br>SW-258<br>SW-257 | 854<br>535<br>1085<br>1128<br>873     | 173<br>107<br>151<br>145<br>112      | 4.9<br>5.0<br>7.2<br>7.8<br>7.8              |  |  |  |
| Standby<br>Service<br>Water<br>Pump-<br>house<br>Spray<br>Pond<br>Cross-<br>over | Service<br>Bldg.                  | SW-10<br>SW-11<br>SW-186<br>SW-187<br>SW-181   | 717<br>926<br>1109<br>1109<br>961     | 268<br>263<br>277<br>262<br>224      | 2.7<br>3.5<br>4.0<br>4.2<br>4.3              |  |  |  |
| Standby<br>Service<br>Water<br>Pump-<br>house<br>Spray<br>Pond<br>Cross-<br>over | Service<br>Bldg.                  | SW-1<br>SW-16<br>SW-17<br>SW-3<br>SW-14        | 579<br>563<br>1335<br>859<br>1429     | 330<br>286<br>527<br>326<br>445      | 1.80<br>2.0<br>2.5<br>2.6<br>3.2             |  |  |  |
| Service<br>Water<br>from 20"<br>SW Loop A                                        | Reactor<br>Bldg.                  | SW-322<br>SW-344<br>SW-324<br>SW-323<br>SW-321 | 359<br>253<br>683<br>426<br>490       | 178<br>67.<br>147<br>83<br>87        | 2.0<br>3.8<br>4.7<br>5.1<br>5.6              |  |  |  |

\*\* Design Basis.



TABLE 1 - RESULT OF STUDY (continued)

|                                                     | •                      | Calculat                          | Equiv.                         |                                                     |
|-----------------------------------------------------|------------------------|-----------------------------------|--------------------------------|-----------------------------------------------------|
| System . Loca                                       | Support<br>tion Mark # | Equiv.**<br>Static<br>Method      | Response<br>Spectrum<br>Method | Static<br>Method/<br>Response<br>Spectrum<br>Method |
| Service Reac<br>Water Bldg<br>from 20"<br>SW Loop B | 1                      | 268 ·<br>105<br>211<br>243<br>496 | 7.9<br>30<br>56<br>57<br>77    | 3.4<br>3.5<br>3.8<br>4.3<br>6.4                     |

. ``

# \*\* Design Basis

.

•

د ۱۹۹۵ - ۲۰۰ ۲۰

e de la construcción de la constru La construcción de la construcción d 

•

• ۵

• •

•

v

4

,

r

19

• 1 ۰.

. . .

. *.* •

•

I. r

.



/

٠

.

# QUESTION NO. 8 (3.7.3)

Provide clarification of the statement in Paragraph 3.7.3.2.1 of the FSAR, "Based on Reference 3.7-10, which summarized data related to seismic histories presented in PSARs for many plants, it is conservatively assumed that combined effects due to seismic events of an intensity less than or equal to OBE intensity may be considered equivalent to two earthquakes of OBE intensity. Therefore, the lifetime number of earthquake cycle may range from 200 to 600 assuming 30 seconds of strong motion earthquake acceleration for each seismic event".

### RESPONSE

See revised 3.7.3.2.1 of FSAR.

.Summation - This item is closed.



•

.

\*

ĥ ۱ ا и 1

i ۲

4 Ŧ ¥

۶

•

,

K; = Stiffness contribution of element j

W; = Circular natural frequency of mode i

#### 3.7.3 SEISMIC SUBSYSTEM ANALYSIS

The general approach to the seismic subsystem analysis is identical to those procedures described in 3.7.2 for seismic system analysis, except for the soil/structure interaction effects.

#### 3.7.3.1 Seismic Analysis Methods

The seismic analysis method used to analyze Seismic Category I subsystems is described in 3.7.2.1.

3.7.3.2 .Determination of Number of Earthquake Cycles

3.7.3.2.1 Number of Cycles for All Items Except NSSS Systems and Components

Assuming the mathematical model of strong motion earthquake acceleration described in 3.7.1.2 (T=15 seconds), the number of peaks and troughs, N, of the random process representing the structural response may be estimated. (Reference 3.7-3) The response of nuclear plant structures is controlled mostly by one governing mode, for the range of building frequencies normally encountered in nuclear plant facilities, (1.5 Hz to 6.0 Hz,) the number N is evaluated to be from 50 to 150. For a strong motion earthquake acceleration of 30 seconds in durgtion, N is from 100 to 300 for each seismic event. Fatigue evaluation due to a safe snutdown earthquake 1s not required by ASME Code, Section III since it qualifies as a faulted condition.

The operating basis earthquake is an upset condition and therefore must be included in fatigue evaluations according to ASME Code, Section III. The probability for the occurrence of a seismic event of OBE intensity is extremely low. Lower intensity earthquakes have a higher probability of occurrence. Based on Reference 10, which summarized data related to seismic histories presented in PSARs for many plants, it is conservatively assumed that combined effects due to seismic events of an intensity less than or equal to OBE intensity may be considered equvalent to two earthquakes of OBE

, 50 maximum strep cycles due to OBE are used for fatigue evoluctions of BOP. components

3.7-33

۲

•

•

. .

intensity. Therefore, the lifetime number of earthquake cycles may range from 200 to 600 assuming 30 seconds of strong motion earthquake acceleration for each seismic event.

During an actual seismic disturbance, only a small percentage of these cycles occur at the maximum, or even at a significant stress level. Reference 10 states that 99.5% of the stress reversals occur below 75% of the maximum stress level, and 95% of the reversals lie below 50% of the maximum stress level (See Figure 3.7-26). Based on this data, it is assumed that a total lifetime number of maximum seismic load cycles of 60 is a conservative estimate of the number of cycles which will have a significant contribution to fatigue usage.

3.7.3.2.2 Number of Cycles for NSSS Systems and Components

To evaluate the number of cycles which exist within a given earthquake, a typical boiling water reactor building-reactor dynamic model was excited by three different recorded time histories: (a) May 18, 1940, El Centro NS component 29.4 sec; (b) 1952, Taft N 69° W component, 30 sec; and (c) March 1957, Golden Gate S80E component, 13.2 sec. The modal response was truncated such that the response of three different frequency bandwidths could be studied,  $(0^+-10 \text{ Hz}, 10-20 \text{ Hz}, and 20-50 \text{ Hz})$ This was done to provide a good approximation to the cyclic behavior expected from structures with different frequency content.

Enveloping the results from the three earthquakes and averaging the results from several different points of the dynamic model, the cyclic behavior, as given in Table 3.7-18, was formed.

Independent of earthquake or component frequency, 99.5% of the stress reversals occur below 75% of the maximum stress level, and 95% of the reversals lie below 50% of the maximum stress level. This relationship is graphically shown in Figure 3.7-26.



3.7-34

•

· · ·

.

\$





# QUESTION NO. 9

# (3.7.3)

Provide justification of utilizing one OBE intensity earthquake for design of the NSSS systems and components in Paragraph 3.7.3.2.2. Specifically, provide justification that the information in Paragraph 3.7.3.2.2. is applicable to the WNP-2 site.

# RESPONSE

For the NSSS piping, 50 peak OBE cycles are used.

For other NSSS equipment and components, a gener c study serves as the basis for 10 peak OBE cycles. As shown in the letter, R. Artigas to R. Bosnak; "Number of OBE Fatigue Cycles in the BWR NSSS Design", September 17, 1981, 10 peak OBE cycles can envelope the cumulative fatigue damage of hundreds of less severe earthquake cycles.

Accordingly, the FSAR is revised as attached.

Summation -The applicant is to provide the comparison of the response spectra mentioned in the letter by November 20, 1981. This item is closed.

. ų,

.



AMENDMENT NO. 8 February 1980

(9)

WNP-2

intensity. Therefore, the lifetime number of earthquake cycles may range from 200 to 600 assuming 30 seconds of strong motion earthquake acceleration for each seismic event.

During an actual seismic disturbance, only a small percentage of these cycles occur at the maximum, or even at a significant stress level. Reference 3.7-10 states that 99.5% of the stress reversals occur below 75% of the maximum stress level; and 95% of the reversals lie below 50% of the maximum stress level (See Figure 3.7-26). Based on this data, it is assumed that a total lifetime number of maximum seismic load cycles of 60 is a conservative estimate of the number of cycles which will have a significant contribution to fatigue usage.

3.7.3.2.2 Number of Cycles for NSSS Systems and Components

To evaluate the number of cycles which exist within a given earthquake, a typical boiling water reactor building-reactor dynamic model was excited by three different recorded time histories: (a) May 18, 1940, El Centro NS component 29.4 sec; (b) 1952, Taft N 69° W component, 30 sec; and (c) March 1957, Golden Gate S80E component, 13.2 sec. The modal response was truncated such that the response of three different frequency bandwidths could be studied,  $(0^+-10 \text{ Hz}, 10-20 \text{ Hz}, \text{ and } 20-50 \text{ Hz})$ . This was done to provide a good approximation to the cyclic behavior expected from structures with different frequency content.

Enveloping the results from the three earthquakes and averaging the results from several different points of the dynamic model, the cyclic behavior, as given in Table 3.7-18, was formed.

Independent of earthquake or component frequency, 99.5% of the stress reversals occur below 75% of the maximum stress level, and 95% of the reversals lie below 50% of the maximum stress level. This relationship is graphically shown in Sigure 3.7-26.

NSSS Piping

OBE cueles

3.7.3.2.2.

3.7-34

- are postulate

. ۰ **۲** , , • -1 ٩ . r ж , , • ¥ ' N. • • . . ah

)

• •

•

In summary, the cyclic behavior number of fatigue cycles of a component during an earthquake is found in the following manner:

- a. The fundamental frequency and peak seismic loads are found by a standard seismic analysis.
- b. The number of cycles which the component experiences are found from Table 3.7-18 according to the frequency range within which the fundamental frequency lies.
- c. For fatigue evaluation, one-half percent (0.005) of these cycles are conservatively assumed to be at the peak load and 4.5% (0.045) are assumed to be at or above three-quarter peak. The remainder of the cycles has negligible contribution to fatigue usage.

The safe shutdown earthquake has the highest level of response. However, the encounter probability of an SSE is so small that it is not necessary to postulate more than one SSE during the 40 year plant life. Fatigue evaluation due to the SSE is not necessary since it is a faulted condition and thus not required by ASME Code Section III.

The OBE is an upset condition and, therefore, must be included in fatigue evaluations according to ASME Code Section III. An investigation of seismic histories for many plants shows that during a 40 year life, it is probable that five earthquakes with intensities one-tenth of the SSE intensity, and one earthquake approximately 20% of the proposed SSE intensity, will occur. Therefore, the probability of even an OBE is extremely low: To cover the combined effects of these earthquakes and the cumulative effects of even lesser earthquakes, one-OBE intensity earthquake is postulated for fatigue evaluation.

Table 3.7-19 shows the calculated number of fatigue cycles and the number of fatigue cycles used in design.

3.7.3.3 Procedure Used for Modeling

3

The procedure used for modeling for the subsystem dynamic analysis is described in 3.7.2.3.





• 8

. • ×.

.

. ι

, • .

•

÷ ı

..

.

4

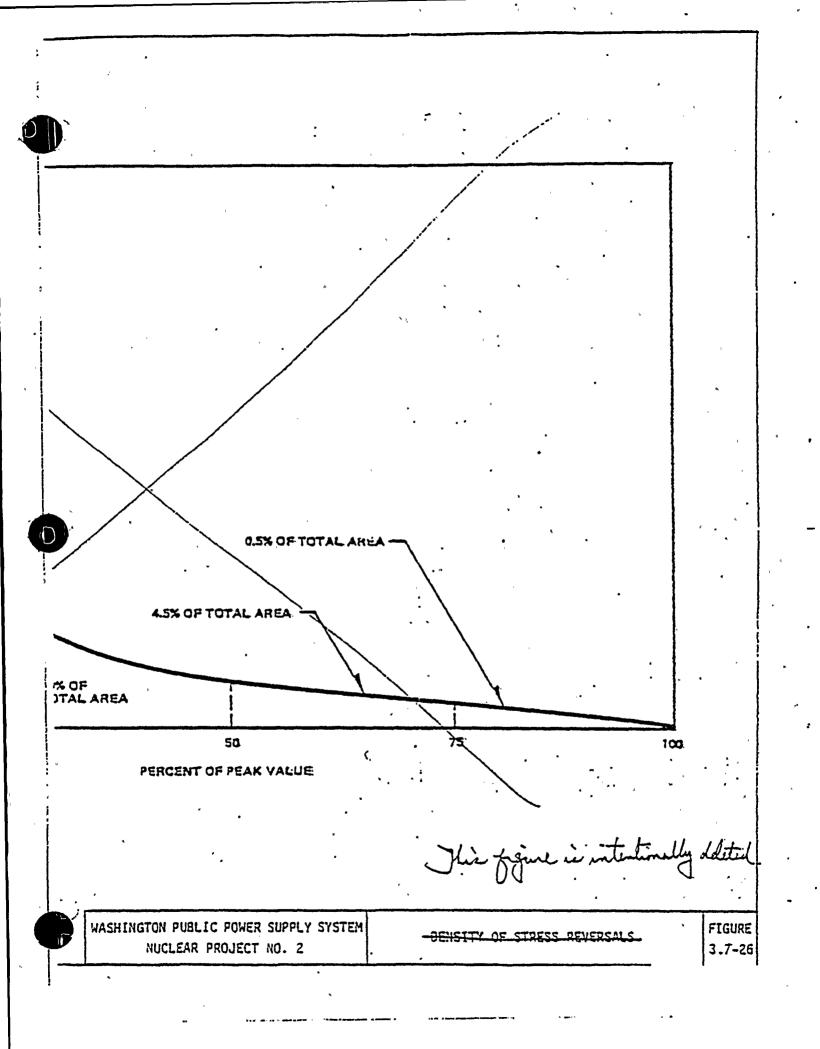
| e   | TABLE 3                                                                    | .7-18  |                     |                 |
|-----|----------------------------------------------------------------------------|--------|---------------------|-----------------|
|     | NUMBER OF DYNAMIC RESPONSE                                                 | CYCLE  | S EXPECTED          | DURING A        |
|     | SEISMIC EVENT FOR NSSS S                                                   | YSTEMS | AND COMPON          | ENTS            |
|     |                                                                            |        | emency Bridger      | itch (Hertz)    |
|     | Expansency Band (ALZ) 0                                                    | - 10   | $0_{10^{\circ}-20}$ | <u> 20 - 50</u> |
|     | Total Number of Seismic<br>Cycles                                          | 168    | 359 .               | 643             |
|     | Seismic Cycles at Peak Load                                                | 0.8    | 1.8                 | 3.2             |
|     | Seismic Cycles at or above                                                 | -      |                     | ` ·             |
|     | 75% of Peak Load                                                           | 7.5    | 16.2                | 28.9            |
|     |                                                                            |        |                     |                 |
|     | No. of seismic cycles (4.5% of total)<br>between 30% and 25% of peak loads | )      | •                   | •<br>•          |
| ),' |                                                                            | •      | •.                  |                 |
|     | No. of seismic cycles (0.5% of total<br>between 75% and 100% of peak loale |        |                     |                 |

DU

1

WNP-2

Ð


. . .

. ·

• • • • • • • • •

• •



