

Q.

ANNUAL ENVIRONMENTAL OPERATING REPORT (NONRADIOLOGICAL)

SALEM NUCLEAR GENERATING STATION - UNIT NO. 1

The Energy People

PSEG

January 1 through December 31, 1978

Docket No. 50-272 Operating License No. DPR-70 NOTICE THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR BEPRODUCTION MUST BE REFERRED TO FILE PERSONNEL. ENGINE 50.27 URN DATE DEADL 20 RECORDS FACILITY BRANCH MARCH 30, 1979 79041202811

1978 ANNUAL ENVIRONMENTAL OPERATING REPORT (NON-RADIOLOGICAL)

January 1 Through December 31, 1978

SALEM NUCLEAR GENERATING STATION

UNIT NO. 1

Docket No. 50-272

Operating License No. DPR-70

RETURN TO REAGING DOCKET 50.2 Ur 4.2.79 7904120277

PUBLIC SERVICE ELECTRIC AND GAS COMPANY

80 Park Place

Newark, New Jersey

March 30, 1979

SALEM NUCLEAR GENERATING STATION ÁNNUAL ENVIRONMENTAL OPERATING REPORT (NON-RADIOLOGICAL)

TABLE OF CONTENTS

S	Ε	С	т	Ι	ON	

TITLE

PAGE

1.0 1.1 1.2 1.3	GENERAL INTRODUCTION SUMMARY CONCLUSIONS	1.1-1 1.2-1
2.0 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	ABIOTIC MONITORING AND SURVEILLANCE PROGRAMS. TEMPERATURE Condenser Delta Temperature Maximum Discharge Temperature Rate of Change of Discharge Temperature CHEMICAL. Chlorine Suspended Solids pH Dissolved Oxygen Other Chemicals	2.1-1 2.1-1 2.1-2 2.1-2 2.1-2 2.2-1 2.2-1 2.2-1 2.2-6 2.2-11 2.2-12 2.2-14
3.0 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1-5 3.1.6a 3.1.6b 3.1.7 3.1.8 3.2 3.2.1 3.2.2 3.2.1 3.2.2 3.3	BIOTIC MONITORING AND SURVEILLANCE PROGRAMS . AQUATIC. Phytoplankton Ichthyoplankton Zooplankton Benthos Blue Crab Juvenile and Adult Fishes - River Juvenile and Adult Fishes - Tidal Tributaries Impingement of Organisms Entrainment of Planktonic Organisms TERRESTRIAL. Diamondback Terrapin Nesting Study Bird Population Studies Bald Eagle and Osprey Monitoring Study .	3.1-1 3.1-2 3.1-26 3.1-71 3.1-116 3.1-160 3.1-204 3.1-222 3.1-334 3.1-369 3.2-1 3.2-1 3.2-15

M P79 9 02/9

ACKNOWLEDGEMENT

This report was prepared by Public Service Electric and Gas Company, Newark, New Jersey. Data were collected at the Salem Nuclear Generating Station and in the Delaware Estuary by the staff of Salem Station, the PSE&G Research and Testing Laboratory and Ichthyological Associates (IA) of Middletown, Delaware. Data analysis and report preparation was performed by the PSE&G Licensing and Environment Department and the IA staff.

M P79 9 02/8

SECTION 1.0 GENERAL

1.1 INTRODUCTION

This report is required by Section 5.6.1.1.1.a of the Environmental Technical Specifications (Appendix B) to Salem Nuclear Generating Station Operating License No. DRP-70. It includes the results of analyses carried out under the nonradiological environmental monitoring requirements described in the Environmental Technical Specifications (ETS). Appendix B became effective on December 11, 1976 at 7:36 p.m. EST when Salem Nuclear Generating Station (SNGS), Unit 1, attained initial criticality.

Information from December 11 through December 31, 1976 is reported for all required monitoring programs in the 1976 Annual Environmental Operating Report (Non-radiological), April 1977. Results of the first full year of Salem Unit 1 operation were reported in the 1977 Annual Environmental Operating Report (Non-radiological), March 31, 1978. This third such report covers the same information for the period January 1, 1978 through December 31, 1978.

1.2 SUMMARY

Salem Unit 1 was operational during much of 1978 while Salem Unit 2 continued in the construction phase. Two (2) extended maintenance outages, one in the spring and one in the fall, did occur during the operation of Unit 1, and additional relatively short maintenance periods occurred at other times throughout the year. Daily average reactor power levels achieved during the reporting period and corresponding condenser delta temperature information are given in Figures 2.1-1 through 2.1-3.

The requirements for non-radiological environmental monitoring were divided into two general monitoring and surveillance programs: abiotic and biotic. The abiotic program covered field (estuary), and station monitoring efforts, including plant temperature information and plant and field chemical surveys. Section 2.0 of this report discusses the abiotic program. Meteorological information for 1978 are presented in two (2) 1978 Semiannual Radioactive Effluent Release Reports (RERR-4 and RERR-5) for Salem Station.

The biotic studies were divided into aquatic and terrestrial programs, and the results are presented in Section 3.0. In addition to the field studies, the aquatic effort included substantial monitoring of the intake and discharge for impingement and entrainment.

1.3 CONCLUSIONS

Heat dissipation through the condensers was generally related to reactor power level. The circulating water system experienced intake screen failure and condenser tube plugging at times, requiring operation with fewer than six pumps. However, no environmental impact from the operation of the circulating water system was detected in the Delaware River estuary.

Plant chemical discharges were made in accordance with the Environmental Technical Specification provisions, and chemical usage was compared with predicted waste discharge concentrations. No unusual or significant water quality impacts or chemical concentrations were noted during the period in which estuary water quality samples were taken.

The general ecological survey was conducted in accordance with the provisions of ETS Section 3.1.2.1 to determine the effect of plant operation on the ecology of the Delaware River estuary. No significant changes in the ecology of the river in the vicinity of Salem Nuclear Generating Station were observed.

Aquatic and terrestrial species compositions, densities and abundances were within expected ranges when compared to preoperational monitoring data, except for the number of juvenile weakfish (Cynoscion regalis) within the estuary. Data collected during the summer indicated that the juvenile weakfish population was larger than had been previously observed. Although relatively high impingement rates did occur, there was no indication that the operation of Salem Station had a significant impact on the 1978 year class of weakfish.

DAB:gs M P79 9 03 03

1.3-1

SECTION 2.0 ABIOTIC MONITORING AND SURVEILLANCE PROGRAMS

2.1 TEMPERATURE (ETS Section 2.1)

During 1978, Salem Unit 1 was in commercial operation as a baseload electric generating station, with production varying from 0 to 1113 MWe.

An extended outage for maintenance started in March and continued through mid-June. Another extended outage occurred in October and November for a period of four weeks. Several shorter ones occurred throughout the year. Average daily power level and average daily delta temperature are presented in Figures 2.1-1 through 2.1-3. These figures demonstrate the close correlation between power level and delta temperature.

There are three parts to the condenser serving the Salem Unit 1 steam turbine, and each is divided into two separate halves. As required by the ETS, condenser temperatures were monitored at the inlet to each condenser half or shell, for a total of six measurements. Similarly, discharge temperatures were measured in each of the six discharge lines.

The Salem condenser monitoring system utilizes probes called resistor temperature detectors (RTD). These RTD's are interfaced with the plant computer which records the condenser temperature readings on an hourly basis. The data are processed to produce the delta T and maximum discharge temperature information required by the ETS. When the computer monitoring system was out of service, the intake and discharge temperatures were monitored every two hours utilizing local instrumentation located on the condensers.

The results of the temperature monitoring program are summarized in Table 2.1-1. Presented are the average intake, discharge and delta temperatures for the Unit 1 condenser.

The coldest intake temperatures occurred in February [0.6°C(33.1°F)] while the highest occurred in July [34.2°C (93°F)]. The lowest and highest discharge temperatures occurred in February and August respectively [1.1°C (34°F)] and [42.8°C (109°F)]. The monthly average delta T was fairly consistent throughout the year. No data are reported for April and May because of the plant outage.

2.1.1 Condenser Delta Temperature (ETS Section 2.1.1)

Heat rejected through the condensers varied in response to plant operating conditions and power level. Problems were frequently encountered with the circulating water system, the most common being failures of the vertical traveling intake screens. Nonrepresentative locations of the RTD's and plugging of condenser tubing also contributed to indications exceeding the 16.5°F delta T limit with 6 pumps in service at times. Such corrective actions as power reductions or water box cleaning, were generally employed to reduce the delta T. In addition, the RTD's were relocated during the March outage thus rectifying the problem of erroneous readings when the station resumed operation in June.

As mentioned before, the main problems were with the circulating water vertical traveling screens. Because of a serious detritus loading problem, and also to maximize survival of fish impinged upon the screens, the circulating water traveling screens were operated continuously. This caused excessive wear of the screens and related hardware and resulted in frequent breakdowns. Since a circulating pump cannot be operated without its traveling screen, Salem Unit 1 operated much of the time with fewer than 6 pumps in service.

2.1.2 Maximum Discharge Temperature (ETS Section 2.1.2)

The circulating water intake and discharge temperatures reached their maximums in August. The intake temperature maximum was 30.0°C (96.8°F) while the maximum discharge temperature was 42.7°C (109.0°F). This occurred when fewer than six pumps were operating. ETS limits for maximum discharge temperatures were not exceeded in 1978.

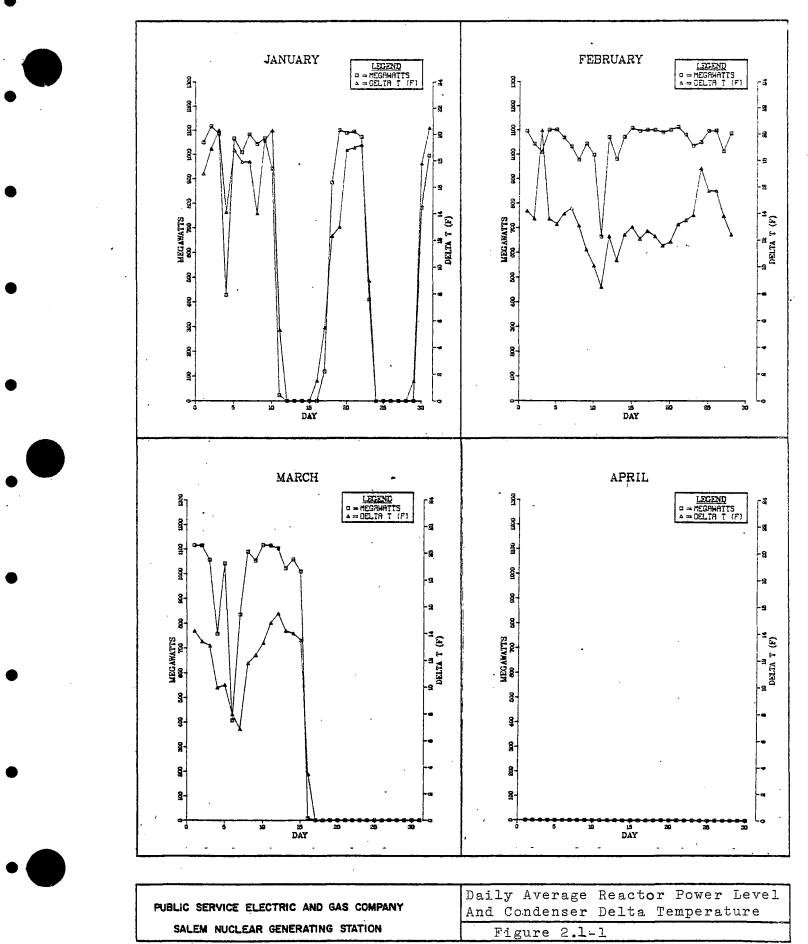
2.1.3 <u>Rate of Change of Discharge Temperature</u> (ETS Section 2.1.3)

Section 2.1.3 of the Salem ETS requires that "The rate of change of discharge temperature shall not exceed 8°F per hour during normal plant shutdown". In 1978 Salem Unit 1, during normal power level reductions did not exceed a rate of change of greater than 15% of full power in one hour. This rate of change is substantially less than the 25% which would require additional monitoring. Correspondingly, the specified rate of change requirement was not exceeded and there was no necessity to increase the frequency of discharge temperature monitoring.

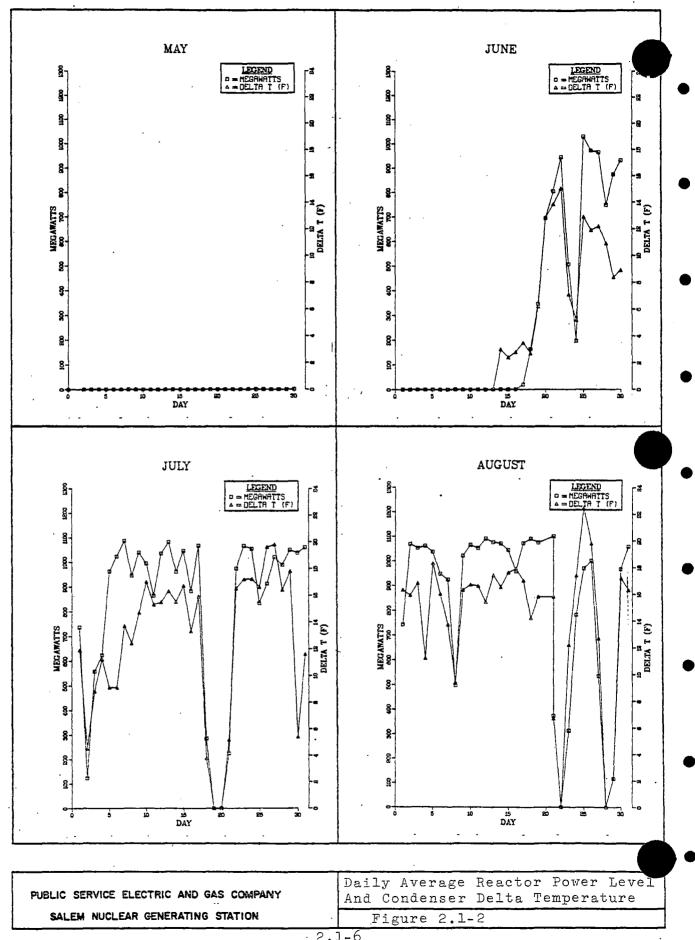
Unplanned power reductions did occur because of the need to protect plant equipment or when, for certain reactor safeguard operations, the plant decreased reactor power level rapidly. No cold shock or other environmental impact attributable to shutdown was observed.

TABLE 2.1-1

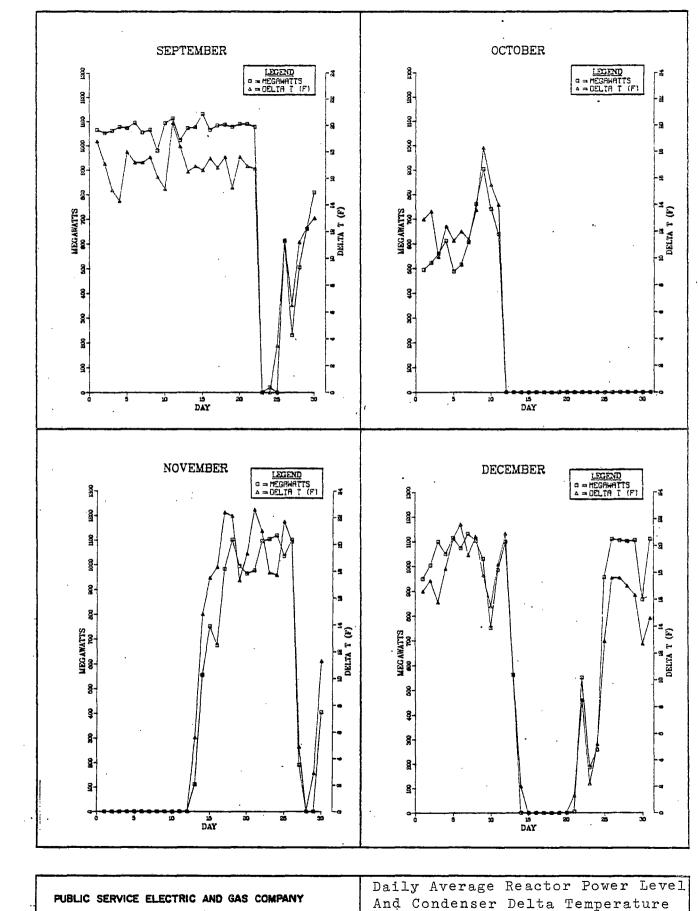
Date	Intake Average*		Discharg Average*		Delt Average*	
January	1.3	(34.3)	8.9	(48.1)	7.7	(13.7)
February	0.6	(33.1)	7.9	(46.2)	7.3	(13.2)
March	1.8	(35.2)	8.6	(47.5)	6.8	(12.5)
April**	-		-		-	
May**	-		-		-	
June	23.8	(74.8)	28.7	(83.7)	4.9	(8.9)
July	25.7	(78.3)	32.8	(91.0)	7.1	(12.7)
August	27.8	(82.0)	36.0	(96.8)	8.2	(14.8)
September	24.5	(76.1)	32.8	(91.0)	8.3	(14.9)
October	18.9	(66.0)	23.5	(74.3)	4.7	(8.3)
November	12.3	(54.1)	21.4	(70.5)	9.1	(16.4)
December	7.0	(44.6)	14.6	(58.3)	7.6	(13.7)


AVERAGE CONDENSER TEMPERATURES - 1978

*Average of Condenser Circuits 11, 12 and 13 **No power generated in April and May


M P79 9 04

2.1-4


••

2.1-5

2.1-6

SALEM NUCLEAR GENERATING STATION

Figure 2.1-3

2.2 CHEMICAL

2.2.1 Chlorine

2.2.1.1 Sodium Hypochlorite System (ETS Section 2.2.1)

The Salem Nuclear Generating Station uses sodium hypochlorite (NaOC1) solution for treatment of cooling circuits in order to maintain these circuits free from biofouling. The sodium hypochlorite solution is injected at the intakes immediately behind the vertical traveling screens. The circulating and service water systems chlorination controls are programmed to chlorinate in sequence, not in parallel. The program calls for chlorination three times per day for 30 minutes each.

The Salem Environmental Technical Specifications require that "The concentration of free chlorine in the circulating water system and service water system shall not be greater than 1.0 mg/liter at the outlet of the final heat exchanger". The ETS require a chlorine residual analyzer which is permanently located to optimize the monitoring of exchanger residuals.

Several technical problems with the sodium hypochlorite system occurred in 1978 at the Salem Nuclear Generating Station. Consequently, chlorination took place on only 19 days in 1978. The chlorination system was operated manually from July 5 until August 14 (Table 2.2.1-1).

Due to failure of the automatic control system, the free chlorine residual was determined by manual amperometric titration of grab samples taken during the chlorination cycle.

During the chlorination periods, these analyses of free chlorine residual indicated values between 0 and 0.4 mg/liter. Consequently, because of the additional dilution from other condenser circuits, the concentration at the discharge to the river was less than 0.1 mg/liter.

The weekly river biocide surveys taken during periods of chlorination (described in Section 2.2.1.2) showed a total chlorine residual of 0.03 mg/liter or less on all occasions.

Also, the ecological monitoring program conducted in the vicinity of Artificial Island revealed no effect on the aquatic community from the sodium hypochlorite system.

A mass balance comparing the total quantity of chlorine injected to the volume of circulating and service water chlorinated in 1978 is summarized in Table 2.2.1-2. It demonstrates that the amount of chlorine injected and reduced by chlorine demand, would have resulted in a free chlorine residual at the discharge below detectable levels. This is consistent with the station's analyses of free chlorine residual.

Actually, the chlorine residuals discharged to the river are further reduced because the system contact time is significantly longer than the time (5 minutes) between intake and the point at which chlorine residual monitoring occurrs.

2 - 2 - 2

TABLE 2.2.1-1

SODIUM HYPOCHLORITE SYSTEM 1978 OPERATING SUMMARY

Water	Sodium Hypoch	Chlorination		
System	In Service	Out of Service	Days	Cycles
Circulating	July 5	July 29	8	Ì4
Service	July 12 August 1	July 31 August 14	11 [°] 4	26 5

٩

2.2-3

TABLE 2.2.1-2

	Circulating and Service Water Volume Chlorinated(1)	CHLORINE					
		Volume		Intake River (4)	Free Residual Ambient River(4) in the Vicinity of the Dis- Calculated		
		Injected(2)	Rate(3)	Demand	charge	Discharge	
	x 10 ^{'6} gal	lbs.	mg/liter	mg/liter	mg/liter	mg/liter	
	506.2	8040	1.90	1.97	<0.03	0	

1978 - CHLORINE INJECTION SYSTEM

(1) Refer to Table 2.2.1-1 for operating summary.

(2) Based on soundings of tank levels in July and August.

(3) 1978 Average during periods of chlorination.

(4) July and August river water summary data (Section 2.2.5.2)

2.2.1.2 Chlorine - River Survey (ETS Section 3.1.1.1)

As stated in Section 2.2.1.1, the circulating and service water systems are periodically injected with sodium hypochlorite to reduce biofouling in the system. During each week of biocide injection, grab samples are taken in the river to measure the free and total residual chlorine. The sampling locations are the same as the monthly river survey, being at the intake, discharge, and outside and downstream of the mixing zone (Figure 2.2.5-1).

In accordance with ETS requirements the concentration in the sample taken outside and downstream of the mixing zone shall not exceed the ambient (intake) total residual level by more than 0.1 mg/liter.

In 1978 the sampling program did not show detectable total residual chlorine increases at any location in the river during the chlorination periods. In all sampling locations the rivers total chlorine residual was less than 0.03 mg/liter.

As discussed in Section 2.2.1.1, chlorination did not begin until July 5 and continued only until August 14. During this time the river samples showed no detectable total residual chlorine and no adverse biological impact was noted in the ecological studies (Section 3.1). The biocide samples for the first two weeks in August were inadvertently omitted but station records indicate that the concentration of free residual chlorine at the final heat exchanger did not exceed 1.0 mg/1.

2.2.2 Suspended Solids

2.2.2.1 Suspended Solids Discharge From Non-radioactive Liquid Waste Basin (ETS Section 2.2.2)

The original design of the non-radioactive liquid waste basin was based on processing approximately equal quantities of demineralizer regenerant wastes, steam generator blowdown and service water needed to quench the steam generator blowdown, permitting settling and pH neutralization before discharge to the river.

In 1978, samples for suspended solids were taken from the basin discharge pipe on days when the basin was being discharged, and were analyzed using the filtration/gravimetric method which is recognized by EPA.

This was for year-end comparison with ETS Section 2.2.2 which states that "The average suspended solids concentration in the effluent from the non-radioactive chemical liquid waste disposal system shall not exceed 25 mg/liter on an annual basis". The 1978 suspended solids concentration in the discharge from the nonradioactive waste basin was calculated to be 34.7 mg/liter. This exceeds the ETS limit. A licensee event report (LER 79-13/04L) reporting this was filed with the NRC.

The prime contributor to the high total suspended solids (TSS) concentration was the blowdown quench water, which is service water derived directly from the river. The monthly average TSS of the river water during 1978 was 135 mg/liter (intake area).

Since June 17, 1978, the station discontinued the addition of this quench water. By eliminating the quench water, the TSS concentration of the basin discharge decreased from 59.7 mg/liter in the first two quarters of 1978 to 9.6 mg/liter in the last two quarters (Table 2.2.2-1).

M. P79 9 09

Another contributor to high TSS concentrations was the high number of demineralizer regenerations necessary to support water requirements of Unit 2 startup-related flushes.

To reduce the number of regeneration cycles a well water pretreatment system will become operational in 1979.

2.2.2.2 River Survey (ETS Section 3.1.1.3)

Suspended solids concentrations in the river were highly variable (Figure 2.2.2-1) throughout the year, ranging from 25 to 320 mg/liter and averaging 135 mg/ liter at the intake (Figure 2.2.5-1). The preoperational data show a larger variation, 5 to 550 mg/l. The 1978 concentrations exceeded the preoperational monthly maximums on 2 occasions, both at the discharge, but the suspended solids concentrations released from the non-radioactive waste basin for the dates (May 23 and December 21) were 5.0 and 2.7 mg/liter. This indicates that the station would have no effect on river TSS concentrations. A paired T-test was performed on TSS data between the intake and discharge locations. No significant (p<.01) difference was detected for the 1978 data.

Such ambient conditions verify that no station-related impact resulted from TSS concentrations in the non-radioactive liquid waste basin discharge (See Table 2.2.2-2).

TABLE 2.2.2-1

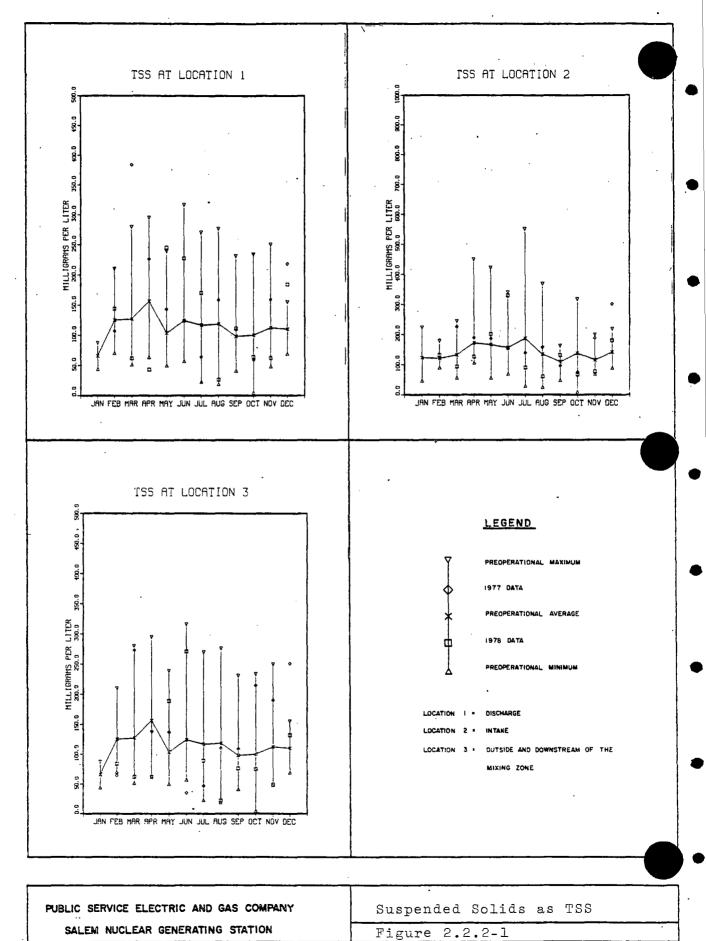
SALEM NON-RADIOACTIVE LIQUID WASTE BASIN TOTAL SUSPENDED SOLIDS (TSS) DATA SUMMARY - 1978

Quarter - 1978	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec
Average (mg/liter)	49.3	70.1	10.0	9.2
Average Before Quench Water Was Curtailed (mg/liter)	59.7			<u>.</u>
Average After Quench Water Was Curtailed (mg/liter)			9.6	
Annual Average (mg/liter)	34.7			

M P79 9 11

2.2-8

•


TABLE 2.2.2-2

Month	Discharge Area mg/liter	Intake Area mg/liter	Outside and Downstream of the Mixing Zone mg/liter
January*			
February	144	132	87
March	62	94	62
April	43	126	62
Мау	245	201	189
June	227	329	271
July	170	90	89
August	26	61	22
September	111	131	76
October	64	67	75
November	62	77	49
December	184	180	132
Averag	e 122	135	101

SALEM MONTHLY RIVER WATER SURVEY TOTAL SUSPENDED SOLIDS (TSS) DATA - 1978

1978 Annual Average of TSS in the Delaware River = 119 mg/liter

*Samples for the month of January 1978 were not obtained due to inclement weather, ice floes and low tidal conditions.

2.2.3 pH

2.2.3.1 Non-radioactive Liquid Waste Basin pH (ETS Section 2.2.3)

The non-radioactive chemical liquid waste disposal system is required to treat non-radioactive liquid waste from steam generator blowdown and the make-up demineralizer system to insure that "the pH of the non-radioactive chemical waste disposal system effluent shall be within the range of 6.0 to 9.0 pH units after mixing with the circulating water discharge stream." (ETS Section 2.2.3).

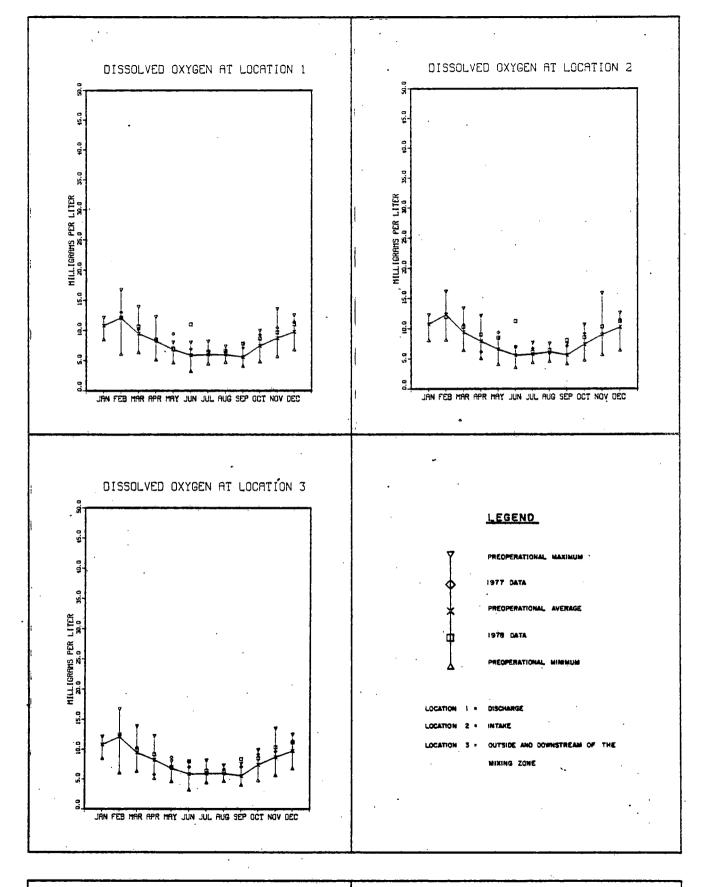
A pH controller regulates the pH of the effluent by feeding acid (H_2SO_4) or caustic (NaOH) to the system. This assures that the waste leaving the basin is acceptable for discharge.

During 1978 the pH of the waste effluent was maintained and discharged between 6.0 and 9.0 whenever discharges were made. The basin discharges into one of the circulating water discharge pipes. The high circulating water flow compared to the small quantity of water discharged from the waste basin makes it impossible to significantly alter the pH of the circulating water regardless of the pH of the waste basin effluent.

2.2.3.2 River pH (ETS Section 3.1.1.4)

The ecological and water quality monitoring programs on the Delaware River near the station indicated no influence from the operation of the non-radioactive liquid chemical waste basin (refer to Section 2.2.5.2 for a complete discussion of acidity/alkalinity relationships).

2.2.4 Dissolved Oxygen


2.2.4.1 Station Conditions

There was no effect by station operations on dissolved oxygen (D.O.) in the river. Hydrazine was used as an oxygen scavenger in the steam side of the Unit 1 condenser system. Although minor leakage did occur in the condensers, this was in-leakage to the steam side preventing any discharge of hydrazine (refer to Section 2.2.5.1 for additional discussion on the use of hydrazine at the station).

2.2.4.2 River Survey (ETS Section 3.1.1.2)

In 1978, dissolved oxygen concentrations were usually higher than the averages in the preoperational data. A definite seasonal trend is present with the lowest concentrations occurring during the warmest months (Figure 2.2.4-1). The variation in D.O. among sampling locations (Figure 2.2.5-1) is very small and a T-test indicates that the station does not affect the concentrations significantly (p<.01).

The June samples indicate a supersaturation at locations 1 & 2 which seems unlikely. A more plausible explanation is that there were substances present in the water which caused an interference with the analytical method used, leading to the questionable results.

 PUBLIC SERVICE ELECTRIC AND GAS COMPANY
 Dissolved Oxygen as 02

 SALEM NUCLEAR GENERATING STATION
 Figure 2.2.4-1

2.2.5 Other Chemicals

2.2.5.1 Chemical Releases (ETS Section 3.1.1.5)

An inventory of chemicals used during the reporting period was made and the quantities discharged daily of each of the chemical constituents in ETS Table 3.1.-3 were estimated. Since the production wells were used to supply certain systems which ultimately discharged to the river, the well water chemical constituents were taken into account also in making the daily estimates of the other chemicals in Table 2.2.5-1. Well water consumption by Salem Unit 1 was 2.02 x 10⁸ gals. in 1978.

Based on NPDES permit monitoring reports, the Salem Nuclear Generating Station used 28.185 x 10^{10} gals. of water for cooling and service purposes in 1978 or an average of 7.72 x 10^8 gal/day. This volume was the basis of calculation used to determine the magnitude of the increases over natural river concentrations produced by the chemical releases shown in Table 2.2.5-1.

TABLE 2. 5 - 1CHEMICAL RELEASE ESTIMATES - 1978

•

CHEMICAL CONSTITUENT	AVE.NATURAL CONC.IN WATER* (mg/liter)	PREDICTED AVE. NET AMOUNT DISCHARGED (1bs/day)	PREDICTED AVE. NET INCREASE (mg/liter)	1978 ESTIMATED AVE.NET ACTUALLY DISCHARGED (1bs/day)	1978 ESTIMATED AVE.NET ACTUALLY INCREASE** (mg/liter)
Chlorine as Cl ₂	0	870	<0.1	423	<0.1
Calcium as Ca	100	135	5.1x10-3	198	3.0x10 ⁻²
Magnesium as Mg	240	56	2.1x10-3	83	1.3x10-2
Sodium as Na	2000	600	2.2x10 ⁻²	2747 (1,2)	4.3x10-1
Potassium as K	70	55	2.0x10-3	52	8.0x10-3
Copper as Cu	0.082			0.1 (4)	5.6x10 ⁻³
Sulfate as SO4	570	1590	5.8×10^{-2}	6815 (1,3)	1.05
Chloride as Cl	3700	138	5.1x10 ⁻³	313	4.8x10 ⁻²
Nitrate as NO ₃	5.6	2.4	9.0x10 ⁻⁵	35 (5)	5.4×10^{-3}
Silica as SiO ₂		46	1.7×10^{-3}	31	4.8×10^{-3}
Phosphate as PO	0.66	11	4.1×10^{-4}	7	1.0×10^{-3}
Volatile-Amines		4.2	1.5x10-3	4	6.2×10^{-4}
Hydrazine	0	0.04	1.5x10 ⁻⁶	44 (6)	0
Suspended Solids	s 170	<1000	<0.04	117.5	1.8×10^{-2}

* From Final Environmental Statement, April 1973. ** After dilution with circulating and service water only; no mixing with river water assumed.

2 2-15

Notes

- (1) An unusually high number of demineralizer regenerations necessary to support the initial flushes required for Unit 2 startup combined with normal regenerations necessary for Unit 1 the resulted in a higher use of sodium hydroxide (NaOH) and sulfuric acid (H₂SO₄) than anticipated.
- (2) The total sodium discharged in the circulating water discharge produced an increase less than 0.5 mg/liter compared to 2000 mg/liter which is the natural concentration of sodium in water. Therefore, there was no environmental impact.
- (3) Sulfate produced an increase of only 1.0 mg/liter over a natural concentration in the Delaware River of 570 mg/liter. There was no environmental impact.
- (4) Attributable to average copper concentrations in the production wells. This represents a discharge concentration of 0.0056 mg/liter, much lower than 0.082 mg/liter, which is the natural copper concentration in the river. It is concluded that the station did not significantly influence the ambient copper concentration in the river.
- (5) Chemical analysis of the production wells yielded a higher content of nitrate (NO₃) than anticipated. This resulted in higher discharges of concentrations of nitrate to the river than anticipated.

The river water survey indicates similar values for the area surrounding the intake and discharge (See Section 2.2.5.2).

No environmental impact is associated with nitrate values.

(6) Hydrazine was used for oxygen scavenging for Unit 1 and in a test program for Unit 2.

The hydrazine reacts with dissolved oxygen in the steam systems to form nitrogen and water. 44 lb/day of hydrazine were used at the Station. All the hydrazine reacts and decomposes in the system and very little or no hydrazine is discharged.

2.2.5.2 River Water Quality (ETS Section 3.1.1.4)

During 1978 PSE&G conducted a monthly ambient river water quality sampling and analysis program in accordance with Section 3.1.1 of the Environmental Technical Specifications. No samples were obtained during January because of inclement weather and ice conditions on the river.

Three locations, as given in Figure 2.2.5-1, were sampled once each month. Station 1 was located near the circulating water system discharge at a depth of 10 feet. Station 2 was next to the Circulating Water System intake at a depth of 8 feet, and Station 3 was outside and downstream of the mixing zone at a depth of 18 feet. The location of Station 3 varied depending on the tidal stage and direction of flow in the vicinity of Artificial Island. On incoming and high slack tides, the sampling point was adjacent to buoy N4R, approximately 2.5 miles north of the discharge. On outgoing and low slack tides, the sampling point was next to buoy R8L, about 2 miles south of the discharge.

Preoperational data were available from three sampling locations: one near the present intake, one opposite the Station in the river channel, and one near Sunken Ship Cove (Figure 2.2.5-1). Depending on the availability of preoperational data, appropriate comparisons with operational data have been made.

Since the start of the River Water Quality Monitoring Program many changes have occurred with a number of parameters added to the monthly surveys. Some of the parameters are useful indicators of the effect of Salem Station on river water quality while others are not directly related to power plant operation. The following parameters have been shown to be not significantly affected by Station operation and will be recommended for deletion in a forthcoming ETS change request.

M P79 9 21

1. Methyl Orange Alkalinity

2. Phenolphthalein Alkalinity

3. Free Carbon Dioxide

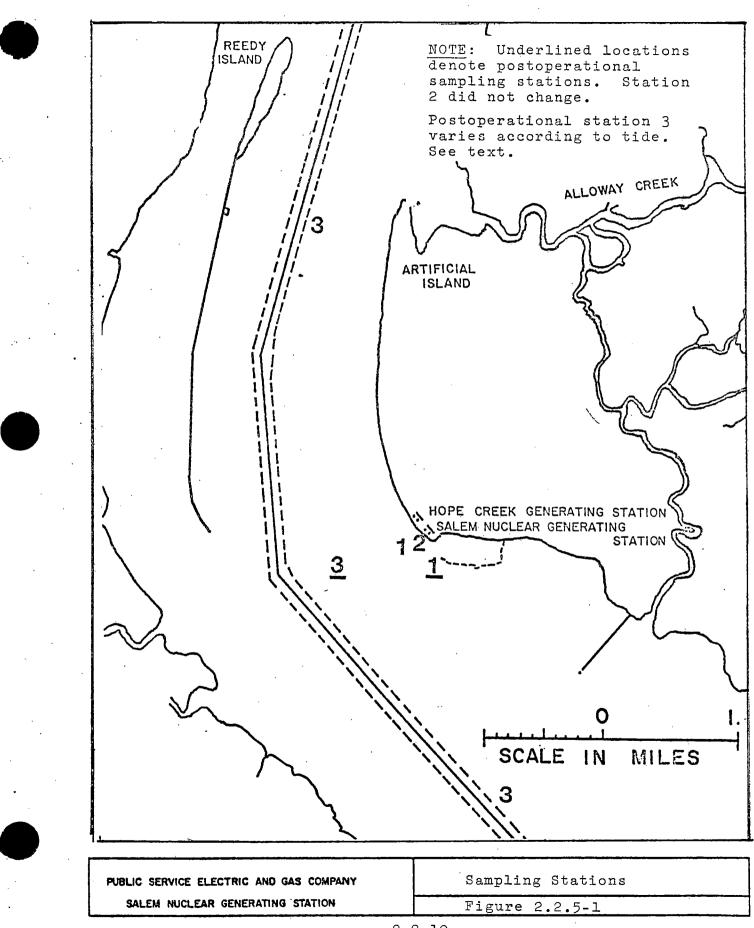
4. Total Volatile Solids

.5. Silica

6. Total Organic Carbon

7. Reducing Substances

8. Sulfides


9. Zinc

10. Chromium

11. Manganese

12. Phenols

It is recommended that reporting levels for the remaining parameters be deferred for at least one more year while a broader post-operational data base is developed.

SALINE/FRESH WATER RELATIONSHIPS

The Delaware River near Artificial Island exhibits substantial tidal mixing. This leads to limited vertical stratification of salinity and a spectrum of salinity related chemical concentrations depending on season, fresh water flow, and tidal stage. A typically wide range of values for the following salinity-related chemical parameters was observed in 1978.

Chloride concentrations, expressed as calcium carbonate, varied from 300 mg/liter to 9,000 mg/liter (Figure 2.2.5-2). The monthly preoperational maximums were exceeded only twice. The highest concentrations occurred during the fall when low rainfall led to reduced river flows, thereby causing the saline waters to penetrate further upstream. Concentrations for 1978 tended to be lower than the 1977 data. In most cases the intake and discharge concentrations were very close with neither location having a consistently higher concentration.

Note - For chloride as NaCl, multiply values given by 1.17.

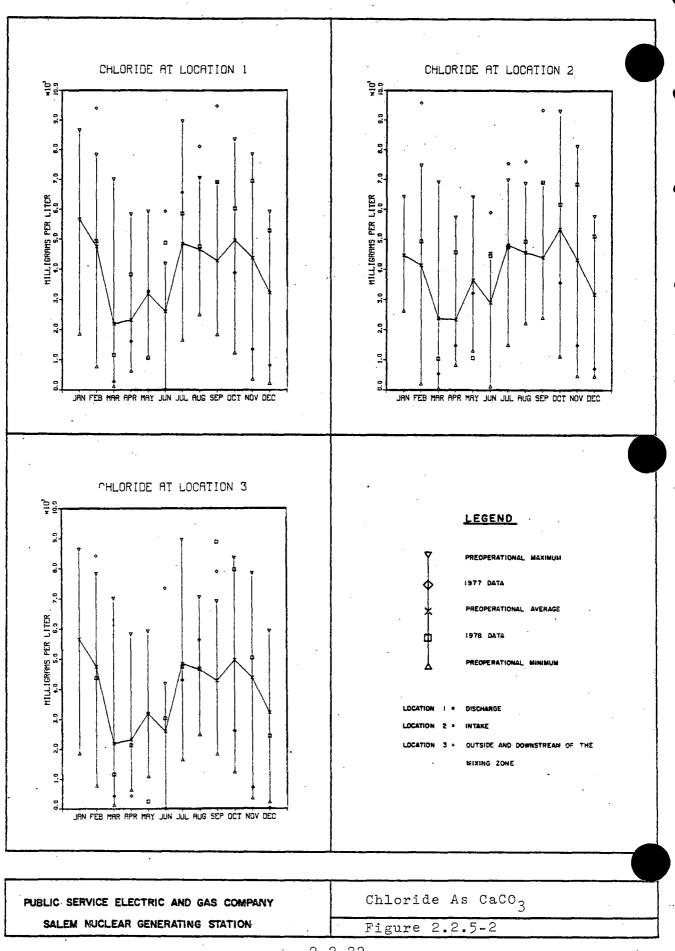
<u>Conductivity</u> followed chloride in its seasonal pattern (Figure 2.2.5-3). Values for 1978 ranged from 500 umhos to 13,000 umhos. The highest values were during the low rainfall period in the summer and autumn months. Preoperational data was only exceeded once by a small amount. Intake and discharge values were very close for all of 1978, indicating no plant related effects.

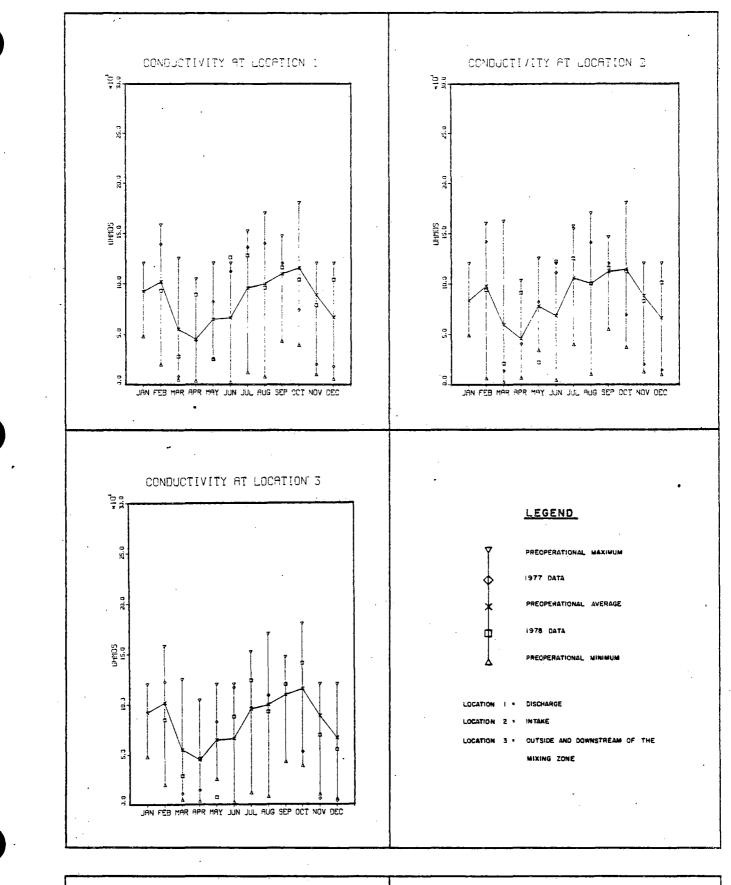
Sulfate values were between 10 and 1,000 mg/liter as CaCO₃ with the highest recordings in the autumn (Figure 2.2.5-4). Four of the 1978 values were greater than the preoperational maximums and three were less than the preoperational minimums. Discharge values were equal to the intake except for November and December when they were greater at the discharge, even though the November and December values were within the preoperational range.

A T-test was performed between the intake and discharge to determine if there was any effect from station operation. No significant difference (p<.01) was detected for the 1978 data, despite the use of sulfuric acid (H_2SO_4) in the Salem non-radioactive liquid waste basin.

Calcium levels were low in 1978 (Figure 2.2.5-5). The range was 30 to 350 mg/liter as CaCO₃ with the highest values occurring in the autumn. Compared to the preoperational range of 30 to 750 mg/liter it is not surprising that more than half of the 1978 data was below the preoperational average. In May all three locations were below the preoperational minimums.

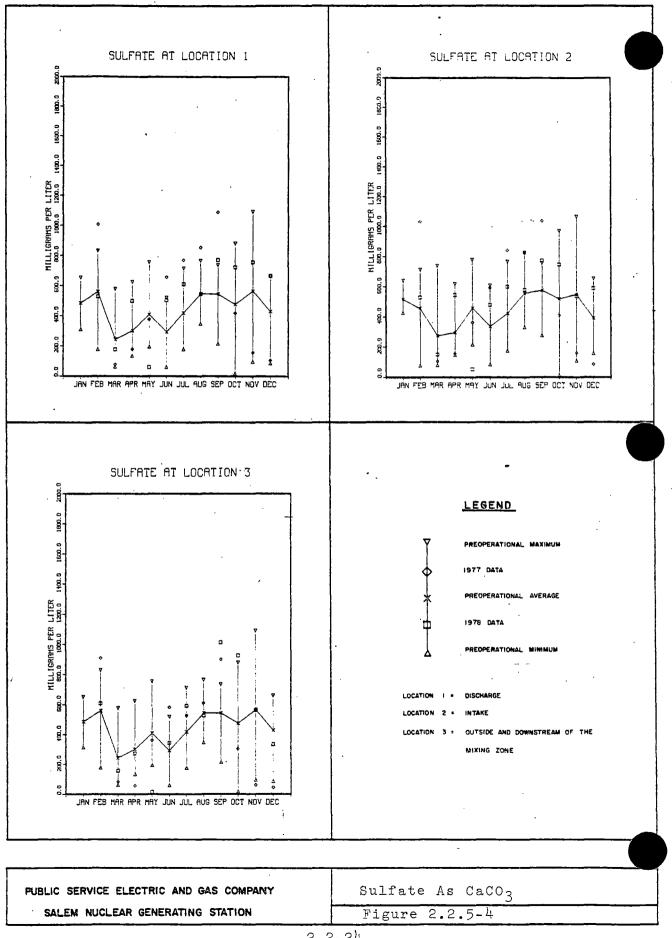
The intake and discharge values were almost identical. Consequently, the Station's effect on the river's calcium levels appears to be negligible.

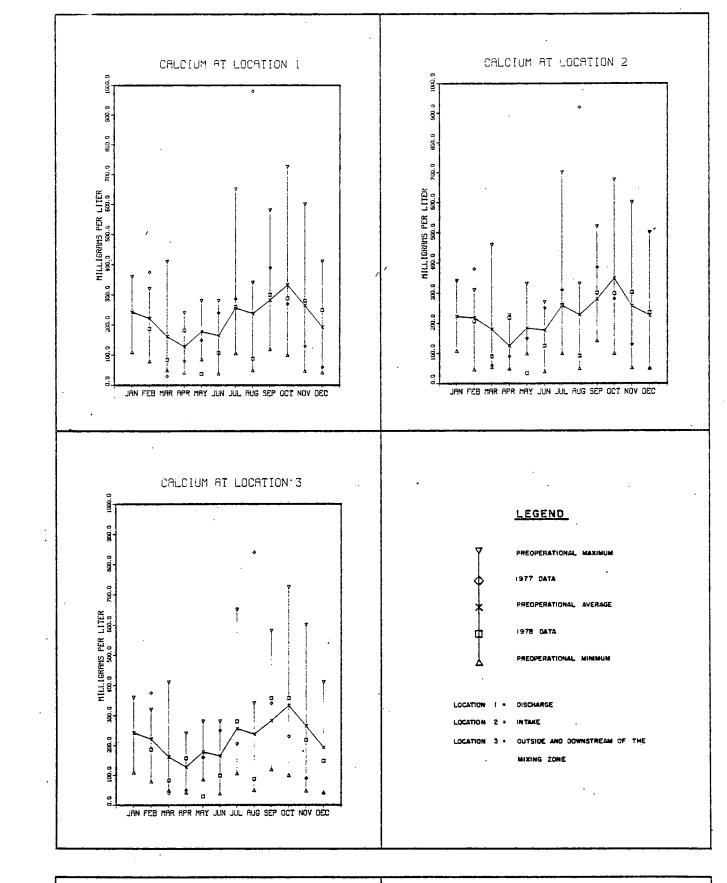

Magnesium values, measured as CaCO3 ranged from 100 to 1,500 mg/liter (Figure 2.2.5-6). The variation is much less than 1977 which ranged from 20 to 2,045 mg/liter. No values were greater than the preoperational maximum values and 2 values were less than the preoperational minimums.

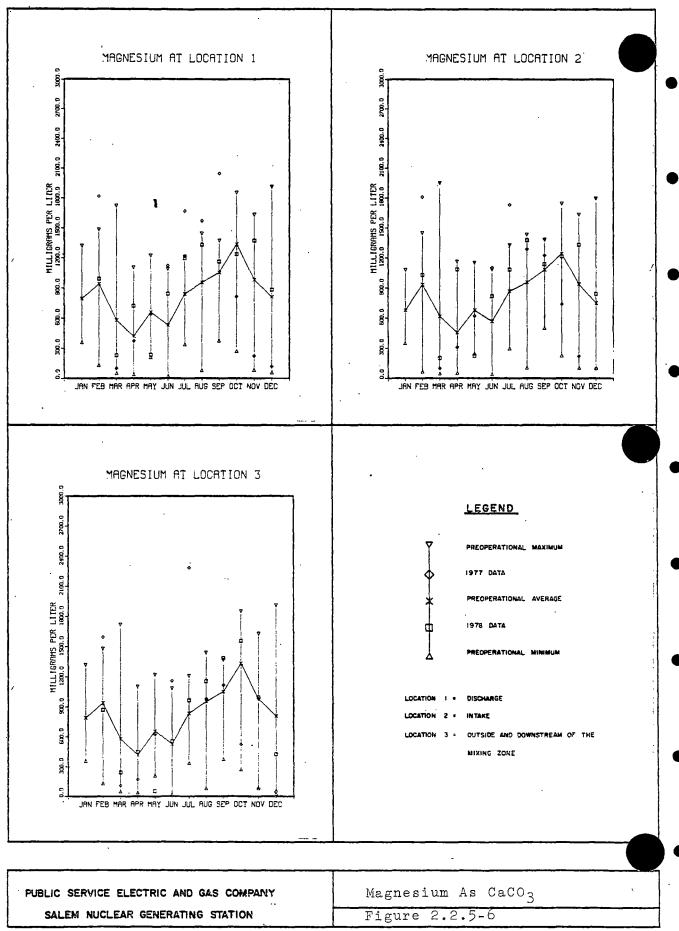

Again the highest values were during the summer and autumn months. Station location 3 had the largest variation. The intake and discharge values were similar for all months except April when the intake concentration was higher. Therefore, it seems that the Station has little or no effect on the river's magnesium levels.

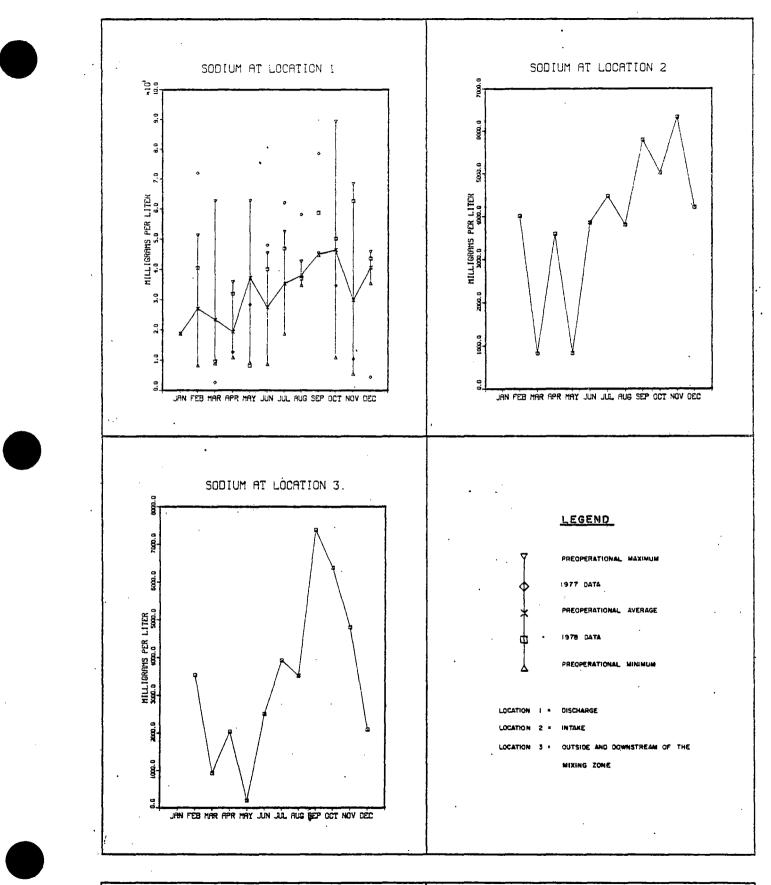
Sodium and Potassium concentrations as CaCO3 were measured since October 1972 only at one station, near Sunken Ship Cove, during the preoperational program. During 1978 both of the parameters were measured at all three locations (Figures 2.2.5-7 and 2.2.5-8).

Even with the limited preoperational data maximum sodium levels were only exceeded once and potassium twice. As with the previous chemicals the highest values were recorded during summer and autumn.


A T-test was used to check the intake and discharge concentrations of sodium and no significant difference (p < .01) was noted despite the Station's use of sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl).




PUBLIC	SEI	RVICE	ELE	CTRIC	AND	GAS	COMPANY	ſ
SAL	EM	NUCL	EAR	GENE	RATIN	G ST	ATION	


Conductivity As	UMHOS
 Figure 2.2.5-3	

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Calcium As CaCO ₃				
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-5				
· · · · · · · · · · · · · · · · · · ·					

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Sodium As CaCO ₃
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-7

.

500.0

100.0 150.0 200.0 250.0 200.0 350.0 100.0 450.0

POTASSIUM AT LOCATION 1

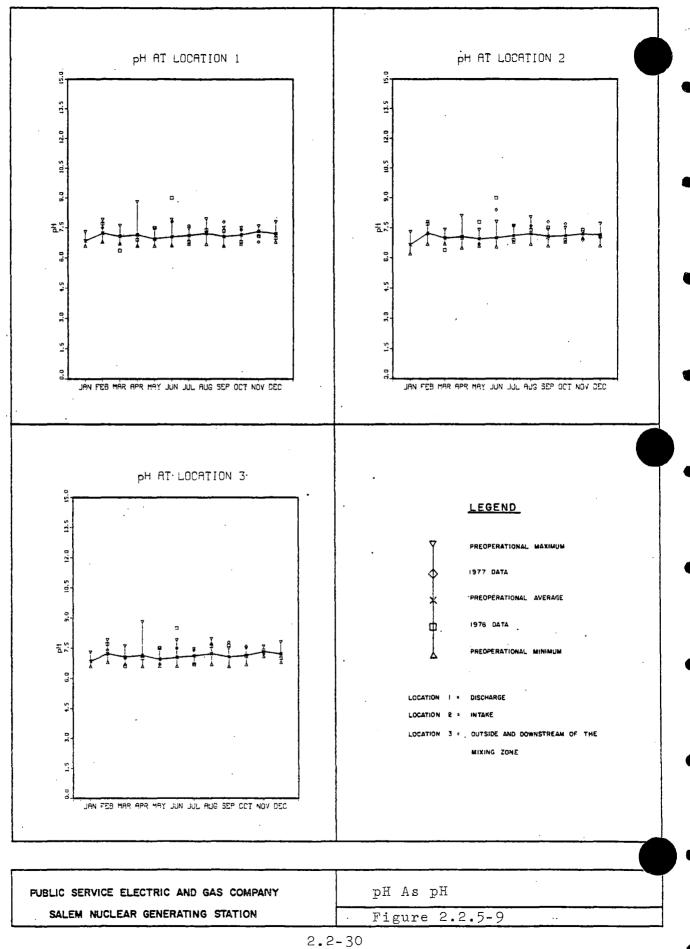
POTASSIUM AT LOCATION 2

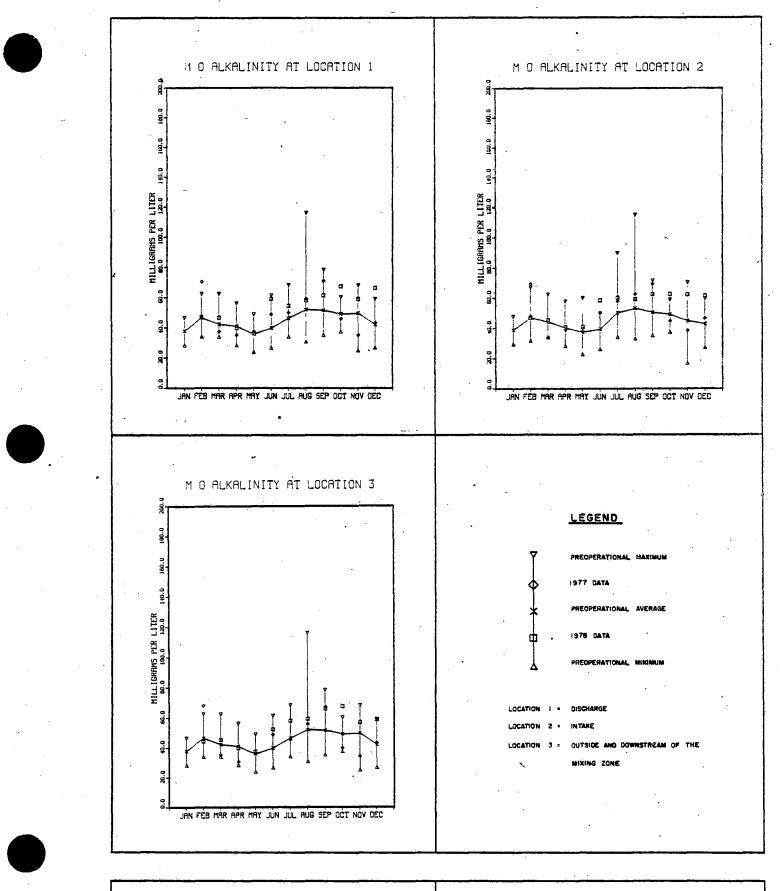
200.0

40-0 40-0 100-0 100-0 130-0 140-0 140-0

RIVER ACIDITY/ALKALINITY RELATIONSHIPS

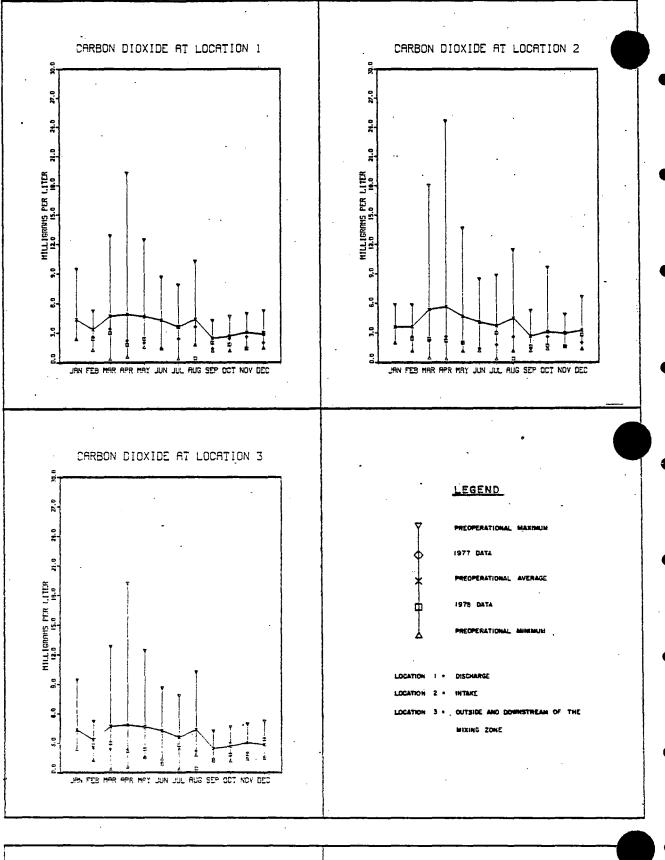
The Delaware River in the vicinity of Artificial Island is well buffered as a result of the influence of seawater in the estuary. The pH as a result has always been between 6.0 and 9.0 for all of the monitoring years. The acidity/alkalinity relationships are discussed below.


<u>pH</u> varied from 6.2 to 9.0 in 1978 (Figure 2.2.5-9). The preoperational maximums and minimums were exceeded 8 times. This large variation does not seem to be linked to station operation because the intake and discharge value varied together.


The high June value appears to be linked with the high dissolved oxygen values recorded for the same date. Possibly, a large amount of caustic material was present in the river in the vicinity of Artificial Island and led to high pH values and erroneous dissolved oxygen values.

Methyl Orange Alkalinity for 1978 followed the preoperational seasonal trend (Figure 2.2.5-10). The highest values were during summer and autumn seasons. Six times the maximum values were exceeded but little difference was apparent between the intake and discharge. The June sample showed a higher value than the preoperational maximum at the intake but not at the discharge. This indicates that the June sample also was affected by the caustic in the water.

Phenolphthalein Alkalinity has been zero in all samples taken at Salem under this program and continued to be zero throughout 1978. This is reasonable since the pH has always bracketed the neutral range.


Free Carbon Dioxide for 1978 was consistently lower than the preoperational averages at all three locations (Figure 2.2.5-11). The preoperational range was 0.3 to 24.0 mg/liter while the 1978 data ranged from 0.0 to 3.5 mg/liter. The 1977 data also showed a reduced range. Since all three locations for 1977 and 1978 have shown low carbon dioxide levels, it is concluded that the station has not affected free carbon dioxide levels.

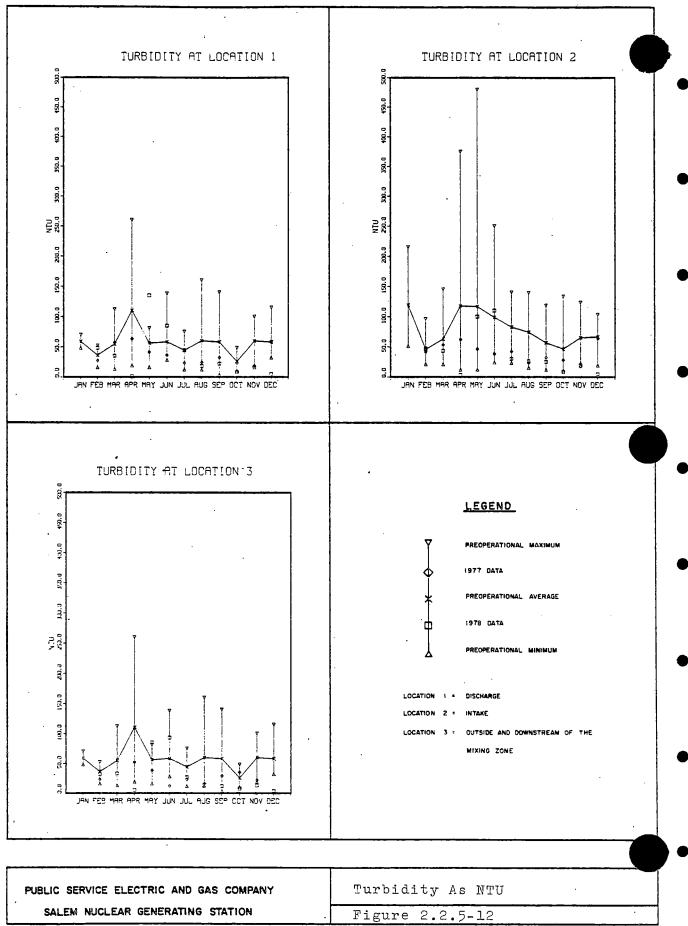
PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION

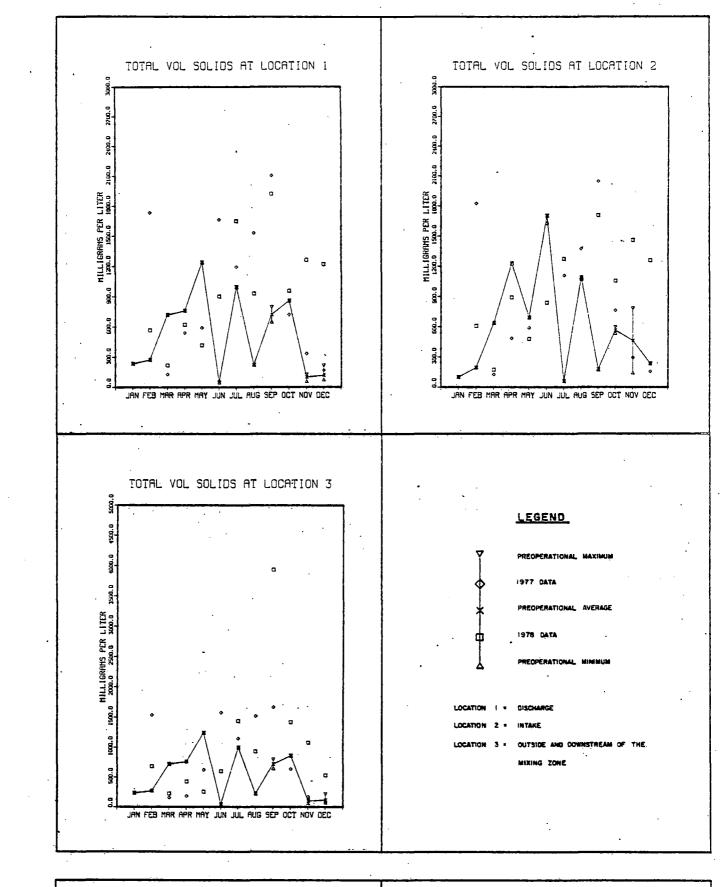
Methyl Or	ange	Alkalinity	As	CaCO3
Figure	2.2	.5-10		

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Carbon Dioxide As CaCO3
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-11

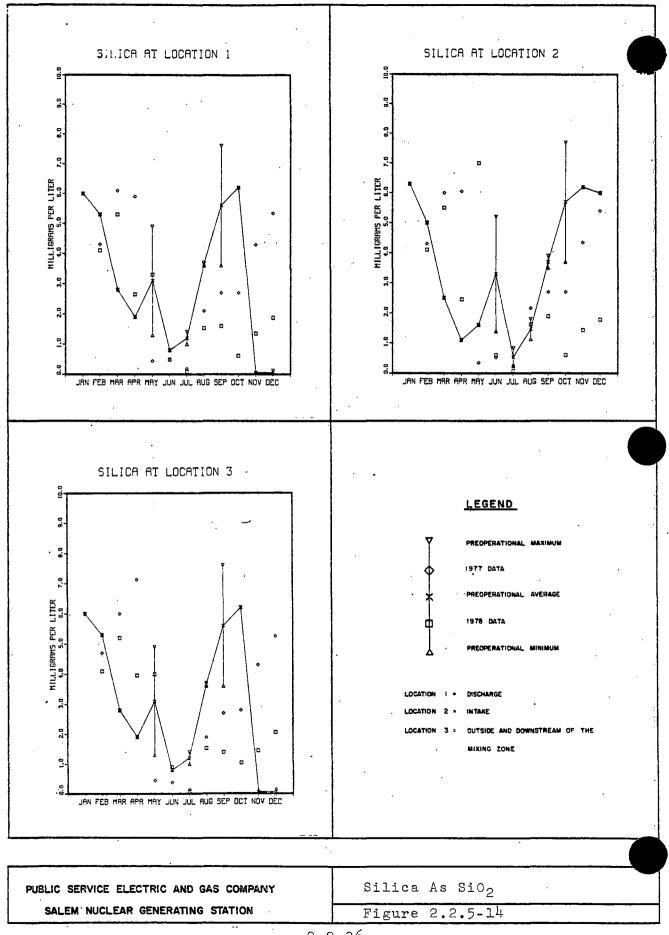
SOLIDS RELATIONSHIPS

This section describes the behavior of parameters related to suspended matter in the water. Total suspended solids were discussed earlier in Section 2.2.2.2 and should be referred to when examining this section.


<u>Turbidity</u> is measured at Salem as nephelometric turbidity units (NTU) which "are considered comparable to the previously reported...Jackson turbidity units (JTU)" (USEPA, Methods for Chemical Analysis of Water and Wastes, 1974), since the traditional Jackson Candle turbidimeter is difficult to use at low turbidity levels.


The highest turbidity ranges were observed at the discharge area for preoperational data, 10 to 480 NTU (Figure 2.2.5-12). The 1978 data for all three locations varied from 1 to 130 NTU. Twice the 1978 data exceeded the preoperational maximums but seven times new minimum values were established. Turbidity, as expected, is highly dependent on the total suspended solids load so like total suspended solids most of the 1978 data was below the preoperational average.

Total Volatile Solids were taken regularly in 1977 and 1978 but only one year of preoperational data is available. The range of the preoperational data was from 50 to 1,700 mg/liter (Figure 2.2.5-13). Using this range as a comparison to the 1978 data, only twice was the maximum range exceeded, both occurred in September when the values were high for all 3 locations. The highest value was at location 3 (outside and downstream of the mixing zone), not location 1 (discharge), so apparently the Station had no discernible affect on total volatile solids.


Silica values ranged from 0.15 to 7.1 mg/liter (Figure 2.2.5-14). As with total volatile solids there was only one year of preoperational data. Using the range of values over that entire year to compare the 1978. data, no 1978 data exceed the preoperational maximum. The intake and discharge values were similar in all months except May when the intake concentration was much higher than the discharge concentration. It, therefore, is likely that the station had no significant effect on the silica concentrations in the river.

M P79 9 26

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Total Volatile Solids As TVS
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-13

OXYGEN/ORGANIC RELATIONSHIPS

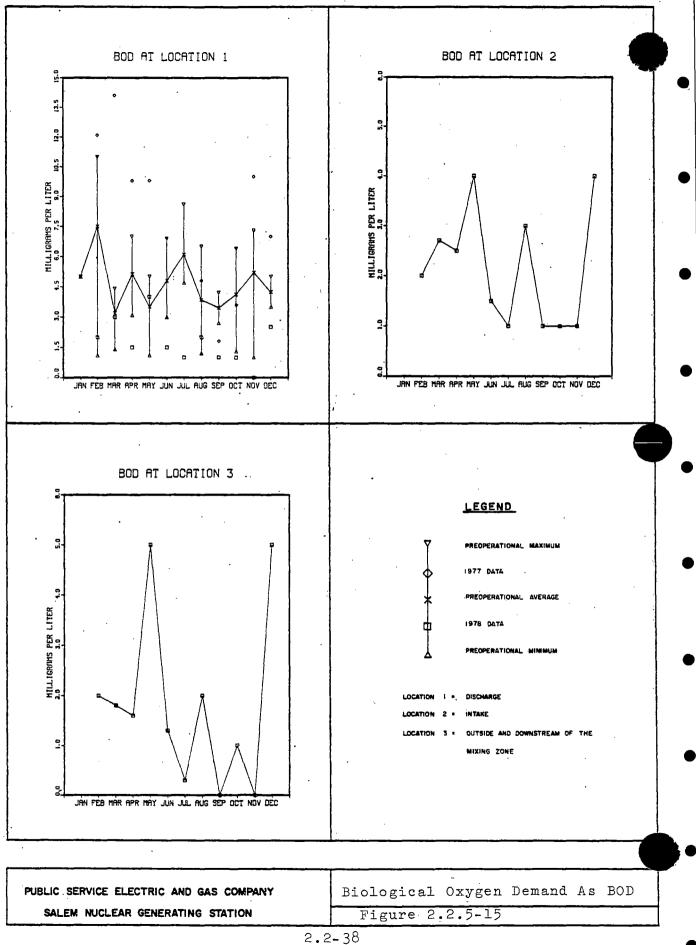
The dissolved oxygen levels were discussed in Section 2.2.4 and should be referred to before proceeding in this section.

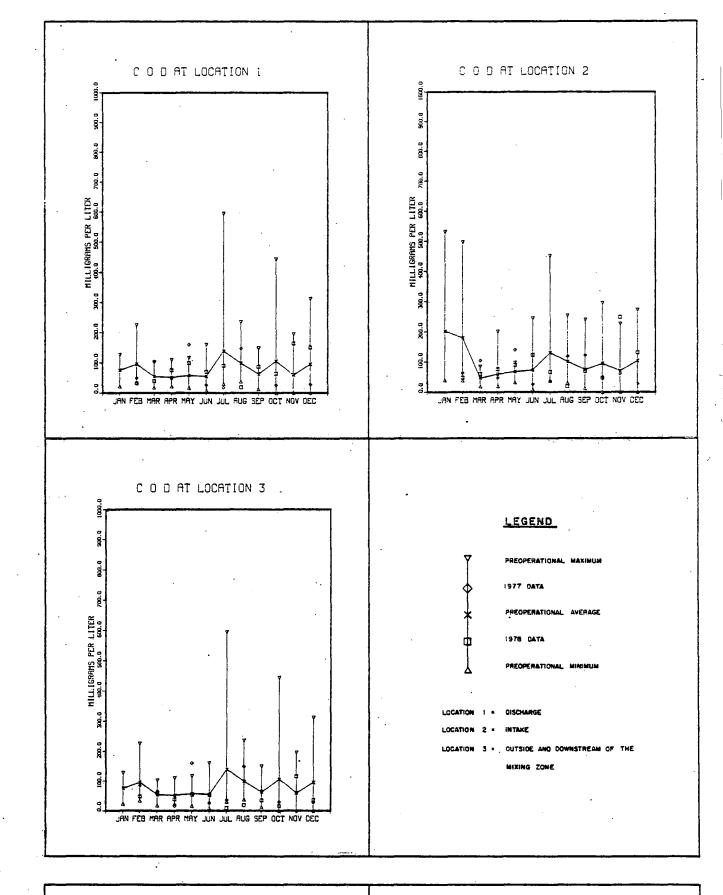
Biochemical Oxygen Demand (BOD) data were recorded prior to 1977 only at a sampling station near Sunken Ship Cove.

In 1978 BOD was measured at all three locations (Figure 2.2.5-15). Location 1 shows that the 1978 data was below the 1977 data and was below the preoperational average for all months except May. A comparison of all three locations shows that no one location is consistently greater than the others. The levels encountered are low and are reasonable for unpolluted water such as the lower reach of the Delaware River.

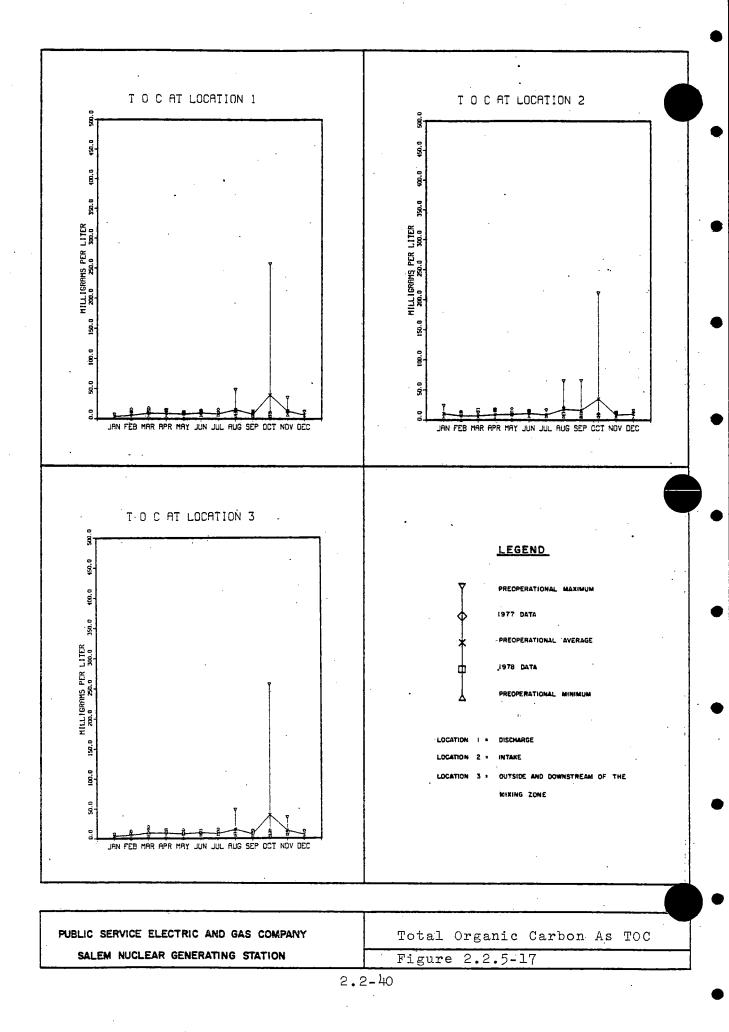
Chemical Oxygen Demand (COD) for preoperational data ranged from 0 to 650 mg/liter (Figure 2.2.5-16). The 1978 data ranged from 10 to 250 mg/liter and only exceeded a preoperational monthly maximum once. The discharge values were not consistently greater than the intake values so it can be concluded that the station had no detrimental effect on COD levels.

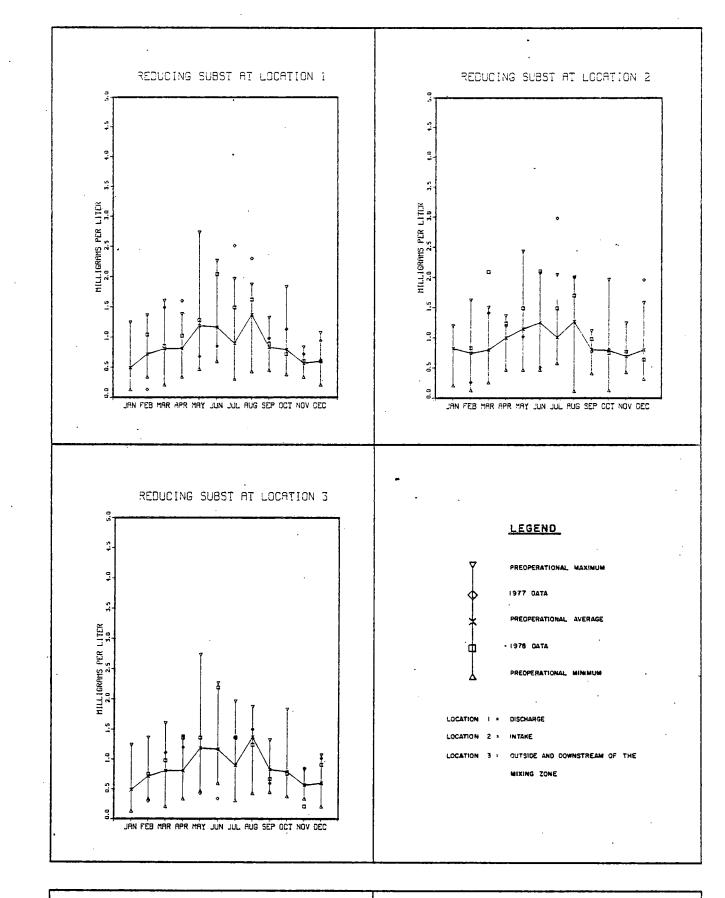
It should be noted that in saline waters with chloride (Cl) concentrations above 1000 mg/liter (1410 mg/liter as CaCO₃) any COD values below 250 mg/liter are highly questionable because of the high chloride interference. Since most of the 1978 and preoperational data fall into this range, COD data have little meaning.


Total Organic Carbon (TOC) in 1978 was always below the preoperational maximums. There was no discernable difference between the three sampling locations (Figure 2.2.5-17).


Since the Station discharges very little organic matter, it is expected that the Station would have no impact on the TOC levels.

Reducing Substances as H_2S was measured to assess the oxidation-reduction potential of the Delaware River water near Salem. The preoperational monthly maximums were only exceeded once by the 1978 data. This occurred at the intake (Figure 2.2.5-18).



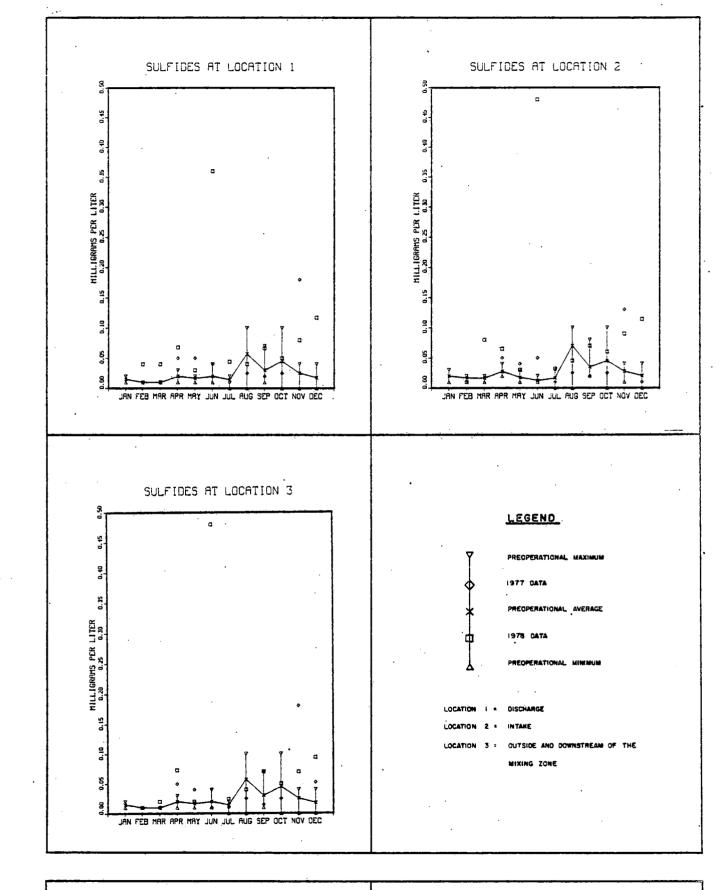

M P79 9 02/1

PUBLIC SERVICE ELECTRIC AND GAS COMPANYChemical Oxygen Demand As CODSALEM NUCLEAR GENERATING STATIONFigure 2.2.5-16

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Reducing Substances As H_2S
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-18

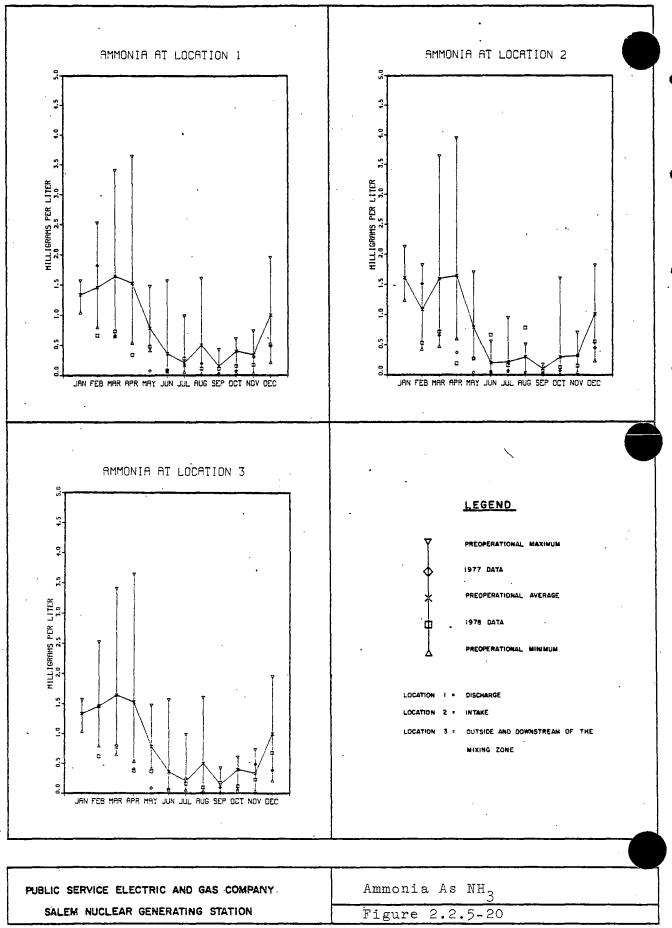
The intake values were usually equal to or slightly less than the discharge. This is to be expected since the station does not release any chemicals which would lead to significant reducing substances levels.

<u>Sulfides</u> are an indicator of a highly polluted or anerobic environment. The Delaware River in the Station area has been shown to be well oxygenated, high in dissolved oxygen usually near saturation, and not highly polluted, with low BOD and COD levels. The preoperational data ranged from 0 to 0.1 mg/liter (Figure 2.2.5-19). The minimum accurately detectable level is 0.05 mg/liter. The 1978 data frequently exceeded the preoperational maximums but these values are very close to the minimum detectable levels. Only during June 1978 did a significantly higher value occur and this seems to be related to the interference found in many parameters for the June sample (see dissolved oxygen and pH). The station therefore does not appear to be affecting the sulfide levels in the river.


NITROGEN/PHOSPHORUS RELATIONSHIPS

The nitrogen and phosphorus relationships may be strongly influenced by runoff, agricultural practices, and domestic sewage disposal. By comparison, the operation of Salem Station will normally have an insignificant effect on the Nitrogen/Phosphorus relationship in the Delaware River.

Ammonia as NH₃ was very low in 1978. The preoperational range was from 0.0 to 3.8 mg/liter while the 1978 data only ranged from 0.01 to 0.7 mg/liter (Figure 2.2.5-20). The preoperational data has a late winter/early spring peak while the minimum concentrations are found during the summer/autumn period.

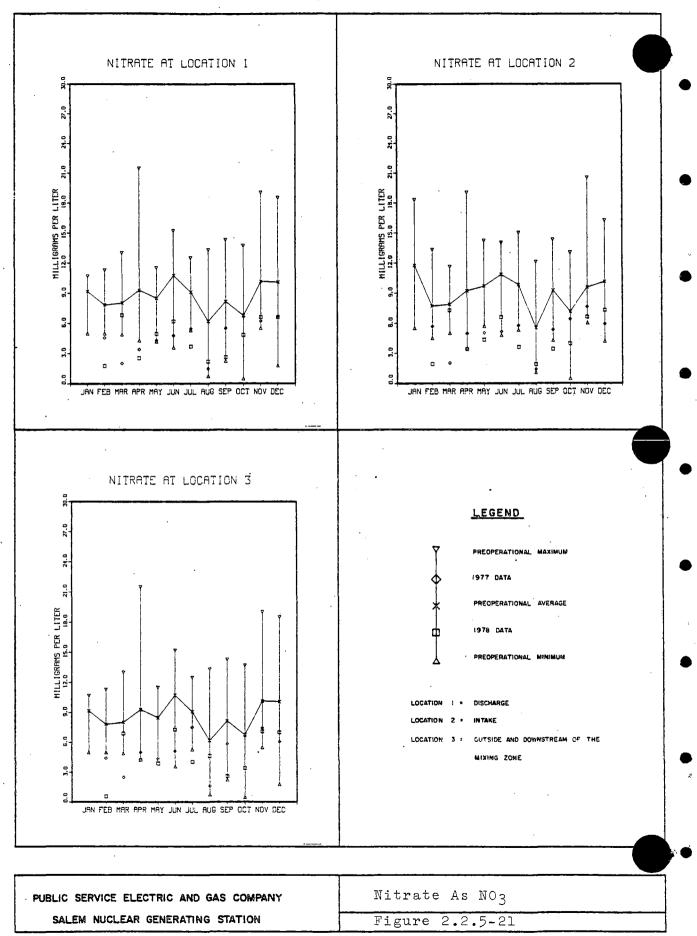

Preoperational maximums were exceeded twice, both times at the intake, and new minimums were established six times.

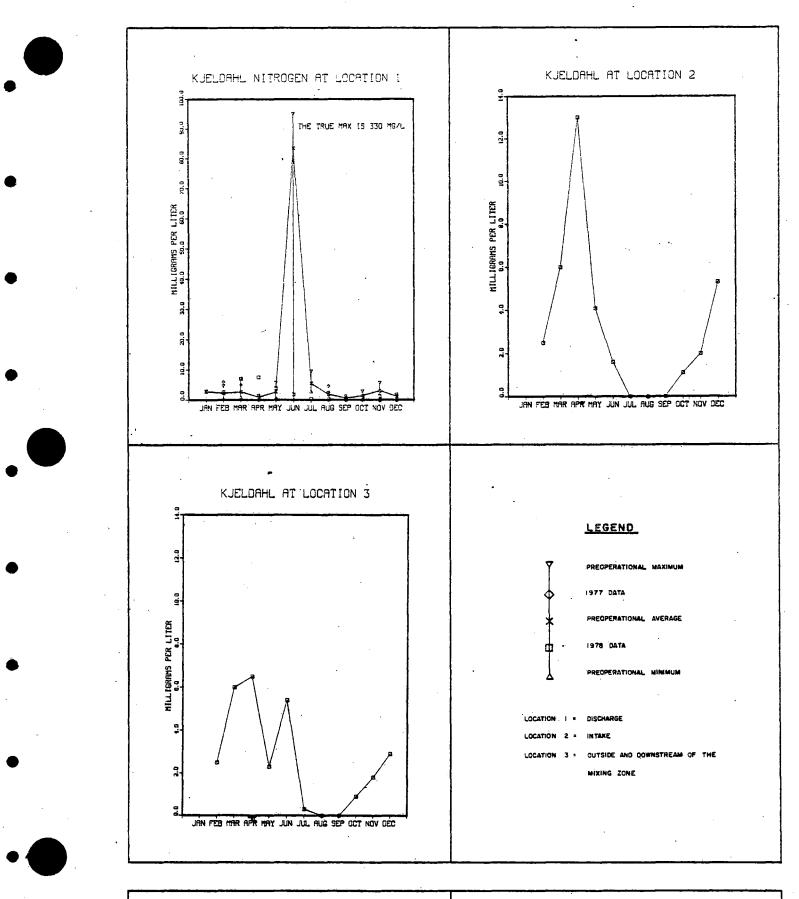
The intake and discharge concentrations were similar with neither locations being predominantly greater. Therefore, the Station does not appear to affect the ammonia levels in the river.

PUBLIC SERVICE ELECTRIC AND GAS COMPANYSulfides As SSALEM NUCLEAR GENERATING STATIONFigure 2.2.5-19

.

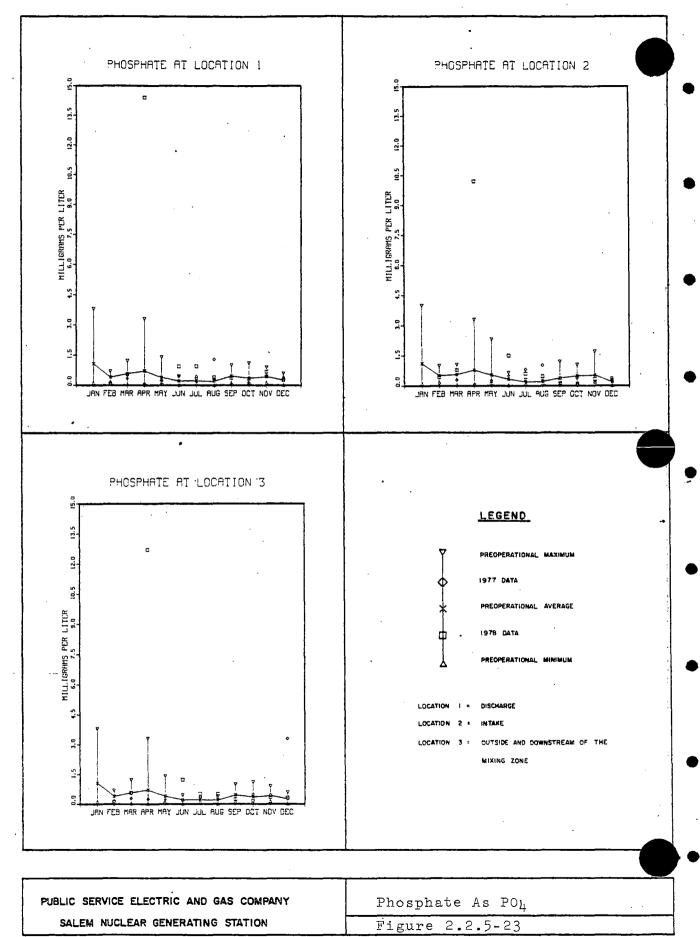
^{2.2-44}


(

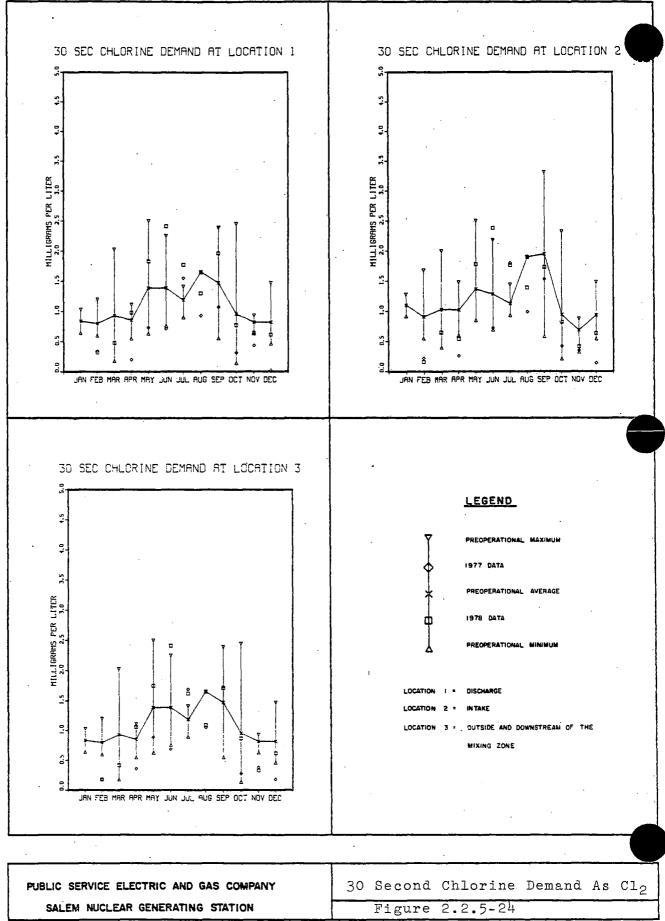

Nitrate measured as NO3 for 1978 was always lower than the preoperational average (Figure 2.2.5-21). The preoperational values ranged from 0.05 to 22.0 mg/liter, while the 1978 data ranged from 1.0 to 7.0 mg/liter. Nine times the 1978 data was below the preoperational minimums. The intake and discharge values were similar and indicate that the Station did not change the NO3 content of the river in any appreciable manner.

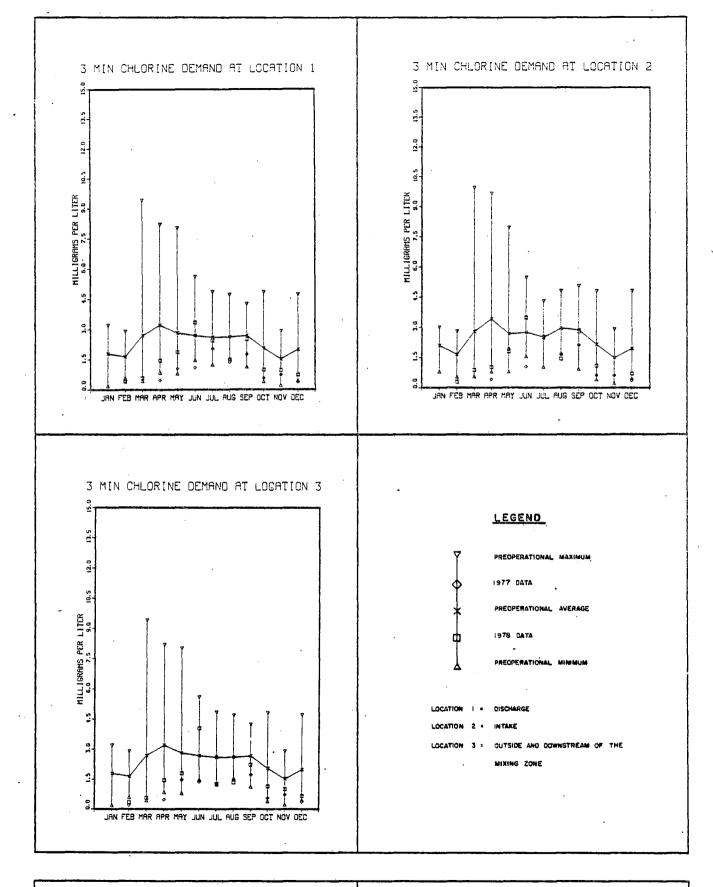
Kjeldahl Nitrogen is a measure of free ammonia and most organic nitrogen compounds. The preoperational data is limited to a location near Sunken Ship Cove. The high preoperational data during June seems exceptional and should be ignored (Figure 2.2.5-22). Normally, the range is between 0 and 10 mg/liter, the 1978 data all fall within this range except for the April intake sample. Since the discharge concentration is no greater than the intake values, and agricultural practices greatly influence the Kjeldahl nitrogen in the river, the Station did not signicantly affect the Kjeldahl nitrogen levels in the river.

Total Phosphorus as PO4 (Phosphate) in 1978 was high, ranging from 0.2 to 14.5 mg/liter while the preoperational data only ranged from 0.0 to 4.0 mg/liter (Figure 2.2.5-23). The large variation in the 1978 data is caused by the very high concentrations found during April. April is a month of heavy rains leading to large amounts of runoff. Since all three locations are very high and the station does not discharge significant quantities of phosphorus containing chemicals, it seems likely that the high values originated upstream of the station. An additional point is that the high values are above the accurate range of the method used so that a comparison between the intake and discharge is not viable. It seems logical that the station did not affect the phosphorus concentrations, the ambient variations resulting from runoff to the river.


M P79 9 02/3

PUBLIC SERVICE ELECTRIC AND GAS COMPANY	Kjeldahl Nitrogen As N					
SALEM NUCLEAR GENERATING STATION	Figure 2.2.5-22					


CHLORINE DEMAND


Thirty (30) second and three (3) minute chlorine demand were determined as part of the river monitoring program.

The 30 second chlorine demand for 1978 ranged from 0.2 to 2.4 mg/liter (Figure 2.2.5-24). Six times the 1978 demand was greater than the preoperational maximums and 7 times the 1978 values were below the minimums. The intake and discharge demands were similar with neither location having a consistently greater value.

The 3 minute chlorine demand is usually greater than the 30 second demand for preoperational data. In 1978 the 3 minute demand ranged from 0.2 to 3.8 mg/liter, while the preoperational data ranged from 0.1 to 10.0 mg/liter (Figure 2.2.5-25). Only during the June sample did the demand exceed the preoperational average. The reduction in demand at all stations appears to be linked to the reduced ammonia levels present in the river in 1978.

A comparison of the intake and discharge indicate that neither location had consistently higher or lower demands.

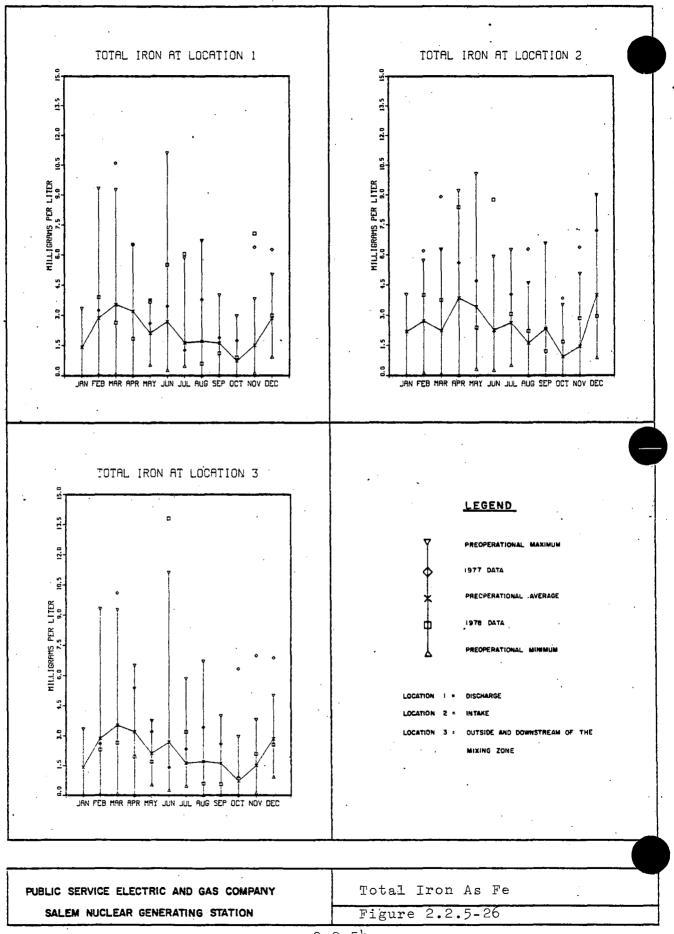
PUBLIC SERVICE ELECTRIC AND GAS COMPANY	3	Minute	Chlorine	Demand	Ąs	Cl ₂
SALEM NUCLEAR GENERATING STATION		Figure	2.2.5-25			

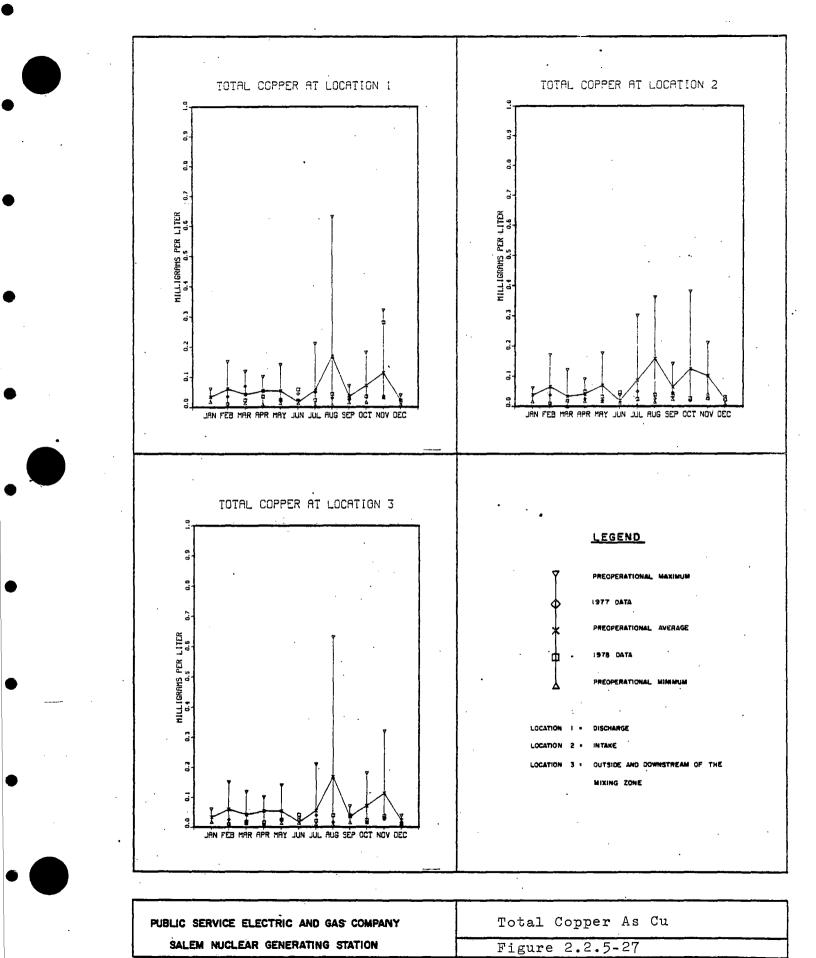
METALS

Iron concentrations vary from 0.0 to 11.0 mg/liter for preoperational data. The 1978 data varied from 0.5 to 13.5 mg/liter (Figure 2.2.5-26). The increased variation during 1978 appears to be due to large natural variations or discharges from sites upstream of the Station. The highest 1978 value of 13.5 mg/liter was outside and downstream of the mixing zone during June. The concentration at the intake was also high, 9.0 mg/liter, but the value at the discharge was only 5.5 mg/liter. April showed a high concentration at the intake, but low concentrations were present at the discharge and downstream of the discharge. These wide fluctuations between locations indicate that "slugs" of iron rich water may be passing downstream. The station does release some iron containing compounds but the releases are small and relatively constant over the year. Therefore, it is concluded that the station did not significantly alter the river's iron concentrations.

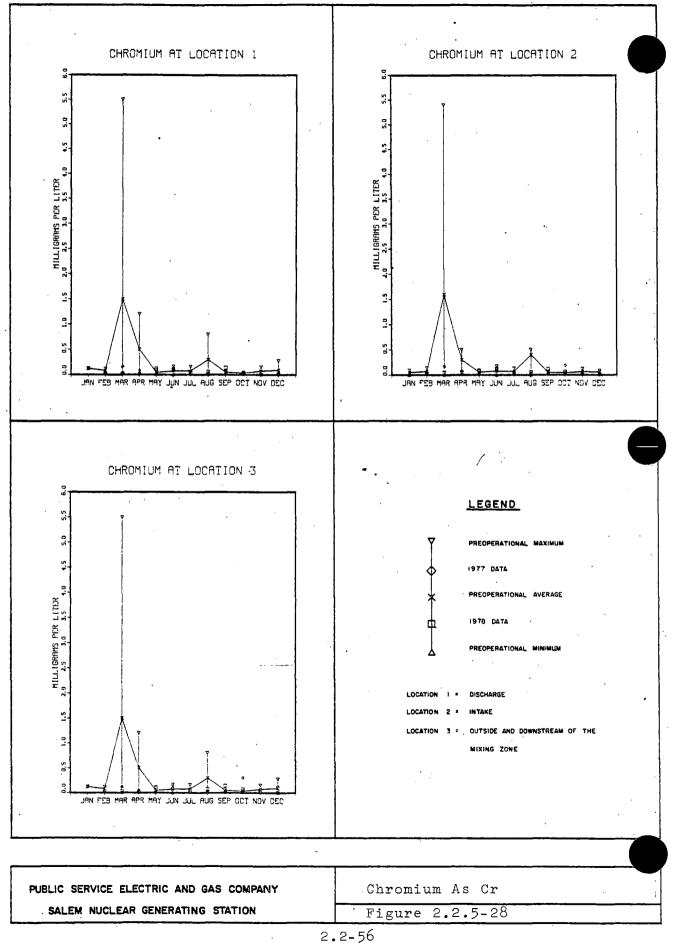
<u>Copper</u> levels for preoperational data varied from near 0.0 to 6.5 mg/liter. The 1978 data ranged only from near 0.0 to 0.6 mg/liter (Figure 2.2.5-27). Only during November did the discharge value exceed the intake value by an appreciable amount, but this high concentration was still within the preoperational range forthe month. Since the only Station source of copper is small amounts arising from corrosion and only the November sample shows any indication of a higher copper concentration at the discharge, no Station impact is noted.

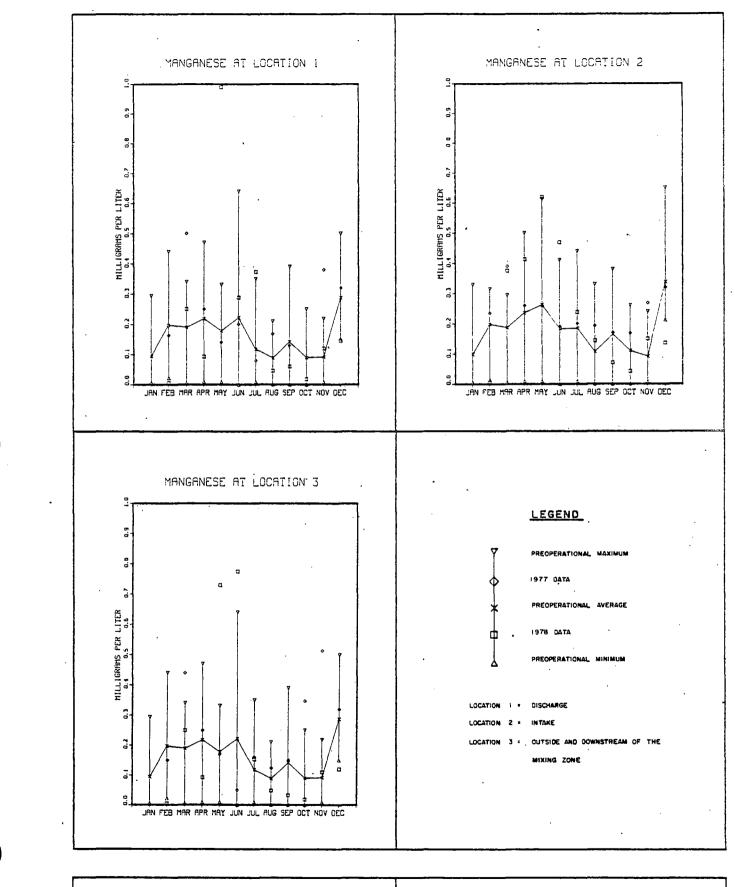
<u>Chromium</u> levels near the station are very low and near the limit of detection. The preoperational range, excluding the extremely high March data, is between 0.0 and 0.8 mg/liter. The 1978 data is between 0.0 and 0.2 mg/liter (Figure 2.2.5-28). Since the station does not discharge any significant quantities of chromium, and all of the 1978 data is close to the limit of detection, it is reasonable to conclude that the station did not affect the chromium levels in the river.

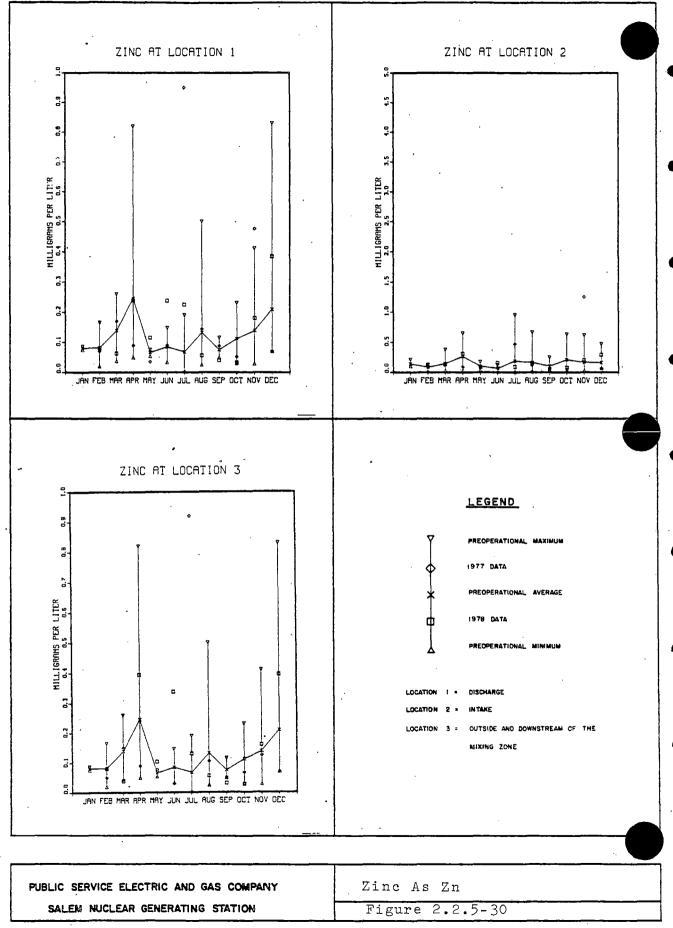

<u>Manganese</u> concentrations ranged from 0.0 to 0.64 mg/liter in the preoperational data. The 1978 data ranged from 0.02 to almost 1.0 mg/liter with the preoperational maximums being exceeded seven times (Figure 2.2.5-29). Extreme variation was present between locations for most sampling dates. Since the station does not discharge a significant amount of manganese and the variation in the river is generally high, a Station impact on the manganese levels in the river is unlikely.


M P79 9 02/5

Zinc concentrations ranged from 0.0 to near 0.19 mg/liter (Figure 2.2.5-30 - Note the scale change for location 2). The 1978 data had a smaller range of 0.05 to 0.4 mg/liter. The preoperational maximums were exceeded six times. The discharge and intake locations were similar indicating no significant plant discharge. The high values encountered in 1977 were not seen in 1978. The river's concentration is not affected by the plant since no zinc compounds are discharged into the circulating water system.


PHENOLS


There are no phenol results presented in graphical form because the concentrations were usually below detectable levels. The preoperational data ranged from 0.001 to 0.130 mg/liter, while the 1978 data ranged from below detectable levels to 0.025 mg/liter. The low levels for 1978 are to be expected since the Station does not discharge any chemical in large quantity which contains phenols. Any phenols in the river would result from other sources.


.

PUBLIC SERVICE ELECTRIC AND GAS COMPANYManganese As MnSALEM NUCLEAR GENERATING STATIONFigure 2.2.5-29

-

2.2-58

SECTION 3.0 BIOTIC MONITORING AND SURVEILLANCE PROGRAMS

The results of the General Ecological Survey (ETS Section 3.1.2.1) from January through December 1978 are presented in this section. In addition to the required data, additional non-required study data are presented as these data contribute to an understanding of local ecological schedules and relationships. The objective of the studies is to identify significant changes in population characteristics relative to pre-operational levels, and to evaluate these relative to Salem operation.

3.1 AQUATIC (ETS Section 3.1.2.1.1)

The study area is located in the lower Delaware River. It extends approximately 8 km north and 10 km south of the station's location which is on the southern portion of Artificial Island in Salem County, New Jersey about 80 km from the mouth of Delaware Bay and 1.6 km upriver from the head of the bay. Primary emphasis has been directed at the area which is affected by the Salem thermal plume, although sampling is done throughout the region.

The Delaware River in this Region is estuarine and is bordered by extensive marshland and occasional small sandy beaches. There is little industrial development on this portion of the river. Width varies from 3 km at Artificial Island over 8 km in the southern portion of the study area.

Limited sampling is also done in three of the four tidal creeks entering the Delaware River in this region: Alloway and Hope creeks in Salem County, New Jersey and Appoquinimink Creek in New Castle County, Delaware. For further information on the character of the area see Volume 2 of the 1977 Annual Environmental Operating Report.

3.1.1 Phytoplankton (ETS Section 3.1.2.1.1a)

A study of phytoplankton which occur in the Delaware River near Artificial Island was initiated in March 1973 and continued in 1978. Objectives are to determine seasonal trends in size, photosynthetic rate, and composition of the standing crop.

3.1.1.1 Summary

Phytoplankton are microscopic plants which live suspended in water, with little or no mobility, and whose distributions are determined largely by local water movements. They are the primary producers which, along with water-born detritus, form the basis of the local estuarine food web.

In 1978 the phytoplankton standing crop was dominated by diatoms. <u>Skeletonema costatum</u>, a diatom that inhabits brackish and marine waters, was the most abundant species. Phyto-flagellates, green algae, blue-green algae, euglenoids and dinoflagellates were present seasonally or throughout the year, but were generally not dominant.

The standing crop, as indicated by mean chlorophyll <u>a</u> level, varied seasonally, being highest from late May through June. Chlorophyll <u>a</u> levels were somewhat lower from July through August and decreased further from September through December.

Phytoplankton production (photosynthesis) was highest in July and lowest in November and March. Productivity was highest near the surface where light penetration was greatest; it decreased with depth and was negligible at 1 or 2 m. This abrupt drop in carbon production from the surface to the 2-m depth suggests that local phytoplankton production, which is seasonal and restricted to a relatively shallow euphotic zone, is probably not sufficient to supply the total local primary food base.

Plant detritus also contributes to the local food base. The phaeo-pigments (decomposition products of chlorophyll <u>a</u>) are indicative of the detrital load which fluctuates seasonally. Mean concentrations of phaeo-pigments were highest from late May through early August; low concentrations occurred from March to early May and from late August through December.

Two years (1977 and 1978) of operational studies of phytoplankton have been completed and objectives have been met. The data generated forms an adequate base for assessing the impact of Salem on the study area. Review and analysis of the data presented in this and in Volume 2 of 1977 Annual Environmental Operating Report, show that seasonal levels of phytoplankton standing crop and surface net productivity were similar to pre-operational (1974-1976) norms. Additionally, there has been no discernible impact on community structure. This was indicated by the annual appearance of similar dominant taxa, particularly the diatoms, which are best represented by Skeletonema costatum.

3.1.1.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Phytoplankton ETS were satisfied. Two replicate samples for pigment studies were collected near the surface and bottom at 10 stations (Table 3.1.1-1, Fig. 3.1.1-1) semimonthly from April through October and monthly in March, November, and December; single 125 ml aliquots from each replicate sample at stations PP05, PP06, and PP07 were combined and used for taxonomic enumeration. Samples for productivity studies were taken at depths of 0.0, 0.5, 1.0, and 2.0 meters at stations PP05 and PP07 bimonthly from March through November. No samples were collected in January and February because of severe icing conditions. All samples were taken with an 8.1-liter Van Dorn bottle. For a complete description of gear, gear deployment, collection of physicochemical data, and laboratory procedures refer to Volume 2 of the 1977 Annual Environmental Operating Report.

On March 7 a quality control sample containing known pigment concentrations was obtained from the Environmental Protection Agency. This sample was analyzed to test accuracy and precision of methods used. Measured concentrations were within the limits of reference values provided (Table 3.1.1-2). Additionally, units used in counting algae genera are given in Table 3.1.1-3.

DATA REDUCTION

Principal components analysis (BMDP4M Factor Analysis; Dixon, 1975) was used to calculate and display similarities in pigment concentration among stations or groups of stations. This method is described by Marriott (1974) and Pielou (1977). Sampling times were taken as variables and stations as observations. A sampling time x sampling time (R-mode) product moment correlation matrix was calculated from log (X + 1) transformed chlorophyll <u>a</u> and phaeo-pigment data. The factor scores for each station along only the first three principal component axes were then plotted.

3.1.1.3 Results and Discussion

CHLOROPHYLL A AND PHAEO-PIGMENTS

A total of 680 samples for standing crop studies was taken near Artificial Island on 17 sampling dates from March 23 through December 19, 1978 and analyzed for pigments.

Chlorophyll <u>a</u> and phaeo-pigment concentrations varied seasonally. The lowest chlorophyll <u>a</u> levels measured were on April 7 (mean 3.5 mg/m² + 2.1); the highest measured were on June 7 (30.8, <u>+</u> 10.1) (Fig. 3.1.1-2). Mean standing crop was typically low in March and April (range 3.5-7.6 mg/m²). It increased in May (range 6.4-23.0 mg/m²) and peaked on June 7. Mean chlorophyll <u>a</u> concentration decreased rapidly from late June through August (range 10.0-25.8 mg/m²) and decreased further from September through December (range 5.3-8.7).

The lowest phago-pigment levels measured were on November 6 (mean 4.9 mg/m³ + 2.1); the highest measured were on June 19 (27.0, \pm 14.6) (Fig. 3.1.1-3). Mean concentrations were high from late May through early August (13.4-27.0 mg/m³); low concentrations occurred from March to early May (5.0-8.4) and from late August to December (4.9-8.7).

Similarity among stations was examined using principal component analysis. The first three principal components axes explained 74.2 percent of the total variance (Factor I = 42.7 percent; Factor II = 17.9; Factor III = 13.6) for chlorophyll <u>a</u> concentration and 67.5 percent of the total variance (Factor I = 32.1 percent; Factor II = 19.9; Factor III = 15.5) for phaeo-pigment concentration. No stations appeared to be distinctly different from the overall group. However, a north-south trend in the pattern of seasonal change of pigment concentrations is indicated (Fig. 3.1.1-4, 3.1.1-5). This trend may be related to the effects of fresh water input in the northern and marine or saltwater imput in the southern part of the study area.

Examination of the data indicated that the vertical distribution of mean chlorophyll <u>a</u> concentration was not consistent among stations or from date to date; mean phaeopigment levels were more consistent, being higher near the bottom in 64 percent of the comparisons. The annual mean chlorophyll <u>a</u> concentration was 11.5 mg/m³ at the surface and 11.6 near the bottom. The annual mean phaeo-pigment concentration was 9.4 mg/m³ at the surface and 12.7 near the bottom.

The pattern of seasonal change in phytoplankton standing crop was similar to that of previous years (1974-1977). Annual mean chlorophyll <u>a</u> levels in 1977 and 1978 (8.3, 11.5 mg/m²) were similar to pre-operational norms (range 8.3-11.4).

PHYTOPLANKTON PRODUCTIVITY

Data on photosynthetic rate (gross production, net production, and respiration), chlorophyll <u>a</u> concentration, water temperature, and Secchi disc reading at stations PP05 and PP07 are included in Tables 3.1.1-4 and 3.1.1-5.

High levels of turbidity (Secchi disc readings of 8-16 inches) indicated low light penetration. Gross and net productivity levels were highest near the surface where light penetration was greatest. Levels decreased with depth and were negligible at 1.0 and 2.0 meters. In March and November surface levels were also negligible. Surface net photosynthetic rate at Station PP05 and Station PP07 was similar except in May when values were higher at Station PP05 (47 mgC/m³/hr) than at Station PP07 (Q) (Fig. 3.1.1-6). The production rate was highest (112 mgC/m³/hr) in July and lowest (-28 to 28) in March and November.

A rapid decrease with depth of gross and net productivity levels was also typical in previous years (1974-1977). Maximum levels of net productivity have always occurred near the surface in the symmer. In 1977 and 1978 these levels (range 112-164 mgC/m /hr) were within pre-operational norms (range 110-246); winter levels were negligible in all years.

PHYTOPLANKTON COMPOSITION AND DENSITY

Sixty-five genera representing five divisions were identified in 102 samples taken from March through December at stations PP05, PP06, and PP07 on the transect immediately west of Salem (Table 3.1.1-6). These included 31 genera of diatoms (Bacillariophyta), 23 genera of green algae (Chlorophyta), 5 genera of blue-green algae (Cyanophyta), 3 genera of euglenoids (Euglenophyta), and 3 genera of dinoflagellates (Pyrrophyta).

Phytoplankton fluctuated seasonally in abundance and composition. The lowest densities measured were on April 7 (mean 1,648 cells/ml; range 1,394-1,856); common taxa included the diatoms (86.6 percent of the phytoplankton community), particularly <u>Skeletonema costatum</u>, phytoflagelates (7.3 percent) and green algae (4.7 percent) (Tables 3.1.1-7, 3.1.1-8). The highest densities measured were on May 25 (mean 13,953 cells/ml; range 11,722-17,050); common taxa included the diatoms (84.1 percent of the phytoplankton community), particularly <u>S. costatum</u> and the genus <u>Melosira</u>, phyto-flagellates (6.7 percent), and green algae (7.9 percent).

The diatoms were most abundant; they comprised 30.1 to 87.7 percent of the phytoplankton community, with a mean annual density of 6,060 cells/ml. Seasonal distribution of diatoms was similar to that of total abundance (Fig. 3.1.1-7). Mean diatom density decreased sharply from late March (8,939 cells/ml) to early April (1,427), increased in late April (5,994), and was highest in late May (11,738). Mean density from June through November fluctuated between 3,836 and 9,522 cells/ml and was lowest in December (800).

<u>S. costatum</u>, a diatom that inhabits brackish and marine waters, was the most abundant phytoplankton species. It comprised 3.8 to 82.7 percent of the phytoplankton community (Table 3.1.1-8, Fig. 3.1.1-8), with a mean annual density of 5,442 cells/ml. A number of genera, particularly <u>Melosira</u>, <u>Cyclotella</u>, <u>Navicula</u>, <u>Nitzschia</u>, <u>Synedra</u>, and <u>Coscinodiscus</u>, also occurred throughout the year (Table 3.1.1-6). They were less numerous than <u>S. costatum</u>, except in December when <u>Melosira</u>, <u>Chaetoceros</u>, and <u>Asterionella formosa</u>, were each more abundant (6.7, 5.7, and 4.4 percent of the phytoplankton community, respectively). Genera such as Asterionella and Chaetoceros, occurred seasonally.

Phyto-flagellates comprised 6.7 to 46.8 percent of the phytoplankton community with a mean annual density of 799 cells/ml. They were most abundant in late March, September, October, and December.

The green algae comprised 1.5 to 16.4 percent of the phytoplankton community with a mean annual density of 431 cells/ml. Abundance was high in May, June, and late October. Ankistrodesmus falcatus was generally the most abundant species from May through December. Other taxa, particularly the genera Chlamydomonas, Chlorella, Crucigenia, and Scenedesmus, were present throughout the year.

The blue-green algae comprised 0.1 to 3.4 percent of the phytoplankton community with a mean annual density of 65 cells/ml. Oscillatoria and Anacystis were the most common genera.

Euglenoids and dinoflagellates comprised only 0.0 to 3.3 percent of the phytoplankton community. For the two divisions combined the mean annual density was 33 cells/ml.

The pattern of seasonal change in phytoplankton composition and abundance was similar to that of previous years (1974-1977). Mean annual density in 1978 was higher (ca. 7,400 cells/ml) than in the pre-operational years (ca. range 3,500-6,400; peak seasonal density (mean 14,000 cells/ml) was within pre-operational norms (ca. range 7,300-14,700). Diatoms, particularly <u>S. costatum</u>, were most abundant in all years.

TABLE 3.1.1-1 PHYTOPLANKTON SAMPLING STATIONS.

Station	Description
PP01	Between the mouth of the Chesapeake and Delaware Canal and bell buoy "RB" (ca. 0.1 km west of the mouth of the Chesapeake and Delaware Canal).
PP02	Between buoy N "B" and the northern tip of Artificial Island (ca. 0.5 km north of Artificial Island).
PP03	Approximately 15 m west of buoy N."A" (ca. 1.0 km west of Artificial Island).
PP04	Between buoy C "IR" and Reedy Island Dike.
PP05	Approximately 15 m west of Salem and the mouth of Sunken Ship Cove.
PP06	Between buoys R "2B" and R "4B" (ca. 1.3 km west of Artificial Island).
PP07	Between Appoquinimink light and buoy "1B" (ca. 0.3 km from the Delaware shore).
PP08	15 m west of Hope Creek Jetty.
PP10	1.0 km NE of Liston Point.
PP11	Approximately 1.3 km west of the New Jersey shore from a point just north of the mouth of Mad Horse Creek.

IA SALEM PP 1978

TABLE 3.1.1-2. QUALITY CONTROL SAMPLE CHLOROPHYLL $\underline{\Lambda}$ AND PHAEO-PIGMENTS

Aliquot	Chlorgphyll <u>a</u>	Phaeozpigments
No.	(mg/m ³)	(mg/m ³)
1	5.31	3.77
2	6.09	2.83
3	5.69	3.13
4	5.98	3.97
Reference values:	6.09 <u>+</u> 1.1	4.17 <u>+</u> 1.4

TABLE 3.1.1-3 UNITS USED IN COUNTING ALGAL GENERA

Genus	Unit
CHLOROPHYTA	
Actinastrum	Colony
Ankistrodesmus	Colony or cell
Botryococcus	Colony
Crucigenia	Colony
Dictyosphaerium	Colony
Franceia	Colony or cell
Gonium	Colony
Kirchneriella	Colony
Lagerheimia	Colony or cell
Micractinium	Colony
Pediastrum	Colony
Quadrigula	Colony
Scenedesmus	Colony
Selenastrum	Colony
Ulothrix	100 u filament
CYANOPHYTA	6 -1
Agmenellum	Colony
Anabaena	100 u filament
Anacystis	Colony
Gomphosphaeria	Colony
Oscillatoria	100 y filament

IA SALEM PP 1978

ATE			03/15/78	05/11/78	07/18/78	09/21/78	11/14/78
IDE			E88 2	EBB 2	EB8 SLACK	E88 2	FLOOD 2
	SURFACE		4.0	6.0	8.0	6.0 -	10.0
	BOTTOM						
	SURFACE		3.1	13.4	24.2	24.5	9.0
· (BOTTOM						
	AIR		8.0	14_0	26.5	22.0	16.0
XYGEN (PPM)			12.4	9_0	5.7	7.2	10.6
	BOTTOM			· · ·			
ECCHI (INCHE	5)		10	10	14	14	13
				SURFACE			
ROSS PHOTOSY			9.3	75.0	159.3	79.6	9.3-
ET PHOTOSYNT			2.8	46.8 .	112.5	75.0	28.1-
ESPIRATION HLOROPHYLL-A		(MG/M3/HR)	6.5	28.1	46.8	4-6	18.7
HLOROPHYLL-A		(MG/M3)	7.0	10.3	11.5	5.8	5.7
				1/2-METE	R	· · ·	
ROSS PHOTOSY	NTHESIS	(MG/M5/HR)	4-6	18.7	56.2	51.5	23.4
ET PHOTOSYNTI			4.6	32.8	9.3	51.5	4.6
			.0	14.0-	46.8	.0	18.7
ESPIRATION HLOROPHYLL-A		(MG/M3)	6.1	9.9	9.4	5.6	5.3
				1-METER		<u>'</u>	
ROSS PHOTOSY	THECTO	(#6/#3/#8)	•0	4.6	51.5	9.3	32.8-
ET PHOTOSYNT			4.6-	14.0	4.6-	9.3	23.4-
ESPIRATION			4.6	9.3-	56.2	•0.	9.3-
HLOROPHYLL-A		(MG/M3)	5.7	16.5	12.3	3.8	6.1
				2-METER			
		4	0.7		(, ,
ROSS PHOTOSY			9.3	4-6	60.9	4-6	4-6-
ET PHOTOSYNT			14.0	9.3	4=6=	4.6	14-0-
ESPIRATION		(MG/M3/HR)	4.6-	4-6-	65.6	0	9.3
HLOROPHYLL-A		(MG/M3)	6.1	18.1	12.7	3.5	5.7

IA SALEM PP 1978

ATE		03/15/78	05/11/78	07/18/78	09/21/78	11/14/78
DE		£ 883	£88 5	EBB SLACK	EBB 2	FLOOD 2
L. (PPT) 'SURFACE		4.0	7.0	6.0	6.0	9.0
BOTTOM MP.(C) SURFACE		3.2	12.9	24.4	24-1	9.2
BOTTOM		7.6	12	6464	2481	7 • C
AIR		9.0	14.5	27.0	23.0	17.0
YGEN (PPM) SURFACE		12.8	9.0	6.1	7.3	10.4
BOTTOM						
CCHI (INCHES)		8	10	16	10	14
			SURFACE			
OSS PHOTOSYNTHESIS	(MG/M3/HP)	7.5	4.6	107.8	65.6	37.5
	(MG/M3/HR)	9.3	.0	103.1	65.6	28.1
	(MG/M3/HR)	1.8-	4.0	4.6	.0	9.3
	(MG/M3)	5.7	11.9	9.9	5.8	8.6
			1/2-METE	R		
OSS PHOTOSYNTHESIS	(MG/M3/HR)	11.2-	4.6	56.2	51.5	9.3
T PHOTOSYNTHESIS		9.3-	18.7	42.1	51.5	9.3
	(MG/M3/HR)	1.8-	14.0-	14.0	.0	-0
ILOROPHYLL=A	(MG/M3)	4_9	14.4	5.3	6-1	9.9
			1-METER			
OSS PHOTOSYNTHESIS	(MG/M3/HR)	6.5	18.7	18.7	4.6	28.1-
T PHOTOSYNTHESIS	(MG/M3/HR)	6.5	37.5	9.3	'4 -6	- 0
SPIRATION	(MG/M3/HR)	_0	18.7-	9.3	•0	28.1-
ILOROPHYLL=A	(MG/M3)	4.9	13.2	10.7	5 - 8	9_4
			2-METER			
OSS PHOTOSYNTHESIS	(MG/M3/HR)	14.0	4-6-	•0	4.6	9.3-
T PHOTOSYNTHESIS		7.5	9.3	18.7-	.0	4.6-
	(MG/M3/HR)	6.5	14.0-	18.7	4.6	4.6-
	(MG/M3)	5.3	15.6	9.9	7.3	10.3

TABLE 3.1.1-5

3.1-11

.

IA SALEM PP 1978

TABLE 3.1.1-6 PHYTOPLANKTON TAXA AND THEIR OCCURRENCE-STATIONS PP05, PP06, and PP07.

Month Day	March	April 7 21	May 10 25	June 7 19	July 7 25	August 11 22	September 12 26	October 10 24	November 6	December 19
CHLOROPHYTA										
Actinastrum hantzschia	x	x x x x	- - x	xx	xx	 x x	 x x	 x x	x	x
Ankistrodesmus falcatus Botryococcus	<u>^</u>	× ×	х х — —	X X	× ×	~ ~	x x	x x - x	× _	~
Chlamydomonas	х	хх	хх	хх	хх	хх	x –	- X	-	
Chlorella	-	хх	хх	XX	хх	x -	x x	х -		х
Crucigenia	-	хх	- x	– X	х –	X -	x x	х х	-	х
Dictyosphaerium pulchellum	! -		~ X		x	х –	х –		-	х
<u>Franceia</u> Golenkinia	-	 x -	x		x	- x	- x		<u>x</u>	-
G. radiata	-	× -				xx			-	-
Gonium	_								-	x
Kirchneriella	_			~ -	- x				-	~
Lagerheimia	-					·	х –	- x	х	х
Micractinium	-			·					-	х
M. pusillum	-		- X						-	х
Oocystis Pediastrum	x	~ - x			 x -	 x -			x	- x
P. boryanum	~	- x x -			x –	× –			-	~
P. duplex	_		- x						_	
Quadrigula lacustris	-		- x						-	-
Scenedesmus	х	~ X	x -	– X		- X	х –	X X	х	х
S. abundans	-		хх	хх	хх	→ X			-	-
<u>S. acuminatus</u> S. bijuga	-		- x			x x			-	-
S. dimorphus			- x			- X			-	x
S. guadricauda		хх	XX	хх	хх	x x	- x	х х	x	X
Schroederia	-					x -			-	_
Selenastrum	-			х –					-	~
Tetraedron	-	х –		х ~	х –	- x			-	-
Tetrastrum elegans	-							- x	-	х
<u>Treubaria</u> setigerum Ulothrix	_			x -		x -			_	-
Unidentified colonies	_	x -	x -	- X		xx	- x	- x	-	x
Unidentified filaments	-	хх	- x ·		х	x -			x	-
EUGLENOPHYTA						•				
Euglena	х	хх	х х	x - x -	XX.	хх	х х	x -	-	
Phacus	X	х –	ХХ	Х —	х х	- x			-	-
Trachelomonas BACILLARIOPHYTA	-								x	-
Centric										
Biddulphia	-	– x	- X	х –				- x	х	
Chaetoceros	-			- x	- x	хх	х х	xx	x	X
Corethron	-						- X	· ··	_	-
Coscinodiscus	Х	XX XX	ХХ	. <u>X</u> X	хх	х х	х х	х –	x	х
Cyclotella	X		ХХ	XX	хх	X X	X X	x x	X	X
Melosira	x	хx	хх	хх	хх	хх	х х	хх	x	х
<u>M. granulata</u> Rhizosolenia	-	x -			x x	x			-	- x
Skeletonema costatum	x.	xx	xx	x x	XX	x x	x x	xx	x	x
Stephanodiscus	-		X -					- X	- -	X
Thalassiosira	х	х ~						xx	х	_

IA SALEM PP 1978

TABLE 3.1.1-6 CONTINUED

Month Day	March 23	April 7 21	May 10 25	June 7 19	July 7 25	August 11 22	September 12 26	October 10 24	November 6	December 19
Pennate										
Amphiprora	_				– x				-	-
Amphora	_			~ x	- x				-	-
Asterionella formosa	х	х →	хх	x	– x				-	x
A. japonica	x	хx							х	-
Cocconeis	_		X 🛏		- X			– x	-	- ·
Cymbella	х	х			– x				-	x
Diatoma	-	- X		• х -			х –		-	-
Diploneis	-								-	x
Fragilaria	х	- X	X			- X			-	-
Frustulia	x		х –			хх	x –	X X	-	x
Gyrosigma	х	хх					– x	хх	x	х
Hantzschia	~	х -	хх					- x	х	-
Meridion		х -		х –	·	х ~			-	-
Navicula	х	х х	хх	хх	χх	хх	X X	X X	x	x
Nitzschia	х	х х	хх	хх	хх	хх	х х	хх	. X	x
Pinnularia	-		х –	хх	хх				-	-
Pleurosigma	-		– X.						-	-
Rhaphoneis	х		хх	хх	хх	~ X				-
Rhoicosphenia	х					~ -		~ -	-	x
R. curvata	-					– x	– x		-	-
Surirella	-	хх	хх	· X	– x			~ -	-	-
Synedra	-	- X	хх	ХХ	ХХ	- X	х х	- X	х	х
Thalassionema	х								-	-
PYRROPHYTA										
Gymnodinium	-			х –	~ X	хх	- X	хх	Х	x
Gyrodinium	-		- X				х –		х	х
Peridinium	-				х -			хх	-	-
суллорнута										
Agmenellum	-		x -	– x					-	-
Anabaena	-				х –				-	-
Anacystis	-					х х	х х	х х	x	х
Gomphosphaeria	-			- x	хх				-	
Oscillatoria	-		хх	хх		хх	х –	- X	х	X
Unidentified colonies	~	х –		хх	- X		х -	– X	х	X
Unidentified filaments	х	XX	хх	хх	хх	х х	х х	х –	х	х

IA SALEM PP 1978

TABLE 3.1.1-7

				(NUMBERS /	ML)					
DATE TAXOHOMIC GROUP	03/23/78		04/07/78		04/21/78		05/10/78		05/25/78	
	MEAN DENSITY	PERCENT Comp.	MEAN DENSITY	PERCENT COMP.	MEAN DENSITY	PERCENT Comp.	MEAN DENSITY	PERCENT Comp.	MEAN DENSITY	PERCEN Comp.
CYANOPHYTA CHLURUPHYTA EUGLENOPHYTA BACILLARIOPHYTA PYRROPHYTA PHYTO-FLAGELLATES	72.0 156.0 32.0 8,938.7 1,217.3	.7 1.5 3 85.8 11.7	14.9 77.1 9.6 1,426.7 120.0	.9 4.7 .6 86.6 7.3	10.1 210.8 11.5 5,993.6 674.9	.1 3.1 .2 .86.9 9.8	23.1 625.6 20.5 4,903.2 544.8	4 10-2 .3 80-2 8.9	87.7 1.097.9 68.3 11.738.4 19.7 941.1	.6 7.9 .5 84.1 .1 6.7
TOTAL ABUNDANCE	10,416.0		1,648.3	1.3	6,900.9	720	6,117.2		13,953.1	0.1
DATE	06/0			9/78	.~~~~~~		07/2		0	4/79
DATE	06/0 Mean Density	07/78 Percent Comp_	UG/1 MEAN DENSITY	9/78 Percent Comp.	Ú7/U MEAN DENSITY	7/78 PERCENT COMP.	07/2 Mean Density	PERCENT	U8/1 Mtan Density	1/78 PERCEN Comp.
	MEAN	PERCENT	MEAN	PERCENT Comp. .9 8.6	MEAN	PERCENT	MEAN	PERCENT	MEAN	PERCEN

IN SALEM PP 1978

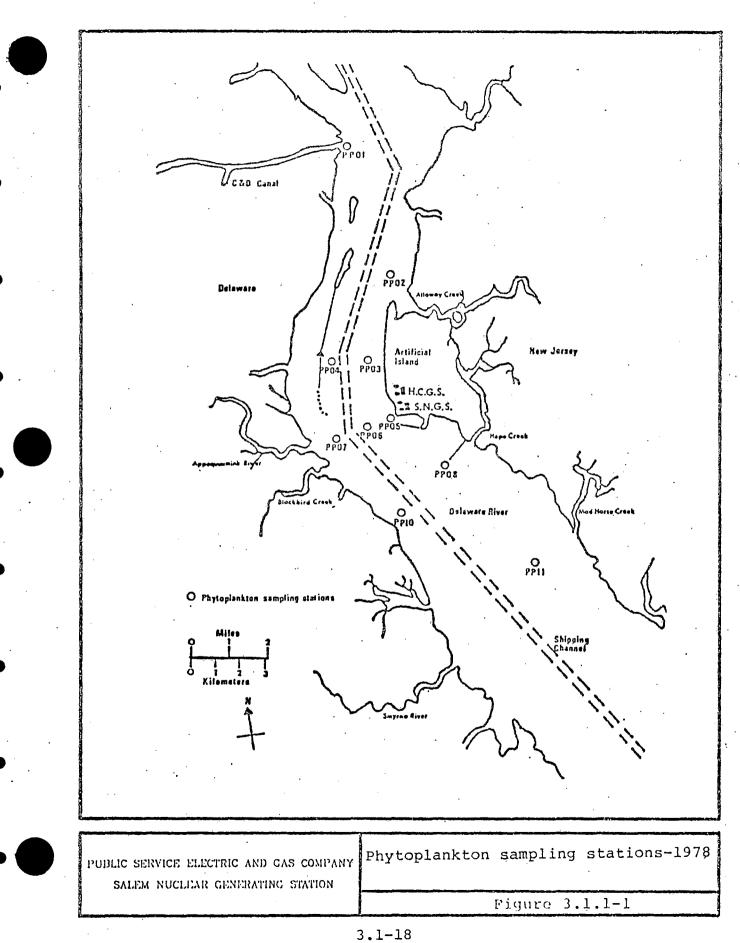
	TABLE 3.1.1-7 CONTINUED											
DATE	08/2	2/78	09/1		09/2	09/26/78		10/10/78		10/24/78		
TAXONOMIC GROUP	MEAN Density	PERCENT COMP.	MEAN DENSITY	PERCENT Comp.	MEAN DENSITY	PERCENT COMP.	MEAN DENSITY	PERCENT COMP.	MEAN DENSITY	PERCENT COMP.		
CYANOPHYTA Chlorophyta Fuci Fuornyta	81-1 374-5	_9 4 - 1	53 .5 259 . 0	1.2	68.1 288.3	- 8 3 - 5	26.7 378.0	• 3 3• 6	31_0 680.1	.5 10.8		
EUGLEHOPHYTA BACILLARIOPHYTA PYRROPHYTA PHYTO-FLAGELLATES	9.3 7.863.7 9.7 858.9	•1 85•5 •1 9•3	5.6 3,835.9 5.6 490.9	1 82.5 1 10.6	29.2 6,645.5 11.1 1,106.9	.4 81.5 .1 13:6	5.6 9,259,9 17.1 877.2	87.7 2 8.3	4,405.9 78.7 1,118.6	69.8 1.2 17.7		
TOTAL ABUNDANCE	9,197.2		4,650.5		8,149_1		10,564.5	·	6,314.3			

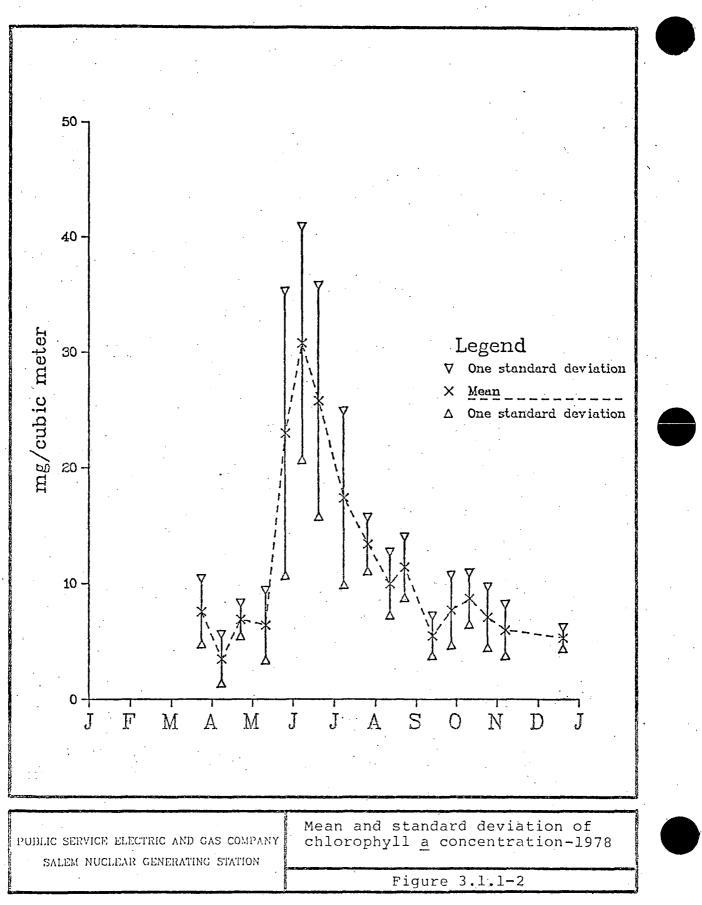
DATE	. 1170	6/78	12/1	9/78	<u>Annual</u>		
TAXONOMIC GROUP	MEAN DENSITY	PERCENT COMP.	MEAN DENSITY	PERCENT COMP.	MEAN DENSITY	PERCENT COMP.	
С Y A N O P H Y T A C H L O R O P H Y T A	78.7 324.5	1.5	90.5 435.0	3.4 16.4	65.1	0.9	
EUGLENOPHYTA	9.3	.2	437.0	10.4	430.5 16.1	5.9 0.2	
BACILLARIOPHYTA	4.004.9	75.2	800.2	30.1	6060.0	82.0	
PYRROPHYTA	14.1	.3	88.5	3.3	16.4	0.2	
PHYTO=FLAGELLATES	8.25.6	15.7	1,245.4	46.8	798.9	10.8	
TOTAL ABUNDANCE	5,257.7		2,659.6	•	7387.0		

IA SALEM PP 1978

	OF	THE MEAN DE	PLANKTON TAX NSITY - STAT	IONS PP05, P	POG, AND PPO	7		
 •	03/23/78			05/10/78	05/25/78	06/07/78	06/19/78	07/07/78

TAXONDMIC GROUP								
*CYANOPHYTA UNID_ FILAMENTS								1.9
*CHLOROPHYTA UNID_ FILAMENTS ULOTHRIX CHLORELLA					2.2	1.8		
A. FALCATUS				. 7.8	3.1	1_8 (1.1 4.6	2.6
S. QUADRICAUDA Chlamyddyonas		1_0 1_2		1.0				1_8 1_1
*EUGLENOPHYTA								
*BACILLARIOPHYTA Coscinodiscus						• .		1.1
CYCLOTELLA Melosina	1.0	1.9	4 7	1.4	F O		1.0	2.2
S. COSTATUM Thalassiosira A. Formosa	1.7 69.8 4.5 1.0	1.0 72.7 1.7 2.2	1.3 82.0	1-4 74-0	5.0 73.3	1.0 82.0	77.1	72.5
A. JAPONICA Navicula	4.9	2.3		1.1	1.1			1.3


TABLE 3.1.1-8


DATE

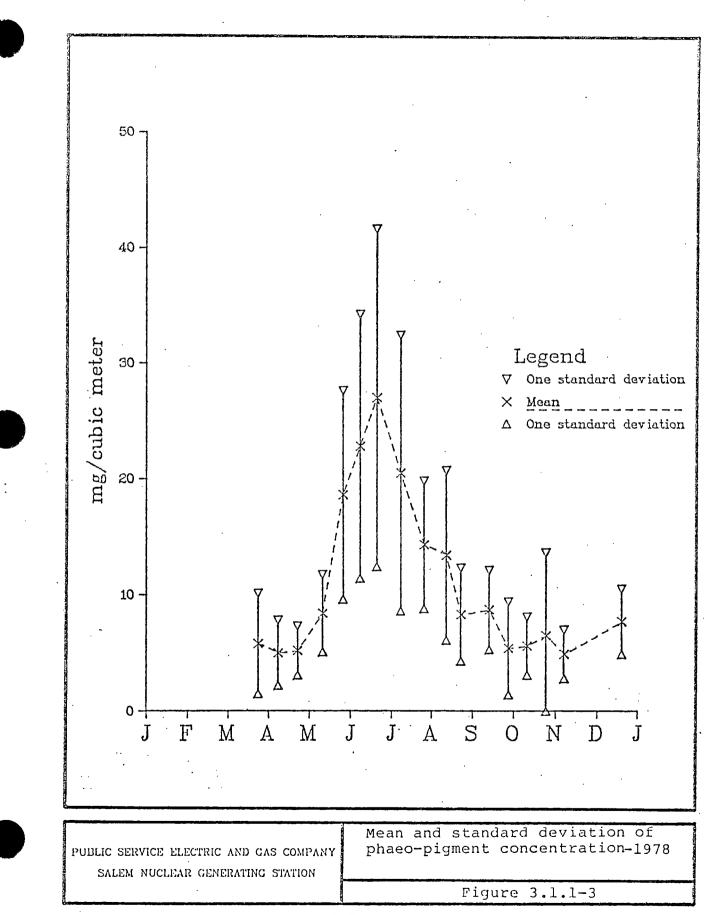
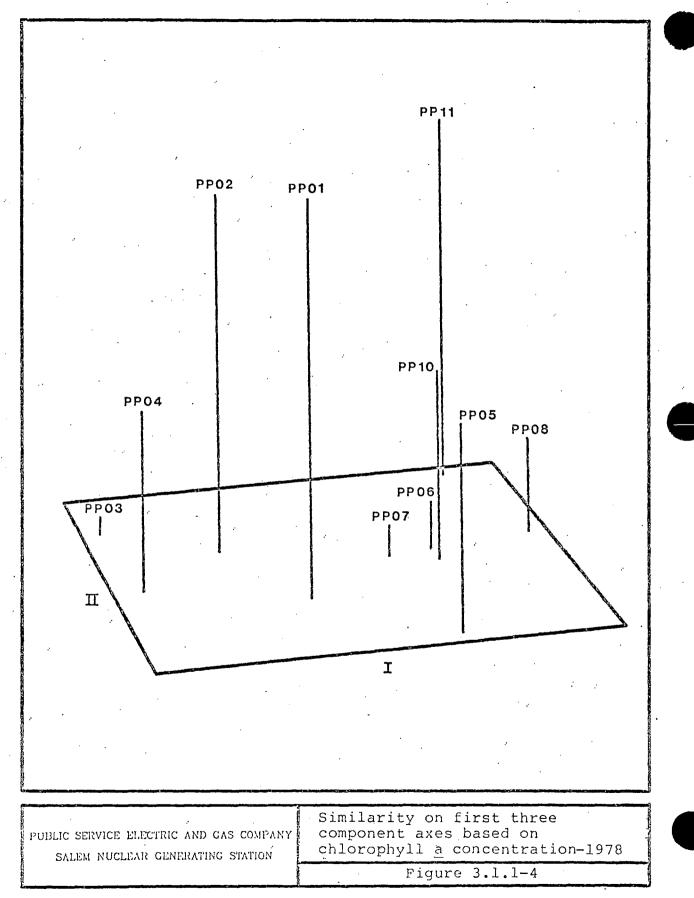
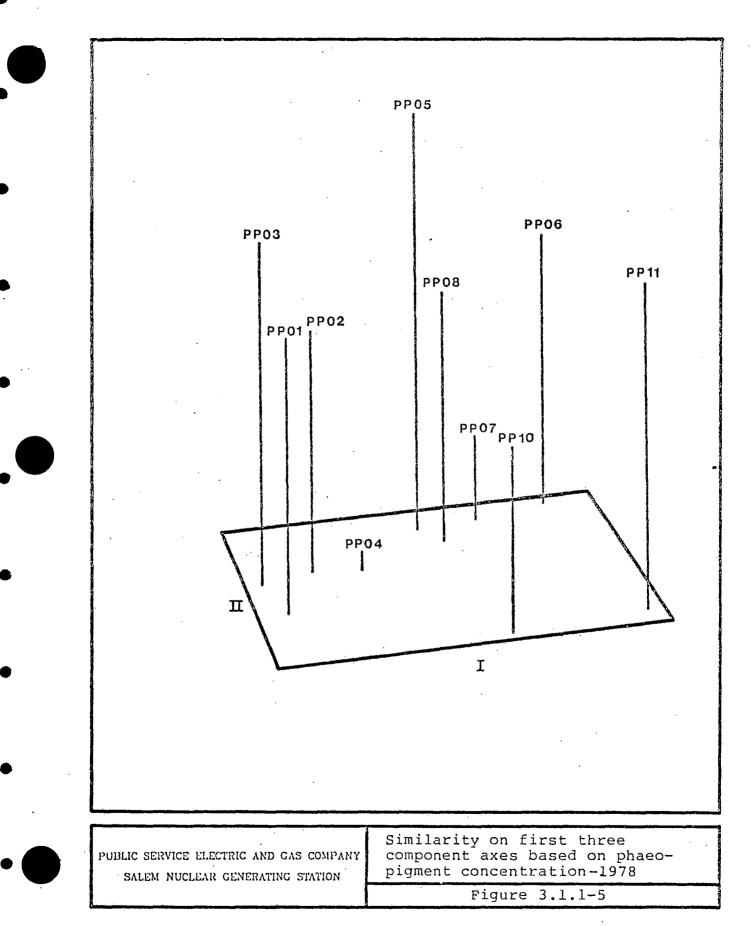
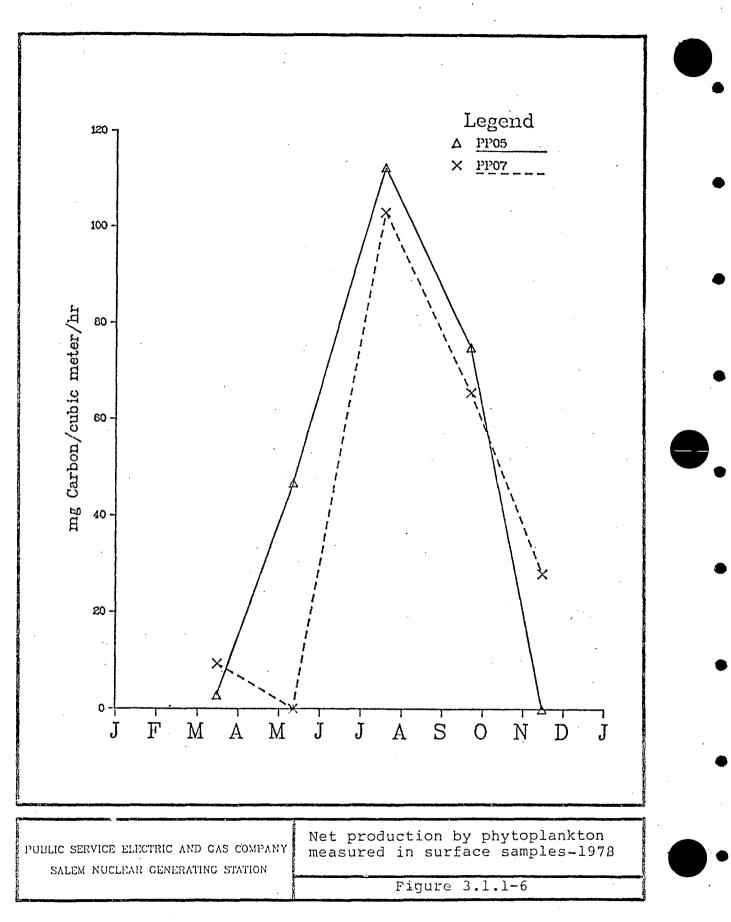
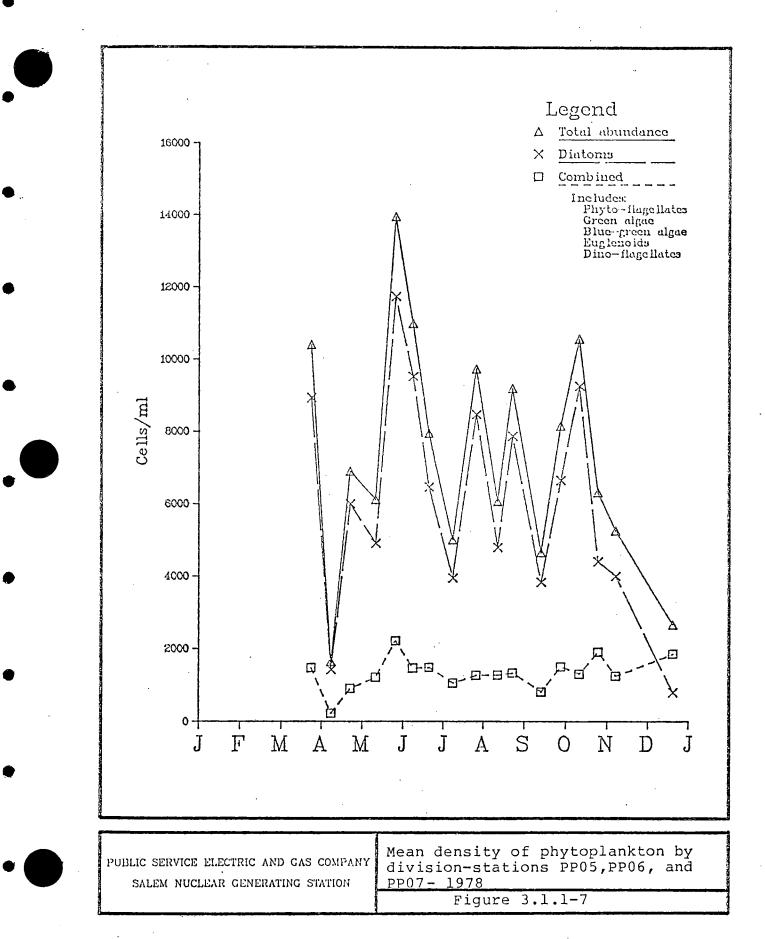

IA SALEM PP 1978

TABLE 3.1.1-8 CONTINUED								
ATE	07/25/78	08/11/78	08/22/78	09/12/78	09/26/78	10/10/78	10/24/78	11/06/78
AXONOMIC GROUP								
CYANDPHYTA			\$					
CHLORUPHYTA A. FALCATUS S. QUADRICAUDA	2.5	4-4 1-3	2.5	4-4	2.9	3.2	9.3	5.0
*EUGLENOPHYTA								
BACILLARIOPHYTA CYCLOTELLA MELOSIR4 S. COSTATUM CHAETOCEROS NITZSCHIA	1.5 81.2 1.0	69-4 5-8 1-4	79.0 3.5	2.0 74.8 2.7 1.0	76.8 2.1	82.7 1.2 2.1	2.3 57.9 3.9 2.8	1.3 1.4 59.2 9.3 2.8
₽¥RROPH¥TA GymnodI¥IUM				•			1.2	
DATE Taxonomic group	12/19/78					•		
CÝANOPHYTA Oscillatúria	2.1							
*CHLOROPŇYTA A. FALCATUS S. GNADRICAUDA D. PULCHELLUM	8.6 2.9 1.3							
NBACILLARIOPHYTA CUSCINODISCUS CYCLOTELLA MELOSIRA S. CUSTATUM CHAETOCEROS A. FORMUSA	1 - 6 2 - 9 6 - 7 3 - 8 5 - 7 4 - 4					•		
NITZSCHIA Pyrrophyta Gyrodinium	2.1					1	A SALEM PP 1	978

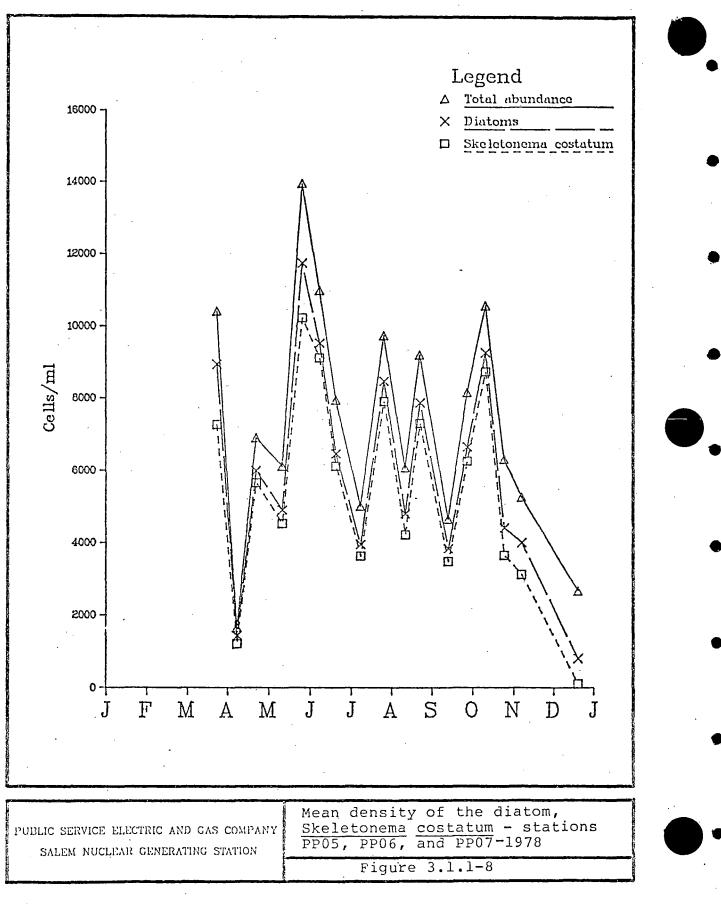

TABLE 3.1.1-8







^{3.1-20}



3.1-24

3.1.2 Ichthyoplankton (ETS Section 3.1.2.1.1b)

Ichthyoplankton collections have been taken in the Delaware River near Artificial Island since 1971. The continuing objectives are to identify and enumerate fish eggs, larvae, and age 0+ young in the Artificial Island area and to determine seasonal and spatial distributions in the region.

3.1.2.1 Summary

In 1978, 383 ichthyoplankton samples contained a total of 13,664 eggs, 48,907 larvae, and 322 young of 22 taxa. Bay anchovy (<u>Anchoa mitchilli</u>), weakfish (<u>Cynoscion regalis</u>), naked goby (<u>Gobiosoma bosci</u>), and silversides (<u>Membras</u> sp./<u>Menidia</u> spp.) were the most abundant species. General life history information is presented under Temporal Distribution.

Bay anchovy comprised 87.8 percent of the total catch. Eggs, larvae, or young were collected from May through November. Eggs were most abundant in late June and mid-July, larvae in mid-July, and young in late July. Density of eggs and larvae was greatest at stations south of Salem; of young it was greatest north of Salem.

Weakfish comprised 7.6 percent of the total catch. Eggs, larvae, or young occurred from mid-June through August. Eggs were collected only in mid-July, but were not abundant. Larval abundance characteristically peaked twice; once in mid-June and once in mid-July. Young were most abundant from late June through mid-July. Density of larvae was greatest at stations south of Salem; of young it was greatest north of Salem.

Naked goby comprised 3.6 percent of the total catch. Larvae or young were collected from mid-June through mid-September. Larvae were most abundant in mid-July; young were collected in mid-July and early August, but were never abundant. Density of larvae was greatest at stations south of Salem.

Silversides comprised 0.3 percent of the total catch. Eggs, larvae, or young occurred from mid-June through early August. Eggs and young were collected in mid- and late June and in late July, but were never abundant; larvae were most abundant in late July. Catch composition and predominant taxa were similar to previous years. Annual mean density was similar to that in 1976, lower than that in 1973, 1974, and 1977, but greater than that in 1975. In 1978 atypically low salinities from May through August probably contributed to a decrease in annual mean density.

3.1.2.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Ichthyoplankton ETS were satisfied. During daylight, samples were taken at 11 stations (Table 3.1.2-1, Fig. 3.1.2-1), monthly in March through May and September through November, and semimonthly from June through August. River icing and inclement weather prevented sampling in January, February, and December. Replicate samples were taken at stations IP05 through IP07.

Samples were collected with 1/2-meter (0.5-mm mesh) plankton nets (fitted with General Oceanics digital flowmeters, Model 2030) fished simultaneously near surface and near bottom; middepth samples were taken at stations IP03, IP06, and IP09 where depth (MLW) exceeds 9.0 m (20 ft). For a complete description of gear, gear deployment, collection of physicochemical data, and laboratory procedures refer to Volume 2 of the 1977 Annual Environmental Operating Report.

DATA REDUCTION

For purposes of data tabulation and discussion, stations were grouped geographically as eastern (IP03, IP05, and IP08), mid-river (IP06 and IP09), and western (IP04, IP07, and IP10); and north of Salem (IP01-IP04), on the transect west of Salem (IP05-IP07), and south of Salem (IP08-IP11).

3.1.2.3 Results

GENERAL SAMPLE COMPOSITION

In 1978, 383 ichthyoplankton collections were processed including 168 surface, 47 middepth, and 168 bottom samples

(Table 3.1.2-2). A total of 29,567.0 m³ of water was filtered and 13,664 eggs, 48,907 larvae, and 322 young of 22 taxa were collected. Taxa represented by more than 100 specimens, in order of decreasing abundance are: the bay anchovy, weakfish, naked goby, and the silversides. These are discussed below.

SPECIES DISCUSSION

1. Bay anchovy comprised 87.8 percent of the total catch and was represented by 55,230 specimens including 13,624 eggs, 41,414 larvae, and 192 young (Table 3.1.2-2). The annual mean density of eggs, larvae, and young was 0.461, 1.401, and 0.006/m³, respectively.

Bay anchovy eggs were taken from May 17 through September 13 at water temperature of 14.7 to 28.0 C and salinity of 1.0 to 10.5 ppt. Mean density increased from less than 0.001/m³ on May 17 to 2.090/m³ on June 28 and 2.510/m³ on July 12, then steadily decreased through the remainder of the period (Table 3.1.2-3, Fig. 3.1.2-2). Over 85 percent of the total catch of eggs was taken on June 28 and July 12. The mean density per station on June 28 and July 12 ranged to 18.196/m³ at Station IP09 and to 12.862/m³ at Station IP11 respectively. Maximum density per collection was 62.410/m³ (June 28, Station IP09, near bottom).

Annual mean density at stations north of, on the transect, west of, and south of Salem was 0.072, 0.226, and 1.091/m, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.190, 0.696, and 0.223/m, respectively (Table 3.1.2-5). Annual mean density was greatest at stations IP09 (1.810/m) and IP11 (1.568) (Table 3.1.2-6). Mean density per date for stations south of Salem and on the transect west of Salem was greater than for stations north of Salem (Table 3.1.2-3).

Annual mean density for surface, middepth, and bottom was 0.171, 0.365, and 0.845/m³, respectively (Table 3.1.2-2). Over 72 percent of the total catch of eggs was taken in bottom samples.

Of the 13,624 bay anchovy eggs collected 14.0 percent were viable (Table 3.1.2-8). Viable eggs were taken from June 15 to August 31; the highest mean percent viable (33.7) occurred on June 15. At stations north of, on the transect west of, and south of Salem mean percent viable was 19.4, 15.3, and 13.2. Mean percent viable for eastern, mid-river,

and western stations was 16.0, 15.0, and 9.6 percent, respectively. On June 28 and July 12, when over 76 percent of the viable eggs were collected, mean percent viable was highest (13.4 percent) at stations south of Salem. The annual mean percent viable (33.6 percent per station) was highest at Station IP06.

In surface, middepth, and bottom collections mean percent viable was 9.9, 8.6, and 15.7 percent, respectively.

Bay anchovy larvae were taken from June 15 through October 27 at water temperature of 13.8 to 28.0 C and salinity to 12.0 ppt. Mean density per date increased from 1.220/m³ on June 15 to 8.331/m³ on July 12 and decreased to 0.005/m³ on October 26 (Table 3.1.2-3, Fig. 3.1.2-2). Over 56 percent of the total larval catch was taken on July 12. Mean density per station on this date ranged from 0.777/m³ at Station IP02 to 28.818/m³ at Station IP09. Maximum density per collection was 42.549/m³ (July 12, Station IP09, near surface).

Annual mean density for stations north of, on the transect west of, and south of Salem was 0.438, 0.998, and 2.753/m³, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.749, 1.406, and 1.886, respectively (Table 3.1.2-5). Annual mean density per station was greatest at stations IP09 (3.525/m³) and IP10 (3.075) where over 43 percent of the total larval catch was taken (Table 3.1.2-6). From June 15 to July 12 mean density per date was greatest south of Salem and at mid-river stations. Subsequently, catch decreased with no discernible pattern (Tables 3.1.2-3, 3.1.2-7).

Annual mean density for surface, middepth, and bottom collections was 1.747, 0.971, and $1.107/m^3$, respectively (Table 3.1.2-2).

Bay anchovy young were taken from June 28 through November 22 at water temperatures of 9.8 to 28.0 C and salinity of 1.0 to 11.0 ppt. Mean density per date increased from 0.002/m³ on June 28 to 0.041/m³ on July 27, and fluctuated at low levels through the remainder of the period (Table 3.1.2-3, Fig. 3.1.2-2). Over 42 percent of the total catch of young occurred on July 27. The mean density per station on this date ranged to 0.388/m³ (Station IP01) with a maximum density per collection of 0.588/m³ at Station IP01, near the surface.

Annual mean density for stations north of, on the transect west of, and south of Salem was 0.019, 0.001, and 0.001/m³, respectively (Table 3.1.2-4). For eastern, mid-river, and

western stations it was 0.003, 0.001, and $0.002/m^3$, respectively (Table 3.1.2-5). The highest annual mean density per station (0.067/m³) occurred at Station IPO1 (Table 3.1.2-6).

Annual mean density for surface, middepth, and bottom collections was 0.011, 0.001, and $0.002/m^3$, respectively (Table 3.1.2-2). Over 85 percent of the total catch of young was collected in surface samples.

2. Weakfish comprised 7.6 percent of the total catch and was represented by 4,796 specimens including 2 eggs, 4,709 larvae, and 85 young (Table 3.1.2-2). The annual mean density of eggs, larvae, and young was less than 0.001, 0.159, and 0.003/m, respectively.

Two eggs were collected on July 12 at Station IP11 (one near surface and one near bottom) at water temperature of 22.0 to 23.7 C and salinity of 7.0 ppt. Mean density on this date was 0.001/m³ (Tables 3.1.2-3). Only one of two eggs collected was viable (Table 3.1.2-8).

Larvae were collected from June 15 through August 10 at water temperature of 20.0 to 28.0 C and salinity to 10.0 ppt. Maximum mean density per date occurred on June 15 (0.907/m³); a secondary peak occurred on July 12 (0.689) (Table 3.1.2-3, Fig. 3.1.2-3). Values ranged from 0.005/m³ on August 10 to 0.107/m³ on June 28. Maximum density per collection was 16.216/m³ (June 15, Station IP08, near bottom). This single collection represented 35 percent of the total larval catch (1,654 of 4,709 specimens).

Annual mean density at stations north of, on the transect west of, and south of Salem was 0.013, 0.080, and 0.386/m³, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.399, 0.184, and 0.063/m³, respectively (Table 3.1.2-5). From June 15 through July 27 mean density per date was greatest south of Salem. Subsequently, catch decreased with no discernible pattern (Table 3.1.2-3). From June 15 through July 12 mean density per date was greatest at eastern and mid-river stations with no discernible pattern after this period (Table 3.1.2-7).

Annual mean density in for surface, middepth and bottom collections was 0.050, 0.240, and 0.268/m², respectively (Table 3.1.2-2).

Weakfish young were collected from June 15 through July 12 and from August 10 through August 31 at water temperature of 21.0 to 28.0 C and salinity to 10.0 ppt. Maximum mean density per date occurred on June 28 (0.024/m²) and July 12

(0.010/m³). Other levels were equal to or less than 0.001/m³ (Table 3.1.2-3, Fig. 3.1.2-3). On June 28 mean density per station ranged to 0.131/m³ at Station IP03. Maximum density per collection was 0.359/m³ (June 28, Station IP03, middepth).

Annual mean density for north of, on the transect west of, and south of Salem was 0.005, 0.003, and 0.001/m³, respectively (Table 3.1.2-4). For eastern, midriyer, and western stations it was 0.008, 0.002, and 0.003/m³, respectively (Table 3.1.2-5). From June 15 to July 12 mean density per date was greatest either north of, or on the transect west of, Salem. Subsequently, catch decreased with no discernible pattern (Table 3.1.2-3).

Annual mean density for surface, middepth, and bottom collections was 0.001, 0.008, and $0.004/m^3$, respectively (Table 3.1.2-2).

3. Naked goby comprised 3.6 percent of the total catch and was represented by 2,241 specimens including 2,238 larvae and 3 young. The annual mean density of larvae and young was 0.076 and less than 0.001/m , respectively (Table 3.1.2-2).

Larvae were collected from June 15 through September 13 at water temperature of 20.0 to 28.0 C and salinity of 1.0 to 10.0 ppt. Mean density per date increased from 0.003/m³ on June 15 to 0.396/m³ on July 12; density steadily decreased through the remainder of the period (Table 3.1.2-3, Fig. 3.1.2-4). Mean density per station on July 12 ranged from 0.023/m³ at Station IP02 to 1.873/m³ at Station IP09. Maximum density per collection was 2.218/m³ (July 12, Station IP09, near surface).

Annual mean density for stations north of, on the transect west of, and south of Salem was 0.029, 0.059, and 0.142/m³, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.073, 0.104, and 0.036, respectively (Table 3.1.2-5). Annual mean density was greatest (0.198/m³) at Station IP09; at other stations it ranged from 0.017 (Station IP02) to 0.184/m³ (Station IP11) (Table 3.1.2-6). From June 15 through July 27 mean density per date was greatest south of Salem. Subsequently, catch decreased with no discernible pattern. For eastern, midriver, and western stations mean density per date followed no discernible pattern (Table 3.1.2-7).

Annual mean density for surface, middepth, and bottom collections was 0.060, 0.112, and 0.084/m³, respectively.

A total of three naked goby young was collected on July 12, and August 10 at water temperature of 26.6 to 27.6 C and salinity of 1.0 to 5.0 ppt. Mean density per date was less than 0.001/m on July 12 and 0.001/m on August 10. One specimen per station was taken near bottom at stations IP02, and IP07 on August 10 and at Station IP09 on July 12.

4. Silversides taken in the Salem study area are potentially one of three species. Although current taxonomic literature indicates subtle morphological and meristic differences, the high degree of local and individual specimen variation made identification of eggs and larvae to genus or species tenuous and impracticable. However, young were identified to species and are discussed separately.

Silversides comprised 0.3 percent of the total catch and were represented by 191 specimens including 8 eggs, 182 larvae, and 1 young (Table 3.1.2-2). Annual mean density of eggs, larvae, and young was less than 0.001, 0.006, and less than 0.001/m³, respectively.

Eggs of the silversides were collected on June 15, June 28, an July 27 at water temperature of 21.0 to 27.0 C and salinity of 0.5 to 6.0 ppt. Mean density on these dates was 0.001, 0.001, and 0.002/m³, respectively (Table 3.1.2-3). Seven of the eight eggs collected were taken in bottom collections (Table 3.1.2-2). All eggs collected were viable (Table 3.1.2-8).

Larvae were collected from June 15 through August 10 at water temperature of 20.0 to 27.5 C and salinity to 10.0 ppt. Mean density per date increased from 0.008/m³ on June 15 to 0.037/m³ on July 27, then decreased to 0.013/m³ on August 10 (Table 3.1.2-3, Fig. 3.1.2-5).

Annual mean density for stations north of, on the transect west of, and south of Salem was 0.007, 0.008, and $0.003/m^3$, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.002, 0.002, and $0.013/m^3$, respectively (Table 3.1.2-5). Annual mean density was greatest (0.021/m³) at Station IP07; at other stations it ranged from 0.001 to 0.018/m³ (Table 3.1.2-6).

Annual mean density for surface, middepth, and bottom collections was 0.004, 0.001, and 0.010/m³ (Table 3.1.2-2). Bottom samples contained over 64 percent of the larval catch.

One young Atlantic silverside (Menidia menidia) was collected on June 28 at Station IP10 near bottom at water

temperature of 25.9 C and salinity of 4.5 ppt. Mean density on this date was less than $0.001/m^3$ (Tables 3.1.2-3).

COMPARISON OF YEARS

Since 1971 from 19 to 26 taxa of ichthyoplankton have been collected annually. Fishes taken each year were bay anchovy, naked goby, river herrings (Alosa spp.), weakfish, Atlantic silverside, silversides, northern pipefish (Syngnathus fuscus), white perch (Morone americana), striped bass (Morone saxatilis), American eel (Anguilla rostrata), and spot (Leiostomus xanthurus). Species taken for the first time in 1978 were the goldfish/carp (Carassius sp./Cyprinus sp.) and white sucker (Catostomus commersoni) (Table 3.1.2-9).

The total abundance of ichthyoplankton increased from 1971 through 1974. In 1975 annual mean density decreased by 60 percent, from 3.836/m³ in 1974 to 1.556/m³. In 1976 and 1977 it increased to 5.347 and 25.215/m³ respectively. Annual mean density decreased to 2.128/m³ in 1978.

The bay anchovy has dominated annual catch since 1971. Percent of the total catch has ranged from 77.3 to 97.7. In 1978 it comprised 87.8 percent of the total catch. Eggs of the bay anchovy have comprised from 96.0 to 99.9 percent of each annual egg catch. The percent egg catch (99.4 percent) was similar in 1978. Annual mean density was highest (13.728/m³) in 1977, increasing 400 percent from the 1976 level. In 1978 annual mean density of eggs was over 29 times less than that in 1977. Annual mean percent viable was 14.0 in 1978, but has ranged from 11.6 in 1975 to 25.2 in 1977. Since 1971 bay anchovy larvae have comprised from 68.7 to 98.2 percent of the annual larval catch. Annual mean density was highest in 1977 (10.885/m³), similar in 1976 (1.685) and 1978 (1.401), and low in 1973, 1974, and 1975 (0.197, 0.725, and 0.479, respectively).

Weakfish₃density increased from 1971 through 1975 $(0.021/m^3)$, decreased in 1976 (0.008) and peaked in 1977. Annual mean density in 1977 $(0.413/m^3)$ was more than 19 times greater than in 1975, 51 times greater than in 1976, and 2 times greater than in 1978. From 1974 through 1978 annual mean density of young weakfish remained low (<0.001 to $0.003/m^3$).

Mean density of naked goby increased from 1971 through 1976 $(0.446/m^3)$; it decreased in 1977 (0.121) and again in 1978 (0.076).

In 1978 the annual mean density $(2.128/m^3)$ of ichthyoplankton was similar to most other years (range 0.931 to 4.046), but was less than 12.5 percent $(17.921/m^3)$ of 1977 densities. During May through August of 1977 and 1978 mean salinity ranged from 3.0 to 15.0 ppt and 1.4 to 4.2 ppt, respectively; in previous years (1972-1977) it ranged from 1.7-9.0 ppt. Lower salinities in 1978 probably contributed to the slight decrease in ichthyoplankton density.

TEMPORAL DISTRIBUTION

During March through May at least seven species were taken. They were the marine spawned American eel and sand lance (<u>Ammodytes</u> spp.); the freshwater spawned white perch, striped bass, river herrings, and white sucker; and the estuarine spawned bay anchovy (Fig. 3.1.2-6). These species were taken in relatively low density per date (not exceeding 0.008/m³) (Table 3.1.2-3). The occurrence of marine spawned ichthyoplankton was the result of migration or transport to low salinity nursery grounds. The occurrence of freshwater spawned ichthyoplankton was largely the result of transport from upriver or from local tidal tributaries. The first occurrence of an estuarine spawned species during this period was on May 17.

During June through September, the period of maximum ichthyoplankton density, at least 13 species were collected. They were the marine spawned spot and windowpane (Scophthalmus aquosus); the freshwater spawned striped bass, white perch, river herrings, and minnows (Cyprinidae); and the estuarine spawned bay anchovy, weakfish, naked goby, hogchoker (Trinectes maculatus), black drum (Pogonias cromis), silversides, and northern pipefish. Bay anchovy, weakfish, and naked goby, the most abundant taxa during this period, were the product of local and downbay spawning. occurrence in the study area of ichthyoplankton spawned downbay was the result of upstream estuarine transport. Bay anchovy spawns in early evening (Hildebrand and Cable, 1930) and eggs have a relatively short incubation period (Kuntz, 1914). Peak density in June and July indicate that spawning occurred near the study area. Weakfish eggs have a longer incubation period (Harmic, 1958), and were in late stages of development (tail-bud and tail-free) when collected, suggesting a downbay origin. Naked goby eggs have not been taken in the area. The naked goby attaches its eggs to oyster and clam shells during spawning (Nelson, 1928). The adhesive nature of the egg and the historic lack of suitable substrate preclude its occurrence in samples taken near Artificial Island. Larvae and young of these three species occur in the area throughout the period and use it as a nursery.

During October through December three species were taken. They were the marine spawned Atlantic croaker (<u>Micropogon</u> <u>undulatus</u>) and the estuarine spawned bay anchovy and northern pipefish. The specimen of bay anchovy and northern pipefish which occurred during this period were products of earlier spawns. Although Atlantic croaker were taken in extremely low mean density per date (equal to or less than 0.001), this period typically represents their period of maximum abundance. The Atlantic croaker spawns offshore from September through January (Hildebrand and Cable, 1930). Larvae and young are subsequently transported up the estuary and occur in the area throughout the period.

TABLE 3.1.2-1 ICHTHYOPLANKTON SAMPLING STATIONS

Station	Location
IPOl	Between buoys "3" and C "27" and approximately 23 m east of the mouth of Chesapeake and Delaware Canal.
1902	Between buoy N "B" and the northern tip of Artificial Island.
1903	Between buoys N "#R" and R "4B" and equidistant from the shipping channel and New Jersey shore.
1904	Between buoys C "3R" and C "3B" and equidistant from the shipping channel and Reedy Island Dike.
IP05	Between buoys R "4B" and N "10L" and 92 m west of Artificial Island.
1906	Between buoys R "4B" and N "10L" and 46 m east of the shipping channel.
IP07	Between buoys R "2" and N "10L" and equidistant from the shipping channel and the Delaware shore.
IP08	Between buoys R "8L" and R "6L" and 46 m south- west of the Hope Creek Jetty.
1909	Between buoys R "8L" and R "6L" and 46 m north- east of the shipping channel.
IP10	Between buoys R "8L" and R "6L" and equidistant `from the shipping channel and the Delaware shore.
IP11	Between buoys R "6L" and R "4L" and equidistant from the shipping channel and the New Jersey shore.

•

IA SALEM IP 1978

DEPTH SAMPLED NO. OF SAMPLES VOL. Filtered (M3)		JRFACE 168 \$-312-2		IDDEPTH 47 3.519.8		0TT0M 168 1≠735.0		383 9,567.0
	NUMBER	DENSITY	NUMBER	DENSITY	NUMBER	DENSITY	NUMBER	DENSIT
TOTAL EGGS	2,454	.172	1,286	.365	9,914	.845	13,664	.46
TOTAL LARVAE	26,852	1.876	4,677	1.329	17,378	1.481	48,907	1-654
TOTAL YOUNG	185	.013	42	-012	97	.008	322	_01
EGGS:								
UNIDENTIFIABLE FISH	4	*					4	
ALOSA SPP.		474	1 207	.365	1 9,897	* •843	13,624	.45
A. PITCHILLI	2,443	.171	1,284	• 302	77071	•043	137024	
CARASSIUS/CYPRINUS	1	*			ż	.001	8	
MENUKAS/PENIDIA SPP. M. A-EFICANA	· 4	*			2	*	6	
M_ SAXAIILIS	10	_00Î	2	.001	Š	*	17	.0.0
C. PEGALIS	10	*	-		1	*	2	
T. MACULATUS	1	*					1	
12 - 2000 - 200	•							
LARVAE:								
UNIDENTIFIABLE FISH	67	.005			2	*	69	.00
ALOSA SPP.	21	_001	1	*	8	.001	30	. 04
A. HITCHILLI	25,001	1.747	3,417	.971	12,996	1.107	41,414	1_40
CYPRIMICAE	15	.001	1	*	16	.001	32	.00
CARASSIUS/CYPRINUS	5	ħ					3	
C. COMPERSONI	1	*	_				1	
MENERAS/MENIDIA SPP.	52	-004	2	-001	118	.010	182	.00
MORONE SPP.	3	*	1	π.	6	.001	10 88	
M. AMERICA IA	52	.004	· 1	*	35	.003 .001	28	_U(
M. SAXATILIS	15	_001	2	_001	11	∎001 ★	20 1	-00
SCIAENIUAE	718	-050	. 846	.240	3,145	.268	4,709	.15
C. MEGALIS	(10	.030	040		1	*	1	•••
M_ DIGULATUS	1	*			2	*	3	
P. CROWIS AMMODITES SP.		*			L		4	
S. BUSCI	861	.060	. 395	.112	982	.084	2.238	_0
S_ AQUUSUS	501		575	••••	1	*	1	
T_ MACULATUS	28	.002	11	.003	54	.005	93	.00

TABLE 3.1.2-2 TOTAL NUMBER AND ANNUAL MEAN DENSITY OF ICHTHYOPLANKTON

* # BELOW REPORTABLE LEVEL

IA SALEM IP 1978

3.1-37

.

.

TABLE 3.1.2-2 CONTINUED

DEPTH SAMPLED	St	URFACE	м	IDDEPTH	B	OTTOM	Ť	DIAL
	NUMBER	DENSITY	NUMBER	DENSITY	NUMBER	DENSITY	NUMBER	DENSITY
YOUNG:								
. ROSTRATA	7	*			11	.001	18	.011
L. MITCHILLI	164	.011	4	.001	24	.002	192	_U-Je
A_ MENIDIA					1	· · · · · •	1	•
. FUSCUS	2	*	9	. u03	9	.001	20	, dù1
. REGALIS	10	.001	29	.008	40	.004	85	_úus
. XANTHURUS					1	. *	1	
1. UNQULATUS					1	*	. 1	
L BUSCI					3	*	3	
S. AQUOSUS					1	*	1	•

* = BELOA REPORTABLE LEVEL

TABLE 3.1.2-3 MEAN DEMSITY PER DATE OF ICHTHYOPLANGTON TAKEN AT STATIONS NORTH OF, ON THE TRANSECT WEST OF, AND SOUTH OF SALEM

DATE		23/22	178			04/20/	78	
LOCATION	NORTH	WEST	SOUTH	TOTAL	NORTH	WEST	SOUTH	TOTAL
NO. OF SAMPLES	9	14	Ŷ	32	9	14	9	32
SAL. RANGE (PPT) Temp. Ränge (C) Vol. Filtered (43)	0.0- 0.0 5.1- 6.0 369.6	1.0- 3.0 4.3- 5.2 829.4	3.0- 6.0 4.0- 4.9 651.6	0.0- 6.0 4.0- 6.0 1.850.6	2.0- 9.0 10.8-11.2 871.8	4.0- 6.0 11.0-11.3 1,201.4	7.5- 9.0 10.8-11.0 911.0	2.0- 9.0 10.8-11.2 2,984.2
TOTAL EGGS					_014	.004	.002	.006
TOTAL LARVAE			.002	.001	-011 •	.003		.005
TOTAL YUUNG	.005	.005	.012	-004	.001	.001		.001
EGGS:								
UNIDÉNTIFIABLE FISH M_ Saxatilis					-002 -011	.004	-002	.001 .006
LARVAE:								
M. AMERICANA M. Saxatilis Ammodytës SP.			.002	.001	.008 .002 .001	.002		.002 .001 .001
YOUNG:								
A. HOSTHATA	.005	.005	2162	-0UB	.001	.001		.001

* = BELON REPORTABLE LEVEL

IA SALEM IP 1978

			<u>`</u>	TABLE 3.1.2-3 CONTINUED					
DATE LOCATION	NORTH	05/17 WEST	7/78 500TH	TOTAL	NORTH	06/15/ WEST	78 SOUTH	TOTAL	
							•		
NO. OF SAMPLES	9	14	9	32	9	13	9	31	
SAL. RANGE (PPI) TEMP. RANGE (C) Vol. Filtered (M3)	1.0- 2.0 14.7-15.1 860.0	3.0- 3.0 14.5-14.8 1,101.2	3.0+ 6.0 14.5+15.4 808.5	1.0- 6.0 14.5-15.4 2.769.7	0.0- 3.0 19.8-22.0 866.1	0.0- 1.5 20.8-21.4 861.6	1.0- 6.0 20.0-20.8 950.9	0.0- 6.0 19.8-22.0 2,678.6	
TOTAL EGGS	.005	.005	.001	.004		.009	.203	.075	
TOTAL LARVAE	.051	.011	.006	- 022	_150	1.016	5.165	2.209	
TOTAL YOUNG	.001			*	-002		.002	.001	
EGGS:									
UNIDENTIFIABLE FISH. Alosa spp.	.001	.001	. 001	∎001 *					
AL MITCHILLI CAMASSIUS/CYPRINUS	•001	.001		*		007	.203	.074	
MEMBRAS/MENIDIA SPP. M. Americana	.002	J04		-005		2 00 .		•00 1	
LARVAE:									
UNIDENTIFIAGLE FISH ALOSA SPP. A. PITCHILLI CYPRINIDAE CARASSIUS/CYPRINUS	.006 .009	.001		-002 -003	.002 .020 .021 .029	.070 .003 .534 .008 .003	2_954	023 007 1220 012 001	
C. COMMERSONI MEMBRAS/MENIDIA SPP. MCRONE SPP. M. AMEHICANA M. SAXATILIS C. REGALIS P. CROMIS G. BUSCI S. ADUOSUS	.001 .002 .015 .017	. 007 . 00 <i>5</i>	-002 -002 -001	* _001 _008 _007	.016 .007 .045 .005 .006	.007 .022 .001 .363 .001 .002	2002 2.220 .001 .006 .001	.008 .002 .022 .002 .907 .001 .003 *	
YOUNG:									
A. RUSTRATA S. FUSCUS	. 001			*	.001		<u>.</u> 001	*	
C. RÉGALIS S. Aquòsus					. 0U1		.001	*	

3.1-39

* = BELOW REPORTABLE LEVEL

				CONTINUED					
				****	**==*********			ان بن ان با ان ان	
DATE Location	NORTH	06/28 WEST	\$00TH	TOTAL	NORTH	07/12 West	SOUTH	TOTAL	
NO. OF SAMPLES	9	14	9	32	9	14	9	32	
SAL. RANGE (PPT) Temp. Range (C) Vol. Filterèd (M3)	1.0- 2.5 24.0-26.1 613.4	3.0- 4.0 25.1-25.5 861.2	3.0- 5.5 24.2-27.0 740.6	1.0- 5.5 * 24.0-27.0 2,221.2	2.0- 7.0 22.0-26.0 859.8		4.0- 6.0 23.2-24.5 895.4	2.0- 7.0 22.0-28.0 2.800.9	
TOTAL EGGS	.057	.565	5.522	2.091	.102	1.356	6.172	2.511	
TOTAL LARVAE	.546	1.360	7.089	2.945	2.438	5.303	20.931	9.442	
TOTAL YOUNG	.068	.020	.005	.028	.010	. 022	.008	.014	
EGGS:									
A. MIICHILLI Membras/Menidia SPP.	.057	-562 - J03	5.522	2.090	-102	1.355	6.169	2.510	
C. REGALIS T. MACULAIUS		. 303		.001		.001	.002	.001 *	
LARVAE:									
UNIDENTIFIABLE FISH Alosa spp.	.002 .002	.001		.001 *					
A. MITCHILLI	.447	.758	6.480	2.595	2.294	4.638	18.442	8.331	
MEMBRAS/MENIDIA SPP.	_011	.003	.015	.010	.030	_ 006	.001	.012	
C_ REGALIS	051	.059	.197	.107	. U60	.457	1.565	-683	
P. CROMIS		.001	201	*	54.3	340	0.0.7	10.	
G. BOSCI T. MACULATUS	.034	.228	_394 _003	.230 .001	-048 -006 \	_249 _013	.902 .021	.396 .014	
¥9046:									
A. MITCHILLI	.008			-002		.006	-002	.003	
M. MENIDIA			.001	. *		.002	.001	.0U1	
S. FUSCUS C. REGALIS	-060	.001 .017	.003 .001	ູປປ1 _ປ24	.010	.014	.003	.010	
L. XANTHURUS	-000	.301	.001	_U24 *	-UTU	.014	-003		
G. BUSCI		• 501		^			.001	ĸ	

* = BELOW REPORTABLE LEVEL

IA SALEM IP 1978

DATELOCATION	NORTH	07/27 WEST	778 5007H	TOTAL	NORTH	08/10/ West	78 SOUTH	TOTAL
	NOK IN	REST	30011	TOTAL		AL 31	30018	10120
NO. OF SAMPLES	9	14	9	32	9	14	9	32
AL. RANGE (PPT) EMP. RANGE (C) OL. FILTERED (M3)	5.0- 7.0 27.0-27.5 634.9	5.5- 7.5 26.5-28.0 838.8	5.0-10.0 25.5-27.0 512.8	5.0-10.0 25.5-28.0 1,986.5	3.0- 7.0 25.4-27.6 716.4	4.5- 5.0 26.2-27.6 967.6	5.0- 6.0 26.6-27.0 798.7	3.0- 7.0 25.4-27.6 2,482.7
TOTAL EGGS	.797	. 377	.950	. 659	_001	.284	. 146	.158
OTAL LARVAE	1.706	5.533	3.064	3.672	.842	_911	1.159	.971
TOTAL YOUNG	. 123		_006	.041	_050	.003	.001	.016
665:								
. MITCHILLI Embras/Menidia SPP.	.794 .003	.377	-948 -002	.657 .002	•001	.284	. 146	.158
ARVAE:								
. MITCHILLI EMBRAS/NENIDIA SPP. . REGALIS . BOSCI . MACULATUS	1.556 .003 .036 .093 .017	5.236 .072 .043 .166 .017	2.638 .021 .078 .322 .004	3.389 .037 .050 .183 .014	.677 .014 .007 .124 .020	.816 .018 .007 .059 .010	1.039 .006 .001 .110 .003	-848 -013 -005 -094 -010
(0046:					•		•	
. MITCHILLI . FUSCUS . REGALIS . 80SCI	.123		.006	_041	_046 _003` _001	.001 .001 .001	.001	.014 .001 . * .001

* # BELOW REPORTABLE LEVEL

IA SALEM IP 1978

DATE		08/31				09/13/		
0CAT10N	NORTH	WEST	SOUTH	TOTAL	NORTH	WEST	SOUTH	TOTAL
IO. OF SAMPLES	9	14	9	32	9	14	9	32
SAL_ RANGE (PPT) TEMP_ RANGE (C) TOL_ FILTERED (M3)	4.0- 6.5 27.1-28.0 810.3	6.5- 9.0 26.2-27.1 918.1	7.5-10.0 26.1-26.5 733.1	4.0-10.0 26.1-28.0 2,461.5	3_0-10_5 23_0-25.8 810_3	5.0- 5.5 24.2-26.4 846.7	7.0- 9.0 23.0-24.3 848.0	3.0+10.5 23.0-26.4 2,505.0
TOTAL EGGS	.002	.039	_014	.020	.001	.002	.004	.002
TOTAL LARVAE	.094	.015	.057	. 054 .	_037	.038	.018	.031
TOTAL YOUNG	.009	.001	_004	.004	.035	.008	.001	.014
5665:	•							
A. MITCHILLI	002	.039	<u>-</u> 014	.020	.001	.002	.004	.002
ARVAE:								
A. MITCHILLI SCIAENIDAE	.091	.009	.055	.050	.035	.035 .001	.018	•029 *
5. SÚSCI	÷002	.0ú7	.003	_004	.002	_001		.001
(OUNG:								
A. MITCHILLI	.UÚ7.		0.0.7	:002	.032	.004	0.04	.012
S. FUSCUS C. REGALIS	0 01	.001	_003 _001	_001 _001	-002 ·	.005	<u>,001</u>	.003

TABLE 3.1.2-3 CONTINUED

* = BELOW REPORTABLE LEVEL

IA SALEH IP 1978 .

3.1-42

5

*****	****			CONTINUED) 				
DATE LOCATION	NORTH	10/26 WEST	S/78 SOUTH	TOTAL	NORTH	10/27 West	7/78 South	TUTAL	
NO. OF SAMPLES	7	14	9	30	2	•		2	
SAL. RANGE (PPT) TEMP. RANGE (C) Vol. Filtered (M3)	5.5- 6.0 14.0-14.1 602.1	8_0-10_0 14_0+14_0 981_4	9.5-12.0 13.5-14.0 879.2	5.5-12.0 13.5-14.1 2,462.7	2.0- 2.0 14.0-14.8 125.1		 	2.0- 2.0 14.0-14.8 125.1	
TOTAL EGGS									
TOTAL LARVAE	.005		.011	.005	.008			_ 0u8	
TOTAL YOUNG	.022	.001		.006	_024			.024	
LARVAE:									
A. MITCHIELI M. UNDULATUS	,003 .002		. 011	_005 *	.008			.008	
YOUNG:									
A. MITCHILLI S. FUSCUS	.022	.001		_005 *	.024			- 024	
DATE LOCATION	NORTH	11/21 west	178 South	.TOTAL	NORTH	11/22 WEST	SOUTH	TOTAL	
NO. OF SAMPLES	9	14	5	28 .			4	4	
SAL. RANGE (PPT) Temp_ Range (C) Vol. Filtered (M3)	5.0- 6.0 9.5-10.5 640.9	6.0- 8.0 10.2-11.8 748.0	7.0- 9.0 10.5-11.0 430.3	5.0- 9.0 9.5-11.8 1.819.2	0.0	0_0	9.0-11.0 11.0-11.5 419.1	11_0 11_5 419_1	
TOTAL EGGS									
TOTAL LARVAE				· .					
TOTAL YOUNG	.009	-0U7	.005	.007			.002	-002	
YOUNG:									
4. MITCHILLI 5. Fuscus 4. undulatus	•009	-004 -001 -001	. 005	-006 -001 -001			.002	.002	
* = BELON REPORTABLE	LEVEL								

TABLE 3.1.2-3 CONTINUED

.

* = BELOW REPORTABLE LEVEL

JA SALEM IP 1978

TABLE 3.1.2-4 ANNUAL MEAN DENSITY OF ICHTHYOPLANKTON TAKEN AT STATIONS NORTH OF, ON THE TRANSECT WEST OF, AND SOUTH OF SALEM

	· · · · · · · · · · · · · · · · · · ·			
LOCATION	NOKTH	WEST	SOUTH	TOTAL
NO. UF SAMPLES	108	167	108	383
SAL_ RANGE (PP1)	0.0- 6.5	0.0- 9.5	1.0-11.5	0.0~11.5
TEMP. RANGE (C)	5.1-28.0	4.3-28.0	4.0 - 27.0	4.0 - 20.0
VOL. FILTERED (M3)	8,780.7	11,201.1	9,585.2	29,567.0
TOTAL ESS	.074	.228	1.091	_462
TOTAL LARVAE	.502	1.159	3.288	1.054
TOTAL FOUNG	.026	.006	.003	.011
EGGS:				
UNIDENTIFIABLE FISH	*		*	¥
ALUSA SPP.		. *		*
A. MITCHILLI	-072	• 226	1.091	.461
CARASSIUS/CYPRINUS		*		*
MENGRAS/MENIDIA SPP.	*	*	\$	*
M. ANERICANA	*	*		*
M. SAXATILIS C. Régilis	.001	×	я *	.001
T. MACULATUS		*	*	*
LARVAL:				
UNIDE /TIFIABLE FISH	. 001	.005		•005
ALOSA SPP.	_005	*		.001
A. MITCHILLI	- 4 3 8	. 998	2.755	1.401
CYPKINIDAE	.003	.001		.001
CARA/SIUS/CYPRINUS		*		Ŕ
C. CHARLERSONI	*			×
MEMIRAS/MENIDIA SPP.	_007	.008	.003	_00o
MORINE SPP.	.001		*	*
H_ AFERICANA	-002	-005	. *	.003
H. SAXATILIS	_002	_ UO 1	*	-UU1
SCIAE%ID4E		*		*
C. REGALIS	_013	•080	.386	. 15∀
M. UNDULATUS	*			*
P. CROMIS		*	*	. *
AMMODYTES SP.	*	*	*	*
G. BUSCI	_024	-U59	.142	.075

* = BELUW REPORTABLE LEVEL

************************		*****		
			· · · · · · · · · · · · · · · · · · ·	
LOCATION	NORTH	WEST	SOUTH	TOTAL
LARVAE:				
S. AQUUSUS T. Maculatus	. 003	.003	* •003	* • 0 0 3
YOUNG:				
A. RUSTRATA A. Mitchilli M. Ménidia	.001 .019	* •001	•001 •001	-001 -005
S. FUSCUS C. RÉGALIS L. XANTHURUS M. UNDULATUS G. BUSCI S. AQUOSUS	* _005 *	.001 .005 * *	.001 .001	•001 •003 * *
a	•		*	*

TABLE 3.1.2-4 CONTINUED

* # BELOA REPORTABLE LEVEL

IA SALEM IP 1978

TABLE 3.1.2-5							
ANNUAL MEAN PENSITY	OF :	I CHTHYOPLI	ANKTON	TAKEN	AT		
EASTERN, MID-RIVER,	AN	D WESTERN	STATIC	NS			

	***		. U & C & K & C & C & C & C & C & C & C & C	유 약 · 1일 · 10 · 23 · 26 · 13 도급 후 · 14 · 14 · 24 · 14 · 14 · 14 · 14 · 14
LOCATION NO. OF SAMPLES	EAST 60	155	WEST 96	TOTAL 311
SAL. RANGE (PPT) Temp. Range (C)	0_0-11_0 4_3 - 27_6	0.0-11-0	0-0-9-5	0.0-11.0
VOL. FILTERED (M3)	4.3-27-0	4.0-28.0 10,088.9	4_6-27.9 7,767.7	4.0-28.0 23,387.9
TOTAL EGGS	.190	.697	.224	.433
TOTAL LARVAE	1.230	1.710	2.007	1.707
TOTAL YOUNG	.013	. 004	.006	.007
Ε665:				
UNIDENTIFIABLE FISH	*		*	*
ALUSA SPP	400	*		*
A. MITCHILLI Carassius/cyprinus	.190	≈696 ★	-223	-432
MEMORAS/MENIDIA SPP.		*	*	н
M. AFERICANA		*	*	- \$
M. SAXATILIS	*	*	.001	\$
T. MACULATUS		*		*
LARVAL:				
UNIDENTIFIABLE FISH		006	*	.003
ALOSA SPP_	*	• *	*	•
A. MITCHILLI Cyprimidae	_749	1-406	1.886	1.427
CARASSIUS/CYPRINUS	ĸ	÷001	R	_001 ◆
MEMBRAS/ MENIDIA SPP.	.002	-002	.013	.006
MORDINE SPP.	*		.001	-005 *
N. AFERICANA	.001	-005	.003	.002
M. SAXAIILIS	_001	*	.001	.001
SCIAENIDAE		*		Ŕ
C. REGALIS	_ 399	-184	.063	-189
P_ CRGMIS		*	*	*
AMMODYTES SP.	*	*	*	4 ()
G. BUSCI S. AQUOSUS	.073	_104	.036	.075
T. MACULATUS	.003	-004	* • 0U3	* •003
1. HACOLATUS	.005	• UU 4	•003	•003

* = BELOW REPORTABLE LEVEL

TA SALEM IP 1978

3.1-46

5,

TABLE 3.1.2-5 CONTINUED											
LOCATION	EAST	NID-RIVER	WEST	TOTAL							
YOUNG:											
A_ ROSTRATA A_ HITCHILLI M_ MENIDIA S_ FUSCUS C_ REGALIS L_ XANTHURUS M_ UNDULATUS G_ BUSCI S_ AUNUSUS	_001 _003 _001 _008	* _001 _002 * *	.001 .002 * * .003	.001 .002 * .001 .003 * *							

* = BELU# REPORTABLE LEVEL

.

3.1-47

Т

...

• • •

.

		ANNUAL MI	EAN DENSITY	PER STATION OF	F ICHTHYOPLANKTON				
STATIU% DEPTH SAMPLED NO. OF SAMPLES VOL. FILTERED (M3)	SURFACE 12 1,137.8	190 MID 0	1 BOTTOM 12 732-8	TOTAL 24 1/870.0	SURFACE 12 1,150.2	IPO Mid O	2 BOTTOM 12 972.7	TOTAL 24 2,122_9	
TOTAL EGGS	.024		.057	.037	.017		.021	.018	
TOTAL LARVAE	1.089		.753	.957			.209	.258	
TOTAL TOUNG	.111		.001	.068	.007		.016	-011	
EGGS:									
UNIDENTIFIAÐLE FISM Á. MITCHILLI Memöras/Menidia spp.	.020		.056	. ()34	-002 -013		.017	.001 .015 .001	
M. AMERICANA M. SAXATILIS	-001 -003		_00 1	.001 .002	.002		_001	.001	
LARVAE: "				••					
UNIDENTIFIABLE FISH ALOSA SPP. A. MITCHILII CYPRINIDAE C. COMMERSONI MEMORAS/MENIDIA SPP. MORONE SPP. M. AMERICANA M. SAAHTILIS C. REGALIS M. UNDULATUS AMMUDYTES SP. G. BUSCI T. MACULATUS	.011 1.011 .002 .018 .010 .002 .003 .003 .003 .002		_001 _004 _635 _019 _001 _007 _003 _015 _018	.001 .008 .883 .001 .018 .001 .009 .002 .007 .027 .001	.003 .006 .263 .006 .001 .003 .001 .001 .001 .001		.031 .148 .011 .035 .035 .011 .035 .035 .035	-002 -004 -196 -063 * -004 -001 -003 -003 * * -017 -061	
YOUNG: A. ROSIKATA A. MITCHILLI S. FUSCUS C. REGALIS G. BOSCI	.111	,	•001	.001 .067	.007	•	.011 .001 .003 .001	_009 * _001 *	

TABLE 3.1.2-6 MEAN DENSITY PER STATION OF ICHTHYOPLANKT

= BELOW REPORTABLE LEVEL

**************************************	*********			TABLE 3.1.2-6 CONTINUED			48 8 8 9 9 9 9 9 9 7 7 4		
STATIUN Depth Sampled NO. of Samples Vol. Filtered (M3)	SURFACE 12 1,033,7	12 875-1	BUTTOM 12 997.4	TOTAL 4 36 2,909.2	SURFACE 12 1,107.3	. IPO MID O	4 BOTTOM 12 770.7	TOTAL 24 1,878.0	
TOTAL EGGS	-144	.253	.086	.157	<u>.</u> 006		. 100	-045	
TOTAL LARVAE	.651	.436	.335	- 478	.456		.231	.364	
TOTAL YOUNG	<u>_011</u>	.031	.018	.019	.016		.004	. 011	
EGGS:									
UNIDENTIFIABLE FISH A. MITCHILLI M. AMERICANA M. SAXATILIS	.001 .142 .001	_ 253	-U86	* •156 *	.005 .001 .001		.099 .001	.043 .001 .001	
LARVAE:									
UNIDENTIFIAQUE FISH ALOSA SPP. A. MITCHILLI CYPRINIDAE NEMBRAS/ MENIDIA SPP. N. ANEMICANA M. SALATILLS C. REGALIS G. MOSCI T. MACULATUS	-001 -621 -001 -002 -002 -004 -018 -002	- 334 - 001 - 002 - 038 - 038 - 058 - 003	.001 .269 .001 .007 .001 .003 .024 .025 .006	.001 .414 .001 .003 .001 .002 .002 .002 .020 .032 .004	.003 .421 .001 .003 .001 .010 .002 .002 .008 .006		- 001 - 135 - 003 - 005 - 001 - 008 - 004 - 032 - 032 - 009	-002 -001 -304 -002 -004 -001 -009 -003 -014 -018 -007	
YOUNG:							•.		
A. ROSTRATA A. MITCHILLI S. Fuscus C. Regalis	.011	.002 .028	.001 .004 .013	* .005 .001 .013	.002 .008 .006		.001 .001 .001	-002 -005 -001 -004	

* = BELOW REPORTABLE LEVEL

. IA SALEM IP 1978

TABLE 3.1.2-6 CONTINUED

			******	CONTINUED	****		******		
STATION DEPTH SAMPLED NO. OF SAMPLES VOL. FILTERED (M3)	SURFACE 24 1,495.2	IPO5 Mid U	BOTTOM 24 1.126.4	TUTAL 48 2,621.6	SURFACE 24 1,807.5	IPU6 MID 23 1,668-2	BOTTO4 24 1/494.1	101AL 71 4,969.8	
TOTAL EUSS	.337		-841	.553	001	.020	.240	.079	•
TOTAL LARVAE	.976		.601	.815	- 581	.671	.733	.657	
TOTAL YUJNG	.005		.010	-00 7	-001	-007	. U04	-004	
EGGS:									
ALOSA SPP. A. MITCHILLI CARASSIUS/CYPRINUS MEMBRAS/MENIDIA SPP.	• 334 • UO1		-001 -834 -001 -004	* _549 * _002		.019	<u>.</u> 240	.078	
M. AHERICANA M. SAXATILIS T. MACULATUS	-001 -001		.062	.002 ★	.001	.001		÷	
LARVAE:									
UNIDENTIFIABLE FISH					.033		.001	-012	
ALOSA SPP.	.001		<u>-001</u>	.001		.001	.001	· +	
A. PITCHILLI	• 815		.471	. 067	.429	-428	.556	.475	
CYPRINIDAE	.003		-00 2	-002		_ 001		4	
CARASSIUS/CYPRINUS	-002		01	.001				6.0.0	
MEMBRAS/MENIDIA SPP.	.001		-004	-003	.003	.001	-003	-002	
M. APERICANA M. SAXATILIS	_U08		-004	.006	.001	.001	.003	-001	
SCIAEGIDAE	- 001		_001 _001	•001 ★			.001	*	
C. REGALIS	.023		.030	°.026	.050	.193	.106	.115	
P. CRCHIS	.001		.0,0	*	. 2050	• 1 / 3			
ANNODITES SP.	.001			*					
G. 805(1	.120		.080	.103	.060	.046	.027	.045	
T. MACULATUS	.001		.007	.003	.004	-005	.007	.004	
YOUNG:									
A BOSTEATA	0.04		0.00						
A. ROSTRATA A. MITCHILLI	.001 .003		.002 .002	.UU1 .U02			001	0.04	
S. FUSCUS	_003 _001		.002			-002	.001	-001	
C. REGALIS				-001	004	.003	004	.001	
L. XANTHURUS	.001		-004	.003	°001	.002	.003	-002	
M. UNDULATUS			. 00 1	\$			0.04		
4. UHVUL4103							.001	*	

* = BELUN REPORTABLE LEVEL

*****			****	TABLE 3.1.2 CONTINUED		*******			
STATION		1007		IP08					
DEPTH SAMPLED NO. OF SAMPLES	SURFACE 24	dim C	BOTTOM 24	TOTAL 48	SURFACE	MID	BOTTON	TOTAL	
VOL. FILTERED (M3)	1,994.2	U	1,615.5	40 3,609.7	12 1,073.1	0	12 949.0	24 2,022.1	
TOTAL EGGS	.092		.326	.197	.212		.267	-237	
TOTAL LARVAE	2.684		1.379	2.100	. 1.815		2.874	2.312	
TOTAL YOUNG	.002		.013	.ův7	.003		.007	.005	
EGGS:	. ·								
A. MITCHILLI	.091		.325	. 196	.212		.267	-237	
M_ SAXATILIS	.001		.001	.001					
LARVAE:									
A. MITCHILLI	2.561		1.214	1.958	1.633		.778	1.231	
MEMBRAS/HENIDIA SPP.	.004		.041	021	.001		.001	.001	
M. ANERICANA	.002		.001	ະບບ1				•	
M_ SAXATILIS	-001		.001	_001					
C. REGALIS	.050	•	. Ú89	•U7U	.117		1.880	- 945	
P. CRUMIS Ammúdites sp.			_001	*	0.01				
G. SUSCI	_001 _058		.032	* U46	.001 .063		.211	* _133	
T. HACULATUS	.003		.002	-048	.003		.004	-135	
YOUNG:							•		
A. ROSTRATA			.001	.001	.002		-002	-002	
A. HITCHILLI	.001		.001	001	. 001		001	.001	
S. FUSCUS	.001		_UU1	.001			.005	.001	
C. REGALIS			_ 010	.004					
G. EOSCI			.001	*		•			
S. AGUOSUS							.001	*	

* # BELO# REPORTABLE LEVEL

IA SALEM IP 1978

				TABLE 3.1.2-6 CONTINUED	****			, , ,	. 44 44 88 64 64 64 64 64
STATION DEPTH SAMPLED NO. OF SAMPLES VOL. FILTENED (M3)	SURFACE 12 1.098.6	1P09 Mid 12 973.5	80110M 12 12025-4	TUTAL 36 3/097.5	SURFACE 12 1,269.2	IP1 MID O	0 801104 12 1,010.8	TOTAL 24 22280.0	
TOTAL LOSS	.095	1_059	4.362	1.870	.115		.790	-414	
TOTAL LARVAE	4.752	3-261	4.368	4.150	4.719		1.325	5.214	
TOTAL YOUNG		.0U 3	. 00 5	.005	.002		.003	-002	
EGGS:									
UNIDENTIFIAG'E FISH A. MITCHILLI MEMBRAS/MENIDIA SPP. M. SAXATILIS	.094 .001	1.058 .001	4.302	1.810 .001	-001 -114		.759 .001	* ~414 *	
LARVAE:									
A. MITCHILLI MEMERAS/MENIDIA SPP. MOROVE SPP. M. AMERICAVA M. SAXATILIS C. MEGHLIS P. CRUMIS G. BUSCI S. AQUOSUS T. MACULATUS	4.352 .221 .178	2.476 .001 .504 .275 .005	3.636 .002 .580 .001 .144 .005	3.525 -001 -429 * -198 -003	4.596 013 002 002 001 055 050 050		1.154 .035 .136 .017 .001 .602	3.075 .009 .001 .001 .091 .035 .002	·
YOUNG:									
A. MITCHILLI M. RENIDIA S. FUSCUS C. REGALIS G. BOSCI * # HELVU REPORTABLE I		.001 .001	.001 .003 .001	* _001 _001 *	.002		200. 2001	•002 *	

* = BELOW REPORTABLE LEVEL

* * * * * * * * * * * * * * * * * * * *	***			TABLE 3.1.2-6 CONTINUED	* * * * * * * * * * * * * * * * * * * *		
STATION DEPTI SAMPLED NO. OF SAMPLES VOL. FILTERED (M3)	SURFACE 12 1.145.4	IP11 Mid J	BUTTOM 12 1,040.2	TOTAL 24 2,185.6			·
TOTAL EGGS	.958		2.242	1.569			
TOTAL LARVAE	2.682		3.429	3.038			
TOT41 YU. VG	.003		-006	.004			
£Gúš:							
A. MITCHILLI Membras/Menidia SPP.	.957		2.241	1.568			
C. REGALIS	.001		.001	.001			
LARVAE:							
A. MITCH.LLI	2.595		5-8855	2.732			
F. HETERICLITUS MERERAS/RENIDIA SPP. M. ARERICANA			.005	.002			
C. REGILIS G. BÚSÍI T. MALULATUS	.032 .055		.209 .327 .007	-116 -184 -003	·		
YOUNG:							
A. RUSTRATA B. TYAANAUS	-002		.002	.002			
A. MIICHILLI S. FUSCUS C. AEGALIS	-001		-001 -001 -002	•001 * •001	. • .	·	

.

.

* = BELO+ REPORTABLE LEVEL

3.1-53

.

 IA SALEM IP 1978

ATE		03/22				04/20/	78		•
OCATION	EAST	MIDRIVER	WEST	TOTAL	EAST	MIDRIVER	WEST	TOTAL	
IO. OF SAMPLES	9	9	8	26	9	9	8	26	
AL. RANGE (PPT) 'EMP_ RANGE (C) 'OL. FILTERED (M3)	0.0- 4.0 4.3- 5.5 552.8	2.0- 4.0 4.0- 4.6 538.7	0.0- 4.0 4.6- 5.6 471.8	0.u- 4.0 4.0- 5.6 1.563.3	3.5- 9.0 10.8-11.1 656.8	5.0- 8.0 10.9-11.0 890.0	3.5- 4.5 11.0-11.3 738.1	3_5- 9_0 10_8-11_3 2,284_9	
OTAL EGGS					.003	.004	.007	<u>.</u> ŭu5	
OTAL LARVAE	•002 [.]		,	.001	.005	.001	.001	.003	
OTAL YOUNG	.011		.008	.006	.003			.001	
GGS:								·	
NIDENTIFIAGLE FISH . Saxatilis					-002 -002	" 004	و ()7		
ARVAE:									
. AMERICANA . Saxatilis MMODYTES SP.	-002			<u>.</u> 001	-003 -002	.001	.uc1 .001	ູ -001 -001	
OUNG:									
- ROSTRATA	.011	•	.008						

* = BELOW REPORTABLE LEVEL

IA SALEM IP 1978

4

	36 6 *			TABLE 3.1.2-7 CONTINUED	****				
DATE		05/17	//78		•	06/15/	78		
LOCATION	EAST	MIDRIVER	WEST	TOTAL	EAST	MIDRIVER	WEST	TOTAL	
NO. OF SAMPLES	9	9	8	. 26	9	8	8	25	
SAL. RANGE (PPT). TEMP. RANGE (C) Vol. filtered (M3)	2.0- 4.0 14.5-14.8 796.6	3.0+ 5.5 14.5-14.7 754.0	1.0- 4.0 14.5-14.8 582.5	1.0- 5.5 14.5-14.8 2,133.1	0.0+ 0.5 21.0-21.4 646.1	1.0- 6.0 20.0-21.4 736.5,	0.0- 3.5 20.2-21.4 707.9	0-0- 6-0 20-0-21-4 2,090-5	
TOTAL EGGS	.008		_005	_00Å	.005	.255	•014	-096	
TOTAL LARVAE	.009	.005	.045	.017	3.360	2.934	1.530	2.590	
TOTAL YOUNG					.003	.001	.001	.002	
EGGS:									
UNIDENTIFIABLE FISH Alosa spp.	. 001		- 00 2	× *					
A. MITCHILLI CARASSIUS/CIPRINUS	.001		-005	± ★	2 00	.255	.014	.095	
MEHBRAS/HENIDIA SPP. M. Americana	.005		-002	002	.003			. 001	
LARVAE:								×	
UNIDENTIFIAGLE FISH ALOSA SPP. A. MITCHILLI CYPRINIDAE CARASSIOS/CYPRINUS MEMUKRAS/HENIDIA SPP. HOHONE SPP. M. AMERICANA M. SASATILIS	.004 .005	.001	-005 -002 -019 -014	-001 -001 -001 -008 -006	-006 -687 -012 -005 -009 -003 -029 -003	.081 .001 2.178 .001 .005 .004	1.168 .004 .001 .001 .016 .001	.029 .002 1.375 .006 .001 .005 .001 .016 .001	
C. REGALIS P. CFO4IS G. BUSCI S. AQUUSUS					2.603	.659 .001 .003	.331 .006 .001	1.149 .001 .003	
YOUNG:									
A. ROSTRATA S. FUSCUS C. REGALIS 5. AQUOSJS					.002 .002	.001	•06 1	* * * *	

N = BELOA REPORTABLE LEVEL

IA SALEM IP 1978

3.1-55

.

*				TABLE 3.1.2-7 CONTINUED					
DATE Location	EAST	06/28 Midriver	WEST	TOTAL	EAST	07/12 Midriver	/78 	TOTAL	
NO. OF SAMPLES	9	Ŷ	8	20	9	9	к	20	
SAL. RANGE (PPT) Temp. Range (C) Vol. Filtereo (M3)	2.0- 5.0 24.0-25.9 609.3	3.0- 5.0 25.1-27.0 571.8	2.0- 4.5 25.0-26.0 560.4	2.0- 5.0 24.0-27.0 1.741.5	3_0+ 5_0 24_3-26.0 660_4	4.0- 5.0 23.2-24.5 786.1	2.5- 6.0 23.4-26.0 732.6	225- 620 2322-2620 2217921	
TOTAL EGGS	.235	6.852	.728	2.566	2.229	1.395	1.003	1.718	
TOTAL LARVAE	2.857	3.655	2.161	2.895	3-493	14.127	10.093	9.817	
TOTAL YOUNG	-061	.012	.023	.033	-023	.011	.015	.010	
EGGS:									
A. MITCHILLI Membras/Menidia SPP. T. Maculatus	.230 .005	6.852	.728	2.564 .002	2.227 .002	1.395	1.603	1.717 *	
LARVAE:									
UNIDENTIFIABLE FISH A. MITCHILLI MENBRAS/YENIDIA SPP. C. REGALIS P. CROMIS G. BOSCI	2.378 .002 .199 .279	.002 3.300 .003 .103 .247	1.913 .020 .064 .002 .162	.001 2.531 .008 .124 .001 .231	2.848 .002 .312 .321	11.651 _009 1.679 _767	10-534 -004 -248 -093	8.606 .005 .784 .405	
T. HACULATUS					-011	°050	_ 014	.015	
YOUNG: A. MITCHILLI M. MENIDIA S. FUSCUS C. REGALIS L. XANTHURUS G. BOSCI	.005 .054 .002	.012	.002 .021	.001 .002 .030 .001	_006 _003 _014	.005 .001 .004 .001	•++15	ູນິຍິ4 .ບໍ່ມີ1 .ບີ11	

* # BELON REPORTABLE LEVEL

	125 Made 16 16 16 16 1 16 16 16 16 16 16 16 16 16 16 16 16 16	*****		TABLE 3.1.2-7 CONTINUED]			
DATE		07/27	178		08/10/78.			
LOCATION	EAST	MIDRIVER	WEST	TOTAL	EAST	MIDRIVER	WEST	TOTAL
NO. OF SAMPLES	9	. 9	8	26	· 9	9	8	26
SAL. RANGE (PPT) TEMP. RANGE (C) VOL. FILTERED (M3)	6.5- 7.5 27.0-28.0 434.6	5.0- 8.0 26.7-27.0 482.2	5.0- 7.0 26.4-27.5 591.4	5.0- 8.0 26.4-28.0 1,508.2	5.0- 5.0 27.0-27.6 648.7	5.0- 6.0 26.2-26.7 690:2	3.17- 6.0 26.3-27.0 768.1	3.0- 6.0 26.2-27.6 2,107.0
TOTAL EGGS	1.102	1.348	.210	_831	.432	.155	.005	.180
FOTAL LARVAE	2.358	.543	7.689	3_868	1.417	-714	.893	.996
FOTAL YOUNG	"02 1		.003	_007	-002	.001	.004	.002
EGGS:								
A. MITCHILLI Membras/menidia spp.	1.102	1.348	-208 -002	-830 -901	-432	. 155	. ∪05	.186
ARVAE:					•			
A. MITCHILLI MEMBRAS/MENIDIA SPP. C. REGALIS 5. BOSCI T. MACULATUS	1.914 .007 .055 .368 .014	- 340 - 002 - 058 - 129 - 015	7.369 .110 .059 .134 .017	3.550 .046 .058 .200 .015	1.255 .011 .005 .129 .017	.653 .010 .039 .012	.811 .029 .601 .044 .008	.896 .014 .015 .069 .012
YOUNG:								
A. MITCHILLI S. FUSCUS C. REGALIS G. BOSCI	.021		.003	.007	-002	. 001	.001 .001 .001	* · •001 *

* = SELON REPORTABLE LEVEL

IA SALEM IP 1978

ω • 1-57

	****		***	TABLE 3.1.2-7 CONTINUED						
DATE LOCATION	D8/31/78 EAST MIDRIVER WEST			TOTAL	EAST	09/13/ MIDRIVER	78 west	TOTAL		
NO. OF SAMPLES	9	9	. 8	26	9	9	в	20		
SAL. RANGE (PPT) Temp. Range (C) Vol. Filtered (M3)	6.0- 9.5 26.1-27.2 686.6	6.5-10.0 26.3-23.8 601.7	5.0- 9.5 26.1-27.9 669.4	5.0-10.0 26.1-27.9 2.017.7	4.5- 5.5 24.0-26.4 587.3	5.5- 9.0 24.0-24.5 713.0	4.5~ 8.0 23.0-25.0 036.8	4.5- 9.0 23.0-26.4 1.937.1		
TOTAL EGGS	.004	.048	.015	-055		.006	.002	.003		
TOTAL LARVAE	.026	• 906	. 034	_022	.014	.024	UJ9	.020		
TOTAL YOUNG	.003	.003	.001	- 002	.010	.006	.019	.011		
EGGS:										
A. HITCHILLI	.004	048	.015	_022		.006	.002	.003		
LARVAE:										
A_ HITCHILLI Sciaenidae	.023	-005	.028	_018	.009	.024	- 039	.024		
G. BOSCI	.003	.005	.006	.004	2002 2003			_001 _001		
YOUNG:	•									
A. MITCHILLI S. FUSCUS C. REGALIS	•00 3	-002 -002	-001	* * _001	-009 -002	. 006	.017 .002	-008 -003		

* 3 BELOW REPORTABLE LEVEL

IA SALEM IP 1978

.

레 다 비행 분 명상 약 위 한 후 두 수 원 장 당 가 난 것	*****			CONTINUED						
DATE LOCATION	10/2 EAST MIDRIVER		WEST	TOTAL	11/21/78 EAST MIDRIVER WEST			TOTAL		
NO. OF SAMPLES	9	9	8	26	. 7	9	8	24		
SAL. RANGE (PPT) Temp. Range (C) Vol. Filtered (M3)	6.0-11.0 13.8-14.0 717.5	9.5-12.0 14.0-14.0 672.8	5.5-12.0 13.9-14.1 683.3	5.5-12.0 13.8-14.1 2.073.6	6.0- 8.D 9.5-11.8 341.1	7.0- 9.0 11.0-11.1 570.3	5.5- 8.0 9.8-10.6 625.4	5.5- 9.0 9.5-11.8 1,536.8		
TOTAL EGGS			•							
TOTAL LARVAE	.001	.001	-012	LU05						
TOTAL YOUNG			. 001	*	.015	.005	.003	.007		
LARVAE:				•						
A. MITCHILLI	.001	.001	.012	_005						
YOUNG:	`									
A. MITCHILLI S. FUSCUS M. UNDULATUS			.001	×	.015	002 002 002	.003	-005 -001 -001		

DATE 11/22/78 LOCATION MIDRIVER EAST WEST TOTAL HO. OF SAMPLES 2 2 SAL. RANGE (PPT) TEMP. RANGE (C) 9.0-10.0 9.0-10.0 11.0-11.1 -VOL. FILTERED (M3) 215.1 J_0 215.1 · · 0_0

TOTAL EGGS

TOTAL LARVAE

TOTAL YOUNG

* # BELOW REPORTABLE LEVEL

IA SALEM IP 1978

ı.

ω.

TABLE 3,1.2-8 NUMBERS AND PERCENT VIABLE OF FISH EGGS SUMMARIZED BY SPECIES, 1978

		SURFACE	Mean	MIDD	EPTH		BOTTOM	Noon		TOTAL	
Date	No. of Eggs	Percent Viable	Salinity (ppt)	No. of Eggs	Percent Viable	No. of Eggs	Percent Viable	Mean Salinity (ppt)	No. of Eggs	Percent Viable	Mean Salinity (ppt)
				Bay and	hovy, Anch	noa mitchil	<u>li</u> .				
May 17 June 15 June 28 July 12 July 27 August 10 August 31 September 13	1 250 1,771 293 127 1	0.0 2.8 7.9 22.9 22.0 0.0	1.0 1.8 3.6 4.3 6.4 5.1 7.2 7.0	424 430 421 6 2 1	6.4 5.1 16.6 0.0 0.0 0.0	1 198 3,968 4,828 592 260 46 4	0.0 32.8 15.9 13.2 32.6 9.2 2.2 0.0	2.0 2.9 3.7 4.6 7.00 5.4 8.5 7.4	1 199 4,642 7,029 1,306 393 48 6	0.0 33.7 14.2 11.4 25.2 13.2 2.1 0.0	1.5 2.4 3.5 4.5 6.7 5.3 7.9 7.2
Total	2,443	9.9	4.6	1,284	8.6	9,897	15.7	5.2	13,624	14.0	4.9
			S	ilverside	s, <u>Membras</u>	sp./Menid	ia spp.				
June 15 June 28 July 27	1	100.0	0.0 3.0 6.5			2 2 3	100.0 100.0 100.0	0.5 3.0 6.3	2 3 3	100.0 100.0 100.0	0.3 3.0 6.4
Total	l	100.0	3.2			7	100.0	3.3	8	100.0	3.2
				White p	erch, More	one america	na				
May 17	4	16.7	1.7			2	0.0	2.0	6	8.3	1.8
				Striped 1	bass, More	ne saxatil	is				
April 20	10	0.0	4.3	2	0.0	5	0.0	4.6	17	0.0	4.4
				Weakfi	sh, <u>Cynos</u> c	ion regali	s				
July 12 ·	1	0.0	5.0			l	100.0	7.0	2	50.0	7.0
				Hogchoke	r, <u>Trinect</u>	es maculat	us	-			
July 12	1	100.0	5.0					5.0	1	100.0	5.0

	N RANK 3,705 1 1,444 2 188 8 329 4 317 5	PERCENT OF TOTAL 87.0 5.3	N/C 26.9
G. BOSCI 632 2 6.7 0.9 ALOSA SPP. 268 3 2.8 0.4 B. THRATUDS 186 4 2.0 0.3 C. REGALIS 168 5 1.8 0.2 M. MENIDIA 95 6 1.0 0.1 S. FUSCUS 78 7 0.8 0.1 NEMURAS/MENIDIA SPP. 39 8 0.4 c0.1 A. AESTIVELIS 35 9 0.4 c0.1 A. AESTIVELUS 31 10 0.3 c0.1 M. AMERIANS 29 0.3 c0.1 A. AESTIVELIS 20 0.2 c0.1 A. AESTIVELS 10 0.2 c0.1 A. AESTIVELANA 29 0.3 c0.1 A. PSEUDOHARENSUS 25 0.2 c0.1 S. CHARSURA 19 0.2 c0.1 M. UNDULATUS 15 0.1 c0.1 VIDULUS SPP. 6 CU.1 c0.1 A. SAATILIS 12 0.1 c0.1	1,444 2 188 8 329 4	5.3	26-9
BOSCI 632 2 6.7 0.9 LOSA SPP. 268 3 2.8 0.4 . TrAAPUUS 186 4 2.0 0.3 . AEGALIS 168 5 1.8 0.2 . FUSCUS 78 7 0.8 0.1 . FUSCUS 78 7 0.8 0.1 . AESTIVELIS 35 9 0.4 (0.1 . AESTIVELIS 35 9 0.4 (0.1 . AEKRICAMA 29 0.3 (0.1 . UNOULATUS 15 0.1 (0.1 . SAXATILIS 12 0.1 (0.1 . SANATILIS 12 0.1 (0.1 . BERTULINA 4 (0.1 (0.1 .	1,444 2 188 8 329 4	5.3	26-9
5. 608CI 632 2 6.7 0.9 ALDSA SPP. 268 3 2.8 0.4 S. THATAUDS 186 4 2.0 0.3	1,444 2 188 8 329 4	5.3	
ALOSA SPP. 268 3 2.8 0.4 S. TrkANNUS 186 4 2.0 0.3 C. REGALIS 168 5 1.8 0.2 M. MENIDIA 95 6 1.0 0.1 S. FUSCUS 78 7 0.8 0.1 NEMBRAS/MENIDIA SPP. 39 8 0.4 (0.1 L. ASSTIVALIS 35 9 0.4 (0.1 L. ASSTIVALIS 35 9 0.4 (0.1 L. MACULATUS 31 10 0.3 (0.1 L. MASUDATUS 29 0.3 (0.1 L. MASUDALATUS 10 0.2 (0.1 L. MASUDALATUS 15 0.1 (0.1 L. MASUDALATUS 15 0.1 (0.1 L. MASUDALATUS 12 0.1 (0.1 L. MASUNALATUS 12 0.1 (0.1 L. MASUNALATUS 12 0.1 (0.1 L. MARTUNAL 4 0.1 (0.1 L. MARTUNAL 2 0.1 (0.1	188 8 329 4		1.6
1. #EGALIS 168 5 1.8 0.2 1. #EHIDIA 95 6 1.0 0.1 . FUSCUS 78 7 0.8 0.1 IEMBRAS/MERIDIA SPP. 39 8 0.4 0.1 . AESTIVALIS 35 9 0.4 0.1 . AESTIVALIS 35 9 0.4 0.1 . AMERICAMA 29 0.3 0.1 . AMERICAMA 29 0.3 0.1 . PSEUDOHAREBOUS 25 0.2 0.1 . UNDULATUS 15 0.1 0.1 . UNDULATUS 12 0.1 0.1 . SAXATILIS 12 0.1 0.1 UNDULUS SPP. 6 CU.1 CU.1 UNDULUS SPP. 5 CU.1 CU.1 . BERYLLINA 4 CU.1 CU.1 . BERYLLINA 2 CO.1 CU.1 . BERYLLINA 4 CU.1 CU.1 . BERYLLINA 4 CU.1 CU.1 . BERYLLINA 4 CU.1	329 4	0.7	0.2
1. MEHIDIA 95 6 1.0 0.1 2. FUSCUS 78 7 0.8 0.1 DEMUBAS/MENDIA SPP. 39 8 0.4 <0.1		1.2	0.4
I. MENIDIA 95 6 1.0 0.1 2. FUSCUS 78 7 0.8 0.1 EMBAS/MENIDA 39 8 0.4 0.1 1. AESTIVALIS 35 9 0.4 0.1 1. AESTIVALIS 35 9 0.4 0.1 1. AESTIVALIS 35 9 0.4 0.1 1. AESTIVALIS 31 10 0.3 0.1 1. AESTIVALIS 31 10 0.3 0.1 1. AESTIVALIS 10 0.2 0.1 0.1 1. AESTIVALIS 12 0.1 0.1 0.1 1. UNDULATUS 12 0.1 0.1 0.1 1. UNDULUS SPP. 6 0.1 0.1 0.1 1. BERYLLIMA 4 0.1 0.1 0.1 1. BERYLLIMA 4 0.1 0.1 0.1 1. AATATNARS 2 0.1 0.1 0.1 1. SALTATNERS 1 0.1 <td></td> <td>1.2</td> <td>0.3</td>		1.2	0.3
- FUSCUS 78 7 0.8 0.1 EMBRAS/NENIDIA SPP. 39 8 0.4 <0.1	ģ	<0.1	<0.1
EMBRAS/MENIDIA SPP. 39 8 0.4 c0.1 . AESTIVALIS 35 9 0.4 c0.1 . MACULAIUS 31 10 0.3 c0.1 . AMERILATUS 29 0.3 c0.1 . PSEUDDHARENGUS 25 0.2 c0.1 . CHAYSURA 19 0.2 c0.1 . UNDULATUS 15 0.1 c0.1 . SAXATILIS 12 0.1 c0.1 . UNDULATUS 15 0.1 c0.1 . SAXATILIS 12 0.1 c0.1 . UNDULATUS 5 cu.1 c0.1 . SAXATILIS 12 0.1 c0.1 . UNDULATUS 2 0.1 c0.1 . BERYLLANA 4 c0.1 c0.1 . BERYLLINA 4 c0.1 c0.1 . ANTHURUS 1 c0.1 c0.1 . HETEYOLITUS 1 c0.1 c0.1 . HETEYOLITUS 1 c0.1 c0.1 . HETEYOLITUS 1 c0.1 c0.1 <tr< td=""><td>34</td><td>0.1</td><td><0.1</td></tr<>	34	0.1	<0.1
AESTIVELIS 35 9 0.4 (0.1) MARCULATUS 31 10 0.3 (0.1) AMERICANA 29 0.3 (0.1) PSEUDOHARENGUS 25 0.2 (0.1) CHAYSURA 19 0.2 (0.1) CHAYSURA 19 0.2 (0.1) CHAYSURA 19 0.2 (0.1) SAXATILIS 112 0.1 (0.1) UNDULUS SPP. 6 CU.1 (0.1) ONDRE SPP. 5 CU.1 (0.1) ORDRE SPP. 5 CU.1 (0.1) BERYLLINA 4 CO.1 (0.1) NOTATINENT 1 CO.1 (0.1) AMERIANDAUS 2 CO.1 (0.1) AMATHURUS 1 CO.1 (0.1) AMATHURUS 1 CO.1 (0.1) SALTATINEN 1 CO.1 (0.1) SALTATINEN 1 CO.1 (0.1) AMERICANTHUS 1 CO.1 (0.1) HIPPOS 0<	26	<0.1	<0.1
. #ACULATUS 31 10 0.3 C0.1 . #AERICAMA 29 0.3 C0.1 . PSEUD0HARENGUS 25 0.2 C0.1 . CHAYSURA 19 0.2 C0.1 . UNDULATUS 15 0.1 C0.1 . UNDULATUS 15 0.1 C0.1 . UNDULATUS 15 0.1 C0.1 . UNDULUS SPP. 6 C0.1 C0.1 . UNDULUS SPP. 6 C0.1 C0.1 . BERYLLINA 4 C0.1 C0.1 . BERYLLINA 4 C0.1 C0.1 . ANTHURUS 2 C0.1 C0.1 . ANTHURUS 1 C0.1 C0.1 . ANTHURUS 1 C0.1 C0.1 . HIPPOS 1 C0.1 C0.1 . KAULANS 1 C0.1 C0.1 . TRIACAMTHUS 1 C0.1 C0.1 . FLAVES 0 0 0 . MUCHALIS 0 0 0 . MARTINICA 0 0	64	0.2	<0.1
AMERICANA 29 0.3 C0.1 PSEUDDHAKENGUS 25 0.2 C0.1 CHAYSURA 19 0.2 C0.1 CHAYSURA 19 0.2 C0.1 SARATILIS 15 0.1 C0.1 UNDULATUS 15 0.1 C0.1 SARATILIS 12 0.1 C0.1 UNDULUS SPP. 6 C0.1 C0.1 ORDNE SPP. 5 C0.1 C0.1 BERYLLINA 4 C0.1 C0.1 - ROSTRATA 4 C0.1 C0.1 - SACTATRIX 1 C0.1 C0.1 - HEFPOCLITUS 1 C0.1 C0.1 - HIPPOS 1 C0.1 C0.1 - KALATRIX 1 C0.1 C0.1 - EVOLANS 1 C0.1 C0.1 - NUCHALIS 0 0 0	0	0	
PSEUDOHAREHGUS 25 0.2 00.1 CHAYSURA 19 0.2 0.1 UNDULATUS 15 0.1 00.1 SAXATILIS 12 0.1 00.1 UNDULUS SPP. 6 00.1 00.1 ORONE SPP. 6 00.1 00.1 BERYLLINA 4 00.1 00.1 BERYLLINA 4 00.1 00.1 NOBRATA 4 00.1 00.1 ANTHURUS 2 00.1 00.1 - XANTHURUS 2 00.1 00.1 - XANTHURUS 2 00.1 00.1 - KANTHURUS 1 00.1 00.1 - HETEPOCLITUS 1 00.1 00.1 - HETEPOCLITUS 1 00.1 00.1 - KULANS 0 0 0 - MUCHALIS 0 0 0	-		0
CHRYSURA 19 0.2 00.1 . ULDULATUS 15 0.1 0.1 . SARATILIS 12 0.1 0.1 UNDULUS SPP. 6 0.1 0.1 ORDME SPP. 5 0.1 0.1 . BERYLLINA 4 0.1 0.1 . ARTINGS 2 0.1 0.1 . ARTINGS 1 0.1 0.1 . HIPPOS 1 0.1 0.1 . SALTATRIX 1 0.1 0.1 . HIPPOS 1 0.1 0.1 . HIPPOS 1 0.1 0.1 . MUCALIS 0 0 0 . MARTINICA </td <td></td> <td>0.5</td> <td>0.2</td>		0.5	0.2
UADULATUS 15 0.1 CO.1 SAXATILLS 12 0.1 CO.1 UNDULUS SPP. 6 CO.1 CO.1 ORONE SPP. 5 CO.1 CO.1 BERYLLINA 4 CO.1 CO.1 - ROSTRATA 4 CO.1 CO.1 - NOTATINES 1 CO.1 CO.1 - HEPPOCLITUS 1 CO.1 CO.1 - SALTATRIX 1 CO.1 CO.1 - REVULANS 0 0 O - MUCALIS 0 0 O	20	<0.1	<0.1
SAXATILIS 12 0.1 00.1 UNDULUS SPP. 6 0.1 0.1 ORUME SPP. 5 0.1 0.1 ORUME SPP. 5 0.1 0.1 ORUME SPP. 5 0.1 0.1 DERYLLINA 4 0.1 0.1 - XANTHURUS 2 0.1 0.1 - XANTHURUS 2 0.1 0.1 - KARTANURUS 2 0.1 0.1 - KARTANURUS 1 0.1 0.1 - HEPPOS 1 0.1 0.1 - SALTATRIX 1 0.1 0.1 - EVULANS 1 0.1 0.1 - EVULANS 1 0.1 0.1 - EVULANS 1 0.1 0.1 - RETATRIX 1 0.1 0.1 - BERYLIANS 1 0.1 0.1 - MUCALIS 0 0 0 - MARTIVICA 0 0 0 - MARTIVICA 0 0 0 - ANERICANUS	0	0	0
UNDULUS SPP. 6 CU.1 CU.1 ORUNE SPP. 5 CU.1 CU.1 BERYLLINA 4 CU.1 CU.1 ROSTRATA 4 CU.1 CU.1 - XARIHURUS 2 CU.1 CU.1 - XARIHURUS 2 CU.1 CU.1 - XARIHURUS 2 CU.1 CU.1 - XARIHURUS 1 CU.1 CU.1 - HEFEROCLITUS 1 CU.1 CU.1 - KARTIARIX 1 CU.1 CU.1 - KULANS 1 CU.1 CU.1 - NUCHALIS 0 0 CU.1 - MARTIARIS 0 0 CU.1 - AGUIGSUS 0 0	0	0	0
ORDNE SPP. 5 CU.1 COL1 BERYLLINA 4 CU.1 COL1 ROSTRATA 4 CU.1 COL1 XANTHURUS 2 CU.1 COL1 XANTHURUS 2 CU.1 COL1 HETEYOLITUS 1 CU.1 CU.1 HIPPUS 1 CU.1 CU.1 SALTATRIX 1 CU.1 CU.1 FLAVESCENS 0 0 0 MERULAUS 0 0 0 ACULATIS 0 0 0 FLAVESCENS 0 0 0 ACULATUS 0 0 0 ACULEATUS 0 0 0 ACULEATUS 0	210 6	0.8	0.2
BERYLLINA 4 C0.1 C0.1 ROSTRATA 4 C0.1 C0.1 XANTHURUS 2 C0.1 C0.1 HEFEPOCLITUS 1 C0.1 C0.1 HIPPUS 1 C0.1 C0.1 SALTATRIX 1 C0.1 C0.1 TRIACATINUS 1 C0.1 C0.1 MUCHALIS 0 0 0 MARTIVICA 0 0 0 MARTIVICA 0 0 0 AMENDSUS 0 0 0 AMENDSUS 0 0 0 AGUOSUS 0 0 0<	346 3	1.3	0.4
- ROSTRATA 4 CO.1 CO.1 - XANTHURUS 2 CO.1 CO.1 - HETEPOCLITUS 1 CO.1 CO.1 - HETEPOCLITUS 1 CO.1 CO.1 - SALTATRIX 1 CO.1 CO.1 - KUCANS 1 CO.1 CO.1 - TRIACATINUS 1 CO.1 CO.1 - NUCHALIS 0 0 0 - MARTINICA 0 0 0 - MARTINICA 0 0 0 - AMENISUS 0 0 0 - AMENISUS 0 0 0 - AGUOSUS 0 0 0 - AGUOSUS 0 0 0 - AGUOSUS 0 0 0 - ACULEATUS 0 0 0 - ACULEATUS 0 0 0 - TAU <td< td=""><td>202 7</td><td>0.7</td><td>0.2</td></td<>	202 7	0.7	0.2
XANTHURUS 2 C0.1 C0.1 HEFEROCLITUS 1 C0.1 C0.1 HIPPOS 1 C0.1 C0.1 SALTATRIX 1 C0.1 C0.1 EVULANS 1 C0.1 C0.1 TRIACANTHUS 1 C0.1 C0.1 NUCHALIS 0 0 0 MARTIVICA 0 0 0 AMERICANUS 0 0 0 AMERICANUS 0 0 0 AMERICANUS 0 0 0 AMENICOSUS 0 0 0 AGUOSUS 0 0 0 AGUOSUS 0 0 0 ACULEATUS 0 0 0 ACULEATUS 0 0 0 CEPEDIANUM 0 0 0 CEPEDIANUM 0 0 0 MICROSTOMUS 0 0 0	3	<0.1	<0.1
HETEPOCLITUS 1 CO.1 CO.1 HIPPOS 1 CO.1 CO.1 SALTATRIX 1 CO.1 CO.1 EVOLANS 1 CO.1 CO.1 EVOLANS 1 CO.1 CO.1 NUCHALIS 0 0 0 NUCHALIS 0 0 0 MARTINICA 0 0 0 AMERICANUS 0 0 0 AMERICANUS 0 0 0 AMERICANUS 0 0 0 AGUIGSUS 0 0 0 FLAVESCENS 0 0 0 ACULEATUS 0 0 0 ACULEATUS 0 0 0 TAN 0 0 0 TAN 0 0 0 MICROSTONUS 0 0 0	110 1 0	0.4	0.1
HIPPOS 1 CO.1 CO.1 SALTATRIX 1 CO.1 CO.1 EVOLANS 1 CO.1 CO.1 TRIACANTHUS 1 CO.1 CO.1 TRIACANTHUS 1 CO.1 CO.1 NUCHALIS 0 0 0 MARTINICA 0 0 0 AMERICANUS 0 0 0 AGUESUS 0 0 0 AGUEATUS 0 0 0 ACULEATUS 0 0 0 AGUEATUS 0 0 0	24	<0.1	<0.1
SALTATRIX 1 <0.1	0	0	0
- EVULANS 1 CO.1 - TRIACAMINUS 1 CO.1 CO.1 - NULHALIS 1 CO.1 CO.1 - NULHALIS 0 0 0 - MARTIVICA 0 0 0 - AMERICANUS 0 0 0 - AGUOSUS 0 0 0 - AGUOSUS 0 	0	0	0
TRIACANTHUS 1 CO.1 NUCHALIS 0 0 0 MARTINICA 0 0 0 AMERICANUS 0 0 0 AGUIOSUS 0 0 0 AGUIEATUS 0 0 0 ACULEATUS 0 0 0 CEPEDIANUM 0 0 0 TAU 0 0 0 TAU 0 0 0 MICROSTOMUS 0 0 0	4	<0.1	<0.1
NULHALIS 0 0 0 MARTINICA 0 0 0 AMERICATUS 0 0 0 AMERICATUS 0 0 0 NERULOSUS 0 0 0 AGUISS 0 0 0 FLAVESCENS 0 0 0 ACULEATUS 0 0 0 CEPEDIANUM 0 0 0 TAU 0 0 0 MICROSTOMUS 0 0 0	0	0	0
- MARTINICA 0 0 0 - AMERICANUS 0 0 0 - MEBULOSUS 0 0 0 - AGUOSUS 0 0 0 - FLAVESCENS 0 0 0 - ACULEATUS 0 0 0 - CEPEDIANUM 0 0 0 - TAN 0 0 0 - DENTATUS 0 0 0 - MICROSTOMUS 0 0 0	0	0	σ
AMERICANUS 0 0 0 0 MERICANUS 0 0 0 0 MERULOSUS 0 0 0 0 AQUOSUS 0 0 0 0 FLAVESCENS 0 0 0 0 ACULEATUS 0 0 0 0 ACULEATUS 0 0 0 0 TAU 0 0 0 0 MICROSTOMUS 0 0 0 0	25	<0.1	<0.1
- AMERICANUS 0 0 0 - MERULOSUS 0 0 0 - AQUOSUS 0 0 0 - FLAVESCENS 0 0 0 - ACULEATUS 0 0 0 - MICROSTOMUS 0 0 0	8	<0.1	<0.1
. NERULOSUS 0 0 0 . AQUOSUS 0 0 0 . FLAVESCENS 0 0 0 . ACULEATUS 0 0 0 . ACULEATUS 0 0 0 . CEPEDIANUM 0 0 0 . TAU 0 0 0 . DENTATUS 0 0 0 . MICROSTOMUS 0 0 0	5	<0.1	<0.1
AGUOSUS 0 0 0 FLAVESCENS 0 0 0 ACULEATUS 0 0 0 CEPEDIANUM 0 0 0 TAN 0 0 0 DENTATUS 0 0 0 MICROSTOMUS 0 0 0	1	<0.1	<0.1
- FLAVESCENS 0 0 0 - ACULEATUS 0 0 0 - CEPEDIANUM 0 0 0 - TAU 0 0 0 - DENTATUS 0 0 0 - MICROSTOMUS 0 0 0	1	<0.1	<0.1
ACULEATUS 0 0 0 CEPEDIANUM 0 0 0 TAU 0 0 0 DENTATUS 0 0 0 MICROSTOMUS 0 0 0	0	0	0
. CEPEDIANUM 0 0 0 . TAU 0 0 0 0 . DENTATUS 0 0 0 0 . MICROSTOMUS 0 0 0 0	0	0	0
- TAU 0 0 0 - DERTATUS 0 0 0 - MICROSTOMUS 0 0 0	0	0	0
- DENTATUS 0 0 0 - MICROSTOMUS 0 0 0	0	0	0
MICROSTOMUS 0 0 0	0	-	-
	0	0	0
• Padating D D D D	U	0	0
	0.	0	0
LUPEIDAE 0 0 0	0	0	0
YPRINIDAE 0 0 0	0	0	0
0TAL 9.398 100-0 13.9 27		100.0	30,9

TABLE 3.1.2-9 COMPARISON OF COMBINED CATCH OF ICHTHYOPLANKTON TAKEN FROM 1971 THROUGH 1978

٦

.1-6

ω

. 61

TABLE 3.1.2-9 CONTINUED

			1973				1974			
PECIES	н	RANK	PERCENT OF TOTAL	N/M3	· · · · · · ·			PERCENT		4
				N/M3 	N/C	N	RANK	OF TOTAL	N/M3	1.70
- MITCHILLI	19,623									
- BOSCI		1	82.9	0.253	40.5	348,084	1	95.4	3.661	407.1
LOSA SPP_	1,776	2	7.5	0.023	3.7	14,094	2	3.9	0.148	
TYRANNUS	17		<0.1	<0.001	<0.1	34		<0.1	<0.001	
. REGALIS	11		<0.1	<0.001	<0.1	158	9	<0.1	0.002	0.2
- MENIDIA	146	6	0.6	0.002	0.3	835	3	0,2	0.039	1.0
- FUSCUS	48		0.2	<0.001	0.1	13	-	<0.1	<0.001	<0.1
EMBRAS/MENIDIA SPP.	70	9	0.3	<0.001	0.1	177	8	<0.1	0.002	0.2
- AESTIVALIS	96	7	0_4	0.001	0.2	9	-	<0.1	<0.001	
- MACULATUS	3		<0.1	<ນູບບາ	<0.1	0		0	0.001	0.1
- AMERICANA	10		<0.1	<0.001	<0.1	73		<0.1	0.001	0.1
- AMERICANA - PSEUDOHARENGUS	83	8	0.3	0.001	0.2	333	4	0.1	0.004	0.4
- CHRYSURA	3		<0.1	<0.001	<0.1	0	•	0	0	Ŭ.,
	2		<0.1	<0.001	<0.1	· 0		õ	Ő	ő
- UNULATUS	326	4	1-4	0.004	0.7	180	· 7	0.1	0.002	-
_ SAXAFILIS	52		0.2	<0.001	0.1	196		0.1	0.002	0.2
UNDULUS SPP.	1,148	3	4.8	0.015	2.4	4	0	<0.1		0.2
ORONE SPP.	168	5	0.7	0.002	0.3	2		<0.1	<0.001	<0.1
- BERYLLINA	n		0	0	υ υ	3			<0.001	<0.1
- ROSTRATA	62	10	0.3	<0.001	0.1	313	5	<0.1	<0.001	<0.1
_ XANTHURUS	26		D.1	<0.001	<0.1	27	2	0-1	0.003	0.4
- HETEROCLITUS	0		0	0	0	0		<0.1	<0.001	<0.1
. HIPPÓS	0		õ	õ	0 ·	0		0	0	U
_ SALTAIRIX	1		<0.1	<0.001	<0.1	0		0	0	Û
- EVOLANS	0		0	ία.00 ι	0			0	Û	Û
- TRIACANTHUS	õ		0	0	0	0		0	0	0
- NUCHALIS	ő		0	0	0	1	-	<0.1	<0.001	<0.1
. MARTINICA	ő		0	0	0	۵	-	0	U	. 0
AMERICANUS	0		. 0	0	0	97	10	<0.1	0.001	0.1
NEBULOSUS	0		0	0	-	0		0	Û	0
. AQUOSUS	0		0	0	0	υ		0	0	0
. FLAVESCENS	2		<0.1		0	0		0	0	0
ACULEATUS	1			<0.001	<0.1	9		<0.1	<0.001	<û.1
. CEPEDIANUM	0		<0_1	<0.001	<0.1	0		0	0	0
TAU	0		0	Û	0	1		<0.1	<0.001	<0.1
DENTATUS	0		0	٥	0	.7		· <0.1	<0.001	<0.1
MICROSTOMUS	u 0		0	0	0	5		<0.1	<0.001	<0.1
HARINUS	0		0	0	0	1		<0.1	<0.001	<0.1
UPEIDAE			0	0	0	1		<0.1	<0.001	<0.1
PRINIDAE	0		0	0	0	9		<0.1	<0.001	<0.1
······································	0		0	0	0	23		<0.1	<0.001	
TAL	23,674									

IA SALEM IP 1978

• -

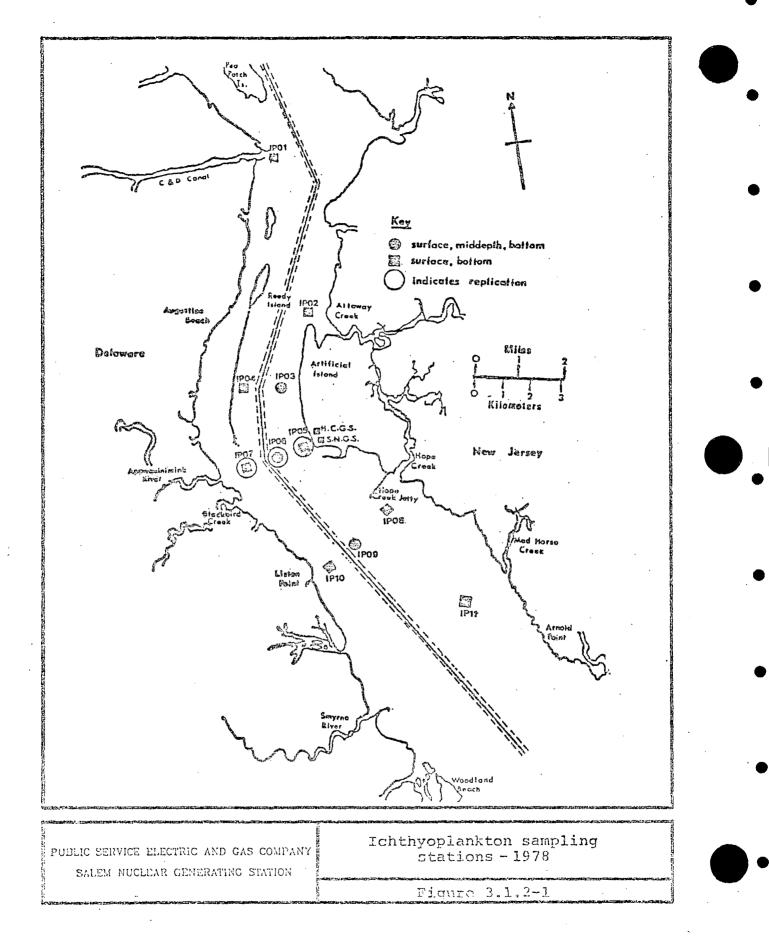
.

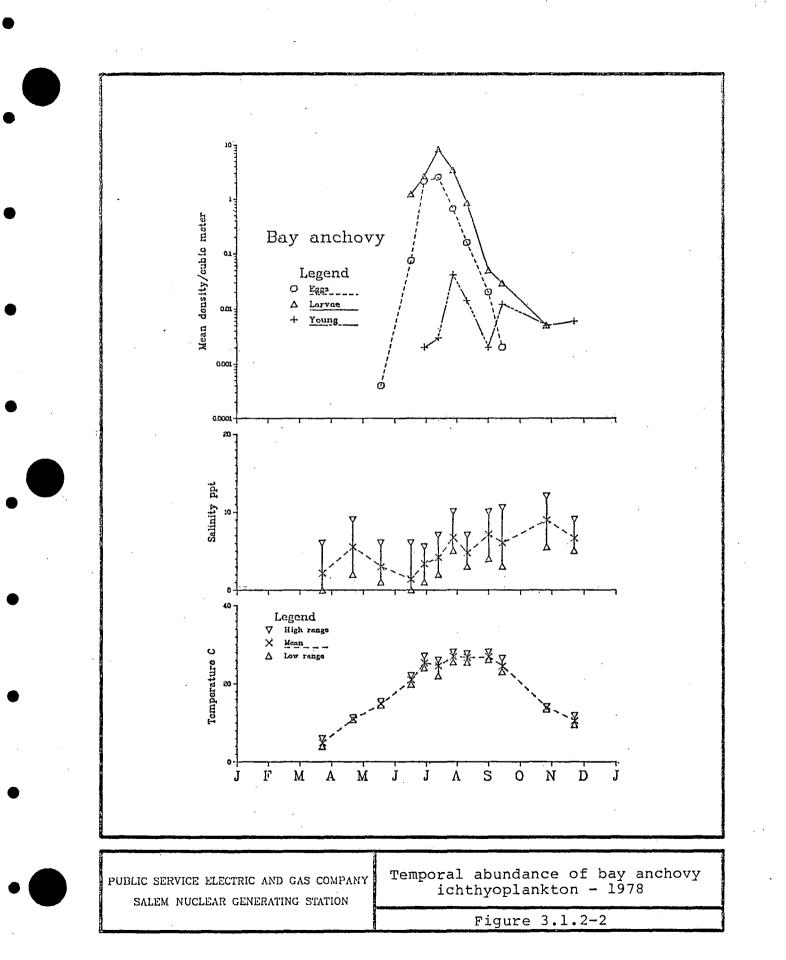
. . .

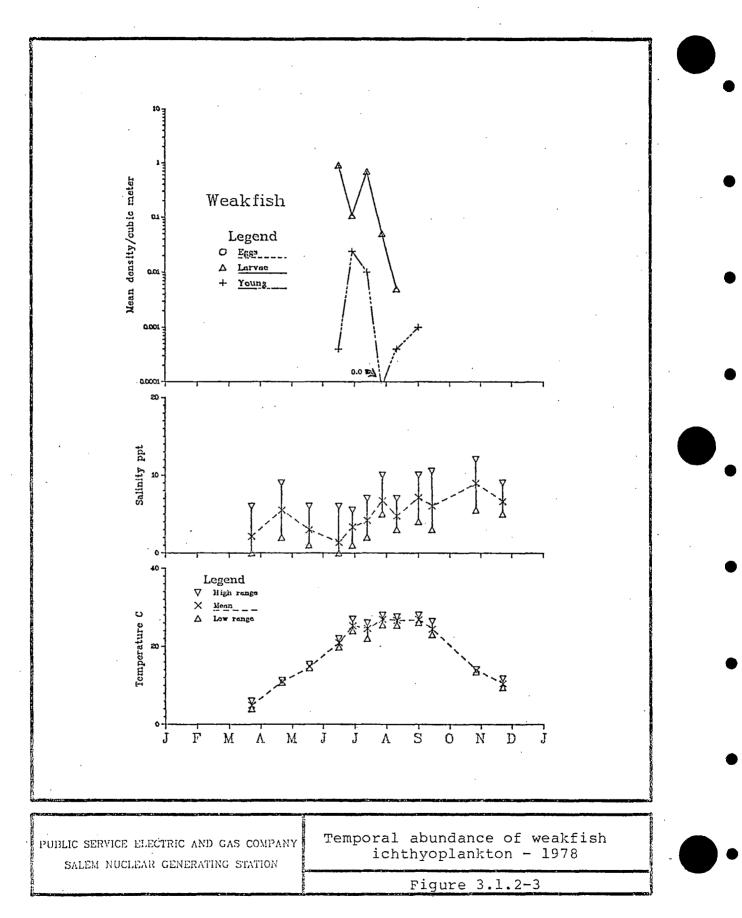
3.1-62

.

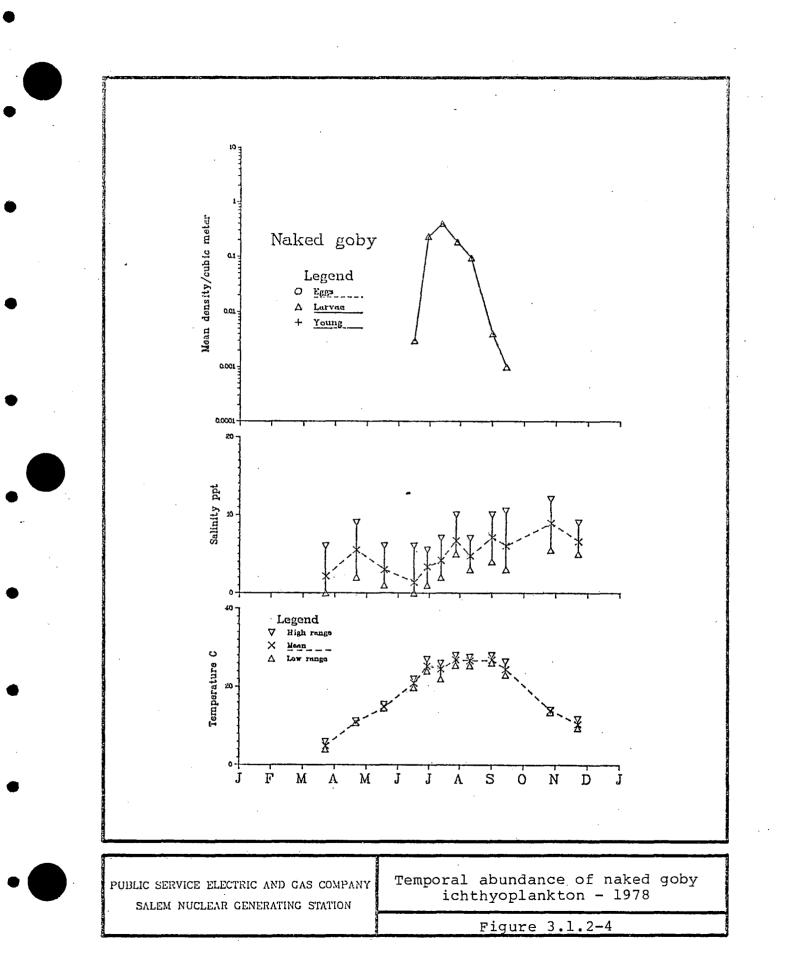
.

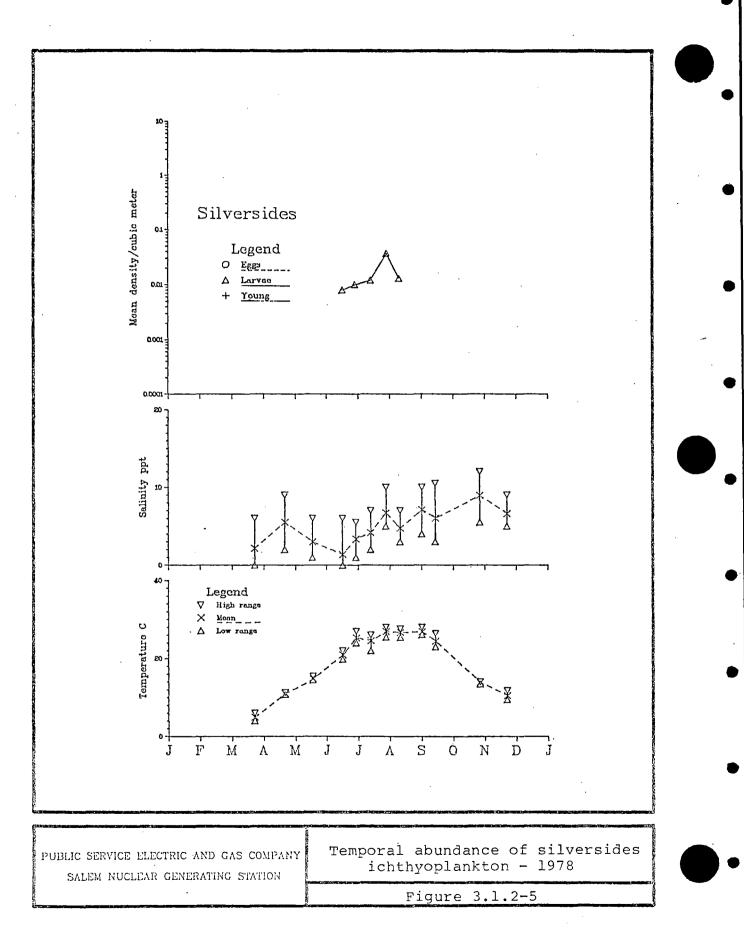

TABLE 3.1.2-9 CONTINUED


· .


			1975		1976					
SPECIES	N	RANK	PERCENT Of Total	N/M3	N / C	N	RANK	PERCENT OF TOTAL	N/M3	N/C
A. MITCHILLI	94,920	1	77.3	1.202	97.7	191,672	1	90.9	4.860	334.5
5. BOSCI	24,462	2	19.9	0.310	25.2	17,588	2	8.3	0.446	
ALÓSA SPP.	52	9	<0.1	0.001	0.1	66	9	<0.1	0.002	0.1
8. TYRADAUS	49	10	<0.1	0.001	0.1	144	5	0.1	0.004	0.2
C. REGALIS	1.640	3	1.3	0.021	1.7	302	· 2	0.1	0.008	0.5
4. HENIDIA	25	-	<0.1	<0.001	<0.1	5	•	<0.1	<0.001	<0.1
. FUSCUS	90	8	0.1	0.001	0.1	36		<0.1	0.001	U.1
SEMARAS/MENIDIA SPP.	116	7	0.1	0.001	0.1	68	8	<0.1	0-002	0.1
ALSIIVALIS	12	-	<0.1	<0.001	<0.1	ŷ		<0.1	<0.001	<0,1
ACULATUS	7		<0.1	<0.001	<0.1	6		<0.1	<0.001	<0.1
A AMESICANA	15		<0.1	<0.001	<0.1	24		<0.1	0.001	<0.1
- PSEUJOHARENGUS	2		<0.1	<0.001	<0.1	1		<0.1	<0.001	<0.1
L CHRYSURA	i.		<0.1	<0.001	<0.1	5		<0.1	<0.001	<0.1
. UNCULATUS	501	5	0.4	0.006	0.5	624	3	0.3	0.016	1.1
- SAXATILIS	44		<0.1	0,001	<0.1	27	•	<0.1	<0.001	<0.1
FUNDULUS SPP.	1		<0.1	<0.001	<0.1	0		0	0	0
10RUNE SPP_	· o		0	0	Ŭ.	Ď		ů	ŏ	ŭ
A. BERYLLIVA	160	6	0-1	0.002	0.2	91	7	<0.1	0.002	0.2
ROSTRATA	614	4	0.5	0.008	0.6	51	· · ·	<0.1	0.001	0.1
XANIHURUS	40	4	<0.1	0.001	<0.1	53	10	<0_1	0.001	0.1
- HETEFOCLITUS	40		0	0	0	4	10	<0.1	<0.001	<0.1
	0		0	0	0	ů 0		0	0	0
L HIPPUS			-		0	0		-	-	υ
P_ SALTATRIX	0		0	D	0	บ ก		0	0	
2 EVOLANS	0		0	0		0 0		0	0	0
TRIACANTHUS	n		0	0	0	0		D	0	0
I. NUCHALIS	0		0	0.	0	0		0	0	0
L MARTINICA	71		0.1	0.001	0.1	107	6	<0.1	0.003	0.2
AMERICANUS	0		0	υ	0	0		0	0	0
. NEBULOSUS	0		0	0	U	0		0	0	Ο.
L AGOOSUS	3		<0.1	<0.001	<0.1	0		0	U	0
P. FLAVESCENS	0		0	0	U	0		0	0	0
I. ACULEATUS	0		U	0	0	0		0	0	0
CEPEDIA4UM	1		<0.1	<0.001	<0.1	0		0	0	0
)_ TAU	n		0	0	0	0		0	0	0
• DENTATUS	3		<0.1	<0.001	<0.1	0		0	0	0
. MICRUSTOMUS	0		0	0	0	1		<0.1	<0.001	<0.1
P. MARINUS	0		0	U	0	0		0	0	0
LUPEIDAE	0		0	0	0	1		<0.1	<0.001	<0.1
YPR141DAE	21		<0-1	<0.001	<0.1	4		<0.1	<0.001	<0.1
LEPOMIS SP.	1		<0-1	<0.001	<0_1	0		0	0	0
P. CROMIS	1		<0.1	<0.001	<0_1	0		0	0	0
AMMODYTES SP.	5		<0.1	<0.001	<0.1	0		0	0	0
R. MARGINATA	1		<0.1	<0.001	<0.1	0		0	0	0
SCIAENIDAE	0		0	υ.	0	1		<0.1	<0.001	<0.1
TOTAL	122,861		100.0	1.556	. 126-4	210,890	•	100.0	5.347	368.0

IA SALEM IP 1978


	1977 (OPERATIONAL)							1978 (OPERATIONAL)					
SPECIES	· N	RANK	PERCENT Of Total	N/M3	N/C		RANK	PERCENT OF TOTAL	N/M3	N/C			
A. MITCHILLI	884,228	1	97.7	24.626	1,761.4	55,230	1	87.9	1=868	144.2			
G. BOSCI	4,340	ż	0.5	0.121	8.6	2,241	3	3.6	0.076	5.9			
ALOSA SPP.	1	-	<0.1	<0.001	<0.1	31	9	<0.1	0.001	0.1			
B. TYRANNUS	224	6	<0.1	0.006	0.4	ů	•	0	0	0			
C. REGALIS	14,844	ž	1.6	0.413	29.6	4,796	2	7.6	0.162	12.5			
M. MENIDIA	10	•	<0.1	<0.001	<0.1	1	-	<0.1	<0.001	<0.1			
S. FUSCUS	129	7	<0.1	0.004	0.3	20	10	<0.1	<0.001	<0.1			
HEMBRAS/MENIDIA SPP.	884	1	0.1	0.025	1.8	190	4	0.30	0.006	0.5			
AESTIVALIS	3	-	<0.1	<0.001	<0.1	. 0	-	· 0	0	0.5			
. MACULATUS	394	5	<0.1	0.011	0.8	. 94	5.5	0.15	0.003	0.2			
A AMERICANA	6	.	<0.1	<0.001	<0.1	94	5.5	0.15	0.003	0.2			
- PSEUDOHARENGUS	ŏ		0	0	0	0		0	0	0.1			
B. CHRYSURA	Ő		0	0	0.	0		0	0	0			
1. UNDULATUS	91	9	<0.1	0.003	0.2	2		.<0.1	<0.001	<0.1			
4. SAXATILIS	57	10	<0.1	0.001	0.1	45	7	<0.1	0.002	0.1			
FUNDULUS SPP.	0	ĨŸ	0	0	0	4 5 0	.r	0	0	0.1			
AORONE SPP.	6		<0.1	<0.001	<0.1	10		<0.1	<0.001	<0.1			
A. BERYLLINA	0		0	0	0	0		0	0	0.1			
A. ROSTRATA	100	8	<0.1	-	0.2	18		<0.1	<0.001	<0.1			
L. XANTHURUS	27	o	<0.1	0.003	<0.1	10		<0.1	<0.001	<u.1< td=""></u.1<>			
-	3			0.001		•				0			
F. HETEROCLITUS	-		<0.1	<0.001	<0.1	0		0	0	0			
C. HIPPOS	0		. 0	0	0	0		0	0	0			
P. SALTATRIX	0		0	0	. 0	. 0		0	.0	U			
P. EVOLANS	0		0	0	0	0		0	0	U			
P. TRIACANTHUS	0		0	U	0	U		0	0	U			
M. NARTINICA	-11		0	0	0	U U		D	0	. u			
P_ AMERICANUS	2		<0.1	<0.001	<0_1	Ű		0	0	0			
I. NEBULOSUS	0		0	0	0	U		0	0	0			
S. AQUOSUS	11		<0.1	<0.001	<0.1	2		<0.1	<0.001	<0.1			
P. FLAVESCENS	1		<0.1	<0.001	<0-1	U U		0	0	0			
G. ACULEATUS	Ů		0	0	0	U		0	0	0			
CEPEDIANUM	5		<0.1	<0.001	<0.1	0		0	0	0			
D_ TAU	. 0		0	0	0	0		0	0	. 0			
P. DENTATUS	0		. 0	0	0	0		0	0	0			
E. MICROSTOMUS	1		<0.1	<0.001	<0.1	0		0	0	0			
P. MARINUS	0		0	0	0	. 0		0	0	U			
LUPEIDAE	D		0	0	0	0		0	0	0			
LYPRINIDAE	0		0	0	0	32	8	0.05	0.001	<0_1			
EPOMIS SP.	0		0	Û	0	0		0	0	0			
CROMIS	1		<0.1	<0.001	<0.1	3	•	<0.1	<0.001	<0.1			
AMMODYTES SP.	0		0	۵	0	4		<0.1	<0.001	<0.1			
R. MARGINATA	0		0	.D	0	0		0	0	0			
SCIAENIDAE	Ŭ		0	0	0	1		<0.1	<0.001	<0.1			
CARASSIUS SP./CYPRINUS SP.	0		0	0	0	4		<0.1	<0.001	<0.1			
C. COMMERSONI	0		0	0	0	1		<0.1	<0.001	<0.1			
:													
TOTAL	905,376		100.0	25.215	1803.5	62,820		100.0	2-125	164.0			



-

	<u>Month</u> *	March	April	May	June	July	August	September	October	November	
	Eggs			··							(
	Alosa spp.										
	A. mitchilli										
	Carassius sp./Cyprinus sp.									,	
	Menbras sp./Menidia sppi									÷	
	M. americana M. saxatilis			**********							
	C. regalis									•	
	T. maculatus										
	Larvae			<u></u>							
							1				
	Alosa spp.										
	A. Ditchilli										
	Cyprinidae Carassius/sp./Cyprinus sp.										
	C. cornersoni										
	Membras sp./Menidia spp.										
	Morone spp.			•							
	M. americana			·							
	M. saxatilis										
	Sciaenidae										
	C. regalis M. undulatus										
	P. cromis				<u>+</u>						
	Ammodytes spp.										
	G. bosci					·····					
	S. aguosus										
	T. maculatus							· · ·			
	Young							······	······		
	A. rostrata	••••••									
	A. mitchilli										
	M. menidia										
	S. fuscus				•••••••						
	C. regalis L. xanthurus										
	M. undulatus				-						
	G. bosci										
	S. aquosus					******					
	*No samples were taken in J	anuary,	February	or Marc	h.						
	ŢŢġĸĸĸĹĿĊŢŦĊŢĸĨĊĊŎĿĿŎĊŎĬġŢŎĔĿĹŎĊŎĿŢŎŢŎŢĊĬŎŎŎŎĿĿĿŖġŎĬĊĊŢĬŢŎĸĊĸŎĸĿŎĿĹŎĿĹĬŊĿĊŎIJŎŎĿŢŎŢŎĿ	ali an ann an tar a	والمعربي وروايين والمحودين	un de Moenelles (201	k An airsing ann airsin àir àrdana	The Fairly Construction Cons	n dala <u>n kana dika mara</u> kad		n dara menangan kenangan kenan Kenangan kenangan kena	ngggyyters an ei fan yn fan yn fan fan yn gryfere.	وريا بالاستخاص فاست التكافية فالمتحاط المتحار ويورده
and the second secon	ĸŦĊĸĸĬŦĸĸŧŢĸĨĊĸŦĸĔĸĸŗŢſŴĬĊĸŦĸŎĸĬŎĸĬĔĸĬĊĸſĿĸţĿĬĸĹŔġŎĸĿŎĊĸŀŔĊĬĊſŎĿIJĔŢĬŔĬĬŢ							an ta ann ag tha an		and the second secon	na an a
]			-						
UBLIC	SERVICE ELECTRIC AND GAS CO	MPANY	${ m Te}$	mpora	al occ	urren	ce of i	chthyopla	ankton-]	9 78	•
541	EM NUCLEAR GENERATING STAT			-							
JAL	DA ROODLAR GENERATING STAT		and the state of the second			non an	ure 3.1	2 C	and the bridge of the second	and a star in the second starting of the second starting of the second starting of the second starting of the s	ىرىنى ئىنا مەلەر ك _{ىك} ىسە قىقىتىچى يەچۋەتلارلىغى 20
		1				r(I	ארה סיד	. 2 - 0			

3.1.3 Zooplankton (ETS Section 3.1.2.1.1c and d)

Quantitative zooplankton collections were made in the Delaware River near Salem on 32 sampling dates from March 22 through December 13, 1978. Objectives were to determine seasonal and spatial variation in microzooplankton and macroinvertebrate plankton composition and abundance immediately offshore of Artificial Island, in the region of the Salem Unit I thermal plume, and in regions to the north and south.

3.1.3.1 Summary

Microzooplankton are invertebrates not retained by a 0.5-mm mesh conical net but retained by a 0.08-mm mesh net; macroinvertebrates are retained on the 0.5-mm mesh net. One hundred fourteen invertebrate species were identified in the 681 microzooplankton and 335 macroinvertebrate plankton samples analyzed. Annual mean microzooplankton and macroinvertebrate plankton densities were approximately 66,000/m³ and 10,000/100m³, respectively. Monthly mean microzooplankton density was high from March through May (ca. $115_{\pi}000/m^2$) and then decreased through September (ca. 19,000/m⁻). It remained low in October and November and then increased in December (ca. $71,000/m^3$). Copepods, rotifers, and polychaetes were the most abundant taxonomic groups and accounted for 58, 29, and 6 percent, respectively, of the total microzooplankton sample. Acartia tonsa, Eurytemora affinis, Ectinosoma spp., Notholca spp., and Branchionus spp. were predominant. Two distinct communities of microzooplankters occurred seasonally during 1978. A tidal river community consisting of limnetic and oligohaline organisms such as rotifers, cyclopoid copepods, and cladocerans occurred during periods of lowest salinity (winter and spring). An estuarine community predominated by euryhaline calanoid copepods and meroplanktonic larvae of benthic invertebrates occurred during periods of higher salinities (late spring through fall). The pattern of seasonal change in microzooplankton abundance was similar to that of recent years (1973-1977).

Macroinvertebrate monthly mean density was low from March through May (ca. 1,000/100m³), increased to a peak during June (ca. 64and decreased through November (ca. 5,023/100m³). <u>Neomysis americana</u> and <u>Rhithropanopeus</u> <u>harrisii</u> were most abundant, comprising 94.2 percent of the total annual sample. Other predominant taxa included: Gammarus spp., Uca minax, Blackfordia virginica, Palaemonetes pugio, Edotea triloba, Corophium spp., Brachyura, and Crangon septemspinosa.

3.1.3.2 Materials and Methods

All zooplankton samples required by ETS were collected.

Microzooplankton samples were collected from March through December during daylight at 12 stations and over 12-hr periods at three stations extending west of Salem (Table 3.1.3-1, Fig. 3.1.3-1). All microzooplankton samples were collected with a filter pump plankton sampler (Fig. 3.1.3-2) fitted with a number 20 net (0.08 mm mesh). For a more detailed description of sampling gear, gear deployment, collection of physicochemical data and laboratory procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

Macroinvertebrates were collected from March through November in the ichthyoplankton program from just below surface and just above bottom with 1/2-meter plankton nets of 0.5-mm mesh. Detailed descriptions of sampling and laboratory materials and methods are described in Section 3.1.2.1.1b and Section 3.1.2.1.1c and d, respectively, of the 1977 Annual Environmental Operating Report. In 1978 samples from stations IP01, IP02, IP03, IP04, IP05, IP06, IP07, IP08, IP09, IP10, IP11, IP21, and IP22 were processed; samples from stations IP05, IP06, IP07, IP21, and IP22 were replicated. Also in 1978, the taxon Brachyura represented megalops of <u>Uca minax</u> and <u>Rhithropanopeus harrisii</u> (after August 31 megalops were identified to species).

3.1.3.3 Results and Discussion

GENERAL SAMPLE COMPOSITION

One hundred fourteen invertebrate taxa were identified in the 681 microzooplankton and 334 macroinvertebrate samples collected and analyzed (Tables 3.1.3-2 through 3.1.3-6). Annual mean microzooplankton and macroinvertebrate plankton density was approximately 66,000/m³ and 10,000/100m³, respectively. Monthly mean microzooplankton density during 1978 was high from March through May (ca. 115,000/m³) after which it decreased through September to approximately 19,000/m³. Monthly mean density remained low in October and November and then increased in December to 71,000/m³ (Fig. 3,1.3-3). Extremely high density of copepod nauplii (60,614/m³) accounted for the December increase. The peak monthly microzooplankton density of 126,572/m³ occurred during March.

Microzooplankton density during March through December, 1978 (66,388/m³) was greater than observed in previous years (1973-1977). Mean₃density during these years ranged from 31,433 to 46,340/m³. The pattern of seasonal change in microzooplankton abundance was similar to that of recent years (1973-1977).

Copepods, rotifers, and polychaetes were the three most abundant taxonomic groups, comprising 58, 29, and 6 percent, respectively, of the total microzooplankton sample (Table 3.1.3-7). Common organisms were <u>Acartia tonsa</u>, <u>Eurytemora</u> <u>affinis</u>, <u>Ectinosoma spp.</u>, <u>Notholca spp.</u>, <u>Branchionus spp.</u>, and Gastropoda (veligers). <u>Microzooplankton community</u> structure, i.e., species composition, during 1978 was similar to that of recent years (1973-1977).

Macroinvertebrate monthly mean density was low from March through May (ca. 1,009/100m³), increased to a peak during June (ca. 37,000/100m³) and decreased through November (ca. 5,000/100m³) (Fig. 3.1.3-3). <u>Neomysis americana</u> and <u>Rhithropanopeus harrisii</u> were most abundant comprising 94.2 percent of the total annual sample (Table 3.1.3-8). Other common taxa included: <u>Gammarus</u> spp., <u>Uca minax</u>, <u>Blackfordia</u> <u>virginica</u>, <u>Palaemonetes pugio</u>, <u>Edotea triloba</u>, <u>Corophium</u> spp., Brachyura and <u>Crangon septemspinosa</u>.

MICROZOOPLANKTON COMPOSITION

An overview of each major taxonomic group is presented together with detailed discussion on predominant species in each group.

Aschelminthes

Fifteen genera of Rotifera were represented by more than 25 species. Rotifers were typically associated with low

salinity waters. Seasonally, they were most abundant from March through mid-June comprising over 52 percent of the microzooplankton sample (Table 3.1.3-4). Rotifer spp., an "artificial" taxon including illoricate rotifers that contract upon preservation making specific identification impossible without the addition of a relaxing agent or close examination of trophi, was the most abundant rotifer and second most abundant microzooplankton taxon collected. It had an annual density of 13,477/m and it comprised over 20 percent of the annual sample (Table 3.1.3-7). Density was greatest from March through May (Fig. 3.1.3-4). Peak density (209,545/m³) occurred on March 22 (Table 3.1.3-2). It was collected at water temperature of 5.9 to 38.0 C and salinity of 0.0 to 11.0 ppt. Examination of trophi of randomly selected illoricate individuals indicated that most were Synchaeta spp. which tolerate brackish waters.

Notholca sp. was the second most abundant rotifer $(3,360/m^3)$ and sixth ranking microzooplankter (Table 3.1.3-7). Density was greatest from April through June₃ (Fig. 3.1.3-4). Peak density occurred on May 17 (44,867/m³) (Table 3.1.3-2). It was collected at water temperature of 6.0 to 27.2 C and salinity of 0.0 to 8.0 ppt.

<u>Keratella</u> guadrata was the third most abundant rotifer (1,309/m³) and ninth ranking microzooplankter (Table 3.1.3-7). Density was greatest during May with a peak density on May 17 (17,014/m³) (Table 3.1.3-2; Fig. 3.1.3-4). It was collected at water temperature of 7.0 to 22.0 C and salinity of 0.0 to 7.0 ppt.

The genus <u>Branchionus</u> ranked third and was represented by at least eight species. Of these, <u>B. angularis</u> was predominant. It ranked tenth among all microzooplankters and comprised 1.4 percent of the annual sample (945/m³) (Table 3.1.3-7). Density was greatest from May to July (Fig. 3.1.3-4). Greatest density occurred on May 17 (6,968/m³) and May 25 (6,326) (Table 3.1.3-2). It was collected at water temperature of 7.0 to 29.0 C and salinity of 0.0 to 10.0 ppt.

The nematode worms collected were either free-living benthic or terrestrial forms washed into the water from local soils. The annual mean density was $97/m^3$. Density was greatest from March through June. Peak density ($488/m^3$) occurred on March 22 (Tables 3.1.3-2). Nematodes were collected at water temperature of 6.0 to 28.0 C and salinity of 0.0 to 14.0 ppt.

Annelida

Polychaete eggs and larvae had an annual density of 4,043/m³ and were the fifth most abundant microzooplankter (Table 3.1.3-7). Density was greatest during October through December (Fig. 3.1.3-5). Monthly peak density (40,381/m³) occurred on October 26 (Table 3.1.3-2). Eggs and larvae were collected at water temperature of 5.9 to 29.0 C and salinity of 0.0 to 15.0 ppt.

Mollusca

Larval gastropods (veligers) had an annual mean of 1,432/m³ and were the eighth most abundant microzooplankter (Table 3.1.3-7). They were most abundant during June through September (Fig. 3.1.3-5). Peak density (12,254/m³) was on July 27 (Table 3.1.3-2). It was collected at water temperature of 6.5 to 29.0 C and salinity of 0.0 to 14.0 ppt. Larvae are believed to be young of gastropods occurring in local tidal marshes or further south in Delaware Bay (Lindsay and Morrisson, 1974).

Larval pelecypods (mostly free-swimming veliger larvae) were collected intermittently throughout the year. The annual density was 134/m³. Density was greatest during October with a peak (2,476/m³) occurring on October 26 (Tables 3.1.3-2). Larvae were collected at water temperature of 6.0 to 28.0 C and salinity of 5.0 to 14.0 ppt. <u>Macoma balthica has</u> consistently been one of the most abundant adult pelecypods collected near Artificial Island (Connelly <u>et al.</u>, 1976) and is probably the source of many of the larvae collected.

Arthropoda

Six genera of Cladocera were collected: <u>Bosmina, Moina,</u> <u>Ceriodaphnia, Chydorus, Leydigia</u>, and <u>Alona</u>. Cladoceran density was greatest during May and June (Table 3.1.3-2). <u>Bosmina</u> spp., which was the most abundant cladoceran and fourteenth most abundant microzooplankter, had an annual mean density of 336/m³ (Table 3.1.3-7). Density was greatest during May and June. A peak density of 5,864/m³ was collected on May 25 (Table 3.1.3-2). <u>Bosmina</u> spp. occurred at water temperature of 7.0 to 27.2 C and salinity of 0.0 to 7.0 ppt.

Copepoda

Adults and copepodids of at least 15 species of copepods were collected during 1978. Nauplii (early developmental stages) plus juveniles and adults of the three most abundant copepods comprised over 40 percent of the total microzooplankton sample. Nauplii were collected on every sampling date and were the most abundant microzooplankton taxon (27,014/m³) (Table 3.1.3-7). Taxonomic subtleties made species identification impracticable. The presence of several species in this category may have masked specific density differences. Copepod nauplii mean densities were highest during April through June and December (Fig. 3.1.3-6). Peak density (116,909/m³) occurred on December 6 (Table Two species of calanoid copepods, Eurytemora 3.1.3-2). affinis and Acartia tonsa, were dominant members of the microzooplankton community accounting for 7.0 and 6.6 percent, respectively, of the annual sample (Table 3.1.3-7). E. affinis predominated from March through mid-June and A. tonsa predominated for the remainder of the year (Table 3.1.3-2, Fig. 3.1.3-6).

Acartia tonsa, the most abundant species of copepod (4,680/m²) and third ranking microzooplankter, reached maximum density of 20,425/m² on July 12 (Tables 3.1.3-7, 3.1.3-2; Fig. 3.1.3-6). Described as a euryhaline species by Cronin <u>et al</u>. (1962), <u>A. tonsa</u> was collected in the study area at water temperature of 6.0 to 29.0 C and salinity of 0.0 to 15.0 ppt.

Eurytemora affinis was the second most abundant copepod species (4,349/m²) and fourth most abundant microzooplankter (Table 3.1.3-7). Densities were greatest from March through June with a maximum density of 24,723/m² collected on April 25 (Table 3.1.3-2, Fig. 3.1.3-6). <u>E. affinis</u> was collected at water temperature of 5.9 to 29.0 C and salinity of 0.0 to 11.0 ppt.

The harpacticoid copepod, Ectinosoma spp., was the third most abundant copepod and seventh ranking microzooplankter with an annual density of 2,278/m³ (Table 3.1.3-7). It was abundant every month except March (Table 3.1.3-2). A peak density of 8,607/m³ was collected on July 27 (Table 3.1.3-2). It was collected at water temperature of 5.9 to 29.0 C and salinity of 0.0 to 14.0 ppt.

Cirripedia nauplii and cypris, which together had an annual density of 625/m were the eleventh most abundant microzooplankters. They were most abundant during May through September and reached peak density of 4,891/m on

June 28 (Table 3.1.3-2). They were collected at water temperature of 6.0 to 29.0 C and salinity of 0.0 to 14.0 ppt. Most were probably larvae of <u>Balanus</u> <u>improvisus</u>, the only adult barnacle which sets near Artificial Island (see Section 3.1.4).

Tardigrades were collected during April, May, and June and had an annual density of $4.0/m^3$. Greatest density (58/m³) was collected on May 17 (Table 3.1.3-2). Tardigrades were collected at water temperature of 12.5 to 27.8 C and salinity of 2.0 to 5.0 ppt.

MACROINVERTEBRATE PLANKTON COMPOSITION

The 10 predominant macroinvertebrate plankters, which comprised 99.5 percent of the macroinvertebrate sample during 1978 (Table 3.1.3-8), are discussed in order of decreasing abundance.

<u>Neomysis</u> <u>americana</u>, the opossum shrimp, was the most abundant macroinvertebrate collected. Annual mean density was 7,520/100m³. It comprised approximately 75 percent of the total sample and was collected throughout the year (Tables 3.1.3-8, 3.1.3-3). Greatest density occurred from June through₃November (Fig. 3.1.3-7). Peak density (40,839/100m³) occurred on June 15 (Table 3.1.3-3). It was collected at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 12.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from May through November (Fig. 3.1.3-8). Mean density was greater near bottom than near surface on all sampling dates (Table 3.1.9-9). <u>N</u>. <u>americana</u> apparently congregates on or near the bottom during daylight (Hulburt, 1957; Hopkins, 1965; and Browne <u>et</u> al., 1976).

<u>Rhithropanopeus harrisii</u> larvae, including zoeae and megalops of this brackish water mud crab, were the second most abundant macroinvertebrate collected. Annual mean density was 1,926/100m³ (Table 3.1.3-8). It was abundant from June through September (Fig. 3.1.3-9). Peak density (l1,140/100m³) occurred on July 27 (Table 3.1.3-3). It was collected at water temperature of 4.3 to 28.0 C and salinity of 0.0 to 11.0 ppt.

Gammarus spp. (probably including <u>G. fasciatus</u>, <u>G. tigrinus</u>, and <u>G. daiberi</u>) was the third most abundant macroinvertebrate collected. Annual mean density was 215/100m (Table 3.1.3-8). It was collected throughout the year, with highest densities occurring during June through September (Fig. 3.1.3-10). Peak density (846/100m³) occurred on August 10 (Table 3.1.3-3). It was taken at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 11.5 ppt. The seasonality of juveniles indicated that most reproduction occurred during May through October (Fig. 3.1.3-11). Greater density occurred near bottom than near surface on all sampling dates (Table 3.1.3-9). It occurred in higher densities at northern stations than at southern stations (Table 3.1.3-10). <u>Gammarus</u> spp. is essentially a freshwater organism; therefore, this north-south distribution probably corresponds to the salinity gradient.

<u>Uca minax</u>, including zoeae and megalops of the red-jointed fiddler crab, were the fourth most abundant macroinvertebrate collected. Annual mean density was 124/100m³ (Table 3.1.3-8). It was collected during June through September (Fig. 3.1.3-9). Peak density (1,869/100m³) occurred on June 28 (Table 3.1.3-3). It was collected at water temperature 19.8 to 27.5 C and salinity 0.0 to 10.0 ppt. Densities were greatest at stations IP03, IP05, IP08, and IP10 (Table 3.1.3-10). Since U. <u>minax</u> adults inhabit the intertidal zone along banks of tidal streams and river, the greater densities of U. <u>minax</u> larvae at these stations may be due to the proximity of these stations to shore (Fig. 3.1.3-1).

<u>Blackfordia virginica</u>, a hydromedusa, was the fifth most abundant macroinvertebrate plankter. Annual mean density was 92/100m² (Table 3.1.3-8). It occurred from July through September (Fig. 3.1.3-7). Peak density (1,105/100m²) occurred on August 31 (Table 3.1.3-3). It was collected at temperature of 23.0 to 28.0 C and salinity of 3.0 to 10.5 ppt. The seasonality of juveniles indicated that most reproduction occurred from July through August (Fig. 3.1.3-12). Greater density of <u>B. virginica</u> occured near bottom than near surface (Table 3.1.3-9). Generally it occurred in greater densities at southern stations than at northern stations (Table 3.1.3-10). This observation corroborates findings of Cronin, Daiber, and Hulburt (1962) that <u>B</u>. <u>virginica</u> is typically found in waters with salinities exceeding 7.5 ppt.

<u>Palaemonetes pugio</u>, the grass shrimp, was the sixth most abundant macroinvertebrate collected. Annual mean density was 26/100m (Table 3.1.3-8). It was collected from April through November (Table 3.1.3-3). Greatest densities occurred from June through August (Fig. 3.1.3-13). Peak density (169/100m³) occurred on July 27 (Table 3.1.3-3). <u>P</u>. <u>pugio</u> was collected at water temperature of 10.2 to 28.0 C and salinity of 0.0 to 11.0 ppt. It occurred mostly as juveniles 2 to 7 mm long. The seasonality of juveniles indicated that most reproduction occurred during June through September (Fig. 3.1.3-14). It is rarely collected in benthic samples in the study area (see Section 3.1.4) probably because it typically inhabits shallow water grass habitats (Welsh, 1975).

The isopod, Edotea triloba, was the most abundant isopod and seventh most abundant macroinvertebrate. Annual mean density was 22/100m³ (Table 3.1.3-8). It was collected throughout the year and was most abundant during July through September (Table 3.1.3-3, Fig. 3.1.3-7). Peak density (96/100m³) occurred on September 13 (Table 3.1.3-3). It was collected at water temperature 4.3 to 28.0 C and salinity of 0.0 to 11.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from June through October (Fig. 3.1.3-15). Mean density was greater near bottom than surface on all sampling dates (Table 3.1.3-9). Generally, <u>E. triloba</u> occurred in greater densities at southern stations than northern stations (Table 3.1.3-10).

<u>Corophium</u> spp. was the second most abundant amphipod and eighth most abundant macroinvertebrate collected. Annual mean density was 19/100m³ (Table 3.1.3-8). It was collected throughout the year, with highest densities occurring from July through November (Table 3.1.3-3, Fig. 3.1.3-10). Peak density (59/100m³) occurred on August 10 (Table 3.1.3-3). It was collected at water temperature of 4.3 to 28.0 C and salinity of 2.0 to 10.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from June through November (Fig. 3.1.3-16). Mean density was greater near bottom than near surface on all sampling dates (Table 3.1.3-9). <u>Corophium</u> spp. typically occurred in greater densities at northern stations than southern stations (Table 3.1.3-10).

Brachyura ranked ninth among macroinvertebrates collected. Annual mean density was 16/100m³ (Table 3.1.3-8). It was collected from July through August (Fig. 3.1.3-9). Peak density (114/100m³) occurred on August 10 (Table 3.1.3-3). It was collected at water temperature of 22.0 to 28.0 C and salinity of 2.0 to 10.0 ppt.

<u>Crangon septemspinosa</u>, the sand shrimp, ranked tenth among macroinvertebrates collected. Annual mean density was 14/100m³ (Table 3.1.3-8). It was collected on all sampling dates. Greatest densities occurred from June through September (Fig. 3.1.3-13). Peak density (127/100m³) occurred on June 15 (Table 3.1.3-3). It was collected at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 10.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from May through September (Fig. 3.1.3-17). Mean density was greater near bottom than surface on all sampling dates (Table 3.1.3-10).

TABLE 3.1.3-1 MICROZOOPLANKTON SAMPLING STATIONS - 1978

Station	Description
ZPOl	Between the mouth of the Chesapeake and Delaware Canal and bell buoy "RB" (ca. 0.2 km east of the mouth of the Chesapeake and Delaware C anal.
ZP03	Approximately 15 m west of buoy N"A" (ca. 1 km west of Artificial Island).
ZP04	Between buoy C"lR" and Reedy Island Dike.
ZP05	Approximately 15 m west of Salem and the mouth of Sunken Ship Cove.
ZP06	Between buoys R: 2B" and R"4B" (ca. 1.2 km west of Artificial Island).
ZP07	Between Appoquinimink Light and buoy "1B" (ca. 0.4 km off Delaware shore).
ZP08	15 m west of Hope Creek Jetty.
ZP10	1 km NE of Liston Point
ZP11	Approximately 1.2 km west of New Jersey shore from a point just north of the mouth of Mad Horse Creek.
ZP12	Approximately 1.6 km NE of Delaware Point.
ZP21	In Hope Creek, approximately 3.2 km from its mouth.
ZP22	In Hope Creek, approximately 1.4 km from its mouth.

IA SALEM ZP 1978

;

DATE	03/22/78	03/29/78	04/20/78	04/25/78	05/17/78	05/25/78	06/15/78	06/28/78	07/12/78
DAY OR NIGHT Peridinium	12 HOUR	DAY	12 HOUR 214	DAY 29	12 HOUR	DAY	12 HOUR	DAY	DAY
N. SCINTILLANS Rofifer SPP. Rotifera a	209,545	15,200	360	. 566	8,727	29,094	2,004	17 230 510	203
NOTHOLCA KERATELLA	158	467 2	556 9	2,673 14	44,867 422	13,657 1,321	4,49 4,659 74	16	56 6
K. GUADRATA B. CALYCIFLORUS	10 4	19 38	214	63 509	17,014 1,995	9,029 4,644	36 1,365	48	
B. ANGULARIS B. VARIABILIS	9	5	39	58	6,968	6,326	2,878	627	1,071
B. CAUDATUS B. URCEDLARIS B. DIVERSICORNIS		1			18	26	2,410 60 45	185	39
B. PLICATILIS B. GUADRIDENTATUS K. BOSTONIENSIS K. LONGISPINA		*	, 3		27 372	66 654 34	68 74	7	6 2
P. PATULUS Polyarthra Pluesgma		* 16			6 45	1/5 1 7	55 56		
ASPLANCHNA F. Longiseta		17		7 29	424 1,195	2,192 1,491	57 281	47	
NEMATODA POLYCHAETA OLIGOCHAETA	488 1,832	143 16 5	53 27	132 22	159 9	355	228 109 18	171 312	3 551
GASTRUPODA PELECYPODA		5	4				119	2,790	4,114
BOSMINA Daphnia Moina Ceriodaphnia		26	2	9	231 3	5,864 36	553 84 58 9	7 14 166	25
CHYDORUS Aluna Leydigia sp.		2			18 9	44	,		
COPEPOD NAUPLII E. AFFINIS DIAPTONIS	6,954 889 15	12,442 3,301 31	94,264 · 12,662 4	64,511 24,723	39,755 9,548 18	25,580 6,351 36	20,459 19,454 4	66,659 3,524	17,971 4,484
P. CORONATUS A. TORISA			3	7		14	683 7.014	3,415 12,333	1,672 20,425
HARPACTICOIDA SCOTTULANA ECTINOSONA	99 640	67 11 237	33 346	103 2,418	273 54 32002	394 129 2,339	86 385 1,852	86 510 4,619	1 180 1,337
E. CURTICORNE D. COLCARVA	15		18		18				
H. FOSTERI Cyclops	83	26 156	9 399	448	9 1,118	44 3,041	67 434	260 22	286 35

TABLE 3.1.3-2 Microzooplankton mean density per sampling period (numbers/cubic meter)

IA SALEM ZP 1978

.

3.1-82

.

•				TABLE 3.1.3-2 CONTINUED	2				
DATE	03/22/78	03/29/78	04/20/78	04/25/78	05/17/78	05/25/78	06/15/78	06/28/78	07/12/78
DAY OR NIGHT C. VERNALIS C. BICUSPIDATUS E. AGILIS T. PRASINUS ERGASILUS CIRRIPEDIA	12 HOUR 12 20	DAY 7 110	12 HOUR 57 97 4	DAY 25 149	12 HOUR 80 154 9 551	DAY 767 325	12 HOUR 143 9 4 2 304	DAY 161 22 4,891	DAY 1 1,318
CRYPTONISCUS LARVAE Tardigrada				7	58		18	14	17510
TOTAL	220,783	32,368	109,387	96,513	137,171	115,342	66,708	101-677	53,749
NO. SAMPLES	39	24	39	24	39	24	. 39	24	24

TABLE	3.1.3-	2
CON	TNUED	

.

DATE	07/27/78	08/10/78	08/31/78	09/13/78	09/27/78	10/18/78	10/26/78	11/15/78	11/21/78
DAY OR NIGHT	12 HOUR	12 HOUR	DAY	12 HOUR	DAY	12 HOUR	DAY	DAY	12 HOUR
INVERT, EGG		*	26	9	4	5			
TURBELLARIA		7	33	6	7		5		
ROTIFER SPP.	64	13	23	1	5	19	4	70	190
ROTIFERA A	ÿ	*	44	i	13		18	1	1
BDELLOIDEA			41	6			1	5	
NOTHOLCA	8	*		-	2				*
KERATELLA	11								
B. CALYCIFLORUS		2		2			128		*
B. ANGULARIS	80	549	92	175	7		11		
B. CAUDATUS	1	5	*						
B. DIVERSICORNIS				*					
8. HAVANAENSIS	•	5							
B. PLICATILIS	1	1							
B. QUADRIDENTATUS							4		
SYNCHAETA					1	1		12	
LECANE						2			
ASPLANCHNA	10	3	1						
NEMATODA	19	5	4	18	11	12	8	27	7 7 7 7
POLYCHAETA	. 1,233	555	138	53	95	5,895	40,381	14,448	3,726
OLIGOCHAETA		*	2	1	4	1 41	4	10 7	
GASTRUPODA	12,254	4,549	2,496	1,596	66B	41	2,476	57	51
PELECYPODA	16	1	5		5		27410		
ACARINA			47		,				
CRUSTACEA			17				1		
BOSMINA	•	* 13	2	10			•		
MOINA		13	č	1	15	•	1		
OSTRACODA	10,349	11.642	5,066	6.966	7.717	6,279	3,572	13,371	5,503
COPEPOD NAUPLII	10/347	110042	37000	0,,00	32	2	8	121211	
P. CRASSIROSTRIS P. PARVUS					1	-	-		
E. AFFINIS	13	197	7	6	ż	2	18	8	80
P. CORONATUS	520	351	291	247	626	103	261	264	665
A. TONSA	10,342	9.037	5,632	7.040	8,253	3,760	3,290	3,229	2,529
HARPACTICOIDA	33	31	44	52	48	63	60	59	8
SCOTTOLANA	121	162	62	27	12	6	20	39	
ECTINOSOMA	8,607	4,990	327	2,028	783	1,857	769	5,750	1,539
E. CURTICORNE				1					
0. COLCARVA	16	13	84	24	381	4	13		1
H. FOSTERI	5	116	52	7		*	_	_	1
CYCLOPS	6	4	32	2		1	3	5	*
C. VERNALIS	3	3							
C. BICUSPIDATUS		*	. 4	_	1		-		
ERGASILUS	32	2	91	7	11		5		
ARGULUS SPP.		2			R	a	400	4.70	·
CIRRIPEDIA	1,060	632	955	511	406	267	190	170	50
CRYPTONISCUS LARVAE	1	27	13	13	24	5	20		
TOTAL	44,826	32,936	15,598	18,826	19,148	18,350	51,282	37,543	14,356
NO. SAMPLES	39	48	24	48	.24	55	24	24	57

TABLE 3.1.3-2 CONTINUED

DATE	12/06/78	12/13/78
DAY OR NIGHT	DAY	12 HOUR
TURBELLARIA	24	
ROTIFER SPP.	284	2,941
NOTHOLCA	•	117
K_ QUADRATA		2
B. CALYCIFLORUS	*	1
B. VARIABILIS	*	
B. CAUDATUS	1	
B. HAVANAENSIS	۲.	5
K. BUSTONIENSIS		20
SYNCHAETA	*	2
NEMATODA	. 68	25
POLYCHAETA	. 10,854	608
GASTRUPODA	*	1
PELECYPODA	41	13
MOINA		2
COPEPODA		3
COPEPUD NAUPLII	116,909	4,318
E. AFFINIS	488	1,217
DIAPTONUS		*
P. CORONATUS	212	89
A. TONSA	340	362
HARPACTICOIDA	40	25
SCUTTULANA	*	
ECIINOSOMA	1,117	978
O. COLCARVA	*	1
H_ FOSTERI	3	11
CYCLOPS	*	
C_ VERNALIS		2 3
C. BICUSPIDATUS		1
E_ AGILIS	1	•
CIRRIPEDIA	62	20
	02	. <i>E</i> U
TOTAL	130,457	10,778
NO. SAMPLES	23	39

	3.1.3-3	
MACROINVERTEBRATES MEAN	DENSITY PER SAMPLING	PERIOD
(NUMBERS/10	O CUBIC METERS)	

				0.100 00010	HEIEK37				
DATE	03/22/78	04/20/78	05/17/78	06/15/78	06/28/78	07/12/78	07/27/78	08/10/78	08/31/78
DAY OR NIGHT M. PROLIFERA	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY
HYDROZOA	*		_						
HYDROZUA (MEDUSAE)		*	. 3	1	*		*		
HYDRUZOA #1 (MEDUSAE)						*	*		11
BOUGAINVILLIA SPP.									*
N_ BACHEI				*		*	*		1
OBELIA SPP.				*		*	9	*	5
PHIALIDIUM SPP.									
'8. VIRGINICA					*		*	1	7
M. LEIDYI						*	163	149	1,105
B. OVATA							*		
TURBELLARIA									*
POLYCHAETA	14	1	1	• .					*
OLIGOCH4ETA	5	1	16	* 28	1		*	*	*
HIRUDINEA	ź	1	, o *	20 *	1	*		*	
GASTRUPODA	-	•	^	*					
NUDIGRAVCHIA				*	· 1	-	_		
MACONA SPP_			28	* *	· 1	2	. 5	*	
L. POLYPHEMUS			20	^		*	*		
L_ KINDIII				126	+				
L. AESTIVA				2	*	2	1	*	
L. MAJUR			*	-	~	. 13	1	*	
ERGASILIDAE			*						
ARGULUS SPP.				· 1	1	5	29	-	_
CIRRIPEDIA	*	*				,	29	7	1
N. AMERICANA	203	831	397	40,839	27,132	6,703	4,197	1 8/3	
L. AMERICANUS			1	3	24	19	40 40	4,862	4,181
ISOPODA			*		24	17	40	2	3
CHIRIDOTEA SPP.			18						
C_ ALMYRA	15	1	12	7	7	* •	*	*	
E_ TRILOBA	*	*	*	1	19	24	78	13	* 36
C. POLITA	*		*	1	4	*	1	*	*
C. LUNIFRONS			*		*	*	*	*	*
A. MEDIALIS			*	*	1	1	Ŷ.	2	1
AMPHIPUDA						•	*	*	•
L. PLUMULOSUS	*	*	*					•	
COROPHIUM SPP_	1	1	4	6	6	54	48	59	4
GAMMARUS SPP_ M_ NITIDA	47	10	151	· 537	560	105	244	846	506
HAUSTORIIDAE			*	*	*	*	*	1	*
		*	*			•		*	
MONOCULODES SPP. M. EDWARDSI	-		*	1	*	*	*	1	*
_	2	*	*	2	2	1	5	8	2
PARAPLEUSTES SPP. Okchestia spp.				*	*	*	*	*	-
P. PUGIO								*	*
C. SEPTEMSPINOSA	2		•	19	56	62	169	71	55
SE SELLEOSFINDAR	2	. 2	9	127	37	6	11	4	*

IA SALEM ZP 1978

				CONTINUED	3				
DATE	03/22/78	04/20/78	05/17/78	06/15/78	06/28/78	07/12/78	07/27/78	08/10/78	08/31/78
DÀY OR NIGHT Brachyura C. Sapidus	DAY	DAY	DAY	DAY	DAY *	DAY 2	DAY , 66	DAY 114	DAY 5 1
R. HARRISII U. Minax Insecta	*		*	144	2,776 1,869	8,081 148	11,140 205	9•823 8	800
DIPTERA Cylicidae		*	*	×	*		,		
CHIRDNOMIDAE Chaetognatha	*	*	*	*	*				
TOTAL	. 298	856	649	41,862	32,510	15,242	16,431	15,983	6,802
NO. SANPLES	28	28	27	28	28	28	28	28	28

TABLE 3.1.3-3

IA SALEM ZP 1978

TABLE	З.	.1.	.3-	• 3
CONI	'II	IUI	ΞD	

.

DATE	09/13/78	10/26/78	10/27/78	11/21/78	11/22/78
DAY OR NIGHT	DAY	DAY	DAY	DAY	DAY
HYDROZOA (MEDUSAE)	12	7		25	88
HYDROZUA #1 (MEDUSAE	2				
BOUGAINVILLIA SPP. N. BACHEI	2 9	. *		*	
PHIALIDIUM SPP.	. 1	r r			
B. VIRGINICA	118				•
ACTINIARIA		*			
CTENOPHORA		*		3	7
B. OVATA		*			
RHYNCHOCOELA		*			
POLYCHAETA	1				
OLIGOCHAETA	5	*		* 5	*
HIRUDINEA				2	
NUDIBRANCHIA	*	*			
MACONA SPP. L. AESTIVA	*			4	*
ARGULUS SPP.	1	*	*	*	
N. AMERICANA	12,765	5,314	2,705	5,120	89
L. AMERICANUS	18	5		. 7	2
C. ALMYRA	1	1	2	1	
E. TRILOBA	96	13	4	1	3
C. POLITA	*	*			
C. LUNIFRONS		*			
A. MEDIALIS	*	*		*	
COROPHIUM SPP.	13	15	8	51	6
GAMMARUS SPP.	281	35	61	12	
M. NITIDA	15	*	,	*	
M. EDWARDSI	15	*	4	_ * *	
PARAPLEUSTES SPP.	2	*		×	
ORCHESTIA SPP. P. PUGIO	16	*		*	
C. SEPTEMSPINOSA	· 8	â		â	
C. SAPIDUS	1	*	*	•	
R. HARRISII	921	*	2	*	
U. MINAX	1		-		
TOTAL	14,316	5,406	2,791	5,241	198
NO. SAMPLES	28	26	2	24	4

3.1-88

.

*		************				*			
SEASON	01/01 - 02/29	03/01 -	03/01 - 06/15		06/16 - 09/15		11/30	12/01 - 12/31	
TEMP. (C) RANGE	$0_0 - 0_0$	5.9 -	22.0	22.0 -	29.0	8.2 -	20.8	6.0 -	10.1
MEAN	0.0	13.1		25.9		14.3		7.7	
SAL. (PPT) RANGE	0.0 - 0.0		10.0	2.0 -	11.0	4.0 -	15.0	3.0 -	10.0
MÉAN	0.0	2.8		5.9		9.3		ó.3	
TAXONO 11C GROUP	MEAN NO. MEAN %	MEAN NO.	MEAN %	MEAN NO.	MEAN %	MEAN NO.	MEAN %	MEAN NO.	MEAN Z
SUCTORIA		39	0.03	. 1	*				
TURBELLARIA				7	0.01	1	*	9	0.01
ROTIFER SPP.		42,539	36.34	142	0.35	80	0.33	1,955	5 -54
BDELLOIDEA				6	0.01	1	*		
MONOGONONTA		19,397	16.57	444	1.10	23	0.09	94	0.17
NEMATUDA		225	0.19	29	0.07	11	0.04	41	0.07
POLYCHAETA		340	0.29	489	1.21	10,080	41.99	4,409	7.99
OLIGOCHAETA		8	*	*	*	2	*		
GASTROPODA		20	0.01	4,824	11.98	101	0.42	×	*
PELECYPODA		*	*	4	*	347	1-44	24	0.04
ACARINA						*	*		
CRUSTACEA				2	*				
BRANCHIOPODA		79.5	0.67	30	0.07	*	*	1	*
OSTRAÇODA				*	*	4	0.01		
COPEPODA	•	38,407	32.81	16,664	41.38	6,798	28.32	46,088	83.54
CALANOIDA		12,232	10.45	11,908	29.72	4,257	17.73	1-436	2.00
HARPACTICOIDA		1,762	1.50	4,173	10.36	2,039	8.49	1,061	1.92
CYCLOPOIDA		1,008	0.86	177	0.43	58	0_24	15	0.02
BRANCHIURA				*	*	*	*		
CIRRIPEDIA		264	0.22	1,295	3.21	195	0.81	35	0.06
ISOPODA		3	*	11	0.02	7	0.02		
TARDIGRADA		10	*	1	*				
TOTAL		117,049	99.94	40,267	99.92	24.004	99.93	55,168	99.96

TABLE 3.1.3-4 Microzooplankton seasonal mean density (Numbers/Cubic meter) -1978.

* = BELOJ REPORTABLE LEVEL

IA SALEN ZP 1978

3.1-89

Ò

SEASON	01/01 - 02/29	03/01 -	06/15	06/16 -	09/15	09/16 -	11/30	12/01 - 12/31		
TEMP_ (C) RANGE	$0_{-}0_{-}0_{-}0_{-}0_{-}0_{-}0_{-}0_{-}$	4.0 -	22.0	22.0 -	28.0	9.5 -	14.8	0.0 - 0.0		
MEAN	0.0	12.9		25.7		12.2		0.0		
SAL_ (PPT) RANGE	0_0 - 0_0	0.0 -	9.0	1.0 -	10.0	2.0 -	12.0	0.0 -	0.0	
MEAN	0.0	2.9		5.2		7.6		0.0		
TAXUNOMIC GROUP	MEAN NO. MEAN %	MEAN NO.	MEAN %	MEAN NO.	MEAN %	MEAN NO.	MEAN X	MEAN NO.	MEAN	
DEMOSPONGIAE		*	*							
HYOROZO4		1	*	267	1.58	21	0.42			
ANTHOZUA						*	*			
CTENUPHORA						2	0.04			
TENTACULATA				*	*					
NUDA				*	*	*	*			
TURBELLARIA				*	*					
RHYNCHUCDELA		_				*	*			
POLYCHAETA		5	0.04	*	*					
OLIGOCHAETA		13	0.11	*	*	*	*			
HIRUDIHEA		1	*			2	0_04			
GASTRUPUDA		*	*	*	*					
NUDIBRANCHIA		*	*	1	*.	*	*			
PELECYPODA		7	0.06	*	*					
XIPHOSURA		77	0.30	*	*					
BRANCHIUPODA		33	0.28	* 2	* 0.01	· 2	0.04			
CALANOIDA Cyclopoida		*	*	٤	0.01	٤	0-04			
BRANCHIJRA		*	*	7	0.04	*	*			
CIRRIPEDIA		*	*	*	*	•	-			
HYSIDACEA		11,162	96.87	9,973	59.10 [°]	4,851	97.94			
CUMACEA		117102	70.01 *	18	0.10	42051	0.10			
ISOPODA		15	0.13	50	0.29	9	0.18			
		202	1.75	466	2.76	56	1.13			
AMPHIPODA DECAPODA		82	0.71	6,089	36.08	5	0.10			
INSECTA		٥ <i>۲</i> *	U=r1 *	*	*	,	0.10			
DIPTERA		*	*	*	*					
CHAETOGNATHA		*	*	*	× 1					
TOTAL		11,522	99.95	16,873	99.96	4,953	99.99			

TARLE 3.1.3-5 Macroinvertebrate plankton seasonal mean density (numbers/100 cubic meters) -1978.

* = BELOW REPORTABLE LEVEL

IA SALEM ZP 1978

ORIGIN

B,M

BoM

8 , M

ROTIFERS		ROTIFER SPECIES	F / B
		BDELLOIDEA SPECIES	F
			F
		BRANCHIONUS ANGULARIS	F,8
		B. CALYCIFLORUS	
		B. CAUDATUS	۶
		B. CAUDATUS B. DIVERSICORNIS	F
		B. HAVANAENSIS	F . 8
		8. PLICATILIS	8
		B. QUADRIDENTATUS	F.8
		B. URCEOLARIS	F
		B. VARIABILIS	F
		FILINIA LONGISETA	F
		KELLICOTTIA BOSTONIENSIS	F
		K. LONGISPINA	F
		KERATELLA SPP.	F
		K. QUADRATA	F
		LECANE SP.	F
			F,B,M
		PLATYIAS PATULUS	F
		PLOESOMA SPP.	F
		POLYARTHRA SPP.	F
			•
			F.B
		SYNCHAETA SPP.	F,8,M
CLADOCERAN		ALONA SP.	F
		BRANCHIOPODA SPECIES	F
	-		F
		BOSMINA SPP. CERIODAPHNIA	F
		CHYDORUS SPP.	F
		DAPHNIA SPP.	F
			F.B
		LEYDIGIA SP.	F
•		MOINA SPP.	F
		rivarin off #	•

TABLE 3.1.3-6 INVERTEBRATES COLLECTED IN ASSOCIATION WITH THE PLANKTON COMMUNITY-1978.

CTENOPHORA SPECIES

MNEMIOPSIS LEIDYI

*** HOLOPLANKTON ***

BEROE OVATA

KEY: F = FRESHWATER; B = BRACKISH; M = MARINE;

COMMON NAME SCIENTIFIC NAME

T = TERRESTRIAL

COMB JELLIES

TABLE 3.1.3-6 CONTINUED

COMMON NAME		ORIGIN

***	HOLOPLANKTON ***	
	CONTINUED	
COPEPOD	COPEPOD NAUPLII	F.B.M
CALANOID	ACARTIA TONSA	B 🖌 M
	DIAPTOMUS SPP. Eurytemora Affinis	F
	LABIDOCERA AESTIVA	F . B B . M
	PARACALANUS CRASSIROSTRIS	BZM
	P. PARVUS	BeM
	PSEUDODIAPTOMUS CORONATUS	B . M
CYCLOPOID	CYCLOPOIDA SPECIES	F,B,M
	CYCLOPS SPP.	F
	C. BICUSPIDATUS THOMASI C. VERNALIS	F
	HALICYCLOPS FOSTERI	F / B
	OITHONA COLCARVA	B,M
	TROPOCYCLOPS PRASINUS	B . M
•	LEPTINOGASTER MAJOR	8 . M
***	MEROPLANKTON ***	
HYDROMEDUSAE	HYDROZOA (MEDUSAE)	B / M
(JELLYFISH)	HYDROZOA #1 (MEDUSAE)	B . M
	BOUGAINVILLIA SPP.	8 . M
	NEMOPSIS BACHEI	8,M
	OBELIA SP. Phialidium spp.	B⊮M
	B. VIRGINICA	8 B - M
		B/M
<i>i</i> IORM	POLYCHAETE EGGS	FoBoM
	POLYCHAETE LARVAE	FøBøM
SNAIL	GASTROPOD LARVAE	F.B.M
CLAM	PELECYPOD LARVAE	8.M
BARNACLE	CIRRIPEDIA NAUPLII, CYPRIS	В
PARASITIC ISOPOD	AEGATHOA MEDIALIS	B / M
RUE CRABS	BRANCHYURA MEGALOPS	8
BLUE CRAB	CALLINECTES SAPIDUS MEGALOPS	в
IDDLER CRAB	UCA MINAX ZOEA, MEGALOPS	8
1UD CRAB	RHITHROPANOPEUS HARRISII ZOEA	8

IA SALEM ZP 1978

	• • • • • • • • • • • • • • • • • • • •	ع کم درس هم درس می بود می درد می درد می درم می درم می درم
COMMON NAME	SCIENTIFIC NAME	ORIGIN
**	** TYCHOPLANKTON ***	
SPONGE	MICROCIONA PROLIFERA	8,M
ANEMONE	ACTINIARIA SPECIES	вим
FLATWORM	TURBELLARIA SPECIES	F.B.M
ROUNDWORM	NEMATODA SPECIES	F,B,M,T
SEGMENTED WORM	POLYCHAETE SPECIES Oligochaete species	F > B > M F > B
LEECH	HIRUDINEA SPECIES Rhyncocoela species	8 • M 8 • M
SNAIL	NUDIBRANCHIA	B,M .
HORSESHOE CRAB	LIMULUS POLYPHEMUS TRILOBITE LARVAE	B.M
WATER MITE	ACARINA SPECIES	F
SEED SHRIMP	OSTRACODA SPECIES	F,B
WATER BEAR	TARDIGRADA SPECIES	F.T
COPEPOD CYCLOPOID	EUCYCLOPS AGILIS Ergasilidae Ergasilus SP.	F F , B , M F , B , M
HARPACTICOID	ECTINOSOMA SPP. ECTINOSOMA CURTICONE SCOTTOLANA SPP. LAOPHONTE SPP. HARPACTICOIDA SPECIES	8 - M 8 - M 8 8 8 8
FISH LOUSE	ARGULUS SPP.	F,8,M
CUMACEAN	LEUCON AMERICANUS	8
TANAID	LEPTOCHELIA SAVIGNYI	B,M

.

TABLE 3.1.3-6 CONTINUED

IA SALEM ZP 1978

.

.

.

3.1-93

. .

TABLE 3.1.3-6 CONTINUED

COMMON NAME	SCIENTIFIC NAME	ORIGIN
· *	** TYCHOPLANKTON *** Continued	
ISOPODA	ISOPODA CASSIDINIDEA LUNIFRONS CHIRIDOTEA SPP_ CHIRIDOTEA ALMYRA CYATHURA POLITA EDOTEA TRILOBA MICRONISCUS LARVAE CRYPTONISCUS LARVAE BOPYRIDAE	F • 8 • M 8 8 8 F • B 8 • M 8 • M 8 • M 8 • M
АМРНІРОДА	COROPHIUM SPP. GAMMARUS SPP. LEPTOCHEIRUS PLUMULOSUS MONOCULODES SPP. MONOCULODES EDWARDSI MELITA NITIDA ORCHESTIA SPP. HAUSTORIDAE SPECIES PARAPLEUSTES SPP. PARAMETABELLA CYPRIS	F · B F · B B B B B B B B B M
MYSID SHRIMP - OPOSSUM SHRIMP	NEOMYSIS AMERICANA	8 - M
GRASS SHRIMP	PALAEMONETES PUGIO	в
SAND SHRIMP	CRANGON SEPTEMSPINOSA	в
BLUE CRAB	CALLINECTES SAPIDUS POST MEGALOPS	B • M
MUD CRAB	RHITHROPANOPEUS HARRISII POST MEGALOPS	в
INSECT	INSECTA DIPTERA LARVAE CULICIDAE LARVAE CHIRONOMIDAE LARVAE	F + B + T F + B + T F + B + T F - B + T F -
ARROW WORM	CHAETOGNATHA SPP.	BZM

Rank	Taxon	Major Taxonomic Group	Annual Mean Density	Total Annual Density	% of Total	Cumulative { of Total
1	Copepod nauplii	Copepoda	27,014	540,290	40.7	40.7
2	Rotifer spp.	Rotifera	13,477	269,548	20.3	61.0
3	Acartia tonsa	Copepoda	4,680	93,602	7.0	68.0
4	Eurytemora affinis	Copepoda	4,349	86,977	6.6	74.6
5	Polychaeta eggs and larvae	Annelida	4,043	80,856	6.1	80.7
6	Notholca spp.	Rotifera	3,360	67,192	5.0	85 .7
7	Ectinosoma spp.	Copepoda	2,278	45,557	3.5	89.2
8	Gastropoda veliger larvae	Gastropoda	1,432	28,645	2.1	91.3
9	Keratella guadrata	Rotifera	1,309	26,176	2.0	93.3
10	Branchionus angularis	Rotifera	945	18,899	1.4	94.7

TABLE 3.1.3-7 MEAN DENSITY (numbers/cubic meter), TOTAL DENSITY, AND CUMULATIVE PERCENT OF 10 PREDOMINANT MICROZOOPLANKTERS - 1978

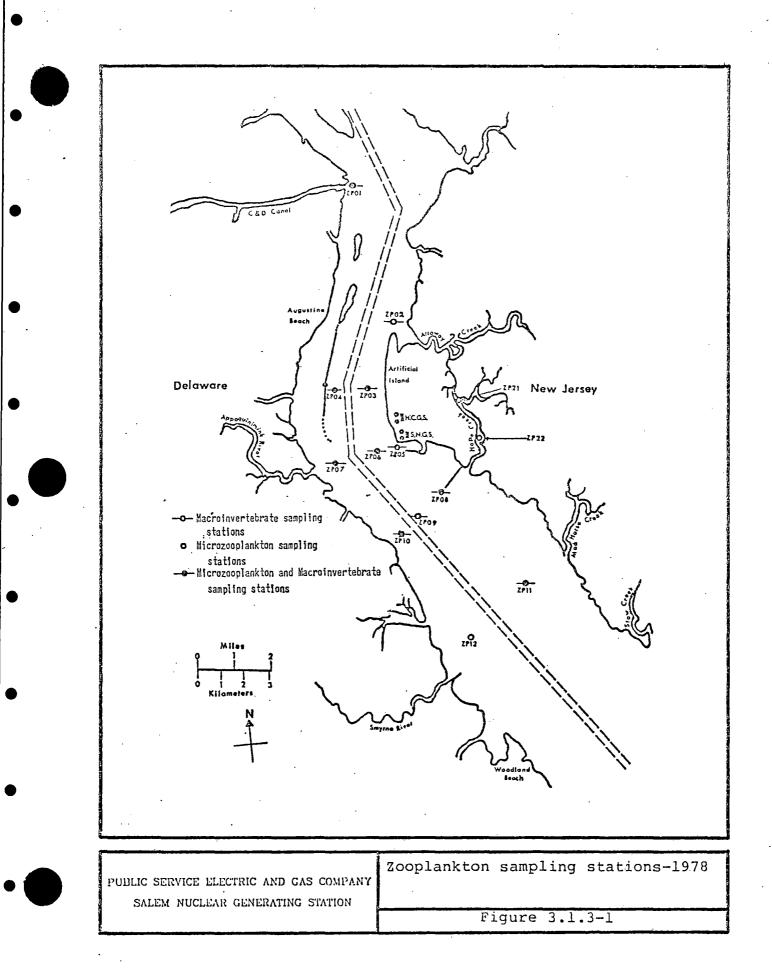
IA SALEM ZP 1978

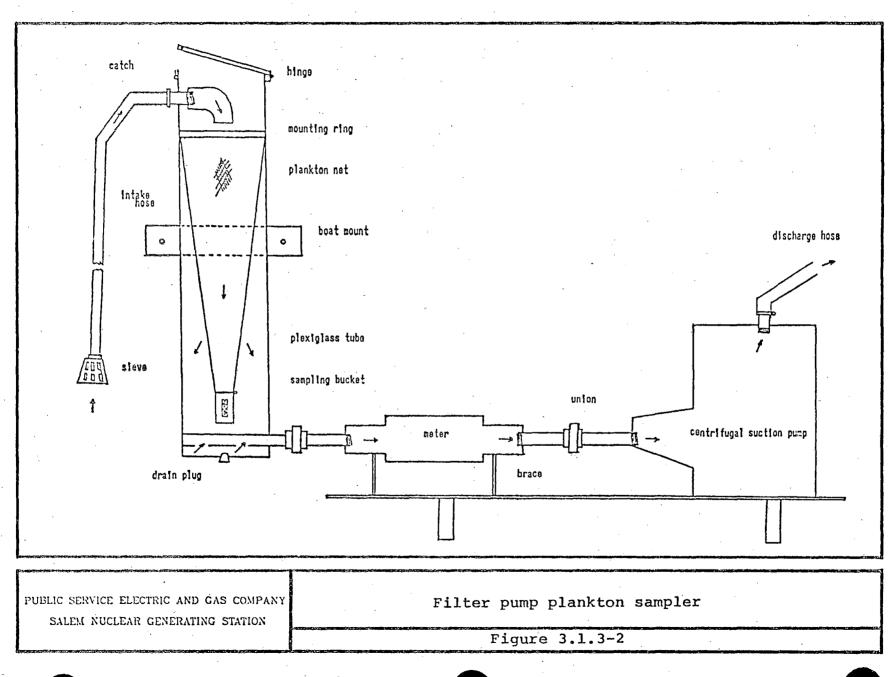
TABLE 3.1.3-8 MEAN DENSITY (numbers/100 cubic meters) AND CUMULATIVE PERCENT OF 10 PREDOMINANT MACROINVERTEBRATE PLANKTERS-1978

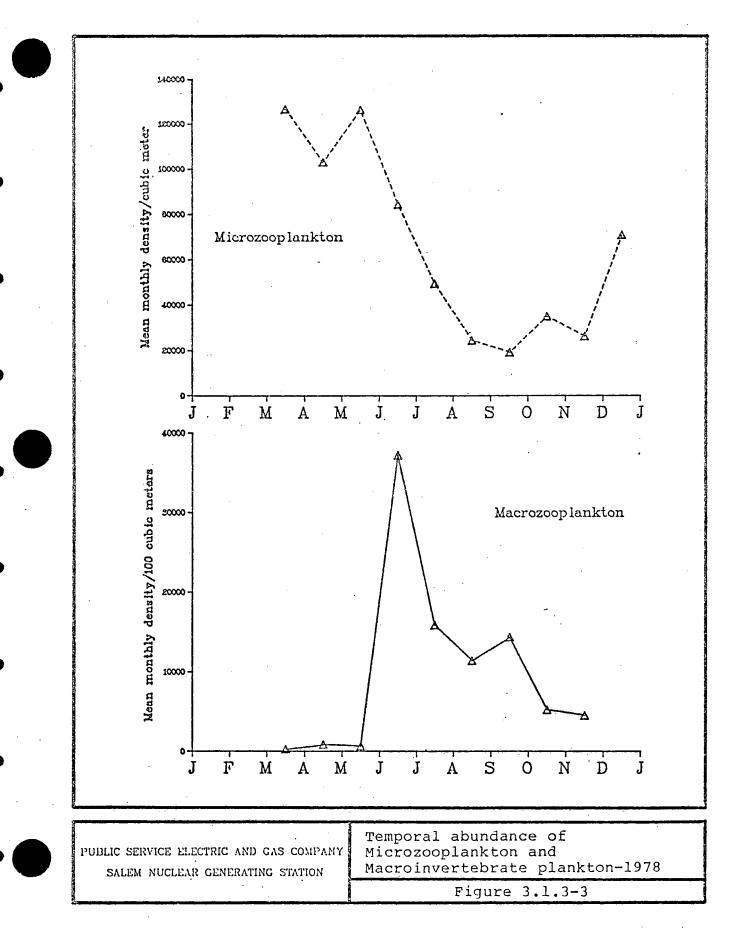
Rank	Taxon	Major Taxonomic Group	Annual Mean Density	<pre>% of Total</pre>	Cumulative % of Total
1	Neomysis americana	Mysidacea	7,520	74.98	74.98
2	Rhithropanopeus harrisii	Decapoda	1,926	19.20	94.18
3	Gammarus spp.	Amphipoda	215	2.14	96.32
4	Uca minax	Decapoda	124	1.24	97.56
5	Blackfordia virginica	Hydrozoa	92	0.92	98.48
б	Palaemonetes pugio	Decapoda	26	0.26	98.74
7	Edotea triloba	Isopoda	22	0.22	98.96
. 8	Corophium spp.	Amphipoda	19	0.19	99.15
.9	Brachyura	Decapoda	16	0.16	99.31
10	Crangon septemspinosa	Decapoda	14	0.14	99.45

TABLE 3.1.3-9 MEAN SAMPLING DENSITIES (numbers/100 cubic meter) BY DATE AND DEPTH OF THE 10 PREDOMINANT MACROINVERTEBRATES IN 1978

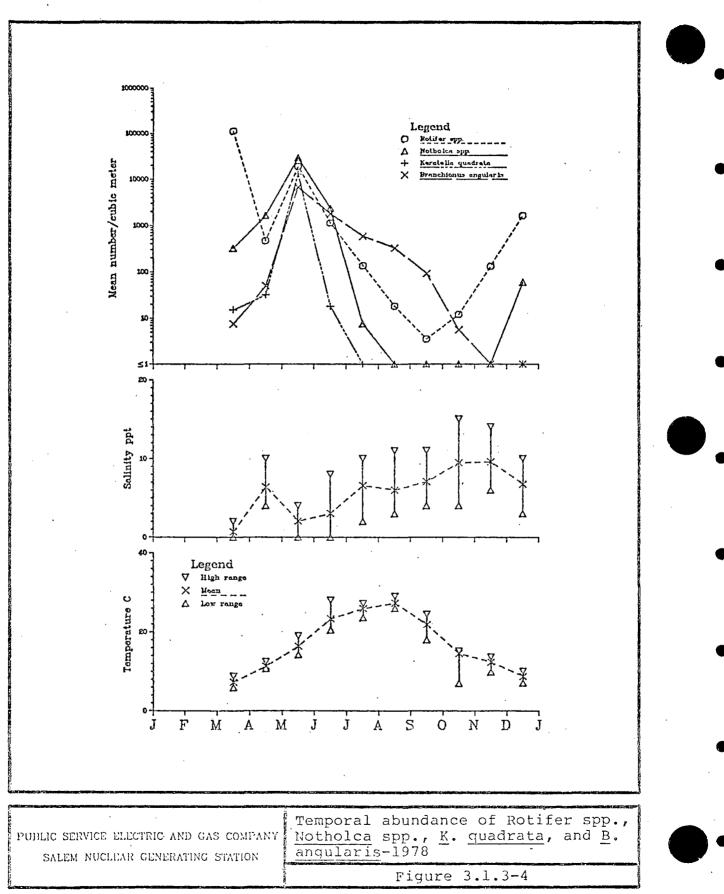
		3/22	4/20	5/17	6/15	6/28	7/12	7/27	8/10	8/31	<u>9/13</u>	10/25-27	11/21-22
N. americana	S B	27 430	5 1,421	69 591	1,085 66,999	6,396 46,499	2,073 9,376	67 8,925	441 8,514	127 8,287	163 25,118	91 6,749	318 6,917
R. harrisii	S B	0 *	0 0	*	28 169	3,096 2,427	8,577 7,276	6,580 15,522	6,750 13,935	853 909	1,153 512	* 1	1 *
Gammarus spp.	S B	21 66	1 19	40 250	15 766	79 954	84 117	31 534	71 1,418	86 1,200	9 612	13 65	2 18
U. minax	S B	0 0	0 0	0 0	8 4	2,183 1,961	204 72	166 291	11 4	0 0	1 *	0 0	0 0
B. virginica	S B	0 0	0 0	0 0	0 0	0	0 *	94 220	142 201	630 1,237	33 256	0	0 0
P. pugio	S B	0 0	* G	0 0	24 8	71 47	41 80	76 271	47 107	49 60	19 11	* 0	*
E. triloba	S B	*	0 *	* 1	* 3	2 47	4 44	5 161	2 17	3 60	19 144	5 22	1 4
Corophium spp.	S B	1 4	1 2	3 4	3 6	4 7	34 45	21 60	17 77	1 8	2 24	14 20	11 77
Brachyura	S B	0 0	0 0	0 0	0 0	*	1 4	25 95	13 157	2 10	† †	† †	† †
C. septemspinosa	S B	0 5	0 4	1 15	0 212	1 72	* 15	* 24	* 9	0 *	0 18	0 9	0 5

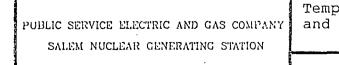

+ = All Brachyura identified to species after 8/31/78
* = Less than 1
S = surface, B = bottom

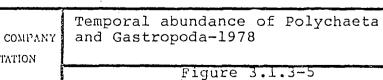

TABLE 3.1.3-10 MEAN SAMPLING DENSITIES (numbers/100 cubic meters) BY STATION AND DEPTH OF THE 10 PREDOMINANT MACROINVERTEBRATES, 1978

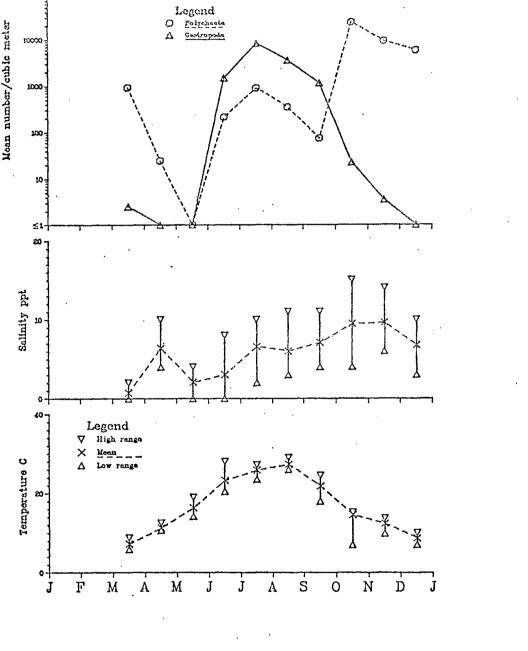

		<u>1901</u>	1P02	<u>1P03</u>	IP04	IP05	<u>1P06</u>	<u>1P07</u>	<u>1908</u>	IP09	<u>IP10</u>	<u>IP11</u>
N. americana	S	890	109	232	4,369	3,308	236	654	105	2	48	4
	B	8,963	8,889	22,433	13,614	20,088	39,202	11,414	27,574	13,325	6,874	2,711
R. harrisii	S	2,356	2,708	3,168	1,724	3,750	3,048	1,776	2,428	1,122	1,415	1,348
	B	2,923	3,393	6,876	3,052	1,848	3,026	3,152	6,803	2,984	1,737	2,323
Gammarus spp.	S	186	20	30	62	98	*	6	4	*	5	2
	B	1,921	524	456	755	417	993	342	65	29	76	15
U. minax	S	16	142	145	0	468	1	111	1,098	42	324	12
	B	4	60	115	16	73	30	49	1,564	9	12	206
B. virginica	S B	*	3 11	7 94	4 13	97 79	36 29	12 704	91 190	16 207	17 64	542 313
P. pugio	S	24	21	30	9	51	27	33	34	10	25	35
	B	36	30	68	22	36	22	57	67	87	43	66
E. triloba	S	1	2	5	*	18	*	1	8	*	1	2
	B	2	3	24	19	1 73	57	20	87	74	50	50
Corophium spp.	S	9	16	5	3	71	*	*	*	0	*	*
	B	26	75	3 5	33	106	13	6	3	3	2	4
Brachyura	S	5	1	1	0	39	0	1	1	0	*	1
	B	26	24	48	5	98	73	5	35	4	3	5
C. septemspinosa	S	0	0	*	*	*	0	*	0	0	1	0
	B	4	22	68	6	56	69	30	50	31	17	1

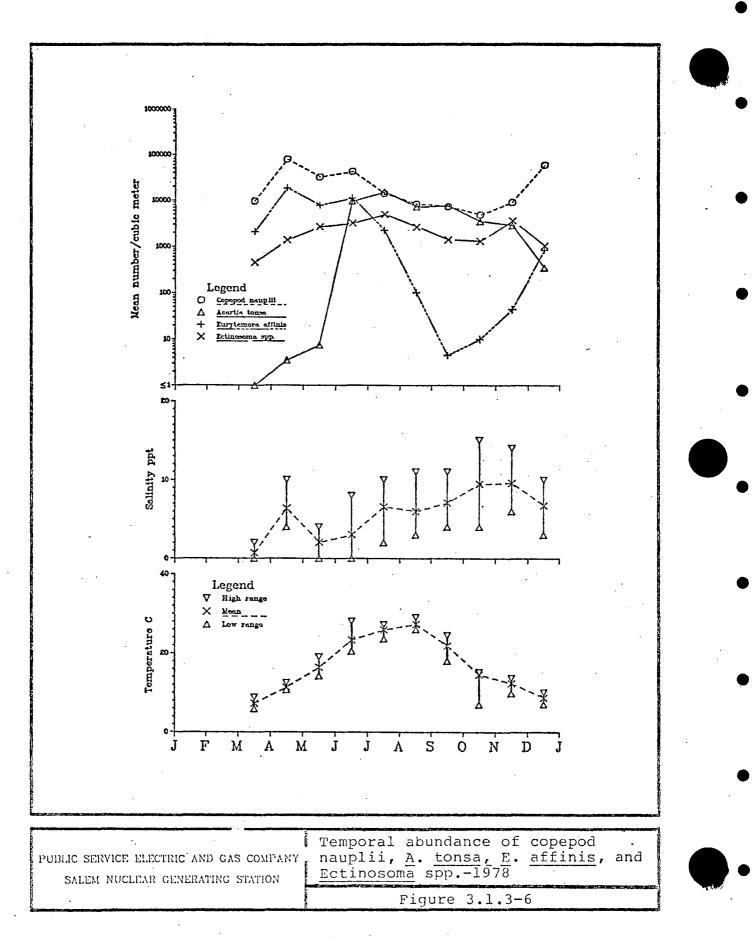
* = Less than 1

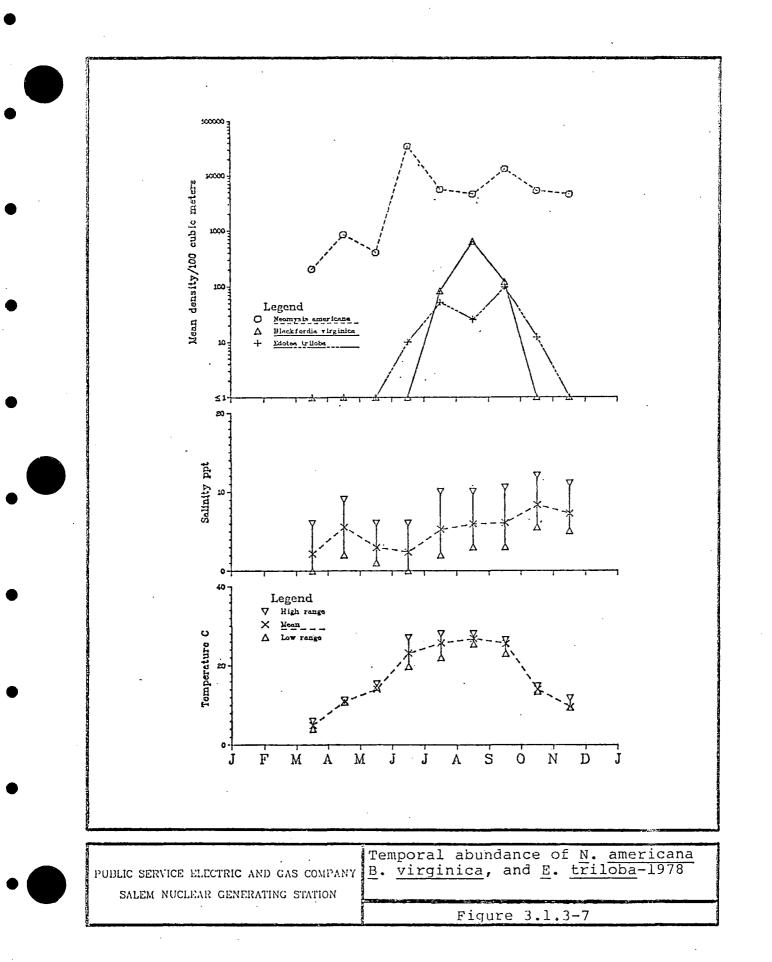

S = surface, B = bottom

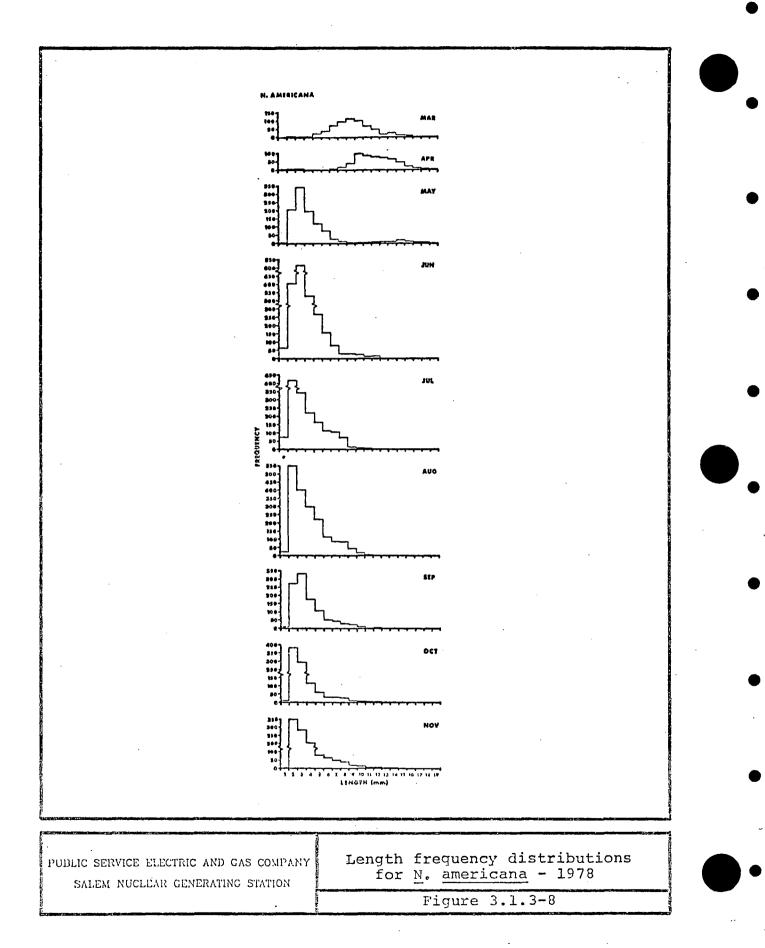


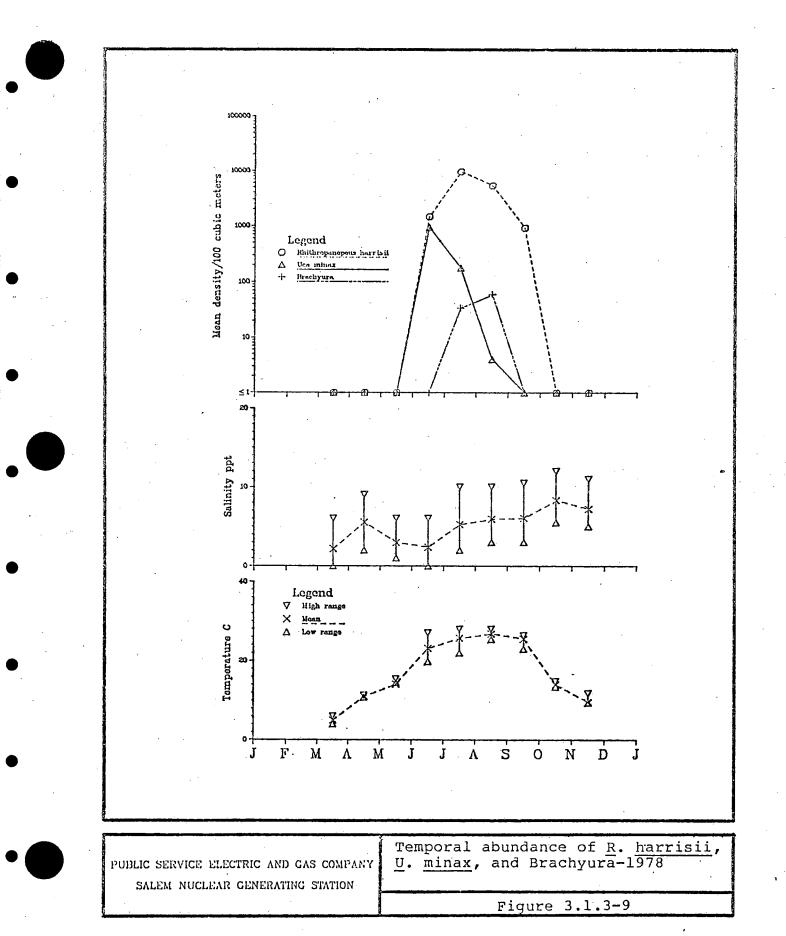


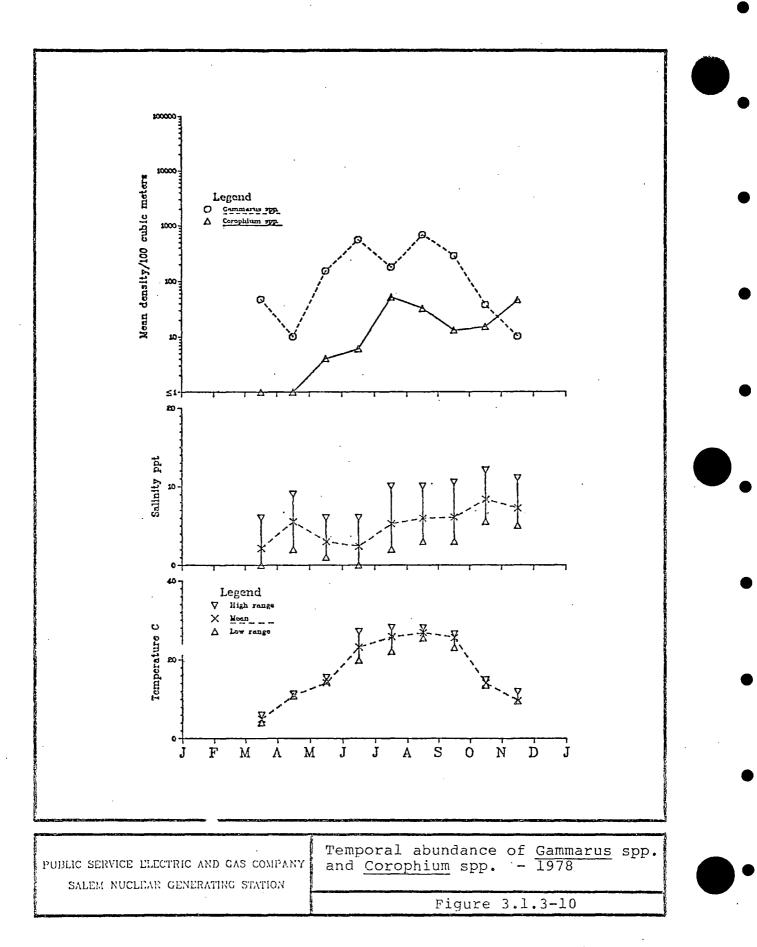

3.1-101

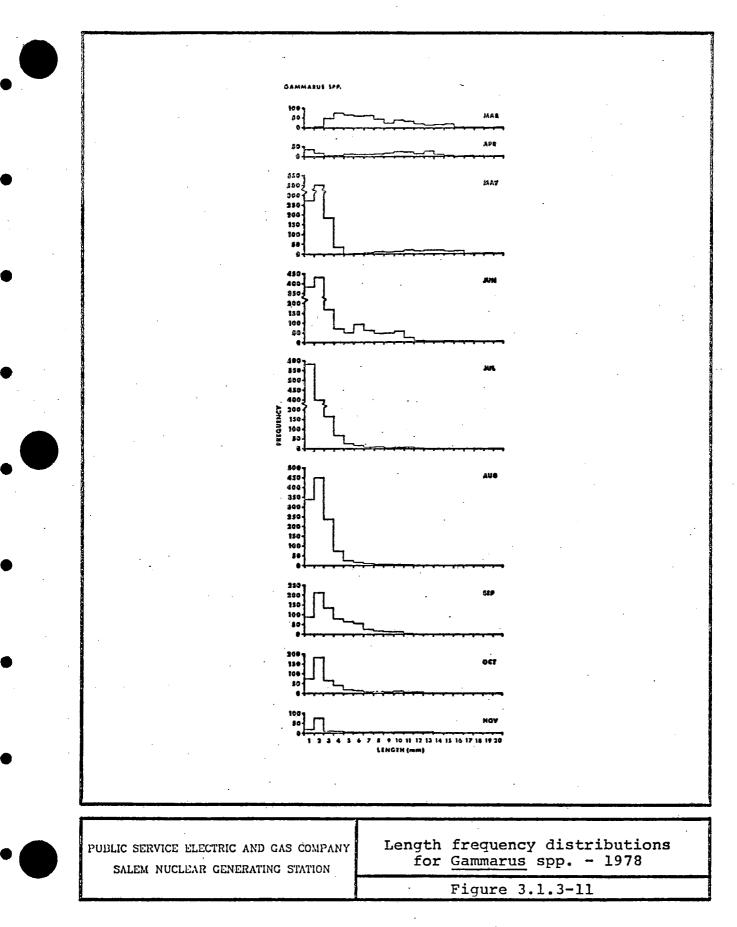


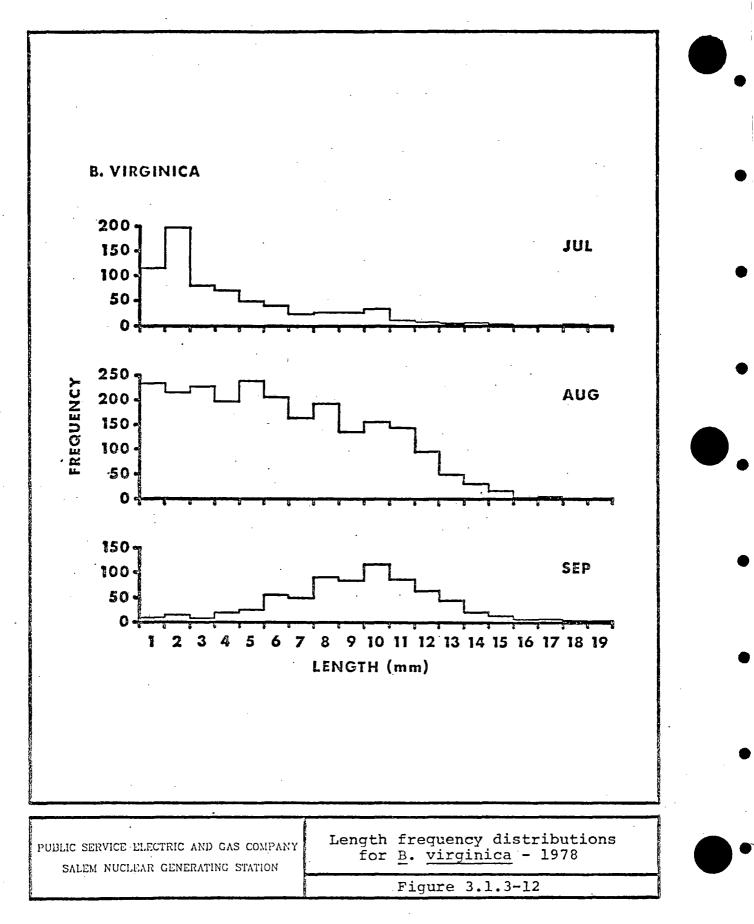

Mean number/cubic meter

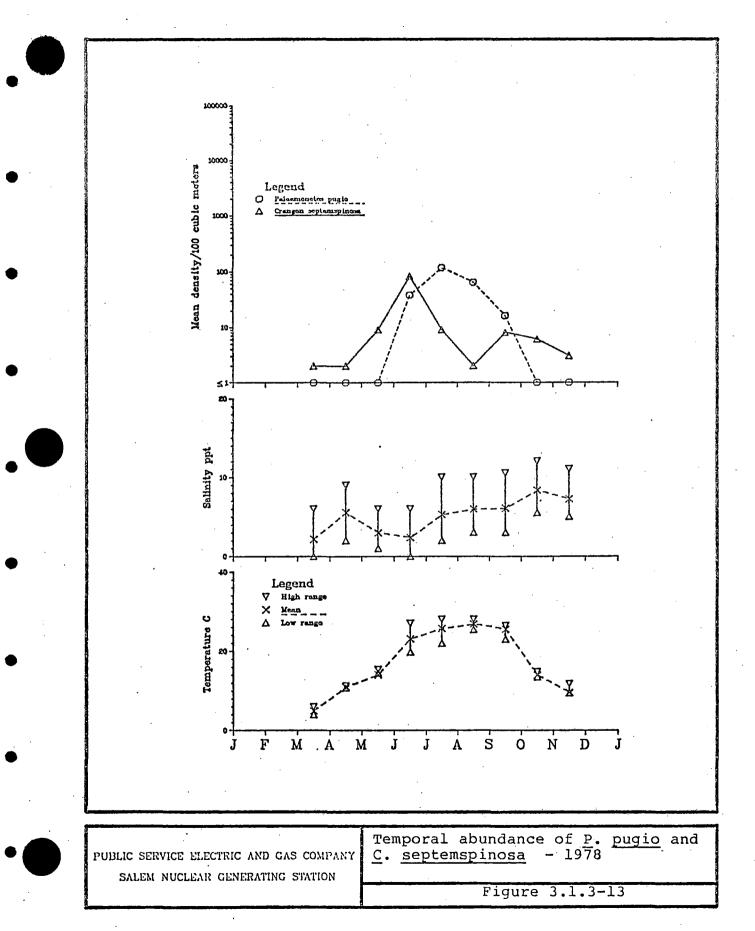

1000000 -


100000

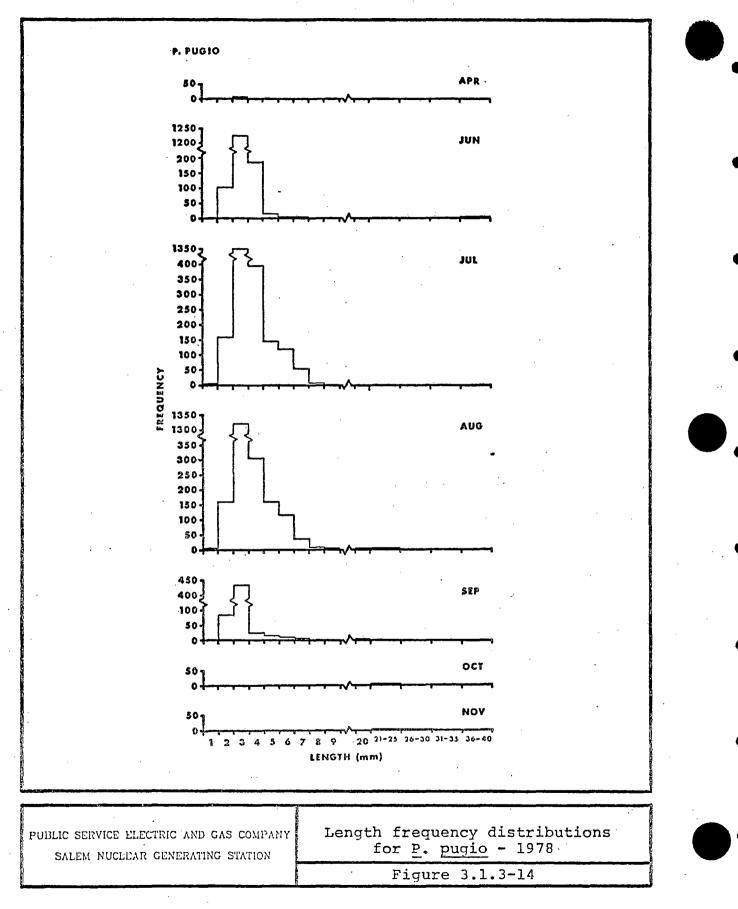


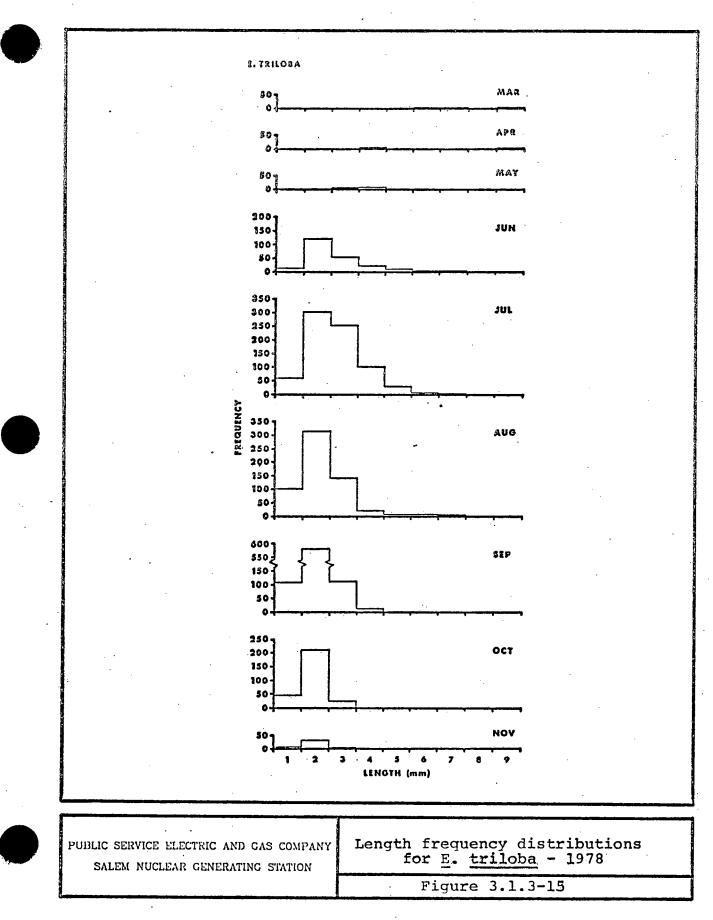

3.1-104

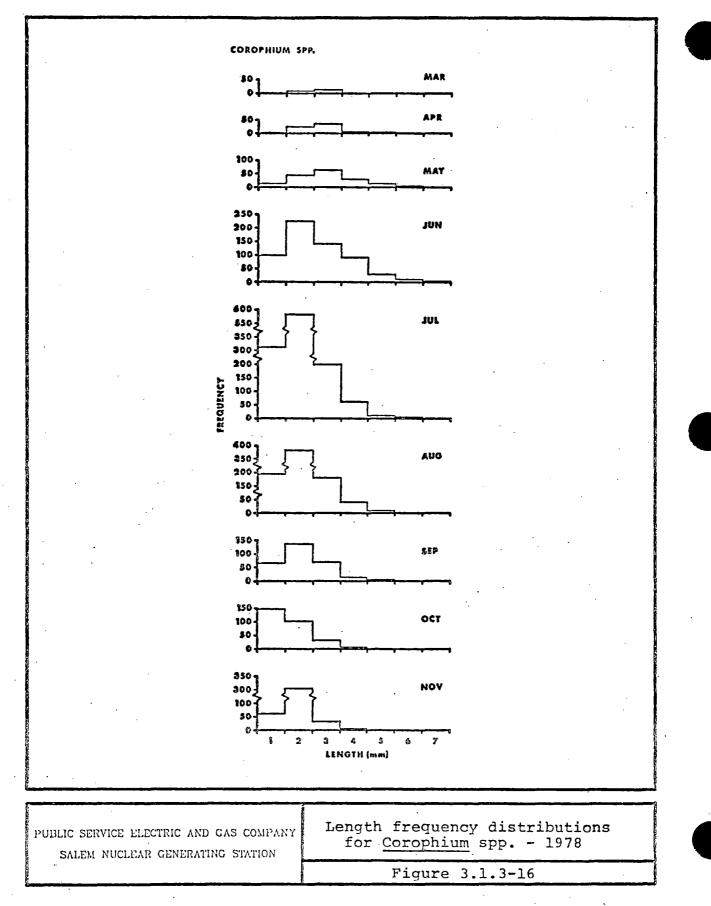




3.1-109




3.1-110


.

3.1-111

3.1-114

C. SEPTEMSPINOSA MAR 50 -Ô APR 50 -0 100 _T MAY 50-0 150 JUN 100. 50 FREQUENCY 0 100 -JUL 50 0 AUG 50 o SEP 50 1 0 οςτ 50 1 ۵ NOV 50-٥ 10 11 12 13 14 15 16 17 18 19 20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 9 1 2 3 5 7 8 6 LENGTH (mm) ·. Length frequency distributions PUBLIC SERVICE ELECTRIC AND GAS COMPANY for C. septemspinosa - 1978 SALEM NUCLEAR GENERATING STATION Figure 3.1.3-17

3.1.4 Benthos (ETS Section 3.1.2.1.1e)

Benthos of the Delaware Estuary has been studied since 1971. Objectives are to estimate and monitor changes in species diversity, distribution, density, and biomass.

3.1.4.1 Summary

The same eight taxa were taken at all stations in 1977 and 1978. <u>Balanus improvisus, Scolecolepides viridis</u>, and <u>Cyathura polita</u> ranked within the top six in both density and biomass in 1975-1978. Simple diversity (number of species) and the index of diversity were higher at the southern stations in 1978. Both measures of diversity were higher during the high salinity summer and fall months. The annual mean diversity index was highest at Station T5S1, 7.6 km southeast of Salem. Station T4S2, just south of Salem, had the highest annual mean simple diversity and the highest annual mean density and biomass of all stations in 1977 and 1978. Seasonally, mean density was greatest during July and August and mean biomass was greatest during March through June in 1978.

The benthos community has not changed in the two operational years (1977 and 1978) from the pre-operational years (1971-1976). Review of the data on species composition and distribution, diversity, density, and biomass indicate no discernible impact on the benthos by Salem 1.

3.1.4.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Benthos ETS were satisfied. Triplicate samples were taken at 14 stations on six transects (Table 3.1.4-1, Fig. 3.1.4-1) monthly during March through November. Water depth and substrate description, based on visual inspection, at each station is reported in Table 3.1.4-2. All samples were taken during daylight with a Ponar grab sampler which samples an area 0.05 m² to a depth of approximately 15 cm. In 1978, 126 collections (378 individual grabs) were taken and analyzed. For a more detailed description of sampling gear, gear deployment, collection of physicochemical data and laboratory procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

TAXONOMIC CONSIDERATIONS

In 1978 a continuing effort was made to identify all benthic invertebrates to the lowest taxonomic level. Wherever taxonomic changes relative to previous IA reports are made, the previously cited name is referenced. An organism referred to as Annelida in 1975-77 was re-identified to the class Turbellaria in 1978.

3.1.4.3 Results and Discussion

GENERAL SAMPLE COMPOSITION

A total of 79 taxa has been collected since 1971 (Table 3.1.4-3). In 1978, 60 taxa were collected. Organisms collected in 1978 but not in 1971-1977 include a flatworm, Turbellaria #1; the snail <u>Hydrobia</u> sp.; and an insect larvae in the family Ceratopogonidae.

Twenty-three taxa were taken at from one to three stations (Table 3.1.4-4). Euplana gracilis, Eteone heteropoda, Diptera, Ceratopogonidae, Culicoides sp., and Bowerbankia gracilis were each represented by single specimens. Stylochus ellipticus, Doridella obscura, and Modiolus demissus were taken only at T4S2 (gravel-shell substrate) in 22, 11, and 33 percent, respectively, of the total grabs taken (Table 3.1.4-4). Parahaustorius sp. was collected at T3S1 (30 percent of total grabs), T3S2 (33 percent), and T7S1 (15 percent), (all with sand substrate). The remaining 13 taxa were taken infrequently. Many of these are at the northern limits of their range in the estuary.

Organisms taken at all stations in the Salem study area in 1978 were <u>Garveia franciscana</u>, <u>Sertularia argentea</u>, Rhynchocoela, <u>Scolecolepides viridis</u>, <u>Paranais litoralis</u>, <u>Neomysis americana</u>, <u>Chiridotea almyra</u>, <u>Cyathura polita</u>, <u>Corophium lacustre</u>, and <u>Crangon septemspinosa</u>. These, except for <u>C</u>. <u>almyra and C</u>. <u>septemspinosa</u>, had been taken at all stations also in 1977. <u>S</u>. <u>viridis</u>, a polychaete, and <u>C</u>. <u>polita</u>, an isopod, had a high percent occurrence at almost every station, indicating their importance in the study

G. franciscana, a hydroid, had its highest percent area, occurrence at T2S2 (100 percent), T4S2 (100 percent), T2S1 (96 percent), T4S1 (96 percent), and T8S2 (96 percent). S. argentea, a hydroid, had its highest percent occurrence at T4S3 (96 percent) and T4S2 (93 percent). Rhynchocoela, a nemertean worm, had its highest percent occurrence at T4S2. (93 percent) and T5S2 (85 percent). P. litoralis, an oligochaete, had its highest percent occurrence (100 percent) at T2S1, T4S1, T4S2, and T8S2. It had a very low percent occurrence (4-41 percent) at T3S1, T3S2, T7S1 (sand substrate), and T7S2 (hard clay substrate). C. almyra, an isopod, had its highest percent occurrence at three sand stations, T3S2 (81 percent), T3S1 (74 percent), and T7S1 (67 percent), thus demonstrating a sand substrate preference. N. americana and C. septemspinosa had a low percent occurrence at almost every station.

Edotea triloba, Gammarus spp., and Monoculodes edwardsi were taken at 13 of 14 stations in 1978 with a low percent occurrence at all stations. Other taxa widely distributed in the study area were <u>Hartlaubella</u> gelatinosa, Turbellaria, Tricladida, <u>Nereis succinea</u>, <u>Polydora</u> sp., Oligochaeta #1, Macoma balthica, and Leucon americanus.

SPECIES DISCUSSION

Balanus improvisus, Scolecolepides viridis, and Cyathura polita ranked within the top six species in both density and biomass in 1975-78. Paranais litoralis and Polydora sp. also ranked within the top six species in density for all four years and Turbellaria ranked in the top six in density in 1977 and 1978. The high ranking of these organisms in density and biomass indicates their importance in the community structure. These six species, which comprised 76.3 percent and 53.9 percent, respectively, of the annual mean density and biomass, are discussed below.

<u>P. litoralis</u>, an oligochaete, ranked first in density and 17th in biomass (Table 3.1.4-5). Annual mean density of this species was greatest at T4S1. It occurred at every station during the year with a percent occurrence \geq 89 percent at 9 of the 14 stations (Table 3.1.4-4). It had a lower percent occurrence at stations with predominantly sand substrates (T3S1, T3S2, T7S1) and clay substrates (T3S3, T7S2). <u>P. litoralis</u> occurred in 266 grabs or 70.4 percent of the annual sample (Table 3.1.4-5).

B. improvisus, a barnacle, ranked second in density and first in biomass (Table 3.1.4-5). Annual mean density and

biomass at Station T4S2 were higher than all other stations. The occurrence and abundance of this species is directly related to availability of substrate, e.g., gravel and shell, which is suitable for setting of larvae. It occurred at 10 of the 14 stations sampled during 1978 but its percent occurrence was high at only T4S2 (93 percent) (Table 3.1.4-4). The amount of suitable substrate in the study area is reflected in the occurrence of <u>B. improvisus</u> in only 17.2 percent (65 grabs) of the total grabs (Table 3.1.4-5). Despite the apparent lack of suitable substrate, this species ranks high in the annual sample due to its extremely high density and biomass at T4S2.

<u>S. viridis</u>, a polychaete, ranked third in density and second in biomass (1976-78) (Table 3.1.4-5). Annual mean density and biomass of this species were highest at T2S2 and also were high at most other stations except T7S2. <u>S. viridis</u> had the highest number of occurrences (319) of any taxa and was found at every station (Tables 3.1.4-5, 3.1.4-4). The only relatively low percent occurrence (30 percent) of this polychaete was at T7S2 which is dominated by another spionid polychaete, <u>Polydora</u> sp. The high ranking of <u>S. viridis</u> in density and biomass and its high percent occurrence at every station indicates the importance of this resident species.

Turbellaria, a flatworm, ranked fourth in density and 22nd in biomass (Table 3.1.4-5). Annual mean density and biomass of this species was highest at T3S2 (sand substrate) and high only at T2S2, T3S1, and T7S1 (all with sand substrate). It occurred at 11 of the 14 stations sampled during 1978 but its percent occurrence was relatively high at only T2S2 (67 percent), T3S2 (63 percent), T3S1 (44 percent), and T7S1 (37 percent) (Table 3.1.4-4). Turbellaria occurred in 18.8 percent (71 grabs) of the total grabs (Table 3.1.4-5).

<u>Polydora</u> sp., a polychaete, ranked fifth in density and 18th in biomass (Table 3.1.4-5). Annual mean density and biomass of this species were highest at T7S2. This species occurred at 11 stations but had a relatively high percent occurrence at only T7S2 (96 percent), T3S3 (52 percent), and T5S1 (52 percent) (Table 3.1.4-4). This polychaete occurred in 25.4 percent (96 grabs) of the total grabs (Table 3.1.4-5).

<u>C. polita</u>, an isopod, ranked sixth in density and biomass and was taken at all stations (Tables 3.1.4-5, 3.1.4-4). Annual mean density of this species was highest at T5S1. <u>C.</u> <u>polita</u> had the second highest number of occurrences (303) and was taken in 80.2 percent of the total annual grabs (Table 3.1.4-5). This isopod had its lowest percent occurrence (30 percent) at T3S2, a station with a sand substrate (Table 3.1.4-4). It had a relatively high percent occurrence (\geq 46 percent) at all other stations. Its high ranking for density and biomass and its high number of occurrences throughout the study area indicates the importance of this species.

STATION DISCUSSION Station T2S1

This inshore station with a substrate of fine sand, clay, and some detritus (Table 3.1.4-2) is on the northernmost transect (Fig. 3.1.4-1). It ranked eighth in density $(2,460.0/m^2)$ and 13th in biomass (613.6 mg/m²) in 1978 (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and C. polita, comprised 84.3 and 77.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T2S2

This station has a substrate of sand interspersed with clay and detritus (Table 3.1.4-2). It ranked sixth in density $(2,815.6/m^2)$ and fifth in biomass $(1,694.9 \text{ mg/m}^2)$ (Table 3.1.4-6). The top three ranking taxa, Turbellaria, <u>C</u>. <u>lacustre</u>, and <u>S</u>. <u>viridis</u>, comprised 88.5 and 75.5 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T3S1

This station had a substrate of fine sand with small amounts of mud and detritus (Table 3.1.4-2). It ranked 12th in density (1,511.1/m²) and third in biomass (3,025.4 mg/m²) (Table 3.1.4-6). The high ranking in biomass is due mainly to the very high occurrence of <u>Gammarus</u> spp. in May. The top three ranking taxa, <u>Gammarus</u> spp., <u>S. viridis</u>, and Turbellaria, comprised 77.0 and 73.8 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T3S2

The substrate at this station consists of black sand with very little mud and detritus (Table 3.1.4-2). It ranked third in density (3,157.0/m²) and 11th in biomass (752.6 mg/m²) (Table 3.1.4-6). The top three ranking taxa, Turbellaria, <u>C. almyra</u>, and <u>S. viridis</u>, comprised 92.6 and 70.4 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5). Turbellaria accounted for 80.1 percent of the annual mean density but only 2.5 percent of the biomass.

Station T3S3

The substrate at this station consists of clay and organic mud, some sand, and detritus (Table 3.1.4-2). It ranked llth₂ in density (1,795.6/m²) and l2th in biomass (674.4 mg/m²) (Table 3.1.4-6). The top three ranking taxa, Polydora sp., <u>S. viridis</u>, and <u>P. litoralis</u>, comprised 69.1 and 25.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T4S1

The substrate at this station consists of organic mud, clay, and detritus (Table 3.1.4-2). This station ranked second in density (3,169.6/m²) and fourth in biomass (1,727.5 mg/m²) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and E. triloba, comprised 85.6 and 38.0 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5). P. litoralis accounted for 73.3 percent of the annual mean density but only 2.0 percent of the biomass.

Station T4S2

The substrate at this station consists of sand, gravel, shell, mud, and detritus (Table 3.1.4-2). This station ranked first in density $(7,831.1/m^2)$ and biomass $(12,315.9 mg/m^2)$ (Table 3.1.4-6). The top three ranking taxa, <u>B</u>.

improvisus, P. litoralis, and N. succinea, comprised 79.7 and 72.7 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T4S3

The substrate at this station consists of clay and detritus (Table 3.1.4-2). It ranked last of 14 stations in density (667.4/m²) and 10th in biomass (1,096.3 mg/m²) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and N. americana, comprised 68.5 and 24.0 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T5S1

The substrate at this station consists of sandy clay and detritus (Table 3.1.4-2). It ranked fourth in density (2,880.0/m²) and seventh in biomass (1,666.4 mg/m²) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, C. polita, and Polydora sp., comprised 46.6 and 14.4 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T5S2

The substrate at this station consists of sand, gravel, shell, organic mud, and some detritus (Table 3.1.4-2). This station ranked seventh in density (2,506.7/m²) and second in biomass (3,095.9 mg/m²) (Table 3.1.4-6). The top three ranking taxa, <u>P. litoralis, S. viridis</u>, and <u>C. polita</u>, comprised 73.5 and 20.6 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T7S1

The substrate at this station is composed mainly of fine black sand with some clay and detritus (Table 3.1.4-2). This station ranked 13th in density $(1,093.3/m^2)$ and eighth

in biomass $(1,313.6 \text{ mg/m}^2)$ (Table 3.1.4-6). The top three ranking taxa, <u>S. viridis</u>, Turbellaria, and <u>Gammarus</u> spp., comprised 73.7 and 58.6 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T7S2

The substrate at this station is composed mainly of hard clay (Table 3.1.4-2). This station ranked 10th in density (1,991.9/m²) and 14th in biomass (562.7 mg/m²) (Table 3.1.4-6). The top three ranking taxa, <u>Polydora sp., C. polita</u>, and <u>Gammarus spp.</u>, comprised 93.3 and 56.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5). <u>Polydora sp. accounted for 82.2</u> percent of the annual mean density and 14.0 percent of the biomass at this station.

Station T8S1

This station has a substrate of organic mud with detritus and sand (Table 3.1.4-2). It ranked fifth in density (2,829.6/m²) and ninth in biomass (1,189.3 mg/m²) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, N. <u>americana</u>, and <u>C. polita</u>, comprised 54.1 and 22.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T8S2

The substrate at this station is composed of organic mud, sand, and some detritus (Table 3.1.4-2). It ranked ninth in density (2,151.9/m²) and sixth in biomass (1,671.2 mg/m²) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and C. polita, comprised 88.1 and 50.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

SPECIES DIVERSITY

Analysis of species diversity provides a means of detecting changes in community structure. Two components of species diversity are species richness (number of species) and the numbers of individuals in each species. The mean number of species at each station in 1978 ranged from 9 at T3S2 and T7S2 to 22 at T4S2 (Table 3.1.4-7). In 1977, the range was from 9 at T3S2 to 24 at T4S2.

Salinity and sediment type are two principle parameters controlling species composition and abundance. Mean simple diversity (number of species) per region was higher at the southern stations ($\overline{X} = 17$) than at the northern stations ($\overline{X} = 11$). Mean simple diversity ranged from 9 to 13 in the northern transects (2, 3, 7) and from 13 to 22 in the southern transects (4, 5, 8).

Maximum mean simple diversity per month occurred in November $(\overline{X} = 16)$ (Table 3.1.4-7). Other months with high diversities were August and October $(\overline{X} = 15)$. This correlated with high salinity during August through November. The minimum mean simple diversity occurred in April and June $(\overline{X} = 12)$.

The maximum monthly number of species per station was 28 at T4S2 in July and November (Table 3.1.4-7). The minimum number was five at T7S2 in April and May. This low diversity is probably due to the hard clay substrate and the low salinity.

Maximum annual mean simple diversity per station occurred at station T4S2 (\overline{X} = 22) which has a gravel and shell type substrate (Table 3.1.4-7). Minimum simple diversity occurred at stations with sand or clay substrates. Annual mean simple diversity was lowest (\overline{X} = 9) at T3S2 (sand substrate) and T7S2 (clay substrate), ranking just behind T2S2 (sand substrate) and T3S3 (clay substrate) (\overline{X} = 10).

Another measure of diversity is a diversity index. One common index which accounts for both components of species diversity is the Shannon-Weaver index (Shannon and Weaver, 1963). This function is recommended by that U.S. Environmental Protection Agency (Weber, 1973) for calculating mean diversity. The yearly mean diversity index per station ranged from 0.857 at T7S2 to 1.993 at T5S1 (Table 3.1.4-7). In 1977, the range was from 1.028 at T3S1 to 1.974 at T5S1. The mean diversity index per region was higher at the southern stations (D = 1.601) than at the northern stations (D = 1.167). It ranged from 0.857 to 1.337 in the northern transects (2, 3, 7) and from 1.048 to 1.993 in the southern transects (4, 5, 8) (Table 3.1.4-7). This trend correlates with salinity.

The maximum mean diversity index per month occurred in October (D = 1.637) and the minimum occurred in July (D = 1.138) (Table 3.1.4-7). The low diversity in July was due to the numerical dominance of <u>Polydora</u> sp., <u>Paranais</u> <u>litoralis</u>, and <u>Balanus</u> <u>improvisus</u>, which represented 71.7 percent of the monthly sample.

The maximum monthly diversity indices per station occurred at T5S1 (D = 2.395) and T7S1 (D = 2.385) in September as a result of the high salinities. The minimum indices occurred at T7S2 in August (D = 0.112) and at T3S2 in May (D = 0.289). These resulted from the numerical dominance of Polydora sp. at T7S2 and Turbellaria at T3S2.

The maximum annual mean diversity indices per station occurred at T5S1 (D = 1.993) which has a sandy clay substrate, and at T8S1 (D = 1.846) which has an organic mud and detritus substrate. Station T4S2, which has a gravel and shell substrate, and ranked first in simple diversity, did not have a high index of diversity due to the numerical dominance of <u>Balanus improvisus</u>. The minimum mean diversity indices occurred at T7S2 (D = 0.857) which has a hard clay substrate and, at T3S2 (D = 1.031) which has a black sand substrate. Station T7S2 was dominated numerically by <u>Polydora</u> sp. and T3S2 was dominated by Turbellaria.

DENSITY

In 1978, the annual mean density per station ranged from $667.4/m^2$ at T4S3, just southwest of Salem, to 7,831.1/m², at T4S2, just south of Salem (Table 3.1.4-6). In 1977, it ranged from 944.7/m² at T3S1, just west of Salem, to 12,471.3/m² at T4S2. <u>Balanus improvisus</u> was the most abundant organism at T4S2 in 1978, comprising 60 percent of the annual total. Organisms at this station comprised 21.2 percent of the 1978 sample. Total density at Station T4S2 was higher than all other stations for 5 of the 9 months sampled. Total density of <u>B. improvisus</u> (11,687/m²) which comprised 82.9 percent of the monthly total.

<u>Paranais litoralis (X</u> density = $674.2/m^2$), <u>Balanus</u> <u>improvisus (370.8/m²)</u>, and <u>Scolecolepides viridis (309.4/m²)</u> comprised 25.6, 14.1, and 11.7 percent, respectively, of the 1978 sample (Table 3.1.4-5). In 1977, <u>P. litoralis (X = 728.4/m²)</u>, <u>B. improvisus (626.1/m²)</u>, and <u>S. viridis</u> (520.3/m²) comprised 26.2, 22.5, and 18.7 percent, respectively, of the annual mean density. Other numerically important organisms in 1978 were Turbellaria, <u>Polydora sp.</u>, <u>Cyathura polita</u>, and <u>Corophium lacustre</u>. These seven taxa comprised 80.7 percent of the annual mean density.

<u>P. litoralis</u> was the numerically dominant taxon in March, May, September, and October (Fig.3.1.4-2). Other taxa which ranked first were <u>Polydora</u> sp. in July and August, <u>B</u>. <u>improvisus</u> in June, <u>C. lacustre</u> in November, and Turbellaria in April (Figs. 3.1.4-3, 3.1.4-2). Also ranking among the first three on a monthly basis were <u>S. viridis</u>, <u>Neomysis</u> <u>americana</u>, and <u>C. polita</u>.

BIOMASS

Estimated mean biomass per station ranged from 562.7 mg/m² at T7S2, 3.7 km northwest of Salem, to 12,315.9 mg/m² at T4S2, just south of Salem (Table 3.1.4-6). In 1977, it ranged from 558.3 mg/m² at T3S3, 3.0 km west of Salem, to 15,988.4 mg/m² at T4S2. <u>Balanus improvisus comprised 65.9</u> percent of the biomass at T4S2 in 1978. Total biomass at Station T4S2 was higher than all other stations for 7 of the 9 months sampled.

Balanus improvisus (646.3 mg/m²) comprised 28.8 percent of the biomass of all taxa taken in 1978 (Table 3.1.4-5). Scolecolepides viridis ranked second (406.8 mg/m²) with 18.1 percent, and Macoma balthica ranked third (243.7 mg/m²) with 10.9 percent. In 1977, B. improvisus (810.3 mg/m²) comprised 33.2 percent of the biomass of all taxa. S. viridis ranked second (504.1 mg/m^2) with 20.6 percent, and M. balthica ranked third (309.9 mg/m^2) with 12.7 percent. In June, July, August, and November 1978 B. improvisus comprised the highest monthly biomass (Fig.3.1.4-4). s. viridis ranked first in March, April, and September, Gammarus spp. ranked first in May, and M. balthica ranked first in October. Other taxa ranking among the first three on a monthly basis in 1978 were Microciona prolifera, Crassostrea virginica, Cyathura polita, and Crangon septemspinosa (Fig. 3.1.4-5).

3.1.4.4 Seasonal Summary

Seasonal mean abundance of the predominant benthic taxa is reported in Table 3.1.4-8. Mean density was greatest during July and August due to the abundance of Polychaeta (32.1 percent), <u>Balanus improvisus</u> (23.5 percent), and Oligochaeta (22.7 percent) (Fig.3.1.4-6). Mean density was lowest during September through November. Oligochaeta ranked first in density during March through June and September through November. Polychaeta ranked first during July and August and ranked second during March through June and September through November. <u>B. improvisus</u> ranked second during July and August.

Mean biomass was greatest during March through June due to the abundance of <u>B</u>. <u>improvisus</u> (32.5 percent) and Polychaeta (22.6 percent) (Fig.3.1.4-7). Mean biomass was lowest during July and August. <u>B</u>. <u>improvisus</u> ranked first in biomass during March through August. Pelecypoda ranked first during September through November and ranked second during July and August. Polychaeta ranked second during March through June and September through November. TABLE 3.1.4-1 LOCATION OF BENTHOS STATIONS AND PERIOD OF SAMPLING - 1978

.

	Location		Description	Years	3 57	ampled
	Transect 2 Station	1:	Two hundred meters west of New Jersey shore (Eagle Island). On a line between white buoy "B" and cable tower which is directly east (90 degrees).	1971	tə	Present
	Station :	2:	Fifty meters west of white buoy "B".	1971	to	Present
	Transect 7		·			
	Station 1	1:	About 50 meters from shore of Artificial Island on a line from Bayview lighthouse and red buoy "2R".	1972	to	Present
	Station 2	2:	Midway between Reedy Island Dike and Delaware River channel on a line between Bayview lighthouse and red buoy "2R".	1972	to	Present
	Transect 3					
	Station]	1:	About 50 meters offshore Artificial Island, from a point 300 meters upstream from site of plant discharge.	1971	to	Present
	Station 2	2:	About 200 meters from red buoy R"4B" on a line with this buoy and Bayview lighthouse.	1971	to	Present
	Station .:	3:	About 200 meters downriver from bell buoy R"2" on a line with light buoy and smoke stacks at Getty Petroleum.	1971	to	Present
	Transect 4					
	Station]	L:	Sample in cove by Sunken ships about 100 meters from north bank and 200 meters from east end of cove.	1971	to	Present
	Station 2	2:	On a line between Taylors Bridge Light and Stony Point 250 meters from the New Jersey shore.	1971	ţo	Present
	Station 3	3:	On a line between Taylors Bridge Light and Stony Point 400 meters from the New Jersey shore.	1971	to	Present
	Transect 8			·		
	Station]		Halfway between Hope Creek Jetty and Mad Horse Creek and 100 meters offshore.	1972	to	Present
	Station 2	2:	Midway between Alder Cove and black buoy "7L".	1972	to	Present
	Transect 5					
	Station 1		150 meters off small sandy beach in front of Mad Horse Creek Tower.	197 1	to	Present
•	Station 2	2:	Midway between Mad Horse Creek Tower and channel buoy "6L".	1971	to	Present

IA SALEM B 1978

Éccation	Fish Survey Trawl Zone	Approximate Dept Meters	h (Mean Low Water) Feet	Substrate	No. of Grabs 1978
			• •	<u> </u>	
Transect 2 Station 1	2- 5	1.0	3.5	Very fine sand, clay, and some detritue	27
Station 2	z-5	7.0	24.0	Sand interspersed with clay and detritus	27
Transect 3					
Station 1	E-2	4.0	13.0	Fine black sand, some mud, and detritus	27
Station 2	E-2	6.0	20.0	Coarse black sand, very little mud, and detritus	27
Station 3	W-1	3.0	10.0	Clay and organic mud, some gand, and detritus	27
Transect 4 Station 1	E-1	1.0	3.0	Organic mud, clay, and detritus	27
Station 2	E-1	5.0	16.5	Sand, gravel, shell, some mud, and detritus	27
Station 3	E-1	9.0	30.0	Clay and detritus	27
Transect 5					
Station 1	SE-3	1.5	5.0	Bard sandy clay and detritus	27
Station 2	SE-3	5.0	16.5	Sand, gravel, shell, organic mud, and some detritus	27
Transect 7 Station 1	E-4	4.0	13.0	Fine black sand, some clay, and detritus	27
Station 2	RIE-2	6.5	22.0	Hard clay, very little detritus	27
Transect B					
Station 1	SE-3	1.5	5.0	Organic mud, detritus and some sand	27
Station 2	SE-3	4.5	15.0	Organic mud, sand, and some detritus	27

TABLE 3.1.4-2 LOCATION, DEPTH, SUBSTRATE, AND NUMBER OF GRABS - 1978

IA SALEM B 1978

TABLE 3.1.4-3 Phylogenetic List of Benthic Invertebrates - 1978

Phylum	Order	Family	Genus	Species	Year of Capture
Porifera .	Poecilos clerida	Microcionidae	Microciona	prolifera (Ellis and Solander 1786)	1972-78
Cnidaria	Hydrozoa Athecata Thecata	Clavidae Bougainvilliidae Campanularidae	Cordylophora Garvela	caspia (Pallas 1771) franciscana (Torrey 1902)	1976-78 1971-73, 19 75-77 1971-78 1977-78
·	Actiniaria	Campanulinida e Sertularidae Diadumenidae	Hartlaubell a Sertularia Diadumene	gelatinosa (Pallas 1766) argentea Linne 1758 leucolena (Verrill 1866)	1971-78 1977-78 1971-78 1973-78
Platyhelminthes	Class Turbellaria	**	*Turbellaria #1		1975-78 1978
	Tricladida Polycladia	Stylochidae Leptoplanidae	Stylochus Euplana	ellipticus (Girard 1850) gracilis (Girard 1850)	1977-78 1972-78 1976-78
Rhynchocoela			·		1973-78
Annelide	Class Polychaeta Phyllodocida	Phyllodocidae Nereidae	Eteone Laeonereis Nereis	heteropoda Hartman 1951 culveri (Webster 1879) succinea (Frey and Leuckart	1973-74, 19 76-78 1973-78
	Spionida	Glyceridae Goniadidae Spionidae	Glycera Glycinde Polydora Polydora Scolecolep ides	1847) dibranchiata Ehlers 1868 solitaria Webster 1879 sp. ligni Webster 1879 viridis (Verrill 1873)	1971-78 1973-77 1974, 1976-78 1973-78 1977 1973-78
	Terebellida	Sabellariidae Pectinariidae Ampharetidae	Streblospi o Sabellaria Pectinaria Hypaniola	benedicti Webster 1879 vulgaris Verrill 1873 gouldii (Verrill 1873) grayi Pettibone 1953	1973-78 1976-77 1977 1975-78
	Class Oligochaeta Class Hirudinea	** Naididae	*Oligochaa ta #1 . Paranais	litoralis (Muller İ784)	1971-78 1973-78 1971-78 1971-75, 1977-78
Kollusca	Class Gastropoda Mesogastropoda Cephalaspidea	Hydrobiidae Pyramidellidae	Hydrobia Turbonilla	ар.	1975-78 1978 1975-77 1975-76
	Nudibranchia	Corambidae	Doridella	obscura (Verrill 1870)	1974-75, 197 7-78 1976-78
	Class Pelecypoda Pteroconchida	Mytilidae Ostreidae	Modiolus Crassostrea	demissus (Dillyn 1817) virginica (Gmelin 1792)	1971-78 1971-78
	Batercdontida	Dreissenidae Tellinidae	Congeria Macoma Hacoma	leucophaeta (Conrad 1831) balthica (Linne 1758)	1972-74, 1976 1971-78 1975-77
		Solenidae Mactridae	Mulinia	tenta (Say 1834) lateralis (Say 1822) gumenta (Gray 1831)	1975-77 1977 1974, 1976-78 1971-76
		Myacidae	Rangia Nya	cundata (Gray 1831) Aronaria (Linne 1758)	1971-76

IN SALEH B 1978

TABLE 3.1.4-3 CONTINUED

Phylum	Order	Family	Genus	Species	Year of Capture
Arthropoda	Xiphosu rida Acarina	Limulidae	Limulus	polyphemus (Linne 1758)	1977 1971
	Thoracica	Balanidae	Balanus	Impundance Denvis 1054	1971-78
		Mysidae	Neomysis	improvisus Darwin 1854	
	Mysidacea Cumacea	Leuconidae	Leucon	americana (Smith 1873) americanus Zimmer 1943	1971-78 1972-78
	Isopoda	Idoteidae	Chiridotea		
	Taoboga	100/61096	Edotea	almyra Bowman 1955 triloba (Say 1818)	1971-78 1971-78
		Anthuridae	Cvathura	polita (Stimpson 1855)	1971-78
		Sphaeromidae	Cassidinidea	lunifrons (Richardson)	1972-73, 1976-78
	Amphipoda	Photidae	Leptocheirus	plumulosus (Shoemaker 1932)	1971-78
		Corophildae	Corophium	lacustre Vanhoffen 1911	1971-78
,		Gammaridae	Gammarus	spp.	1971-78
		pointing roug	Melita	nitida Smith 1873	1972-78
		Haustoriidae	Parahaustorius	sp.	1973-78
		Oedicerotidae	Monoculodes	edwardsi Holmes 1905	1973-78
		Pleustidae	Parapleustes	sp.	1976-78
		Caprellidae	rarapieustes	8 5 .	1972, 1977
	Decapoda	Palaemonidae	Palaemonetes	pugio (Holthius 1949)	1971-75, 1978
	Decapoua	Crangonidae	Crangon	septemspinosa (Say 1818)	1971-78
		Portunidae	Callinectes	sapidus Rathbun 1896	1974-76
		Xanthidae		herbstii Milne-Edwards 1834	1971
		xanchidae	Panopeus		1971-78
			Rhithropanopeus	harrisii (Gould 1841)	
	Diptera				1972-73, 1978
		Tipulidae			1972, 1976
•		Ceratopogonidae	a 11. 11		1978
		Chironomidae	Culicoides	вр.	1975 , 1978 1971-78
Ectoprocta	Ctenostomata				1975-78
		Vesicularidae	Amathia	vidovici (Heller 1867)	1971-78
			Bowerbankia	gracilis Leidy 1855	1977-78
	Cheilostomata	Walkeriida e Membraniporidae	Aeverrillia	armata (Verrili 1874	1975, 1977 1975-78
Chordata	Pleurogona	Molgulidae	Nolgula	manhattensis (DeRay 1843)	1972, 1976-77

• Descriptive name •• Undetermined

IA SALEH B 1978

.

3.1-131

.

TABLE 3.1.4-4 PROPORTION EACH TAXON OCCURRED IN TOTAL SAMPLES - 1978

Station 1 Z Z<	Transect		2		3			4			5		7		8	Taken at n/14
	Station	1	2	1	2	3	1	2	3	1	2	1	2	T	2	stations
	H. prolifera	-	.04	. 22	.11	-	- 04	.04	. 19	-	. 37	. 04	.07	_	37	10/14
G. franciscana .96 1.00 74 70 70 70 56 1.00 93 74 89 74 41 48 96 14/14 Grapanistinga 04 07 74 70 70 70 56 1.00 93 74 89 74 41 74 89 96 14/14 H. galatinga 04 04 01 04 7 7 04 7 7 7 7 7 7 7 7 7 7 7 7 7 11/14 D. levolena 78 7 7 7 7 7 7 7 7 7 11/14 D. levolena 78 7 7 7 7 7 7 7 7 11/14 D. levolena 78 7 7 7 7 7 7 7 7 11/14 D. levolena 78 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 7 7 7 7 12/14 D. levolena 78 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		-				-		-		.11				- 04		
Carponlaridae - -		.96	1.00	.74	.70	.70	.96	1.00	.93		.89	.74	.41		.96	
$ \begin{array}{c} \text{Garganulinidae} & .04 & - & .07 & - & .04 & - & .22 & - & .22 & .07 & .07 & - & .07 & - & .6/1 \\ \text{D. levolera} & - & - & - & - & - & .04 & - & .04 & - & .07 & - & .6/1 \\ \text{D. levolera} & - & - & - & - & .04 & - & .04 & - & .07 & - & .07 & - & .2/14 \\ \text{D. levolera} & - & - & - & - & - & .04 & - & .04 & - & .07 & - & .07 & - & .2/14 \\ \text{D. levolera} & - & - & - & - & - & .04 & - & .04 & - & .07 & - & .07 & - & .2/14 \\ \text{Tricladida} & .37 & .07 & .04 & - & .07 & .44 & .19 & .07 & .22 & .19 & .04 & - & .30 & .04 & .2/14 \\ \text{Tricladida} & .37 & .07 & .04 & - & .07 & .44 & .19 & .07 & .22 & .19 & .04 & - & .30 & .04 & .2/14 \\ \text{S. ellipticus} & - & - & - & - & - & .04 & - & .04 & - & .06 & - & - & - & - & .1/14 \\ \text{E. ycaliss} & - & - & - & - & - & .04 & - & .04 & - & .06 & - & - & - & - & .1/14 \\ \text{E. betropoda} & - & - & - & - & .04 & - & .07 & - & .06 & .07 & .06 & .01 & .1/14 \\ \text{E. betropoda} & - & - & - & .22 & .26 & .78 & .33 & .07 & .26 & .08 & .01 & .1/14 \\ \text{E. betropoda} & - & - & - & .22 & .44 & .09 & .52 & .11 & .15 & .066 & .44 & .1/14 \\ \text{E. betropoda} & - & - & - & .04 & .04 & .52 & .11 & .48 & .93 & .96 & .93 & .96 & .30 & 1.00 & 1.00 & 1.00 \\ \text{E. betropoda} & - & - & - & .04 & .04 & .52 & .11 & .04 & .05 & .11 & .11 & .04 & .27 \\ \text{S. viridis} & 1.00 & 1.00 & .09 & .01 & .59 & .63 & .01 & .01 & .01 & .01 & .00 & .00 & 1.01 & .01 \\ \text{S. bencicul} & 1 & .04 & .04 & .52 & .04 & - & .11 & .01 & .04 & .27 & - & - & .26 & .27 & .24 \\ \text{S. bencicul} & 1 & .04 & .04 & .11 & - & - & .04 & - & .22 & .04 & .11 & .04 & .27 & .27 & .26 & .04 & .11 & .04 & .27 & .27 & .26 & .04 & .11 & .04 & .27 & .27 & .26 & .04 & .10 & .10 & .27 & .2$	Campanularidae		-					-	-							
5. signentes 78 .19 .63 .44 .67 .59 .93 .96 .04 .78 .52 .67 .15 .89 14/12 D. lecolera04 .07 .193707 .07 .2/14 Turbeliatis 1 .04 .67 .44 .63 .0404 .07 .193707 .07 .2/14 Turbeliatis 104 .07 .193707 .07 .2/14 S. ellipticus .3707 .007 .44 .12 .07 .22 .19 .0403 .04 .12/14 E. gracilis04 .7 .2 .19 .07 .22 .19 .0403 .04 .12/14 E. gracilis04 .7 .2 .19 .07 .22 .19 .0403 .04 .12/14 E. gracilis1/14 E. seconda1 .7 .22 .26 .74 .93 .33 .70 .85 .48 .26 .81 .81 .12/14 E. seconda11 .1 .1 .1 .1 .1 .1 .1 .1 .			.04		. ~		.04		.15				-		.04	11/14
D. levclena																
Turbellaria 1. -4 .67 .44 .61 .04 -1 .64 .07 .19 -37 -17 .07 .07 .17 .27 .27 .27 .27 .27 .27 .27 .27 .27 .2					.44	.67			.96		.78		.67			
Turbellaria 41					-	-			-		-		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.04		.44	•63						-	-	-			
S. ellipticus $ -$					-								-			
2. gracilis - <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td>.07</td><td></td><td>.19</td><td></td><td></td><td>.19</td><td>.04</td><td>-</td><td></td><td></td><td></td></td<>					-	.07		.19			.19	.04	-			
khyrchaosela .41 .41 .37 .22 .26 .74 .93 .33 .70 .85 .48 .26 .81 .81 .1/14 L. teteropoda - - - - - - - - - - .1/14 K. succinea .04 .04 - - - - - - - - - - .11 1 - .64 .11 .04 .11 .04 .11 .1/14 .63 .11 .64 .11 .04 .27 .11 - .64 .11 .04 .27 .04 .11 .1/14 .26 .11 .64 .11 .64 .11 .64 .11 .64 .11 .64 .11 .64 .12 - - .64 .11 .64 .26 .04 .11 .11 .10 .64 .26 .26 .26 .44 .26 .93 .41 .04 .26 .26 .24 .44 .26 .26		-	_	-	_	_			_		_	-	_			
L. teleropoda		. 41	- 41	. 37	.22	- 26			. 33	.70	.85	48	- 26		-81	
L cuiveri		-		-	-			-	-				-	-		
G. solitarla	L. culveri	-	-	-	-	-	.11	-	~	-	-		-	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.04	.04	-	.=	.22	.44	89			.33	.07				
5. viridis 1.00 1.00 4.9 .81 59 .63 .81 .93 .96 .93 .96 .93 .96 .91 1.00 1.00 1/14 N. gravi 0.4 0.7 .15 .04 .44 .3326 .04 7/14 N. gravi 0.40411 .11 .04 .2204 .11 .04 1.00 .37 12/14 N. gravi 1.04 .04 .04 .1163 .89 .19 .96 1.00 .11 .04 1.00 .37 12/14 N. gravi 1.00 1.00 .89 .96 1.93 .41 .04 .96 1.00 1.7/14 Hirudinea0411 .126 .93 .41 .04 .96 1.00 1.7/14 Hirudinea04 .48 1.00 1.00 .89 .96 1.00 .11 .04 1.00 .37 12/14 Hirudinea04 .48 1.00 1.00 .89 .96 1.00 .11 .04 1.00 .37 12/14 Hirudinea04 .48 1.00 1.00 .89 .96 1.00 .11 .04 .04 .96 1.00 1.7/14 Hydrobia sp04 .40 .112611 .04 .7/14 Hydrobia sp04 .41 .4 Hydrobia sp112611 .04 .7/14 Hydrobia sp04 .7 .112611 .04 .7/14 Hydrobia sp04 .7 .112611 .04 .7/14 Hydrobia sp04 .7/147/147/14 Hydrobia sp04 .7/147/147/14 Hydrobia sp04 .7/147/147/14 H. derissus04 .0411 .55 .59 .59 .37 .81 .0478 .67 12/14 M. lateralis04 .0411 .55 .59 .37 .81 .0478 .67 12/14 M. lateralis04 .041907 .1178 .67 12/14 M. ateraria04 .04 .11 .137 .2204 .10 .19 .17/14 H. ateraria04 .04 .11 .137 .2204 .10 .19 .17/14 H. ateraria .26 .37 .44 .56 .48 .44 .52 .48 .44 .53 .48 .48 14/14 L. atericanas .1904 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 13/14 C. elnifrons0407 .33 .04 .1137 .04 .04 .19 .19 .19/14 E. trioba .13 .04 .04 .37 .56 .10 .08 .99 .96 .10 .26 .41 .22 .11/14 H. nitida04 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 13/14 C. lonifrons04 .04 .07 .33 .04 .11 .9 .22 .41 .04 .14/14 L. atericanas .1904 .04 .13 .26 .44 .37 .44 .30 .33 .07 .26 .41 .22 .13/14 M. nitida04 .04 .07 .33 .04 .10 .9 .96 .04 .26 .22 .13/14 M. nitida04 .04 .07 .39 .90 .07 .50 .15 .30 .19 .1/14 R. hartisi		-	-													
S. beredicti						• 52										
N. gravi 0.4 0.410 0.7 0.411 0.1 0.0 1.9 0.4 11 0.4 1.00 37 12/14 0.1 (gctasta fl 0.4 0.4 0.4 11 0.63 0.9 0.19 0.96 1.00 0.11 0.4 1.00 0.37 12/14 Nirudines 1.00 0.89 26 0.4 48 0.100 1.00 0.89 36 0.93 41 0.4 0.96 1.00 1.7 14 14 (14 (14 (14 (14 (14 (14 (14 (14 (1.00	1.00	-89												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.4	-	-		_		.15	.04		• • • •			.20	.04	
Oligochaeta #1 .04 .04 .11 - - .63 .89 .10 .10 .11 .04 .07 .01 .02 .07 .01 .02 .01 .04 .04 .01 .03 .01 .04 .04 .01 .03 .01 .04 .04 .01 .03 .01 .01 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .01 .04 .01 .04 .01 .01 .01 .01 .01 .01 .01 .01 .01			-	_	. 04	_		· 11	n4		_			11	04	
P. litoralis 1.00 .89 .26 .94 .41 .04 .96 1.00 .97 .41 .04 .96 1.00 1.01 1.01 Hirdinea - <td></td> <td></td> <td>- 04</td> <td>.11</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td></td>			- 04	.11		_					1.00					
Hirudinea042/14Bydrobia sp0707044/14Hydrobia sp0711-26044/14Hydrobia sp0711-26044/14Nudibranchia04040707044/14N. derissus031/14K. derissus03-043/14M. balthica+15040411-59593781043/14H. hateraita0707-1107-3/14N. hatericana.2637.44.56.48.44.52.48.44.33.48.4814/14G. alryra.22.67.74.81.11.15.04.04.19.13.0478.6712/14C. locustre.3344.56.30.07.26.61.10 </td <td></td> <td></td> <td></td> <td></td> <td>.04</td> <td>.48</td> <td></td>					.04	.48										
Bydrobia sp0.011126110.045/14Nudibranchia.040.042/14D. obscura112/14M. defissus1/14M. defissus1/14M. balthica.15.04.0411.59.59.37.81.0478.6712/14M. hateralis041904.11.4/14M. areticana.26.37.44.56.48.44.52.44.52.44.33.48.4814/14L. areticanus.1904.07.19.31.04.1137.04.04.19.19.12/14L. areticanus.1904.07.19.30.04.1137.04.04.19.19.12/14L. areticanus.1904.07.19.04.10.10.10.11	Hirudinea	-	-	-	-	-	.04		-	-	.04	-	-	-	-	2/14
Nudibranchia.04042//4M. derissus111//4M. derissus331//4C. virginica63041//4M. balthica.15.04.0411.59.59.37.81.0478.6712//4M. lateralis041904.114//4H. arenaria.66.37.44.56.48.44.52.48.44.33.48.44//4L. americanus.1904.07.19.33.04.04.19.19.12//4E. atricanus.1904.07.19.13.04.04.19.19.12//4E. triloba.3304.07.19.33.04.04.19.19.12//4C. poitta.96.44.56.30.85.96.00.89.63.93.100.8514//4L. plumlosus.7478.0478.67.44.44//4Gamarun spp33.		-	-	-	- .	-					.07	-				
D. obscura		-		-	-	-	.07				-	-	-		.04	
M. derissus		.04	-	-		-					-	-	-	-	-	
C. virginica041 .59 .59 .59 .37 .81 .0478 .67 12/14 N. balthica .15 .04 .0411 .59 .59 .59 .37 .81 .0478 .67 12/14 N. lateralis04 .11 4/14 H. arenaria04 .111004 .11 4/14 H. arenicanus .1904 .041993 .11 .37 .2204 .30 .19 10/14 N. americanus .1904 .041993 .11 .37 .0204 .30 .19 10/14 C. almyra .22 .67 .74 .81 .11 .15 .04 .04 .19 .10 .7 .07 .11 14/14 E. trilota .3304 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 13/14 C. polita .96 .44 .56 .30 .85 .96 1.00 .89 .63 .99 .10 .85 14/14 C. lumifrons04 .04 .77 .56 .30 .07 .26 .26 .11 .26 .48 .15 13/14 C. lumifrons19 .0478 .04 .0478 .64 .14 .19 .92 .41 .04 .14/14 C. lumifrons19 .0478 .04 .04 .22 .13 .10 .85 14/14 C. lacustre .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 14/14 M. nitida30 .33 .41 .33 .26 .33 .41 .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 M. nitida04 .04 .07 .33 .04 .33 .07 .26 .26 .04 .26 .22 .13/14 M. nitida30 .33 .41 .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 M. nitida30 .33 .41 .33 .26 .22 .11 .26 .41 .22 .13/14 M. nitida30 .33 .41 .33 .26 .22 .20 .41 .55 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 M. nitida04 .04 .07 .33 .04 .33 .07 .26 .21 .33/14 M. nitida30 .33 .41 .33 .26 .22 .20 .41 .55 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 M. nitida30 .33 .41 .33 .26 .22 .20 .41 .55 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 M. nitida04 .04 .07 .33 .04 .33 .07 .26 .21 .33/14 M. nitida30 .33		-	-	-	-						-	~	-	-	-	
M. balthica .15 .04 .0411 .59 .59 .59 .37 .81 .0478 .67 12/14 M. lateralis071104 .11 .4/14 H. arenaria0419071104 .11 .4/14 B. improvisus04 .041993 .11 .37 .2204 .30 .19 10/14 H. americana .26 .37 .44 .56 .48 .44 .52 .44 .52 .48 .44 .33 .48 .48 14/14 L. americanus .1904 .07 .19 .33 .04 .1137 .04 .04 .19 .19 12/14 C. almyra .22 .67 .74 .81 .11 .15 .04 .04 .19 .07 .67 .07 .07 .11 14/14 C. almyra .22 .67 .74 .81 .11 .15 .04 .04 .19 .07 .67 .07 .07 .11 14/14 C. polita .96 .44 .56 .30 .85 .96 .100 .89 .96 .89 .63 .99 1.00 .85 .14/14 C. lunifrons04 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 C. lacustre .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 Cammarum spp33 .26 .40 .37 .44 .30 .33 .07 .26 .26 .41 .22 .11/14 H. nitida04 .04 .07 .33 .0407 .07 .07 .9/14 H. antida04 .04 .17 .43 .04 .37 .44 .30 .33 .07 .26 .26 .11 .26 .41 .22 .11/14 H. nitida04 .04 .07 .33 .0407 .07 .04 .07 .9/14 H. edwardsi .37 .19 .15 .07 .07 .1911 .26 .19 .26 .04 .26 .22 .13/14 H. edwardsi .37 .19 .15 .07 .07 .1911 .26 .19 .26 .04 .26 .22 .13/14 H. edwardsi .37 .19 .15 .07 .07 .1911 .04 .30 .15 .20 .14 .14 .14 H. nitida04 .04 .27 .33 .0407 .20 .26 .44 .26 .22 .13/14 H. edwardsi .37 .19 .15 .07 .07 .1911 .26 .19 .26 .04 .26 .22 .13/14 H. edwardsi .37 .19 .15 .07 .07 .1911 .04 .30 .15 .20 .20 .21 .27 .27 .27 .27 .27 .27 .27 .27 .27 .27		~		~	-		-					-	-	-		
H. lateralis		15			-		50						-			
H. arenaria0419073/14B. improvisus04.041993.11.37.2204.30.1910/14H. americana.26.37.44.56.48.44.52.44.52.48.44.33.48.4414L. americanas.1904.07.19.33.04.1137.04.04.19.1912/14C. altyra.22.67.74.81.11.15.04.04.19.07.67.07.07.1114/14C. altyra.22.67.74.81.11.15.04.04.19.07.67.07.07.1114/14C. altyra.22.67.74.81.11.15.04.04.19.07.67.07.07.1114/14C. lenifrons04.04.37.66.30.89.96.89.63.931.00.85.44C. lenifrons19.0478.0473.6/14C. lacustre.33.26.22.04.15.30.78.07.66.11.19.22.41.04.4/14Gamarus spp.<		-+-			_								-			
B. improvisus04 .041993 .11 .37 .2204 .30 .19 $10/!4$ N. americana .26 .37 .44 .56 .48 .44 .52 .44 .52 .48 .44 .33 .48 .48 $14/14$ C. americanus .1904 .07 .19 .33 .04 .1137 .04 .04 .19 .19 $12/!4$ C. almyra .22 .67 .74 .81 .11 .15 .04 .04 .19 .07 .67 .07 .07 .11 $14/!4$ E. triloba .3304 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 $13/!4$ C. polita .96 .44 .55 .30 .85 .96 .100 .89 .96 .89 .63 .91 .00 .85 $14/!4$ C. lunifrons040478 .0478 .04 .04 .19 .22 .41 .04 $14/!4$ C. lunifrons19 .0478 .0478 .0478 .04 .07 .97 .11 .14/!4 C. lucstre .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 $14/!4$ Gamarus spp33 .41 .33 .26 .40 .37 .44 .30 .33 .07 .26 .41 .2217/!4 N. nitida04 .04 .07 .33 .0407 .07 .07 .97 .11 .1/!4 Parahaustorius sp33 .41 .33 .26 .40 .37 .44 .30 .33 .07 .26 .41 .2217/!4 N. nitida04 .04 .07 .33 .0407 .07 .07 .97 .11 .1/!4 Parahaustorius sp33 .41 .33 .26 .40 .37 .44 .30 .33 .07 .26 .41 .2217/!4 N. nitida04 .04 .07 .33 .0407 .56 .11 .19 .22 .41 .04 .14/!4 Gamarus sp37 .19 .15 .07 .07 .1911 .26 .19 .26 .04 .26 .22 .13/!4 N. nitida040404040407 .11 .17 .17 .17 .17 .17 .17 .17 .17 .1		-	-	_	_								-			
N. americana.26.37.44.56.48.44.52.48.44.33.48.48 $14/14$ L. americanus.1904.07.19.33.04.1137.04.04.19.19.19C. almyta.22.67.74.81.11.15.04.04.19.07.67.07.07.1114/14E. triloba.3304.04.37.56.30.07.26.26.11.26.48.15.13/14C. lonifrons04.04.37.56.30.07.26.26.11.26.48.15.14/14L. plumulosus.740404.07.38.0478.0478.0478.0478.0478.04.04.14/14C. lacustre.33.26.22.04.15.30.78.07.56.11.19.22.14/14.14/14M. nitida04.07.33.0407.07.91.14/14C. lacustre.33.26.22.04.07.33.0407.07.94.07.91/14M. nitida04			.04	.04	_	.19			.11				-04		.19	
L. americanus $.1904 .07 .19 .33 .04 .1137 .04 .04 .19 .19 12/14$ C. almyra $.22 .67 .74 .81 .11 .15 .04 .04 .19 .07 .67 .07 .11 14/14$ C. triloba $.3304 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 12/14$ C. polita $.96 .44 .56 .30 .85 .96 1.00 .89 .96 .89 .63 .93 1.00 .85 14/14$ C. lumifrons $040478 .0478 .0478 .04 .04 .14 .14 .14 .14 .14 .14 .14 .14 .14 .1$.26			.56		.44					.44				
E. triloba .3304 .04 .37 .56 .30 .07 .26 .26 .11 .26 .48 .15 13/14 C. polita .96 .44 .56 .30 .85 .96 1.00 .89 .96 .89 .63 .93 1.00 .85 14/14 L. plumulosus .74040478 .0478 .0478 .0478 .0478 .04 1.22 .1/14 C. lacustre .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 14/14 K. nitida04 .04 .07 .33 .040707 .04 .07 .9/14 Parahaustorius Sp04 .04 .07 .33 .0407 .07 .04 .07 .9/14 Parahaustorius Sp03 .3304 .07 .11 .15 .15 .30 .19 .1/14 R. edvardsi	L. americanus		-	.04	.07	.19	.33	.04	.11			.04	.04			12/14
C. polita	C. almyra	.22	.67	.74	.81	.11	.15	.04	.04	.19	.07	.67	.07	.07	.11	14/14
C. lunifrons - 2/:: L. plumulosus .74 - - - - - - - - - - - - - 2/:: L. plumulosus .74 - - - - - - - - - - - - - 2/:: L. plumulosus .74 -																
L. plumulosus .74				.56									.93		.85	
C. lacustre .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .14/14 Gammarun spp. .33 .41 .33 .26 .22 .04 .15 .30 .78 .07 .56 .11 .19 .22 .41 .04 .04 .07 .33 .03 .07 .26 .41 .22 .11/14 M. nitida - - .04 .04 .07 .33 .04 - .07 .04 .07 .9/14 Parahaustorius sp. - - .30 .33 - - - .12 .07 .04 .07 .9/14 M. edwardsi .37 .19 .15 .07 .19 - .11 .26 .19 .26 .04 .26 .22 .13/14 Parapleustes sp. - - - .11 .15 .30 .16 .15 .30 .19 14/14 R. hatrisii -				-	· -	.04							-		-	
Gammarus spp. .33 .41 .33 .26 .46 .37 .44 .30 .33 .07 .26 .41 .22 - $11/14$ M. nitida - - .04 .07 .33 .04 - .07 .26 .41 .22 - $11/14$ M. nitida - - .00 .03 - - - .07 .07 .07 .9/14 M. edwardsi .37 .19 .15 .07 .07 .19 - .11 .26 .19 .26 .04 .26 .22 $13/14$ Parapleustes sp. - - - - - - - .21 .26 .04 .26 .22 $13/14$ Parapleustes sp. - - - - - - - - .21 .26 .04 .26 .22 $13/14$ C. septemspinosa .22 .07 .19 .07 .11 .15 .33 .07 .15 .15 <td< td=""><td></td><td></td><td>25</td><td></td><td></td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			25			16										
N. nitida - - - .04 .07 .33 .04 - .07 - .07 9/14 Parahaustorius Sp. - - .03 .37 - - .07 .07 .04 .07 9/14 Parahaustorius Sp. - - - - .15 - - .11 R. edvardsi .37 .19 .15 .07 .19 - .11 .26 .19 .26 .04 .26 .22 .13/14 Parapleustes sp. - - - - - .11 .04 - - - .21 .21 .11/14 C. septemspinosa .22 .07 .19 .07 .11 .15 .33 .07 .15 .30 .19 14/14 R. harrisii - - - - - - .04 - - .04 .15 .33 .07 .15 .30 .15 - .04 .11/14 Diptera -																
Parahaustorius sp. - - .30 .33 - - - .15 - - .1714 R. edwardsi .37 .19 .15 .07 .07 .19 - .11 .26 .19 .26 .04 .26 .22 .13/14 Parapleustes sp. - - - - .11 .04 - - - .214 C. septemspinosa .22 .07 .19 .07 .11 .15 .41 .15 .33 .07 .15 .15 .30 .19 .4/14 C. septemspinosa .22 .07 .19 .07 .11 .15 .41 .15 .33 .07 .15 .15 .30 .19 .4/14 R. hatrisii - - - - - .11 .11 .04 .30 .15 - .4/14 Ceratopogonidae - - - - - - .04 1/14 Culicoides sp. - - -																
R. edwardsi .37 .19 .15 .07 .19 11 .26 .19 .26 .04 .26 .22 .13/14 Parapleustes sp. .1 .10 .11 .04 .11 .04 .19 .11 .04 .11 .04 .11 .04 .11 .04 .11 .04 .11 .04 .11 .04 .11 .04 .11 .04 .11 .11 .04 .11		-	-	.30				-		-	-	.15	_			3/14
Parapleustes sp. - - - - - - - - - 2/14 P. pugio - - - - - - - - - - - 2/14 P. pugio - - - - - - - - - 1/14 C. septemspinosa - - - - - - - - 1/14 R. harrisii - - - - - - 1 11 .04 .30 .15 - 8/14 Diptera - - - - - - - 1/14 Culicoides sp. - - - - - - - 1/14 Chironomidae .26 - - - - - - - 1/14 Chironomidae .26 - - - - - - 1/14		.37	.19			.07	.19		.11	.26	.19		.04	.26	.22	13/14
C. septemspinosa .22 .07 .19 .07 .11 .15 .41 .15 .33 .07 .15 .15 .30 .19 $14/14$ R. hatrisii - - - - 04 .52 - .11 .11 .04 .30 .15 - $8/14$ Diptera - 04 - - - - - .11 .11 .04 .30 .15 - $8/14$ Diptera - 04 - - - - - .1/14 Ceratopogonidae - - - - - - .04 1/14 Culicoides sp. - - - - - - - 1/14 Chironomidae .26 - - - - - - - 1/14 Chironomidae .26 - - - .89 .04 .26 .30 - - .26 6/14		~	-	-	-	-	-	.11				-	-	-	-	
R. harrisii - - - .07 .04 .52 - .11 .11 .04 .30 .15 - $8/14$ Diptera - .04 - - - - .11 .11 .04 .30 .15 - $8/14$ Diptera - - - - - - .11 .11 .04 .30 .15 - $8/14$ Ceratopogonidae - - - - - - .1/14 .11 .04 .30 .15 - $8/14$ Culicoides sp. - - - - - - .04 - 1/14 Chironomidae .26 - - - - .04 - - .1/14 Ctenostomata - - .07 .89 .04 .26 .30 - .26 6/14			-				_					-	-		_	
Diptera04		.22	_07	.19										.30		
Ceratopogonidae - - - - - - 1/14 Culicoides sp. - - - - - - 1/14 Chironomidae .26 - - - - - 1/14 Chironomidae .26 - - - - 1/14 Ctenostomata - - .07 .89 .04 .26 .30 - .26 6/14		-	~~~	-	-	.07	.04	.52			•11	.04	• २०			
Culicoldes sp. - - - - - - 1/14 Chironomidae .26 - - - - 1/14 Ctenostomata - - .07 .89 .04 .26 .30 - .26 - 6/14		-	-04		-	-	-	-		-	-	-	-		-	
Chironomidae .26 1/14 Ctenostomata0789 .04 .26 .3026 - 6/14		-	-		-	-	-	-		· _	-	-	-		-	
Ctenostomata0789 .04 .26 .3026 - 6/14		-26	-		-	-	_	-		-	_	-	~		_	
		_					·	89	.04		.30		-		-	
A. vidovici0407040704261104040404	A. vidovici	.04	-	.07	.04	_	.07	.04	.26		.11	.04	-	-	.04	9/14
B. gracilis04 1/14		-	-	.04			-	_	-	-	-	-	-	-	-	1/14
Nembraniporidae1104 .78 .07 .26 .3015 .19 8/14	Nenbraniporidae	. –	-	.11	-	-	-04	↓7 8 ·	.07	.26	.30	-	-	.15	.19	8/14

IN SALEN B 1978

SUMMARY	OF ALL STATIONS							
		MEAN				DRY		
RANK BY		DENSITY	X FAUNA	CUMED 1	NUMBER OF	WEIGHT	¥ BY	RANK BY
NUMBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT
1	P. LITORALIS	674.2	25.602	25.602	206	15.6	.695	17
2	B. IMPROVISUS	370.8	14.081	39.683	65	646.3	28.818	1
3	S. VIRIDIS	309.4	11.749	51.432	319	406.8	18.139	ź
4	TURBELLARIA	274.5	10.614	62.046	71	5.1	-227	22
5	POLYDORA SP.	245.3	9.315	71.361	96	14.4	.642	18
6	C. POLITA	130.8	4.967	76.328	303	120.3	5.364	6
7	C. LACUSTRE	115.6	4.390	80.718	49	8.5	.379	19
8	N_ AMERICANA	76.6	2.909	83.627	169	21.5	. 959	. 15
ş	GAMMARUS SP.	69.5	2.639	86.266	114	148.9	6.639	. 15
10	N. SUCCINEA	56.5	2.146	88.412	108	75.3	3.358	7
11	OLIGOCHAETA 1	54.9	2.085	90.497	145	37.6	1.677	11
12	RHYNCHOCOELA	40.4	1.534	92.031	205	16.1	.718	16
13	C. ALMYRA	37.0	1.405	93.436	107	33.6	1.498	14
		25.8	.960	94.416	129	243.7	10.866	3
14	M_ BALTHICA						.192	
15	L. PLUMULOSUS	20.2	.767	95.183	69	4 - 3		23
16	E. TRILUBA	18.6	.706	95_889	87	1.8	.080	24
17	G_ FRA'CISCANA	15.7	-596	96.485	296	54.1	2.412	10
18	TRICLADIDA	12.9	-490	96.975	55	- 3	.013	30
19	S. ARGENTEA	11.7	_444	97.419	222	36.5	1.628	13
20	M_ NITIDA	8.4	.319	97.738	21	1.5	.067	25
21	C. SEPTEMSPINOSA	6.7	-254	97.992	69	70.5	3.144	8
21	L. AMERICANUS	6.7	.254	98.246	. 48	- 4	↓ 018	29
23	M. EDWAGDSI	5.4	.205	98.451	64	- 9	.040	27
24	S. PENEDICTI	4.5	. 171	98,.622	36	•3	.013	30
25	CHIRUNDMIDAE	4.3	-163	98.785	7	۰2	.009	35
26	R. HAPRISII	3.5	.133	98.918	36	37.6	1.677	11
27	MEMBRANIPORIDAE	2.7	-103	99.021	5.1			60
28	CTENDSTUMATA	2.6	.099	99.120				60
29	OLIGOEHAETA	2.5	.095	99.215	÷ .	.3	.013	30
. 30	C. VIRGINICA	2.4	.091	99.306	19	161.0	7.179	4
31	HYDRUHIA	2.2	.084	99.390	16	.2	.009	35
32	M. PROLIFERA	2.1	.080	99.470	40	62.5	2.787	9
33	PARAHAUSTORIUS SP.	2.0	.076	99.546	21	7.2	.321	20
34	S. ELLIPTICUS	1.5	.057	99.603	6	.3	.013	30
35	H. GELATINOSA	1.2	.046	99.649	22	1.4	.062	26
35	CAMPANULINIDAE	1.2	.046	99.695	22	.2	.009	35
37	A. VIDOVICI	1.0	.038	99.733	19	.2	.009	35
37	M. DEHISSUS	1.0	.038	99.771	9	5.8	.259	21
39	GASTROPODA	.7	.027	99.798	10	.3	_U13	30
40	M. LATERALIS	-6	.023	99.821	9	.6	.027	28
40	PARAPLEUSTES SP.	.6	.023	99.844	4	.1	.004	40
40	FARAFLEUGIEG OFP	•0	-023	77.044		• •	.004	40

TABLE 3.1.4-5 Annual pank of benthic taxa near artificial island in the delaware river, 1978.

* " BELOW REPORTABLE LEVEL

IA SALEM B 1978

TABLE 3.1.4-5 CONTINUED

		MEAN				081		
RANK BY		DENSITY	% FAUNA	CUMED 🗴	NUMBER OF	WEIGHT	X BY	RANK
NUMBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT
40	D. OBSCURA	.6	.023	99.867	3	.1	.004	40
43	TURBELLAKIA #1	.5	.019	99.886	4	*	*	60
43	G. SOLITARIA	.5	.019	99.905	8	*	· *	60
43	M_ ARENARIA	.5	.019	99.924	8	.1	_004	40
46	CAMPANULARIDAE	.3	-011	99.935	5 .	*	*	60
47	HYDROZOA	.2	_ 008	. 99.943	4			60
. 47	H. GRAVI	-2	_008	99.951	3	*	#	60
47	P. PUGIÚ	.2	.008	99.959	,1	*	*	60
47	L. CULVERI	.2	. 008	99.467	3	• 2	.009	35
51	HIRUDINEA	-1	.004	99.971	2	*	*	60
· 51	OIPTERA	-1	.004	99.975	1	*	*	60
51	CULICOIDES	.1	.004	99.979	1			60
51	CERATOPUGONIDAE	-1	.004	99.983	1			60
51	NUDIBRANCHIA	•1	.004	99.987	2 .	*	*	60
51	E. GRACILIS	-1	.004	99.991	1			60
51	C. LUNIFRONS	-1	.004	99.995	2	*	*	υÜ
51	B. GRACILIS	•1	_004	99.999	1	*	*	οU
51	E. HETEROPODA	.1	_004	100.003	1			60
51	D. LEUCOLENA	.1	.004	100.007	2	.1	_004	40

* * BELON REPORTABLE LEVEL

· IA SALEM B 1978

.

ah

					CONTINUED				
STATION	11 1251				*********	*********			,
		MEAN				DRY			
RANK BY	,	DENSITY	🅱 FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUMBER	ΤΑΧΑ	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	P. LITOPALIS	1,676.3	68-148	68.148	27	41.5	6.763	2	
2	S. VIRIDIS	336.3	13-672	81.820	27	398.6	64.961	1	
3	C. POLITA	62.2	2.529	84.349	26	38.1	6.209	3	
4	CHIRUNDMIDAE	60.7	2.468	56.817	7	3.2	.522	12	
5	IRICLADIDA	5ö.5	2.378	89.195	10	1.2	. 196	15	
0	L. PLUPULÚSUS	45.2	1-838	91.033	20	7.5	1.222	8	
. 7	RHINCHOCOELA	43.7	1-777	, 92-810	11	4.0	.652	10	•
8	C. ALMYRA	27.4	1.114	93.924	6	6-2	1.010	. 9	
9	M. ED.ARDSI	21.5	-874	94.795	10	3.2	.522	12	
10	G. FRANCISCANA	19.3	.785	95.583	26	37.9	6.177	4	
10	N. ARERICANA	19.3	.785	96.368	7	3.6	.587	11	
12	M. BALTHICA	16.3	-663	97.031	4	.7	.114	19	
12	GARMARUS SP.	16.3	.663	97.694	9	12.7	2.070	7	
· 14	S. ARGENTEA	15-6	-654	98.328	21	19.0	3.096	6	
15	E. TRILOBA	9.6	.390	98.718	9	2.4	.391	14	
16	C. LACUSIRE	8.9	.362	99.080	9	- 8	.130	1 ರ	
17	C. SEPTERSPINOSA	6.7	.272	99.352	6	29.9	4.873	5	
18	L. AMERICANUS	5.9	-240	99.592	5	.9	.147	17	
19	JLIGOCHAETA	3.7	.150	99.742	2	.1	.016	23	
20	OLIGUCHAETA 1	1.5	.001	99.805	1	-	_	27	
21	A. VIQUVICI	.7	.028	99.831	1	.1	.016	23	
21	TJRBELLARIA	.7	.028	99.859	· 1	.3	-049	20	
21	H. GELATINOSA	.7	.028	99 887	1	.3	.049	20	
21	H. GRAYI	.7	.028	99 915	1	-2	033	22	
21	NUDIBRANCHIA	.7	L058	99 943	1	•1	-016	23	
21	CAMPANULINIDAE	-7	-028	99.971	-	• '	-010	27	
21	N. SUCCINEA	.7	.028	99 999	1	1.1	.179	16	

TABLE 3.1.4-5


* # BELOW REPORTABLE LEVEL

IA SALEM B 1978

· .

•

· · · ·

			T?	ABLE 3.1.4-5 CONTINUED	5				
STATION	: 1252								
		MEAN				DRY			
RANK BY		DENSITY	X FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NURBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	TURBELLARIA	875.6	31.099	31,099	18	13.7	.808	9	
2	C. LACUSTRE	848.9	30.151	61.250	7	67.9	4.006	4	
3	S. VIRIDIS	766.7	27.231	88.481	27	1,198.4	70.702	1	
4	P. LITOPALIS	143.7	5.104	93.585	24	5.5	.324	10	
5	C. ALMYHA	65.2	2.316	95.901	18	40-4	2.383	6	
6	GAMMARUS SP.	25.2	.695	96.796	11	21.2	1,251	8	
7	G. FRANCISCANA -	20.0	_710	97.506	27 .	106.6	6.289	3	•
8	RHYNCHOCCELA	19.5	.685	98.191	· 11	.0	.035	16	
9	C. POLITA	15.6	_ 554	98.745	12	32.1	1.894	7	
10	N. AMERICANA	11.1	- 394	99.139	10	3.5	.206	11	
11	B. IMPROVISUS	7.4	"263·	99.402	1	132.7	7.829	2	
12	M_ EDWARDSI	3.7	. 131 ·	99.533	5	1.2	.071	14	
12	S. ARGENTEA	3.7	.131	97.664	5	3.2	. 189	12	
· 14	OLIGOCHAETA 1	2.2	_078.	99.742	1	7	.041	15	
14	TRICLADIDA	2.2	.078	99.320	2			19	
16	C. SEPTEMSPINOSA	1.5	.053	99.873	2	64.3	3.794	5	
17	M. BALTHICA	.7	<u>.</u> 025	99.898	1	-6	.035	15	
17	N. SUCCINEA	7	.025	99.923	1			19	
17	DIPTERA	.7	. 025	99.948	1	-1	•006	18	
17	M_ PROLIFERA	.7	.025	99.973	1	2.3	.1 36	13	
17	H. GELATINOSA	.7	-025 ·	99.998	1.			19	

* = BELOJ REPORTABLE LEVEL

IA SALEM B 1978

•			1	TABLE 3.1.4 CONTINUED	-5				

STATION	: T3S1	MEAN				DRY			
RANK BY		DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X 8Y	RANK BY	
NUMBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES		WEIGHT	WEIGHT	
				•••••					
1	GAMMARUS SP.	632.6	41.864	41.864	9	1,789.8	59.159	1	
2	S. VIRIDIS	297.8	19.707	61.571	24	432.7	14.302	2	
3	TURBELLARIA	232.6	15.393	76.964	12	10.8	.357	14	
4	N. AMERICANA	103.7	6.863	83.827	12	18.3	.605	12	
5	C. ALMYRA	86.7	5-738	89.565	20	85.8	2.836	4	
6	C. PULITA	39.3	2.601	92.166	15	59.2	1.957	7	
7	RHYNCHOCOELA -	28.1	1.860	94.026	10	43.5	1.438	8	
8	G. FRANCISCANA	14.8	_979	95.005	20	65.6	2.108	6	
9	PARAHAUSIÓRIUS SP.	13.3	-880	95.885	8	40.4	1.335	9	
10	S. ARGENTEA	12.6	-834	96.719	17	73.9	2.443	5	
11	C. LACUSTRE	6.7	.443	97.162	6	<u>.</u> 8	.026	17	
11	P. LITOHAUIS	6.7	-443.	97.605	7	.2	.007	20	
11	POLYDORA ŚP.	6.7	.443	98.048	1	.2	.007	20	
14	M. PROLIFERA	4.4	₽501.	98.359	6	333.3	11.017	5	
15	C. SEPTENSPINOSA	3.7	.245	98,584	5	12.1	.400	13	
16	M. BALTHICA	3.0	.199	98.783	1	32.1	1.061	10	
10	4. ED-ARDSI	3.0	-199	98.482	4	• 4	.013	:8	
18	MEMERANIPURIDAE	2.2	-146	99.128	3			29	
18	OLIGOCHAETA 1	2.2	.146	99.274	3	4.2	.139	15	
20	C. VIRGINICA	1.5	.099	99.373	1	18.4	.608	11	
20	CAPPAHULINIDAE	1.5	.099	99.472	2			29	
20	TRICLADIDA	1.5	.099	99.571	1	.1	.003	23	
20	L. AMERICANUS	1.5	.099	99.670	1			29	
20	A. VIDOVICI	1.5	.099	99.769	ż	_1	.003	23	
25	E. TRILOSA	.7	.045	99,815	1	- ·		29	
25	3. GRACILIS	.7	.046	99.861	1	.2	.007	20	
25	H. GELATINOSA	.7	.046	99.907	1	3.0	.099	16	
25	CAMPANULARIDAE	.7	.046	99.953	i		• - · ·	29	
25	B. IMPROVISUS	.7	.046	99,999	1	.3	.010	19	

BELOW REPORTABLE LEVEL

IA SALEM B 1978

TABLE	з.	1.	4~5				
CONTINUED							

			CONTINUE						
STATION	1: 1352								** `~ `* ** 51 & ** ** # # # # # # # # # # # # # # # #
		MEAN				DRY			
RANK BY	1	DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X 8Y	RANK BY	
NUMBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	TURBELLARIA	2,528.9	80-110	80.110	17	39.1	5.197	5	
2	C. ALMYRA	244.4	7.742	87.852	22	250.0	34.024	1	
3	S. VIRIDIS	150.4	4.764	92.616	22	234.3	31,140	2	
4	N. AMERICANA	137.0	4.340	96.956	15	85.3	11.337	3	
5	RHYNCHUCÜELA	25.2	.798	97.754	6	3.3	.439	11	
6	G. FRANCISCANA	14.1	.447	98.201	19	9.6	1.276	9	
7	C. PÚLITA -	12.6	.399	98.600	8	6.3	.837	10	•
8	.S. APGENTEA	8.9	.282	98.882	12	51.2	4.147	0	
8	PARAHAUSTORIUS SP.	۶.۶	.282	99.104	9	52.4	6.964	4	
10	GAMMARUS SP.	8.1	.257	99.421	7	13.5	1.794	8	
11	POLYDORA SP.	6.7	-212	99.635	1	. 7	.093	13	
12	H. PROLIFERA	2.2	.07U·	99.703	3	17.9	2.379	7	
12	L. AMERICANUS	2.2	.070	99.773	2	.1	.013	16	
· 14	4. EDNARDSI	1.5	-048	99.821	2	.1	.013	16	
14	C. SEPTEMSPINOSA	1.5	.048	99.869	2	1.0	.213	12	
16	M. NITIDA	.7	.022	99.8Ý1	1	.1	.013	10	
16	A. VIDOVICI	.7	.022	99.913	1	- 4	.053	14	
16	OLIGOCHAETA	.7	-022	99.935	1	.3	.040	15	
16	P. LITOFALIS	.7	.02Z	99.957	1	.1	.013	16	
16	E. TRILOBA	•7	. 022	· 99_979	1	.1	.013	16	
16	C. LACUSTRE	.7	.022	100.001	1		-	21	

* * BELOW REPORTABLE LEVEL

IA SALEM B 1978

Ø

					TINUED				
STATION	: 1353	*****							
		MEAN				DRY			
RANK BY		DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUMBER	T L X A	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	POLYDORA SP.	852.6	47.485	47.485	14	44.2	6.555	4	
2	S. VIRIDIS	203.0	11.306	58.791	16	115.6	16.847	2	
3	P. LITURALIS	185.9	10.354	69.145	15	16.9	2.506	10	
4	- B. IMPROVISUS	149.6	8.332	77.477	5	267.7	39.700	1	
5	C. POLITA	128.1	7.135	84.612	23	59.9	8.883	3	
6	N. AMERICANA	126.7	7.057	91.669	13	25.0	3.708	8	
7	GAMMARUS SP.	22.2	1.236	92.905	13	26.4	3.915	6	
8.	M. BALTHICA	19.3	1.075	93.480	3	22.4	5.322	9	
9	E. TRILOBA	18.5	1_030	95.010	10	1.0	.148	16	
10	L. AMÉRICANUS	17.0	.947	95.957	5	- 8	.119	17	
11	G. FRANCISCANA	14.1	.785	96.742	19	41.0	6.080	5	
12	S. ARGENTEA	13.3	-741	97.485	18	8.2	1.216	12	
13	RHYNCHOCOELA	11.9	.663	98.146	7	1.9	.282	15	
14	N_ SUCCINEA	8.9	-496	96.642	6	4-4	.653	13	
15	C. LACUSIRE	6.7	-373	99.015	4	. 6	.089	1 ö	
16	C. ALMIRA	3.7	- 206	99.221	5	3.0	.445	14	
17	C. SEPTEPSPINOSA	3,0	.167	99.388	3	11.4	1.691	11	
18	P. PUGIU	2.2	.123	99.511	1	-1	-015	19	
19	M. ED.ARDSI	1.5	<u> 084</u>	99 <u>5</u> 95	2			26	
19	CTENUSTUMATA	1.5	_ 084	99.679	2			26	
19	R, HARRISII	1.5	.084	99.763	2	25.5	3.782	7	
19	TRICLADIGA	1.5	.084	99.847	• 2			26	
23	M. NITIDA	.7	.039	48-886	1	-1	.015	19	
23	TURBELLARIA	.7	.039	99.925	1	_1	.015	19	
23	CAMPANULINIDAE	.7	.039	99.964	1	.1	.015	19	
23	C. LUNIFRONS	.7	.039	100.003	1			26	

TABLE 3.1.4-5

* # BELON REPORTABLE LEVEL

IA SALEM B 1978

					TINUED				
STATION						*********			* * * * * * * * * * * * * * * * * * * *
		MEAN				DRY			
RANK BY		DENSITY	X FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUMBER	TAXA .	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES		WEIGHT	WEIGHT	
1	P. LITORALIS	2,322.2	73.267	73.267	27	34.8	2.015	5	
2	S. VIRIDIS	260.0	8.203	81.470	17	608-1	35.209	2	
3	E. TRILOBA	129.6	4.089	85.559	15	12.8	.741	ä	
4	4. BALTHICA	60.0	1.893	87.452	16	821.6	47.571	1	
5	TRICLADIDA	59.5	1.871	89.323	12	1.1	.064	19	
6	RHYNCHJCOELA	58.5	1.846	91.169	20	24.1	1.395	7	
7	OLIGUCHAETA 1	40.7	1.473	92.642	17	10_4	•0U2	9	
8	C. POLITA	45.2	1.426	94.068	26	66.1	3.827	4	•
9	GAMMARUS SP.	52.6	1.029	95.097	10	5.3	.307	13	
10	N. AMERICANA	26.7	-642	95.939	12	5.9	.342	11	
11	L. A HERICANUS	21.5	.678	96.617	9	.7	.041	21	
12	G. FRANCISCANA	14.3	.609	97.226	26	69.0	3.995	ک	
13	N. SUCCINEA .	13.3	_420	97.646	12	8.0	.463	10	
14	POLYDORA SP.	12_6	.398	98.044	3	. 3.	•U17	26	
15	S. ARGENTEA	11.9	.375	98.419	16	. 34.2	1.980	6	
10	OLIGOCHAETA	1.4	-233	98.652	3	.4	<u>.</u> U23	25	
17	C. LACUSTRE	5.9	.186	98.838	8	. 2	.012	27	
17	M. EDHARDSI	5.9	_186	99.024	, 5 .	1.0	.058	20	
19	C. ALMYRA	5.2	. 164	99.188	4	2.7	_1 56	16	
19	M. NITIDA	5.2	-164	99.352	2	.7	.041	21	
21	L. PLUMULOSUS	3.7	-117	99.409	5	3.6	_208	15	
22	C. SEPTEMSPINOSA	3.0	.095	99.564	. 4	2.4	.139	17	
23	L. CULVERI	2.2	.069	99-635	3	2.4	.139	17	
23	TURBELLARIA #1	2.2	.069	99.702	2			34	
25	S. BEVEDICII	1.5	.Ú47	99.749	2			34	
25	AYDRUGIA	1.5	.047	99.796	. 2	-5	.029	24	
25	A_ VIDOVICI	1.5	.047	99.843	2	.7	.041	21	
28	H. GELATINOSA	.7	-022	99.865	1	.1	.006	28	
28	E. GRACILIS	.7	.022	99.887	, 1			34	
28	N. PROLIFERA	.7	-055	99.909	1	5.8	.336	12	
28	CAMPANULARIDAE	.7	.022	99.931	1			34	
28	MEMBRANIPORIDAE	.?	_022	99.953	1			34	
28	HIRUDINEA	.7	-022	99.975	1	.1	.006	28	
28	R. HARRISII	.7	022	99.997	1	4.1	.237	14	

۲.

.

TABLE 3.1.4-5

* * BELON REPORTABLE LEVEL

IA SALEM B 1978

3.1-140

7

					3.1.4-5 FINUED				
STATION	: [452								
		MEAN				DRY			
RANK BY		DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUMBER	TAXA .	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	B. IMPROVISUS	4,703.7	60.067	60.067	25	8.111.4	65.861	1	
Z	P. LITORALIS	1,030.4	13.158	73.225	27	21.7	.176	15	
3	N. SUCCINEA	506.7	6.471	79.695	24	825.1	6.699	3	
4	C. LACUSTRE	484.4	6.186	85.882	21	31.0	.252	13	
5	S. VIRIOIS	211.1	2.696	88.578	22	228.1	1.852	5	
6	C. POLITA	177_8	2.271	90.849	27	205.0	1.673	6	
7	OLIGUCHAETA 1	118.5	1_513	92.362	24	117.9	.957	8	
· 8	M. NITIDA	100.0	1.277	93_639	9	18.4	.149	16	
9	PULYDURA SP.	65.9	-842	94.481	13	6.4	.052	19	
10	RHYNCHOCOELA	65.5	-794	95.275	25	9.5	.077	18	
11	N. AMERICANA	61.5	.785	96.060	14	37.9	.308	11	
12	C. VIRGINICA	31-1	.397	96.457	17	2,004.2	16.273	2	
13	M. BALTHICA	29.6	.378	96.835	16	195.6	1.588	7	
14	R. HARRISII .	26.7	.341	97.176	14	269.8	2.191	4	
15	E. TRILUBA	23.7	.303	97.479	8	1.6	.013	23	
16	S. ELLIPTICUS	20.7	-264	97.743	6	4.7	. 038	20	
17	G. FRANCISCANA	20_0	.255	97.998	27	31.9	.259	12	
18	S. ARGELIEA	18.5	.236	98.234	25 .	26.5	.215	14	
19	CTENUSIOMATA	17.8	.227	98.461	24			36	
20	GAHMARUS SP.	17.0	.217	98.678	12	13.3	_1 08	17	
21	MEMERA (IPORIDAE	15.6	1 99	98.877	21			36	
22	C. SEPTEMSPINOSA	14.8	.1 89	99.(166	11	63.6	-516	10	
23	H. DEMISSUS	14.1	. 180	99.240	9	80.7	. 655	9	•
24	TRICLADIDA	11.9	. 152	99.398	5			36	
25	D. CESCURA	8.9	.114	99.512	3	<u> </u> 9	.007	25	
26	PARAPLEUSIES SP.	7.4	.094	99.606	3	. 9	.007	25	
27	GASTROPODA	. 5.2	.066	99.672	· 5	1.3	.011	24	
23	CAMPANULINIDAE	4_6	.056	99.728	6	- 6	.005	27	
29	S. BENEDICTI	3.7	.047	99.775	4	.4	.003	30 '	
29	HYDROBIA	3.7	.047	99.822	3			36	
31	H. GELATINOSA	2.2	.028	99.850	3	.6	.005	27	
31	C. ALMYRA	2.2	.028	99.878	1	2.1	.017	22	
31	OLIGUCHAETA	2.2	.028	99.906	3	.6	.005	27	
34	N. ARENARIA	1.5	_019	99.925	1	• 2	-00Z	32	
35	D. LEUCOLENA	. 7	.009	99.934	1			36	
35	L. PLUYULOSUS	.7	.009	99.943	1	- 4	.003	30	
35	C. LUNIFRONS	.7	.009	99.952	1	-1	<u>.</u> 001	33	
35	M. PROLIFERA	.7	-009	99.961	1	2.3	<u>_</u> 019	21	
35	A. VIDOVICI	.7	_009	99.970	1			30	
35	NUCIBRANCHIA	.7	-009	99,979	1	-1	.001	33	
35	TURBELLARIA	. 7	.009	99.988	1	_1	.001	33	
35	L. AMERICANUS	.7	. 009	99.997	1			36	

* # BELON REPORTABLE LEVEL

IA SALEM B 1978

-

TABLE 3.1.4-5 CONTINUED

STATION	1: T453								******
		MEAN				DRY			
RANK BY		DEHSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUMBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	P. LITORALIS	239.3	35.866	35.806	24	8.2	. 839	11	
2	S. VIRIDIS	161.5	24.206	60.072	25	235.8	21.511	2	
3	N. AMERICANA	56.3	8.438	68,510	12	18.1	1.051	8	
4	C. POLITA	51.7	7.779	76.209	24	87.9	8.019	Å	
5	4. BALIHICA	30.4	4.556	80.845	16	205.0	18.701	š	
6	S. ARGENTEA	19.3	2.893	83.738	26	91.9	8.384	Š	
7	G. FRANCISCANA	18.5	2.773	86.511	25	254.9	23.253	1	
• 8	RHYNCHUCDELA	14.8	2.218	84.729		6.5	. 593	12	
9	B. IMPROVISUS	12.6	1.888	90.617	3	52.7	4.608	7	
10	GAMMARUS SP.	11.1	1.064	92.201	8	17.1	1.560	• •	
11	POLYDURA SP.	δ.1	1.214	93.495	5	1.8	.164	14	
12	IJIVCCIV _A	5.2	.779	94.274	7	.7	.064	17	
13	TRICLADIGA	4.4	.659	94.953	2	.1	.009	22	
13	C. SEPIEYSPINOSA	4.4	.659	95.592	4	94.6	8.630	4	
15	M. PROLIFERA	3.7	.555	96.147	5	12.0	1.095	10	
15	OLIGOCHAETA 1	3.7	.555	96.702	5 .	4.1	.374	13	
17	N. GELATINOSA	3.0	.450	97.152	. 4	. 8	.073	16	
18	C. ALMYRA	2.2	.330	97.482	່1	.1	.009	22	
13	N. EDWARDSI	2.2	-330	97.812	3	.1	.009	22	
18	M. LATENALIS	2.2	.330	98.142	2	1.2	.109	15	
18	L. AMERICANUS	2.2	.330	98.472	3 .	.5	.046	18	
18	.C. LACUSTRE	5.2	-330	98.802	2			26	
23	MEMERANIPORIDAE	1.5	-225	¥9.027	2			26	
53	E. TRILOBA	1.5	+225	99,252	2	2	.018	21	
52	TURBELLARIA	1.5	°55°	99.477	2	. 4	.036	19	
26	CULICOIDES	.7	-105	99.582	1	•		26	
26	OLIGOCHAETA	7	.105	99.687	1			28	
26	S. BENEDICTI	•7	a105	99.792	1	.1	.009	22	
26	N_ NITIDA	.7	105	99.897	1	- 4	.036	19	
26	CTENOSTOMATA	.7	.105	100.002	i			26	

🗢 🛏 BELON REPORTABLE LEVEL

IA SALEH **B** 1978

3.1-142

- -

				CO	NTINUED				
STATION	1: 1551								
		MEAN				DRY			
RANK BY NUHBER	TAXÀ	DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
NUABER	TAXA .	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	P. LITURALIS	656.3	22.789	22.789	26	16.7	1.002	13	
2	C. POLITA	369.6	12.834	35.623	26	192.0	11.520	4	
3	POLYDORA SP.	317.0	11_007	46.630	14	31.9	1.914	11	
4	B. IMPROVISUS	257.8	8.952	55.582	10	295.9	17.755	1	
<i>'</i> S	OLIGUCHAETA 1	234.1	8.129	63.711	26	149.6	8.976	5	
6	S. VIRIDIS	. 220.7	7.663	71.374	26	295.6	· 17.737	2	
7	L. PLUMULOSUS -	187.4	6.507	77.881	21	39.6	2.376	10	
8	C. LACUSTRE	152.6	5.299	83.180	15	11.1	.666	16	
9	N. SUCCINEA	143.0	4.965	88.145	21	91.9	5.514	7	
10	RHYNCHOCOELA	85.2	2.958	· 91.103	19	12.7	.762	14	
11	N. AMERICANA	52.6	1.826	92.929	14	5.3	.318	18	
12	S. BENEDICII	29.6	1.028	93.957	12	1.3	.078	24	
13	GAMHARUS SP.	23.7	-823	94.780	9	21.0	1.260	12	
14	M. BALIBICA	6.52	.799	95.579	10	49.0	2.940	8	
15	HTURUBIA	22.2	.771	96.350	7	1.7 ·	.102	22 .	
16	OLIGUCHAETA	13.3	.462	96.812	6	1.9	_ 114	20	
17	C. SEPTE⇒SPINOSA	10.4	.361	97.173	9	144.4	8.664	6	
18	G. FRANCISCANA	9.6	.333	97.506	13	5.1	.306	19	
19	E. TRILOBA	8.9	.309	97.815	7	.6	.036	27	
19	¥RICLADIDA	8.9	-309	98.124	6	.5	.030	28	
21	N. EDWARDSI	7.4	.257	98.381	7	1.6	.096	23	
: 22	TURBELLARIA	6.7	.233	98.614	5.	1.1	•06 6	26	
22	C. ALMYRA	6.7	-233	98.847	5	9,2	.552	17	
24	CTENOSTUMATA	5.2	.181	99.028	7			37	
24	MENGRAVIPORIDAE	5.2	. 181	99.209	7			37	
26	CAMPANULINIDAE	4.4	.153	99.362	6	1.8	.108	21	
27	M. AREVARIA	3.7	.128	99.490	5	. 2	.012	29	
28	R. HARRISII	3.0	.104	99.594	3	40.0	2.400	9	
29	G. SULITARIA	2.2	.076	99.670	3	.1	.006	30.	
29	HYDROZOA	2.2	.076	99.746	3	•••		37	
31	H. GRAYI	1.5	.052	99.798	2			37	
31	C. VIRGINICA	1.5	.052	99.850	1	231.2	13.873	3	
31	GASTROPODA	1.5	052	99.902	2	20.00		37	
34	H. GELATINOSA	.7	.024	99.926	1	12.4	.744	15	
34	D. LEUCULENA	.7		99.950	1	1.2	.072	25	
34	S. ARGENTEA	.7	.024	99.974	1	•••		37	
34	PARAPLEUSTES SP.	.7	.024	99.998	1			37	
74	FARAPECUSICS SPE	• '		,,,,,,,	•			51	

TABLE 3.1.4-5 CONTINUED

* * BELOH REPORTABLE LEVEL

IA SALEM B 1978

1

ω μ 143

					3.1.4-5 TINUED				
STATION	: T552			****				****	· 중 또 것 및 사가 수 사 한 적 한 전 한 것 수 있 는 한 한 한
RANK BY	· · · ·	MEAN DENSITY	% FAUNA	CUMED %	NUMBER OF	DRY WEIGHT	X BY	RANK BY	
NUMBER	TAXA .	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	P. LITORALIS	1,231.9	49.142	49.142	25	27.1	.875	11	
2	S. VIRIDIS	355_6	14.185	65.327	25	298.3	9.635	4	
3	C. POLIYA	254-1	10.136	75.403	24	311.0	10.045	3	
4	POLYDURA SP.	155.6	6.207	79.070	· 3	12.0	.388	14	
5	M. HALTHICA	117_8	4.699	84.569	22	1,509.4	48.755	1	
6	OLIGOCHAETA 1	45.6	3.614	88.183	27	126.0	4.070	Ś	
7	RHYNCHOCOELA	55.6	2.218	90.401	23	47.9	1.547	8	
8	N. AMERICANA	36.3	1.448	91.849	13	23.5	.759	13	
9	L. AMERICANUS	29.6	1.181	93.030	10	1.4	. U45	21	
10	N. SUCCINEA	20.7	.826	93.856	.9	12.0	.388	14	
10	E, TRILOBA	20.7	.826	94.682	7	1.2	.039	23	
12	G. FRANCISCANA	17.8	.710	95.392	24	40.1	1 295	- 9	
13	S. BENEDICTI	17.0	678	96.070	- 9	1.6	. 052	20	
14	S. ARGENIEA	15.6	.622	96,692	21	99.9	5.227	6	
15	8. IMPROVISUS	13.3	.531	97.223		88.1	2.846	ž	
16	TRICLADIDA	11.9	.475	97.698	5	.3	.010	27	
17	N. PROLIFERA	7.4	.295	97,993	10	423.5	13.673	2	
18	CTENGSTOMATA	5.9	235	98.228	8	46343	131013	31	
10	MEMBRAWIPORIDAE	5.9	235	98.463	8			31	
20	C. LACUSTRE	5.2	.207	98.670	3	. 4	.013	25	
20	M. EDWARDSI	5.2	.207	98.877	ភ្	1.3	042	22	
22	H. GELATINOSA	4.4	.176	99.053	~	2.0	-065	17	
23	C. ALAYRA	3.0	120	99.173	2	.4	.013	25	
23	M. NITIDA	3.0	.120	99 293	2	.3	.010	27	
23	GASTROPODA	3.0	.120	99.415	2	1.9	.061	18	
26	A. VIDOUICI	2.2	.088	99.501	3	.6	.019	24	
26	R. HARRISII	2.2	_U88	99.589	. 3	35.3	1.140	10	
26	M. LATERALIS	2.2	.088	99.677	3	2.1	.068	16	
29	GAMMARUS SP.	1.5	.060	99.737	2				
29	CAMPANULARIDAE	1.5	_060 _060	99.797	2	1.8	•Ü58	19	
29	CAMPANULINIDAE					•1	.003	30	
29		1.5	_060	99.857	2	2 / /	0.57	31	
29	C. SEPTEMSPINOSA	· 1.5	0a0_	99.917	ć	26.4	.853	12	
	L. PLUMULOSUS	.7	.028	99.945	1	.2	-006	29	
33	E. HETEROPODA	.7	.028	99.973	1			31	
33	HIRUDINEA	.7	-028	100.001	1			31	

BELOW REPORTABLE LEVEL *

.

IA SALEH B 1978

					TINUED				
STATION	: 1751							*******	****
		MEAN				DRY			
RANK BY	•	DENSITY	X FAUNA	CUMED %	NUMBER OF	WEIGHT	% BY	RANK BY	
NUMBER	TAXA .	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	S. VIRIDIS	465.9	42.614	42.614	26	678.3	51.629	1	
2	TURBELLAKIA	258.5	23.644	66.258	10	4.8	.365	12	
3	GAMMARUS SP.	81.5	7.454	73.712	7	80.4	6.576	3	
4	C. ALNYRA	ć1.5	5.625	79.337	18	57.0	4.339	4	
5	C. POLITA	52.6	4.811	84.148	17	46.5	3.539	5	
0	N. AMERILANA	28.9	2.643	86.791	12	6.5	.495	11	
7	RHYNCHOCOELA .	25.9	2.369	89.160	13	7.9	. 601	10	
В	POLYDORA SP.	23.0	2.104	91_264	4	1.2	_U91	10	
9	G. FRANCISCANA	14.8	1.354	92.618	20	39.6	3.014	6	
10	P. LITURALIS	13.3	1.217	93.835	11	. 4	.030	20	
10	C. LACUSTRE	13.3	1.217	95.052	5	.5	.038	19	
12	S. ARGENTEA	10.4	.951	96.003	14	25.0	1.903	8	
13	4. ED.ANDSI	7.4	.677	96.680	7	1.1	.084	17	
1'4	E. TRILOBA	6.7	.613	97.293	3	- 4	.030	20	
14	TRICLADIDA	6.7	.613	97.906	1			26	
16	PARAHAUSTORIUS SP.	5.2	.476	98.382	4	8.0	.609	9	
10	C. SEPTEMSPINOSA	5.2	-476	98_858	- 4	307.0	23.367	2	
18	N. SUCCINEA	2.2	.201	99.059	2	3.2	-244	13	
18	OLIGOCHAETA 1	2.2	-201	99.26Ū	3	2.1	.160	15	
20	H. GELATINOSA	1.5	. 137	99.397	2	•8	.061	18	
20	R. HARRISII	1.5	.137	99_534	1	2.7	-206	14	
50	CAMPANULINIDAE	1.5	.137	99.671	2	•1	.008	22	
20	L. AMERICANUS	1.5	.137	99.808	1			26	•
24	N_ BALTAICA	.7	-064	99.872	1	_1	.008	22	
24	M. PROLIFERA	.7	-064	99.936	1	34.1	2.596	7	
24	A. VIDUVICI	.7	_ 064	100.000	1	.1	.008	22	

TABLE 3.1.4-5

* = BELOH REPORTABLE LEVEL

IA SALEM B 1978

1

· 🛋

TABLE 3.1.4-5 CONTINUED

		MEAN				DKY			
ANK BY		DENSITY	X FAUNA	CUMED %	NUMBER OF	WEIGHT	X BY	RANK BY	
UNBER	TAXA	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT	
1	POLYDORA SP.	1,637.0	82.199	82.199	26	78.6	13.966	٤	
2	C. POLITA	136.5	6.955	89.154	25	174.4	30.988	1	
3	GAMMARUS SP.	83.0	4.168	93.322	11	67.0	11,905	4	
4	N. AMERICANA	28.9	1.451	94.773	9	6.9	1.226	9	
5	S. VIRIDIS	27.4	1.376	96.149	8	21.9	3.891	6	
6	S. ARGENTEA	13.3	.668	96.817	18	21.7	3.856	- 7	
7	E. TRILOBA	9.6	.482	97.299.	7	1.0	.178	15	
â	R. HARFISII	8.9	.447	97.746	- 8	144.8	25.729	2	
8	RHYNCHOCGELA	8.9	.447	98.193	7	4 . 4	.782	11	
10	G. FRANCISCANA	8.1	.407	98.600	11	24.3	4.318	5 .	
11	N_ SUCCINEA	7.4	.372	98.972	7	1.2	.213	14	
12	C. LACUSTRE	5.9	.296	99.268	6	1.6	.284	13	
13	C. SEPTEMSPINOSA	3.7	.180	99.454	4	7.6	1.350	8	
14	C. ALMYRA	3.0	.151	99.605	2	2.0	.355	12	· ·
15	M. PROLIFERA	1.5	.075	99_680	2	5.2	.924	10	
15	M. NITIDA	1,.5	075	99.755	2	.1	.018	16	
17	OLIGOCHAETA 1	.7	. . 035	99.790	1			23	
17	G. SOLITARIA	.7	-035	99.825	• 1			23	· ·
17	OLIGOCHAETA	.7	.035	99.860	1 .			23	
17	P. LITURALIS	.7	.035	99.895	1			23	
17	3. IMPROVÍSUS	.7	.035	99.930	1 '			23 23	
17	M. EDWARDSI	.7	.035	99.965	1			23	
17	L. AHERICANUS	.7.	.035	100.000	1	.1	.018	16	

* = BELON REPORTABLE LEVEL

IA SALEM B 1978

TABLE 3.1.4-5 CONTINUED

STATION	,	MEAN				DRY			
RAGE BY		DENSITY	% FAUNA	CUMED %	NUMBER OF	WEIGHT	ж Н Ү	RANK BY	
UNBER	TAXA.	(NO/SQ M)	BY NUMBER	BY NUMBER	OCCURRENCES		WEIGHT	WEIGHT	
1	P. LITORALIS	823.7	29.110	29.110	26	15.4	1.295	11	
S	N. AMERICANA	354.1	12.514	41.624	13	42.9	3.607	8	
3	C. PÚLITA	352.6	12.461	54.085	27	213.7	17.967	2	•
4	PULYDUPA SP.	348.9	12.330	66.415	12	24.0	2.018	9	
5	OLIGOCHAEIA 1	226.7	8.012	74.427	27	87.2	7.331	5	
ó	S. VIRIOIS	21/.8	7.697	82,124	27	319.7	26.879	1	
7	N. SUCCINEA	85.2	3.011	85.135	22	107.1	9.005	4	
8	C. LACUSTRE	75.6	2.672	87.897	11	4.1	.395	14	
9	RHINCHOCOELA	66.7	2.357	90.164	22	23.9	2.009	10	
10	L. PLUHULÓSUS	45.2	1.597	91.761	21	8.4	706	13	
11	B. IMPROVISUS	39.3	1.589	93.150	8	82.8	6.961	6	
12	M. BALTHICA	32.5	1.152	94.302	21	169.2	14.226	3	
13	C. SEPTEMSPINOSA	25.9	.915	95,217	8	57.2	4.809	7	
14	E. THILUBA	22.22	.785	96.002	13	1.9	. 160	18	
15	GANHARUS SP.	17.8	-659	96.631	6	9.3'	.782	12	
10	TRICLADIDA	13.3	.470	97.101	8	1.0	.084	22	
17	G. FRANCISCANA	Ŷ.6	. 539	97.440	13	4.0	.336	16	
17	S. BENEDICTI	9.6	.339	97.779	7	1.0	.084	22	
19	M. ED.ARDSI	8.9	.315	98.094	7.	1.6	.135	19	
20	OLIGOCHAETA	5.9	.209	98.303	3	.4	.034	30	
20	L. AMERICANUS	5.9	.209	98.512	5	.7	.059	26	
22	CTENUSTOVATA	5.2	. 184	98.696	7	- · · .		34	
23	M_ NITIDA	4.4	.155	98.851	1	.4	.034	30	
23	R. HARRISII	4.4	.155	99.000	4	4.3	.362	15	
23	TURBELLARIA #1	4.4	.155	99.161	2	.1	.008	33	
26	G. SULITARIA	3.7	.131	99.292	3	.5	.042	28	
20	TURBELLARIA	3.7	.131	99.423	· 2	.9	.076	24	
28	MEMBRAVIPORIDAE	3.0	.106	99.529	4	• *		34	
28	S. ARGENTEA	3.0	.106	99.635	· .	3.0	.252	17	
30	HIDROBIA	2.2	.078	99.713	3	.5	.042	28	
31	4. LATERALIS	1.5	.053	99.766	1	.3	.025	32	
31	C. ALMYRA	1.5	.053	99.819	ż	1.4	.118	20	
31	H. ARENARIA	1.5	.053	99.872	2	1.2	.101	21	
31	CAMPANULINIDAE	1.5	.053	99,925	2	.7	.059	26	
35	HYDROZOA	.7	_025	99.950	1	• •		34	
35	CERATOPUGONIDAE	.7	.025	99.975	1		'	34	
35	H. GELATINOSA	.7	.025	100.000	1			34	

* # BELOW REPORTABLE LEVEL

IA SALEM B 1978.

TABLE 3.1.4-5 CONTINUED

3141100	: 1852	MEAN				DRY		
RANK BY		DENSITY	% FAUNA	CUMED 4	NUMBER OF	WEIGHT	X BY	RANK BY
NUNBER	TAXA	(NO/SQ 4)	BY NUMBER	BY NUMBER	OCCURRENCES	(MG/SQ M)	WEIGHT	WEIGHT
1	P. LITURALIS	1,107.4	51.471	51.471	27	28.7	1.717	8
2	S. VIRIDIS	657.8	30-574	82.045	27.	631.0	37.760	1
3	C. POLITA	131.1	6.093	88.138	23	191.6	11.466	3
4	RHYNCHOLOELA	60.0	2.789	90.927	22	35.6	2.130	7
5	OLIGOCHAETA 1	34.1	1.585	92.512	. 10	24.0	1.436	10
ó '	N. AMERICANA	24.6	1.370	93.888	13	17.9	1.071	11
7	M. BALIHICA	27.4	1.274	95.162	18	406.4	24.319	2
ó	G. FRANCISCANA	19.3	. 647	96.059	26	28.5	1.705	9
9	S. ARGENIEA	17.8	.827	96.886	24	73.6	4.404	5
10	C. SEPILMSPINOSA	8.9	-414	97.300	5	164.2	4.826	4
11	M. PROLIFERA	7.4	.344	97.044	10	38.4	2.298	6
11	E. TRILOBA	7.4	.344	97.988	4	1.6	.096	15
13 -	M. EDWANDSI	6.7	.311	98.299	6	.6	.036	19
14	B. IMPROVISUS	5.9	.274	Ý8.573	5	16.1	.963	12
15	C_ ALMYRA	5.2	.242	98.815	3	3.6	.215	14
10	L. AMERICANUS	4.4	.205	99.ü2u	5	1.0	.060	16
17	MENGRANIPURIDAE	3.7	.172	99.192	5			30
17	TURBELLAFIA	3./	.172	99.364	2	.7	.042	· 18
19	M. LATERALIS	3.0	. 139.	99.503	3	4.7	.281	13
20	N. SUCCINEA	2.2	.102	99.605	3	.3	.018	22
21	M. NITIOA	1.5	.070	99.675	2	- 4	.024	20
22	TRICLADIDA	.7	.033	99.708	1	1	.006	25
22	G. SOLITARIA	.7	.033	99.741	1			30
22	A. VIDOVICI	.7	•03 <i>3</i>	99.774	1	.3	.018	22
22	C. LACUSIRE	.7	.033	99.807	1	-1	.006	25
22	S. BENEDICTI	.7	.033	99_840	1	•2	.012	24
22	CAMPANULARIDAE	.7	.033	99.873	1	.1	-006	25
22	H. GELATINOSA	.7	.033	99.906	1	.1	.006	25
22	GASTROPUDA	.7	.033	99.939	1	.8	. 048	17
22	OLIGOCHAETA	.7	-033	99.972	1	.4	.024	20
22	ATDROBIA	.7	.033	100.005	1	. 1	_ U06	25

* # BELOW REPORTABLE LEVEL

.

IA SALEM B 1978

		MEAN	•		DRY		
ANK BY	SAMPLING	DENSITY	% FAUNA	CUMED %	WEIGHI	ХBY	RANK B
UMBER	LOCATION	(NO/SQ M)	BY NUMBER	BY NUMBER	(MG/SQ M)	WEIGHT	WEIGHT
1	T482	7,831.1	21.245	21.245	12,315.9	39.223	1
2	1451	3,109.6	8.599	29.844	1,727.5	5.502	4
3	1352	3,157-0	8.565	38-409	752.6	2.397	11
4	T 5 S 1	2,830.0	7.813	46.222	1,060-4	5.307	7
5	T851	2,829.6	7-676	53_898	1,189.3	3.788	9
6	T 2 S 2	2,815.6	7-638	61.536	1,694.9	5.398	5
7	15\$2	2,506.7	6-800	68.336	3,095.9	9.860	5
8	T2S1	2,460.0	6-674	75.010	613.6	1_954	13
9	1852	2,151.9	5.838	80.848	1,671.2	5.322	6
10	T752	1,991.9	5-404	86.252	562.7	1.792	14
11	T3S3	1,795.6	4.871	91.123	674.4	2.148	12
12	T3S1	1,511.1	4-099	95.222	3,025.4	9.635	3
13	1751	1,093.3	2.966	98,188	1,313.6	4.183	8
14	T4S3	607.4	1_811	99.999	1.096.3	3.491	10

TABLE 3.1.4-6 ANNUAL RANK BY LOCATION OF BENTHIC TAXA NEAR ARTIFICIAL ISLAND IN THE DELAWARE FIVER, 1978.

IA SALEM B 1978

COMPA	RISON OF	THE SHANNO	ON-WEAVER	DIVERSİTY	
INDEX (D),	SIMPLE D	IVERSITY ((s), AND	TOTAL SPECIMENS	(N)- 1978

		March	April	May	June	July	August	September	October	November	Mean
T2 S1	s	13	10	12	12	14	11	12	13	16	13
	N	1,894	2,587	1,961	4,067	3,988	414	1,120	2,120	3,994	2,461
	D	1.102	0.913	1,301	1.024	1.003	1.957	1.625	1,141	1.050	1.235
T2 52		12 1,542 0.932	6 9,087 0.632	9 2,040 1.186	11 1,600 1.337	6 447 1.399	12 521 1.856	11 953 1.772	10 421 1.748	12 8,735 0.694	10 2,816 1.284
T 351	Ň	10 994 1.272	15 887 1.601	11 6,154 0.404	11 2,260 1.207	9 594 1.330	13 480 1.871	6 481 0,677	14 773 1.423	16 981 1.365	12 1,512 1.239
T3 52		7 573 1.083	7 7,174 0.472	9 12,753 0.289	9 4,160 0.741	11 846 1.441	12 688 1.428	6 267 1.245	10 736 1.299	10 1,220 1.277	9 3,157 1.031
T 3 S3	s	7	.7	11	8	13	9	15	12	9	10
	N	167	841	2,321	1,086	5,561	1,794	2,475	766	1,154	1,796
	D	1.735	0.652	1.244	1.646	0.433	0.596	1.528	1.876	0.939	1,183
T4 51	N	19 4,322 0.927	17 3,534 1.067	13 3,581 1.335	14 2,080 1.269	15 2,820 0.696	14 2,401 0.990	14 3,075 0.974	18 4,147 0.940	18 2,572 1-237	16 3,170 1.048
T4 S2	S	22	17	18	19	28	27	17	23	28	22
	N	4,036	4,005	4,374	13,693	14,094	11,824	1,955	5,152	11,351	7,832
	D	1.951	1.515	1.741	0.831	0.867	1.475	1.752	1.889	1.695	1.524
T {S3	s	12	10	19	7	9	17	14	14	16	13
	N	774	214	1,469	154	267	700	648	861	929	668
	D	1.745	1.915	1.608	1.669	1.768	1.968	1.991	1.786	1.528	1.775
T 5 S1	s	20	17	15	15	13	22	23	24	20	19
	N	1,541	1,421	2,427	3,508	4,333	3,320	4,515	3,695	1,168	2,881
	D	2.383	1.915	1.496	1.772	1.190	2.239	2.395	2,204	2.343	1.993
T 5 52	B	22	16	19	11	13	17	12	19	23	17
	N	4,936	1,552	4,374	213	2,568	2,940	266	2,923	2,797	2,508
	D	1.626	1.616	1.349	2,152	1.431	1.719	2.101	1.559	1.946	1.722
T 7 S1	8	8	12	8	14	10	12	19	6	8	11
	N	2,160	1,141	1,121	1,748	1,313	362	747	835	419	1,094
	D	0.655	0.897	0.839	1,521	0.843	1.845	2.385	1.373	1.674	1.337
T 7 52	s	6	5	5	8	11	8	12	14	13	9
	N	1,281	1,713	247	1,015	1,901	6,320	3,107	761	1,587	1,992
	D	0.404	0.501	0.905	1.306	0.939	0.112	0.786	1.959	0.804	0.857
T 8 ^S 1	s N D	15 1,715 1.980	15 1,515 1.767	19 2,283 2.023	14 4,681 1.206	17 4,847 1.538	20 1,794 2,215	22 4,820 1.491	2.003	18 1,174 2,229	18 2,831 1.846
. T8 S2	s	8	10	16	14	12	15	14	16	13	13
	N	1,700	2,479	3,295	2,327	2,820	2,707	1,615	1,647	780	2,152
	D	0.704	1.387	1.120	1,333	1.051	1.331	1.362	1.636	1.745	1.299
Kean	ธ พ. D	13 1,974 1.321	12 2,725 1.204	13 3,457 - 1,203	12 3,042 1.364	13 3,314 1.138	15 2,590 1.543	14 1,860 1.579	15 1,963 1.637	16 2,776 1.466	

IA SALEN B 1978

SEASON FEMP. (C) RANGE MEAN SAL. (PPT) RANGE HEAN		01/01 - 02/29			2.9 - 12.6	0.0 - 10.0			
TAXONOMIC GROUP	DENSITY (NO/SQ M) MEAN ME	BIOMAS (MG/SQ AN X MEAN		DENSITY (NO/SQ M) MEAN MEAN X		BIOMASS (MG/SQ M) MEAN MEAN X			
MICROCIONA				1	0.03	12	0.48		
CNIDARIA				29	1.03	121	4-91		
RHYNCHÚCOELA				21	0.75	17	D.68		
POLYCHAETA				636	22.73	556	22.56		
DLIGOCHAEIA				7.54	26.23	51	2.06		
PELECYPODA				. 36	1.28	287	11.64		
BALANUS	. •			341	12.18	801	32.50		
EOMYSIS				97	3.46	28	1.13		
EUCON				1	0.03	*	*		
ISOPODA				98	3.50	· 170	6.89		
AMPHIPODA .				168	6.00	346	14.04		
DECAPODA			•	9	0.32	63	2.55		
THER				627	22.40	12	0_48		
TOTAL				2,798		2,464		•	

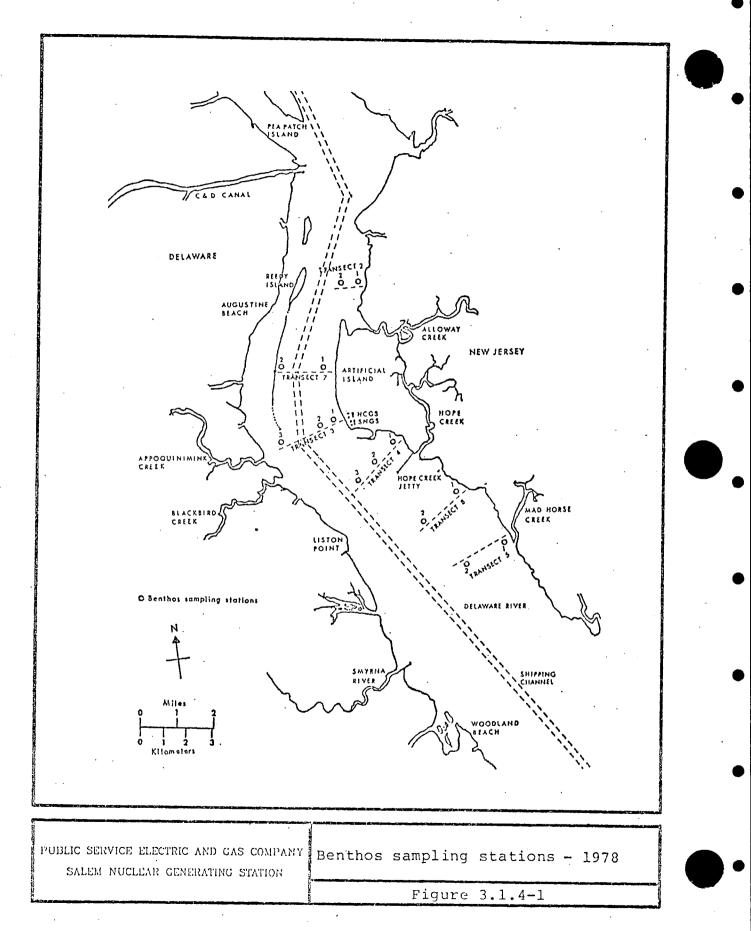
TABLE 3.1.4-8 Seasonal mean density and biomass of benthos taken near artificial island in the delaware river, 1978.

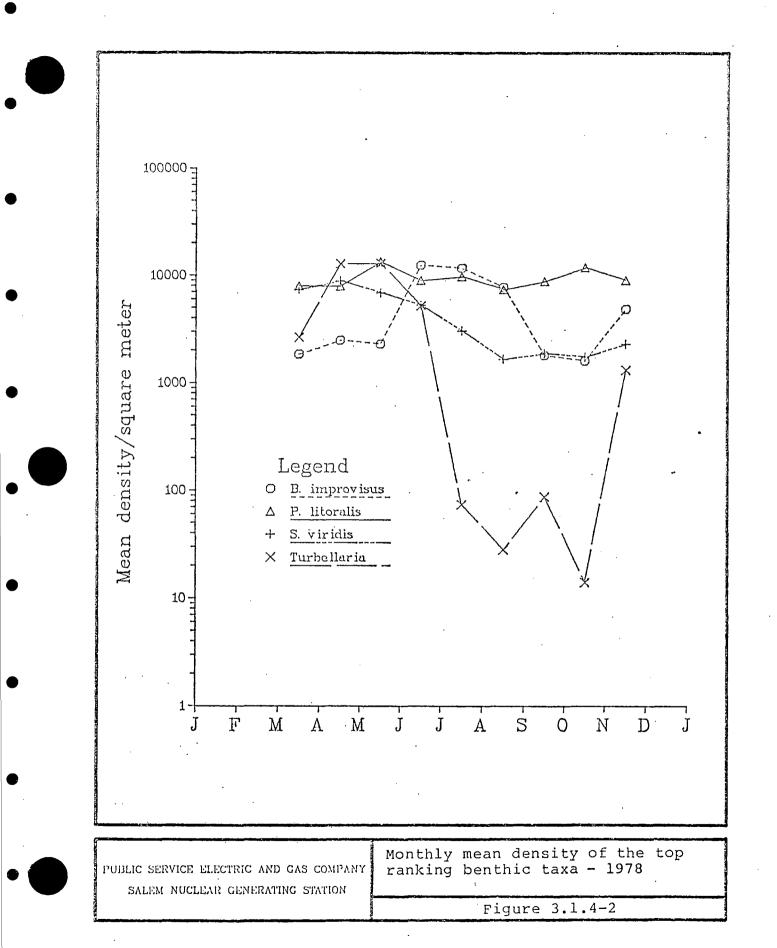
1

* - BELON REPORTABLE LEVEL

.

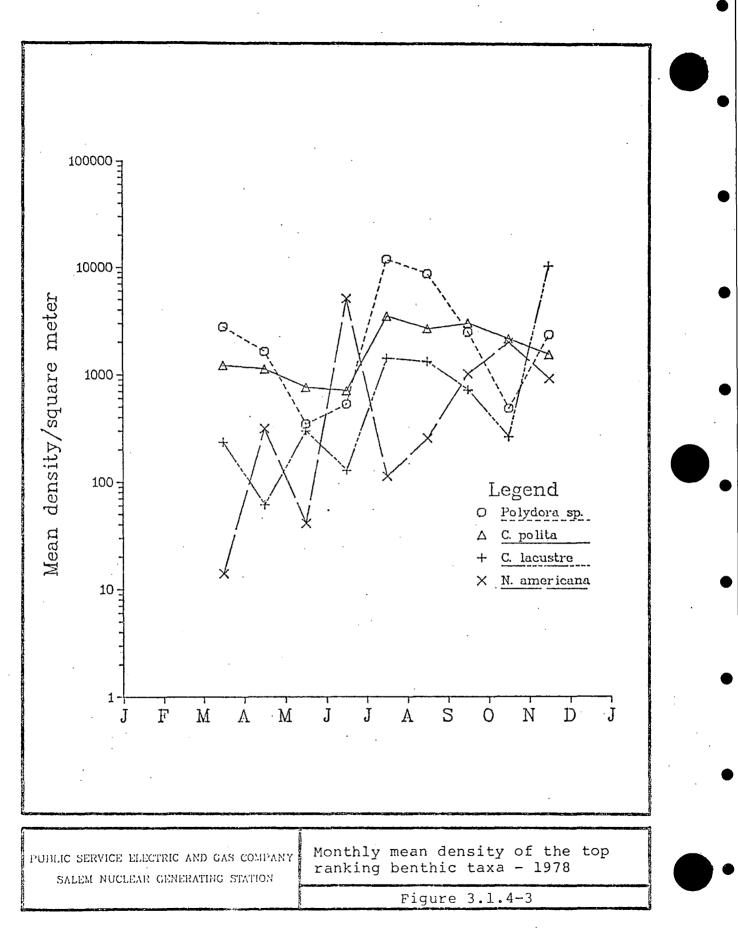
IA SALEM B 1978

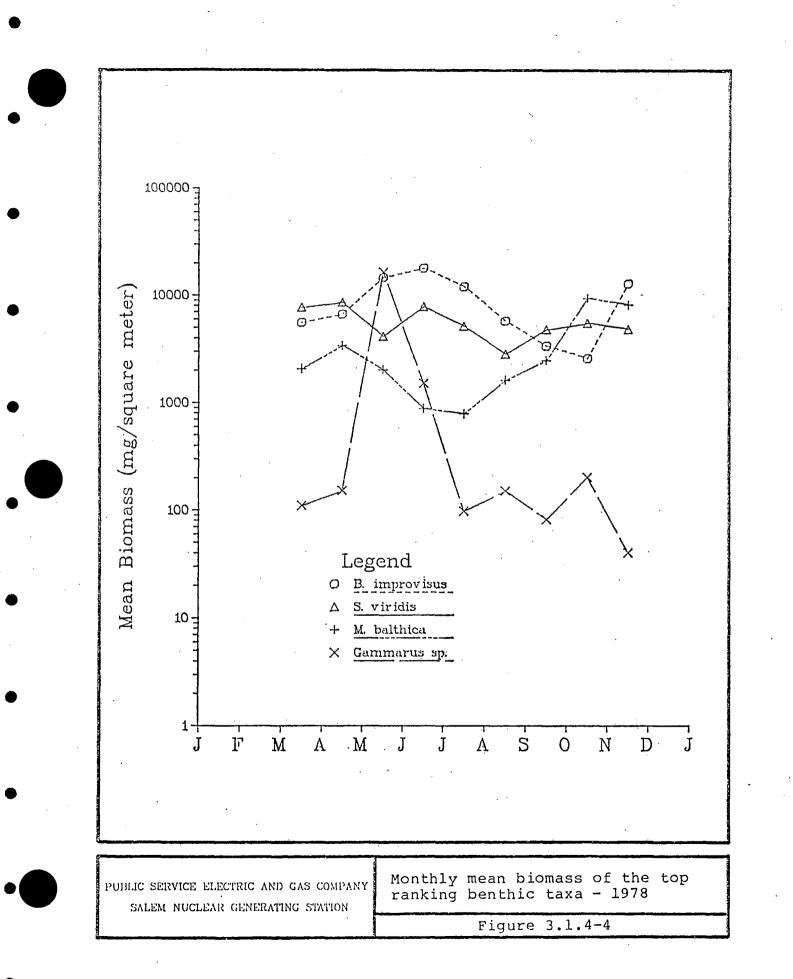

TABLE 2.1.4-8 CONTINUED

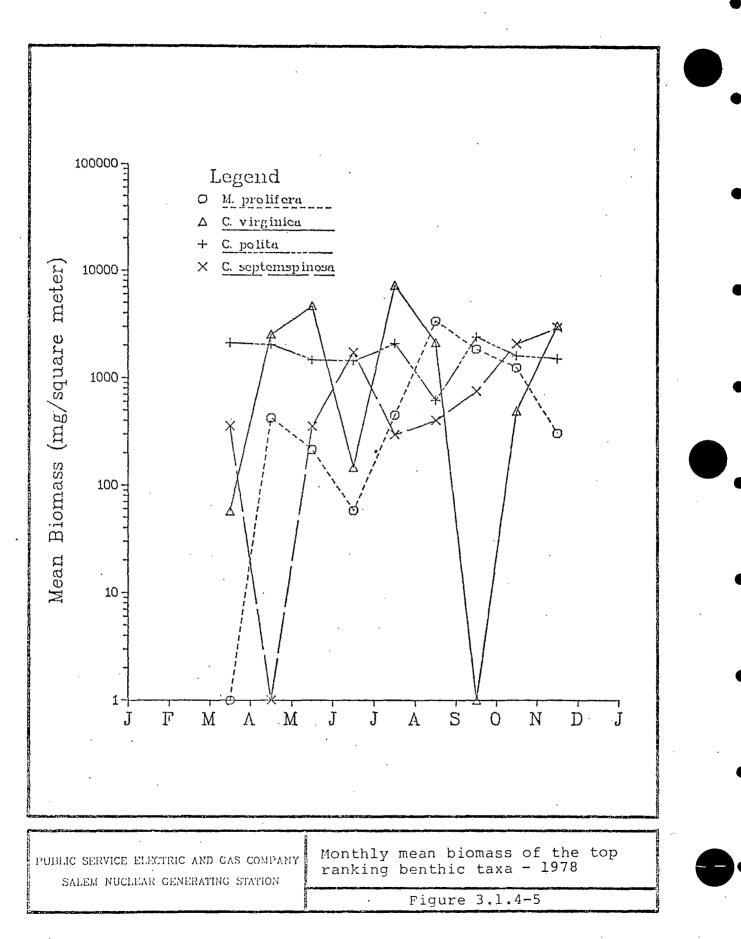

ъ.

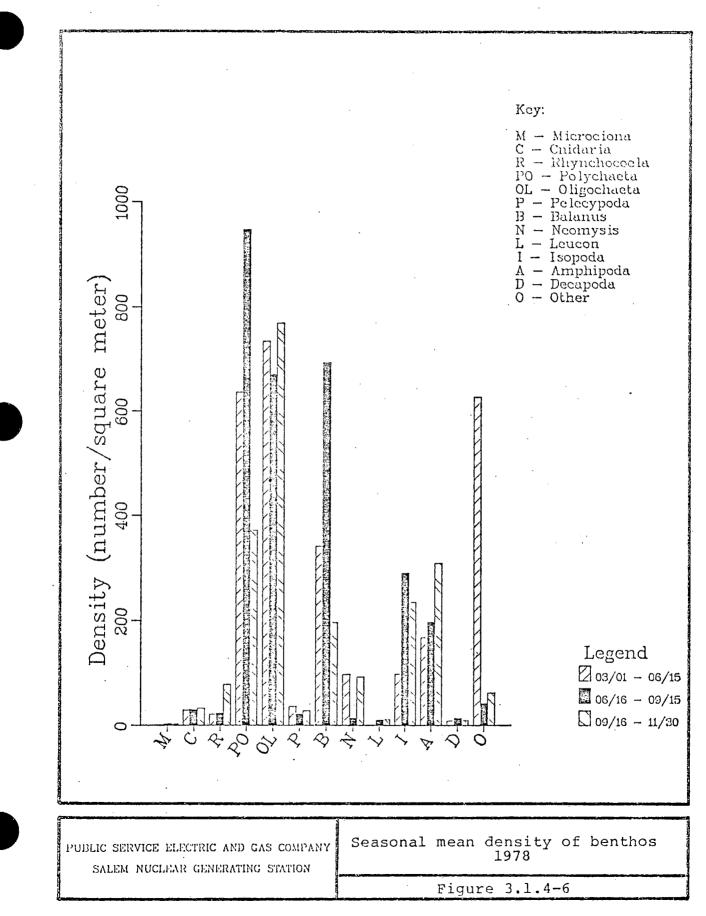
EASON EMP. (C) RANGE MEAN Al. (PPT) RANGF MEAN		06/16 - 23.0 - 26.2 2.0 - 6.7	29.0			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
TAXONOMIC GROUP	DENSITY (NO/SQ M) MEAN MEAN X		BIOMASS (MG/SQ M) MEAN MFAN X		DENSITY (NO/SQ M) MEAN MEAN X		BIOMASS (MG/SQ M) MEAN MEAN X			
ICROCIONA	3.	0.10	136	6.87	3	0.13	80	3.76		
NIDARIA	29	0.98	7?	3-63	33	1.50	68	3.20		
HYNCHOCOELA	23	0.77	10	0.50	78	3.54	20	0.94		
OLYCHAETA	947	32.09	416	21.02	371	16.87	472	22.22		
LIGUCHAETA	. 670	22.70	51	2.57	769	34.98	59	2.77		
ELECYPODA	21	0.71	421	21.27	28	1.27	570	26.83		
ALANUS	693	23.48	635	32.08	. 196	8.91	447	21.04		
EONYSIS	13	0.44	3	0.15	92	4.18	26	1.22		
EUCON	10	0.33	*	*	11	0.50	1	0.04		
SOPODA	290	9.82	119	6.01	235	10.69	161	7.58		
HPHIPODA	197	6.67	28	1_41	309	14.05	34	1.60		
ECAPODA	14	0.47	85	4.29	10	0.45	184	8:66		
THER	41	1.38	. 3	0.15	63	2.86	2	0.09		
TOTAL	2,951		1,979		2,198		2,124			

* 🛚 BELOW REPORTABLE LEVEL

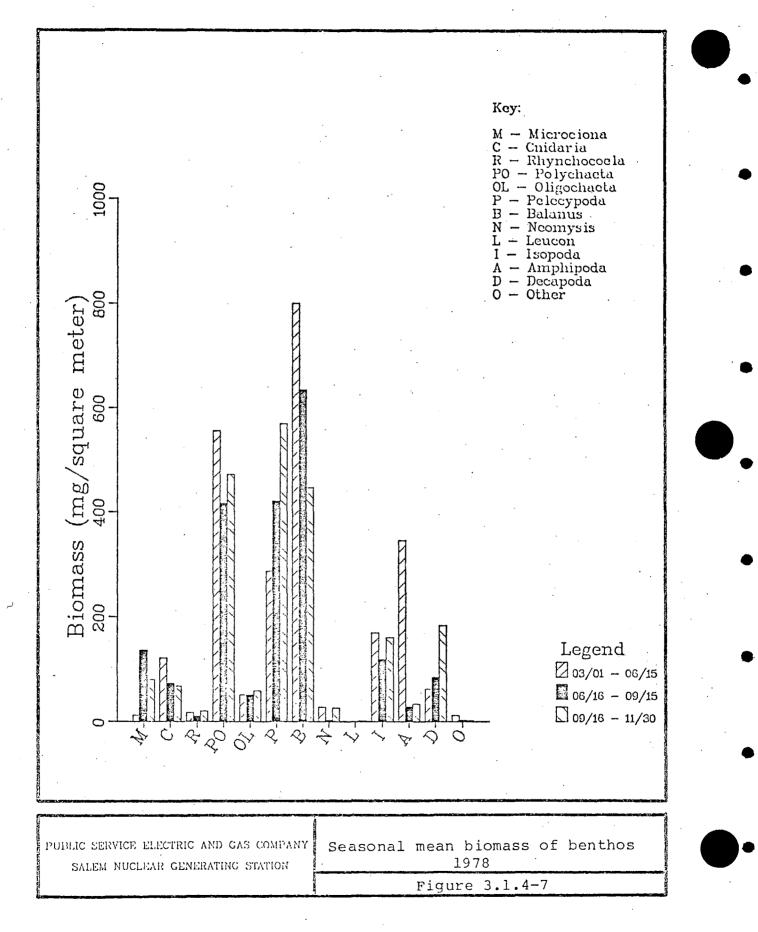

IA SALEM B 1978






3.1-154

ė



3.1-158

3.1.5 Blue Crab (ETS Section 3.1.2.1.1f)

The blue crab, <u>Callinectes</u> <u>sapidus</u>, is the most commercially valued aquatic organism in the Delaware estuary; it also supports an active sport fishery. This report discusses economics, abundance, distribution, and life stage of blue crab in the 1978 commercial pot fishery and in trawl and seine samples. The pot fishery generally captures crab larger than 76 mm (carapace width), while trawls and seines, which sample all sizes, are more effective in taking small crab.

3.1.5.1 Summary

The blue crab was abundant and well distributed throughout the study area in all but winter months. Crab utilized the area for growth, mating, and nursery; spawning occurs farther south near the mouth of Delaware Bay.

Data on commercial aspects of the fishery were obtained by census and interview of selected crabbers who operate in the study area. Biological data were obtained from commercial crab pot catches, and in trawl and seine samples.

In 1978, there were 36 licensed commercial crabbers (18 each in New Jersey and Delaware) who were known to operate in this area.

The 1978 hard crab catch in the study area for Delaware and New Jersey combined was conservatively estimated at 12,000 bushels; 1,500,000 individual crab, or 219,360 kg of whole crab. The New Jersey portion of this catch was 99 percent of the state's entire reported landings of hard blue crab. The Delaware portion comprised 72 percent of that state's landings.

The 1978 catch of peeler crab in the study area was estimated at 110,000 individuals. The New Jersey estimated portion comprised more than 100 percent of that state's entire reported landings, which indicates an underestimate by the state; the Delaware portion accounted for 66 percent of that state's entire catch.

Economically, the dockside value of the 12,000 bushels of hard crab was \$192,000 (\$16/bushel), and of the 110,000 individual peeler crab was \$50,600 (\$0.46/individual).

Mature male crab comprised 52.5 percent of the commercial catch in the study area.

Over 94 percent of the crab taken in seine and trawl samples occurred from May through November. In daylight trawl samples, crab were more abundant in the southern portion of the study area. Typically, more crab were taken at night than during daylight.

Peaks in trawl and seine catch were in June and October. Crab taken in June were generally older than one year; the October crab catch was mostly individuals spawned in 1978. The decrease in catch of older, marketable adults after June reflected their removal from the population by commercial crabbers.

The mean size-class distribution of crab in trawl and seine samples reflected growth from January through August; its subsequent decrease reflected recruitment into the sample of the 1978 year-class.

Numerous observations of crab matings were noted throughout the southern study area, while sporadic sightings of eggbearing female crab were only reported from the extreme southern reaches.

3.1.5.2 Materials and Methods

COMMERCIAL CATCH

All samples required by this ETS section were taken. Commercial catch data were obtained by census, interview, and accompanying crabbers who usually operate in the study area from May through October. The commercial season legally extends from March through November. A sub-sample of crabbers known to operate in the study area were censused by means of monthly questionnaires which ask for daily catch statistics. For a detailed description of catch landing estimation and catch sub-sampling and sample processing procedures see Volume 2 of the 1977 Annual Environmental Operating Report. Briefly, licensed crabbers fish baited pots and sort their catch into two groups: hard crab and peeler crab. The hard crabs are further sorted into categories of graded value (based on size, sex, condition, and market demands).

The categories may vary, but are generally No. 1 (large mature male), No. 2 (small mature male), and No. 3 (mature female). Hard crab which are damaged or less than 5 inches (127 mm) in width, and peeler crab of less than 3 inches (76 mm) must, by law, be released.

TRAWL AND SEINE SAMPLE

All samples required by this ETS were taken. Samples were taken in all months except January and February when severe icing conditions precluded operations. For details of trawl and seine sampling procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

Briefly, otter trawls were hauled on the bottom in river and creek trawl zones and seines were hauled at river and creek seine stations on a semimonthly schedule (Figs. 3.1.5-1, 3.1.5-2, 3.1.5-3). The trawl and seine crab sample was processed in the same manner as the commercial catch.

DATA REDUCTION

Data are discussed on the basis of the following statistics: bu/pd = number of bushels (bu) of crab captured in a pot (p) during one day (d); n/pd = number of individual crab (n) captured in a crab pot (p) fished for one day (d); n/T = number of crab (n) taken per trawl haul (T); and n/Coll. = number of crab (n) per seine collection (Coll.).

3.1.5.3 Results

Following a second consecutive winter (1977-1978) of unusually low temperature, crab catch levels remained severely reduced in the study area as compared to catches prior to 1977. This continued reduction was reflected in the commercial and trawl and seine catch.

COMMERCIAL CATCH

Of the 36 licensed commercial crabbers who operated in the study area for most of the 1978 season, 18 were based in New Jersey and docked primarily in upper Mad Horse Creek, at Hancocks Bridge on Alloway Creek, and at the mouth of Stow Creek. The remaining 18 were based in Delaware and docked primarily at Flemings Landing on the Smyrna River, Collins Beach on the Delaware River, and at Delaware City. Most were family operations, and 65 persons ranging in age from their midteens to late 50's were involved in crabbing. Data on the commercial crab pot catch was collected from June through November.

Hard Crab

Data supplied by nine crabbers (five based in New Jersey, four in Delaware) for 1978 indicate that their combined total catch of hard crab was over 4,304 bushels (Table 3.1.5-1). Of these, 3,221 bushels were taken in New Jersey. Twentyseven crabbers who did not participate in the program are estimated to have taken over 7,700 bushels. The total catch of hard crab from the study area in 1978 probably exceeded 12,000 bushels. The annual estimated hard crab catch in previous years ranged from 7,000 bushels in 1977 to 45,000 bushels in 1975.

The total take of hard crab from the study area in 1978 was approximately 1,500,000 individuals (based on mean number of 125 crab per bushel in 1971 and 1976). By weight, the catch in 12,000 bushels was about 219,360 kg (based on mean weight of 18.3 kg per bushel in 1978). These estimates are conservative. Catch by small scale operations, the frequent reporting of smaller than realized catch, raiding of pots, and illegal crabbing all account for an unknown component of the actual harvest.

The largest catch (unadjusted for effort) in New Jersey and Delaware waters combined was 2,091 bushels in July (Table 3.1.5-1). The August catch ranked second; September, third; October, fourth; followed by June and November.

Monthly catch data adjusted to a per unit effort basis (bu/pd) are presented in Table 3.1.5-2. Based on the combined effort in New Jersey and Delaware, the largest catch was in July (0.0612); the smallest was in June (0.0117). The New Jersey catch was largest in July (0.0736) and smallest in September (0.0366); the Delaware catch was largest in July (0.0457) and smallest in June (0.0117). The adjusted catch was higher in New Jersey in all months sampled. In 36 of 39 months sampled over the past seven years adjusted catch was higher in Delaware.

Data on the 1978 New Jersey commercial catch, most of which comes from the Delaware Estuary (including the study area), indicate that 71 crabbers licensed to fish 9,138 pots took some 7,080 bushels of hard crab (1978 pers. comm. with L. Albertson Huber, New Jersey Division of Fish, Game, and Shell Fisheries). Study program data indicate that the 18 crabbers operating near Artificial Island took 99 percent of this total.

Data on the 1978 Delaware commercial crab catch, most of which comes from the same area, indicate that 40 crabbers took a reported total of 6,948 bushels of hard crab (1978 pers. comm. with Richard W. Coles, Delaware State Department of Natural Resources and Environmental Control). Study program data indicate that the 18 crabbers who operated near Artificial Island took 72 percent of this reported total.

Peeler Crab

All nine crabbers who regularly completed questionnaires also submitted data on their catch of peeler crab (Table 3.1.5-3). These nine took 36,346 peeler crab (75 percent by the five New Jersey crabbers) from June through November 1978. The catch by 27 crabbers who did not participate in the program is estimated at 73,654 peeler crab (41,032 by 14 Delaware fishermen). The total peeler crab catch in the study area in 1978 is conservatively estimated at 110,000 individuals. Annual estimated peeler crab catch in the study area in previous years ranged from 39,700 individuals in 1973 to 233,870 individuals in 1976.

The largest monthly catch, based on combined data from nine crabbers in New Jersey and Delaware, was 22,326 crab in July (Table 3.1.5-3). The monthly n/pd of peeler crab was highest in July in New Jersey (0.8501) and Delaware (0.5154), and lowest in October (0.0112 and 0.0094, respectively) (Table 3.1.5-4).

On the average, New Jersey crabbers took more peeler crab than did Delaware crabbers. In each of the previous seven years, adjusted catch had been higher in Delaware.

Records on the New Jersey 1978 commercial catch from the Delaware Estuary indicate that 71 crabbers took a reported 56,000 peeler crab (1978 pers. comm. with L. Albertson Huber). Study program data indicate that the 18 New Jersey crabbers who operated near Artificial Island took 107 percent of this total.

Records on the 1978 Delaware commercial catch from the Delaware Estuary indicate that 40 crabbers took a reported 75,900 peeler crab (1978 pers. comm. with Richard W. Coles). Study program data indicate that the 18 Delaware crabbers operating near Artificial Island took 66 percent of this total.

Economic Aspects

The wholesale price per bushel of hard crab in 1978 averaged \$26 for No. 1, \$16 for No. 2, and \$11 for No. 3. A reasonable average price in 1978 was \$16 per bushel. The 12,000 bushels taken from the study area in 1978 had an estimated dockside value of \$192,000.

The peeler crab catch is usually sold to buyers at dockside who hold them until they molt and are soft. The price to crabbers averaged 46 cents per peeler crab. At this price, the 110,000 peeler crab taken by commercial crabbers in 1978 had an estimated value of \$50,600.

A more lucrative but much smaller market for peeler crab is to local sport fishermen who consider them preferred bait for fishes such as weakfish. The retail price per dozen ranged from \$8 to \$12 and averaged \$9.

Composition of Catch by Sex, Size, and Stage of Development

A total of 1,352 blue crab taken in 149 individual crab pot samples was examined (Tables 3.1.5-5, 3.1.5-6). These were taken in zones SW1 through NW1, RI2, and SE1 through SE3 on seven dates from July 12 to October 20 (Fig. 3.1.5-1). Catch data adjusted for effort (individuals/pd) are presented in Table 3.1.5-5. Mean monthly catch was highest in July (17.0 crab/pot) and lowest in September (5.9). The mean catch per pot in 1978 was 9.1 crab. Prior to 1978, mean pot catch ranged from 5.5 crab in 1977 to 21.6 crab in 1976.

Data on catch composition (percent catch) are presented in Table 3.1.5-6. Mature male crab comprised 52.5 percent of the 1978 catch. Percent catch was highest in October (72.9) and lowest in September (32.1).

Immature male crab comprised the smallest percent of the annual catch (1.4). Percent catch was highest in October (2.6) and lowest in August and September (0.4).

Mature female crab comprised 32.2 percent of the annual catch. Percent catch was highest in September (61.0) and lowest in October (9.4).

Immature female crab comprised 13.9 percent of the annual catch. Percent catch was highest in July (17.2) and lowest in September (6.4).

Of 28 peeler crab (2.1 percent of the total catch) (Table 3.1.5-7) taken in 149 samples, 3.6 percent was mature male, 3.6 percent was immature male, and 92.8 percent was immature female.

Monthly mean width of crab, by sex and developmental stage, are presented in Tables 3.1.5-8 through 3.1.5-11 and summarized in Table 3.1.5-12. The mean size of mature male crab was 127.4 mm in July; it increased to 150.3 mm in September (Table 3.1.5-8). At the end of monitoring in October mean size had decreased to 141.2 mm.

The monthly mean size of immature male ranged from 103.2 mm in July to 110 mm (1 specimen) in August (Table 3.1.5-9).

The mean size of mature female ranged from 152.0 mm in July to 167.5 mm in October (Table 3.1.5-10).

The monthly mean size of immature female ranged from 114.6 mm in September to 125.2 mm in August (Table 3.1.5-11).

TRAWL AND SEINE SAMPLE

Trawl Catch

A total of 873 crab was taken in 863 bottom trawl collections in the Delaware Estuary. Over 94 percent (828) was captured from May through November in 662 collections. Of the total, 822 were taken in 849 collections during daylight and 51 were taken in 14 collections at night. During daylight 775 were taken in 762 collections in the west sector (which includes zones NW2-SW1), and the east sector (which includes zones NE2-SE0, RI1, and RI2) combined, and 47 were taken in 87 collections in the shipping channel. An additional 10 crab were taken in 111 collections in the local tidal creeks (Fig. 3.1.5-2). The mean catch per trawl in the Delaware Estuary in 1978 was 1.0 crab; it had ranged from 0.6 in 1977 to 5.0 in 1975.

In combined river trawl samples during daylight in the west sector, 286 crab were taken in 260 collections (Table 3.1.5-13). In the east sector, 489 crab were taken in 502 collections (Table 3.1.5-14).

No crab were taken in March and only one crab was taken in April (zone SE1). From May through August crab remained sparsely distributed (n/T range over the period; 0.2-0.8, west sector; 0.1-0.5, east sector) (Figure 3.1.5-4).

Catch increased markedly in September (1.7, west sector; 1.5 east sector), and peaked in October (4.2, west sector; 4.3, east sector). Catch decreased in November (2.3, west sector; 1.6, east sector) and December (0.6, west sector; 1.0, east sector).

In west and east sectors, annual catch per zone increased from north to south (Fig. 3.1.5-5). Within the west sector, annual catch was greater in zones SWl through W3 (n/T range: 0.9-1.8) than in zones NWl and NW2 (n/T range: 0.2-0.4). Within the east sector, annual catch was greater in zones SEO through SSC (n/T range: 1.1-2.7) than in zones E2 through NE2 (n/T range: 0.2-0.6).

The annual n/T was similar in the west sector (1.1 crab) and in the east sector (1.0).

A total of 47 crab was taken in 87 hauls (n/T = 0.5) made in the shipping channel from March through December (Table 3.1.5-15).

In night samples from March through October in Zone W3, 3 crab (n/T = 0.4) were taken in 7 hauls (Table 3.1.5-16); in Zone SSC 48 crab (n/T = 6.9) were taken in 7 hauls (Table 3.1.5-17). The greatest catch occurred in Zone SSC in September (n/T = 18.0). More crab were taken at night (n/T= 3.6) than during daylight (1.0).

Seven crab (n/T = 0.2) were taken in Appoquinimink Creek and three (0.1) were taken in Alloway Creek from March through December. No crab were taken in 28 collections in Hope Creek. All crab taken in Appoquinimink Creek occurred in

October (n/T = 1.2), while crab occurred in Alloway Creek in July (n/T = 0.3), September (0.3), and October (0.2).

Seine Catch

A 68.6 m, 1.3 cm mesh bag seine was fished during daylight and at night semimonthly from March through October at Augustine Beach and at Sunken Ship Cove (stations AUB3 and SSC6, Fig. 3.1.5-1). During daylight, crab were taken in June and August through October samples (Tables 3.1.5-18, 3.1.5-19). At night crab were taken in May, June, and August through October (Table 3.1.5-20, 3.1.5-21). During daylight, 27 crab were taken in 7 collections at Station AUB3, and 25 crab were taken in 7 collections at Station SSC6. At night, 115 crab were taken in 7 collections at Station AUB3, and 54 crab were taken in 7 collections at Station SSC6. Annual mean catch for combined stations at night (n/Coll. = 12.1) was greater than during daylight (3.7).

Ten seine stations on the Delaware Estuary were sampled semimonthly during daylight from March through December with 3.0 m, 0.3 cm mesh and 7.6 m, 0.6 cm mesh seines (stations PHD1-MHC8, Fig. 3.1.5-1). A total of 74 crab were taken in 170 collections all of which occurred from May through November (Table 3.1.5-22). Annual mean catch per station was highest (1.4 specimens) at Station AUB3. Highest monthly mean catch was in September (2.4 specimens).

From March through December, 4 crab were taken in 42 collections (n/Coll. = 0.1) in Appoquinimink Creek and 5 crab were taken in 37 collections (0.1) in Alloway Creek (Fig. 3.1.5-3). Monthly mean catch per sample was highest in September in both Appoquinimink (n/Coll. = 1.0) and Alloway creeks (1.7).

Size-Class Distribution

Size-class distribution of crab taken in trawl and seine catches from April through December is given in Tables 3.1.5-23 through 3.1.5-32.

Monthly mean width of crab taken in the river by trawl during daylight increased from 48 mm (1 specimen) in April to 128.3 mm in July (west sector) and 139.0 mm in August (east sector) (Tables 3.1.5-23, 3.1.5-24; Fig. 3.1.5-6). The appearance in the population of smaller individuals of the 1978 year-class in July and August contributed, along with removal of larger specimens by crabbers, to a decrease in monthly mean width in August (108.5 mm, west sector) and September (75.9 mm, east sector) and subsequent months. The mean width of crab decreased steadily through December (36.0 mm, west sector; 35.9 mm, east sector). Mean size of crab taken in combined west and east sectors in 1978 was 59.0 mm. It had ranged from 49.6 mm in 1973 to 87.6 mm in 1971.

Crab taken in the shipping channel during daylight were largest (130.5 mm) in July (Table 3.1.5-25). Crab taken at night were largest in August (one 160 mm specimen, W3) and June (94.7 mm, SSC) (Tables 3.1.5-26, 3.1.5-27).

Specimen size in creek trawls (70.7 mm, Appoquinimink; 57.7 mm, Alloway) was similar to that in river trawls.

Crab taken by 68.6 m seine during daylight were largest in June at AUB3 (76.0 mm) and August at SSC6 (124.5 mm) (Tables 3.1.5-28, 3.1.5-29). At night, maximum size occurred in June at AUB3 (95.5 mm) and in September at SSC6 (39.5 mm) (Tables 3.1.5-30, 3.1.5-31).

The mean width of crab taken by 3.0 m and 7.6 m seines in the river during daylight was greatest in July (59 mm, 1 specimen) (Table 3.1.5-32).

Mean width of crab taken by 3.0 m seine in Appoquinimink and Alloway creeks was greatest in August (31.0 mm) and September (36.6) respectively.

OBSERVATIONS ON MATING AND EGG-BEARING CRAB

During 1978 a total of 203 observations of mating was reported in July and August by four commercial crabbers who operate in the southern part of the study area. In 1978, two commercial crabbers reported 2 captures of egg-bearing female crab in August and September, in zones SE3 and SW1.

Crabber	June	July	Aug	Sept	Oct	Nov	Total per Crabber
х э . Х			NEW JERSEY				
A-1 B-2 C I-1 J		518 429 307 372 120	332 239 283 *	77 141 52 # 80	114 * 71		927 923 642 372 357
Totals		1,746	940	350	185		3,221
			DELAWARE				
J-3 J-4 K M-1	16	173 103 27 42	111 90 123 110	42 33 110	101	2	284 251 183 365
Totals	16	345	434	185	101	2	1,083
Totals for All Crabbers and Grand Total	16	2,091	1,374	535	286	2	4,304

TABLE 3.1.5-1 BUSHELS OF MARKETABLE HARD BLUE CRAB, <u>CALLINECTES</u> <u>SAPIDUS</u>, LANDED COMMERCIALLY IN 1978

TABLE 3.1.5-2 MEAN NUMBER OF BUSHELS OF MARKETABLE HARD BLUE CRAB, <u>CALLINECTES</u> <u>SAPIDUS</u>, LANDED COMMERCIALLY IN 1978

Crabber	June	July	Aug NEW JERSEY	Sept	<u>Oct</u>	Nov	Weighted Total Mean per Crabber
A-1 B-2 C I-1 J		0.0834 0.0909 0.0555 0.0897 0.0487	0.0656 0.0618 0.0425 * 0.0402	0.0407 0.0386 0.0267 * 0.0405	0.0465 * 0.0518		0.0704 0.0628 0.0454 0.0897 0.0450
Monthly Means		0.0736	0.0525	0.0366	0.0492		
•			DELAWARE				
J3 J-4	0.0117	0.0573 0.0481	0.0360 0.0409	0.0284			0.0465 0.0349
к M-1		0.0358 0.0415	0.0461 0.0275	0.0337 0.0342	0.0353	0.0328	0.0416 0.0327
Monthly Means	0.0117	0.0457	0.0376	0.0321	0.0353	0.0328	
Monthly Means for All Crabbers	0.0117	0.0612	0.0451	0.0347	0.0445	0.0328	
* Data not suj	pplied						

IA SALEM CR 1978

Crabber	June	July	Aug	Sept	Oct	Nov	Total per Crabber
			NEW JERSEY				
А-1 b-2 С I-1 J		9,520 2,068 2,044 2,609 3,158	4,785 1,387 * 1,478	125 140 * 9	55 * .* 0		14,430 3,650 2,044 2,609 4,645
Totals		19,399	7,650	274	55		27,378
			DELAWARE				
J-3 J-4 K M-1	689	881 779 426 841	1,616 182 1,249 2,092	4 123 58	27	l	2,497 1,654 1,798 3,019
Totals	689	2,927	5,139	185	27	1	8,968
Totals for All Crabbers and Grand Total	689	22,326	12,789	459	82	1	36,346

TABLE 3.1.5-3 NUMBER OF INDIVIDUAL MARKETABLE PEELER BLUE CRAB, <u>CALLINECTES</u> <u>SAPIDUS</u>, LANDED COMMERCIALLY IN 1978

TABLE 3.1.5-4 MEAN NUMBER OF INDIVIDUAL MARKETABLE PEELER BLUE CRAB, <u>CALLINECTES</u> <u>SAPIDUS</u>, LANDED COMMERCIALLY IN 1978

Crabber	June	July	Aug	Sept	Oct	Nov	Weighted Total Mean per Crabber
			NEW JERSEY				
A-1 B-2 C I-1 J		1.5330 0.4381 0.3698 0.6287 1.2811	0.9457 0.3584 * * 0.6907	0.0661 0.0384 * * 0.0046	0.0224 * * 0		1.0965 0.2447 0.3698 0.6287 0.5850
Monthly Means		0.8501	0.6649	0.0364	0.0112		
			DELAWARE				
J-3 J-4 K M-1	0.5029	0.2917 0.3640 0.5757 0.8302	0.5247 0.0827 0.4678 0.5233	0.0027 0.1255 0.0181	0.0094	0.0164	0.4093 0.2300 0.4096 0.2711
Monthly Means	0.5029	0.5154	0.3996	0.0488	0.0094	0.0164	
Monthly Means for All Crabbers	0.5029	0.7014	0.5133	0.0426	0.0106	0.0164	
# Data not si	upplied						

IA SALEM CR 1978

Zone	s	June	July	, ø	Augus	st	Sept	ember	Octobe	er.	Mean	· · ·
· SE-3	• ·		18.0	(20)			5.1	(23)			11.1	(43)
SE-2	2				8.5	(8)					8.5	(8)
SE-1	L				5.2	(17)					5.2	(17)
Mean	(East Zone)		18.0	(20)	6.28	(25)	5.1	(23)			9.3	(68)
NW-1					6.6	(5)					6.6	(5)
RI-2	2				8.3	(3)					8.3	(3)
W-3					4.7	(3)					4.7	(3)
W-2					4.3	(8)					4.3	(8)
W-1			18.0	(5)	5.0	(4)					12.2	(9)
SW-2	2		8.1	(12)							8.1	(12)
SW-1	l						6.9	(19)	8.7	(22)	7.9	(41)
Mear	n (West Zone)		15.8	(17)	5.5	(23)	6.9	(19)	8.7	(22)	8.9	(81)
Mear	(Combined Zónes)		17.0	(37)	6.7	(48)	5.9	(42)	3.7	(22)	9.1	(149)

TABLE 3.1.5-5 MEAN NUMBER OF BLUE CRAB, <u>CALLINECTES SAPIDUS</u>, TAKEN PER SAMPLED CRAB POT IN 1978. NUMBER OF POTS SAMPLED ARE IN PARENTHESES

IA SALEM CR 1978

Zone	Mature Catch	e Male	Immatu Catch	re Male	Mature Catch	Female %	Immatu Catch	re Female	Total
				۱ Jul	Ly				
SE3	163	45.4	11	3.1	118	32.9	67	10.7	359
Wl	50	55.6	1	1.1	20	22.2	19	21.1	90
SW2	104	58.1			53	29.6	22	12.3	179
Total	317	50.5	12	1.9	191	30.4	108	17.2	628
				. Augu	ist				
SE2	41	60.3	1	1.5	21	30.9	5	7.4	68
SEL	68	76.4			13	14.6	8	9.0	89
NW1	24	72.7			5	15.2	4	12.1	33
RI2	15	60.0			9	36.0	1	4.0	25
w3	8	57.1			4	28.6	2	14.3	14
W2	12	35.3			15	44.1	7	20.6	34
W1	5	25.0			7	35.0	8	40.0	20
Total	173	61.1	1	0.4	74	26.2	35	12.4	283
				Septe	ember				
SE3	31	26.3	1	0.9	76	64.4	10	8.5	118
SW1	49	37.4			76	58.0	6	4.6	131
Total	80	32.1	· 1	0.4	152	61.0	16	б.4	249
				Octo	ber				
SW1	140	72.9	5	2.6	18	9.4	29	15.1	192
Total	140	72.9	5	2.6	18	9.4	29	15.1	192
Grand Total	710	52.5	19	1.4	435	32.2	188	13.9	1,352
								· · · · · ·	

TABLE 3.1.5-6 CATCH AND PERCENT OF BLUE CRAB, <u>CALLINECTES SAPIDUS</u>, IN CRAB POT SAMPLES BY SEX AND DEVELOPMENTAL STAGE IN 1978

IA SALEM CR 1978

Zone	<u>n</u>	July Percent		lugust Percent		tember Percent		tober Percent		l months Combined <u>Percent</u>
SE-3 SE-2 SE-1	19	5.0	1 1	1.5 1.1	0	0.0			19 1 1	4.0 1.5 1.1
Total and Percentage	19	5.0	2	1.3	0	0.0			21	3.3
NW-1 RI-2 W-3 W-2 W-1 SW-2 SW-1	2	2.0 1.0	1 0 0 1 0	3.0 0.0 2.9 0.0	0	0.0	1	0.5	1 0 1 2 1	3.0 0.0 2.9 1.8 1.0 0.3
Total and Percentage	4	1.5	2	1.6	ð	0.0	1	0.5	7	1.0
Total and Percentage for All Zones Combined [.]	23	3.7	4	1.4	O	0.0	1	0.5	28	2.1

TABLE 3.1.5-7 NUMBER AND PERCENTAGE OF PEELER BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978

TABLE 3.1.5-8 MEAN CARAPACE WIDTH (in mm) OF MATURE MALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRABS MEASURED, IN PARENTHESES

Zone	July	August	September	October	Mean of Means
SE-3 SE-2 SE-1	124.7(163)	143.0(41) 142.7(68)	148.7(31)		136.7(194) 143.0(41) 142.7(68)
Mean of Means	124.7(163)	142.8(109)	148.7(31)		
NW-1 RI-2 W-3 W-2 W-1 SW-2 SW-1	128.7(50) 128.8(104)	137.3(24) 135.5(15) 150.8(8) 134.8(12) 128.8(5)	151.9(49)	141.2(140)	137.3(24) 135.5(15) 150.8(8) 134.8(12) 128.8(55) 128.8(104) 146.6(189)
Mean of Means	128.8(154)	137.4(64)	151.9(49)	141.2(140)	
Mean of Means (All Zones)	127.4(317)	139.0(173)	150.3(80)	141.2(140)	

IA SALEM CR 1978

TABLE 3.1.5-9 MEAN CARAPACE WIDTH (in mm) OF IMMATURE MALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRABS MEASURED, IN PARENTHESES

Zone	July	August	September	October	Mean of Means
SE-3 SE-2 SE-1	102.3(11)	110 (1)	105 (1)		103.6(12) 110(1)
Mean of Means	102.3(11)	110(1)	110(1)		
RI-2 W-3 W-2					
W-1 SW-2	104(1)				104(1)
SW-1				107.0(5)	107.0(5),
Mean of Means	104(1)			107.0(5)	
Mean of Means (All Zones)	103.2(12)	110(1)	105 (1)	107.0(5)	

 TABLE 3.1.5-10

 MEAN CARAPACE WIDTH (in mm) OF MATURE FEMALE BLUE CRAB,

 CALLINECTES
 SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF

 CRABS
 MEASURED, IN PARENTHESES

2one	July	August	September	October	Mean of <u>Means</u>
SE-3 SE-2 SE-1	151.0(118)	164.8(21) 162.2(13)	161.5(76)		156.2(194) 164.8(21) 162.2(13)
Mean of Means	151.0(118)	163.5(34)	161.5(76)		
NW-1 RI-2 W-3 W-2 W-1 SW-2 SW-1	151.6(20) 153.5(53)	168.4(5) 172.3(9) 158.5(4) 170.9(15) 170.9(7)	· 168.5(76)	167.5(18)	168.4(5) 172.3(9) 158.5(4) 170.9(15) 161.2(27) 153.5(53) 168.0(94)
Mean of Means	152.6(73)	168.2(40)	168.5(76)	167.5(18)	
Mean of Means (All Zones)	152.0(191)	166.8(74)	165.0(152)	167.5(18)	

IA SALEM CR 1978

....

Zone	July	August	September	October	Mean of Means
SE-3 SE-2 SE-1	119.2(67)	125.0(5) 125.9(8)	107.3(10)		113.2(77) 125.0(5) 125.9(8)
Mean of Means	119.2(67)	125.4(13)	107.3(10)		
NW-1 RI-2 W-3 W-2 W-1 SW-2 SW-1	118.3(19) 119.0(22)	119.5(4) 117(1) 134.5(2) 122.9(7) 131.3(8)	122.0(6)	124.1(29)	119.5(4) 117(1) 134.5(2) 122.9(7) 124.8(27) 119.0(22) 123.0(35)
Mean of Means	118.6(41)	125.0(22)	122.0(6)	124.1(29)	
Mean of Means (All Zones)	118.8(108)	125.2(35)	114.6(16)	124.1(29)	

TABLE 3.1.5-11 MEAN CARAPACE WIDTH (in mm) OF IMMATURE FEMALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRABS MEASURED, IN PARENTHESES

۲

IA SALEM CR 1978

ω .1-176

TABLE 3.1.5-12	
SIZE-CLASS (carapace width in mm)	DISTRIBUTION OF
BLUE CRAB, CALLINECTES SAPIDUS, TAKEN	BY CRAB POT IN 1978

		Ju	lv			Aug	ust			Septer	her	
Carapace Width (mm)	Mature Male	Immature <u>Male</u>	Mature Female	Immature Female	Mature Male	Immature Male	Mature Female	Immature Female	Mature Male	Immature Male	Mature Female	Immature Female
70-74 75-79 80-84 85-89 90-94 95-99 100-104 105-109 110-114 115-119 120-124 125-129 130-134 135-139 140-144 145-149 150-154 155-159 160-164 165-169 170-174 175-179 180-184 185-189	1 8 20 39 41 41 34 36 35 29 16 8 6 3	1 2 3 (1) 5	1 1 1 4 11 21 30 39 37 26 14 5 1	(1) 1 (1) 4 (3) 5 (5) 14 (5) 21 (5) 24 (1) 8 (1) 6 3	2 2 2 8 17 11 19 24 22 16 18 12 13 1 6	1	5 4 7 11 15 16 6 8 2	1 2 6 (1) 3 (2) 8 6 4 1 (1)	<u>Male</u> 1 3 2 1 7 8 5 7 4 5 6 9 7 8 5 1	<u>1</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 3 2 3 1 1 1 2
190-194 195-199 200-204 205-209									1		1	
n	317	11 (1)	191	86 (22)	173	1	74	31 (4)	80	1	152	16
x	126.7	102.4	151.7	119.0	140.8	110	167.0	125.9	150.7	105	165.0	112.8
	÷								·· ·			

IA SALEM CR 1978

TABLE	з.	1.	.5-	·12
CONT	'IN	U	ED	

		Octob				Tot	al	
Carapace Width (mm)	Mature <u>Male</u>	Immature <u>Male</u>	Mature Female	Immature Female	Mature Male	Immature Male	Mature Female	Immature Female
70-74							• •	1
75-7 9								
80-84								•
85-89		(1)				(1)		
90-94					_	1 2		1 (1)
95-99		_			1	2		1 (1)
100-104	× _	1			11	4 (1)		5 (3)
105-109	4	_		3	29	6 2 2		12 (5)
110-114	2 8	1 2		3	45	2	2	21 (5)
115-119		2		5	58	2	1	35 (6)
120-124	- 13			5	78		2	33 (3)
125-129	11		• .	-4	56		1	21 (1)
130-134	13		1	3	68		5	16
135-139	18			3	85		13	12
140-144	17			2	73		22	3
145-149	10		1	1	49		37	1 (1)
150-154	13	`			43		54	
155-159	10				33		58	
160-164	6		3		28		68	
165-169	4		3 5 3 3 2		14		58	
170-174	5		3		18		52	
175-179	5 2 3		3		10	•	26	
180-184	3		2		8		28	
185-189	_				1 2		7	
190-194	1				2		1	
195-199				•				
200-204								
205-209								
n	140	4 (1)	18	29	710	17 (2)	435	162 (26
x	141.2	107.0	167.5	124.1	135.7	104.3	159.6	120.8

IA SALEM CR 1978

ł

LOCATION	JAN		FEB		MAR		APR		ΜΑΥ		JUN		JUL	
	NIT	T	N/T	T	N/T	т	N/T	т	N/T	т	N/T	т	N/T	
11.112	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.3	4.0	0.3	4.
Nw1	-	-	-	-	0.0	2.0	0.0	5.0	0.0	4.0	U.D'	6.0	0.5	4.
w - 3	-	-	-	-	0.0	3.0	0.0	5.0	0.0	5.0	0.8	6.0	0.3	4.
k-2		-	-	-	0.0	2.0	0.0	4.0	0.3	4.0	0.5	4.0	0.0	4.
w -1		-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.3	4.0	0.3	4.
Sw2	- .	-	-	-	0.0	2.0	0." 0	4.0	0.5	6.0	1.8	5.0	1.0	4.
S w 1	-	-	-	-	0.0	2.0	0_0	4.0	0.3	4.0	1.8	4.0	0.0	4.
AB TOTALS	0.0		0.0		0.0		0.0		5.0		25.0		9.0	
- COLL.	. –		-		15.0		30.0		31_0		33.0		28	
т	-		-		0.0		0.0		0.2		0.8		0.3	
•														
· .														
LOCATION	 A U	G	 S E	р		Т		V	DE	c .				
					********					*******	CATCH / UNIT		CRAB	
	AU N / T	G	SE	p T	0 C	T	NO N/T	Т.	DE N/T	с т			CRAB TOTALS	
LOCATION	N / T	T	N/T	 T	N/T	T	N/T	т.	N/T	* T	/ UNIT Effort	COLL.	TOTALS	
LOCATION	N/T Q.5	T 2.0	N/T 0_5	т 2_0	N/T 2.5	T 4.0	N/T 0.0	т. 4.0	N/T 0.0	T 2.0	/ UNIT EFFORT 0_4	COLL. 32.0	TOTALS 14.0	
LOCATION N=2 N=1	N/T 0.5 0.0	T 2.0 4.0	N/T 0.5 0.0	T 2_0 2_0	N/T 2.5 1.3	T 4.0 4.0	N/T 0.0 0.3	T 4 . 0 4 . 0	N/T 0.0 0.0	T 2.0 2.0	/ UNIT EFFORT 0_4 0_2	COLL. 32.0 37.0	TOTALS 14.0 8.0	
LOCATION	N/T Q.5	T 2.0	N/T 0_5	т 2_0	N/T 2.5	T 4.0 4.0 5.0	N/T 0.0	T 4_0 4_0 4_0 4_0	N/T 0.0	T 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0.4 0.2 0.9	COLL. 32.0 37.0 44.0	TOTALS 14.0 8.0 38.0	
Na2 Na1 w-3	N/T 0.5 0.0 0.0	T 2.0 4.0 5.0	N/T 0.5 U.0 0.4	T 2_0 2_0 5.0	N/T 2.5 1.3 5.0	T 4.0 4.0	N/T 0.0 0.3 1.3	T 4 . 0 4 . 0	N/T 0.0 0.0 0.0	T 2.0 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0_4 0_2	COLL. 32.0 37.0	TOTALS 14.0 8.0	
LOCATION N=2 N=1 w=3 w=2	N/T 0.5 0.0 0.0 0.5	T 2.0 4.0 5.0 4.0 4.0	N/T 0-5 U-0 0-4 1-3	T 2.0 2.0 5.0 4.0 4.0	N/T 2.5 1.3 5.0 5.0	T 4.0 4.0 5.0 4.0 4.0 4.0	N/T 0.0 0.3 1.3 8.0	T 4 - 0 4 - 0 4 - 0 4 - 0 4 - 0 4 - 0	N/T 0.0 0.0 0.0 2.0 0.0	T 2.0 2.0 2.0 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0.4 0.2 0.9 1.8 0.9	COLL. 32.0 37.0 44.0 36.0 36.0	TOTALS 14.0 8.0 38.0 66.0 34.0	
LOCATION N = 2 N = 1 w = 3 w = 2 w = 1	N/T 0.5 0.0 0.0 0.5 0.5	T 2.0 4.0 5.0 4.0	N/T 0-5 0-0 0-4 1-3 1-3	T 2.0 2.0 5.0 4.0	N/T 2.5 1.3 5.0 5.0 3.5	T 4.0 4.0 5.0 4.0	N/T 0.0 0.3 1.3 8.0 2.8	T 4_0 4_0 4_0 4_0 4_0	N/T 0.0 0.0 0.0 2.0	T 2.0 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0_4 0_2 0_9 1.8	COLL. 32.0 37.0 44.0 36.0	TOTALS 14.0 8.0 38.0 66.0	
N-2 N-1 w-3 w-2 w-1 S-2 S-2	N/T 0.5 0.0 0.0 0.5 0.5 0.5 0.3	T 2.0 4.0 5.0 4.0 4.0 4.0	N/T 0-5 0-0 0-4 1-3 1-3 6-0	T 2.0 5.0 4.0 4.0 4.0	N/T 2.5 1.3 5.0 5.0 3.5 4.5	T 4.0 4.0 5.0 4.0 4.0 4.0 4.0	N/T 0.0 0.3 1.3 8.0 2.8 0.0	T 4_0 4_0 4_0 4_0 4_0 4_0 4_0	N/T 0.0 0.0 0.0 2.0 0.0 0.5	T 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0.4 0.2 0.9 1.8 0.9 1.5	COLL. 32.0 37.0 44.0 36.0 36.0 39.0	TOTALS 14.0 8.0 38.0 66.0 34.0 60.0	
LOCATION N=2 N=1 w=3 w=2 w=1 S=2 S=4	N/T 0.5 0.0 0.5 0.5 0.3 1.0	T 2.0 4.0 5.0 4.0 4.0 4.0	N/T 0-5 0-0 0-4 1-3 1-3 6-0 1-3	T 2.0 5.0 4.0 4.0 4.0	N/T 2.5 1.3 5.0 5.0 3.5 4.5 7.8	T 4.0 4.0 5.0 4.0 4.0 4.0 4.0	N/T 0.0 0.3 1.3 8.0 2.8 0.0 3.5	T 4_0 4_0 4_0 4_0 4_0 4_0 4_0	N/T 0.0 0.0 2.0 0.0 2.0 0.5 2.0	T 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	/ UNIT EFFORT 0-4 0-2 0-9 1.8 0-9 1.5 1.8	COLL. 32.0 37.0 44.0 36.0 36.0 39.0	TOTALS 14.0 8.0 38.0 66.0 34.0 60.0 66.0	

TABLE 3-1.5-13 Monthly Mean Number of Blue Crab, Callinectes Sapidus, Taken During Daylight By 4.9 Meter Trawl in West River Zones, 1978.

N/T = NUMBER PER 10 MINUTE COLLECTION.

IA SALEM CR 1978

LOCATION	J A N 		FE8		M A R		APR		МАУ		4UL		JUL	
	N/T	T	N/T	T	N/T	T	N/T	T	N/T	т	N/T	T	NZT.	. 1
NE2	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.3	6.0	0.0	2 0
NE1	~	-	-	-	υ.Ο	2.0	0.0	4.0	0.0	4.0	0.0	4.0	0.0	2.0
E-o	•	-	-	-	0.0	2.0	0.0	4.0	0.0			4_0	0.0	4.0
ε-5	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.0	4.0	0.0	4.0
E-4	-	-	-	-	0.0	2.0	0.0			4-0	0.3	4.0	0.5	4.0
RIS	-	-	-	-	0.0	2.0		4.0	0.3	4.0	0.0	4.0	0.3	4.0
811	-	-	-	_			0.0	4.0	0.0	4.0	0.3	6.û	8,0	4.0
E-3	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.0	5.0	0.5	4.0
E-2	_	_	-	-	0.0	2_0	0.0	4.0	0.0	4.0	0.0	4.0	0.5	4.0
SSC	_	_	-	-	0.0	2.0	0_0	4.0	0.3	4.0	0.0	4.0	υ.5	4.0
E-1	_	-	-	-	0.0	2.0	0.0	3.0	0.3	3.0	2.3	3.0	1.0	2.0
SE3	-	-		-	0_0	2.0	0.0	4.0	0.5	4.0	0.3	4.0	Ú.5	4.0
SE2	-	-	•	-	0.0	2.0	0.0	4.0	0.0	4.0	0_0	4.0	0.0	4.0
SE1	_	-	-	-	0.0	2_0	0.0	4.0	0.0	4.0	0.8	4.0	ů_8	4.0
SEU	•	-	-	-	0.0	2.0	0.3	4.0	0.0	4.0	ΰ.5	4.0	2.0	4.0
SEU	•	-	-	-	0_0	2.0	0.0	4.0	0.3	4.0	0.8	4.0	0.5	4.U
RAB TOTALS	0.0		0_0		0.0		1_0		6.0		20.0		29.0	,
. COLL.		-		-		30.0		59.0		59.0		62.0		56.0
т	-				0.0		0.0		0.1		0.3		0.5	

TABLE 3.1.5-14 Monthly Mean Number of Blue Crab, Callinectes Sapidus, Takén During Daylight By 4.9 Meter Trawl in East and Réédy Island Zones, 1978.

N/T = NUMBER PER 10 MINUTE COLLECTION.

IA SALEM CR 1978

LOCATION	ΑL	IG	\$ E	P	00	T	N .	0V	DE	C			
	N/T	T	N/T	т	N/T	T	N/T	T	N/T	T	CATCH / UNIT Effort	NO. Coll.	CRAB TOTALS
NE2	0.0	2.0	0.0	2.0	2.5	2.0	0.0	4.0	0.0	2.0	0.2	28.0	6.0
NE1	0.5	2.0	0.5	2.0	2.5	4.0	0.5	4.0	0.5	2.0	0.5	32.0	15.0
E-0	0.0	4.0	0.0	4.0	3.8	4.0	0.0	4.0	0.0	2.0	0.4	36.0	15.0
E-5	0.3	4.0	0.3	4.0	0.5	4.0	0.5	4.0	1.5	2.0	0.3	36.0	12.0
E-4	6.0	4.0	0.3	4_0	0.8	4.0	0.0	4.0	0.5	2.0	0.2	36.0	7.0
RI2	0.0	2.0	1.5	2.0	4.5	2.0	0.0	2.0	0.0	2.0	0.6	30.0	17.0
RI1	0.0	2.0	0.5	2.0	3.0	2.0	0.0	2.0	0.5	2.0	0.3	29.0	10.0
E-3	0.3	4.0	0.0	4.0	2.0	4.0	. 0.8	4.0	0.0	2.0	0.4	36.0	14.0
5-3	0.3	4.0	1.0	4.0	2.3	4.0	0.0	4.0	0.0	2.0	0.5	36.0	17.0
SSC	0.5	2.0	40	2.0	7.0	3.0	1.0	2.0	0.0	1.0	1.8	23.0	42.0
E-1	0.5	4.0	5-0	4.0	5.3	4.0	1.0	4_0	0.0	2.0	1.1	36.0	40.0
SES	0.0	4.0	5.5	4.0	5.3	4.0	. 1.8	4.0	0.5	2.0	1.4	36.0	51.0
SE2	0.5	4.0	0.5	4.0	9.0	4.0	4.3	4.0	0.5	2.0	1.8	36.0	64-0
SE1	0.3	4.0	2.3	4.0	2.8	4.0	11.5	4.0	2.5	2.0	2.3	36.0	83.0
SEO	0.8	4.0	3.5	4.0	13.0	4.0	1.0	4.0	8.5	2.0	2.7	36.0	96.0
AB TOTALS	13.0		74.0		229.0		87.0		30.0		•		.489.0
. COLL.		50.0		50.Ú		53.0		54.0		29.0	2	502.0	
т	.0.3		1.5		4.3		1.6		1.0		1.0		

TABLE 3.1.5-14 Continued

N/T = NUMBER PER 10 MINUTE COLLECTION.

IA SALEM CR 1978

LOCATION	J A		f E	8	M A 	R	A P	PR	MA	Y 	jUI 	N 	JU ₽₩₩₽₽₽₽₩₽₽	IL
	N	T	N	т	N	т	N	T	N	T	N	T	N	ĩ
CHA1	-	-	-	-	0	1.0	0	2.0	Û	1.0	0	2.0	4	2.0
CHA2	-	-	-	-	0	1.0	0	2.0	0	2.0	0	2.0	. 0	2.0
CHA3 Cha4	-	-	-	-	0	1.0	0	2.0	0	2.0	D	2.0	2	2.0
CHAS	-	-	-	2	Ú Ú	1.0 1.0	0	2.0 2.0	0 0	2.0 2.0	0 0	2.0 2.0	5 D	2.Ŭ 2.Ŭ
RAB TUTALS	0.0		0.0		Ú.O		0.0		0.0	•	0.0		11.0	
O. COLL.		-		-		5.0		10.0		9 . Ú	•	10.0		10.0
/1	-		-		0.0		0.0		0.0		0.0		1.1	
												, 		
LOCATION	ÂU		S E	р р	o c	T	NC)V	DE	с	сатсн			
	A U	r	S E	р 	00 N	T T	NC)v T	DE	C T	CATCH / UNIT EFFORT	NO_ COLL-	CRAB TOTALS	
LOCATION		r 2.0		T 2.0		T 2.0	5 2 19 9 4 4 4 2 3 5	T 2.0	N		/ UNIT			
LOCATION CHA1 CHA2	N 0 0	r 2.0 2.0	N 11 6	T 2.0 2.0	ù- N 1 4	T 2.0 2.0	N 2 0	T 2.0 2.0	N . 4 O	T . 1_0 1_0	/ UNIT EFFORT 1.3 0.6	COLL. 17.0 18.0	101ALS 22_0 10.0	·
CHA1 CHA1 CHA2 CHAS	N 0 0 0	T 2.0 2.0 2.0	N 11 6 1	T 2.0 2.0 2.0	è- N 1 4 2	T 2.0 2.0 2.0	N 2 0 1	T 2.0 2.0 2.0	N . 4 0 0	T . 1_0 1_0 1_0	/ UNIT EFFORT 1.3 0.6 0.3	COLL. 17.0 13.0 18.0	101ALS 22_0 10.0 6.0	
LOCATION CHA1 CHA2	N 0 0	r 2.0 2.0	N 11 6	T 2.0 2.0	ù- N 1 4	T 2.0 2.0	N 2 0	T 2.0 2.0	N . 4 O	T . 1_0 1_0	/ UNIT EFFORT 1.3 0.6	COLL. 17.0 18.0	101ALS 22_0 10.0	
CHA1 CHA1 CHA2 CHAS CHA4	N 0 0 0 0	T 2.0 2.0 2.0 2.0 2.0	N 11 6 1 1	T 2.0 2.0 2.0 1.0	N 1 4 2 2	T 2.0 2.0 2.0 2.0 2.0	N 2 0 1 0	T 2.0 2.0 2.0 2.0 2.0	N . 4 0 0	T 1_0 1_0 1_0 1_0 1_0	/ UNIT EFFORT 0.6 0.3 0.5	COLL. 17.0 13.0 18.0 17.0	TOTALS 22_0 10_0 6.0 8_0	
LOCATION CHA1 CHA2 CHAS CHAS CHAS	N 0 0 0 0 0	T 2.0 2.0 2.0 2.0 2.0	N 11 6 1 1 0	T 2.0 2.0 2.0 1.0	N 1 4 2 0	T 2.0 2.0 2.0 2.0 2.0	N 2 0 1 0 0	T 2.0 2.0 2.0 2.0 2.0	N 4 0 0 0 1	T 1_0 1_0 1_0 1_0 1_0	/ UNIT EFFORT 0.6 0.3 0.5	COLL. 17.0 13.0 18.0 17.0	101ALS 22.0 10.0 6.0 8.0 1.0	

TABLE 3.1.5-15 Monthly Mean Number of Blue Crab, Callinectes Sapidus, Taken During Daylight By 4.9 Meter Trawl in Channel Zones, 1978.

N/T = NUMBER PER 20 MINUTE COLLECTION.

IA SALEM CR 1978

LOCATION	J A 	N 	f E	8	MA 	R	A F	R	M A 	Y	J UN		JUL	
	N / T	т	N/T	т	N/T	τ.	N/T	т	N/T	T	N/T	т	N/T	r
w=3	-	-	-	-	0.0	1_0	0.0	1.0	0.0	1.0	1.0	1.0	-	-
CRAB TOTALS	0.0		0.0		0.0		0_0		0.0		1.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
114	-		-		0.0		0.0		0.0		1_0		-	
LOCATION	Au	G	S E	ρ	00	τ	N(V	D E	C		*******		
	N/T	T		T	N/T	T	N/T	т	м/т	т	CATCH / UNIT Effort	NU. COLL.	CRAB TOTALS	
w-3	1.0	1.0	1.0	1.0	0_0	1.0	-	-	-	-	0.4	7.0	3.0	
CRAB TOTALS	1.0		1_0		0.0		0.0		0.0				3.0	
NO. COLL.		1.0		1.0		1.0						7.0		
N/T	1.0		1.0		0.0				-		0.4			

TABLE 3.1.5-16 Monthly mean number of blue crab, callinectes sapidus, taken at night by 4.9 meter trawl in zone W-3, 1978.

N/T = NUMBER PER 10 MINUTE COLLECTION.

TABLE 3-1-5-17 Monthly mean number of blue crab, callinectes sapidus, taken at night By 4.9 meter trawl in zone SSC, 1978.

LOCATION	JA	N	FE	3	 M A	R	AP	R	MA	Y	JU	N	JUL	
	N/T	T	N/T	T	т/и	т	N/T	T	N/T	T	N/T	T	N/T	т
SSC	-	-	-	-	0.0	1.0	0.0	1.0	6.0	1.0	3.0	1.0	-	-
CRAB TOTALS	0.0		0.0	·	0.0		0.0		6.0	•	3.0		.0.0	
NO. COLL.		-		-		1_0	•	1.0		1.0		1.0		-
N/T	-		-		0.0		0.0		6.0		3.0		-	
		-	-	.	0.0	1_0	0.0	1.0	6.0	1.0	3.0	1.0	-	-

N/T = NUMBER PER 10 MINUTE COLLECTION.

IA SALEM CR 1978

3.1-183

.

						TABLE 3 Cont	.1.5-17 INUED		:					
LOCATION	AUG		 S E	P	00	T		 /	D E (
	N/T ·	т	N/T	- -	N/T	T	N/T	т	N/T	T	CATCH / UNIT Effort	NO. COLL-	CRAB TOTALS	••••••
SSC	6.Ŭ 1	.0	18.0	1.0	15.0	1.0	-	•	-	-	6.9	7.0	48,0	
RAB TOTALS	6.0		18.0		15.0		υ.Ο		0.0				48.0	
D. COLL.	1	_0		1.0		1.0						7.0		
/т	6.0		18.0		15.0		-		-		6.9			
T = NUMBER P	ER 10 MINUT	E COLL	LECTION.											

TABLE 3.1.5-18 Monthly Mean Number of Blue Crab, Callinectes Sapidus, Taken During Daylight by 68.6 meter Seine at Augustine Beach, 1978.

.

JAN 	N 	FE8		MAR		APR		MA Y		NU L		JUL	****
N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL
-	-	-	-	0.0	1.0	0.0	1.0	0.0	1_0	8.0	1.0	- .	-
0.0		0.0		0.0		0.0		0.0		8.0		0.0	
	-		-		1.0		1.0		1.0		1.0		-
-		-		0.0		0.0		0.0	•	8,0		~	
)UA		SEP		0C T		N0 V		DEC					
N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL			CRAB TOTALS	
6.0	1.0	7.0	1.0	6.0	1.0	-	-	-	-	3.9	7.0	27.0	
6.0		7.0		6_0		0.0		0.0				27.0	
	1_0		1.0		1.0						7.0		
		7.0		6.0						3.9			
-	- 0_0 - AU(N/COLL 6_0	 - - N/COLL COLL 6.0 1.0 6.0	 D.O D.O - AUG SEP N/COLL COLL N/COLL 6.O 1.O 7.O 6.O 7.O	0.0 0.0 AUG SEP N/COLL COLL N/COLL COLL 6.0 1.0 7.0 1.0 6.0 7.0	0.0 0.0 0.0 0.0 0.0 AUG SEP OCT N/COLL COLL N/COLL 6.0 1.0 7.0 1.0 6.0 6.0 7.0 6.0	0.0 1.0 0.0 0.0 0.0 1.0 - 0.0 AUG SEP OCT N/COLL COLL N/COLL COLL 6.0 1.0 7.0 1.0 6.0 1.0 6.0 7.0 6.0	0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 AUG SEP OCT NOV N/COLL COLL N/COLL COLL N/COLL 6.0 1.0 7.0 1.0 6.0 1.0 - 6.0 7.0 6.0 0.0	0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 AUG SEP OCT NOV N/COLL COLL N/COLL COLL N/COLL COLL 6.0 1.0 7.0 1.0 6.0 1.0 6.0 7.0 6.0 0.0	- - - 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 1.0 1.0 0.0 - - 0.0 0.0 0.0 AUG SEP OCT NOV DEC N/COLL COLL N/COLL COLL N/COLL N/COLL 6.0 1.0 7.0 6.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0	- - - 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 1.0 1.0 1.0 1.0 - - 0.0 0.0 0.0 0.0 AUG SEP DCT NOV DEC AUG SEP DCT NOV DEC AUG SEP DCT NOV DEC AUG 7.0 1.0 6.0 1.0 - 6.0 7.0 6.0 0.0 0.0 0.0	- - - 0.0 1.0 0.0 1.0 1.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 - - 1.0 1.0 1.0 1.0 - - 0.0 0.0 0.0 8.0 AUG SEP OCT NOV DEC AUG 7.0 1.0 6.0 1.0 - 6.0 7.0 6.0 0.0 0.0 0.0	- - - 0.0 1.0 0.0 1.0 8.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 1.0 - - - 1.0 1.0 1.0 1.0 1.0 - - 0.0 0.0 0.0 0.0 8.0 1.0 - - 0.0 0.0 0.0 0.0 8.0 1.0 AUG SEP DCT NOV DEC CATCH / COLL NO. AUG SEP DCT NOV DEC CATCH / COLL NO. 6.0 1.0 7.0 1.0 6.0 1.0 - - 3.9 7.0 6.0 7.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0	- - - 0.0 1.0 1.0 1.0 1.0 8.0 1.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 1.0 1.0 1.0 1.0 1.0 1.0 - - 0.0 0.0 0.0 0.0 8.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 AUG SEP DCT NOV DEC CATCH / COLL = NO. CRAB N/COLL COLL N/COLL COLL N/COLL COLL TOTALS 6.0 1.0 7.0 6.0 0.0 0.0 0.0 27.0 1.0 1.0 1.0 0.0 0.0 0.0 27.0

.

.

.

LOCATION	A L 	N 	fe8		M A R		49H		MAY		иUГ		JUL	
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COL
\$\$6	-	-	-	-	0.0	1_0	0.0	1.0	0.0	1.0	0.0	1.0	-	-
RAB TUTALS	0.0		0.0		0.0		0.0		0.0		0.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
N/COLL	-	,	-		0.0		0.0		0.0		0.0		-	
LOCATION	AU	G	SEP		ост ост		N 0 V		DEC					
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	CATCH / Coll- Ection		CRAB Totals	
\$506	2.0	1.0	23.0	1.0	0.0	1.0	-	-	-	-	3.6	7.0	25.0	
CRAB IOTALS	2.0		23.0		0.0		0.0		0.0				25.0	
NO. COLL.		1_0		1.0		1.0						7.0		
N/COLL	2.0		23.0		0.0		-		-		3.6			

TABLE 3.1.5-19

٨

TABLE 3.1.5-20 Monthly Mean Number of Blue Crab, callinectes sapidus, taken at Night By 68.6 Meter seine at augustine beach, 1978.

.

LOCATION	J A	N 	FEB		MAR		APR		MAY	*-	JUN		JUL	
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL
A U B 3	-	-	-	-	0_0	1.0	0.0	1_0	1.0	1.0	4.0	1.0	-	-
CRAH TOTALS	0.0		0.0		0.0		0.0		1.0	•	4.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
N/COLL	-		-		0.0		0.0		1.0		4.0		-	
											IA	SALEM	CR 1978	•

	 AUG	 SEP	 0CT	NOV	DEC		**************
LOCATION	N/COLL . COLL	N/COLL COLL	N/COLL COLL	N/COLL COLL	N/COLL COLL	CATCH / COLL- NO. Ection Coll.	CRAB TOTALS
AU83	3.0 1.0	21.0 1.0	86.0 1.0		- , -	16.4 7.0	115.0
CRAB TOTALS	3.0	21_0	86.0	0_0	0.0		115.0
NO. COLL.	1.0	1.0	1.0			7.0	
N/COLL	3.0	21.0	86.0	-	-	16.4	

TABLE 3.1.5-21
MONTHLY MEAN NUMBER OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT
BY 68.6 METER SEINE AT SUNKEN SHIP COVE BEACH, 1978.

LOCATION	JAL	4 	FEB		M A R		APR		M A Y				JUL	
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL
5506	-	-	-	-	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	-	-
CRAB TOTALS	0.0		0.0		0.0		0.0		1.0		0.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
N/COLL	-		-		0.0	ŗ	u.0		1.0		. 0.0		-	
LOCATION	AU	 6	SEP		001		NOV		DEC					
		COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	CATCH / COLL- ECTION		CRAB TOTALS	
	N/COLL													
\$\$66	N/COLL 0.0	1.0	53.0	1.0	0.0	1.0	-	-	-	-	7.7	7.0	54.0	
SSC6 Crab totals			53.0 53.0	1.0	0.0	1.0	- 0.0	-	- 0.0	-	7.7	7.0	54.0 54.0	
	0.0			1.0		1.U 1.U	- 0.0	-		-	7.7	7.0 7.0		

.

3.1-186

.

LOCATION	JAI	N 	FE8	*******	MAR		APR		МА Ү 	******	4U L	ł 	JUL 	
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COL
PHD1	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
SGBS	-	-				1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
AUBS			-	-	ů ů	1.0	0.0	2.0	0.0	2.0	1.5	2.0	0.0	1.0
\$13A	-	-	-	-	0.0	1.0	0.0	2.0	0.5	2.0	0.0	2.0	0.0	2.0
RE14	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	1.5	2.0	0.0	2.0
ELPS		-	· 🕳	-	00	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
085A	-	-	-		0.0	1.0	0.0	2.0	0.5	2.0	0.0	2.0	ů ů	2.0
SSCO	-	-	-		0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	1.0	1.0
HOP7	-	_		-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
MHC8	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
RAB TOTALS	0.0		0.0		0.0		0.0		2.0		6.0		1.0	
IO. COLL.		-		-		10.0		20.0		20.0		20.0		18.0
I/COLL	•		-		0.0		0_0		0.1		0.3		0.1	
LOCATION	ΑU	G	SEP		001		• NOV	/	DEC	******			*****	
		_												
, 	N/COLL	COLL	N/COLL	COLL	N/COLL	CÓLL .	N/COLL	COLL	N/COLL		CATCH / COLL- Ection		CRAB Totals	
PHD 1										COLL	/ COLL- Ection	COLL.	TOTALS	
PHD1	0.0	2.0	0.5	5.0	0.0	1_0	0.0	5.0	0.0	COLL 1.0	/ COLL- ECTION 0.1	COLL.	TOTALS 1.0	
SGB2	0.0	5°0	0.5 0.0	5.0 2.0	0.0 0.0	1.U 1.0	0_0 0_0	5°0	0_0 0_0	COLL 1.0 1.0	/ COLL- ECTION 0.1 0.1	COLL. 17.0 17.0	TOTALS 1.0 1.0	
SGB2 AUB3	0.0 0.5 0.5	2.0 2.0 2.0	0_5 0_0 5_0	2.0 2.0 2.0	0.0 0.0 0.0	1_U 1_0 2.0	0_0 0_0 5_0	5°0 5°0	0_0 0_0 0_0	COLL 1.0 1.0 1.0	/ COLL- ECTION 0.1 0.1 1.4	COLL. 17.0 17.0 17.0	TOTALS 1.0 1.0 24.0	
5 G B 2 A U B 3 S T 3 A	0.0 0.5 0.5 0.5	2.0 2.0 2.0	0-5 0-0 5-0 6-5	2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0	1.U 1.0 2.0 1.0	0_0 0_0 5_0 0_0	5°0 5°0 5°0	0_0 0_0 0_0 0_0	COLL 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 0.1 1.4 0.9	COLL. 17.0 17.0 17.0 17.0	TOTALS 1.0 1.0 24.0 15.0	
SGB2 AUB3 ST3A RE14	0.0 0.5 0.5 0.5 0.5	2.0 2.0 2.0 2.0	0.5 0.0 5.0 6.5 8.5	5.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 0.0 0.0	1_0 1_0 2_0 1_0 1_0	0_0 0_0 5_0 0_0 0_0	5°0 5°0 5°0 5°0		COLL 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 0.1 1.4 0.9 1.2	COLL. 17.0 17.0 17.0 17.0 17.0	TOTALS 1.0 1.0 24.0 15.0 21.0	
SGB2 AU83 ST3A RE14 ELP5	0.0 0.5 0.5 0.5 0.5 0.5 0.5	2.0 2.0 2.0 2.0 2.0	U_5 U_0 5_U 6_5 8_5 0_5	2-0 2-0 2-0 2-0 2-0	0.0 0.0 0.0 0.0 0.0 0.0	1_U 1_0 2_0 1_0 1_0 1_0	0 - 0 5 - 0 0 - 0 0 - 0 0 - 0 0 - 0	2.0 2.0 2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0	COLL 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1	COLL. 17.0 17.0 17.0 17.0 17.0 17.0	TOTALS 1.0 24.0 15.0 21.0 1.0	
SGB2 AUB3 ST3A RE14 ELP5 OB5A	0.0 0.5 0.5 0.5 0.5 0.5 0.0	5.0 5.0 5.0 5.0 5.0	U_5 U_0 5_U 6_5 8.5 0_5 0.5	2.0 5.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 - U 1 - U 2 - O 1 - O 1 - O 1 - O	0 - 0 0 - 0 5 - 0 0 - 0 0 - 0 0 - 0 0 - 0	2.0 2.0 2.0 2.0 2.0 2.0 2.0		COLL 1.0 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1 0.1	COLL- 17.0 17.0 17.0 17.0 17.0 17.0 17.0	1.0 1.0 24.0 15.0 21.0 1.0 2.0	
SGB2 AUB3 ST3A RE14 ELP5 OB5A SSC6	0.0 0.5 0.5 0.5 0.5 0.5 0.0 0.0	5.0 5.0 5.0 5.0 5.0 5.0	0.5 0.0 5.0 6.5 8.5 0.5 0.5 0.5	2.0 2.0 2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0	0 - 0 0 - 0 5 - 0 0 - 0 0 - 0 0 - 0 0 - 0	2.0 2.0 2.0 2.0 2.0 2.0 2.0		COLL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1 0.1 0.1	COLL- 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	TOTALS 1.0 24.0 15.0 21.0 1.0 2.0 2.0	
SGB2 AUB3 ST3A RE14 ELP5 OB5A	0.0 0.5 0.5 0.5 0.5 0.5 0.0	5.0 5.0 5.0 5.0 5.0	U_5 U_0 5_U 6_5 8.5 0_5 0.5	2.0 5.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 - U 1 - U 2 - O 1 - O 1 - O 1 - O	0 - 0 0 - 0 5 - 0 0 - 0 0 - 0 0 - 0 0 - 0	2.0 2.0 2.0 2.0 2.0 2.0 2.0		COLL 1.0 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1 0.1 0.1 0.1	COLL- 17.0 17.0 17.0 17.0 17.0 17.0 17.0	1.0 1.0 24.0 15.0 21.0 1.0 2.0	
SGB2 AUB3 ST3A RE14 ELP5 OB5A SSC6 HOP7•	0.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.5 5.0 6.5 8.5 0.5 0.5 0.5	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.U 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0	0 - 0 0 - 0 5 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 5	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		COLL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1 0.1 0.1 0.1	COLL- 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	TOTALS 1.0 24.0 15.0 21.0 1.0 2.0 2.0 1.0	
SGB2 AUB3 ST3A RE14 ELP5 OB5A SSC6 HOP7 MHC8	0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.5 0.0 5.0 6.5 8.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 47.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		1.U 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0	0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.5 1.5	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		COLL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	/ COLL- ECTION 0.1 1.4 0.9 1.2 0.1 0.1 0.1 0.1 0.4	COLL- 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	TOTALS 1.0 24.0 15.0 21.0 1.0 2.0 2.0 1.0 6.0	

TABLE 3.1.5-22 Monthly mean number of blue crab, callinectes sapidus, taken during daylight by 3.0 and 7.6 meter seine at river seine stations, 1978.

IA SALEM CR 1978

.1-187

 ω

•

TABLE 3.1.5-23 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT By 4.9 METER TRAWL IN WEST RIVER ZONES, 1978.

WIDIH (4M)	J A N	FEB	MAR	APR	MAY	HUL	JUL	AUG	SEP	0CT	NOV	DEC	
					•								
001-005	-	-	-	· 🕳	-	-		-	-	-	**	-	
008-010	-	-	-		-	-	. 🛥	-	1	-	**	-	
011-015	÷ 1	-		-	-	-	-	-	ż	3	2	-	
016-020	-	-	-	-	-	-	-	2	5	2	3	1	
021-u25	-	-	-	-	-	-		-	7	16	21		
026-030	-	-	-			1	-	1	i	19	- 1	2	
031-035	-	-	-	-	-		-		ż	14	6	1	
030-040	-	-	-	-	-	-			-			1	
041-045	-	-		-	Ca	-	-	-	1	ś	3	ż	
046-050	-	-	-	-	1	1	-	-	1	3	2		
151-655	-	-	-	-	i	<u>.</u>		-	1	5	2	- 1	
050-060	-	-	-	-		_	-			ĩ	2		
061-055	-	-	-	-	1	1			ż	7	2	_	
000-4/0	-	-	-	-		i	-	-	2	6	~	_	
071-075	•	-	-			4		-	L 19	7	-	-	
070-000	-	-	-		-	2	-	-	1	,	1	-	
081-035		-	-	-	-	1				5		_	
080-090	-	-		-	1	<u>.</u>	-	-	_	1	2	_	
091-095	-	· •		-		ĩ	_	_	-	;	2	-	
096-100	-	-	-	-		2	1	_	-			-	
101-105	-	-	-		•	5		_		7		-	
106-110	-		-	-	-	1			2	3		-	
111-115	-	-	_	-	-		1		2		1	•	
116-120	-	-	_	_	-	2		-	4		-	•	
121-125	-	_	-	-	-	2	2	<u>'</u>	-	-	-		
120-130	-	_	-		_	2		-	-			-	
131-135	-	_	-	-	-	-	1	_	-		1	*0	
130-140	-	_	_	-	-	-			-	-	I I	-	
141-145	-	_	-	-		-		-	-	<u>!</u>	-	-	
146-150	-	-	_	-	-	-	2	1	-	1	6	-	
151-155	-	-	-	-	-	1	4	1	-	-	e 2		
156-160	-	-	-	-	-	-		-	-	-	-	-	
161-165	-	-	-	-	-	-	-	-	-	-		-	
100-170	-	-	-	-	-	-	-	1	1	-	-	-	
171-175	-	_		-	-	_	-	1	-	-	-	49	
176-180	_	-	-	-	-	- •	-	1	ı	1	62	58	
181-185	-	-	-	-	*	-	•		-	•	-		
	-	-	-	-2	-	-	-	-	1	•	-	*	
AL MEAS.	•	-	-	-	5	25	9	10	39	122	53	9	
AL TAKEN	-	-	-	G	5	25	9	10	42	123	63	9	
NEAN	-	_			69.0	94.1	128.3	108.5	54.0	50.4	39.8	34.0	

IA SALEM CR 1978

.

WIDTH (MM)	JAN	FEB	MAR	A P R	MA Y	JUN	JUŁ	AUG	SEP	0 C T.	NOV	DEC
001-005	•	-	-	-	_ '	-	-	-	-	-	-	-
006-010	· -	-	-	- '	-	-	-	-	-	-	-	-
011-015	•	-	-	-		-	-	-	1	1	3	2
016-020	-	-	-	-	1	-	-	-	4	14	7	8
021-025	-	-	-	-	-	-	-	-	2	41	19	5
020-030	-0		-	•	1	-	-	-	4	31	16	3
031-035	•	-	-	-	-	1	-	-	4	25	12	6
036-040		-	-	-	-	-	-	-	4	12	8	-
041-045	-	-	-	-	1	2	-	-	3	9	5	1
046-050	-	-	-	1	-	-	-	-	7	10	4	-
051-055	*	-	-	-	2	1	· _	-	14	7	2	-
056-060	-	-	-	-	-	-	-	-	4	9	2	1
001-005		-	-	-	-	•2	-	-	3	6	-	1
005-070	-	-	-	-	-	1	-	-	-	6	-	÷ .
071-075	-		-	-	-	1	-		2	· 6	1	1
076-080	-	-		-	-	1	1	-	-	· 6	1	-
û81~U35	-	-	-	-	-	ź		-	2	5	1	-
006-090	-	-	-	_	1	-	-	_	1	8	2	_
091-095	-	_	_	-	_	2	_	1	1	6	2	-
090-100	_	_	_	_	_	1	2	-	<u>.</u>	2	-	_
101-135	-	_	_	_	-	1	2	-		č,	د	-
	-	-	-	-	-		3	-	-	4	-	-
100-110	-	•	-	-	-	2	I	- 1	-		-	1
	•	-	-	-	-	1		1	-	. 4	-	-
116-120 121-125	-	-	-	-	-	-	27	-	-	1	-	•
	-	-	-	-	-	<u>_</u>	3	2		4	-	
126-130		-	-	-	-		4	2	-	- 1	-	
131-135 136-140	-	-	-	-	-	1		3	2		-	-
141-145	-	-	-	-	-	-	1		-	1	-	•
	-	-	-	-	-	-		2	-	-	-	-
146-150 151-155 ·	-	-	-	-	-	-	3	-	5	2	-	
	-	-	-	-	-	-	1	-		2	~	-
156-160	-	-	-	-	-	-	3	1	1	-	-	-
101-165	-	-	-		-	-	2	-	1	. 2	-	1
166-170	-9	-	-	-	-	-	-	1	5	2	-	-
171-175	•	-	-	-	-			~	1	1	•	•
176-180	-	-	-	-	-	-	-	-	1	2	-	-
181-135	-	-	-	-	-	-	1	1	3	-	-	-
186-190	-	-	-	-	-	-	-	-	-	-	-	-
191-195	-	-	-	-	-	-	-	-	1	-	-	-
190-200		-	-	-	-	-	-	-	-	-	-	-
201-235	-	-	-	-	-	*	-	-	1	-	-	-
AL MEAS.	-	-	-	1	6	20	29	12	74	229	85	30
AL TAKEN	-	-	-	· 1	6	20	29	13	74	229	87	30
										· •		
MEAN	-	-	-	48.0	47.0	82.6	130.5	139.0	75.9	53.1	34.9	35.9

TABLE 3.1.5-24 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT BY 4.9 METER TRAWL IN EAST AND REEDY ISLAND ZONES, 1978.

IA SALEM CR 1978

	TABLE 3.1.5-25	
SIZE-CLASS DISTRIBUTION OF BL	UE CRAB, CALLINECTES SAPIDUS, TAKEN OURIN	G DAYLIGHT
BY 4.9 MET	ER TRAWL IN CHANNEL ZONES, 1978.	

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	MAY	JUN	INF	AUG	SEP	0 C T	NOV	DEC	
001-005	-	-	-	-	· •	-		-	-	-	-	-	
006-010	-	-	-		-	-	-	-	-	-	-	-	
011-015	-	-	-	-	-	-	**	-	1	ь	~	-	
016-020	-	-	-	-	-	-	-	-	3	-	-		
021-025	-	-	-	-	·	-	~	-		-	-	1	
026-030	-	-	-		-	-	-	-	1	-	-	ž	
031-035	-	-	+	-	-		-	-		-	2	- .	
036-040	-	-	-	-	-	· _ ·	-	-	-	3	-	-	
041-045	-	-	-	-	-	-	-	-	2	-	1	-	
046-050	-	-	-	-	-	-	0	-	2	-	-	1	
051 - 055	-	-	-	-	-		-	-	ž	-	~	· ·	
056-060	-	-	-	-	-	-	-		1	-	-	-	
U61-U65	-	-	-	-	-	-	-	-	i	-	-	-	
066-070	-	-	-	~	-	-	-	· 🕳	1		-0	-	
071-075	-	-	-	-	-	-	-	-	-	-	-	~	
076-080	-	-	-	-	-	-	-	-	-	1	-	-	
081-085	-	-	-	-	-	-	-	-	1	· i		~	
080-090	-	-	-	-	-	-	-	· _	-		-	-	
091-095	-	-	-	-		-	-	-	र	-	-	-	
096-100	-	-	-	_ '	-	-	-		-	1	-	- ·	
101-105	-	-	-	-	-	-	-	-	-	<u>_</u>			
106-110	-	-	-	-	-	-	2	-	-	_		1	
111-115		-	-	_	-	_	1	-	_	_			
110-120	-	-	-	_	_	_	3	_	-	_	-	_	
121-125	-	-	-	-	-	_	1	_	_	_	-	_	
126-130	-	-	-	-	-	_		-	_	-	_	-	
131-135	-	-	-	_	-	-	-	_	_	2	_		
136-140	-		-	-	-	-	1	_	_	-	_		
141-145	-	-	-	~	-	-	1	-	-	• _	~	_	
146-150	-	-	-		-	-			-	_	~	-	
151-155	-	-	-	-	-			-	-	-	-	· 🕳	
156-160	-	-	-	-	-	-	-	-	-	1	-	-	
161-165	-	-	-	-	-	-	-	-	1	<u>.</u>		-	
166-170	-	-	~	-	-	-	1	-	_	-			
171-175	-	-	-	~	-	-	1	-	_	-			
							=						
TAL NEAS.	-	-	. =	-	-		11	-	19	9	3	5	
FAL TAKEN	-	-	-	-	-	-	11	-	19	9	3	5	
MEAN	-	-	•	-	. 🛥	-	130.5	-	57.8	88.2	34.7	47.6	

IA SALEM CR 1978

CARAPACE WIDTH (MM)	JAN .	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP	001	NOV	DEC
	*****	****		********	*****							
001-005	-	_	-		 ••	-	-	-	-	-	-	, -
000-010	-	-	-	-	-	-	-	-	-	-	-	-
011-015	-	+	-	-	-	-	-	-	1	-	-	-
010-020	-	-	-	-	-	-	-	-	~	-	-	-
021-025	• •	-	-	-	-	· •	-	-	. ••	-	-	-
026-030		-	-	-	-	-	-	-	-	-	-	-
031-035	÷	-	-	-	-	-	-	-	-	-	-	-
036-040	-	-	-	-	-	-	-	-	-	-	-	-
041-045	-	-	-	-	. –	-	-	-	-	-	-	-
046-050	-	-	-	-0	-	-	-	-	-	-	-	-
051-055	-	-	-	-	-	-	-	-	-	-	-	-
056-060	-	-	-	-	-	-	-	-	-	-	-	-
051-055	-	-			-	-	-	-	-	-	-	-
066-070		-	-	-	-	-	-	-	-	-	-	-
071-075		-	_`	-	-	-	-	-	-	-	-	-
076-030	-	-	-		-	-	-	-	-	-	-	-
081-035	_	-	-	-	-	1	-	-	-	-	-	-
086-090		-	-	-	-	-	-	-	-	-	-	-
091-095	_	_	-	-	-	-	-	-	-	-	-	-
096-100	_	_	-	-	-	-	-	-	-	-	-	-
101-105	-	_	-	-	-	-	-	-	-	-	-	-
	-	_	_	-	-	-	-	-	-	-	-	-
106-110	-	-	-	_	-	-	-	-	-	-	-	-
111-115 116-120	-		-	-	-	-	-	-	-	-	-	-
121-125	-	-	-	_	_	-	-		-	-	-	-
126-130	-	-	-	-	-	-	-	-	-	-	-	-
131-135	~	_	-	-	_	-	-	-	-	-	-	-
136-140	-	-	-	-	-	-	-	-		-	-	-
141-145	-	-	-		· _	-	~	-	-	-	-	-
146-150	-	-	-	-	•	-	-	-	-	-	-	-
151-155	-	-	-	_	_	-		-	-	-	-	-
	-	_	-	-	-	-	-	1	-	-	-	-
158-150	-	-	-	-	-			•				
TAL MEAS.	-	-	-	-	-	1	-	1	1	-	-	-
TAL TAKEN	-	-	-	•	-	_ 1	-	1	1	-	-	-
MEAN	0	-	-	••		82.0	-	160.0	14.0	-	-	-

TABLE 3.1.5-26 SIZE-CLASS DISTRIBUTION OF BLUF CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT BY 4.9 METER TRAWL IN ZONE W-3, 1978.

IA SALEM CR 1978

. •

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	MAY	ИÜL	JUL	AUG	\$ E P	0 C T	NOV	DEC	
************		********				, ay ini ini ay ay ah in 13 mg c			و فها نوا کر این کر این کر این اور این اور این او			a nga nga tao niy My My Mg ng asi dat	
001-005	-	-	-	_	-	-	-	-	<u>.</u>	-		-	
000-010	-	-	- '	-	-	-	-	-	-	-	~	_	
011-015	-	-	-	-	-	-	-	-	र	-	-	-	
016-020	-	-		-	-	-	-	1	3	~		-	
021-025	-	-	-	-	-	-	-		ž	-		-	
026-030	-	-	-	-	1	-	-	i.	1	1	**		
031-035	-	-	-	-	-	-	-	-	3		-	-	
036-040	-	-	-	-	3	•	-		-	1	-	~	
041-045		-	-	-	-	-	-		-	i	-		
046-050	-	-	-	-	-	-	-	-	1	Ĺ		~	
051-055	-	-	-	-	-	-	-	-	3	2	-	-	
056-060	-	-	-	-	-	-	-	-	1	-	-	-	
061-055	-	-	-	-	1	-	-	- 0	-	-		-	
066-070	-	-	-	-	-	-	-	-	-	-	-	•	
071-075	-	-	-	-	-	1	-	-	-	2	-	-	
076-080	-	-	-	-	-	-	-	-	-	-	-	~	
081-085	-	-	-	-	-	-	~	-		-	-	-	
086-090	+	-	-	-	-	-	-		-	1	-	-	
091-095	-	÷	-	-	-	-	-	~	-	1		-	
096-100	-	-	-	-	1	1	-			2	•	-	
101-105	-	-	-	-	-	-		-	-	-	-	-	
106-110	-	-	-	-	-	- ·	-	ta	-	-	-	-	
111-115	-	-		-	-	1		-	-	-	-	-	
116-120	-	-	-	-	-	-	-			· .	~	-	
TAL MEAS.	-	-	-	-	6	3	-	6	18	15	~	-	
TAL TAKEN	-	-	-	-	6	3	-	6	18	15	-	-	
MEAN	-	-	-	-	50.5	94.7	-	26.5	30.9	61.7		-	

TABLE 3.1.5-27 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT By 4.9 METER TRAWL IN ZONE SSC, 1978.

IA SALEM CR 1978

CARAPACE												
WIDTH (MM)	JAN	FEB	MA R	A P K	MA Y	JUN	JUL	AUG	SEP	0 C T	NOV	DEC
001-005	-	-	te 9	-	· · -	-	-	-	-		-	-
006-010	-	-	-	· 🛶	-	-	-	-	-	-	-	-
011-015	-	-	-	-	-	-	-	-	-	-	-	-
016-020	-	-	-	-	-	-		1	-	-	-	-
021-025	-	-	-	-	-	-	-	2	1	1	-	-
026-030	-	-	-	-	÷ .	-	-	-	-	2	-	-
031-035	-	-	••	-	-	-	-	2	-	2	-	-
035-040	-	-	-	-	-	-	-	-	-	-	-	-
041-045	-	~	-	-	-	-	-	-	-	-	-	-
040-050	-	-	-	-	-	-	-	-	~	-	-	-
051-055	-	-	-	-	-	' Z	-	1	1	1	-	-
050-060	-	· •	-	-	-	1	-	-	-	-	-	-
061-065	-	-	-	-	-		-	-	-	-	-	-
065-070	-	-	-	-	-	• -	-	-	1	-	-	-
071-075	-	•	-	-	-	2	-	-	2	-	-	-
076-080	-	-	-	-	-	-	-	-	1 ·	-	-	-
081-035	-	-	-	-	-	• •	-	-	-	-	-	-
086-090	-	-	-	-	-	-	-	-	-	-		-
. 091-095	-	-	-	-	-	1	-	-	-	-	-	-
096-100	-	-	-	-	-	1	-	-	1	-	-	-
101-105	• ·	-	-	-	-	1	-	-	-	-	• •	-
106-110	-	~	GF	-	-	-	-	-	-	-	-	-
TAL MEAS.	-	-	-	-	-	8	-	6	7	6	-	-
TAL TAKEN	-	-	+	-	-	8	-	6	7	6	-	÷

TABLE 3.1.5-28 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT By 68.6 meter seine at augustine beach, 1978.

IA SALEM CR 1978

.

TABLE 3-1.5-29	
SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKE	N DURING DAYLIGHT
. BY 68_6 METER SEINE AT SUNKEN SHIP COVE BEACH, 19	78.

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	001	NOV	DEC
===*====					**			********				و چې نو ها دو وا وه وه ده وا وا وا وه وه وه
001-005		-	_	- .	_	~	_	_	_	_	_	_
004-010	_	_	_		-	_	-	-	1	_	_	-
011-015	-	_	_	_		-	-	-	6	-	-	-
016-020	-	_	-	-	-	-	_	-	4	_	-	
021-025	_	_	-	_	-	• -	_	_	ر د	-	-	-
026-030	-	-	-	-	-	-	-	-	27	-	-	-
031-035	-	-	_	-	-	-	-	-	3	-	-	-
036-040	· -	-	-	-	-	-	-	-	3	-	-	-
041-045	-	-	_	-	-		-	-	-	-	-	•
046+050	-	-	-	-	-	. .		-	-	-	-	-
051-055	-	-	-	-	-	-	-	-	-	-	-	**
056-050	-	-	-	-	-	-	-	-	2	-	-	-
061-055	-	-	-	-	-	-	-	-	2	-		.
066-070	-		-	-	-	-	-	~	2	-	-	~
071-075	-	-	-	-	-	-	-	-	-		-	-
076-080	-	-	-	-	-	4	-	-	1		-	-
081-085	-	-	-	-	-	-	-	-	1	-	-	-
	-	~	-	-	-	-	-	-	-	-	-	-
086-090	-	-	-	-	-	-	-	•	-	-		-
041-095	-	-	-	-	-	-	-	-	-	-	-	-
096-100	-	-	-	-	-	~	-	-	-	-	-	2 4
101-105	-	-	-	-	-	-	-	-	1		~	-
106-110	-	-	-			-	~	1	•	-	-	-
111-115	-		-	-	-	•	-	-	+2	-	-	-
116-120	-	-	-	-	-	-	-	-	-	-	-	-
121-125	-		-	-	-	-	-	-	-	-	-	-
126-130	~	-	-		-	-	-	•		-	-	-
131-135	-	-	~	-	-	-	-	-	-	• •	-	- .
136-140	-	-	. •	-	*	-	~	- '	-	-	-	-
141-145	-	-	-	-	~		-	1	-	-	-	-
TAL MEAS. '	-	-	-	-	-	-	-	2	23	-	\$	-
TAL TAKEN	- ·	-	-	-	-	-		2	23	-	-	4 2
MEAN	-	-	-	_	-	-		124.5	35.7	-	-	~

IA SALEM CR 1978

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0 C T	NOV	DEC
) U M B W C M W W W	* - * * * * * * * *	ین ہے جہ جہ ان منا چا خر در								. = u # = = = = = = = = =	
001-005	-	-	-	-	-	-	-	-	-	-	-	-
006-010	-	-	-	-	-	-	-	-	-	-	-	-
011-015	-	-	-	-	-	-	-	-	4	. 3	-	-
016-020	P=	-	-	-	-	-	-	-	4	10	-	-
021-025	~	-	-	-	-	-	-	-	1	27	-	-
020-030	-	-	-	-	-	-	-	-	1	12	-	-
051-035	-	-	-	-	-	-	-	-	-	20	-	-
036-040	-	-	-	-	-	-	-	2	-	6	-	-
041-045		-	-	-	-	-	-	1	-	3	-	-
040-050		-	-	-		-	-	-	1	-	-	-
051-055		-	-	-	-	-	-	-	1	-	-	-
055-050	-	-	-	-	-	-	- '	~	1	2	-	-
051-065	. ~	-	-	-	-	-	-	-	1	2	-	-
006-070		-	-	-	1	-	-	-	1	1	-	-
071-075	-	-	-	-	-	-	-	-	2	-	-	-
076-030		-	-	-	-	-	-	-	1	-	-	-
081-035	-	- .	-		-	1	-	-	1	-	-	-
088-090	-	-	-	-	· -	-	-	-	1		-	-
091-095	-	-	-	-	-	-	-	128	-	-	-	-
096-100	-	-	-	-	-	1 .	-	-	-	-	-	-
101-105	-	-	-	-	•	2	-	-	-	-	-	-
TAL MEAS.	-	-	-	-	1	4	-	3	20	86	-	-
TAL TAKEN	-	-	-	-	1	4	-	3	21	86	-	-
MEAN	÷.	-	-	-	67.0	95.5	-	38.3	43.5	28.8	-	-

TABLE 3.1.5-3D SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT BY 68.6 METER SEINE AT AUGUSTINE BEACH, 1978.

IA SALEM CR 1978

..

.

.

3.1-195

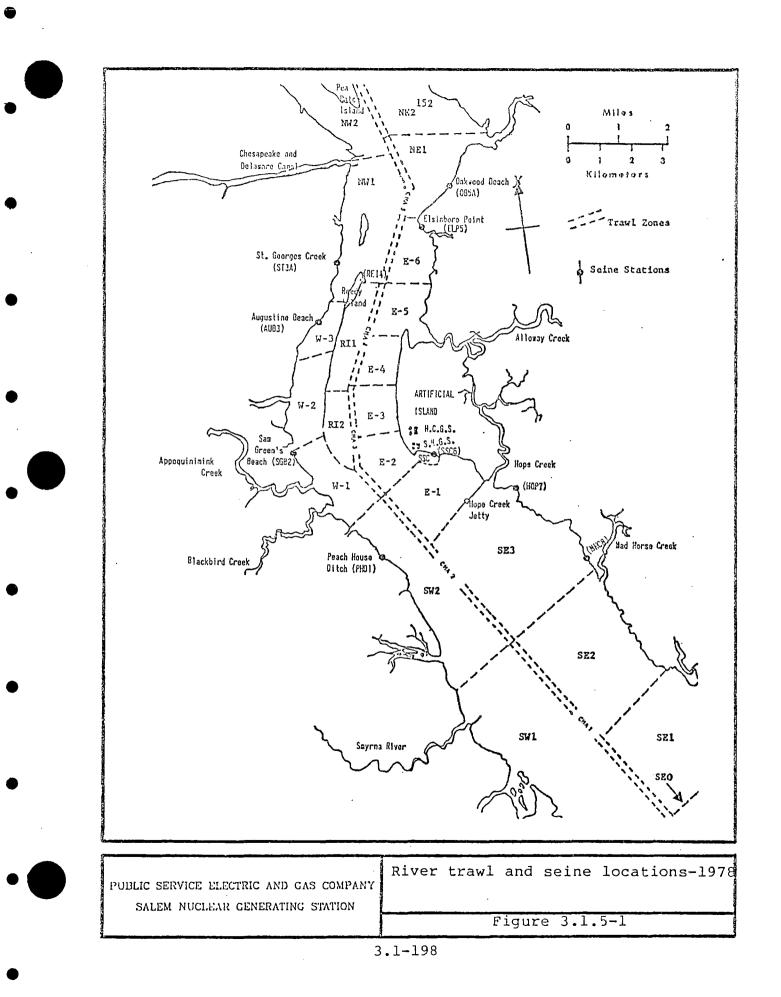
•

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	 May	JUN	JUL	AUG	SEP	0CT	NOV	DEC

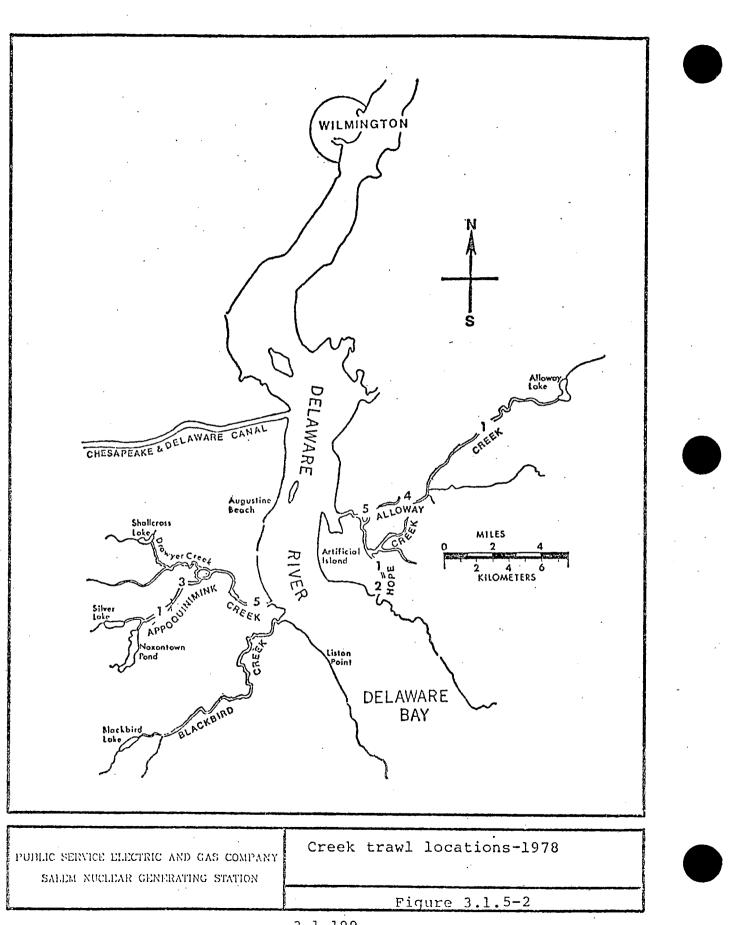
001-005	-	-	-	_	-	-	-	-	-	-	-	e 7
006-010	-	-	-	-	-	~	-	-	-	-	-	~
011-015	-	-	-	-	-	-	-	-	2	-		-
016-020	-		-	-	-	-	-	-	3	-	-	-
021-025	-	-	-	-	-	-	-	-	5	-	•7	-
026-030	-	-	-		-	- '	-	-	6	-	-	-
031-035	-	-	-	-	1	-	-	-	4	-	-	-
036-040	-	-	-	-	_	-	-	-	1	-	-	-
041-045	-	-	-	-	-	-	-	-	1	-	-	
046-050	-	-	-	-	-	-	-	-	1	-	-	
ú51-055	-	-	-	-	-	-	-	-	4		-	-
050-060	-		-	-	-	-	-	-	1	-	-	-
061-065	-	-	-	-	-	-	-	-	4	-	-	-
006-070	-	-	, -	-	-	-	-	-	1	-	-	
071-075	-	-	-	-	-	-	-	-	1		-	-
076-080	-	-	-	-	-	-	-	-	-	-	-	-
081-055	-	-	-	-	-	-	-	-	-	-	•	b m
086-090	-	-	-	-	-	-	-	-	-	-	-	-
091-095	-	-	-	-	-	-	<u>د</u>	-	1	-	-	-
096-100	-	-	-	-	-	-	-	-	-	-		-
DTAL MEAS.	-	-	-	-	1	-		-	35	-	~	-
DTAL TAKEN	-	-	-	-	1	-	-	-	53		-	-
MEAN	-	-	-	-	33.0	-	-	-	39.5	-		

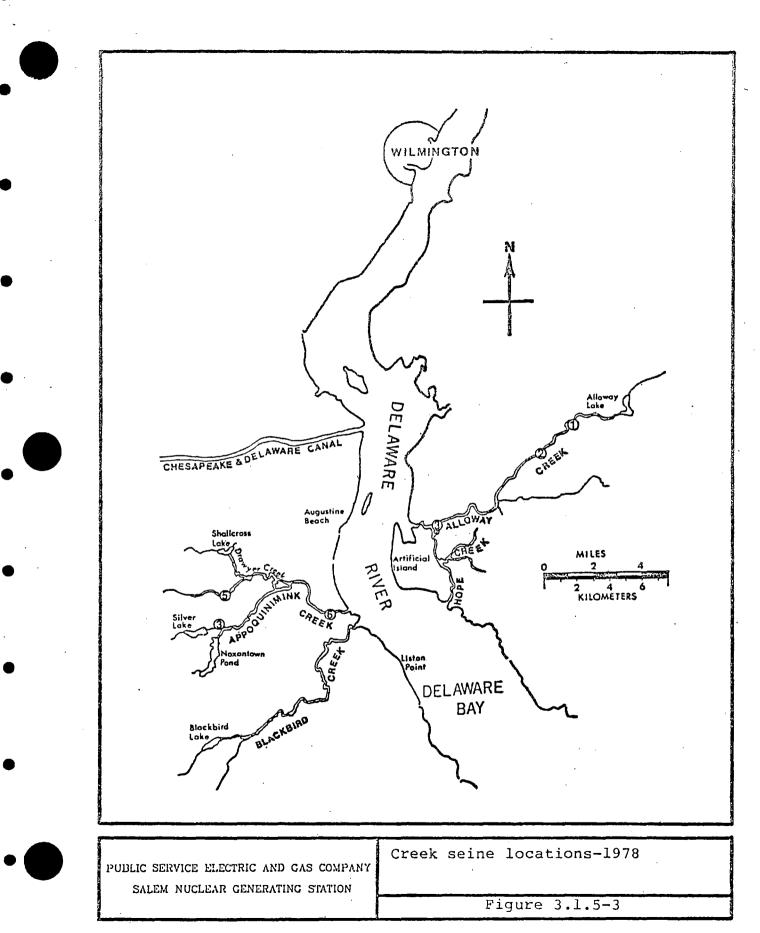
TABLE 3.1.5-31 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT BY 68.6 METER SEINE AT SUNKEN SHIP COVE BEACH, 1978.

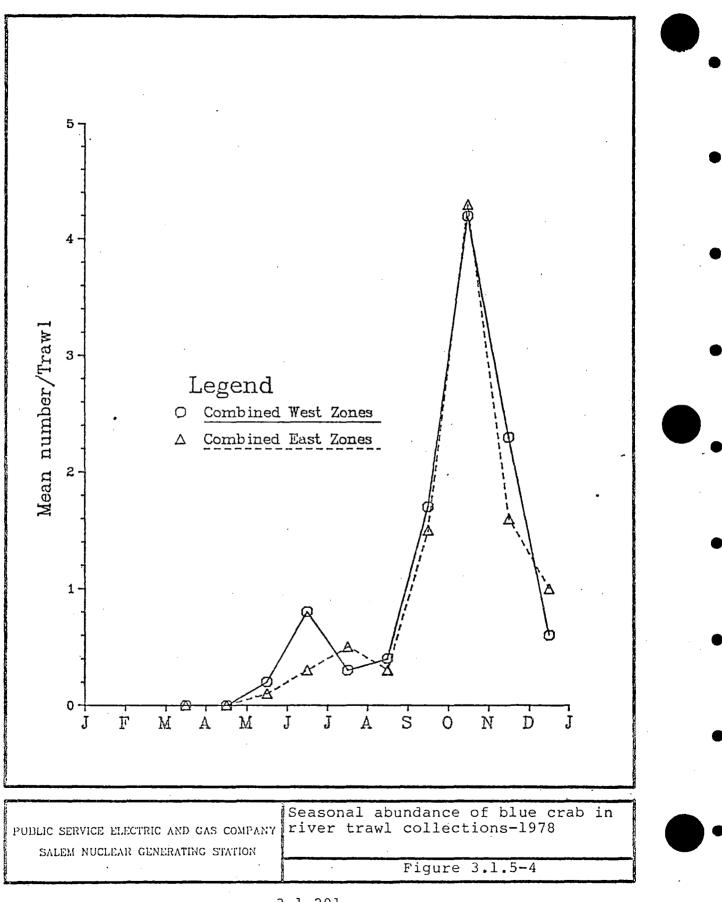
IA SALEM CR 1978

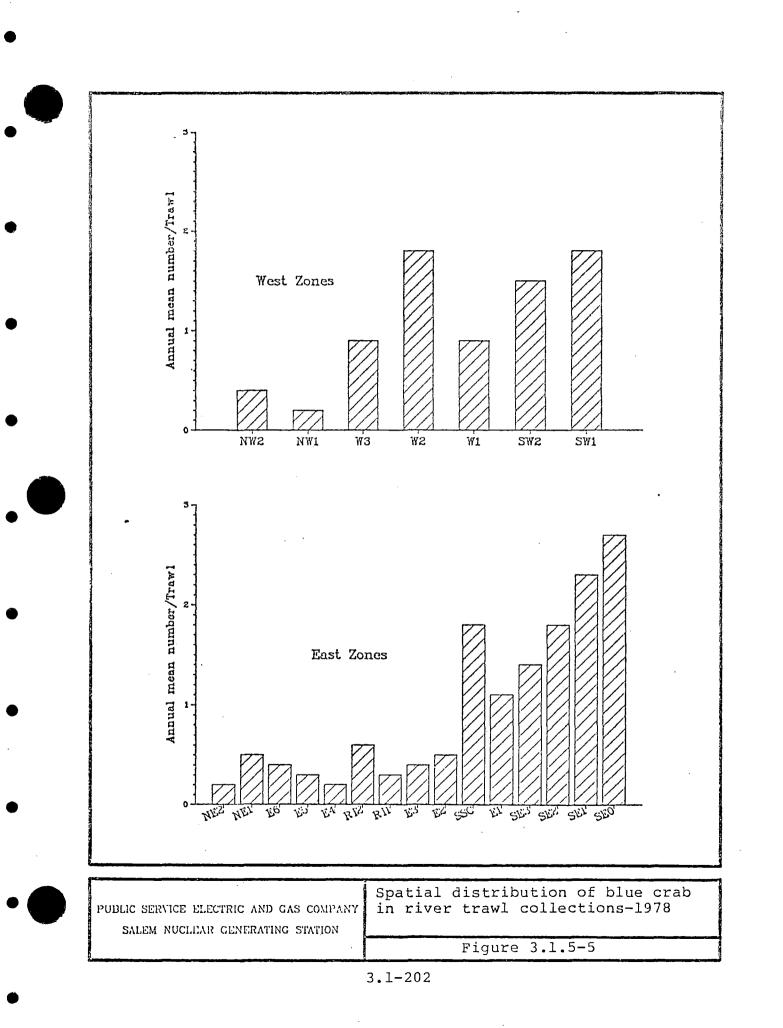

CARAPACE WIDTH (MM)	JAN	FEB	MAR	APR	MAY	ЧUГ	JUŁ	AUG	SEP	007	NOV	DEC

001-005	-	-	-	-	-	-	-	-	6	-	-	-
006-010	-	-	-	-	-	-	-	-	14	-	-	-
011-015	-	-	-	-	-	-	-	-	10	-	4	-
016-020	-	-	-	•	•	-	-	-	7	-	2	-
021-025	-	-	-	-	1	-	-	2	2	-	5	-
026-030	-	-	-	-	-	-	-	1	-	-	1	-
031-035	-	-	-	-	-	1	-	-	1	-	. –	-
036-040	~	-	-	-	-	-	-	-	1	-	1	-
041-045	-		-	-	-	-	-	1	-	-	1	-
046-050	-	-	-	-	1	· 2	-	-	3	-	. •	-
051-055	-	-	*	-	-	1	- '.	-	1	-	-	-
050-060	•	-	-	-		-	1	-	1 '	-	-	-
061-065		-	-	-	-	-	-	-	1	-	-	-
006-070	•	-	-		-	1	-	-	-	-	-	-
071-075	-	-	-	-	-	-	-	-	-	-	-	-
076-080	-	•	-	-	-	-	-	-	-	-	-	-
081-035	-	-	-	-	-	-	-	-	-	-	-	-
086-090	-	-	-	-	-		-	-	-	-	-	-
091-095	-	•	-	-	-	1	-	-	-	-	-	-
096-100	-	-	-	-		-	-	-	-	-	-	-
TAL MEAS.		-	•	-	2	6	1	4	47	-	14	-
TAL TAKEN	*	-		-	2	6	1	4	47 .	-	14	-
MEAN	-	-	-	-	34.5	57.2	59.0	28.3	17.5	-	21.4	· •


TABLE 3.1.5-32 SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT BY 3.0 AND 7.6 METER SEINES AT RIVER SEINE STATIONS, 1978.


IA SALEM CR 1978


· · ·



3.1-203

.

3.1.6a Juvenile And Adult Fishes - River (ETS Section 3.1.2.1.1g)

The fishes of the Delaware River near Artificial Island were sampled in 1978 by seine, trawl; and gill net within the area illustrated in Figure 3.1.6a-1. Objectives of the daylight seine and trawl programs were to determine 1) species composition, 2) spatial and temporal distribution, and 3) relative abundance of fishes. The objective of the night seine and trawl program was to identify diel differences in species abundance. The objective of the gill net program was to determine the period of occurrence and distribution of alosids during migratory movements through the study area.

3.1.6a.l Summary

Some 111 species of 51 families have been taken from the study area and contiguous regions since the study began in mid 1968 (Table 3.1.6a-1). In 1978, 148,538 specimens of 54 species of 31 families were taken in combined daylight seine, trawl, and gill net collections. All but the rainbow trout and harvest fish had been collected in previous years. The catch included freshwater, estuarine, and marine species which utilized the region primarily as a nursery or feeding area.

Weakfish (49,615 specimens), bay anchovy (36,861), hogchoker (33,919), white perch (2,909), spot (1,067), Atlantic croaker (994), American eel (814), and blueback herring (594) were most abundant in the trawl catch and comprised nearly ninety-nine percent of the annual catch. Atlantic silverside (5,022), bay anchovy (4,400), Atlantic menhaden (658), and mummichog (484) were the most abundant species taken by seine and comprised about ninety percent of the annual catch. Atlantic menhaden (6,776), blueback herring (1,478), alewife (370), bluefish (121), and American shad (30) comprised nearly ninety-nine percent of the gill net catch.

Catch composition correlated strongly with seasonal variations in salinity and water temperature. Fewest species and specimens were taken in March, a period of low water temperature and salinity. The catch in deeper waters comprised primarily white perch. No fish were taken in abundance in the shore zone.

Species variety and specimen counts increased during April through June, a period of rising water temperature and salinity. Many summer residents including bay anchovy, Atlantic menhaden, bluefish, and summer flounder were taken during this period. Juvenile weakfish appeared in very large numbers in late June. Adult alosids (American shad, blueback herring, alewife) were taken during pre-spawning migrations.

Bay anchovy, hogchoker, and white perch were predominant in the trawl catch during April and May. Weakfish replaced white perch as one of the predominant species in June. In the shore zone bay anchovy, Atlantic menhaden, Atlantic silverside, and mummichog were most abundant.

Species number and abundance remained high through September as the summer ichthyofaunal community became established. Several marine strays including inshore lizardfish, Atlantic needlefish, and harvestfish appeared in the catch during this period. Weakfish, bay anchovy, and hogchoker were predominant in the offshore catch; in the shore zone, Atlantic silverside and bay anchovy were predominant.

As temperature declined during October through December, summer residents began emigration from the study area and were gradually replaced by winter species. Juvenile herrings and American shad were taken as they migrated through the region from upriver nursery areas.

Weakfish numbers dropped drastically during this period. However, bay anchovy and hogchoker continued to be taken in large numbers offshore during October and November. In the shore zone only Atlantic silverside was abundant.

By December only hogchoker and white perch were taken in abundance offshore. No fish were taken in abundance in the shore zone during this period.

3.1.6a.2 Seine

Seines were hauled during daylight to determine species composition and the spatial and temporal distribution of fishes in the shore zone. Night collections were also made to identify diel differences in species abundance.

MATERIALS AND METHODS

Field

All seine samples required under this ETS were collected. Biweekly seine collections were taken during daylight at ten stations from March 17 through December 12 (Table 3.1.6a-2,

Fig. 3.1.6a-1). Inclement weather and river icing precluded sampling during January, February, early March, and late December. Corresponding night and day collections were taken monthly from March through October except during July, at stations SSC6 and AUB3. Collections were taken about 12 hr apart on two consecutive days.

Two types of seine were employed: a 7.6-m x 1.2-m (25.0- x 4.0-ft) bag seine with 6.4-mm (1/4-in) stretch mesh and a 3.0-m x 1.2-m (10.0- x 4.0-ft) flat seine with 3.2-mm (1/8-in) stretch mesh.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977; for a complete description see the 1977 Annual Environmental Operating Report.

Data Reduction

Data are discussed on the following statistics: s = species variety, n = number of specimens, and n/coll = number of specimens per collection.

To show the temporal abundance of the more abundant species, catch data (n/coll) were transformed by the log (x + 1) and the mean plus and minus one standard deviation and the range for each month were plotted.

To show the spatial distribution of these species the above listed parameters plus the 95 percent confidence interval of the mean were calculated and plotted for each station for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September 16 through December 15).

Catch composition between combined east and west stations was compared using Spearman's coefficient of rank correlation.

Principal components analysis (BMDP4M Factor Analysis; Dixon, 1975) was used to calculate and display similarities in the catch composition among stations. This method is described by Marriott (1974) and Pielou (1977). The 13 more abundant species were included as variables and stations as observations. A species by species (R-mode) product moment correlation matrix was calculated from log (x + 1) transformed catch data. The factor scores for each station along only the first three component axes were plotted.

RESULTS

Temporal Catch Composition

A total of ll,661 specimens of 31 species were taken in 170 seine collections (Table 3.1.6a-3). Atlantic silverside (n = 5,022), bay anchovy (4,400), Atlantic menhaden (658), and mummichog (484) were most abundant and comprised 90.1 percent of the total catch.

Seasonal catch patterns were evident. March and April were characterized by low species variety (s = 3 and 5) and abundance (n/coll = 1.8 and 3.3). Mummichog and Atlantic silverside were predominant (85.7 percent of the catch). Species variety and abundance increased through June (s = 16; n/coll = 164.7) as large numbers of adult bay anchovy and young Atlantic menhaden, along with several less abundant summer residents, including spot, weakfish, and hogchoker moved into the study area. Atlantic silverside and mummichog were also taken in abundance. During July through September species variety (monthly s = 16-17) and abundance (monthly n/coll = 72.6-159.0) remained high.

Several marine strays including inshore lizardfish, and Atlantic needlefish were taken during the period. The catch was predominated by young of the Atlantic silverside and bay anchovy. In October species variety (3 = 8) decreased as the marine strays and several summer residents emigrated from the area. However, the catch remained high (n/coll = 74.1) because of the abundance of Atlantic silverside (n/coll = 63.2). Species variety increased in November (s = 12) but decreased in December (4) as lingering estuarine species migrated downbay. Abundance decreased in both months (n/coll = 12.8 and 4.3, respectively).

Spatial Catch Composition

The annual n/coll was 85.6 for east stations and 51.6 for west stations. The five west stations yielded 29 species; the five east stations yielded 18. Sixteen species were common to east and west stations. Spearman's rank correlation coefficient (r = .798, p \leq 0.0001) indicates a high degree of correlation between the catches of the two groups.

Between-station similarity based on catch composition was plotted along the first three component axes in Figure 3.1.6a-2. These components explain 71.1 percent of the total variance (Factor I = 30.9 percent; Factor II = 25.2; Factor III = 15.0). Two groups of stations can be identified. One closely associated group is SSC6, HOP7, and MHC8. These stations are located on the east shore south of Salem and may experience similar physicochemical conditions. A second group, less closely associated, consists of the five stations on the west side of the river plus Station ELP5. Station OB5A is not closely associated with any other station and is most distant from the first group both on the figure and geographically. The general north-south trend along axis I suggests that a factor such as salinity has a strong influence on catch composition.

Species Accounts

The following discussion traces the abundance and distribution of the four more abundant species. They are presented in order of decreasing abundance and based on summary data in Table 3.1.6a-3 and Figures 3.1.6a-3 through 17. Additional data have been included which are not presented in tables but are contained in the PSE&G aquatic data base.

1. Atlantic silverside (n = 5,022, young and adult)
comprised 43.1 percent of the total catch (Table 3.1.6a-3).
Length range was 12-120 mm.

It was collected from March through December (Fig. 3.1.6a-3). During spring Atlantic silverside was collected in low numbers at all four stations south of Salem but was most abundant at HOP7 (Fig. 3.1.6a-4). It was taken at only two of six statons north of Salem. Most captures were adult. Abundance increased through July as age 0+ fish were recruited into the catch. After June the catch was almost entirely age 0+. The catch declined in August but increased in September. Abundance during summer was greater than during spring at all stations. There was a general increase in abundance from north to south but the catch was greatest at MHC8 and AUB3 (Fig. 3.1.6a-5). The species remained abundant through October but the catch declined sharply in November and remained low in December (Fig. 3.1.6a-3). The catch during fall was less than during summer at all stations. The greatest abundance during fall was at SSC6 (Fig. 3.1.6a-6).

Atlantic silverside comprised 85.3 percent of the catch in October; from May through September it comprised 24.2 to 59.7 percent of the monthly catch.

It was collected at all stations but the catch was greatest at MHC8 (n = 1,302) where 25.9 percent of the annual catch

was taken (Table 3.1.6a-3). The annual n/coll was 33.8 for east stations and 25.2 for west stations. The n/coll for night collections was 20.3; for comparable day collections it was 53.1.

2. Bay anchovy (n = 4,400, young and adult) comprised 37.7 percent of the total catch (Table 3.1.6a-3). Length range was 16-91 mm.

It was collected from May through November (Fig. 3.1.6a-7). During spring bay anchovy was taken at eight stations and in low numbers (Fig. 3.1.6a-8). All were age 1+ or older. Abundance during summer was greater than during spring at all stations as age 0+ fish were recruited into the catch (Fig. 3.1.6a-9). When abundance peaked in July they predominated the catch. Abundance decreased in August but increased to July levels in September (Fig. 3.1.6a-7). Station OB5A had the greatest catch during the period. During fall abundance decreased steadily. Bay anchovy was taken at all stations except SSC6 but abundance at each station was less than during summer (Fig. 3.1.6a-10). Greatest abundance was at ST3A.

Bay anchovy comprised 64.8, 62.2, and 47.3 percent of the catch in May, September, and August, respectively. During other months the percentage ranged from 13.6 to 32.0.

It was collected at all stations but the catch was greatest at Station OB5A (n = 1,146) where 26.0 percent of the annual catch was taken (Table 3.1.6a-3). The annual n/coll was 35.4 for east stations and 16.3 for west stations. The n/coll for night collections was 14.0; for comparable day collections it was 13.4.

3. Atlantic menhaden (n = 658, age 0+ and 1+ young) comprised 5.6 percent of the total catch (Table 3.1.6a-3). Length range was 22-160 mm.

It was collected from May through September (Fig. 3.1.6a-11). During spring it was taken at eight stations and in low numbers. During this period there was a slight increase in abundance from north to south (Fig. 3.1.6a-12). The catch (predominantly age 0+) peaked in June and declined in July and August. During summer Atlantic menhaden was taken at all stations (Fig. 3.1.6a-13). Abundance was greater than during spring at seven stations. It was no longer most abundant at southern stations; it was most abundant at OB5A and AUB3. Only one specimen was taken during fall.

Atlantic menhaden comprised 17.1 percent of the July catch. During other months it comprised less than 3.1 percent. It was taken at all stations but the catch was greatest at OB5A (n = 207) where 31.5 percent of annual catch was taken (Table 3.1.6a-3). The annual n/coll was 5.8 for east stations and 1.9 for west stations. On June 19-20, 146 specimens were taken in two night collections while 49 were taken in two day collections. None were taken in other day-night collections.

4. Mummichog (n = 484, young and adult) comprised 4.2 percent of the total catch. Length range was 22-111 mm.

It was taken from March through September and in November and December (Fig. 3.1.6a-14). The catch was low from March through May but peaked in June. Abundance subsequently decreased through September. During spring mummichog were taken at all stations except HOP7 (Fig. 3.1.6a-15). It was most abundant at ST3A and AUB3. During summer it was taken at the same stations and at about the same abundance as during spring (Fig. 3.1.6a-16). Abundance during fall was less than during summer at eight stations. None were taken in October and few were taken in November (n/coll = 0.6) and December (0.5). It was most abundant at AUB3 (Fig. 3.1.6a-17). None were taken at HOP7, OB5A, or SGB2.

Mummichog comprised 88.9 and 40.9 percent of the monthly catch in March and April, respectively. During other months it comprised from 1.1 to 11.6 percent of the monthly catch.

It was taken at all stations except HOP7. The catch was greatest at ST3A (n = 158) where 32.6 percent of the annual catch was taken (Table 3.1.6a-3). The annual n/coll was 4.7 for west stations and 1.0 for east stations. The n/coll for night collections was 8.1; for comparable day collections it was 5.6.

Preoperational Comparison

Annual rank and percent of catch of the four more abundant species in 1978 were within or above the range for the preoperational period 1970 through 1976 (Table 3.1.6a-4). Annual abundance (n/coll) for three of the species equaled or exceeded the abundance in 1975 or 1976 (Table 3.1.6a-5). The Atlantic menhaden was less abundant in 1978 than in 1975 or 1976. Other species that were less abundant include the tidewater silverside and bluefish. The weakfish was more abundant.

3.1.6a.3 TRAWL

Trawling during daylight was conducted to determine 1) species composition, 2) relative abundance, and 3) spatial and temporal distribution of the fishes which frequent the deeper waters of the river. In addition night trawling was conducted to identify diel differences in species abundance.

MATERIALS AND METHODS

Field

All trawl samples required under this ETS were collected. Biweekly bottom trawl samples were taken during daylight from March 13 through December 18 in 19 of 22 river zones and 5 channel zones (Table 3.1.6a-6, Fig. 3.1.6a-1). Zones NE2, RI1, and RI2 were sampled biweekly to monthly. Inclement weather and river icing precluded sampling in January, February, early March, and late December. Corresponding night and daylight collections were taken monthly from March through October except for July at zones W-3 and SSC. Collections were taken about 12 hr apart on two consecutive days.

A standard river collection was a 10-min tow ($5_{\overline{1}}$ min in Zone SSC) of a 4.9-m (16-ft) semiballoon otter trawl. A standard channel collection was a 20-min tow. Night collections were of 5-min duration.

Sample processing and collection of physicochemical data were as in 1977; for a complete description see the 1977 Annual Environmental Operating Report.

Data Reduction

Data are discussed on the following statistics: s = species variety, n = number of specimens, T = number of standard hauls, T* = number of hauls in which a species appeared, n/T = number of specimens per 10 min of sampling time, and n/T* = number of specimens per haul (10-min effort) in which a species was taken.

Monthly mean and standard deviation were calculated from log (x + 1) transformed catch per effort values of pooled semimonthly collections. Seasonal mean, standard deviation,

¹=3.8-cm stretched mesh N o. 9 thread body, 3.2-cm stretched mesh No. 15 thread cod end, innterliner of 1.3-cm No. 63 knotless nylon netting inserted and hogtied in cod end.

and 95 percent confidence interval were calculated from log (x + 1) transformed regional catch per effort values for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September 16 through December 15). Regions were defined as follows: the northwest region contained zones NWl and NW2; the central-west region contained zones W-1, W-2, and W-3; the southwest region contained zones SWl and SW2; the north channel region contained zones CHA3, CHA4, and CHA5; the south channel region contained zones CHA1 and CHA5; the northeast region contained zones NE1, NE2, and E-6; the central-east region contained zones E-1, E-2, E-3, E-4, E-5, RI1, and RI2; the southeast region contained zones SE0, SE1, SE2, and SE3.

Catch composition among the combined west, east, and channel zones was compared using Spearman's coefficient of rank correlation. Figure 3.1.6a-1 depicts the zones east and west of the shipping channel as well as those within the channel. Zones RIL and RI2, although west of the channel, were grouped with east zones.

Principal components analysis (BMPD4M Factor Analysis: Dixon, 1975) was used to calculate and display similarities in the catch composition among zones. This method is described by Marriott (1974) and Pielou (1977). The thirteen most abundant species were included as variables and zones as observations. A species by species (R-mode) product moment correlation matrix was calculated from log (x + 1) transformed catch data. The factor scores for each zone along only the first three component axes were plotted.

RESULTS

Temporal Catch Commposition

A total of 128,093 specimens of 45 species were taken in 848 trawl collections from west, east, and channel zones (Table 3.1.6a-7). Weakfish (n = 49,615), bay anchovy (36,861), hogchoker (33,919), white perch (2,909), spot (1,067), Atlantic croaker (884), American eel (814), and blueback herring (594) were most abundant and comprised nearly ninety-nine percent of the total annual catch.

As in previous years, strong seasonal patterns in catch were evident. Species variety (s = 5) and fish abundance (n/T = 2.7) were lowest in March. Although not abundant, white perch comprised most of the catch. Both catch statistics increased through May (s = 20; n/T = 68.7). Many summer residents, including bay anchovy, Atlantic menhaden, bluefish, and summer flounder appeared in the catch during this period as did yearling shad and herrings. Bay anchovy, hogchoker, and white perch were predominant. These three 3.1-212 species, along with blueback herring, were taken most often.

Species variety remained high (monthly s \geq 20) through August as the summer ichthyofaunal community became established. Catch per effort peaked during summer, with June and July n/T values of 266.6 and 265.2, respectively. Juvenile weakfish appeared in very large numbers during this period and along with bay anchovy and hogchoker comprised more than ninety-eight percent of the summer catch. The preceding three species, along with American eel, spot, and Atlantic menhaden, were taken most often.

The number of species taken increased during fall (monthly $s \ge 26$) as summer species were gradually replaced by winter species. However, relative abundance declined (monthly n/T < 164.0), largely because of the emigration of weakfish. Bay anchovy and hogchoker again were the most abundant species taken, although spot, American eel, Atlantic croaker, white perch, and blueback herring appeared in moderate numbers. These seven species, along with black drum, were taken most often. During December, only hogchoker and white perch were taken in abundance as catch continued to decline (n/T = 84.7).

Spatial Catch Composition

Spearman's coefficient of rank correlation based on annual species catch per effort data among combined west, east, and channel zones were significant. The strongest correlation ($r_s = .810$, $p \le 0.0001$) exists between the channel and east groups. This is probably explained by the similarity of water depth in these areas as well as common circulation and tidal patterns along the channel and eastern portion of the study area. The weakest correlation ($r_s = .637$, $p \le 0.0001$) occurs between the channel and west groups.

Principal components analysis of annual species catch per effort data by zone revealed similar results (Fig. 3.1.6a-18). The first three component axes explain 64.1 percent of the total variance (Factor I = 32.2 percent; Factor II = 19.4; Factor III = 12.5. Three major groups are indicated in this analysis. The five channel zones, two Reedy Island zones, and Zone SEO form one group. The central and southern east zones are grouped together along with zones E-6, NW1, and SW2. The third group includes most west zones as well as zones NE1 and NE2. Zones SSC, W-3, and E-5 appear as unique areas. The position of the three major groups indicates degree of similarity; the channel and east groups being most proximate thus most similar, and conversely, the west and channel groups being furthest apart and least similar.

Species Accounts

The eight most abundant species, each represented by more than 500 specimens, are discussed in order of decreasing abundance. The following accounts of these species are based primarily on annual summary data presented in Table 3.1.6a-7, and monthly and seasonal data presented in Figures 3.1.6a-19 through 45. Additional data have been included that are not presented in tabular form but are contained in the PSE&G aquatic data base.

1. Weakfish ¹ (n = 49,615, almost all age 0+ young) comprised 38.7 percent of the total catch. Catch frequency was 426 (of 848). The annual n/T was 54.1; the n/T* was 106.6 (Table 3.1.6a-7). Length range was 12-756 mm.

The abundance of age 0+ weakfish in 1978 was of unprecedented magnitude. In fact, the catch in the last two weeks of June was greater than the combined annual catches from 1973 through 1977. It was taken from June through November (Fig. 3.1.6a-19). Although a few were taken earlier, peak abundance occurred during the last two weeks of June as young-of-year fish immigrated into the study area from down bay spawning grounds. Catches in the central and southern zones were greater than in the northern zones. Abundance remained high during the summer and as the season progressed weakfish became more uniformly distributed (Figs. 3.1.6a-19 and 20). The catch of weakfish decreased sharply in September and continued to decline through November, as these fish began their annual migration out of the estuary (Fig. 3.1.6a-19). Although catch levels during fall were lower in all regions from those of summer, relative abundance among regions remained uniform (Fig. 3.1.6a-21).

Weakfish comprised 79.8, 61.2, and 35.7 percent of the catch in June, July, and August, respectively.

It was taken in all zones but was most abundant, based on annual n/T values, in zones RI2, W-3, RI1, and CHA4. It was least abundant in zones E-6 and SE3 (Table 3.1.6a-7). The annual n/T* value west of the shipping channel was 111.3; to the east it was 106.5. The n/T for night collections was 27.6; for comparable day collections it was 74.4.

2. Bay anchovy (n = 36,861, young and adult) comprised 28.8 percent of the total catch. Catch frequency was 560. The annual n/T was 40.2; the n/T* was 60.7 (Table 3.1.6a-7). Length range was 12-105 mm.

It was taken from April through December (Fig. 3.1.6a-22). Large numbers were first taken in May as the upbay migration of adult fish into the area heightened. Although it was taken throughout the study area during spring, abundance increased from north to south (Fig. 3.1.6a-23). Catch

¹ This discussion of weakfish is based only on samples taken under ETS. Additional information can be found in "Summary Assessment of Weakfish Impingement: Summer 1978, (PSE&G 1978b)

decreased in June as fish moved downbay to spawn but increased in July as these fish returned and young-of-year began to appear in the catch. The catch of bay anchovy declined slightly in August (Fig. 3.1.6a-22). Although it was taken in all regions during summer the greatest catch occurred in the central-west region, the lowest was in the channel regions (Fig. 3.1.6a-24). Catch was greater than spring levels in the three east regions and the central-west and northwest regions. Catch increased through November as young-of-year fish continued to be recruited into the local population and adults seeking warmer waters moved downriver into this area (Fig. 3.1.6a-22). Catch dropped sharply in December as these fish continued their movements to more suitable environs downbay. The distribution during fall was similar to that of summer although the catch was greater in all but the central-west and southwest regions (Fig. 3.1.6a-25).

Bay anchovy comprised 82.4 percent of the catch in May and from 24.7 to 51.2 percent of the monthly catch from July through November.

It was taken in all zones but was most abundant, based on annual n/T values, in zones SSC, W-2, E-1, and W-3. It was least abundant in zones E-3, RI-2, E-4, and in the channel zones (Table 3.1.6a-7). The annual n/T* value west of the channel was 90.3; to the east it was 66.4. The n/T for night collections was 10.4; for comparable day collections it was 109.0.

3. Hogchoker (n = 33,919, young and adult) comprised 26.5 percent of the total catch. Catch frequency was 584, the greatest of all species. The annual n/T was 37.0; the n/T* was 55.4 (Table 3.1.6a-7). Length range was 22-192 mm.

It was taken from March through December (Fig. 3.1.6a-26). Few were taken in March. Catch increased through May as yearlings and subsequently, older fish immigrated into the study area from wintering grounds downbay. During spring it was taken in all regions. Catch levels were similar in regions of abundance but were very low in the channel regions (Fig. 3.1.6a-27). The abundance of hogchoker continued to increase through August (Fig. 3.1.6a-26). This was evidenced by the greater catch in all regions during summer. The distribution was similar to that of spring. (Fig. 3.1.6a-28). The catch during this period was predominated by yearlings. Abundance remained high through October as young-of-year fish began to appear in the catch. However, it dropped in November and continued to decline in December, as larger fish and then smaller specimens migrated downbay (Fig. 3.1.6a-26). It continued to be taken in all regions during fall. Abundance was greatest in the two central regions and the northeast region. Catch was lower than summer levels in three regions, most notably in the southwest region. It was greater than summer levels in the northwest, central-west, and central-east regions.

Hogchoker comprised 60.5 percent of the catch in December and from 32.6 to 51.0 percent of the monthly catch from August through November.

It was taken in all zones but was most abundant, based on annual n/T values, in zones W-3, E-5, W-1, SW1, and E-6. It was least abundant in RI2, RI1, and in the channel zones (Table 3.1.6a-7). The annual n/T* value west of the channel was 73.5; to the east it was 57.1. The n/T for night collections was 86.8, for comparable day collections it was 37.5.

4. White perch (n = 2,909, young and adult) comprised 2.3 percent of the total catch. Catch frequency was 273. The annual n/T was 3.2; the n/T* was 10.3 (Table 3.1.6a-7). Length range was 32-287 mm.

It was taken from March through December (Fig. 3.1.6a-30). Catch was moderate in March and increased in April as yearlings and then older fish were taken. However, catch declined in May as many of these fish migrated upriver or into local tributaries. Although it was taken in all regions during spring, it was most abundant in the northeast, central-west, and southwest regions (Fig. 3.1.6a-31). Catch increased slightly in June but few were taken through the remainder of summer (Fig. 3.1.6a-30). During summer it was taken in abundance only in the northwest and northeast regions and was absent from the catch in the south channel and southeast regions (Fig. 3.1.6a-32). It was again common in October and November. Abundance peaked in December as fish of several age groups were taken as they migrated through the study area enroute to wintering grounds downbay (Fig. 3.1.6a-30). During fall, it was taken in all regions. Catch was greatest in the central and northern regions west and east of the channel (Fig. 3.1.6a-33).

White perch comprised 83.3, 45.2, and 30.2 percent of the catch in March, April, and December, respectively.

It was taken in all zones but was most abundant, based on annual n/T values, in zones SW-1, E-5, SSC, and NE2. It was least abundant in the central and southern east zones and the channel zones (Table 3.1.6a-7). The annual n/T^* value west of the channel was 13.7; to the east it was 9.8. The n/T for night collections was 4.7, for comparable day collections it was 3.8.

5. Spot (n = 1,067, almost all age 0+ young) comprised 0.8 percent of the total catch. Catch frequency was 203. The annual n/T was 1.2; the n/T* was 5.3 (Table 3.1.6a-7). Length range was 22-233 mm.

It was taken from June through December (Fig. 3.1.6a-34). Few were taken in June. Catch increased through August as larger young-of-year immigrated into this area from downbay (Fig. 3.1.6a-34). Although it was taken in all regions during summer its abundance was greater in the northern and central regions (Fig. 3.1.6a-35). Catch dropped slightly in September but increased again in October (Fig. 3.1.6a-34). This increase probably resulted from movements of spot into the study area from upriver nursery areas with the approach of winter. Abundance decreased through December as larger and subsequently, smaller fish continued their downbay migration. Catch was greater than summer levels in five regions, most notably in the southwest and southeast regions (Fig. 3.1.6a-36). However, the distribution during fall was generally similar to that in summer.

Spot comprised less than 2.4 percent of any monthly catch.

It was taken in all zones except RIL. It was most abundant, based on annual n/T values, in zones SSC, NE2, W-2, NE1, and NW2 and least abundant among the central and southern east zones and the channel zones (Table 3.1.6a-7). The annual n/T^* value west of the channel was 6.1; to the east it was 5.6. The n/T for night collections was 3.8; for comparable day collections it was 8.0.

6. Atlantic croaker (n = 884, all but one age 0+ young) comprised 0.7 percent of the total catch. Catch frequency was 100. The annual n/T was 1.0; the n/T* was 7.9 (Table 3.1.6a-7). Length range was 16-90 mm.

It was taken from September through December (Fig. 3.1.6a-37). Few were taken in September. Catch increased in October, peaked in November, and decreased in December. Croaker was well distributed among regions during this period although the catch was greatest among west regions (Fig. 3.1.6a-38).

Atlantic croaker comprised 5.7 percent of the November catch but less than 2.5 percent of any other monthly catch.

It was taken in all zones except E-2. It was most abundant, based on annual n/T values, in zones SW2, NW2, and RI1 and least abundant among the central east zones (Table 3.1.6a-7). The annual n/T* value west of the channel was 14.9; to the east it was 3.5. The small number of Atlantic croaker taken in day-night collections precludes any comparison.

7. American eel (n = 814, several age groups) comprised 0.6 percent of the total catch. Catch frequency was 219. The annual n/T was 0.9; the n/T* was 3.4 (Table 3.1.6a-7). Length range was 35-566 mm.

It was taken from April through December (Fig. 3.1.6a-39). Few were taken from April through June. During this period it was taken in all regions except the south channel and northeast regions (Fig. 3.1.6a-40). Numbers increased in July and August but decreased in September (Fig. 3.1.6a-39). Catch during summer was greater than spring in all regions.

It was taken in greatest abundance in the central-east and northeast regions (Fig. 3.1.6a-41). Catch decreased gradually through December (Fig. 3.1.6a-39). It was again taken in all regions during fall although catch in all but one region decreased from summer levels (Fig. 3.1.6a-42).

American eel comprised less than 1.7 percent in any monthly catch.

It was taken in all zones but was most abundant, based on annual n/T values, in zones RI1, RI2, and W-1. It was least abundant in zones CHA1, CHA2, SEO, and SE3 (Table 3.1.6a-7). The annual n/T* values west of the channel was 3.1; to the east it was 4.4. The n/T for night collections was 2.8; for comparable day collections it was 0.4.

8. Blueback herring (n = 594, mostly age 0+ and 1+ young) comprised 0.5 percent of the total catch. Catch frequency was 125. The annual n/T was 0.6; the n/T* was 4.4 (Table 3.1.6a-7). Length range was 53-235 mm.

It was taken from April through August and during November and December (Fig. 3.1.6a-43). Relatively large numbers were taken during April. The catch comprised exclusively age 1+ specimens. Numbers decreased in May. It was taken in relatively uniform abundance in all regions during spring (Fig. 3.1.6a-44). Few were taken from June through August (Fig. 3.1.6a-43). It was again taken in abundance in November and December as age 0+ fish passed through the area from upriver nursery grounds (Fig. 3.1.6a-43). Yearlings also appeared in the catch but in low numbers. It was taken in nearly equal abundance in all regions (Fig. 3.1.6a-45).

Blueback herring comprised about 17.7 of the April catch but less than 2.5 percent of any other monthly catch.

It was taken in all zones but was most abundant, based on annual n/T values, in zones SSC, NE1, E-1, and E-2. It was least abundant in zones E-5, SEO, W-2, W-3, and NW1 (Table 3.1.6a-7). The annual n/T* value west of the channel was 3.3; to the east it was 5.3. The n/T for night collections was 1.7; for comparable day collections it was 25.0. However, these results are biased by one large catch (125 specimens) taken during one day collection. The night catch was greater in all other day-night collections.

Preoperational Comparison

Monthly and annual trawl catch per effort values (n/T*, based on samples in which the species was taken) of weakfish, bay anchovy, hogchoker, spot, and Atlantic croaker during 1978 were within or exceeded the range recorded during the preoperational years 1970-1976 (Table 3.1.6a-8).

The zero catch of blueback herring in March was below the preoperational range. However, unusually low water temperature that month may have inhibited the immigration of these fish into the study area. The catch of blueback herring in April was well within the preoperational range. The catch of American eel in May was below the preoperational range. However, in other months the catch was well within this range. The monthly catch of white perch in April, May, July, and November were below the respective monthly preoperational range. However, the reduced catch in 1978 appears to follow an observed decline in the local abundance of white perch since 1972.

3.1.6a.5 Gill Net

Gill nets were fished in the spring and fall to monitor the period of occurrence and distribution of alosids during migratory movements through the study area.

MATERIAL AND METHODS

Field

All samples required under this ETS were collected. Collections were taken during daylight at four zones from March 23 through November 24 (Fig. 3.1.6a-46). Monthly effort was 31.5 drift hours in March, 33.0 in April, 31.5 in May, 19.5 in June, 5.0 in September, 35.0 in October, and 16.0 in November.

Samples were taken with 91.4-m floating gill nets constructed of nylon monofilament in stretched mesh sizes of 2.5 (l in), 3.8 (l l/2 in), 7.9 (3 l/8 in), and l4.0 (5 l/2 in) cm.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977, for complete description see the 1977 Annual Environmental Operating Report.

Data Reduction

Data are discussed with the following statistics: n = number of specimens, n/drift hr = number of specimens per drift hour, and n/drift hr* = number of specimens per drift

hour in which the species was taken.

RESULTS

A total of 8,884 specimens of 20 species were taken in 171.5 drift hours (76.5 west of the shipping channel, 95.0 in the east) (Tables 3.1.6a-9 and 10). The following accunits are of the three alosid species taken, Atlantic menhaden, and bluefish. Together these fishes comprised 98.8 percent of the total catch. Summary catch data are presented in Tables 3.1.6a-9 through 11.

SPECIES ACCOUNTS

1. Atlantic menhaden (n = 6,776, young and adult) comprised 76.3 percent of the total catch. Length range was 67-298 mm.

It was collected from April through November (Table 3.1.6a-9). The n/drift^hr^{*} was high (Table 3.1.6a-10) and indicative of the schooling behavior of this species. Catch was greatest in May (n/drift hr = 92.5), October (72.3), and November (48.0). In the spring the catch comprised yearlings and older age groups. Length range was 96-298 mm.

In the fall most fish taken were young-of-year and ranged in length from 67-150 mm. The remainder were of older age groups (length range 151-274 mm).

It was taken both east and west of the channel during all months. However, in May abundance was greater east of the shipping channel (n/drift hr = 114.1 east vs. 59.8 west). From June through November the n/drift hr was greater in the west.

2. Blueback herring (n = 1,478, young and adult) comprised 16.6 percent of the total catch. Length range was 79-315 mm.

It was collected in all months except September (Table 3.1.6a-9).

Adults (n = 51), enroute to spawning areas, were taken from March through May, with the greatest weekly n/drift in late April (Table 3.1.6a-11). There were 1,140 yearlings taken in the spring; most were caught in May (Table 3.1.6a-9). Young-of-year (n = 287) were taken during October and November as they emigrated from nursery areas. Weekly n/drift hr during the fall was greatest during the first two weeks of November (Table 3.1.6a-11).

It was taken both east and west of the channel during all months except March. The annual n/drift hr was greater in the east (12.7) than west (3.6).

3. Alewife (n = 370, young and adult) comprised 4.2 percent of the total catch. Length range was 71-310 mm.

It was collected from March through June and in October and November. The alewife was the first of the alosid species to be taken in large numbers during the spring season, indicating its relatively early spawning habit. Adults (n = 300), enroute to spawning areas, were taken from March through mid-May. Weekly n/drift hr during the spring was greatest from late March through mid-April (Table 3.1.6a-11). Five yearlings were taken in the spring.

Young-of-year (n = 65), emigrating from nursery areas, were taken during October and November. During this period weekly n/drift hr was greatest from mid-October through mid-November (Table 3.1.6a-11).

It was taken east and west of the channel in all months. The n/drift hr was greater in the west during March, April, and October but greater in the east during June and November.

4. Bluefish (n = 121, young and adult) comprised 1.4 percent of the total catch. Length range was 86-544 mm.

It was collected from May through November (Table 3.1.6a-9). Catch was greatest during June (n/drift hr = 1.3), September (5.4), and October (1.7).

Older fish comprised most of the catch in May and June. Length range was 350-466 mm. The remainder were yearlings.

From September through November young-of-year (length range 90-200 mm) predominated the catch.

The species was taken east and west of the channel during all months. The n/drift hr was greater in the west during May, September, and October. It was greater in the east during June and November.

5. American shad (n = 30, young and adult), comprised 0.3 percent of the total catch. Length range was 110-505 mm.

It was collected from March through June and in November (Table 3.1.6a-9). Adults (n = 21) enroute to spawning areas were taken from March through May. The weekly n/drift hr in the spring was greatest during mid-April (Table

3.1.6a-11). Seven yearlings were taken from late May through June. Two young-of-year were taken in mid-November.

The n/drift hr was greater in the east for all months except April.

3.1.6b <u>Juvenile and Adult Fishes - Tidal</u> <u>Tributaries</u> (ETS Section 3.1.2.1.1g)

The fishes of three tidal tributaries of the Delaware River near.Artificial Island, Appoquinimink Creek, Delaware and Alloway and Hope creeks, New Jersey, were sampled in 1978 by seine and trawl (Figs. 3.1.6b-1 and 2). Objectives were to 1) identify species and life stages that utilize the tributaries and 2) describe seasonal changes in species composition and distribution.

3.1.6b.1 Summary

A total of 4,299 specimens of 33 species were taken in combined seine and trawl collections. The catch comprised freshwater, brackish water, and estuarine species. Mummichog (n = 915), Atlantic silverside (811), banded killifish (374), silvery minnow (259), and tessellated darter (252) were the most abundant species taken by seine. Together these fish comprised some 82 percent of the annual catch. Hogchoker (n = 302), white perch (205), spot (150), weakfish (106), and brown bullhead (92) were the most abundant species taken by trawl and comprised nearly 76 percent of the annual catch.

Several species including mummichog, white perch, brown bullhead, and hogchoker were taken in nearly all months of sampling. However, for most species the period of occurrence was seasonal and strongly related to water temperature and salinity.

During spring, the catch was predominated by fresh and brackish water species, eg. mummichog and banded killifish in the shore zone and white perch in the deeper waters. Hogchoker was taken in abundance in the deeper waters. Peak catch in the shore zone occurred during summer as large numbers of fresh and brackish water species (e.g. tessellated darter and silvery minnow) and estuarine fishes (e.g. Atlantic silverside and bay anchovy) were taken. Catch in deeper waters increased slightly over spring levels. Weakfish and hogchoker were the only species taken in abundance. White perch and bay anchovy were common.

The catch in the shore zone decreased sharply during fall. Only Atlantic silverside and mummichog were taken in abundance. However, peak catch in deeper waters occurred during this period as the numbers of several fresh and brackish water species increased. Spot, hogchoker, white perch, and brown bullhead were most abundant.

By December only mummichog remained in abundance in the shore zone. Silvery minnow and white perch were common in the deeper waters.

3.1.6b.2 Materials and Methods

FIELD

All samples required under this ETS were collected. Biweekly to monthly seine and trawl samples were taken during daylight from March 27 through December 21. Seines were hauled at three stations each in Alloway and Appoquinimink creeks (Table 3.1.6b-1, Fig. 3.1.6b-1). Trawls were hauled in three zones each in Appoquinimink and Alloway creeks and two zones in Hope Creek (Table 3.1.6b-2, Fig. 3.1.6b-2).

Gear included a $3.0-m \ge 1.2-m$ ($10.0-ft \ge 4.0-ft$) flat seine with 3.2-mm (1/8-in) stretched mesh and a 2.7-m (9.0-ft) semi-balloon otter trawl.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977; for a complete description see the 1977 Annual Environmental Operating Report.

DATA REDUCTION

Data are discussed on the following statistics: s = speciesvariety, n = number of specimens, T = number of trawl hauls, n/T = number of specimens per trawl haul, and n/coll = number of specimens per seine collection.

Monthly mean and standard deviation for the more abundant species were calculated from log (x + 1) transformed catch per effort values of pooled semimonthly or monthly collections. Seasonal means by station or zone were calculated from log (x + 1) transformed catch per effort values for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September 16 through December 15).

Principal components analysis (BMPD4M Factor Analysis; Dixon, 1975) was used to calculate and display similarities in the catch composition among zones and stations. This method is described by Marriott (1974) and Pielou (1977). The twelve more abundant species taken by seine and the nine taken by trawl were included as variables and stations or zones as observations. A species by species (R-mode) product moment correlation matrix was calculated from log (x + 1) transformed catch data. The factor scores for each zone along only the first three component axes were plotted.

3.1.6b.3 Results

TEMPORAL CATCH COMPOSITION

A total of 3,173 specimens of 26 species were collected in 79 seine collections; 1,126 specimens of 20 species were taken in 111 trawl collections (Tables 3.1.6b-3 and 4). Thirty-three species were taken in all; 13 were taken by both gear types. The most abundant species taken by seine were mummichog (n = 915), Atlantic silverside (811), banded killifish (374), silvery minnow (259), and tessellated darter (252). Together these comprised 82.3 percent of the annual catch. Hogchoker (n = 302), white perch (205), spot (150), weakfish (106), and brown bullhead (92) were the most abundant species taken by trawl and comprised 75.9 percent of the annual catch.

Several species, including mummichog, white perch, brown bullhead, and hogchoker were taken in nearly all months of sampling. However, the period of occurrence of other species was seasonal and correlated strongly to variations in salinity and water temperature.

From March through May species variety and fish abundance were low. The catch comprised fresh or brackish water species and the estuarine hogchoker, bay anchovy, and Atlantic silverside. During this period mummichog and banded killifish predominated the shore zone catch; hogchoker, white perch, and brown bullhead were most abundant in deeper waters.

The number of species taken, particularly in the shore zone, increased in June as both adult and young-of-year of many freshwater species and alosids appeared as spawning activities of these fishes peaked. Several estuarine species, including Atlantic menhaden, spot, and weakfish were first taken. Fewer species were taken during July and August. Catch levels in the shore zone peaked during the summer season as large numbers of Atlantic silverside, mummichog, silvery minnow, and tessellated darter appeared in the catch. Bay anchovy, white perch, and Atlantic menhaden were taken in moderate numbers. In the deeper waters catch increased slightly over spring levels; weakfish and hogchoker were most abundant. Species variety and catch levels decreased in the shore zone during fall. The catch of nearly all species was lower than during summer, particularly those that were abundant during the summer. Although abundance decreased, Atlantic silverside and mummichog remained the most abundant species in the shore zone. Conversely, species variety and catch levels increased in the deeper waters. Spot, hogchoker, white perch, and brown bullhead were most abundant. By December, few species were taken in the shore zone and only mummichog was abundant. In the deeper waters, ten species were taken but their catch was low. Silvery minnow and white perch were common.

SPATIAL CATCH COMPOSITION

A total of 2,036 specimens of 19 species were taken by seine in Alloway Creek and 1,137 specimens of 22 species were taken in Appoquinimink Creek (Table 3.1.6b-3). Fifteen species were common to both tributaries. The more abundant species in one tributary were also abundant in the other. Abundant in both tributaries were mummichog, Atlantic silverside, banded killifish, silvery minnow, tessellated darter, bay anchovy, and white perch. Bluegill, pumpkinseed, alewife, and white crappie were among the fishes taken only in Appoquinimink Creek; spot, bluefish, largemouth bass, and black crappie were taken only in Alloway Creek.

The trawl catch was 692 specimens of 19 species in Appoquinimink Creek, 381 specimens of 16 species in Alloway Creek, and 53 specimens of 10 species in Hope Creek (Table 3.1.6b-4). Catch composition in Appoquinimink and Alloway creeks was similar. Most species abundant in one tributary were also abundant in the other; white perch and brown bullhead were abundant only in Appoquinimink Creek and bay anchovy only in Alloway Creek. The more abundant species common to both tributaries included hogchoker, spot, and weakfish. Species taken only in Appoquinimink Creek were gizzard shad, mummichog, striped bass, and yellow perch. Winter flounder was taken only in Alloway Creek. Species variety and abundance were low in Hope Creek and species taken were also taken in the other tributaries.

Similarity in catch among seine stations and trawl zones was calculated through the principal component analysis (Figs. 3.1.6b-3 and 4). The first three components of the station comparison explain 90.0 percent of the total variance (Factor I = 37.4 percent; Factor II = 29.7; Factor III = 22.9). From the analysis, stations ALL1, ALL2, and APP3 are grouped, as are ALL3 and APP6 (Fig. 3.1.6b-3). Station APP5 appears unique. The first three components of the zone comparison explain 87.1 percent of the total variance (Factor I = 65.4 percent; Factor II = 12.3; Factor III = 9.4). The analysis indicates that zones HOP1, HOP2, and ALL4 are similar and form one group (Fig. 3.1.6b-4). In addition, zones APP3 and ALL1 are grouped with Zone APP1. Zones APP5 and ALL5 appear dissimilar from other zones.

The grouping of the zones and stations in relation to tributary mileage (distance from mouth) suggests that a factor such as salinity has a strong influence on catch composition.

SPECIES ACCOUNTS

The eight most abundant species, each represented by more than 200 specimens in the combined seine and trawl catch,dare discussed in order of decreasing abundance. The following species accounts are based on annual summary data presented in Tables 3.1.6b-3 and 4 and monthly and seasonal data presented in Figures 3.1.6b-5 through 22. Additional data have been included that are not presented in tabular form but are contained in the PSE&G aquatic data base.

1. Mummichog (n = 916, young and adult) comprised 21.3 percent of the total seine and trawl catch. All but one were taken by seine. The annual n/coll was 11.5 (Table 3.1.6b-3). Length range was 13-108 mm.

It was taken from March through December (Fig. 3.1.6b-5). Large numbers were taken from March through July, except in May. After July the catch declined through November and increased to peak levels in December.

Distribution of mummichog in Alloway and Appoquinimink creeks was dissimilar (Fig. 3.1.6b-6). In Alloway Creek the catch was greatest during all seasons at the station furthest downstream (ALL3). The catch at ALL1 was greater than ALL2 during spring and fall but was less than ALL2 during summer. In Appoquinimink Creek most of the spring catch was collected at APP3 followed in order by APP6 and APP5. During summer the catches at APP3 and APP6 were nearly equal; none were collected at APP5. Few were taken during fall.

2. Atlantic silverside (n = 811, young and adult) comprised 18.8 percent of the total seine and trawl catch. All were collected by seine. The annual n/coll was 10.3 (Table 3.1.6b-3). Length range was 18-97 mm.

It was taken in April and June through November (Fig. 3.1.6b-7). Abundance peaked in July and declined steadily through November except in October when the catch increased slightly.

Abundance during summer and fall was greatest at stations nearest the mouths (ALL3, APP6) of both tributaries (Fig. 3.1.6b-8). In Alloway Creek the catch at ALL2 was greater than ALL1 during summer and fall. In Appoquinimink Creek none were taken at APP5 during summer and few were taken at APP3 and APP5 during fall.

3. Banded killifish (n = 374, young and adult) comprised 8.7 percent of the total seine and trawl catch. All were taken by seine. The annual n/coll was 4.7 (Table 3.1.6b-3). Length range was 18-91 mm.

It was taken from April through December except during August and November (Fig. 3.1.6b-9). Peak abundance occurred in April and the catch declined steadily thereafter. Few were taken in September, October, and December.

In both tributaries abundance during spring was greatest at the stations furthest upstream and decreased progressively downstream (Fig. 3.1.6b-10). The distribution was similar in Alloway Creek during summer. Few were taken during summer in Appoquinimink Creek or during fall in either tributary.

4. White perch (n = 324, several age groups) comprised 7.5 percent of the total seine and trawl catch. Some 63 percent were taken by trawl. The annual n/T and n/coll were 1.8 and 1.5, respectively (Tables 3.1.6b-3 and 4). Length range was 13-208 mm.

It was taken by trawl from March through November (Fig. 3.1.6b-11). Large numbers were taken in April and October. Catch declined from April through August and increased through October.

It was taken by seine from June through October (Fig. 3.1.6b-12). Peak abundance was in June and the catch declined steadily thereafter.

During spring, white perch were most abundant in the trawl zones furthest upstream (Fig. 3.1.6b-13). In the summer the catch was similar in all zones although lowest in the zones closest to the mouths of the tributaries. During fall, the distribution in Appoquinimink Creek was similar to that in spring. Few were taken in Alloway Creek during fall.

Seine catch distributions were similar to trawl in that abundance was greatest at stations furthest upstream (Fig. 3.1.6b-14).

5. Hogchoker (n = 307, mostly age 0+ young) comprised 7.1 percent of the total seine and trawl catch. All but five were collected by trawl. The annual n/T was 2.8 (Table 3.1.6b-4). Length range was 30-156 mm.

It was collected from March through November (Fig. 3.1.6b-15). Large numbers were first taken in April. Catch decreased in May but increased to peak numbers in September. Abundance steadily declined through November.

During spring, distribution in Alloway and Appoquinimink creeks was similar; abundance increased in an upstream progression (Fig. 3.1.6b-16). During summer, the catch in Alloway Creek was greatest at ALL4; in Appoquinimink Creek abundance remained greatest upstream. During fall, as fish migrated down both tributaries, abundance decreased in the upstream zones.

6. Silvery minnow (n = 304, young and adult) comprised 7.1 percent of the total seine and trawl catch. Some 85 percent were collected by seine. The annual n/coll was 3.3 (Table 3.1.6b-3). Length range was 14-124 mm.

It was taken in April and June through October (Fig. 3.1.6b-17). Few were taken in April. Abundance peaked in June and decreased steadily through October.

Distribution during summer was similar in both tributaries with greatest abundance occurring at upstream stations (Fig. 3.1.6b-18). This pattern continued during fall in Appoquinimink Creek; few were taken during fall in Alloway Creek.

7. Tessellated darter (n = 252, young and adult) comprised 5.9 percent of the total seine and trawl catch. All were taken by seine. The annual n/coll was 3.2 (Table 3.1.6b-3). Length range was 15-86 mm.

It was taken from June through October except in August (Fig. 3.1.6b-19). Peak abundance occurred in June after which the catch declined steadily.

Distribution was restricted to upstream stations of both tributaries during all seasons (Fig. 3.1.6b-20).

8. Bay anchovy (n = 218, young and adult) comprised 5.1 percent of the total seine and trawl catch. Some 65 percent were collected by seine. The annual n/coll was 1.8 (Table 3.1.6b-3). Length range was 14-81 mm.

It was collected by seine from June through October (Fig. 3.1.6b-21). Abundance was low in June, increased to peak level in August, and subsequently decreased.

Distribution in the two tributaries was dissimilar (Fig. 3.1.6b-22). In Alloway Creek it was taken in abundance only during summer when it occurred more abundantly at stations ALL2 and ALL3. In Appoquinimink Creek it was taken in low numbers during all seasons and was taken only at APP6 during spring and summer and APP3 during fall.

				TABL	.E 3.'	1.6a-1				
FISHES COLLECTED	FROM T	HE DELAWARE	RIVER	AND	FOUR	TIDAL	TRIBUTARIES	NEAR	ARTIFICIAL	ISLAND
		FROM	1 JUNE	1968	3 TO 1	DECEMBE	ER 1978.			

THOSE SPECIES TAKEN OUTSIDE OF, BUT ADJACENT TO, THE STUDY AREA HAVE THE LOCALITY NOTED IN PARENTHESES After the cummon name. Habitat: M = Marine; B = Brackish (Salinity 1-10 PPT); F = Fresh. Primary activity in Area: M = Migrant; SP = Spawning in Area; SF = summer feeding; WF = Winter Feeding; N = Nursery; R = Resident Species; ST = Stray. TYPE OF GEAR: T = TRAWL, S = SEINE, G = GILL NET. SPECIES OBSERVED BUT NOT COLLECTED ARE MARKED WITH AN ASTERISK.

HABITAT		Y	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
MøBøF	м	*	*	T	т	т	GZT	S,T,G	т	G	·T	Tøg
M. M.	ST ST		- G	G S	-	-	- *	-	-	-	-	-
M	ST	-	G	Cu	-	-	-	- .	-	-	-	-
м	ST	-	-	T	-	-	-	-	-	-	-	T
M+8+F	M	G	G	G	T	T	-	т	G	G	T,G	T
Møøøø	M - S F - N - R	s,T	S,T	S,T	S≠T	\$≠T	S = T	SIT	S / T	s, t	S = T	S≠T
м	S T		-	-	-	-	-	S	-	-	-	-
N/B/F N/B/F	M,SF SP,N	S • T T G	S + T S + T S + T G + T	S • T S • T S • T G	S + T + G S + T + G	S = T = G S = T = G	S / T / G	-	G S•T•G	G•T S•T•G	- S,T,G	- T = G
M	51	S=T T	S.T S.T	S • T S • T	S.T	-	GrT	GrT	TrG	G	-	•
	ST	S . T	T		e	S	\$~T	<u>,</u>	_	_	S,T,G	,
	M.B.F M M M M M.B.F M.B.F M.B.F M.B.F M.B.F	HABITAT IN AREA M.B.F M M ST M ST M ST M ST M.B.F M M.B.F M.SF. M.B.F SP.N M.B.F SP.N M.B.F SP.N M.B.F M.SF M.B.F M.SF	M ST - M ST -	HABITAT IN AREA 1968 1969 M.B.F.M * M ST - M.B.F.F.M.SF. S.T S.T M ST - M.B.F.F.N.SF - S.T M.B.F.F.N.SF - S.T M.B.F.F.N.SF S.T S.T M.B.F.F.N.SF S.T S.T M.B.F.F.N.SF S.T S.T	HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 HABITAT IN AREA 1968 1969 1970 M ST - G M ST - G M ST - - MABITAT IN AREA 1968 S.T S.T S.T M ST - - MABITAT IN AREA 1968 S.T S.T S.T MABITAT	HABITAT IN AREA 1968 1969 1970 1971 M.B.F.M * * T T M ST - G - M ST - - - M ST - - - M.B.F.F.M.SF. S.T S.T S.T S.T M.B.F.F.M.SF. S.T S.T S.T S.T M.B.F.F.SP.N S.T S.T S.T S.T M.B.F.F.SP.N T S.T S.T S.T S.T M.B.F.F.N.SF - S.T S.T S.T S.T S.T M.B.F.F.N.SF S.T S.T S.T S.T S.T S.T S.T M.B.F.F.N.SF S.T S.T S.T S.T	HABITAT IN AREA 1968 1969 1970 1971 1972 M.B.F.M * * T T T M ST - G - - M ST - G - - M ST - G S - - M ST - G S - - M ST - G S - - M ST - G G T T M ST - - - - - M ST - - T - - M ST - - T - - M ST - - - - -	HABITAT IN AREA 1968 1969 1970 1971 1972 1973 M.B.F.M * * T T G.T M ST - G - - M ST - G S - - M ST - G S - - - M ST - G - - - - - M ST - G -	HABITAT IN AREA 1968 1969 1970 1971 1972 1973 1974 M.B.F.M * * T T T G.T S.T.G M ST - G - - - - - M ST - G S - - - - - M ST - G S -	HABITAT IN AREA 1968 1969 1970 1971 1972 1973 1974 1975 M.B.F.H * * T T G.T S.T.G T M ST - G - - - - - M ST - G S - - - - M ST - G S - - - - M ST - G S - - - - M ST - G - - - - - M ST - G - - - - - M ST - T - - - - - M ST - - T - - - - M ST - - - - - - - M ST - - - - - S - M ST - - - - - S - M ST -	HABITAT IN AREA 1968 1969 1970 1971 1972 1973 1974 1975 1976 M-B,F M * * T T G,T S,T,G T G M ST - - G -	HABITAT IN AREA 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 M.B.F.M * * T T T G.T S.T.G T G T M ST - - G - <

		PRIMARY											
SPECIES	HABITAT	ACTIVIT In Area		1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
SALMONIDAE - TROUTS		~~~~~~~~				~~~~~~~					*****	******	
SALMO GAIRONERI-RAINBOW TROUT	F	S T	_	_	~	_	_	ы. [.]	-	-	-	-	6
JMBRIDAE - MUDMINNOWS	r	31	-	-	_	-		_					•
UMBRA PYGMAEA-EASTERN MUDMINNOW	F	ST	-	49	s	-	•	-	-	S	2-	s	-
ESOCIDAE - PIKES													
ESOX AMERICANUS-REDFIN PICKERAL	FoB	R . SP	-	S	S	s	S	S	-	410		•	-
ESOX NIGER-CHAIN PICKERAL	F • 8	R.SP	-	S	ŝ	41	S	-	-	-	-	e	-
SYNODUNTIDAE - LIZARDFISHES							_	т	S,T	s	s		5 . T
SYNGDUS FOETENS-INSHORE LIZARDFISH	м	S T	-	-	-	-	-	1	371	3	2	-	371
CYPRINIDAE - MINNOWS AND CARPS	- -			o -	<u> </u>	c			e -	c . *	e	ĩ	s
CARASSIUS AURATUS-GOLDFISH	F,B	RISP	-	S / T S / T	S / T S / T	S . T . C	- S,T,G	- 	S.T.G	S.T.G	5 5,7,6	1 S # T # G	5 - T - G
CYPRINUS CARPIO-CARP	F B	R . SP	S-T	SZT		SIT	S / T	S2T	S.T	S . T	57170	S-T	S / T
HYBOGRATHUS NUCHALIS-SILVERY MINNOW Notenisonus crysoleucas-golden shine	F28	R≥SP R≥SP	-	S	S . T S	SIT	5)T	S	s / 1	S	S	-	-
NOTROPIS ANALÚSTANUS-SATINFIN SHINER		RISP	-	s	ŝ	s	s	s	s	s	S	-	-
NOTROPIS HUDSONIUS-SPOTTALL SHINER	F.B	RZSP	-	Š,T	ŝ	S.T	s	S.T	s	s	ŝ	S	
RHINICHTHYS ATRATULUS-BLACKNOSE DACE	. –	ST	-	s	s	-	2	-	-	-	*	-	-
SEMUTILUS ATROMACULATUS-CREEK CHUB	F	ST	8	-	-	S	-	-	-	-	•	-	-
CATOSTOMIDAE - SUCKERS													
CARPIUDES CYPRINUS-QUILLBACK	F	\$ T	-	S	çanı	-	-	-	-	-	-	-	
CATOSTOMUS COMMERSONI-WHITE SUCKER (UPPER CREEKS)	F	RJSP	-	S	S	Ð	-	-	-	S	S	-	-
ERIHYZON OBLONGUS-CREEK CHUBSUCKER (UPPER CREEKS)	F	R,SP		S	S	S .	• ·	-	-	-	•	-	-
ICTALURIDAE - FRESHWATER CATFISHES													
ICTALURUS CATUS-WHITE CATFISH	F - 8	R.SP	т	S = T	Sat	SIT	5-7-G		S . T	TrG			TrG
ICTALURUS NEBULOSUS-BROWN BULLHEAD	F>B	RISP	T -	S . T	S # T	SIT	S.T.G		S.T	т	S,T	S∍T	S/T/G
ICTALURUS NATALIS-YELLOW BULLHEAD	F	R	-			-	-		S Sat	- 7.G	5,7,G	-	ĩ
ICTALURUS PUNCTATUS-CHANNEL CATFISH	F	R,SP R,SP	T.	5 / T 5	S . T	т —	T	S ≠ T	221		37170	3-1	
NOTURUS GYRINUS-TADPOLE MADTOM (UPPER CREEKS)	r	KJ3F	-	3	3	·		-					
BATHACHOIDIDAE - TOADFISHES													
OPSANUS TAU-DYSTER TOADFISH	N.B	SF	T	r	T	S . T	T	٢	т	T	٢	T .	ſ
LOPHIIDAE - GOOSEFISH													
LOPHIUS AMERICANUS-GOOSEFISH	M.B	ST	- .	-	*.	-	-	я .	-	-	~	-	-
GADIDAE - CODFISHES													
MERLUCCIUS BILINEARIS-SILVER HAKE	м	ST	-	**	-	т	-		ĩ	T	8		•
POLLACHIUS VIRENS-POLLOCK (LEWES)	·H	ST	-	~		S	-	-	:	-	-		-
UROPHYCIS CHUSS-RED HAKE	M	\$T	6 10	-		T	T	r	т	I	•	1	ĩ
										IA SAI	LEM FF 1	978	

.

.

SPECIES	HABITAT	PRIMAR ACTIVI IN ARE	TY	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
UROPHYCIS REGIUS-SPOTIED HAKE	×,8	5 F	т.	T	S . T	 S / T	+						
_ · · · · <u>_</u>		37	•		371	211	T	т	т	S.T	S.T	SIT	т
OPHIDIIDAE - CUSK-EELS AND BROTULAS RISSOLA MARGINATA-STRIPED CUSK-EEL	M,B	S T	T	т	S . T	S,T	-	SPT	т	т	S.T	т	т
EXOCOETIDAE - FLYING FISHES AND HALFE	REAKS												
HYPORHAMPHUS UNIFASCIATUS-HALFBEAK	M	S T	-	-	s	s	-	-	-	S	s	s	-
										•	-	•	
BELONIDAE - NEEDLEFISHES Strongylura Marina-Atlantic Needlefish	M = B = F	N>SF	5	S , T	s	S.T	S	S	\$,T	s	S.T	-	S • G
CYPRINODONTIDAE - KILLIFISHES													
CYPRINDOON VARIEGATUS-SHEEPSHEAD MINNOW	M.8.F	\$ F	-	5	Ś	S	S	S	S	S	S	-	S
FUNDULUS DIAPH4MUS+BANDED KILLIFISH	F F B M	RJSP	-	\$	S	S	S	S	S	S	S T	S.	S
FUNDULUS HETEROCLITUS-NUMMICHOG	BIFIM		S ∕ T	SrT	S	SPT	SIT	S	S	S	S	S	S
FURDULUS LUCIAE-SPOTFIN KILLIFISH		SF	S	S	S	S	S	-	-	-	-	-	-
FUNDULUS MAJALIS-STRIPED KILLIFISH	MPB	SF	S	S	s	S	S	S/T	S ·	S	S	S	S
LUCANIA PARVAHRAINWATER KILLIFISH	M.B	SF	-	-	S	-	-	S	-	-	-	-	-
POECILLIDAE - LIVEBEARER													
GAMBUSIA AFFINIS-MOSQUITOFISH	M.8.F	R.SP	-	S	s	S	5	•	-	-	-	-	-
ATHERINIDAE - SILVERSIDES													
HEMORAS MARTINICA-POUGH SILVERSIDE	M,8,F	SF,SP	S,T	S	S	S	S	S/T	S	S	S	S	-
MENIDIA BERYLLINA-TICEWATER	8.F.M	R.SP	S = T	S	S	SIT	SIT	S	S	S	S	S	S
	E M.8.F		S = T	S . T	S.T	S . T	S / T	S.T	S.T	S.T	S.T	S.T	S.T
MENIDIA MENIDIA-ATLANTIC SILVERSIDE		K / SP	501	371	371	211	371	571	371	371	371	371	571
ASTEROSTEIDAE = STICKLEBACKS									•				
APELTES QUADRACUS-FOURSPINE Stickleback	X,8,F	WF	-	S > T	S	S.	-	-	SPT	-	-	-	-
GASTEROSTEUS ACULEATUS-THREESPINE	M.B.F	WF	-	S.T	s	S.T	-	т	S . T	S	s	-	-
STICKLEBACK					•.			•		•	•		
SYNGNATHIDAE - PIPEFISHES AND SEAHORS			_	•	_	e . 7	_	_	_	-	_	-	-
HIPPOCAMPUS ERECTUS-LINED SEAHORSE SYNGNATHUS FUSCUS-NORTHERN PIPEFIS	M.B. N.B.F	ST N.SE	S.T	S.T	S . T	S+T S+T	S.T	S.T	S,T	S.T	SZT -	S.T	S.T
STUGUATHUS PUSCUS-NURTHERN PIPEPIS		11/31	371	371	3/1	301	371	371	371	371	371 -	371	371
PERCICHTHYIDAE - TEMPERATE BASSES													
MORONE AMERICANA-WHITE PERCH	B . F . M		SPT -	S.T	S . T		SITIG						
MORONE SAXATILIS-STRIPED BASS	M.B.F	N.SF	S.T	SIT	SJT	21110	S.T.G	5/1/4	3/1/6	5/1/6	3/1/9	3/1/0	3/1/0
SERRANIDAE - SEA BASSES Centropristis striata-black sea bas	. u .	st		_	-	-	-	· ·	т	т	T	T	-
FEATHALKIZIJƏ SIRTAIMADEMEK 264 843		31	-	-	-	-	-	-	•	•	-	•	-
										IA SAL	EM FF 1	478	

3.1-231

_

1

.

		PRIMAR	Y				•			·			
SPECIES	HABITAT	ACTIVI ' IN ARE		1940	1970	1071	1070	4077					
					17/0	17/1 	1972	1973	1974	1975	1976	1977	1978
ENTRARCHIDAE - SUNFISHES					•							a an in an an an an an an a	
ENNEACANTHUS CHAETODON-BLACKBANDED Sunfish	F	S T	-	-	s	-	-	◄ .	-	-	-	-	-
ENNEACANTHUS GLORIOSUS-BLUESPOTTED	F	S T	-	-	-	-	5	-	S . T	-	-	-	-
LEPOMIS AURITUS-REDBREAST SUNFISH (UPPER CREEKS)	F	R×SP	-	s	s	S	s	-	Ga	.	-	-	-
LEPOMIS GIBBOSUS-PUMPKINSEED	F,8	R.SP	-	S . T	s	S.T	c v	~ ~	•		_		
LEPONIS MACROCHIRUS-BLUEGILL	F28	RZSP	r	SIT	-		S . T	S.T	S	S . T	S	S	-
MICROPTERUS DOLONIEUI-SMALLMOUTH BAS	C F . B	ST	-	-	s H	S.T	S	S > T	S . T	S.T	S / Ĩ	S / T	S>T
MICRUPTERUS SALMOIDES-LARGEMOUTH BAS	S F.B	R.SP	-	s	s	-	-	-	S	-	-	-	-
POMORIS ANNULARIS-WHITE CRAPPIE	528	RISP	-	s	-	S.T	s a	S	S.T	S	S	S	-
POMOXIS NIGROMACULATUS-BLACK CRAPPIE	5.8	RZSP	-	s S/T	S	S . T	SIT	S	S	S	S	S	S / T
	175	n / 3 /	-	211	SPT	S ≠ T	S	SIT	S . T	S	S	S	S≠T
ERCIDAE - PERCHES													
ETHEOSTOMA OLMSTEDI-TESSELLATED	F.B	R.SP	-	SIT	S , T	S - T	S.T	S	SZT	S + T	S,T	S . T	-
PERCA FLAVESCENS-YELLOW PERCH	F>B	R.SP	5.7	S.T	S	S . T	S.T.G	S , T	S.T	S . T	\$ <i>,</i> ī	s	S.T
OMATOMIDAE - BLUEFISHES													
POMATOMUS SALTATRIX-BLUEFISH	M.8.F	NISF	SIT	S , Y	\$,7	S,T	SJT	S . T	S.T.G	S.T.G	\$,7,Ġ	80706	5,T,G
ARANGIDAE - JACKS AND POMPANOS													
CARANX HIPPOS-CREVALLE JACK	M,8,F		~ ~	~ ~	•								
SELENE VOMER-LOOKDOWN	MJBJF	ST	S . T	S.T	S	S.T	S/T	SOT	S.T	SPT	SIT	-	S-T
TRACHINGTUS CAROLINUS-FLORIDA POMPAN	M 2 8		S	-	S	S	*	*	S , T	T	-	s	-
(SLAUGHTER BEACH, LEWES)		-	-	⊷.	S		-	-	-	-	-	-	-
TRACHINOTUS FALCATUS-PERMIT (SLAUGHTER BEACH, LEWES)	м	-	•	-	S	S	-	-	-	-	-	1 7	u 7
VOMER SETAPINNIS-ATLANTIC MOONFISH	M	ST	-	T	S	-		-	-	-	-		-
JTJANIDAE - SNAPPERS													
LUTJANUS GRISEUS-GPEY SNAPPER	M.B.F	sr	~	S	S	s		-	-	-	-	-	-
PARIDAE - PORGIES					•								
LAGODUN RHOMBOIDES-PINFISH	M,B	ST	tu	S	-	S	ъ '	-	s	-	-	v	-
CIAENIDAE - DRUMS				•									
BAIRDIELLA CHRYSURA-SILVER PERCH	M.B.F	N . S F	C . T	с т	c 7	c *	~ ~	-		-			
CYNOSCION REGALIS-REAKFISH	M/8/F		SI	S.T	S.T	S.T	S.T	ĭ	S . T	T	T	-	-
LEIOSTONUS XANTHURUS-SPOT	MyByF		S • T	S.T	S.T	S.T	S,T,G	5,T,G		5-1-6			
MENTICIRRHUS SAXATILIS-NORTHERN	M282F M28		SJT	S.T	ĭ	S,T	S ₂ T	S . T	SIT		S # T # G	S/T/G	5,7,G
KINGFISH			S-T	S	S	-	-	en .	S>T	S	-	-	•
MICROPOGON UNGULATUS-ATLANTIC CROAKED			•	T	т. [.]	S/T	SIT	т	S.T	S-T	SIT	т	5,7
POGONIAS CROMIS-BLACK DRUM	N,8,F	NJSF	SPT	SAT	S.T	S.T	S.T	Ť	SIT	SZT	-	S.T	SZT
													~ .

IA SALEM FF 1978

		PRIMAR	TY										
PECIES H	4811AT	IN ARE	A 1968	1969 	1970	1971	1972	1973	1974	1975	1976	1977	1978
CHAETODUNTIDAE - BUTTERFLYFISHES CHAETODON OCELLATUS-SPOTFIN BUTTERFLYFISH	M	ST	8	-	-	-	-	-	T.	-	-	-	-
NUGILIDAE - MULLETS Kugil Cephalus-Striped Mullet Mugil Curema-white Mullet	M.B.F M.8.F		-	s -	S S	- S	-	S -	s -	-	s -	<u>s</u>	-
SPHYRAENIDAE -BARRACUDAS Sphyraena Gorealis-Northern Sennet (Lewes)	м	-	-	~	S	# 7	-	-	-	-	-	-	-
JRANOSCOPIDAE - STARGAZERS ASTROSCOPUS GJITATUS-NORTHERN STARGAZER	M.8	ST	т	-	. т	s	т	-	SPT	T	T	T	т
GOBIIDAE - GOBIES Gobiosoma Bosci-Naked Goby Gobiosoma Ginsburgi-Seaboard Goby (Hoodland Beach)	M→B→F M→B		T T	S • T T	S>T T	S>T T	S-T T	s,T -	S , T	s,T -	S≠T •	T -	T -
COMBRIDAE - MACKERELS AND TUNAS Scomber Scombrus-Atlantic Mackeral Scomberomorus Maculatus-Spanish Mackeral	M M	s t s t	-	:	-	T -	-	-	-	-	G	-	- -
TROMATEIDAE - BUTTERFISHES Peprilus triacanthus-butterfish Peprilus alepidotus-harvestfish	M∠8 M	S F S T	T -	<u>T</u>	T -	T	-	Ţ	Ī.	T = G	<u>T</u>	T,G	T≠G T
RIGLIDAE - SEAROBINS PRIONOTUS CAROLINUS-NORTHERN SEAROBIN (BOHERS BEACH)	м	ST	-	-	T.	S.T	T	-	т	-	т	т	т
PRIONOTUS EVOLANS-STRIPED SEAROBIN	N,B	ST	T	T	-	r	т	-	S . T	т	S,T	-	T
OTTIDAE - SCULPINS Mydxocephalus Aenaeus-gruðby (lewes)	м	-	-	-	•	S	-	-	-	-	-	-	-
IOTHIDAE - LEFTEYE FLOUNDER Etropus Microstomus-smallmouth Stounder	M.B	S T	- .	-	s	s	T	•	-	т	-	т	-
FLOUNDER PARALICHTHYS DENTATUS-SUMMER FLOUNDER PARALICHTHYS OBLONGUS-FOURSPOT FLOUNDER		5 T 5 T	T -	T -	S,T	S . T	S.T.G -	S.T	S≠T≠G —	S↓T T	SJT -	S≠T -	T≠G ₩
	M.B.	5 T	-	т	S.T	S↓T	-	T	S.T	T IA SALE	T		T

3.1-233

÷ .

.

TABLE	3	•	1	•	6	a-1	
CONT	۲ι	N	IΤ	F	n		

PECIES	IABITAT	PRIMARY ACTIVIT In Area	Y	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
***************************************			******			19 in 10 49 49 49 49 49	*****			****	41 84 49 49 49 40 10		
LEURONECTIDAE - RIGHTEYE FLOUNDER PSEUDOPLEURONECTES AMERICANUS-WINTER FLOUNDER	M.8.F	NJSF	S • T	\$7T	s.T	S.T	-		\$ • T	S+T	-	\$,T	SPT .
OLEIDAE - SOLES			·										
TRINECTES MACULATUS-HOGCHOKER	M.B.F	NISF	S ≠ T	S.T	S . T	SPT	S = Y	S.T	S.T	5 / T	5.T.G	5.T.G	5.T.G
YNOGLOSSIDAE - TONGUEFISHES Symphurus pligiúsa-blackcheek Tonguefish	MJB	-	•	-	-	-	-	-		T	\$ • T		
ALISTIDAE - FILEFISHES Alutera schoepfi-orange filefish	M	-	-	-		-	-	-	-	-	*		-
STRACIIDAE - BOXFISHES Lactophrys trigueter-smooth trunkfish	M	-	-	-	-	-	-	-		т	•	\$	-
ETRADDONTIDAE - PUFFERS Sphaeroides Maculatus-Northern Puffer	M.B	ST	-	SZT	\$.T	S.T	s	σ,	т	-	-	S.T	-

IA SALEM FF 1978

TABLE 3.1.6a-2 DESCRIPTION OF SEINE STATIONS - 1978

PHD1

LOCATION: West shore of Delaware River at woulh of Peach House Ditch. Station consists of a ditch ca. 70 yds long and a beach ca. 50 yds long. A small submerged sand bar extends across the mouth of the ditch. DESCRIPTION: Sand and nud. BOITON COMPOSITION: SLOPE OF BEACH: Ten to 15 degrees at high tide; 3 to 5 degrees at los tide. VEGETATION: Little vegetation immediately adjacent to beach or ditch. Area north and south of ditch vegetated with marsh grass. SG92 LOCATION: Test shore of Delaware River at "Sam Green's Beach" located 1/4 mile north of the mouth of Appoquinimink Creek. Station consists of 1/2-mile long beach. A small sand cliff about 8 ft high parallels the beach and slopes to beach level toward the DESCRIPTION: northern end of the area.

 BOITION COMPOSITION:
 Sand at high tide; sand-mud-rubble at low tide.

 SLOPE OF BEACH:
 Ten degrees at high tide; 5 degrees at low tide.

 VEGETATION:
 No aquatic vegetation present.

AUBJ

LOCATION:	Test shore of Delaware River along Augustine Beach.		
DESCRIPTION:	Station consists of 3/4-mile long beach interrupted by two launching ramps and two wooden breakwaters.	Sunken barge borders north end.	Nost
	sampling done in 110-yard area between the two breakwaters.		
BOTTON COMPOSITION:	Sand at high tide; soft pud at low tide.		·
SLOFE OF BEACH:	Ten to 15 degrees at high tide; 5 degrees at low tide.		
VEGETATION:	Little vegetation immediately adjacent to station.		

ST3A

LOCATION:	West shore of Delaware River, 3/4 mile north of Canadas Beach.	·
DESCRIPTION;	Station consists of 1/4-mile long beach interrupted by clumps of peat and beach grass.	Thousand Acre marsh spillpool and a shallow ditch
	located at southern end of station.	
BOTTON COMPOSITION:	Sand and mud at high tide; mud at low tide.	
SLOPE OF BEACH:	Fifteen to 20 degrees at high tide; 5 to 10 degrees at low tide.	
VEGETATION:	Little equatic vegetation present. Beach bordered by high marsh grass.	•

RE14

LOCATION:	Dolaware River east side of Reedy Island.
DESCRIPTION:	Station consists of 1/2-alle long beach at northern end of Island.
BOTTCH COMPOSITION:	Sand and mud.
SLOPE OF BEACH:	Ton to 15 degrees at all tidel phases.
VEGETATION:	No aquatic vegetation. Beach bordered by high marsh grass.

IA SALEM FF 1978

TABLE 3.1.6a-2

CONTINUED

ELPS

 LOCATION:
 East shore of Delaware River, Elsinboro Point.

 DESCRIPTION:
 Station located on 80-yard beach interrupted with occasional grassy areas. Beach protected free direct tidal flow by a sand bar located about 1/4 mile offshore.

 BOTTOM COMPOSITION:
 Sand and gravel with some silt.

 SLOPE OF BEACH:
 Ten to 20 degrees at all tidal phases.

 VEGETATION:
 Beach bordered by high marsh grass.

085**a**

LOCATION: East shore of Delaware River at Oakwood Beach. BESCRIPTION: Station consists of 1-mile section of beach located 3/4 mile north of Eleinboro Paint. BOITON COMPOSITION: Sand and gravel. SLOPE OF BEACH: Ten to 20 degrees at high tide; 5 to 10 degrees at low tide. VEGETATION: No aquatic vegetation present.

SSC6

LOCATION:	East shore of Delaware River, in Sunken Ship Cove, on the southern end of Artificial Island.
DESCRIPTION:	Station consists of an 80-yard beach at the east end of Sunken Ship Cove. A sunken ship's hull fores a wall at east end.
BOTTCH COMPOSITION:	Soft sand at high tide and aud at low tide.
SLOPE OF BEACH:	Twenty degrees at high tide; 5 degrees at low tide.
VEGETATION:	No aquatic vegetation present. High parsh grass present about 30 vda inshore.

HOP**7**

LOCATION:East shore of Delaware River; wedge-shaped beach south of Hope Creek between tower and bay parker.DESCRIPTION:Station consists of 70-yard section of beach flanked by steep peat banks and interrupted by clusps of peat and beach grass.BOITCH DESCRIPTION:Sand and gravel with some hard mud.SLOPE OF BEACH:Five to 10 degrees at all tidel phases.VEGETATION:No aquatic vegetation present.

¥KC8

LOCATION:	East shore of Delaware River north of Wad Horse Creek,
DESCRIPTION:	Station consists of beach about 70 yds long.
BOTTOM COMPOSITION:	Sand and mud.
SLOPE OF BEACH:	Ten to 12 degrees at high tide; 5 to 10 degrees at low tide.
VEGETATION:	Shoreline bordered by high marsh grass.

IA SALEM FF 1978

TABLE 3.1.6a-3 TOTAL NUMBER, RANK, AND PERCENT OF .TOTAL DAYLIGHT SEINE CATCH - 1978

STATION NO. OF COLLS. (10) NO. OF COLLS. (13) NO. OF COLLS. (15)	РН01 17 17	SGB2 17 17	AU83 17 17	ST3A 17 17	REI4 17 17	085A 17 17	ELP5 17 17	SSC6 17 17	HOP7 17 17	МНСВ 17 17	TOTAL 170 170		
NO. OF SPECIES NO. OF SPECIMENS	18 924	15 669	16 1,273	20 1,071	14 45 1	14 2,063	13 850	13 1,149	8 1,059	8 2,152	32 11,661		
SPECIES												RANK	PCT
H. MENIDIA	504	316	773	352	200	131	236	557	651	4 700	F 033	•	
A. MITCHILLI	265	269	262	440	153	1.146	473	367	308	1,302	5,022	1	43.
CYPRINIDAE	1	38	13	39	7	537	40		300	717	4,400	2	37.
B. TYRANNUS	42	Š	60	24	34	207	52	4		407	678	3	5.
F. HETEROCLITUS	68	ษ์	125	158	38	8	27	59	72	103	658	4	5.
L. XANTHURUS	3	ĕ	11	6	36	1		41		11	484	5	4.
F. MAJALIS	ş	•	'ý	ĭ	1	•	1	100		• 3	142	6	1.
C. REGALIS	18	11	, ,	ģ	1	5	3	13	22	14	72	7	- 1
4. AMERICANA	ž	i	2	15	2	2	8	1			55	8	•
4. SAXATILIS	ĩ	i	Š	2	1	6		1			33	9	•
P. CROMIS	i	i	1	6	ż	0	5		· •		19	10	•
A. ROSTRATA	•	3	ź	0	6	-	1	1	1		14	11	-1
P. SALTATRIX	Z		٤.	1	2	<u>(</u>	-		1		13	12	- 1
H. NUCHALIS	ĩ	1		4	2	3	2		1		11	13	•
T. MACULATUS	•	4	•	4	•	1	1	_		- 1	10	14	•
P. AMERICANUS		**	2	,				3			9	15	•
S. FUSCUS	1		~	4	1			1			6	16	
S. FOETENS	I		2	2							5	17	.(
A. AESTIVALIS						_		1	3	1	5	17	
F. DIAPHANUS	3	•			1	2	1				4	19	. (
CARPIO	3	1		-							4	19	- (
L AURATUS				3							3	21	-0
A UNDULATUS			1	1							2	22	-0
L. NEBULUSUS			2	•							2	ZZ	. (
S. MARINA				5							2	22	•
L VARIEGATUS	•					· 7					1	25	.(
4. BERYLLINA											1	25	- 0
P. FLAVESCENS											1	25	_0
LAVESCENS											1	25	•0
. MACROCHIRUS	1										1	25	•0
		1									1	25	-0
ANNULARIS				1							1	25	.0
NIGROMACULATUS				1							4	25	-0

IA SALEH PP 1978

. 1

.

.

· · ·	1970 percent			1971 percent		1972	1973		
	Rank	of catch	Rank	of catch	Rank	percent of catch	Rank	percent of catch	
M. menidia	1	47.4	1	39.9	l	39.5	l	46.0	
A. mitchilli	2	40.0	4	12.7	2	36.2	2	30.5	
B. tyrannus	· 5	1.5	2	31.0	3	14.6	7	1.5	
F. heteroclitus	4.	1.6	7	1.1	5	1.4	5	1.8	

TABLE 3.1.6a-4 ANNUAL RANK AND PERCENT OF SEINE CATCH DURING 1970-1978

	1	974		1975	•	1976	1977		
	Rank	percent of catch	Rank	percent of catch	Rank	percent of catch	Rank	parcent of catch	
M. menidia	2	28.7	1	34.5	2	33.6	2	33.0	
A. mitchilli	· 1	43.2	2	34.4	1	34.0	1	50.8	
B. tyrannus	3	13.0	3	17.6	3	22.7	3	6.7	
F. heteroclitus	6	1.8	5	3.1	5	1.9	5	2.9	

	. 1	978
	Rank	percent of catch
M. menidia	1	43.1
A. mitchilli	2	37.7
B. tyrannus	3	5.6
F. heteroclitus	4	4.2

IA SALEM FF 1978

3.1-238

ω

Date	Jan. n/coll	Feb. n/coll	Mar. n/coll	Apr. n/coll	May n/coll	June n/coll	July n/coll	⁻ Aug. n/coll	Sept. n/coll	Oct. n/coll	Nov. n/coll	Dec. n/coll	Annual _n/coll
						<u>M. menid</u>	ia		· ·				
1975 1976	1.0 0	0.6	1.0	2.0	17.0 4.0	8.8 8.2	32.8 . 31.4	89.2 41.4	46.4 77.2	31.0 24.2	19.0 10.4	7.6	25.2 26.0
197 7 1978	-	· _	0 0	3.6	10.8 8.2	7.0 39.8	34.2 95.0	33.2 31.8	37.2	63.8 63.2	11.8 10.7	· 0.8 3.8	21.2 29.5
						<u>A. mitchi</u>	<u>11i</u>						
1975 1976	0.0	.0 - 0	0 0	* 34.0	34.0 57.0	18.6 46.2	26.2 31.6	59.8 45.8	28.0 36.8	58.1 7.J	19.0 2.0	0.2	25.2 26.4
197 7 1978		-	0 0	. 8.0 0	35.0 20.3	6.0 43.6	44.0 50.9	78.4 34.4	125.2 67.2	8.2 10.1	5.8 2.8	0 0	32.8
					•	B. tyrann	us						
1975 1976	0 0	0 0	0 0	1.6 4.2	60.6 131.2	37.0 65.6	11.2 18.8	0.6	0 2.4	* 0.8	0.4 0.4	0.2	13.0 17.6
1977 1978	-	Ξ	0 0	2.2	11.6	23.8 32.9	0.4 28.1	1.8 0.3	0.8 *	· 0 0	★ 0	0 0	4.2 3.9
					E	 heterocl 	itus						
1975 1976	2.0 0.4	0 1.0	0.2 3.0	1.2 1.4	2.0 2.2	6.2 0.8	0.2	1.8	1.0	5.0 1.2	1.0 2.8	0.6 2.4	2.2 · 1.4
1977 1978	-	-	0.8 1.6	1.2 1.4	4.4 1.9	0.6 12.5	0.4	0.8 3.4	5.4 1.2	3.4 0	0.4	0.4 0.5	1.8 2.8
						•			•				

TABLE 3.1.6a-5 SEINE CATCH PER EFFORT (N/COLL) DURING 1975-1978 OF THE MOST ABUNDANT SPECIES TAKEN IN 1978. A DASH INDICATES NO COLLECTIONS

* = Less than 0.1

IA SALEM FF 1978

TABLE 3.1.6a-6 DESCRIPTION OF RIVER TRAWL ZONES - 1978

Zone		Border Linits	Shore		Depth Nean L Nater	02	Bottos Typa
N¥2	- Southern: Ristern: Zastarn: Korthern:	Line from the entrance to the Chesapeake and Delaware Canal to the vesterm boundary of the shipping channel. Delaware shore. Pea Patch Island and the vestern boundary of the shipping channel. Line from New Castle to Buoy 50.		Marsh (Pea Patch Island) and surmerged dike. Karsh and Delawa re City bulkhead.	Range: Kode:		Kard and soft • cud
K WI	Southern: Sestern: Eastern: Korthern:	Cable area on east side of Reedy Island; and line from northern tip of Reedy Island to a point on the western boundary of the shipping channel 700 yards above Buoy SR. Delaware share. Reedy Island and western boundary of the shipping channel. Line from the entrance to the Chesapeake and Delaware Canal to the western boundary of the shipping channel.		Karsh interrupted by sand beach (Reedy Island). Karsh interrupted by sand beach.	Range; Ľode:	1/2 ft to 40 ft 11 ft	Soft ≕ud
1£2	Southern: Restern: Eastern: Noribern:	Line from the southern tip of Hickory Island (at nouth of Salem River) to eastern boundary of shipping channel (across from Buoy 50). Eastern boundary of shipping channel. New Jersey store. Line from Pennsville to Buoy 6D.	East: West:	Harsh Interrupted by sand beach. none	Range: Kode:	1/2 ft to 40 ft 10 ft	Hard and soft cud
NE]	Southern: Western: Eastern: Northern:	Line from Elsinboro Point to a point on the eastern boundary of the shipping channel 1,500 yards below Buoy N2N. Eastern boundary of shipping channel. New Jersey share. Line from southern tip of Hickory Island (mouth of Salem River) to eastern boundary of shipping channel (across channel from Buoy 5N).	East: West:	Marsh interrupted by sand beach, none	Range: Mode:	l ft to 43 ft 9 ft	Hand and soft sud
S K 2	Southern: Testern: Eestern: Northern:	Line from Belaware Point to a point on the western boundary of the stipping channel 400 yards below Buoy RGL. Delaware shore. Western boundary of shipping channel. Line from routh of Ray's Ditch to point on the mestern boundary of the shipping channel 1,000 yards below Buoy 18.	East: West:	none Karsh Interrupted þy sand beach,	Range: Koda:	1/2 ft to 34 ft 13 ft	Kard and soft aud
S#1	Southern: Pestern: Eastern: Korthern:	Line from Bakeoven Point to Buoy 42 (39° 21* N latituda). Delaware shore Testern boundary of shipping channel. Line from Delawaro Point to a point on the western boundary of the shipping channel 400 yards bolow Buoy RöL.	East: Kest:	ncne Earsh interrupted by sand beach.	Range: Koda:	1 ft to 38 ft 13 ft	Hard and soft cud

IA SALEM PP 1978

3.1-240

,

TABLE 3.1.6a-6

CONTINUED

Zone	1	Border Liaits	Shore		Dapth at Kean Low <u>Nater (ft)</u>	Botto⊐ Ty⊃s
	Southern:	Line from 500 yards above mouth of Mad Horse Creek to a point on the	East:	Marsh interrupted	Range: 1/2 ft to 35 ft	Hard and soft cud
SE 3	Restern: Eastern:	ezstern boundary of the shipping channel 400 yards below Buoy R6L. Eastern boundary of shipping channel. Kew Jersey shore.	West:	by sand beach. none	Solt Mode: 13 ft	5071 200
	Northern:	Line from Hope Creek Jetty to Buoy R8L.				
	Southern:	Line from Arnold Point to a point on the eastern boundary of the shipping channel 1 mile below Buoy R4L.	· East:	Marsh interrupted by sand beach.	Range: 1 ft to 30 ft	Hard and soft bud
SE2	Rostern: Eastern: Northern:	Eastern boundary of shipping channel. New Jarsey shore. Line from 5CO yards above mouth of Mad Horse Greek to a point on the	West:	none	Mode: 13 ft	
		eastern boundary of the shipping channel 400 yards below Buoy R6L.				
	Southern: Restern:	Line from Dunks Point tower to Buoy 42. Eastern boundary of shipping channel.	East:	Marsh interrupted by sand beach.	Range: 3 ft to 31 ft	Hard and soft cud
£1	Eastern: Korthern:	Her Jersey shore. Line from Arcold Point to a point on the eastern boundary of the shipping channel 1 mile below Buoy R4L.	West:	none	Mode: 13 ft	
SE0	Southern: Restern:	Line from Sea Breeze to Ship John Shoal. Eastern boundary of shipping channel.	East:	Earsh interrupted by sand beach.	Range: 1 fi to 44 ft	Hard and soft mud
320	Eastern: Northern:	Now Jersey store. Line from Ducks Point tower to Buoy 42.	West:	none	Bode: 10 ft	
	Southern: Fostern:	Line for Ray's Ditch to Hope Creek Jetty. Delaware shore.	East:	Rocky along Reedy Island Dike.	Range: 1 ft to 32 ft	Hard oud sand; rock
8-1	Eastern: Northern:	Restern boundary of shipping channel to Buoy 1B, to southern tip of Ready Island Dike. Line from lover break to light at southern tip of Reedy Island Dike.	West:	Marsh Interrupted by sand beach.	'Kode: 3.ft	near dike, rocky
	Southerne	Line from lower break to light at southern tip of Reedy Island Dike.	East:	Rocky	Range: 1 ft to	Soft cud
	Testern:	Delazare shore.		Marsh interrupted	19 ft	sand; rocky
1 -2	Eastern: Northern:	Ready Island Dike. Line from nouth of Augustine Creek to point on Ready Island Dike, 1,000 yards below light below break in Ready Island Dike.		by sand beach.	Kode: 4 ft	near dike
	Southern:	Line from mouth of Augustine Creek to point on Reedy Island Dike, 1,000 yards talow light below break in Reedy Island Dike,) East:	Rocky	Range: 1/2 ft to 22 ft	Soft and
F- 3	Festern: Eastern:	Delazare shore. Reedy Island Dike.	West:	Karsh Interrupted by sand beach.	ZZ TE Mode: 8 ft	sand; rocky near dike
	Korthern:	Cable area east of Reedy Island.				

IA SALEM PP 1978

.

TABLE 3.1.6a-6

CONTINUED

Zone		Border Linits	Shore		Depth a Kean Lo Kater (20	Batton Type
E-1	Southern: Restern: Eestern: Northern:	Line from Hope Creek Jetty to Buoy R8L. Eastern boundary of shipping channel. New Jersey shore. Line from western tip of Sunken Ships to a point on the eastern boundary of the shipping channel 1,500 yards below Buoy R2B.	Éast: West:	Marsh interrupted by sand beach. none	Range: Moda:	l ft to 40 ft 17 ft	 Hand sand and mud
E-2	Southern: Eastern: Yestern: Korthern:	Line from sestern tip of Sunken Ships to a point on the eastern boundary of the shipping channel 1,500 yards below Buoy R2B. New Jersey shore (Artificial Island). : Eastern Boundary of shipping channel. Line from a point 1,500 yards north of the southern tip of Artificial Island to a point on the eastern boundary of the shipping channel 100 yards above Buoy R2R.	East: West:	Rock wall none	Range: Kode:	1) ft to 4) ft 26 ft	Hard sand and cud
E-3	Southern: Yestern: Eastern: Northern:	Line from a point 1,500 yards north of the southern tip of Artificial Island to a point on the eastern boundary of the shipping channel 100 yards below Budy Ri3. Eastern boundary of shipping channel. New Jersey shore Line trom a point 2,000 yards south of northern tip of Artificial Island to a point on the eastern boundary of the shipping channel 100 yards above Suoy R2R.	East: ¥est;	Rock wall nore	Range: Bode:	7 ft to 33 ft 23 ft	Hard sood and cud
E-4	Southern: Tastern: Eastern: Korthern:	Line from a point 2,000 yards south of the northern tip of Artificial Island to a point on the eastern boundary of the shipping channel 100 yards above Buby R2R. Eastern boundary of shipping channel. New Jarsay store. Line from north tip of Artificial Island to a point on the eastern boundary of the shipping channel 1,000 yards above Buby K4R.	East: Wast:	Rock wall none	Range; Kode;	10-ft to 35 ft 26 ft	Hard sand and mud
E-5 .	Southern: Western: Eastern: Northern:	Line from northern tip of Artificial Island to a point on the eastern boundary of the shipping channel 100 yards above Buoy N4R. Eastern boundary of shipping channel. New Jersey shore. Line from a point 400 yards south of Straight Ditch to a point on the east boundary of the shipping channel 100 yards above Buoy N5R.	West:	Karsh Interruptod by sand beach. none	Range: Kode:	1 ft to 41 ft 16 ft	Hard and soft cud

3.1-242

IA SALEM FF 1978

1

Depth at Bean Low Eottom Border Linits Zone Shore Water (ft) Type Southern: Line from a point 400 yards south of Straight Ditch to a point on the East: Marsh Interrupted Range: 1 ft to Fard and eastern boundary of the shipping channel 1,000 yards above Buoy NGR. by sand beach. 43 ft soft sand and ¥estern: Eastern boundary of shipping channel. nud E--5 West: none Hode: 16 ft Eastern: New Jersey shore. Northern: Line from Elsinboro Point to a point on eastern boundary of shipping channel 1,500 yards below Buoy 1121. Southern: Line from southern tip of Reedy Island Dike to Buoy 18. East: none Range: 14 ft to Rocky (near Reedy Island Dike. Wasiern: · 32 ft dike); soft West: Rocky (Reedy Island RIJ Easterne Restarn Loundary of shipping channel. ≣ud Dike); marsh, sand Kode: 22 ft Northern: Line south of flashing green 25-second light on Reedy Island Dike to beach (Reedy Island). a point on the western boundary of the shipping channel 100 yards south of Buoy CIR. Southern: Line south of flashing green $2\frac{1}{2}$ -second light on Reedy Island Dike to a East: none Range: 2 ft to Rocky (nezr point on the mestern boundary of the shipping channel approximately 38 ft dika); soft West: Rocky (Reedy Island 100 yards south of Buoy ClR. ⊾uđ Dike); marsh, sand Bode: 22 ft R12 Testern: Reedy Island Dike. beach (Reedy Island). Eastern: Restern boundary of shipping channel. Northern: Line from northern tip of Reedy Island to a point on the western boundary of the shipping channel 1,000 yards above Buoy 5R. Southerns Ring of Sunken Ships. East: Wood Wall Range: 1 ft to Soft and Testern: Line from vestern tip of Sunken Ships to southern tip of Artificial Island. West: none 17 ft and send 22C Eastern: Ring of Sunken Ships, North: Sand beach, rock zall Lode: 9 ft Northern: New Jersey shore (Artificial Island).

South: Wood Wall

IA SALEM FF-1978

TABLE	2	٦.	6a-7	
TUDPU	э.		0a-1	

ANNUAL TRAWL CATCH STATISTICS - 1978

ZONE		CHA1				CHA2				CHA3				
NO. OF COLLECTIONS		18				18	18							
NO. OF SPECIES		19				15			18					
NO. OF SPECIMENS		1.360				1,390				2.881				
SPECIMENS/10 MIN TRAW	L (N/T)	37.8				38.6				80.0				
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	۲×	N/T*	NUMBER	N/T	ĭ≭	N/T×		
A. OXYRHYNCHUS									2	.1	2	.5		
A_ ROSTRATA	3	-1	3	- 5	4	.1	2	1.0	26	.7	6	2.2		
A. AESTIVALIS	11	.3	2	2.8	21	. 6	3	3.5	10	.3	1.	5.0		
A. PSEUDOHARENGUS	5	-1	2	1.3	4	.1	2	1.0	3	.1	2	. 8		
A. SAPIDISSIMA	1		1	.5				·	-			• -		
B. TYRANNUS					8	.2	2	2.0	5	.1	2	1.3		
A. MITCHILLI	269	7.5	12	11.2	281	.2 7.8	14	10.0	113	3.1	15	3.8		
1. PUNCTATUS								-	1	_	1	.5		
S. FOETENS	1		1	_ 5										
Ó. TAU	6	.2	3	1.0										
R. MARGINATA	3	.1	2	- 8	5	.1	4	. 6	1		1	.5		
M. MEHIDIA					1		1	- 6 - 5						
P. EVOLANS									1		1	.5		
M_ AMERICANA	2	-1	1	1.0	4	•1	2	1.0	11	• 3	3	1.5		
M. SAXATILIS .					1		1	.5	2	.1	1	1.0		
P. SALTATRIX	1		1	.5					2	_1	1	1.0		
C_ REGALIS	866	24.1	11	39.4	1,010	28.1	10	50.5	2,261	62.8	10	113.1		
L. XANTHURUS	3	•1	2	- 8	3	.1	5	.8	11	.3	3	1.8		
M. UNDULATUS	45	1.3	3	7.5	27	.8	3	4.5	49	1.4	2	12.3		
P. CROMIS	3	.1	2	. 8	3	.1	2	.8	11	.3	4	1-4		
A. GUTTATUS	1		1	.5				•						
P_ TRIACANTHUS	3	.1	1	1,5	5	. 1	4	.6	7	.2	3	1.2		
P. ALEPIDƏTUS	1		1	.5		-								
S_ AQUOSUS	4	.1	3	.7										
T. HACULATUS	132	3.7	8	8.3	13	.4	. <u>8</u>	4 8	365	10.1	10	18.3		

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 min trawl in which species was taken

IA SALEM FF 1978

*				TABL CC	E 3.1.6a- NTINUED	-7					Ŧ	
****			******					••••••••				
ZONE		CHA4				CHAS						
NO. OF COLLECTIONS		17				17						
NO. OF SPECIES		16				18						
NO. OF SPECIMENS		3,602				2,793						
SPECIMENS/10 MIN TRAW	L (N/T)	105.9				82.1						
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T#	N/T*
A. ROSTRATA	15	_4	5	1.5	16	.5	5	1.6				
A. AESTIVALIS	24	.7	4	3.0	20	. 6	4	2.5				
A. PSEUDOHARENGUS	2	.1	1	1.0	3	_1	1	1.5				
A. SAPIDISSIMA	4	.1	1	2.0	1		1	_ 5				
B. TYPAHNUS	8	.2	7	.6	5	.1	3	.8				
A. MITCHILLI	80	2.4	12	3.3	54	1.6	10	2.7				
I. PUNCTATUS	1		1	.5	2	.1	1	1_0			•	
R. MARGINATA	1		1	- 5								
M_ AMERICANA	22	• 6	8	1 - 4	20	. 6	4	2.5				
M_ SAXATILIS					1		1	.5				
P. SALTATRIX	1		1	.5	1		1	. 5				
C_ REGALIS	3,268	96.1	9	181.6	2,476	72.8	9	137.6				
L. XANTHURUS	5	-1	2	1.3	2	.1	2	• 5				
M_ UNDULATUS	11	. 3 .	3	1.8	14		2	3.5				
P. CRUMIS	3	-1	2	- 8	1		1	- 5				
A. GUTTATUS	:	-	_	_	1		1	.5				
P_ TRIACANTHUS	4	-1	3	-7	1		1	•5·				
S. AQUOSUS					1		1	• 5				
T. MACULATUS	153	4.5	10	7.7	174	5.1	9	9.7				

T★ NUMBER OF TRAWL HAULS WITH SPECIES N/T★ Specimens/10 min trawl in which species was taken

IA SALEM FF 1978

1-245

.

ν.

ω

.

TABLE	3.1.64-7	
CONT	INUED	

•

ZONE		· E-1				E-2				E⊷3		
ND. OF COLLECTIONS		36				36				36		
NO. OF SPECIES		22				1.6				14		
NO. OF SPECIMENS		5,546				3,433				2,855		
SPECIMENS/10 MIN TRAW	L (N/T)	154_1				95.4				79.3		
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	Ϋ́*	N/1*	NUMBER	л/т	Ţ ≈	N/1*
A. OXYRHYNCHUS									2	.1	2	1.0
. ROSTRATA	39	1.1	9	4.3	45	1.3	9	5.0	23	. 6	3	2.9
A. AESTIVALIS	39	1.1	3	13.0	35	1.0	9	3.9	28	.8	Š	5.6
A_ PSEUDDHARENGUS	4	.1	4	1.0	2	.1	1	2.0		• -	-	
A. SAPIDISSIMA	1		1	1_0	1		1	1.0				
B. TYRANNUS	1		1	1.0	2	-1	2	1.0	1		1	1.0
A. MITCHILLI	2,814	78.2	28	100.5	565	15.7	22	25.7	356	9.9	22	16.2
I. PUNCTATUS					1		1	1.0	1		1	1.0
OL TAU	1		1	. 1.0								
R. MARGINATA	6	-2	4	1_5	5	-1	3	1.7	6	. 2	3	2.0
I. MENIDIA ·	2	-1	2	1_0								
S_ FUSCUS	1		1	1.0								
H_ AMERICANA	24	.7	7	3-4	29	- 8	8	3.0	121	3.4	8	15.1
M_ SAXATILIS	2	_ 1	1	2.0					2	_1	2	1.0
P. SALTATRIX					2	-1	2	1.0				
C. HIPPOS	9	.3	1	9_0								
C. REGALIS	1,494	41.5	16	93.4	1,467	40.8	20	73.4	1,294	35.9	17	76.1
L. XARTHURUS	72	2.0	8	9.0	11	-3	7	1_6	5	-1	4	1.3
M. UNDULATUS	3	•1	3	.1.0					4	_1	3	1.3
P. CROMIS	6	• 2	· 4	1.5	11	:3	7	1_6	2	.1	1	2.0
P_ TRIACANTHUS	5	.1	1	5.0	1		1	1_0	_			- • -
P. ALEPIDOTUS	1		1	1.0			-					
P. DENTATUS	5	-1	3	1.7	1		1	1.0				
PL AMERICANUS	1		1	1.0	-		-					
T_ HACULATUS	1,016	28.2	21	48.4	1,255	34.9	22	57.0	1,010	28.1	21	48.1

T∗ NUMBER OF TRAWL HAULS WITH SPECIES N/T∗ Specimens/10 min trawl in which species was taken

IA SALEM PF 1978

•

3

ø

ZONE		E-4				E-5				E-6		
NO. OF COLLECTIONS		36				36				36		
NO. OF SPECIES		19				20				20		
NO. OF SPECIMENS		3,618				7,569				4,260		
SPECIMENS/10 MIN TRAWL	(N/T)	100.5				210.3				118.3		
		10015				21003						
SPECIES	NUMBER	N/T	T#	N/T*	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T*	Ň/T≢ .
A. OXYRHYNCHUS									1		1	1.0
A. ROSTRATA	13	- 4	9	1.4	21	.6	11	1.9	63	1.8	11	5.7
A. AESTIVALIS	17	. 5	7	2.4	9	.3	4	2.3	10	.3	6	1.7
A. PSEUDOHARENGUS	1		1	1.0	5	•1	5	1.0	2	_1	2	1.0
A. SAPIDISSIMA	1		1	1.0	1		1	1.0				
B. TYRAHNUS	2	-1	2	1.0	4	.1	3	1.3	10	.3	6	1.7
D. CEPEDIANUM					1		1	1.0				
A. MITCHILLI	213	5.9	20	10.7	1,643	45.6	19	86.5	1,168	32.4	20	58.4
C_ CARPIO					1		1	1.0	2	.1	2	1.0
I_ CATUS									3	-1	3	1.0
I. NEBULOSUS	2	.1	1	2.0					4	_1	2	2.0
I_ PUNCIATUS	3	.1	5	1.5	6	-5	4	1.5	13	- 4	8	1_6
R. MARGINATA	4	-1	3	1.3	1		1	1.0				
S. FUSCUS	1		1	1.0								
M. AMERICANA	98	2.7	10	9.8	340	9.4	10	34.0	76	2.1	13	5.8
H. SAXATILIS	2	.1	1	2.0	15	_ 4	2	7.5				
P. SALTATRIX					5	. 1	2	1.0	3	_1	3	1.0
C. REGALIS	1,909	53.0	18	106,1	1,205	33.5	20	60.3	- 598	16.6	17	35.2
L. XANTHURUS	8	. 2	5	1.6	37	1.0	11	3.4	37	1.0	. 10	3.7
H. UNCULATUS	6	.2	3	2.0	10	` 3	4	2.5	8	•5	4	2.0
P. CRGMIS	3	-1	3	1.0	9	.3	7	1.3	6	.2	4	. 1.5
P. TRIACANTHUS	1		1	1.0	8	-2	4	2.0	3	· . 1	2	1.5
P_ DENTATUS					4	.1	2	2.0	3	.1	3	1.0
S. AQUOSUS	1		1	1.0					1		1	1.0
T. HACULATUS	1,333	37.0	23	58.0 .	4,247	118.0	26	163.3	2,249	62.5	25	90_0

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 min trawl in which species was taken

IA SALEM FF 1978

. ...

(

ZONE		NE1										
NO. OF COLLECTIONS		32				NE2				R11		
NO. OF SPECIES	•	19				28				28		
NO. OF SPECIMENS		4,398				50				15		
SPECIMENS/10 MIN TRAW	(11/7)					5,495				3,553		
arecticity to Min TRAN		137.4				196.3				126.9		
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	Ĩ*	N/T*	NUMBER	N/T] ₹	N/T*
A_ ROSTRATA	6	.2	5	1.2	16	.6	8	2.0			-	
A. AESTIVALIS	74	2.3	6	12.3	24	.9	5	4.8	114	4 - 1	<u>{</u>	•16.3
A. PSEUDOHARENGUS	5	.2	3	1.7	7	.3	2	2.3	10	-4	4	2.5
B_ TYRANNUS	7	.2	5	1.4	6	.2	6	1.0	9 19	-3	4	2.3
D. CEPEDIANUM	•		-		1	• •	1	1_0	19	.7	6	3-2
A. MITCHILLI	865	27.0	`2 0	43.3	1.470	52.5	14	105.0	231	8.3		
C. CARPIO	2	•1	1	2.0	1	JC.J	1	1.0	201	5.3	19	12.2
H. NUCHALIS	9	.3	ż	4.5		• 5	;	1.5				
I. CATUS	1		1	1.0	2	.1	۳ ٦	1.0				
I. REBULOSUS	ź	.1	2	1.0	18	-6	27	2.6	•			
I. PUNCTATUS	4	.1	ĩ	1.0	3	.1	ź	1.5				
Ô. TAU		•••	• .			• •	•	1.3				
S. FUSCUS											1	1.0
H_ AMERICANA	125	3.9	15	8.3	224	. 8.0	16	14-0	20	-	1	1.0
M. SAXATILIS	1		1	1.0	5	2	5	1.0	20	.7	11	1.8
P. FLAVESCENS	-		•		1		5					
P. SALTATRIX	1		1	1.0	2	-1	2	1.0	-		-	
C_ REGALIS	1,329	41.5	13	102.2	2,100	75.0		1.0	3	•1	3	1.0
L. XANTHURUS	90	2.8	12	7.5	20100	3.2	11	190.9	2,987	106.7	13	229.8
H. UNDULATUS	4	.1	3				8	11.3				
P. CROMIS	12	.4	6	1.3	15	- 5	2	3.0	66	2.4	ó	11.0
P. TRIACANTHUS	12		o	2.0	12	-4	3	4.0	4	_1	3	1.3
P. DENTATUS	2							•	1		1	1.0
S_ AQUOSUS	2	.1	1	2-0								
T. MACULATUS	1 950	6 0 1	24						2	_1	1	2.0
te merureius	1,859	58.1	24	77-5	1,492	53.3	21	71.0	85	3.0	13	6.5

.

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 min trawl in which species was taken

,

IA SALEM FF 1978

.

.

ZONE		RI2				SEO				SE1		
		28				36				36		
NO_ OF SPECIES		15				26				19		
NO. OF SPECIMENS		5,401			•	4,548				3,815		
SPECIMENS/10 MIN TRAWL	(N/T)	192.9		126.3						106.0		
SPECIES	NUMBER	N/T	1*	N/T*	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T# 1	N/T+.
P_ MARINUS	1		1	1.0								
R. BONASUS					1		4	1.0				
L OXYRHYNCHUS					1		1	1.0				
A_ ROSTRATA	85	3.0	8	10.6	<u>,</u> .	-1		1.0		-	-	
L. AESTIVALIS	12	- 4	5	2.4	6	-2	3	5-0	18 30	• 5	7	2.6
A. PSEUDOHARENGUS	3	.1	1	3.0	0	• •	3	2 - U		- 8	4	7.5
B. TYRANNUS	23	.8	ģ	2.6	1		· 1	1.0	8	-2	5	4.0
L MITCHILLI	428	15.3	16	26.8	1.917	53.3	25	76.7	6	.2	3	2.0
S. FOETENS				2010	1	JJ.J	. 25		892	24.8	23	38.8
)_ TAU					38	1.1	12	1-0 3-2			_	•
I. CHUSS					2	_1	1	2.0	14	-4	7	5.0
L. MARGINATA					13	.4	7	1.9	6	•2	1	6.0
I_ MENIDIA	3	.1	2	1.5	, 5	••	1	1.9	21	.6	8	5-6
. FUSCUS			-		2	. 1	1	2.0	1		1	1.0
L_ AMERICANA	31	1.1	11	2.8	29	.8	5	5.8	2 42	-1	2	1_0
- SAXATILIS					1	•0	1	1.0	42	1.2	5	8.4
- STRIATA					ż	- 1	• •	2-0				
SALTATRIX	2	.1	2	1,-0	3	.1	ż	1.5				
- REGALIS	4,612	164.7	11	419-3	2,226	61.8	19	117.2	1 1,750	10 1	1	1_0
XANTHURUS	7	.3	2	3.5	5	.1	.4	1.3		48.6	21	83.5
- UNDULATUS	23	.8	6	3.8	7	.2	2	3:5	9	• 3	5	1.8
- CROMIS	6	.2	Š	1.2		.1	3	1.3	15	-4	5	. 3.0
- GUTTATUS			•		7	.2	3	2_3	Ŷ	.3	3	3.0
_ BOSCI					, ,	.1	2	1.0				
- TRIACANTHUS					2	.1	3	1.3				
_ ALEPIDOTUS					2	-1	1	2.0				
- DENTATUS	1		1	1.0		- /	1		-		-	
- ÁQUOSUS	•		•		3	_1		1.0	3	-1	2	1.5
. HACULATUS	164	5.9	16	10.3	266	7.4	3 24	1_0 11_1	13 975	_4 27_1	5 24	2.6

.

T# RUMBER OF TRAWL HAULS WITH SPECIES N/T# Specimens/10 Min trawl in which species was taken

IA SALEM FF 1978

.

ZONE		SE2				SE3				SSC		
NO. OF COLLECTIONS		36				36				38		
NO. OF SPECIES		21				24				25		
NO. OF-SPECIMENS		4,073				3,710				7,135		
SPECIMENS/10 MIN TRAUL	(N/T)	113.1				103-1				375.5		
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T *	N/T*	NUMBER	N/T	T*	N/T*
A_ ROSTRATA	28	.8	8	3.5	5	_ 1	4	1.3	7	. 4	6	2.3
A. AESTIVALIS	33	.9	. 7	4.7	22	-6	6	3.7	55	2.9	5	22.0
A_ PSEUDOHARENGUS	6	•2	2	3.0	8	.2	4	2.0	4	- 2	4	2.0
A. SAPIDISSIMA					1		1	1_0	4	.2	3	2.7
B. TYRANIUS					5	.1	2	2.5	1	.1	1	2.0
D. CEPEDIANUM									1	.1	1	2.0
A_ HITCHILLI	1,439	40.0	22	65-4	1,318	36.6	27	48.8	5,424	285.5	31	349.9
I. CATUS									2	.1	1	4.0
I. NEBULOSUS									4	.2	2	4.0
S. FOETENS					1		່ 1	1.0				
O. TAU	11	.3	4	2_8	7	• 5	5	1-4				
U. CHUSS	2	-1	2	1.0	11	.3	3	3.7	6	ڏ	4	3.0
R. MARGINATA	10	.3	6	1.7	1		1	1.0	1	.1	1	2.0
N_ MENIDIA		-			18	_ 5	1	18.0	5	.3	2	5.0
S. FIISCUS	4	.1	3	1.3	6	-5	6	1.0	6	.3	Ś	2.4
P. EVOLANS	1		1	1.0	ž	.1	1	2.0	-	••	-	
M. AMERICANA	32	.9	6	5.3	27	.8	à	3.4	165	8.7	15	22.0
M. SAXATILIS	4	.1	ž	2.0		•••	0	5	105	.1	1	2.0
P. SALTATRIX	•	••	-		1		1	1.0	i	.1		2.0
C. HIPPOS					•		•	120	Ś	.3	3	3.5
C. REGALIS	1,467	40.8	20	73.4	585	16.3	17	34.4	802	42.2	19	84.4
L. XANTHURUS	13	-4	6	2.2	54	1.5	8	6.8	127	6.7	23	11.0
N. UNDULATUS	7	.2	2	3.5	3	_1	ž	1.5	1	.1	1	2.0
P. CRUMIS	15	.4	۲. ۲	2.5	7 .	-2	7	1.0	10	-5	Ś	4.0
A. GUTTATUS	1	••	1	1.0	4	• 6	1	1.0	10		,	410
G. BOSCI	1			1.0	•		•	1.0				
P. TRIACANTHUS	1	.1	2	2.0	7	_ 2	3	2.3	1	.1	1	2_0
P. ALEPIDOTUS	1	• *	1	1.0		• 4	5	2.3	•	• '	I	2.0
P. DENTATUS	3	.1	2	1.5		.1	2	2.0	- 12	.6	8	3.0
S. AQUOSUS	2	• 1	4	1.3	3	.1	2	1.5	2	.1	2	2.0
T. HACULATUS	991	27.5	29	34-2	1,613	44.8	26	62.0	488	25.7	33	29.6

T★ NUMBER OF TRAWL HAULS WITH SPECIES N/T★ SPECIMENS/10 MIN TRAWL IN WHICH SPECIES WAS TAKEN

.

IA SALEM FF 1978

ZONE		NW1				NW2				Sw1		
NO. OF COLLECTIONS		34				32				36		
NO. OF SPECIES		19				21				22		
NO. OF SPECIMENS		4,099				4,010				6,105		
SPECIMENS/10 MIN TRAWL	(N/T)	120.6			•	125.3				169.6		
SPECIES	NUMBER	N/T	ī*	N/T*	NUMBER	N/T	T*	N/T*	NUMBER	NZT	T*	N/T*
A. ROSTRATA	22	. 6	11	2.0	21	.7	12	1.8	21	.6	10	2.1
A. AESTIVALIS	4	.1	3	1.3	29	.9	6	4.8	15	.4	5	3.0
A_ PSEUDOHARENGUS	4	.1	3	1.3	4	-1	3	1.3	12	.3	5	2.4
B. TYRAHNJS	11	.3	6	1.8	23.	.7	12	1.9	2	.1	2	1.0
D_ CEPEDIANUM					1		1	1.0	1		1	1.0
A. MITCHILLI	1,358	39.9	21	64.7	1,007	31.5	20	50.4	1,942	53.9	22	88.3
I. CATUS	1		1	1.0	1		1	1.0				
I. NEBULOSUS	3	•1	3	1.0	4	. 1	4	1.0	1		1	1.0
1. PUNCTATUS	5	-1	4	1.3	8	.3	6	1.3				
O_ TAU									4	.1	2	2.0
U. CHUSS									9	.3	3	3.0
R. MARGINATA									.4	_1	2	2.0
S. FUSCUS	2.	.1	1	5*0	1		1	1_0	1		1	1.0
P. CARULINUS									1		1	1.0
H_ AMERICANA	144	4.2	14	10.3	241	7.5	17	14.2	378	10.5	15	25.2
M. SAXATILIS	4	.1	3	1.3	10	.3	5	2.0	3	.1	2	1.5
L. MACROCHIRUS	. 1		1	1.0						-		
P. ANNULARIS	1		1	1.0	1		1	1.0				
P. FLAVESCENS					1		1	1.0	1		1	1.0
P. SALTATRIX					2	-1	2	1.0				
C. REGALIS	1,805	53.1	16	112.8	1,803	56-3	14	128.8	1,164	32.3	19	61.3
L. XANTHURUS	31	.9	8	3.9	83	2.6	11	7.5	68	1.9	7	9.7
M. UNDULATUS	12	• 4	4	3.0	199	6.2	3	66.3	23	-6	7	3.3
P. CROMIS	3	.1	3	1.0	22	.7	ʻ <u>3</u>	7.3	14	- 4	8	1.8
G. BOSCI	-			-	1		1	1.0				
P_ DENTATUS	2	.1	2	1.0			-		1		1	1.0
S. AQUOSUS	-	-	-	-					3	.1	3	1.0
T. HACULATUS	686	20.2	20	34.3	548	17.1	53	23.8	2,437	67.7	31	78.6

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 min trawl in which species was taken

IA SALEM FF 1978

.

.

ZONE		SW2				W-1				w-2		
NO. DF COLLECTIONS		36				36				36		
NO. OF SPECIES		23				21				20		
KO. OF SPECIMENS		5,867				5,721				7,642		
SPECIMENS/10 MIN TRAW	L (N/T) /	163.0				158.9				217.8		
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T*	N/1×	NUMBER	N/T	Ĩ×	N/T*
A. ROSTRATA	39	1.1	16	2.4	100	2.8	13	7.7	40	1.1	9	4.4
A_ AESTIVALIS	14	.4	4	3.5	28	.8	8	3.5	6	-2	3	2.0
A. PSEUDOHARENGUS	16	- 4	5	3.2	3	-1	2	1.5	2	-1	1	2.0
A. SAPIDISSIMA	1		1	1.0	4	.1	1	4.0				
B. TYRANNUS	15	- 4	6	2.5	10	.3	7	1 - 4	9	.3	5	1.8
D. CEPEDIANUN	3	.1	1	3.0	1		1	1.0				
A. MITCHILLI	1,503	41.8	26	57.8	1,813	50.4	29	62.5	5,112	142.0	27	189.3
C. CARPIO	•				6	.2	2	3.0	5	_ 1	2	1.0
I. CATUS					2	.1	2	1.0				
I. NEBULOSUS	2	_1	2	1.0	1		1	1.0	4	. 1	3	1.3
0. TAU	1		1	1.0								
U. CHUSS					1		1	1.0				
U. REGIUS	1		1	1.0								
R. MARGINATA	1		1	1.0								
N. MENIDIA									ຸ 1		1	1.0
S. FUSCUS	5	.1	2	2.5	9	.3	8	1.1	6	.2	4	1.5
N_ AMÉRICANA	102	.1 2.8	14	7.3	160	4.4	15	10.7	234	6.5	16	14-5
M. SAXATILIS					1		1	1.0	8	.2	6	1.3
P. RIGROMACULATUS					1		1	1.0	1		1	1.0
P. SALTATRIX									1		1	1.0
C. REGALIS	2,297	63.8	19	120.9	979	27.2	18	54.4	921	25.6	19	48.5
L. XANTHURUS	35	1.0	9	3-9	81	2.3	14	5.8	103	2.9	15	6.9
H_ UNDULATUS	229	6.4	5	45.8	56	.7	4	6.5	25	.7	7	3.5
P. CROMIS	14	-4	9	1-6	28	- 8	11	2.5	6	•5	4	1.5
G. BOSCI	2	.1	2	1_0					2	.1	2	1.0
P. TRIACANTHUS	1		1	1.0								
P. ALEPIDOTUS	1		1	1.0								
P. DENTATUS	1		1	1.0	3	-1	3	1.0	6	-2	4	1.5
S. AQUOSUS	2	.1	2	1.0								
T. MACULATUS	1,582	43.9	24	65.9	2,464	68.4	30	82.1	1,353	37.6	34	39.8

,

TABLE 3.1.6a-7 CONTINUED

.

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 Min trawl in which species was taken

IA SALEM FF 1978

ᆕᇯᆕᆃᅷᆧᆒᇽᆂᆘᆘᆘᆘᅷᆎᆕᆕ	****		*******	*******		********		*******			*******	
ZONE		₩ - 3										
NO. OF COLLECTIONS		36		•								
NO. OF SPECIES		22										
NO. OF SPECIMENS		13,014										
SPECIMENS/10 MIN TRAWL	(N/T)	361.5										
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T*	N/T*	NUMBER	N/T	T*	N/T*
A. ROSTRATA	20	.6	13	1.5								
AL AESTIVALIS	8	.2	3	2.7								
A. PSEUDOHARENGUS	4	.1	3	1_3								
B. TYRANNUS	74	2.1	11	6.7								
D. CEPECIANUM	6	. 2	1	6.0								
A. MITCHILLI	2,586	71.8	24	107-8								
C. CARPIO	11	.3	5	2.2								
I. CATUS	1		1	1.0								
I. NEEULOSUS	21	. 6	7	3.0								
I. PUNCTATUS	5	-1	3	1.7								
H. MENIDIA	1		1	1.0								
S_ FUSCUS	1		1	1.0								
M_ AMERICANA	208	5.8	16	13.0								
M_ SAXATILIS	11	.3	4	· 2 - 8								
P. SALTATRIX	1		1 -	1.0								
C. REGALIS	4,940	137.2	20	247.0	•							
L. XANTHURUS	77	2.1	15	5.1								
M. UNDULATUS	52	1_4	8	6.5					•			
P. CRONIS	7	.2	4	1-8								
P_ DENTATUS	10	.3	6	1.7								
S_ AQUOSUS	1		1	1_0								
T. MACULATUS	4,969	138.0 -	29	171-3								

TABLE 3.1.6a-7 CONTINUED

T★ NUHBER OF TRAWL HAULS WITH SPECIES N/T★ Specimens/10 Min trawl in which species was taken

.

IA SALEM FF 1978

3.1-253

.

,

					TABLE 3.1 CONTINUE							
ZONE .		WEST		,		CHANN	iel			EAST		
NO. OF COLLECTIONS		246				88				514		
NO. OF SPECIES		35				25				40		
NO. OF SPECIMENS		46.658				12-026				69,409		
SPECIMENS/10 MIN TRAWL	. (N/T)	189.7				68.3				140.2		
SPECIES	NUMBER	N/T	T×	N/T*	NUMBER	N/T	ĭ×	N/T*	NUMBER	N/T .	T*	N/T*
P. MARINUS									1		1	1.0
R. BONASUS									1		1	1_0
A. DXYRHYNCHUS					2		2	.5	4		4	1.0
A_ ROSTRATA	263 -	1.1	84	3.1	64	- 4	21	1.5	487	1.0	114	4.4
A. AESTIVALIS	104	_4	32	3.3	86	.5	14	3.1	404	.8	79	5.3
A. PSEUDOHARENGUS	45	.2	55	2.0	17	.1	8	1.1	64	, "1	36	1.9
A. SAPIDISSIMA	5		2	2.5	6		3	1.0	9	_	8	1.4
B. TYRANNUS	144	-6	49	2_9	26	- 1	14	-9	88	• 2	48	1.9
D. CEPEDIANUM	12		5	2-4					3		3	1.2
A. FITCHILLI	15,321	62.3	169	90.7	797	4.5	63	6.3	20,743	41.9	328	00.4
C. CAARIO H. NUCHALIS	19	.1	9	2.1					6		5	1.2
I. CATUS	5		5	1.0					15 8		6 7	2-5
I. NEBULOSUS	36	.1	21	1.7					30		14	1.2
I. PUNCTATUS	18	.1	13	1.4	4		3	.7	31	-1 -1	22	1.4
S. FOETENS	10	• •	13	1.4	1		1	.5	2	- 1	2	1.0
Q. TAU	5		3	1.7	6		3	1.0	72	_ 1	30	2.4
U. CHUSS	10		ž	2.5				1.0	27	.i	11	3.0
U. REGIUS	1		ĩ	1.0								3.0
R. MARGINATA	Ś		ż	1.7	10	-1	8	.6	68	- 1	37	1.9
H_ MENIDIA	2		2	1.0	1		1	.5	29	.1	8	4.1
S. FUSCUS	. 25	.1	18	1-4					23		20	1.3
P. CAROLINUS	1		1	1_0								
P. EVOLANS					1		1	- 5	3		2	1.5
H_ AMERICANA	1.467	6.0	107	13.7	59	_ 3	18	1.6	1-383	2.8	148	9-8
H_ SAXAILIS	37	.2	21	1.8	4		3	.7	33	-1	16	2 - 1
C. STRIATA L. HACROCHIRUS									2		1	5-0
L. HACROCHIRUS P. Annulahis	1 2		1 2	1_0 1_0								
P. NIGROMACULATUS	2		2	1.0								
P. FLAVESCENS	. 2		2	1.0					1		1	1.0
P. SALTATRIX	4		4	1.0	5	•	4	-0	21		20	1.1
C. HIPP(S									14		4	5.6
C. REGALIS	13,909	56-5	125	111.3	9,881	56.1	49	100.8	25,825	52.2	252	105.5
L_ WANTHURUS	478	1.9	79	6.1	24	.1	11	1.1	565	1.1	113	5-0
H. GNOULATUS	566	2.3	38	14.9	145	.8	13	5.6	172	- 3	49	3.5
P. CROWIS	94	-4	42	2.2	21	-1	11	1.0	116	.2	67	1.8
A. GUTTATUS					2		2	.5	9		5	1_8
G. BOSCI	5		5	1.0					3		3	1.0
P_ TRIACANTHUS	1		1	1_0	20	.1	12	. 8	35	-1	19	1.9
P. ALEPIDOTUS	1		1	1.0	1		1	_ S	4		3	1.3
P. DENTATUS	53	-1	17	1-4	-				39	-1	26	1.8
S_ AGUCSUS	6		6	1.0	5		4	- 6	25	-1	15	1.8
P. AMERICANUS									1		1	1.0
T. MACULATUS	14,039	57.1	191	73.5	837	4.8	45	9.3	19,043	38.5	348	57.4

.

T* NUNBER OF TRAWL HAULS WITH SPECIES N/T* Specimens/10 min trawl in which species was taken

IA SALEM FF 1978

TABLE 3.1.6a-7 CONTINUED

ZONE		TOTAL		
NO. OF COLLECTIONS		101AL 848		
NO. OF SPECIES		45		
NO. OF SPECIMENS	1	28,093		
SPECIMENS/10 MIN TRAWL	(N/T)	139.7		
SPECIES	NUNBER	N/T	T*	N/T*
P. MARINUS	1		1	1_0
R. BONASUS	1		1	1-0
A. OXYRHYNCHUS	6		6	-8
A. ROSTRATA	814	• 9	219	3.4
A. AESTIVALIS	594	•6	125	4 - 4
A. PSEUDOHARENGUS A. SAPIDISSIMA	126	_1	66	1.8
B. TYRANNUS	20	-	13	1-4
D. CEPEDIANUM	258 15 -	.3	111	2.1
A. MITCHILLI	36,861	40.2	8 560	2.0
C. CARPIO	25	40.2	14	60.7
H. NUCHALIS	15		6	1_8 2_5
I. CATUS	13		12	
I. NEBULOSUS	66	.1	35	1.9
I. PUNCTATUS	53	li	38	1.3
S. FOETENS	3	••	3	.8
0. TAU	83	.1	36	2.1
U. CHUSS	37		15	2.8
U. REGIUS	1		1	1.0
R. MARGINATA	83	.1	48	1.5
M. MENIDIA	32		11	2.9
S. FUSCUS	48	. 1	38	1-4
P. CAROLINUS	1		1	1.0
P. EVOLANS	4		3	1.0
M. AMERICANA	2,909	3.2	273	10.3
M. SAXATILIS C. Striata	74	.1	40	1.7
L. MACROCHIRUS	2		1	2.0
P. ANNULARIS	1		1	1.0
P. NIGROMACULATUS	2		2	1.0
P. FLAVESCENS	23		2	1.0
P. SALTATRIX	30	•	3 28	1.0
C. HIPPOS	14		20 4	5.6
C. REGALIS	49.615	54.1	426	106.6
L. XANTHURUS	1,067	1.2	203	5.3
N. UNDULATUS	884	1.0	100	7.9
P. CROMIS	231	.3	120	1.8
A_ GUTTATUS	11		7	1.2
G. BOSCI	8		8	1.0
P. TRIACANTHUS	56	.1	32	1.3
P. ALEPIDOTUS	6		5	1.0
P. DENTATUS	62	•1 ·	43	1-6
S. AGUOSUS	36		25	1.3
P. AMERICANUS T. NACULATUS	1		1	1.0
TA PREVERIUS	33,919	37.0	584	55.4

T★ NUMBER OF TRAWL HAULS WITH SPECIES N/T★ Specimens/10 min trawl in which species was taken

.

IA SALEM FF 1978

	Jan.	Peb.	Mar.	Apr.	May	June	July	λug.	Sept.	Oct.	Nov.	Dec.	Total
						Weakfish	, C. rega	lis			. _		
1970 1971 1972 1973 1974 1975 1976 1977	-	-		2.0 1.0	0.5 1.0 1.0 1.0	29.9 55.9 1.8 16.5 1.5 77.6	95.2 49.8 17.1 12.4 14.1 33.0 14.9	16.5 29.0 27.4 11.1 9.2 16.0 10.6	4.8 9.7 19.6 6.4 6.9 8.9 5.0	6.2 6.4 3.8 5.2 3.7 3.8 4.5	2.1 2.7 1.7 1.7 1.0 1.0		44.6 29.2 18.9 10.3 8.5 28.0 9.9
1978	-	-			1.0	9.0 410.3	28.5 172.3	14.0	9.1 26.7	3.1 12.5	1.0 3.9		15.9 105.6
					Ba	y anchovy	, A. mitc	hilli					
1970 1971 1972 1973 1574 1975 1976 1976 1978	- - 1.0 -	1.0 1.3 1.0	1.3 2.0 54.7 1.7 99.4 0.7	5.4 48.4 1.6 62.7 37.4 250.6 112.2 6.3	13.4 20.3 51.8 47.5 39.9 151.7 36.8 36.4 67.4	32.0 13.9 22.4 10.9 59.6 52.8 61.5 65.3 27.9	92.2 31.8 16.3 25.8 283.9 43.4 69.3 69.6 85.0	29.7 96.8 46.8 37.2 91.3 93.0 84.1 138.1 65.2	46.5 66.7 65.8 297.8 68.8 76.3 167.1 187.4 65.6	35.7 35.6 92.8 49.6 67.5 52.3 74.5 108.0 107.1	12.8 58.7 28.4 25.1 36.8 34.2 5.2 32.7 39.2	5.7 1.0 1.3 5.4 2.1	49.3 45.1 52.5 52.4 102.5 64.3 102.1 92.0 60.7
					н	ogchoker,	T. macul	atus					
1970 1971 1972 1973 1974 1975 1976	- 9.3 5.6 1.5	- 1.3 2.4 2.8	5.8 2.0 4.7 2.6 5.6	20.4 8.9 2.6 1.8 7.4 5.1 16.3	35.5 17.7 15.9 13.5 19.3 18.8 29.1	17.9 15.6 7.1 6.2 7.9 17.4 14.4	27.8 15.7 10.3 3.7 12.6 16.7 12.5	19.4 15.7 10.7 6.9 6.8 8.0 10.5	7.4 17.9 3.6 3.4 7.8 23.9 8.9	5.9 13.5 5.4 3.4 14.3 23.7 7.8	5.5 16.1 11.4 14.6 10.8 17.8 7.9	200.0 6.5 5.8 4.6 3.0 9.4 1.3	21.2 15-2 6.6 7.1 10.7 15-8 13.1
1977 1978	-	-	1.7 2.4	2.5 6.6	8.9 19.3	2.0 51.3	8.6 50.5	7.5 69.1	18.6 67.5	37.1 64.7	59.5 68.9	66.2	27.2 54.0
					Wh	ite perch	, M. amer	icana					
1970 1971 1972 1973 1974 1975 1976 1977 1978	- 8.6 14.0 2.8 5.8 -	5.5 16.5 18.3 3.8 12.6 2.9	3.3 11.1 8.9 18.4 14.4 13.1 22.0 3.6 4.1	14.5 17.8 26.2 12.8 10.5 13.6 12.2 6.3 8.7	10.4 19.1 27.2 11.9 7.3 20.5 10.0 8.4 6.4	27.1 36.4 30.0 22.6 4.1 2.9 22.3 2.8 9.4	31.4 15.6 50.8 18.6 2.6 3.8 1.9 1.0 1.8	5.6 23.1 13.5 2.0 1.0 1.5 1.2 1.7	1.8 45.7 4.4 1.8 1.8 2.3 1.0 1.0	34.3 27.5 17.1 3.0 7.6 11.2 7.3 7.4 3.1	38.0 45.5 11.9 15.8 13.1 31.3 14.9 11.9 7.3	31.0 15.4 3.9 11.2 7.4 30.1 5.3 4.9 32.3	24.0 27.4 26.3 15.3 9.4 13.4 13.0 7.5 10.3

TABLE 3.1.6a-8 TRAWL CATCH PER UNIT EFFORT (n/T*) DURING 1970-1978 OF THE MOST ABUNDANT SPECIES TAKEN IN 1978. A DASH INDICATES NO COLLECTIONS.

IN SALEM FF 1978

.

1

.

							.1.04-8						
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug_	Sept.	Oct.	Nov.	Dec.	Total
		<u></u>				Spot, L	. xanthur	us					
1970 1571 1972 1973 1974 1975 1976 1977 1978	-	-	2.0	1.0 3.9	0.7 11.3 1.1 27.9 46.9	10.0 33.4 44.2 21.6 27.2 120.0 28.9 1.8	9.8 46.7 25.5 28.0 16.6 70.3 15.2 5.4	2.0 14.9 19.2 16.6 8.4 15.0 9.2 14.4 4.5	16.6 7.5 5.1 12.4 8.0 7.5 6.6 2.4	9.9 15.5 4.9 10.4 24.2 14.1 22.0 8.5	20.9 5.9 22.7 14.7 27.3 15.6 15.8 4.7	1.0 54.5 8.5 8.9	2.0 13.7 23.5 27.2 15.9 20.1 42.4 22.9 5.3
					Atla	ntic croal	ker, <u>M</u> . <u>u</u>	ndulatus					
1970 1971 1972 1973 1974 1975 1975 1977 1977	1.0 1.0 4.0 2.0	- 1.0	1.4 1.0 1.0	1.0 2.0 0.7 1.0	2.2 1.7	1.8 2.2 7.5 1.0	3.4 4.7 12.4 1.3	1.0 2.1 5.4 2.0	1.0 1.7 7.9 1.2 1.3 1.5	3.2 2.4 2.0 8.9 41.8 10.2 4.5	1.0 7.6 1.0 5.1 3.9 92.0 141.4 37.9 12.3	7.0 5.7 3.0 105.7 27.0 2.9 4.6	4.0 6.3 2.2 4.7 2.7 31.4 92.4 26.4 7.9
	×.				A	merican e	el, <u>A</u> . <u>ro</u>	strata					
1970 1971 1972 1973 1974 1975 1976 1977 1978	2.0 1.0 1.2	2.0 1.6 1.2 1.2	1.0 1.0 1.5 1.0 2.0	2.0 2.4 1.5 1.3 2.3 2.4 1.8 1.5	6.1 2.7 2.6 2.7 2.3 3.0 2.5 2.4 1.1	4.9 5.6 3.6 4.9 2.4 1.6 2.7 1.6 2.7	5.5 2.9 2.8 2.0 1.3 2.0 1.4 1.7 4.2	10.3 7.9 1.8 1.0 1.2 2.2 1.4 1.1 6.5	1.0 4.9 1.0 1.1 1.4 2.4 1.5 1.8 3.1	1.0 3.5 5.2 1.3 1.7 2.0 1.2 2.0 4.9	2.0 1.8 1.0 2.4 1.8 1.3 1.5 1.7	1.3 1.0 1.0 1.1 1.1	5.1 4.0 2.5 2.7 1.7 2.0 1.8 1.7 3.4
•		•			Blueb	ack herri	ng, <u>A</u> . <u>ae</u>	stivalis				•	
1970 1971 1972 1973 1974 1975 1976 1977 1978	- 2.0 1.0 1.0	- 1.0 1.3 2.6	1.0 6.0 12.3 1.3 4.1 5.1 5.8 4.4	1.2 5.9 7.5 1.5 5.6 4.4 1.4 4.9 5.1	2.0 1.5 1.0 1.4 1.0 1.1 1.0 1.0 1.8	23.6 9.1 2.6 1.5 1.0 1.0	3.0 1.7 1.5 5.0 2.0 2.0	2.0 1.5 0.5	1.0 1.3 1.0	1.0 1.0 1.3 2.3 2.6	32.9 5.3 1.2 5.0 26.6 3.7 6.2 2.8 4.7	2.6 1.8 5.0 1.0 1.5	11.1 5.2 4.8 3.4 7.6 4.0 4.6 3.7 4.4

TABLE 3.1.6a-8

IA SALEM PP 1978

Total No.Drifts Total No. Drift Hours No. of 2.5 and 3.8cm Drifts No. of Drift Hours No. of 7.9cm Drifts No. of Drift Hours No. of 14.0cm Drifts No. of Drift Hours	Marc <u>West</u> 24 16.5 12 8 12 8.5	h East 22 15 12 8 10 7	Apr <u>West</u> 15 15 15 10 5 5	11 <u>East</u> 18 18 10 10 8 8	May <u>West</u> 14 12.5 4 4 9 7.5 1 1	Y <u>East</u> 19 19 6 6 10 10 3 3	Jur <u>West</u> 10 8.5 7 5.5 3 3	ne East 11 11 8 8 3 3 3	Septe West 1 2 1	mber East 8 4 8 4	Octo West 35 17.5 35 17.5	ber <u>East</u> 35 17.5 33 16.5 2 1	Nover <u>West</u> 11 5.5 11 5.5	ber East 21 10.5 21 10.5
P. marinus Alosa sop. A. aestivalis A. pseudoharengus A. sapidissima B. tyrannus A. hepsetus A. mitchilli S. gairdneri C. carpio I. catus I. nebulosus S. marina	1 1 122	18 6 1	1 27 106 7 4 3	19 52 7 5	82 1 747 1 2	735 2 3 2167	72 1 300 4	255 3 4 140 4	45 1	69	56 27 1532	67 14 999 1	34 2 327	130 22 2 441 1
M. americana M. saxatilis P. saltatrix C. regalis L. xanthurus P. triacanthus P. dentatus T. maculatus	2	1	7 4	2	2	" 1 2 1	3 1	22	10 . 5	1 17 6	32 27 7 1 2	26 2 12	2 1 1 1	5

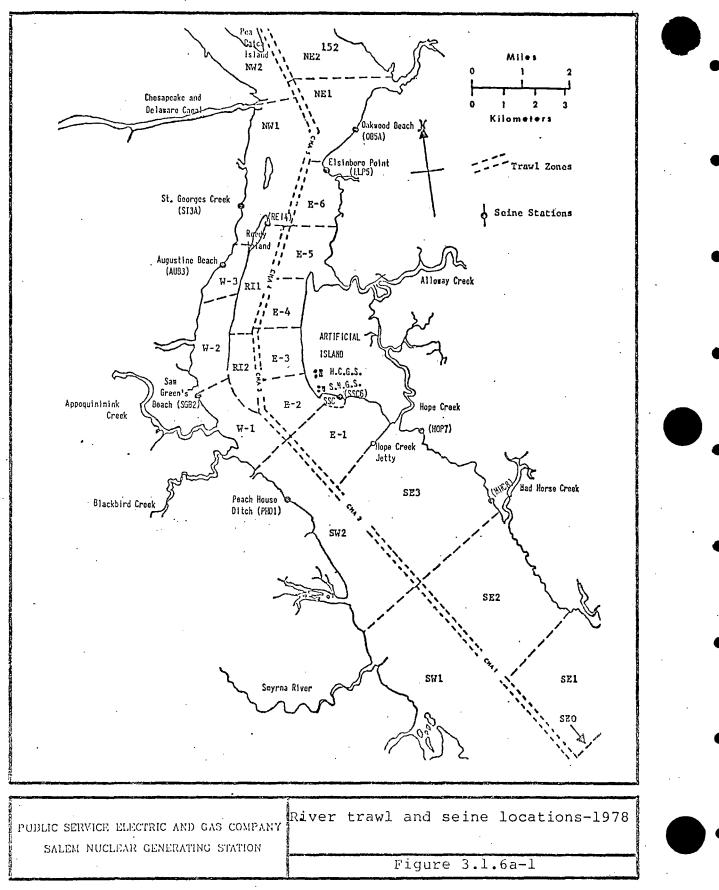
TABLE 3.1.6a-9MONTHLY GILL NET CATCH, WEST AND EAST OF THE SHIPPING CHANNEL - 1978 .

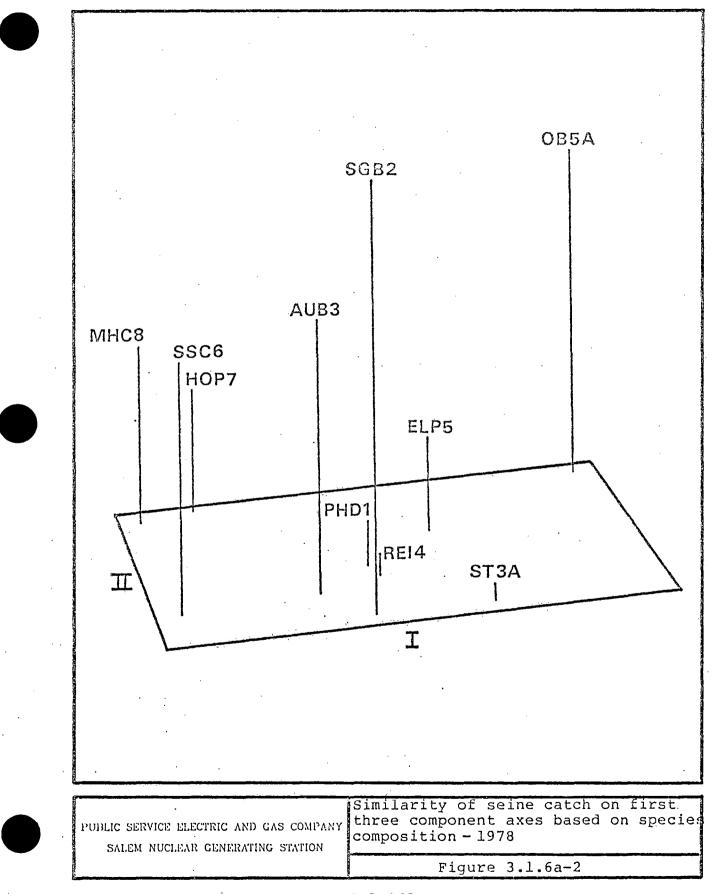
IA SALEM FF 1978

TABLE 3.1.6a-10 ANNUAL GILL NET CATCH - 1978

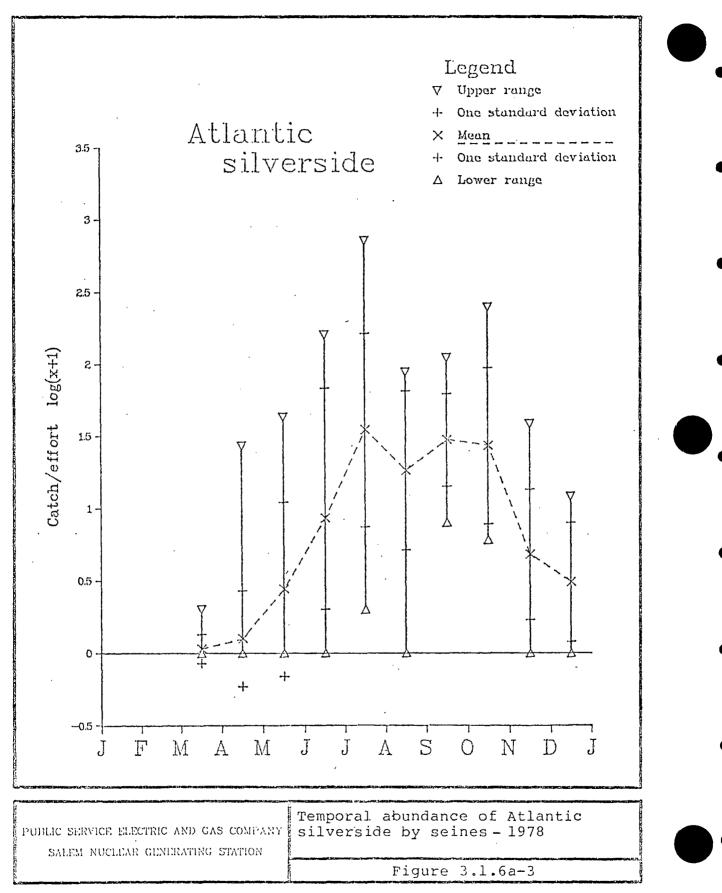
Mesh size (cm) Total No. Drifts No. Drift Hours		2.5, 13 78.	15		7.9 7 60.9	1		14 32	39	Total 245 171.5
Species	<u>n</u>	n per drift <u>hour</u>	n per drift hour*	<u>n</u>	n per drift hour	n per drift hour*	<u>n</u> .	n per drift <u>hour</u>	n per drift hour*	
P. marinus Alosa spp. A. aestivalis A. pseudoharengus A. sapidissima B. tyrannus A. hepsetus A. mitchilli S. gairdneri C. carpio I. catus I. nebulosus S. marina	1,427 70 9 5,526 1 10 1	18.2 0.9 0.1 70.4 + 0.1 +	28.5 3.7 1.3 71.8 2.0 2.2 1.0	1 51 299 2 1,175 1 3 1	+ 0.8 4.9 + 19.4	1.0 1.0 3.9 12.5 4.0 46.1 1.0 1.5 1.0	1 19 75 3	+ 0.6 2.3 0.1	1.0 2.4 15.0 1.0	1 1,478 370 30 6,776 1 10 1 4 3 1
M. americana M. saxatilis P. saltatrix C. regalis L. xanthurus P. triacanthus P. dentatus T. maculatus	97 31 8 27 2	1.2 0.4 0.1 0.3 +	3.2 4.1 2.3 3.9 2.0	11 1 24	0.2 + 0.4	1.7 0.5 3.4	2 3 1	• 0.1 0.1	1.0 1.5	1 13 4 121 31 8 27 1 2 8,884

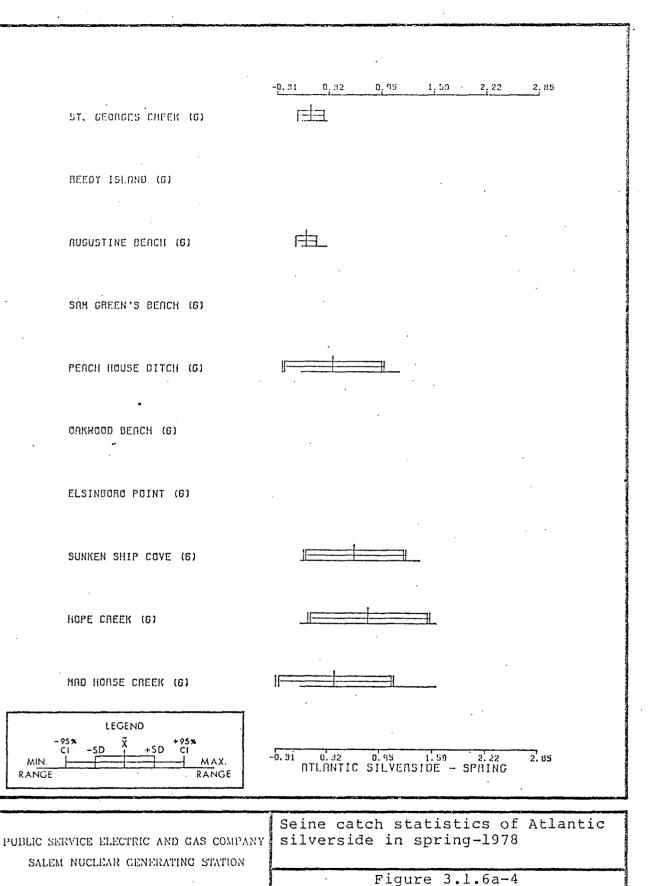
* = number of specimens per drift hour in which the species was taken. + = n per drift hour less than 0.05.

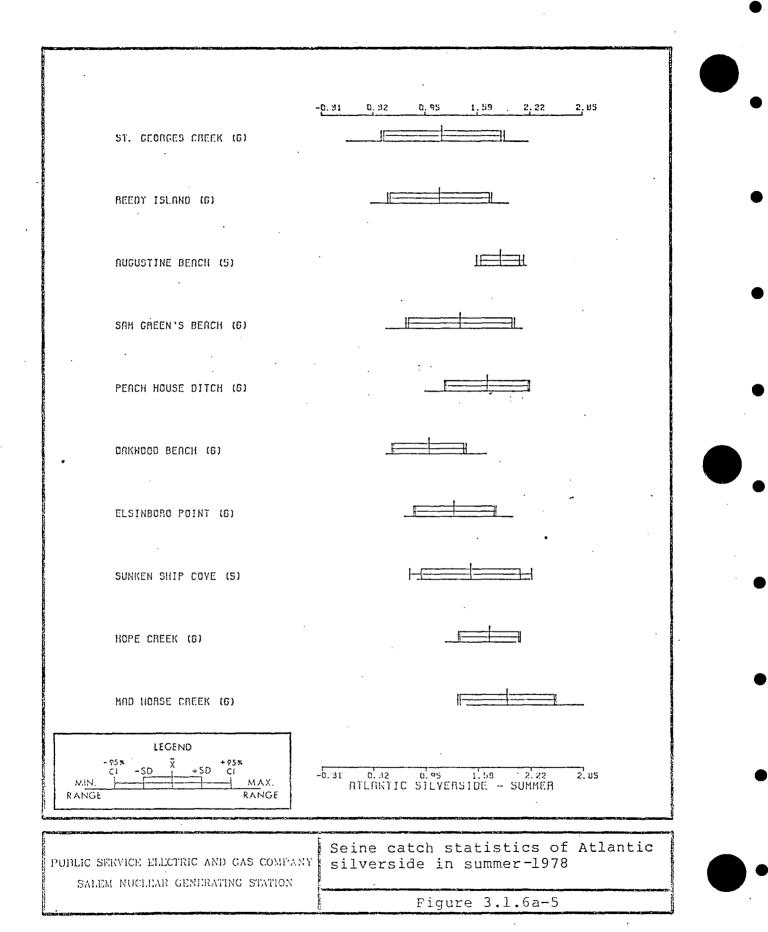

IA SALEM FF 1978


TABLE 3.1.6a-11 WEEKLY NUMBER PER DRIFT HOUR (n/DRIFT hr), OF ALOSID SPECIES WAKEN BY GILL NETS - 1978

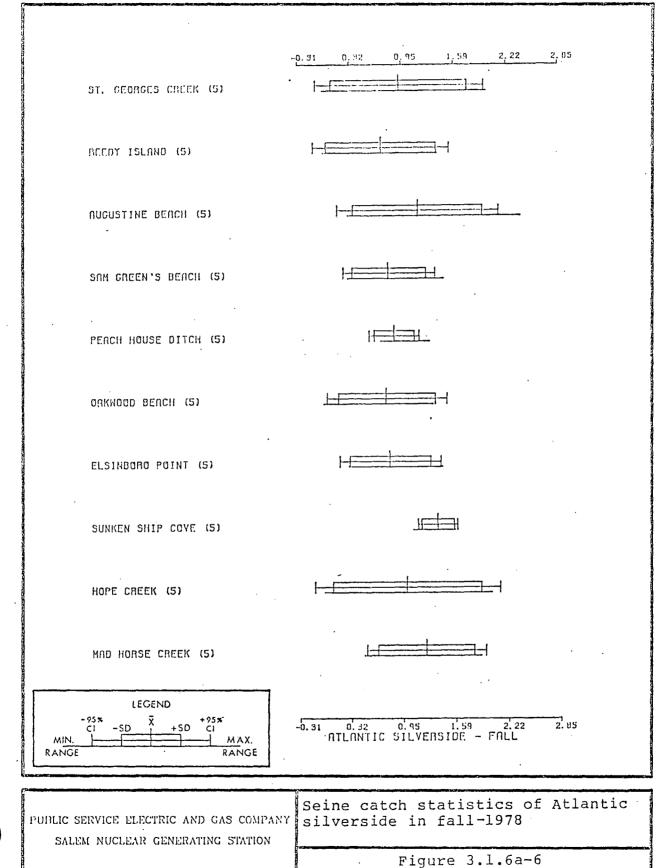
Mesh Size (cm) Month Week No. of Drifts No. of Drift Hours	March 19-25'26-31 8 16 4 12	April 2-8 9-15 16-22 8 8 4 8 8 4	7.9 May 7-13 21-27 28-31 3 8 8 3 7.5 7	June 4-10 6 6	October 8-14 2 1
Alosa spp. A. aestivalis A. pseudoharengus A. sapidissima	0.1 0.5 11.5	0.3 0.3 1.1 8.8 9.0 9.6 2.0 0.1	0.7 0.3 0.7 0.3		
Mesh Size (cm) Month Week No. of Drifts No. of Drift Hours	March 19-25 26-31 4 18 2 13.5	14.0 April 2-8 9-15 16-22 7 4 2 7 4 2 7 4 2	May 7-13 21-27 2 2 2 2		· · ·
A. aestivalis A. pseudoharengus A. sapidissima	0.4	0.3 0.3 1.3 3.0			

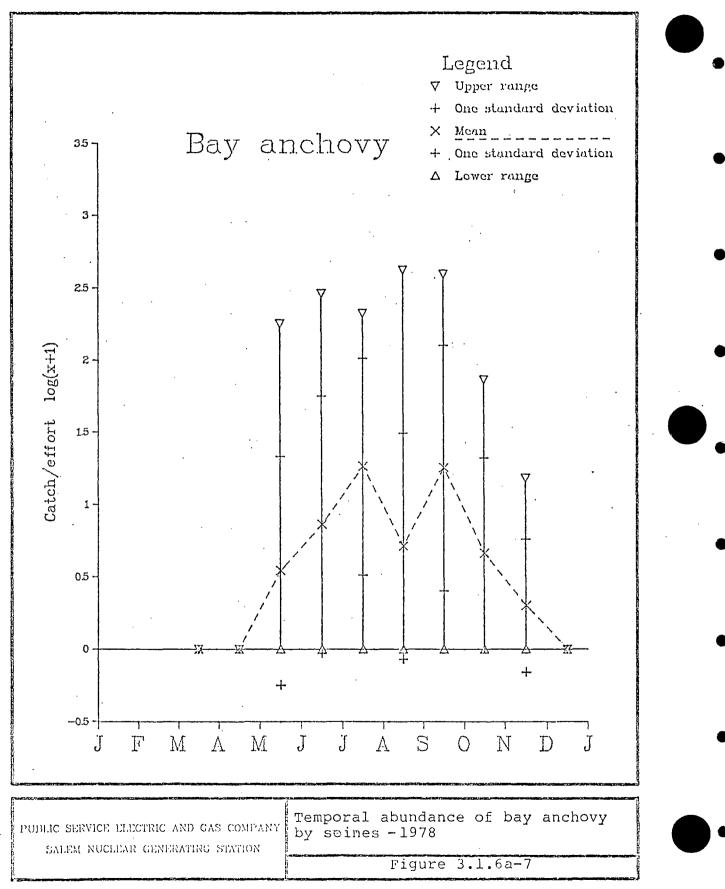

Mesh Size (cm)			_	2.5	and 3.								
Month	May		June			OC	tober			10%	vember		
Week	21-27 28-31	4-10	11-17	25-30	8-14	15-21	22-28	29-31	1-4	5-11	12-18	19-25	
No. of Drifts	4 6	8	3	4	18	. 31	17	2	6	14	б	6	
No. of Drift Hours	4 б	7.5	3	3	9	15.5	8.5	1	3	7	3	3	
A. aestivalis A. pseudoharengus A. sapidissima	185.8 11. 0. 0.	2 0.1	13.0 1.0 0.7	0	0.1 0.6	1.5	11.3 2.0	2.0	13.7 0.7	13. 2.6 0.3		2.0	

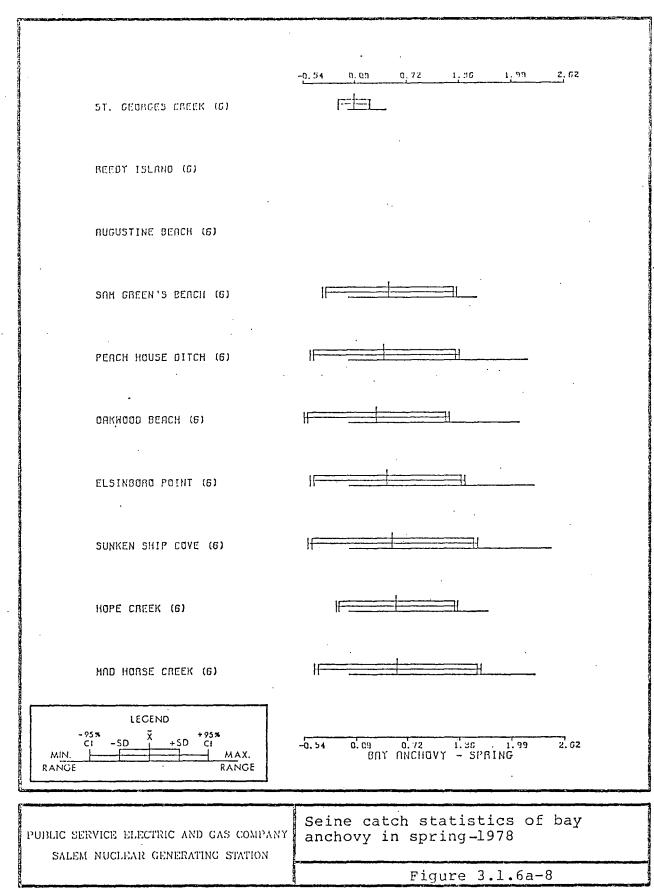

IA SALEM FF 1978

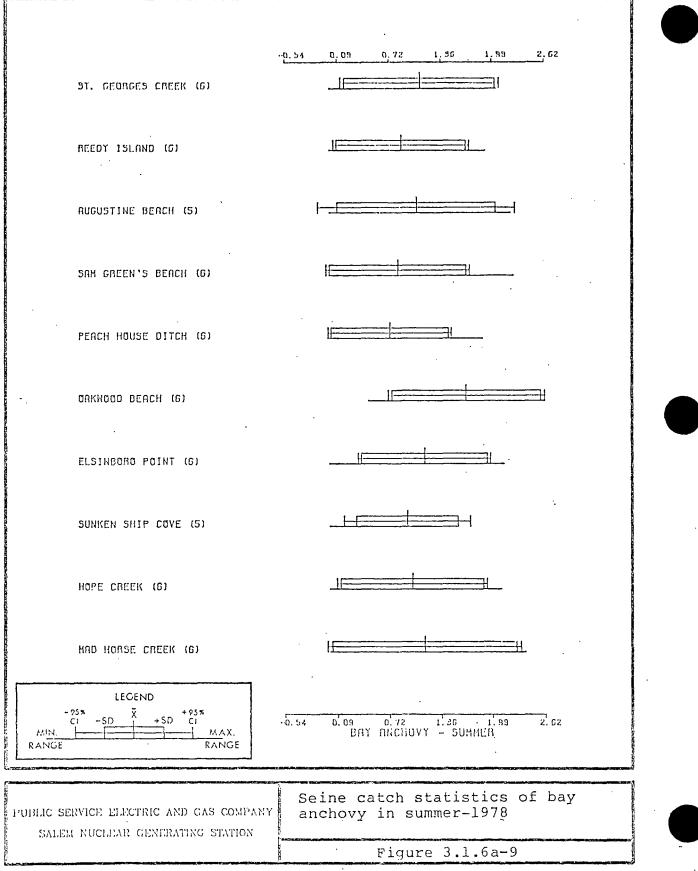


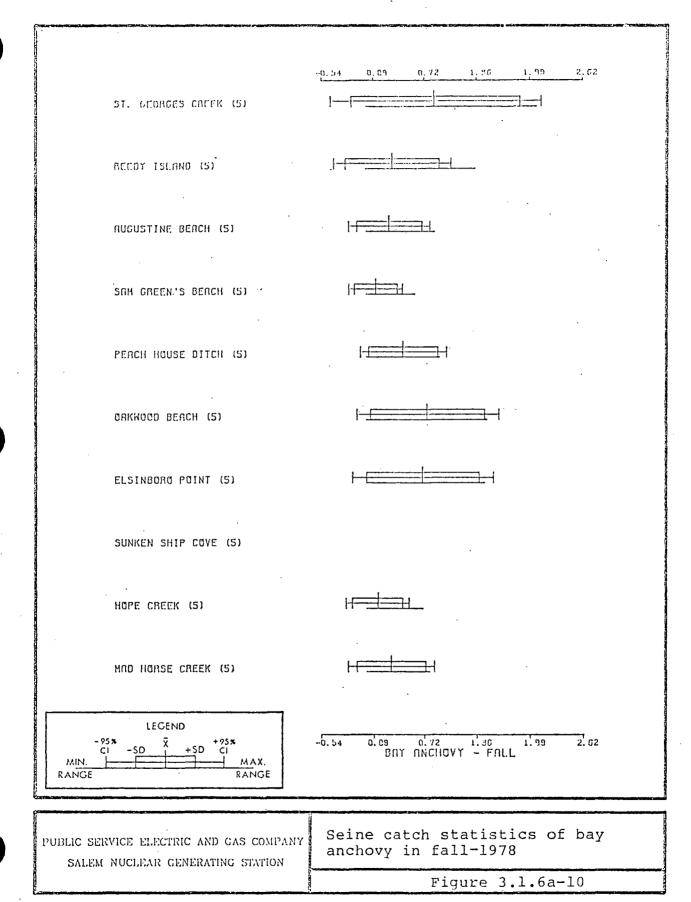
_ _ _

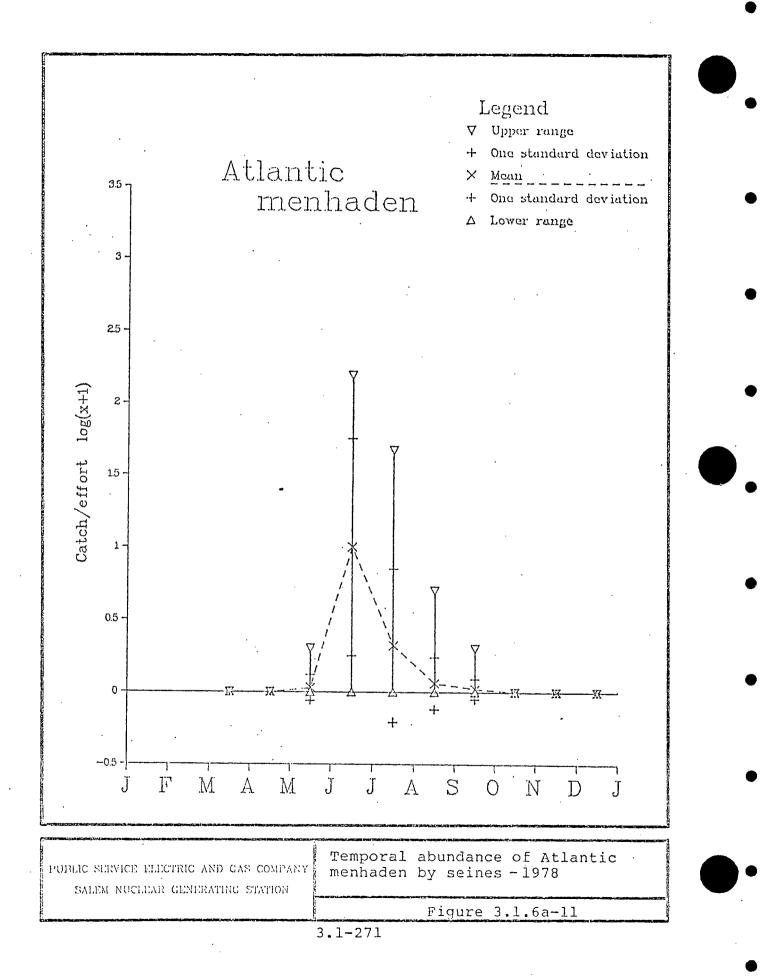


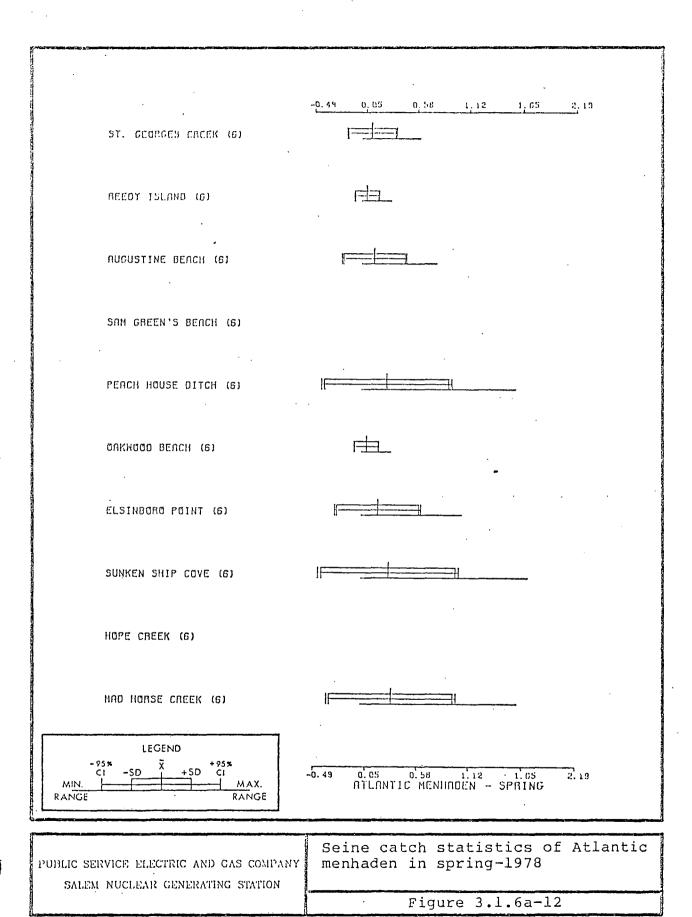

3		1 - 264	
-	•	1 401	




3.1-265


3.1-266





3.1-272

-0.49 0.05 0,58 1,12 1,65 2,19 ST. GEORGES CREEK (G) IF REEDT ISLAND (G) RUGUSTINE BEACH (S) ---F SAH GREEN'S BEACH (6) PERCH HOUSE DITCH (6) IF. OAKWOOD BEACH (6) ELSINBORO POINT (6) IF SUNKEN SHIP COVE (5) IF HOPE CREEK (6) MAD HORSE CREEK (6) LEGEND

> -0.49 0.05 0.58 1.12 1.05 2.19 ATLANTIC MENHADEN - SUMMER -

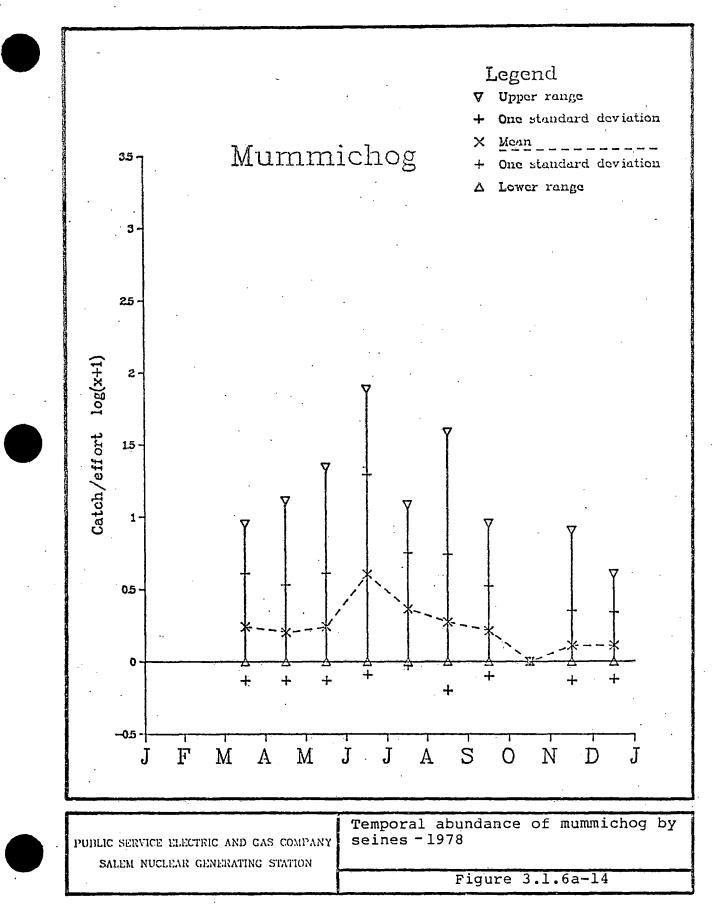
PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	•	statistics of Atlantic summer-1978	
		Figure 3.1.6a-13	

x

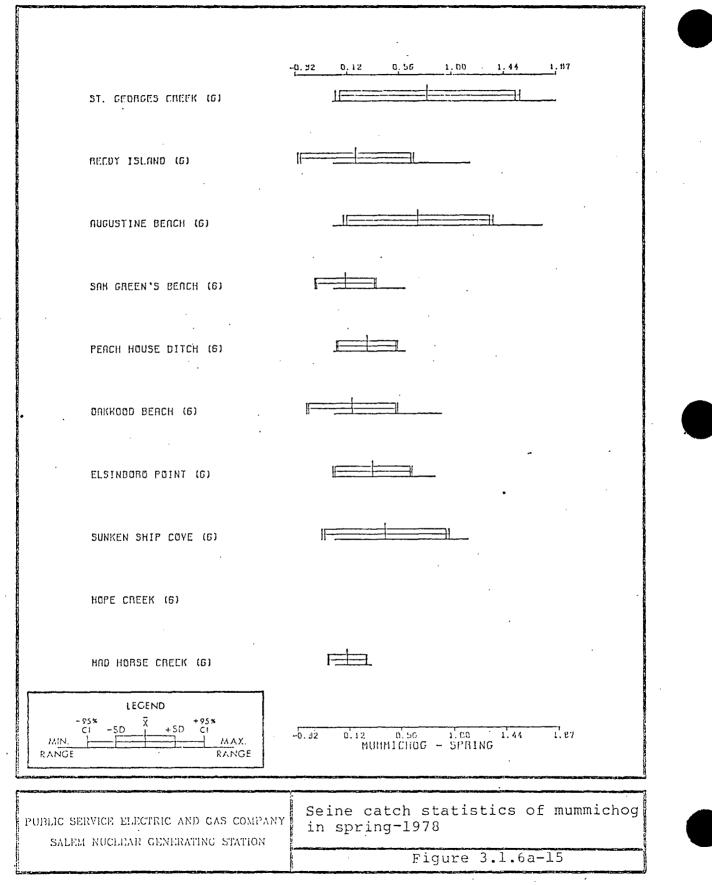
+959 CI

MAX.

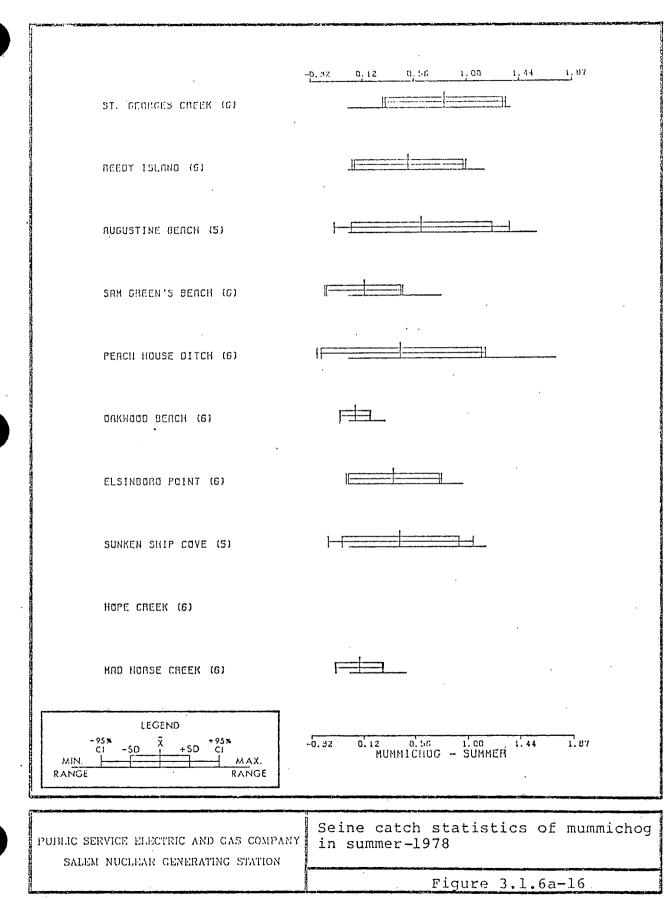
RANGE

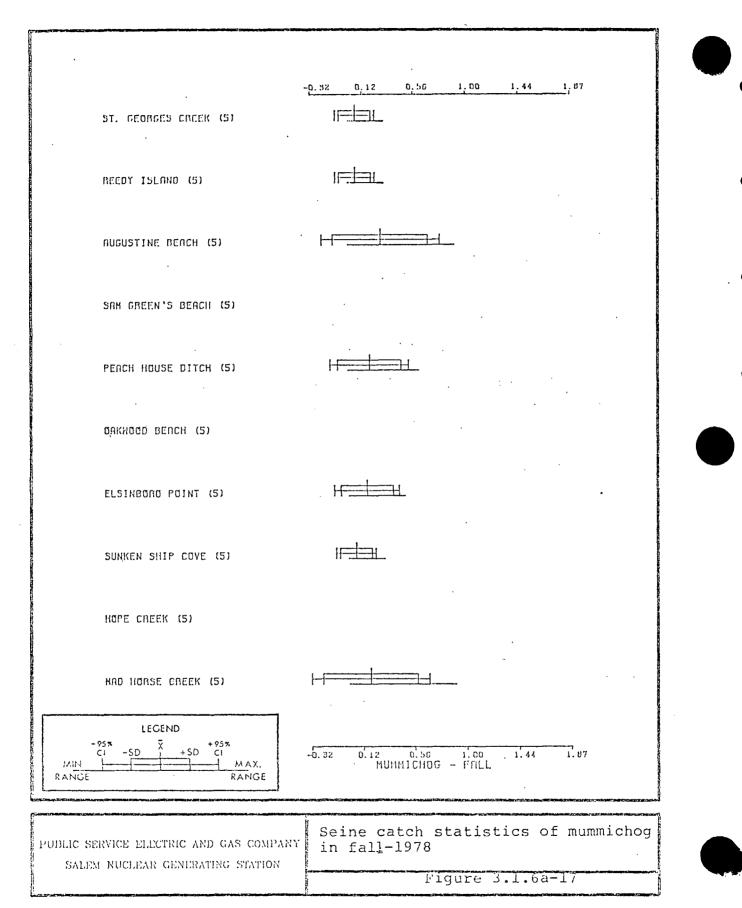

+SD

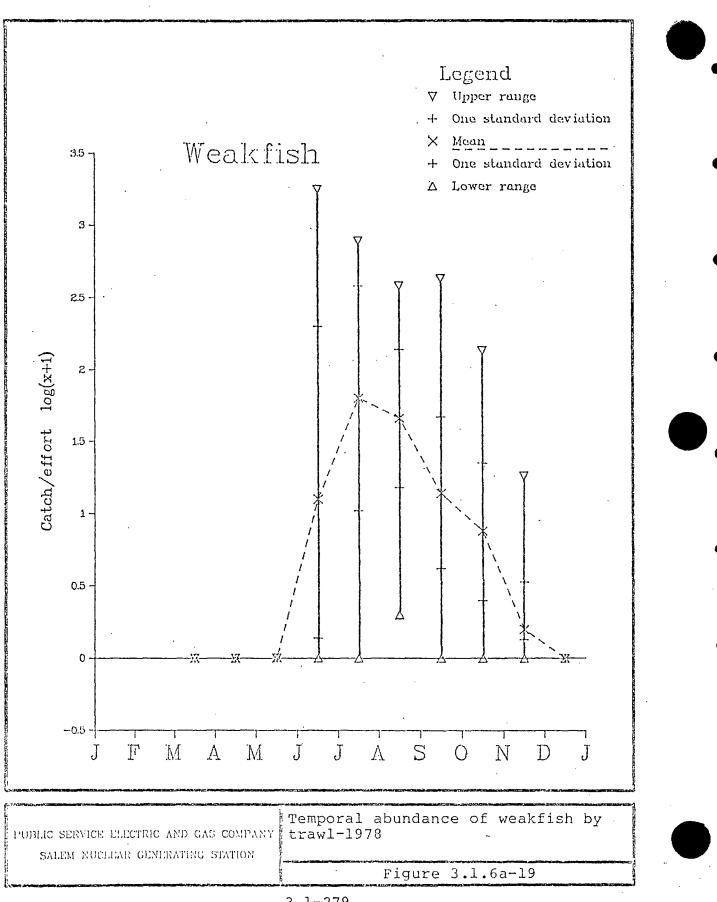
95 % C1

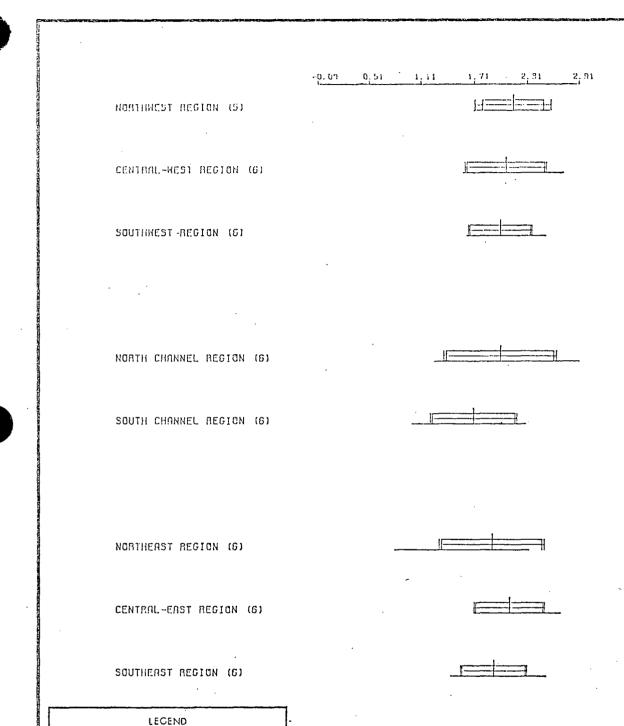

MIN

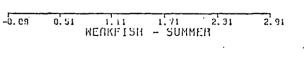
RANGE


3.1-273.


3.1-274


•

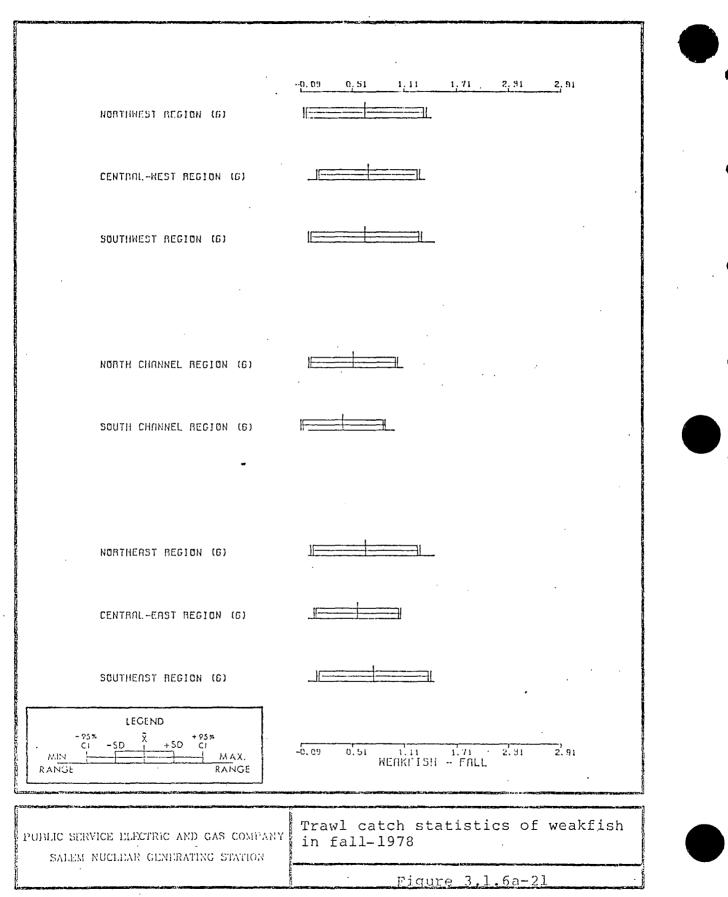




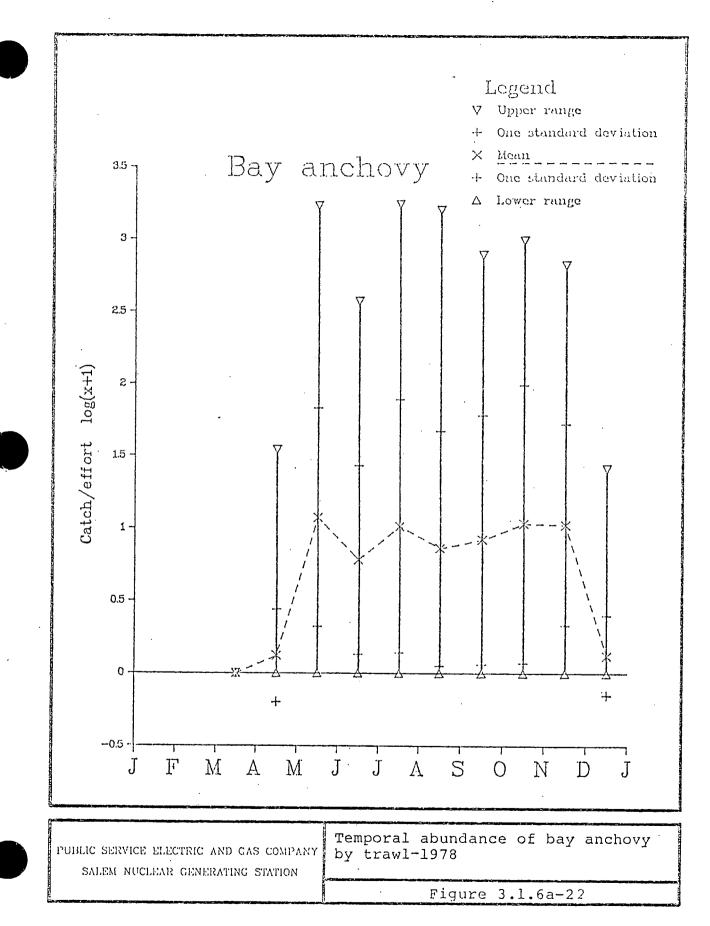
SSC SW2 NE1 SE1 SE2 811 W-1 E-2 SE3 SW1 E-1 CHA2 CHA1 CHA4 CHA3 | Ŗ12 E-6 CHA5 NE2 E-3 NW2 E-4 w-2 NW1 E-5 Π W-3 Ι Similarity of trawl catch on first three component axes based on species composition -1978 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Figure 3.1.6a-18 3.1-278

PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Figure 3.1.6a-20

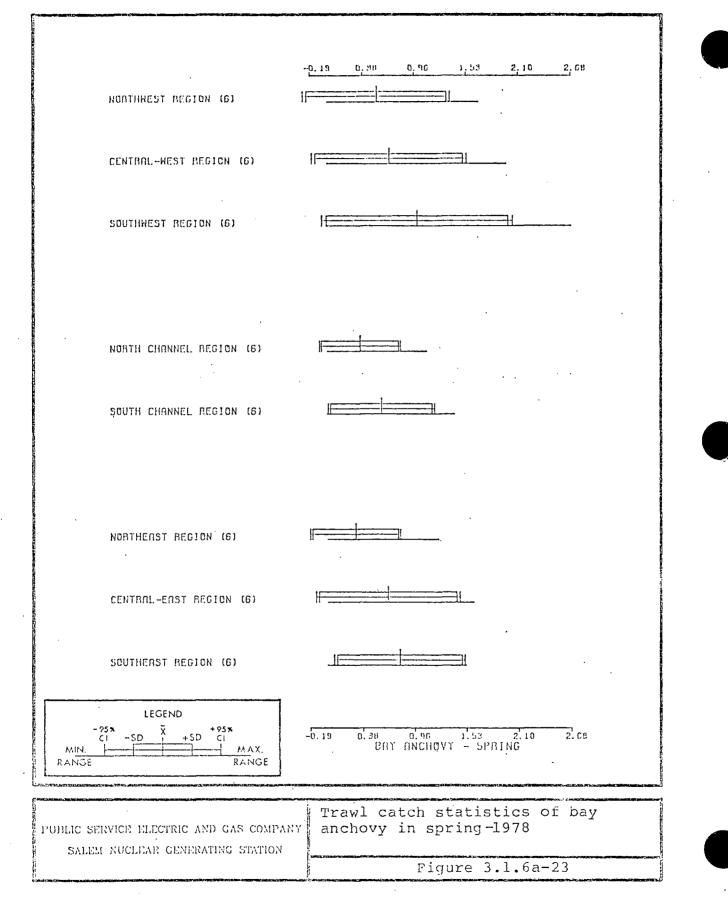
+95≯ CI

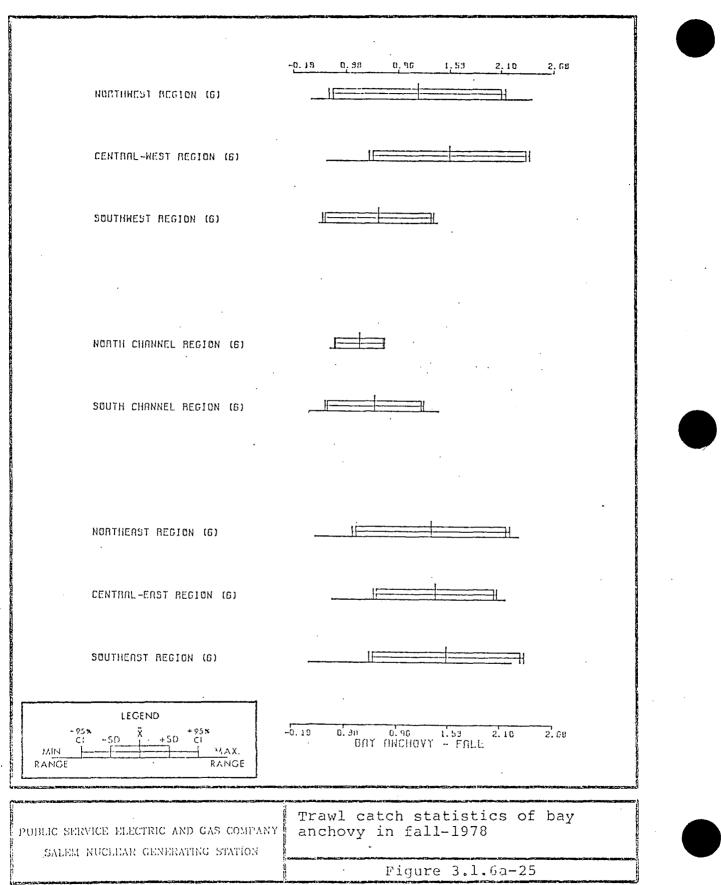

MAX.

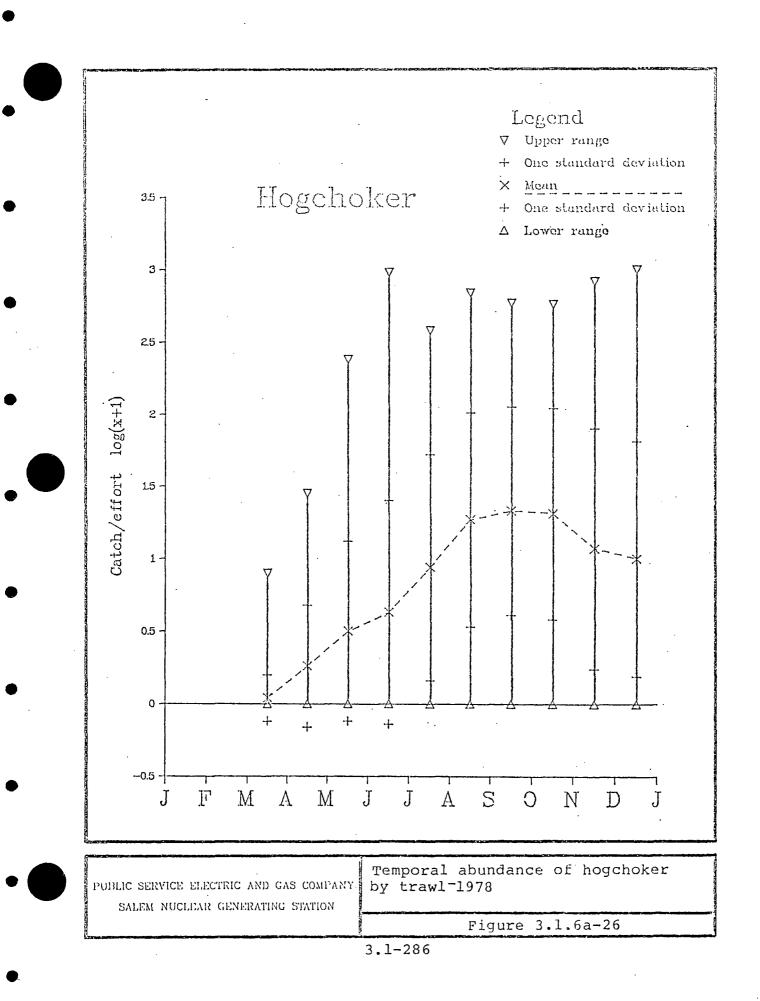
RANGE

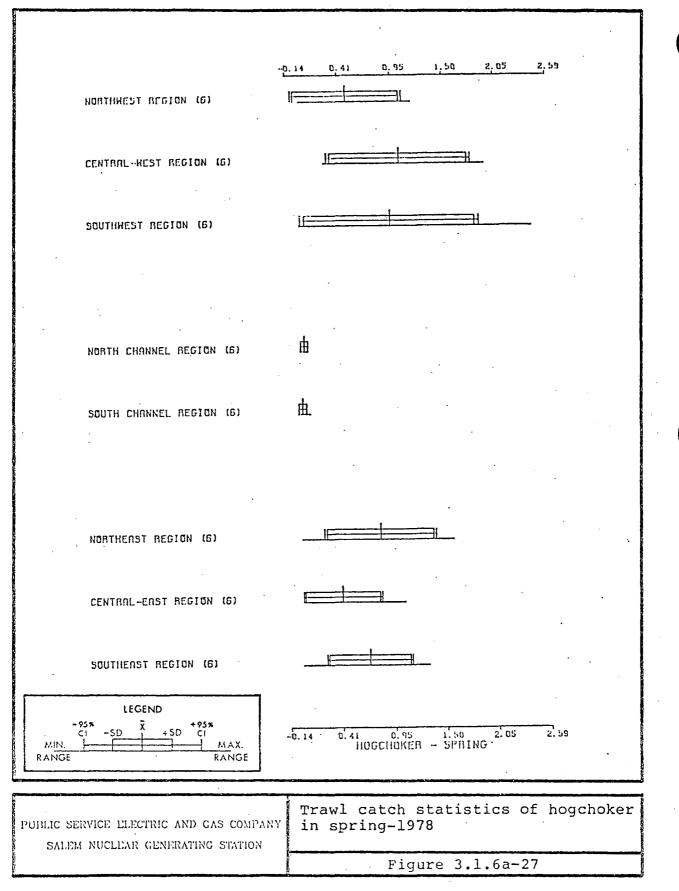

+ 5 D

MIN.

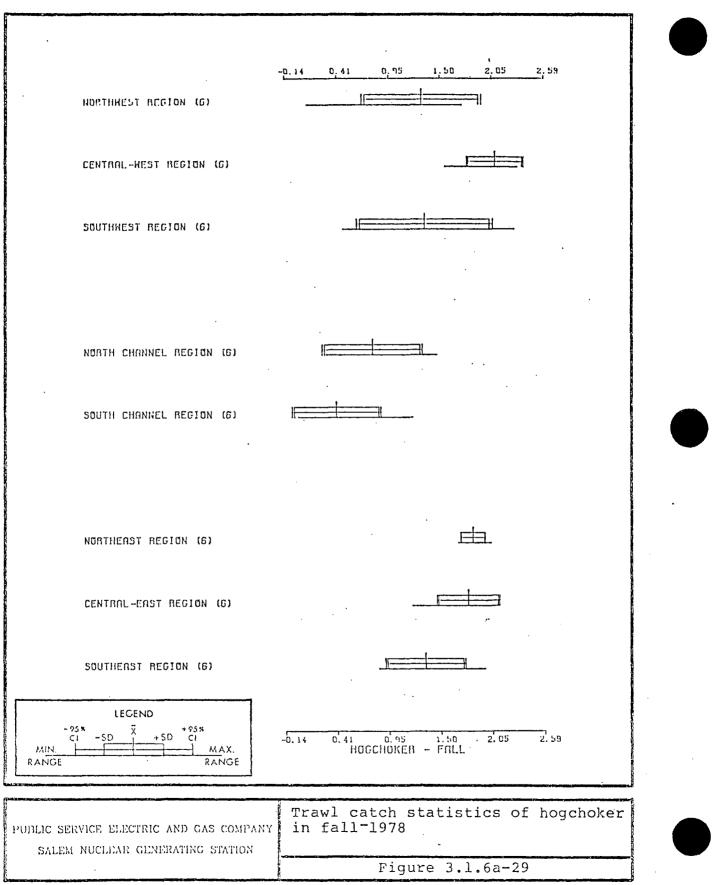

RANGE

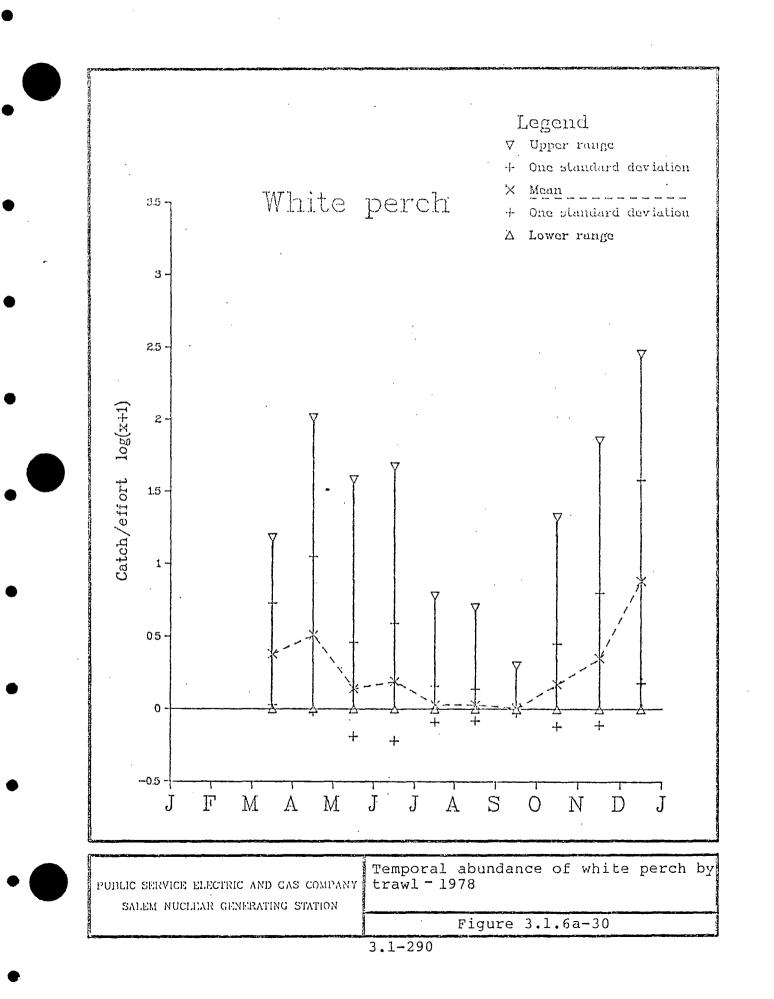

•

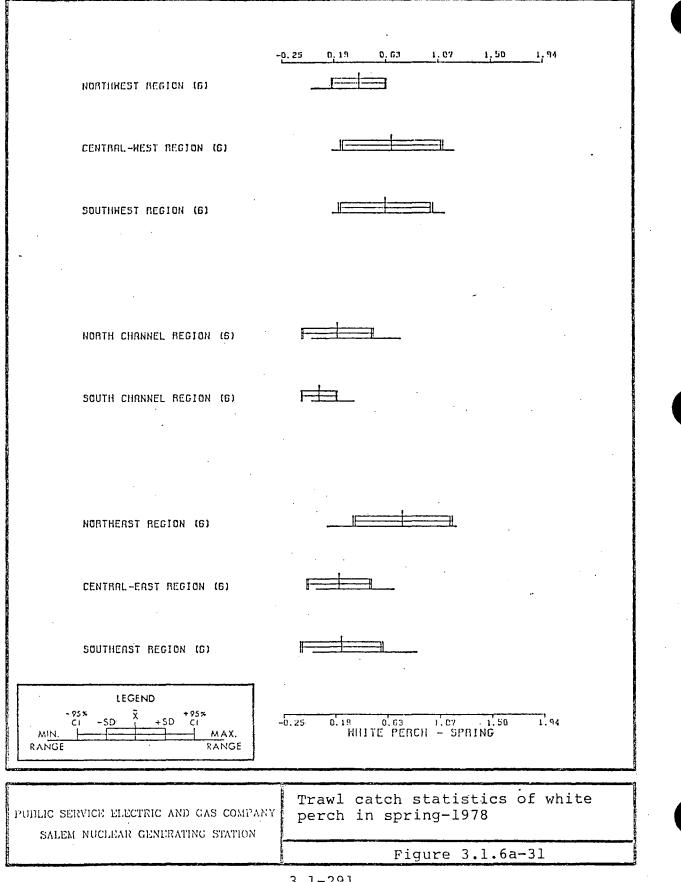


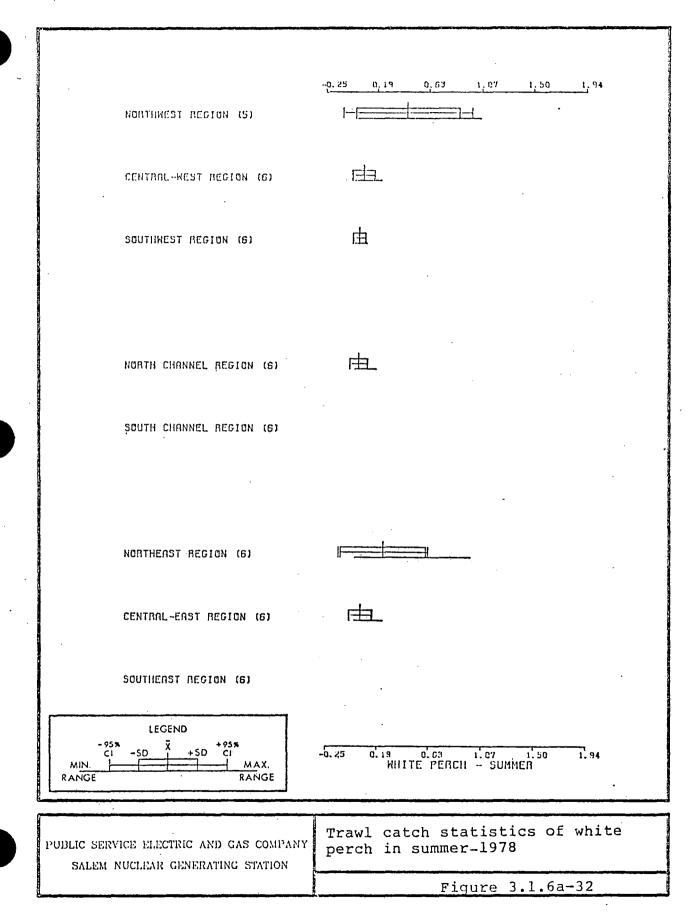

^{3.1-282}

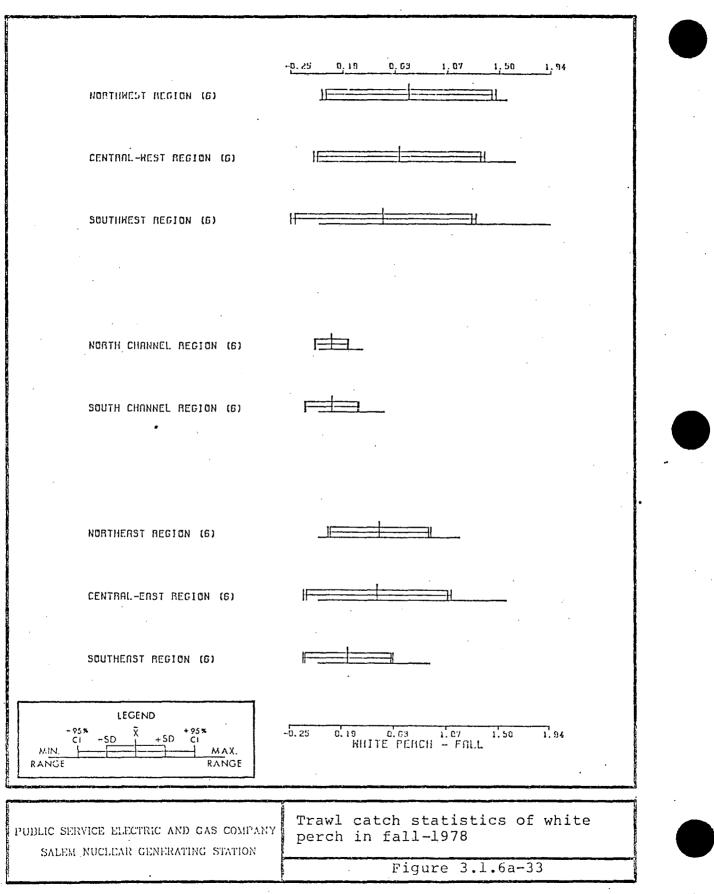
	NORTHWEST REGION (5)	
	CENTRAL-WEST REGION (S)	
	SOUTHWEST REGION (6)	
	NORTH CHANNEL REGION (6)	
	SOUTH CHANNEL REGION (6)	
		• ·
	NORTHERST REGION (5)	
	CENTRAL-EAST REGION (6)	
	SOUTHEAST REGION (6)	
MIN. RANGE	LEGEND 75 X X + 95 X C1 - SD + SD C1 MAX. RANGE	-0.19 0.38 0.96 1.53 2.10 2.08 BRY ANCHUVY - SUMMER
	ERVICE ELECTRIC AND GAS COMPAN	Trawl catch statistics of bay anchovy in summer-1978
SALE	M NUCLEAR GENERATING STATION	Figure 3.1.6a-24

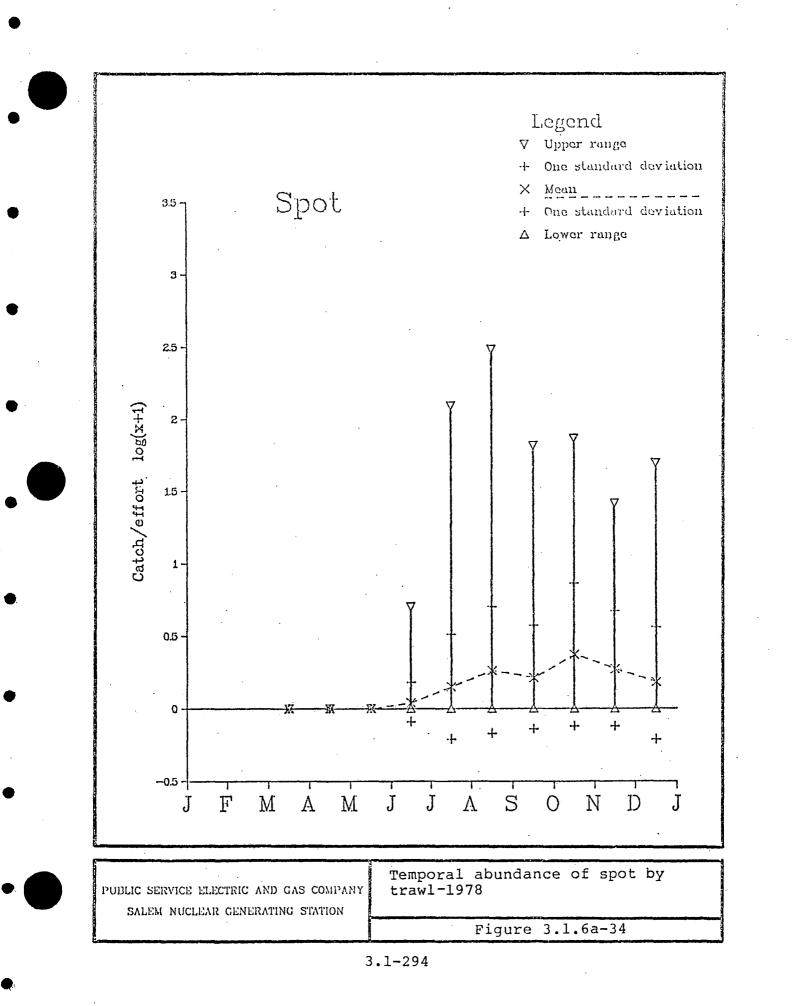


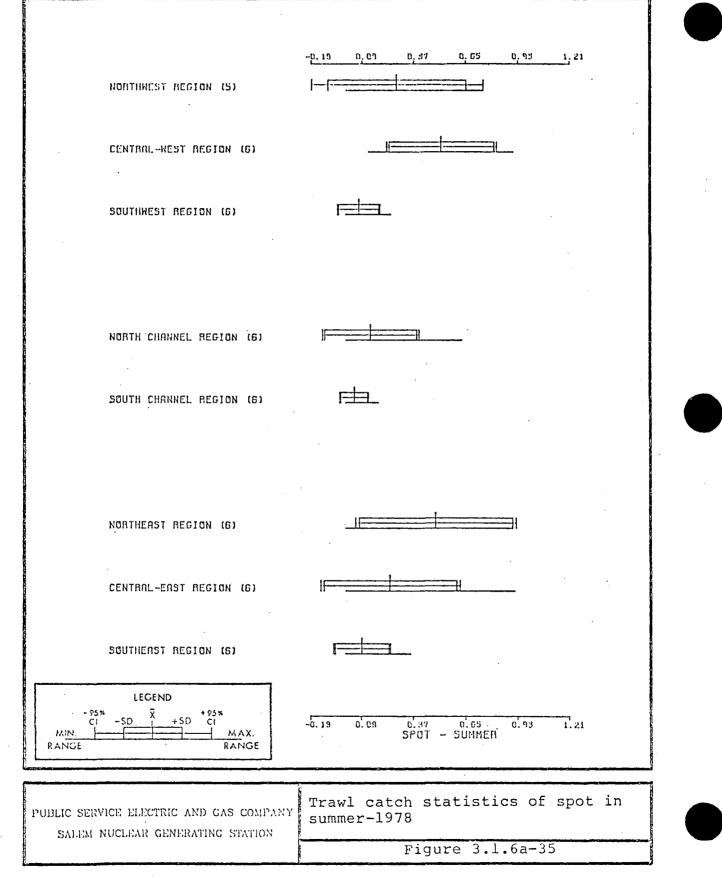



2, 59 1,50 2,05 -0.14 0,41 0, 95 |--F HOMTHWEST REGION (5) CENTRAL-WEST REGION (G) SOUTHWEST REGION (6) NORTH CHANNEL REGION (6) SOUTH CHANNEL REGION (6) NORTHERST REGION (6) CENTRAL-EAST REGION (6) SOUTHEAST REGION (6) LEGEND 2.59 .0.14 0.41 0.95 1.50 HOGCHOKER - SUMMER 2.05 +SD MIN. MAX. RANGE RANGE Trawl catch statistics of hogchoker in summer-1978 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION

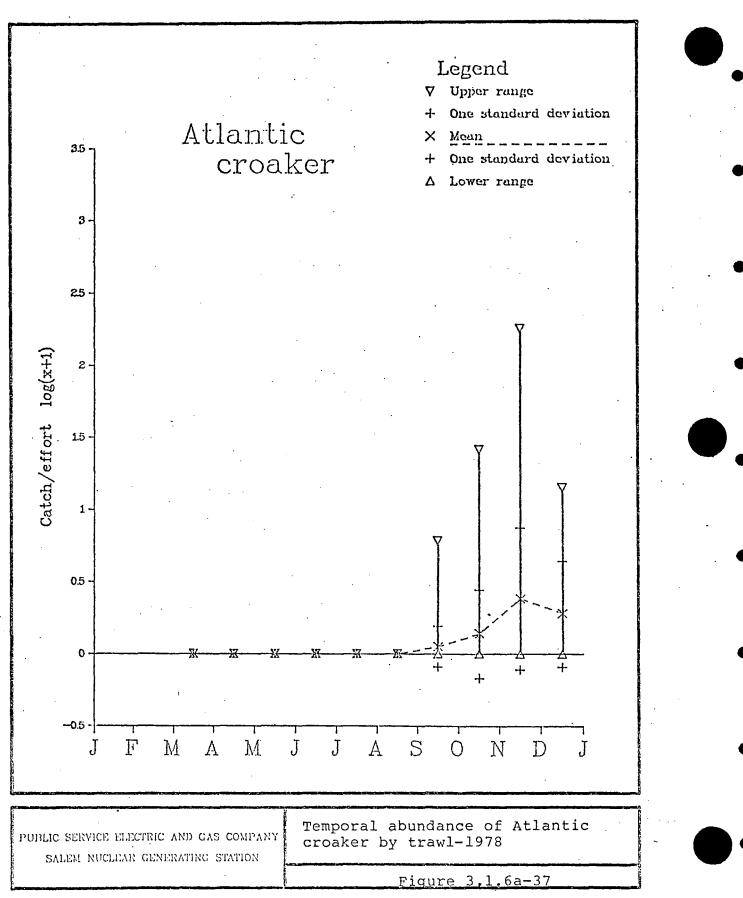

Figure 3.1.6a-28

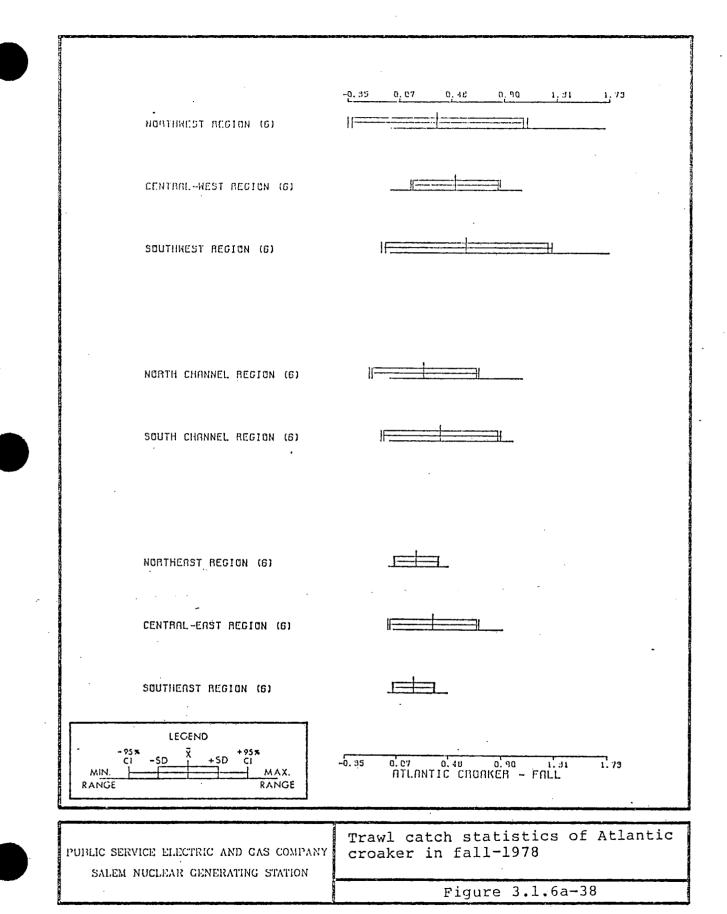

(

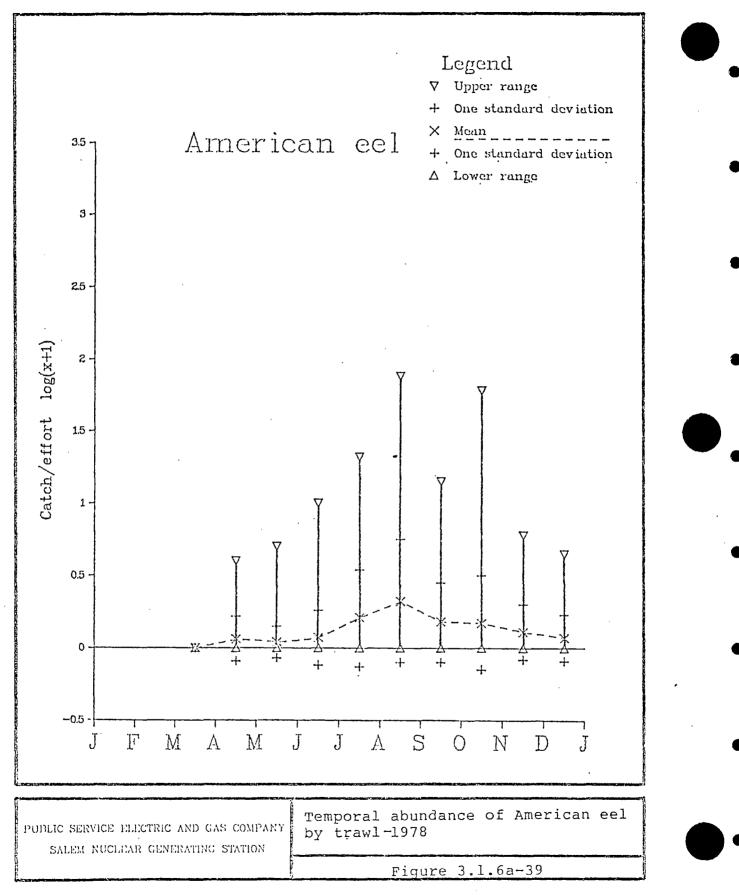




3.1-292

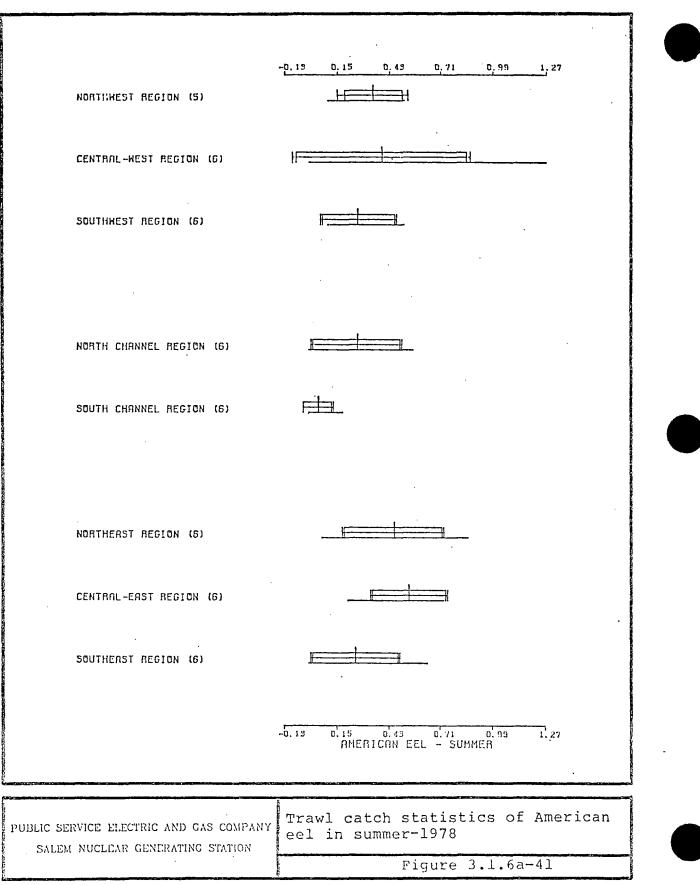


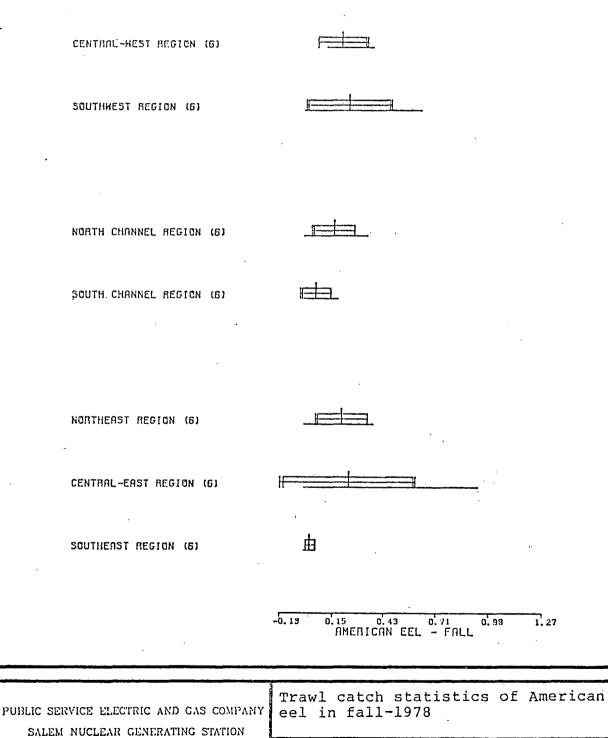




	NOATHWEST REGION (6)	
	CENTROL-WEST REGION (6)	
	SOUTHWEST REGION (6)	H
		· · · · · · · · · · · · · · · · · · ·
	NORTH CHANNEL REGION (6)	
	SOUTH CHANNEL REGION (6)	rita.
		•
	NORTHEAST REGION (6)	
	CENTRAL-EAST REGION (6)	l l
	SOUTHENST REGION (6)	I ───── I
- 95 x C1 MIN RANGE	LECEND -SD X +95x -SD CI MAX. RANGE	-0.13 0.09 0.37 0.05 0.93 1.21 SPOT - FALL
	CE ELECTRIC AND GAS COMPANY UCLEAR GENERATING STATION	Trawl catch statistics of spot in fall-1978
SALEN N	OCHERCY OFFICERATING STATION	Figure 3.1.6a-36

3.1-296



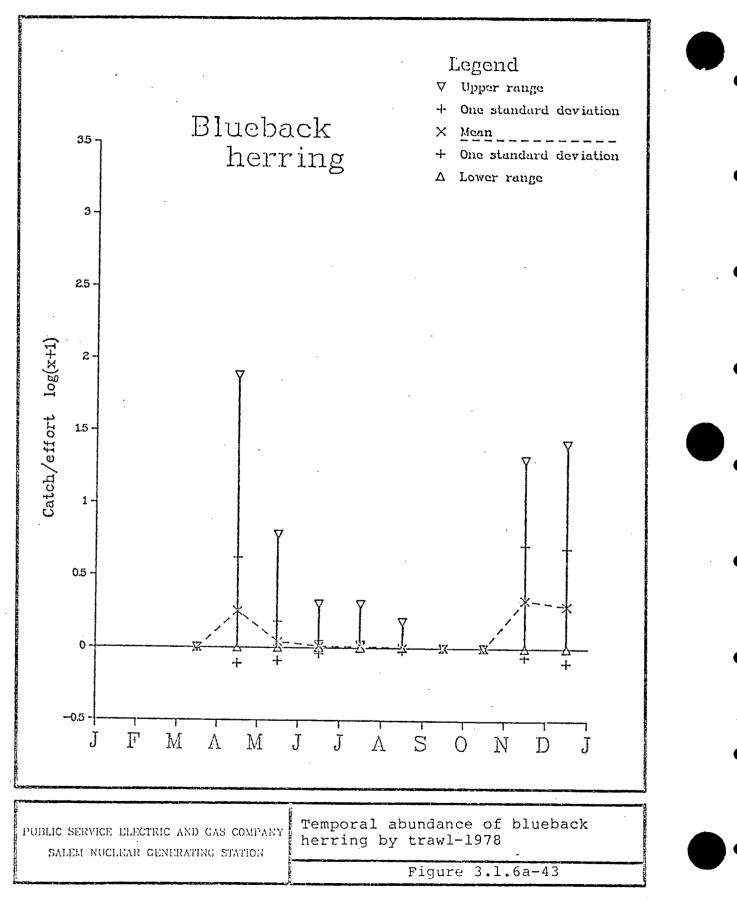

0.15 0,15 0, 49 0,71 0,99 NORTHWEST REGION (6) CENTRAL-WEST REGION (6) SOUTHWEST REGION (6) <u>أط</u> NORTH CHANNEL REGION (6) . SOUTH CHANNEL REGION (6) NORTHEAST REGION (6) . . .

CENTRAL-EAST REGION (6)

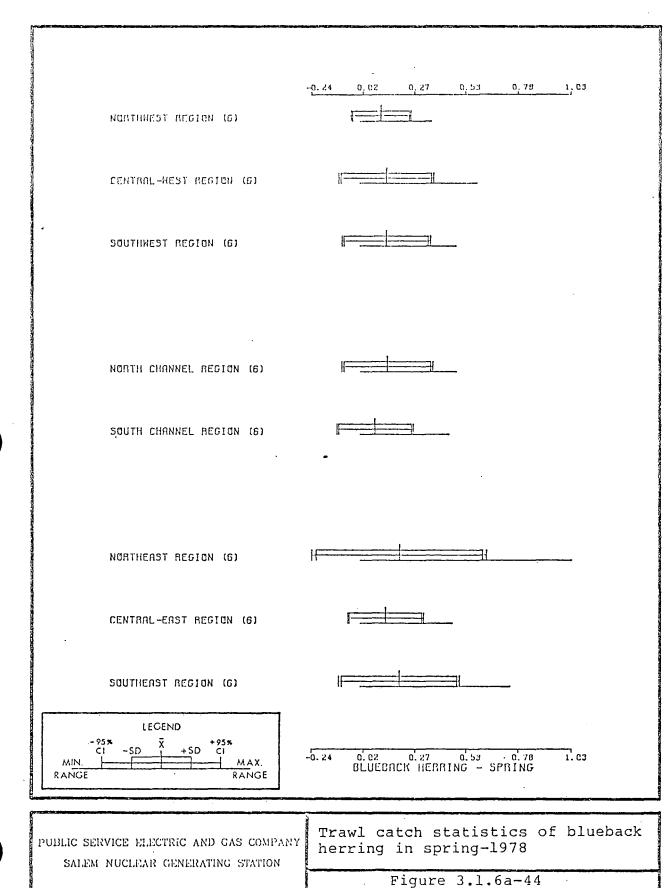
1, 27

PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Figure 3.1.6a-40

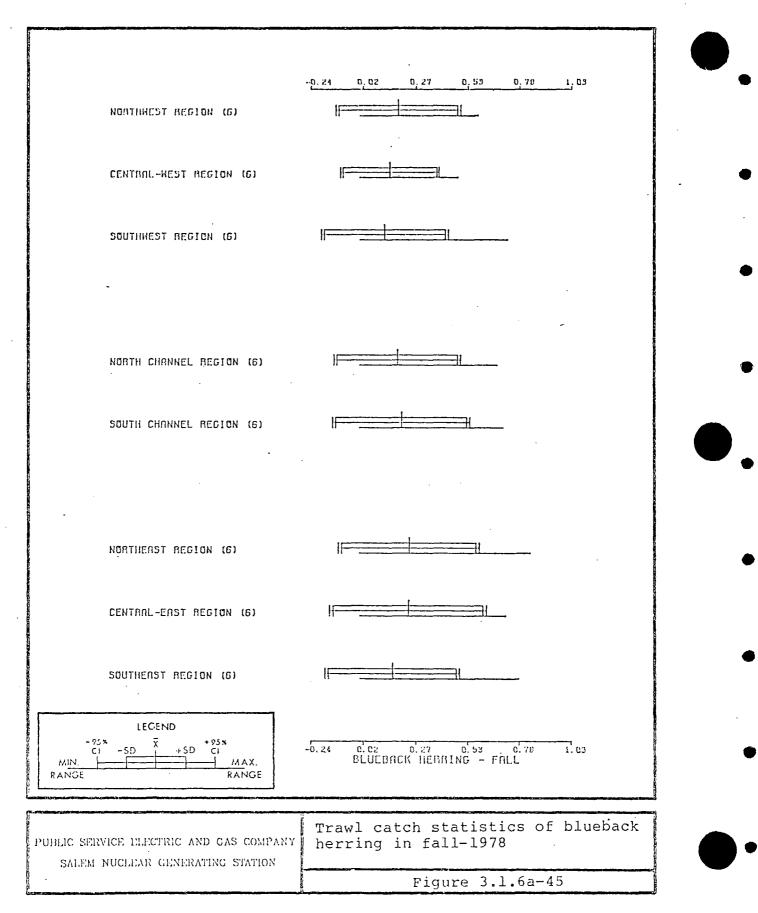
-0.19

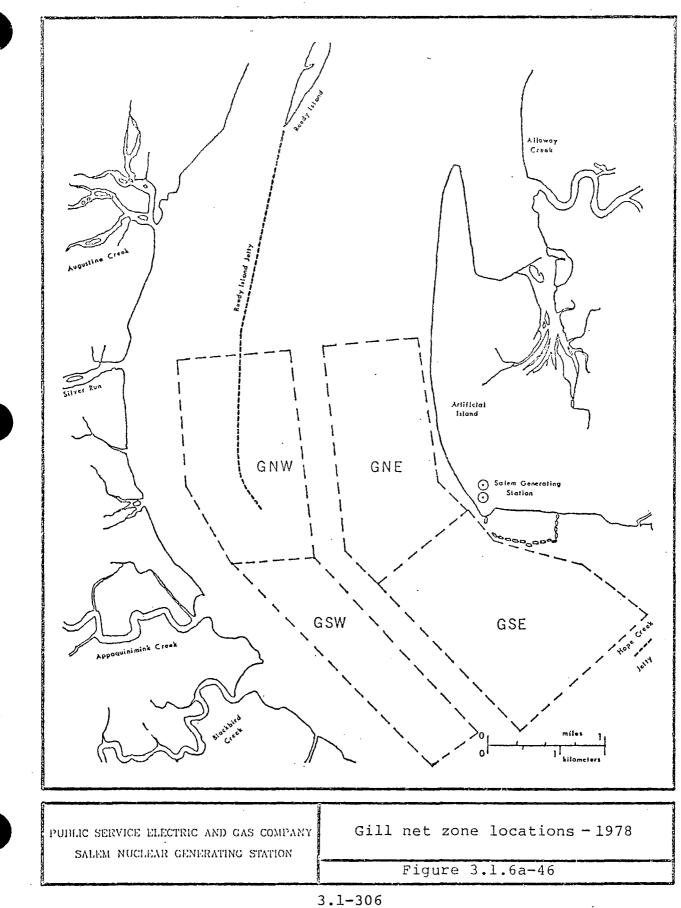

NORTHWEST REGION (6)

由


0,15 0,43 0,71 0,99 1,27

3.1-302


Figure 3.1.6a-42



3.1=303

5

•T=200

STATICA	LOCATION	SHORE	BOTTON COMPOSITION	BOTTOM SLOPE
Appoquinitink		<u> </u>		<u> </u>
3	Small gravel beach 0.75 mile below Silver Lake dam, 9.75 miles upstream from mouth.	50% marsh; 30% pasture; 20% wooded	70% soft mud; 30% gravel	10-30 degrees
5	Base of wooded bank bordering south branch of Drewyer Creek 0.5 mile upstream from Road 429 bridge, 9 miles upstream from mouth.	50% wooded bank; 50% marsh	60% mud-detritus; 40% sand-gravel	20-35 degrees
6	Beach at Fennimore Landing, 1 mile upstream from mouth.	Sand-bank, meadow, some trees	90% sand-gravel, 10% mud-clay	5-15 degrees
Alloray				
1	Base of wooded bank, 2 miles upstream from Quinton (Route 49) bridge, 11.5 miles upstream from mouth.	Wooded	80% gravel-sand; 20% clay, scme silt	20-30 degrees
2	Gravel beach 0.5 mile below Quinton (Route 49) bridge, 9 miles upstream from pouth.	90% pasture; 10% marsh, some trees	80% gravel—sand; 20% nud	15-25 degrees
3	Sand bar at mouth of second ditch off south side of creek (upper end of Elsinboro Creek tributary), 1 mile upstream from mouth.	Sand bar, marsh	80% sand; 20% soft mud, detritus	30-40 degrees

TABLE 3.1.6b-1 DESCRIPTION OF SEINE STATIONS - 1978

IA SALEM FF 1978

TABLE 3.1.6b-2 DESCRIPTION OF TRAWL ZONES - 1978

ZCXE	LOCATION	SHORE	DEPTH	BOTTOM TYPE
Appoquinimink			<u></u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
1	Creek channel 7.75 to 8.75 miles upstream from mouth (Rte. 13 bridges delimit lower end of trawl zone).	75% marsh; 20% wooded; 5% residential (lawns), a few docks	5-15 ft	Gravel, sand, ⊏ud
3	Creek channel 5.25 to 6.5 miles upstream from mouth (Rte. 299 bridge at Odessa delimits end of trawl zone).	80% marsh; 15% residential (lawns), a few docks; 5% woodad	5-25 ft	Graval, sand, mud
5	Creek channel from mouth to 1.75 miles upstream.	90% marsh; 10% meadow	3-25 ft	Gravel, sand, Dud
Alloszy				
1	Creek channel 8.0 to 9.5 miles upstream from mouth (Quinton- Rte. 49 bridge delimits upper end of trawl zone).	803 marsh; 153 wooded; 5 3 residential (lawns)	3-15 ft	Ģrave), sand, nud
<u></u>	Creek channel 2.5 to 4.75 miles upstream from mouth (Hancocks Bridge delimits upper end of trawl zone).	70% marsh; 30% residential (cottages, lamns, marina), several docks	5-20 ft	Graval, sand, mud
5	Creek channel from mouth to 2.5 miles upstream.	Marsh	10-25 ft	Gravel, sand, cud
Норе				
1	Creek channel of Halfway Creek from the intersection at Hope Creek to a point midway to Alloway Creek.	Marsh, a few cabins and docks	8-20 ft	Gravel, sand, pud
2	Creek channel from S.K.G.S. bridge upstream to a point midway to the intersection with Halfway Creek.	₩arsh	8-30 ft	Gravel, sand, aud

3.1-308

IA SALEM FF 1978

	APPOQ	UINIMINK	CREEK	AL	LOWAY CRE	EK			
STATION	3	5	6	1	۶·	3	TOTAL		
NO. OF COLLECTIONS	14	14	14	11	13	13	79		
NO. OF SPECIES	17	12	11	14	14	7	31		
NO. OF SPECIMENS	578	85	474	921	775	340	3,173		
SPECIES								RANK	PCT
F. HETEROCLITUS	157	12	40	278	374	54	915	1	28.8
H. MENIDIA	203	1	367	5	30	205 .	811	2	25.0
F. DIAPHANUS	23	14		315	22		374	3	11.8
H. NUCHALIS	21	1		89	118	30	259	4	8.2
E. ULMSTEDI		31		153	68		252	5	7.9
A. MITCHILLI	10		7	5	75	45	142	· 6	4.5
M. AFERICANA	56		2	29	32		119	7	3.8
B. TYRAHNUS			45		37		82	8	2.6
A. ROSTRAIA	25	14	7	1			. 47	9	1.5
CYPRINIDAE				36			36	10	1.1
N. HUDSUNIUS	26			3	4		33	11	1.0
N. BERTLLINA	17			2			19	12	.6
L. MACROCHIRUS	12	3	1				16	13	. 5
ALUSA SPP.	13						` 13	14	.4
A. AESTIVALIS	4			3	5		12	15	• 4
L. XANTHURUS					5	2	7	16	
F. MAJALIS	5	1					6	17	.2
M. SAXATILIS	-	•	1		1	3	5	18	- 2
I. MACULATUS	1	.2			2	-	ŝ	18	
C. RÉGALIS	•	. •	2		2		5	20	.1
L. GIGBOSUS		3	-		-		3	21	.1
A. PSEUDORARENGUS	3	2		•			7	21	.1
CYPRINODONIOIDEI	5	2					2	23	1
P. ANNULARIS		1					1	24	
NOTROPIS		•	1				4	24	
N_ ANALOSTANUS			1					24	
CENTRARCHIDAE	1		I				1	24	.0
P. FLAVESCENS	1						1	24	•0
P. SALTATRIX	•					1	1	24	-
M. SALMOIDES				4		•	1	24	.0
P. NIGROMACULATUS							4	24	.0

TABLE 3.1.6b-3 CREEK SEINE CATCH STATISTICS-1978

IA SALEM FF 1978

.

•

	APPO	DINIMINK	CREEK		A	LLOWAY CI	REEK			HOPE C	REEK		
NO. OF COLLECTIONS		•	41				28						
NO. OF SPECIES		19				16				10			
ND. OF SPECIMENS		692				381			53				
SPECIMENS / 5 MIN TRA	WL (N/T)	16.5			9.3				1.9				
SPECIES	NUMBER	N/T	T*	N/T*	NUMBER	N/T	۲*	N/T*	NUMBER	N/T	1×	N/T*	
A. ROSTRATA	34	.8	17	2-0	18 .	- 4	7	2.6	2	.1	. 2	1.0	
AL AESTIVALIS	9	.2	3	3.0	1		1	1.0	4	. 1	3	1.3	
A. PSEUDOHARENGUS	1		1	1.0	1		1	1.0					
B. TYRANNUS	3	.1	2	1.5	3	.1	3	1.0					
D_ CÉPEDIANUM	1		1	1.0									
A. HITCHILLI	18	- 4	6	3.0	52	1.3	11	4.7	6	.2	4	1.5	
C. CARPIO	7	.2	4	1.8	8	.2	4	2.0					
H. NUCHALIS	32	<u>.</u> 8	7	4.6	13	.3	5	2.6					
I. CATUS	3	.1	3	1.0	3 `	. 1	3	1.0	2	•1	2	1.0	
I. HEBULDSUS	77	1.8	12	64	13	.3	5	2.6	2	. 1	1	2.0	
I. PUNCTATUS	29	•7	12	2.4	6	. 1	4	1.5					
F_ HETEROCLITUS	1		1	1.0									
M. AMERICANA	171	4.1	29	5.9	30	.7	13	2.3	4	.1	4	1.0	
N_ SAXATILIS	2		2	1_0									
P. FLAVESCENS	4	. 1	2	2.0									
C. REGALIS	36	.9	5	7.2	53	1.3	10	5.3	17	. 6	4	4.3	
L. XANTHURUS	60	1-4	5	12.0	89	2.2	7	12.7	1		1	1.0	
P. CRO⊁IS	2		2	1.0	1.		1	1.0	1		1	1.0	
P. AMERICANUS	-		-		4	.1	2	2.0					
T. MACULATUS	202	4.8	25	8-1	86	2.1	17	5.1	14	.5	6	2.3	

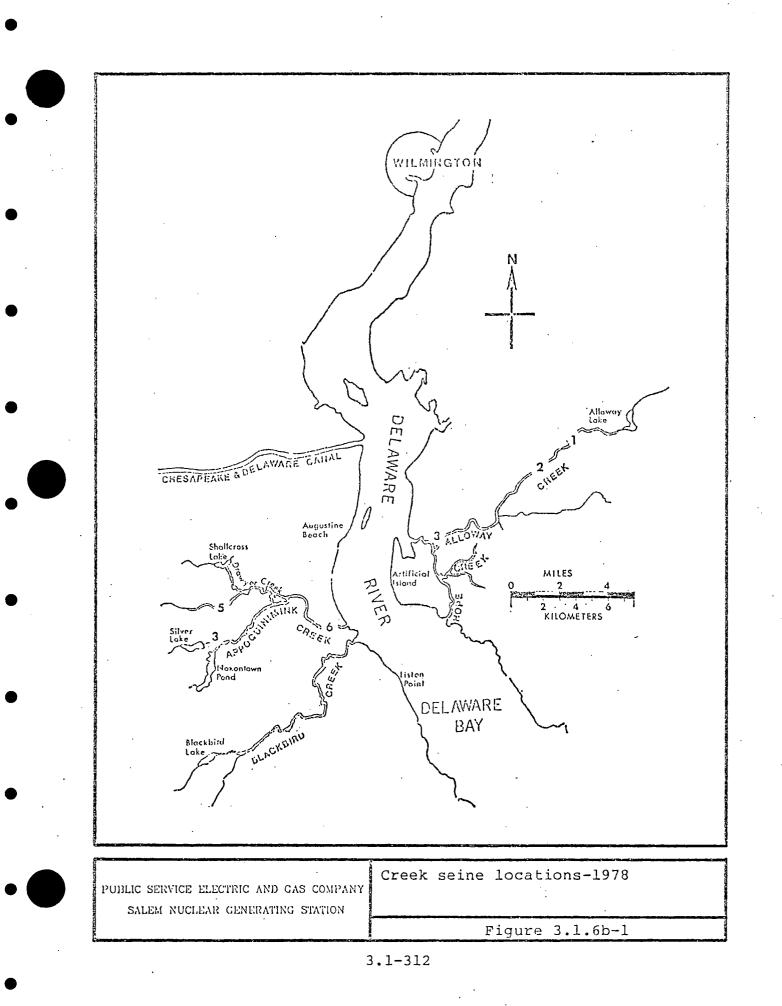
TABLE 3.1.6b-4 CREEK TRAWL CATCH STATISTICS-1978

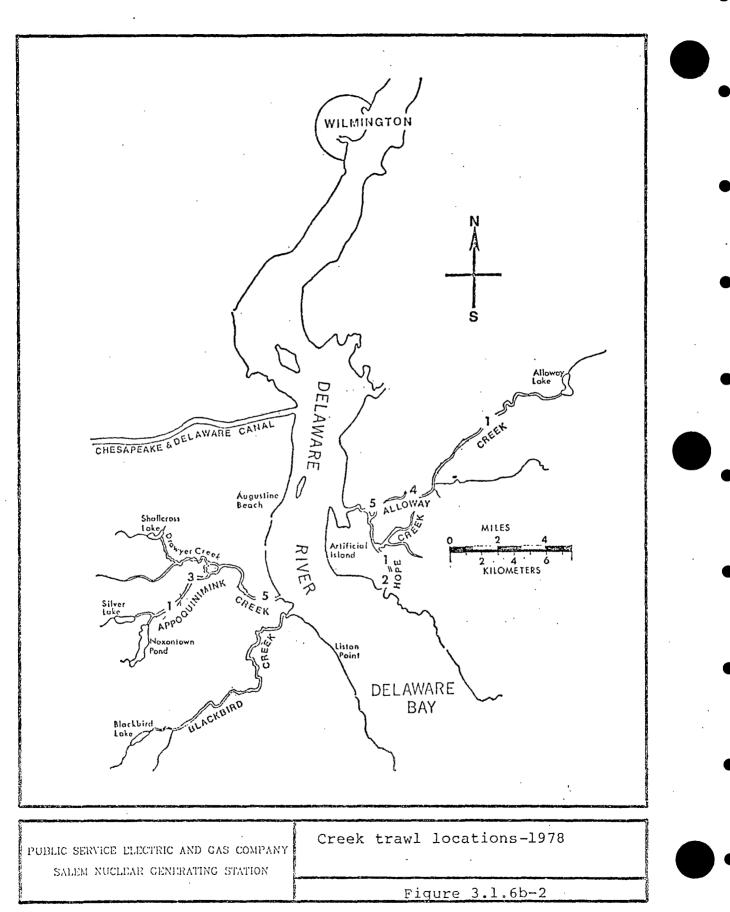
T∗ NUMBER OF TRAWL HAULS WITH SPECIES N/T∗ specimens/5 min trawl in which species was taken

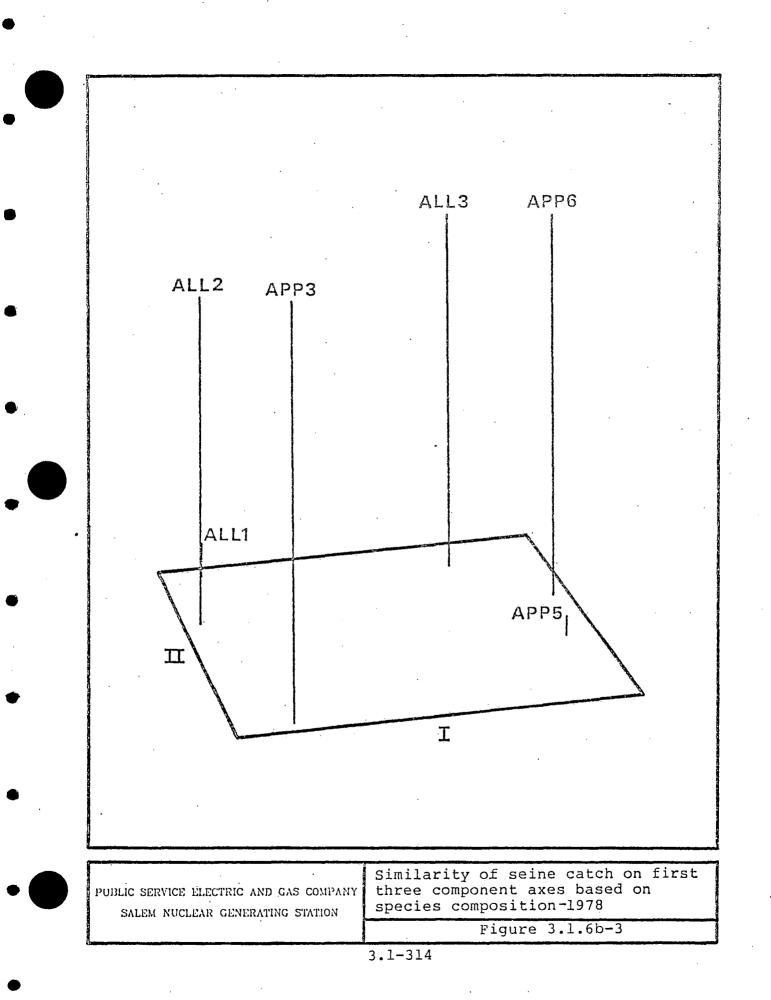
IA SALEM PF 1978

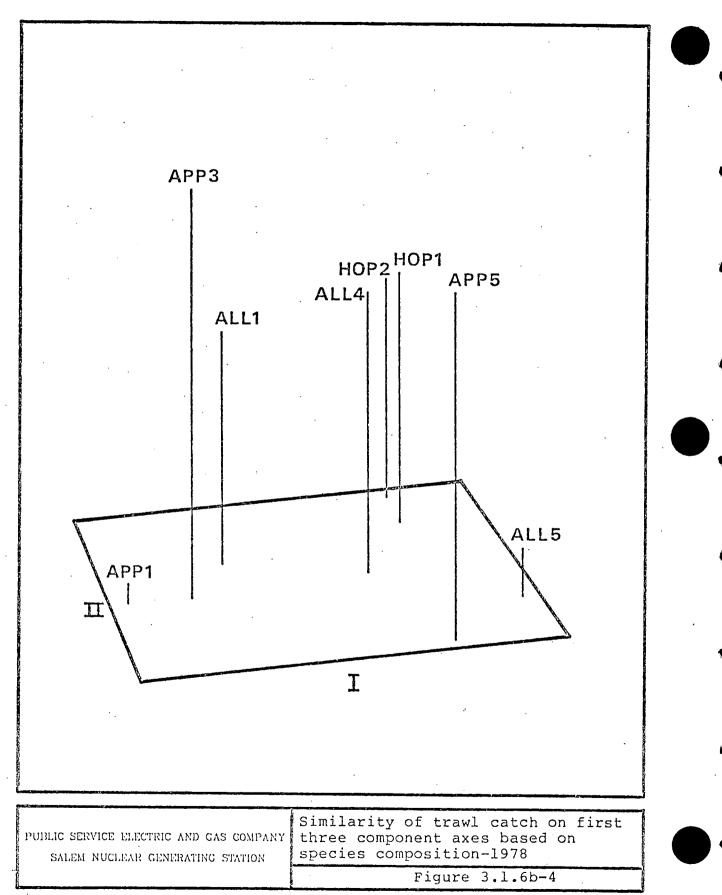
,

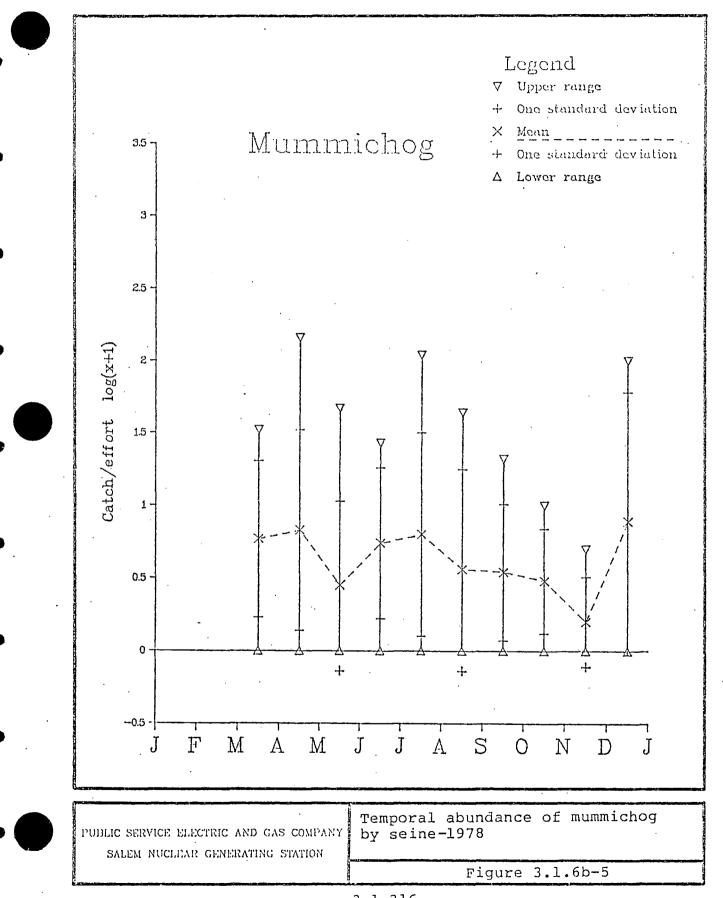
			C 40 IV		3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	99 99 80 08 99 99 9		. 6. 6. 6. 6. 4. 4		
	-	-							DTAL	
NO.					TONS			111		
NO.		SPI						2(-	
NO.			ECI	ME	٧S			1,120	5	
SPE	ECIME	EN S	1	5	MIN	TRAWL	(N/T)	10.1	1	
	ę	SPE(CIE	S			NUMBEŖ	N71	г т*	N/T*
Α.	ROST	RA	r a				54		5 26	2.1
Ą.	AESI	ΊV/	۱L۱	S			14	. 1	7	2.0
Α_	PSEL	IDOI	1 A R	ENG	GUS		2		2	1.0
Β.	TYRA	NNL	JS				6	.1) 5	1.2
D.	CEPE	DI	NU	M			1		1	1.0
Α_	MITC	HIL	LI				76	.7	7 21	3.6
C .	CARF						15	.1	8	1.9
Η.	NUCH	IALI	l S				45	. 4	12	3.8
	CATL						8	.1	8	1.0
Ι.	NEBL	109	5 U S				92	.8	3 18	5.1
Ι.	PUNC	TA 1	rus				35	.3	5 16	2.2
F.	HETE	R0(LI	TUS	6		1		1	1.0
Μ.	AMER	104	N A			•	205	1.8	3 46	4.5
Μ_	SAXA	TI	. I S				2		2	1.0
Ρ.	FLAV	ESC	EN	S			4	•	2	2.0
С.	REGA	LIS	5				106	1.0) 19	
L.	XAN1	HUF	US				150	1.4		
Ρ_	CROM	IS					4		4	1.0
Ρ.	AMER	ICA	NU	S			4		2	2.0
T.	MACL	ILA1	rus				302	2.7	. 48	6.3

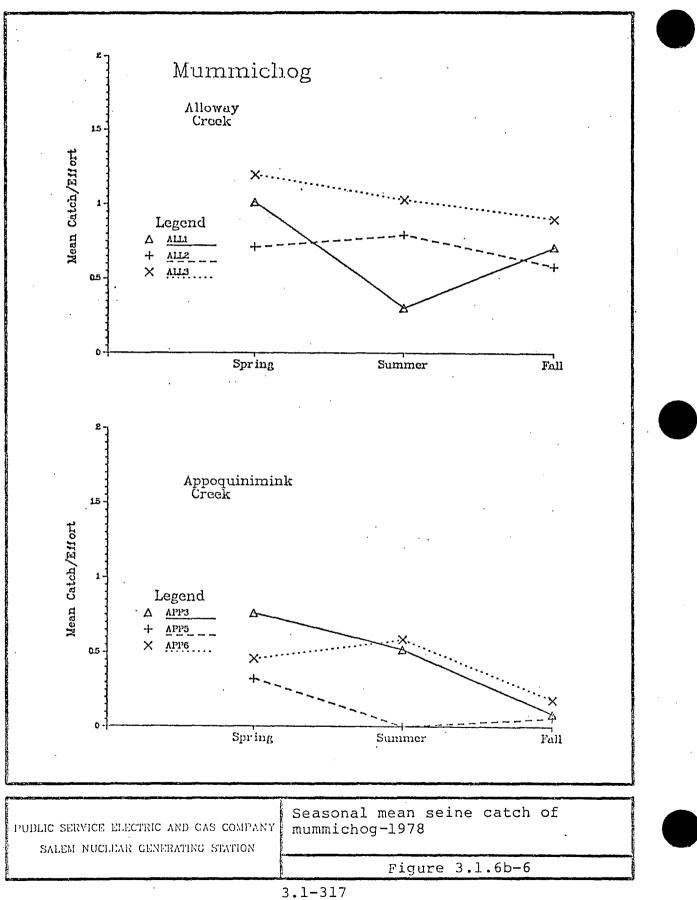

TABLE 3.1.6b-4 CONTINUED

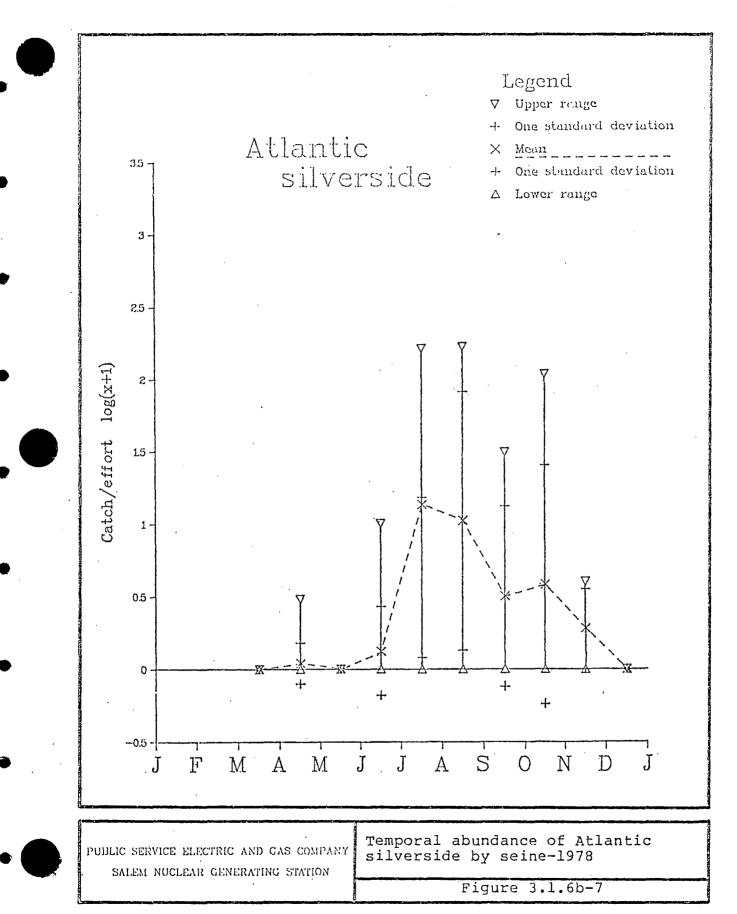

T* NUMBER OF TRAWL HAULS WITH SPECIES N/T* SPECIMENS/S MIN TRAWL IN WHICH SPECIES WAS TAKEN

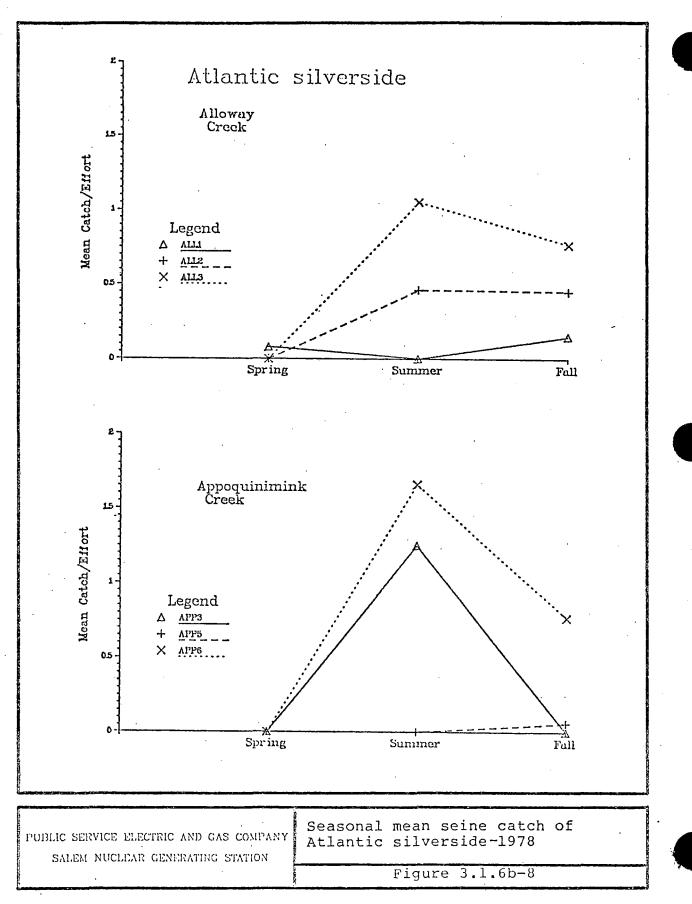

IA SALEM FF 1978

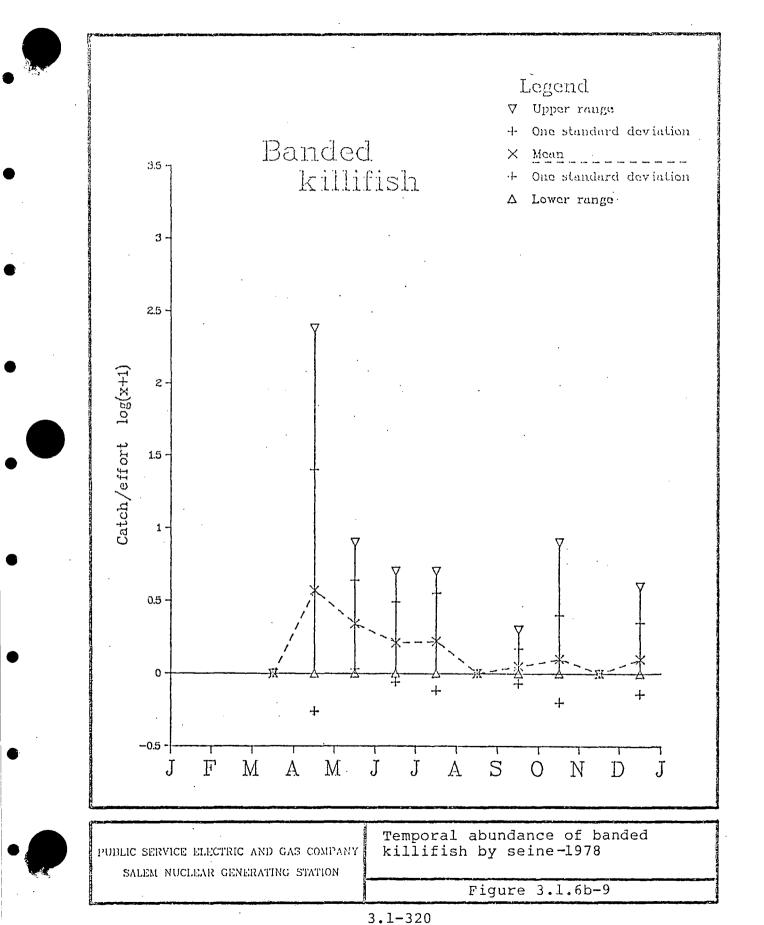

3.1-311

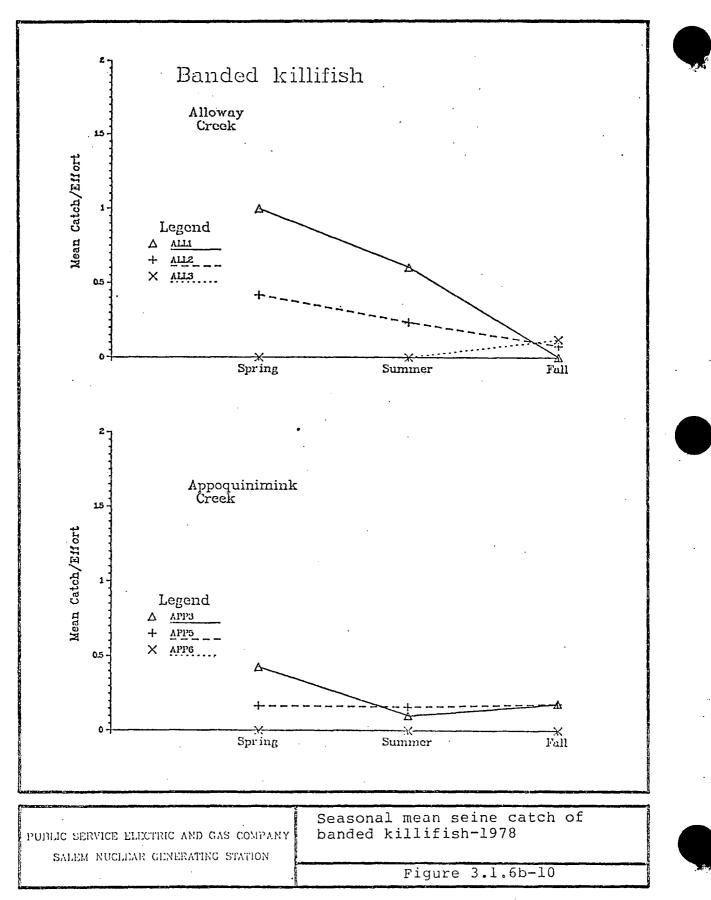

.

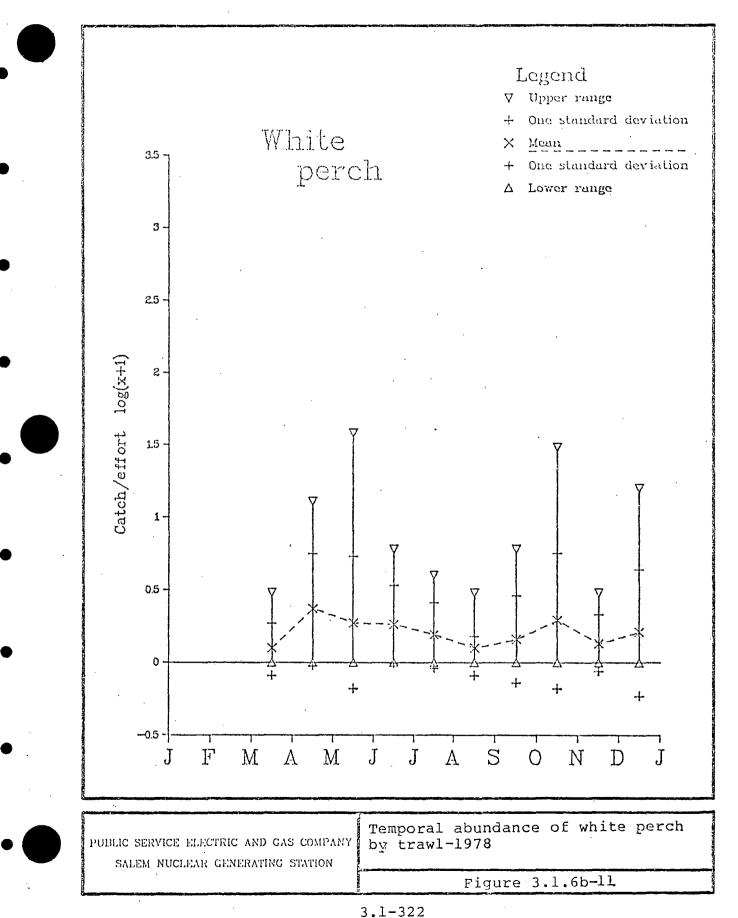


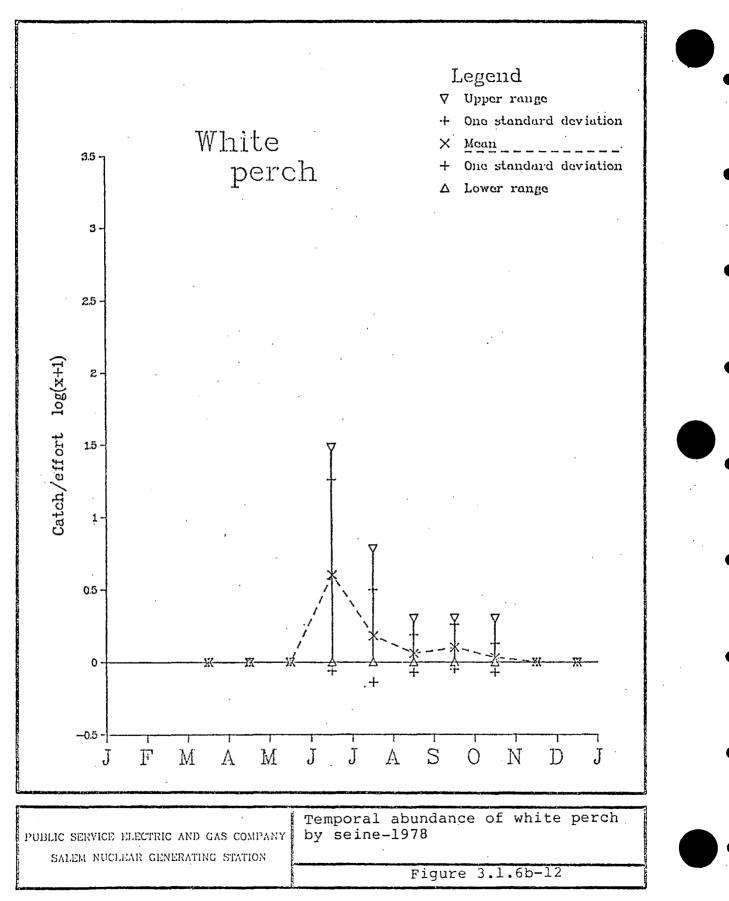


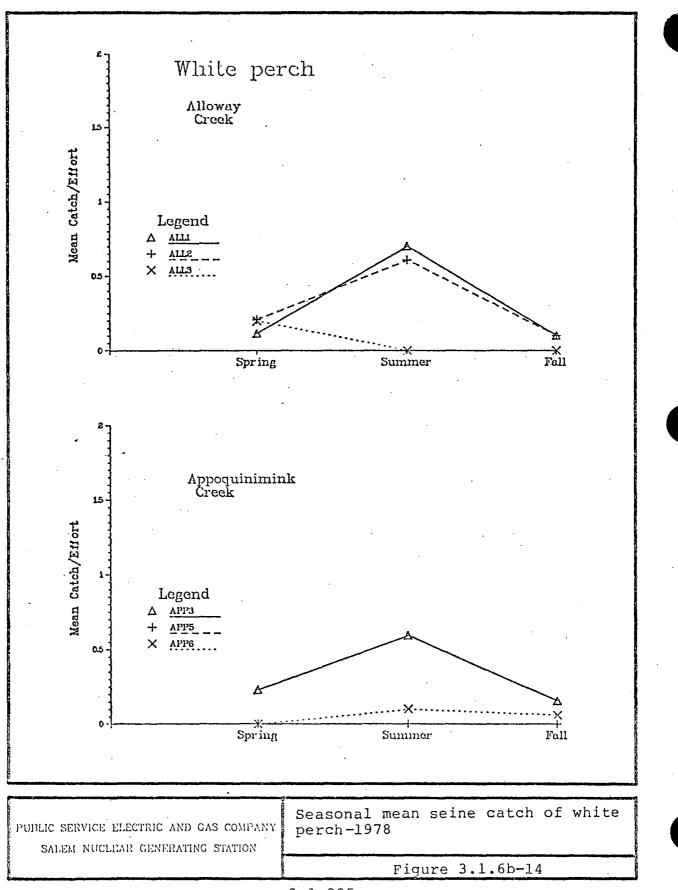


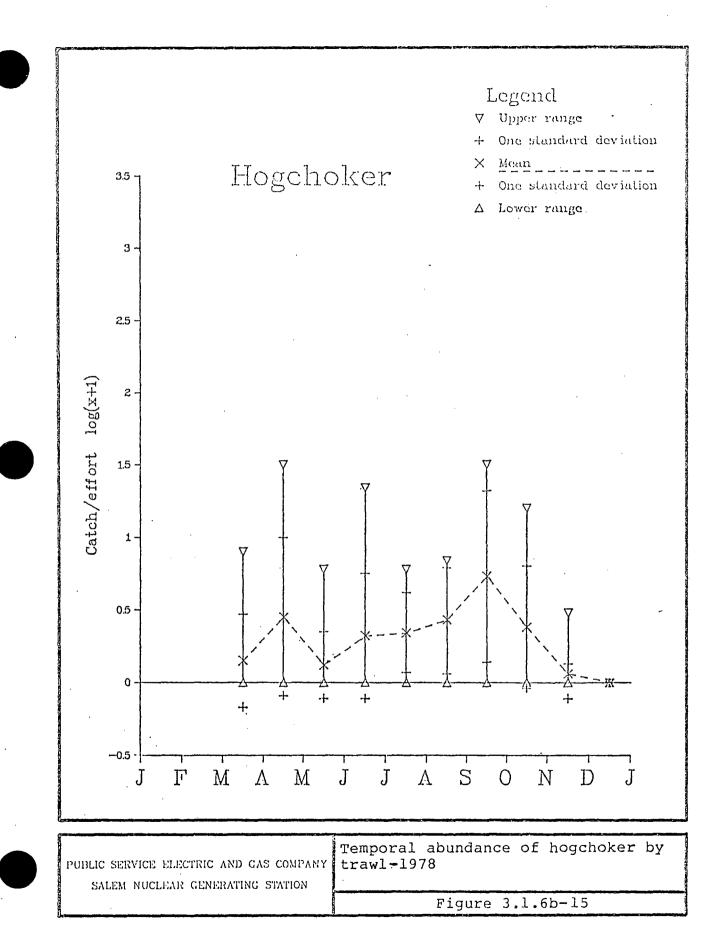


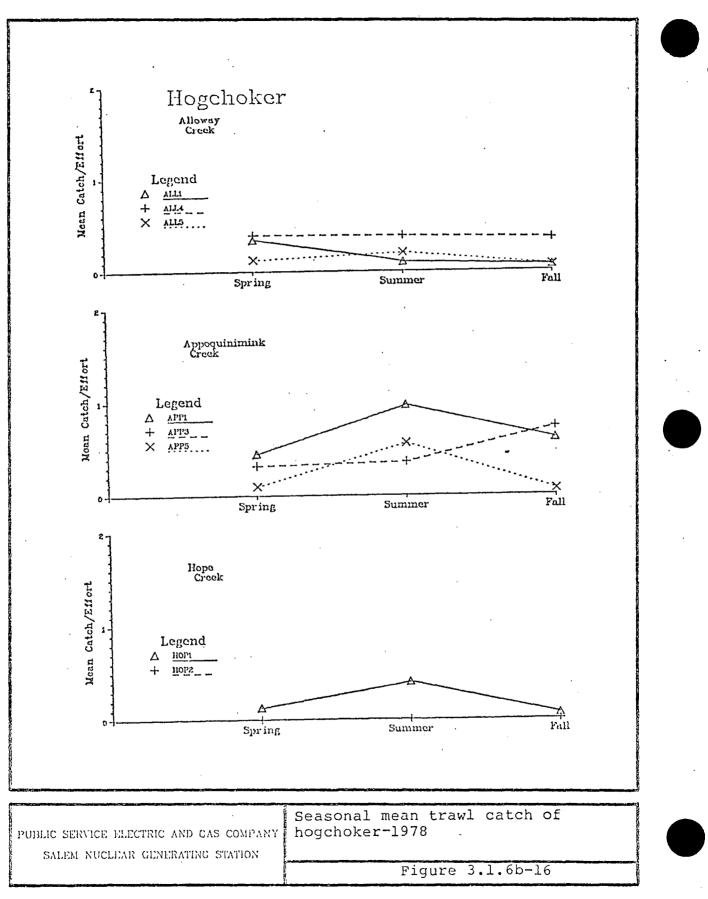

_ _ _ (

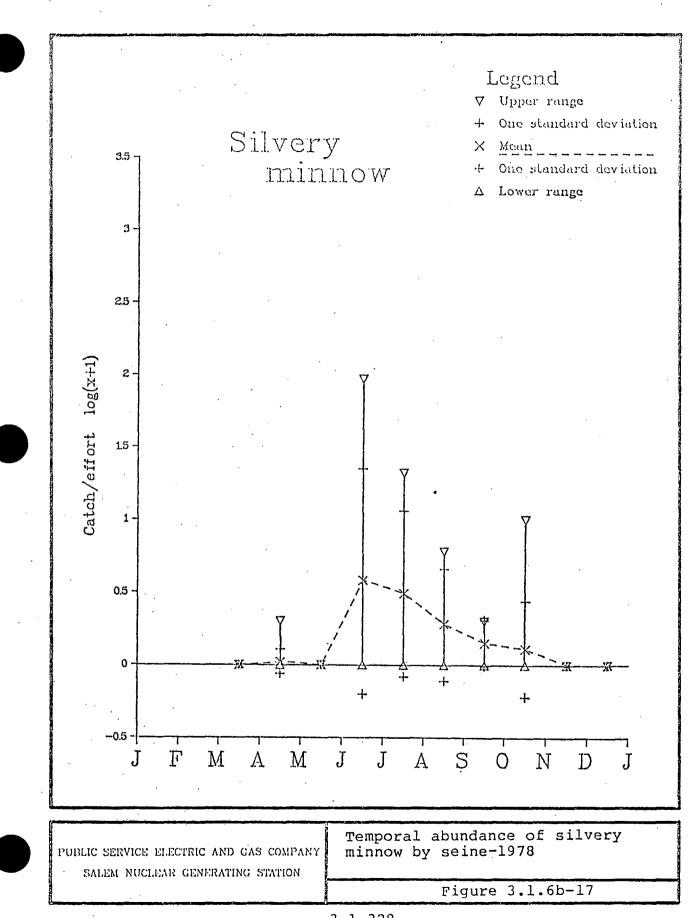

.

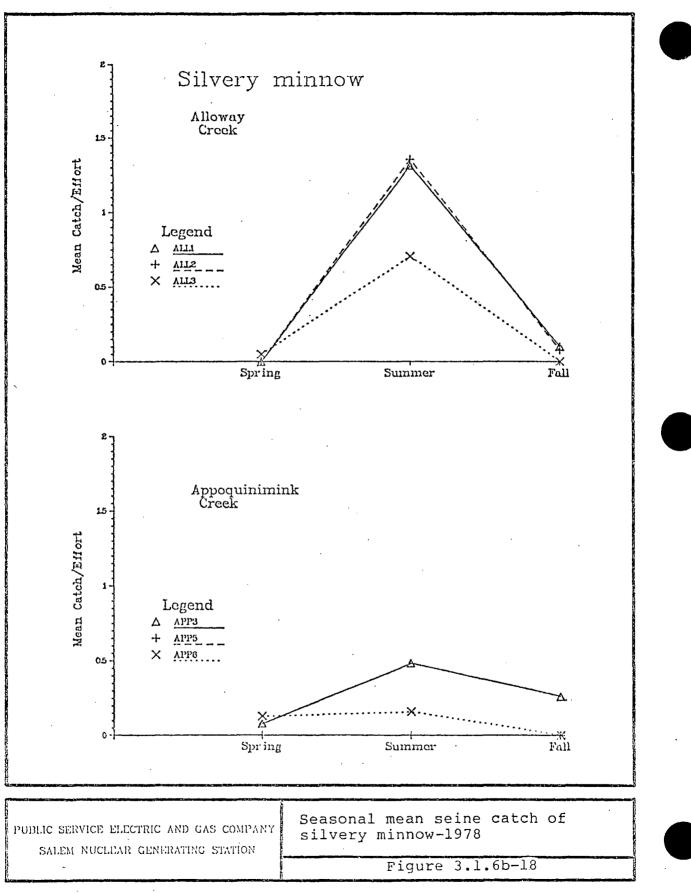


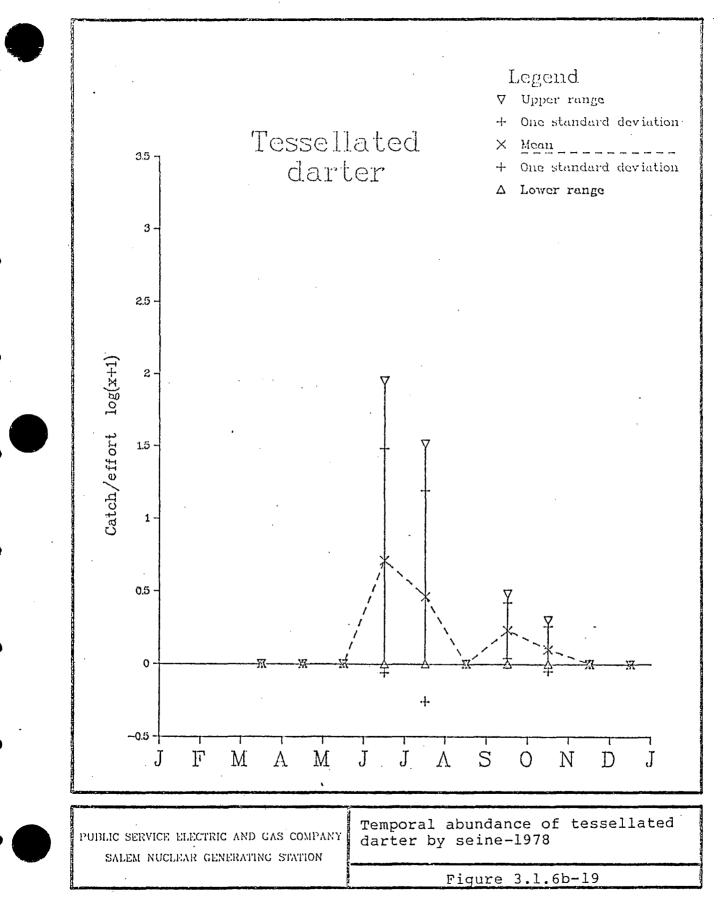


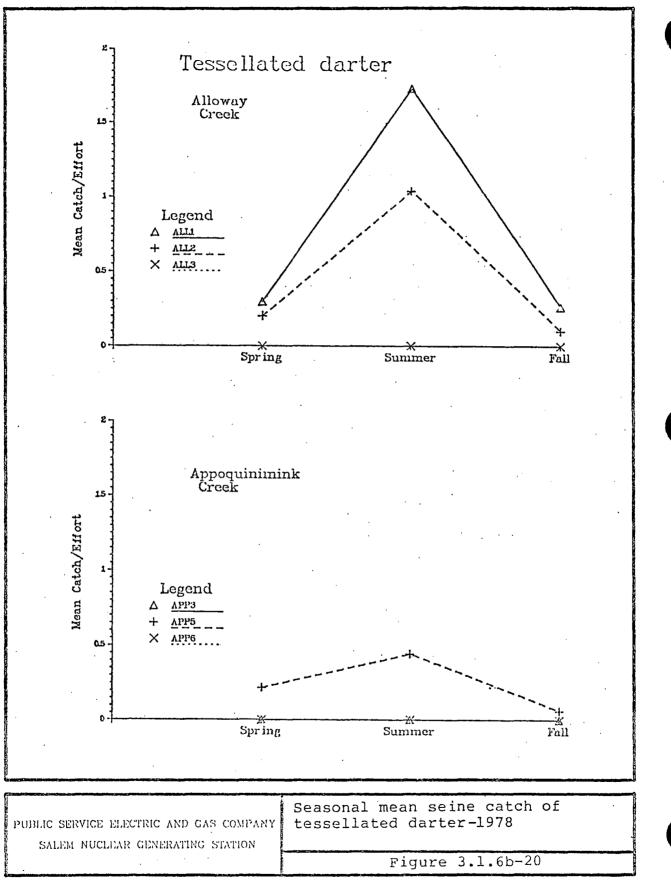

.

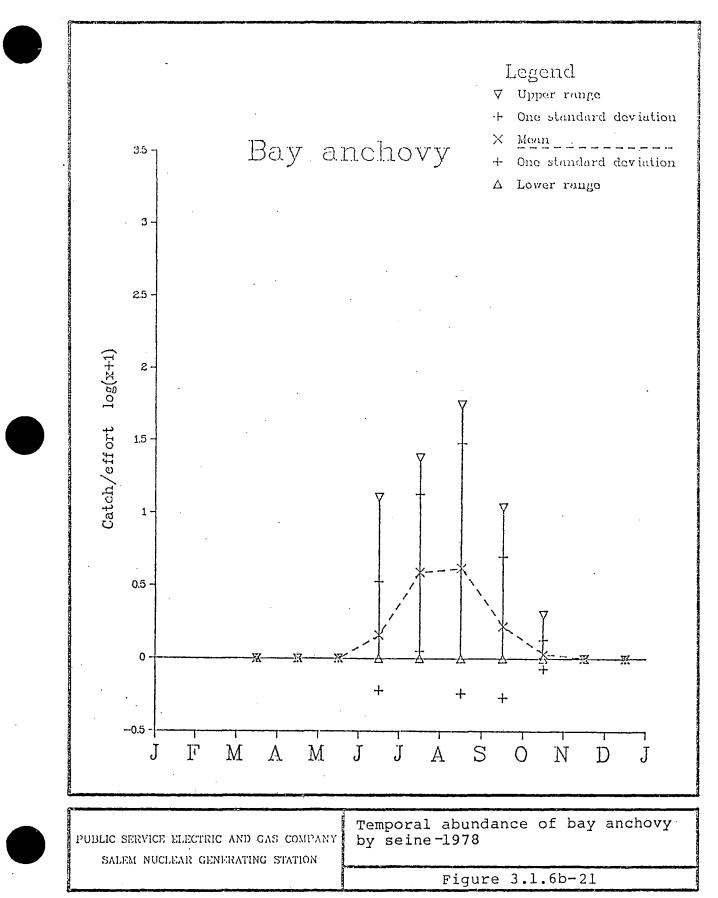


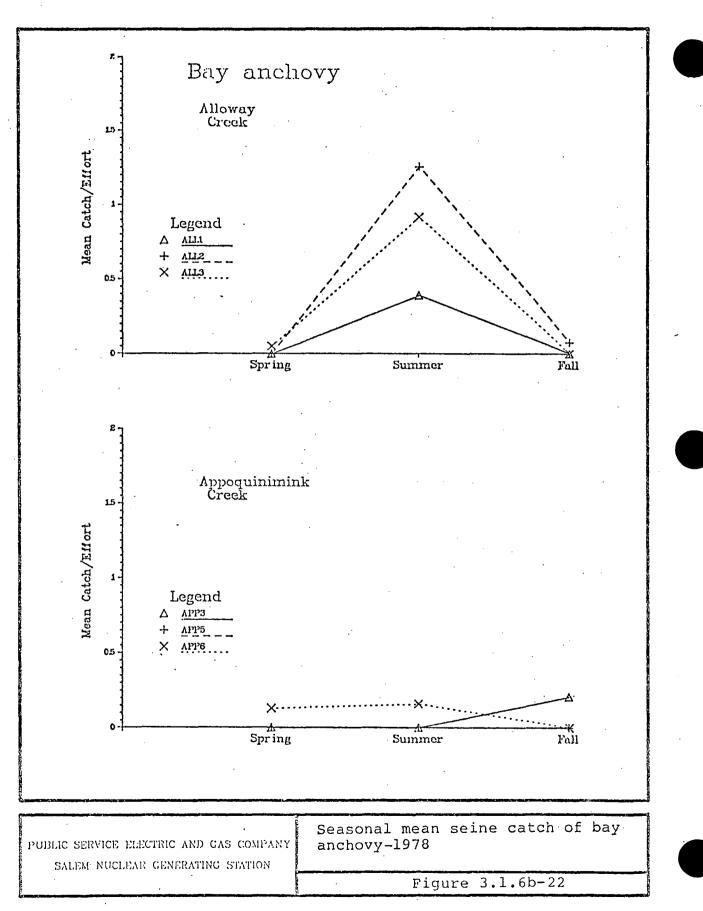







_





1

3.1.7 Impingement of Organisms (ETS Section 3.1.2.2)

In accordance with Section 3.1.2.2 of the ETS studies of impingement at Salem were conducted in 1978. Principal objectives are to determine species composition and to quantify number of fishes and blue crab impinged on the circulating (CWS) and service water (SWS) intake screens and to determine survival rates of organisms impinged at the circulating water intake.

This section presents a summary of results during January through December 1978 as reported in Monthly Progress Reports, numbers 10 through 21, to NRC.

3.1.7.1 Summary

At the CWS intake a total 93,853 specimens of 59 fishes and 2,988 blue crab were taken in 2,195 samples (3,791 min sampled). From these samples it is estimated that total impingement was 14,362,829 fish (44,310.3 kg) and 363,268 blue crab (9,367.4 kg).

The most numerous fishes were weakfish (60.8 percent of the estimated total number), bay anchovy (14.3 percent), hogchoker (10.2 percent), white perch (5.1 percent) and blueback herring (2.1 percent). The most important fishes by weight were weakfish (23.5 percent), white perch (22.0 percent), hogchoker (11.1 percent), bay anchovy (10.4 percent), and silvery minnow (5.3 percent).

Estimated monthly impingement was greatest during July. Weakfish and bay anchovy comprised most (90.6 percent) of the July estimate. Impingement was also high in June, August, and December.

Some 61 percent of all fish collected were live, 28 percent were dead, and 11 percent were damaged. Of blue crab, 94 percent were live, 5 percent were dead, and 1 percent were damaged.

At the SWS intake a total of 10,829 specimens of 49 fishes and 369 blue crab were taken in 154, 24-hr samples. Estimated total impingement was 25,423 fish (137.01 kg) and 857 blue crab (16.93 kg).

The most numerous fishes were weakfish (59.1 percent of the estimated total number), white perch (10.1 percent), bay anchovy (6.3 percent), hogchoker (4.0 percent), and gizzard shad (3.6 percent). The most important fishes by weight were white perch (15.1 percent), gizzard shad (15.0

percent), weakfish (14.9 percent), silvery minnow (6.0 percent), and spot (5.0 percent).

Estimated monthly impingement was greatest during July. Weakfish comprised 84.5 percent of the July estimate. Impingement was also high in June; weakfish comprised 80.0 percent of the fish impinged.

3.1.7.2 Circulating Water System (CWS)

INTAKE AND FISH RESCUE SYSTEM DESCRIPTION

The circulating water system intake and the fish rescue system were described in detail in Volume 2 of the 1977 Annual Environmental Operating Report.

In brief, the principal components of the fish rescue system are vertical traveling water screens fitted with fish buckets, a low pressure fish removal system, a high pressure trash removal system, troughs to return impinged organisms to the river, and counting pools for sampling purposes.

Prior to July 14, 1978, the combined flow of the fish trough and the trash trough were discharged through a common outfall located at the north end of the intake structure. To reduce recirculation of discharged material during ebb tide a south discharge was put into operation. This permitted screen-wash flow to be discharged in the direction of tide.

For sampling, both troughs can be diverted to two counting pools, located at the north and south ends of the intake, which have been designed to minimize collection stress. Prior to July 14, only the north counting pool was operational. Thereafter both pools were used depending on the direction of screen wash discharge.

MATERIALS AND METHODS

Sampling Schedule

All samples required by the Impingement ETS were taken. Prior to June 29, fishes and blue crab impinged on the CWS screens were sampled during three, 24-hr periods per week. A minimum of four 3-min samples for survival and abundance were taken at approximately 6-hr intervals (1200, 1800, 0000, 0600). On June 29 it was determined that during periods of heavy detrital loading long periods in the counting pool were negatively biasing survival estimates. The procedure during periods of heavy detritus was modified to sample 1 min of flow for survival and abundance and a subsequent 2 min of flow for abundance only.

On July 11, the sampling schedule was changed to increase the number of sampling days per week to seven and to increase the sampling frequency within each day. On three days per week the schedule became four 3-min samples per day for survival and abundance taken at approximately 6-hr intervals plus as many 1-min abundance samples as practicable taken throughout the balance of the day. On the remaining four days as many 1-min abundance samples as practicable were taken. On September 15, the sampling schedule was reduced to six days per week due to the reduction in the number of fish impinged.

Sampling Procedure

Before each survival sample was taken, the appropriate pool was filled to a depth of about 25 cm with water filtered through a nylon mesh filter bag. Sampling was initiated by rapidly removing the filter bag. After 1 or 3 min flow of total screen wash water had entered the pool sampling was terminated by re-inserting the filter bag.

Organisms were allowed a 5-min acclimation period after which the pool was drained. During draining impinged organisms were collected with dip nets and their condition determined according to the following criteria.

- Live: Swimming vigorously, no apparent orientation problems, behavior normal.
- Dead: No vital signs, no body or opercular movement, no response to gentle probing.
- Damaged: Struggling or swimming on side, indication of abrasion or laceration.

All specimens in each category were sorted by species, and the total number and weight of each was determined. All specimens or a representative subsample (at least 100 specimens) of each species, drawn equally from each condition category if possible, were measured to the nearest 5 mm. Length and weight range per species and per condition category was also determined. Individuals and small numbers per species (as a group) were weighed to the nearest 0.1 g with an Ohaus 1600 Series triple beam balance. Large numbers per species were mass weighed to the nearest gram with a Salter suspended scale.

Abundance samples were taken by diverting a 1-to 3-min flow of screen wash water to a counting pool. After sampling, the pool was drained immediately, all organisms were removed and sorted by species, and the total number of each was determined. The largest and the smallest specimen of each species was measured to the nearest 5 mm.

With all samples the numbers of pumps and screens in operation, screen speed, tidal stage and elevation, air temperature (C), sky condition, wind direction, and wave height at the time of each sample were recorded. Measurements of water temperature (C) in the pool were taken with a mercury thermometer or a Yellow Springs Instrument Company Model 51 A oxygen analyzer, and of salinity (ppt) with an American Optical Corporation salinity refractometer, Model 10419. Detritus taken with the sample was weighed to the nearest 0.1 kg with a Dillon dynomometer or a Salter suspended scale. All data were recorded on a computer compatible field sheet.

Data Reduction

An estimate of the total number (est. n) and weight of each species impinged per day was calculated by first multiplying the mean impingement rate per minute for the interval between each two consecutive samples times the number of minutes in the interval and summing the interval estimates. The sum of the interval estimates was then scaled to 24 hr by multiplying by 1440 (the number of minutes in 24 hr) divided by the sum of the time intervals between all samples. The general computational formula is given by:

(1)
$$E_{d} = \left[\sum \left(T \cdot \frac{R_{1} + R_{2}}{2} \right) \right] \cdot \frac{1440}{\Sigma T}$$

where:

 E_{a} = daily estimated number (or weight)

T = number of minutes in interval between consecutive samples

 $R_1 = rate/min$ at start of interval

 R_2 = rate/min at end of interval

If samples were taken over less than a 12-hr period the sum of the interval estimates was scaled only over the period between the first and last samples.

This method of estimation eliminates the bias inherent in computing a straight mean estimated number per 24 hr by taking into account non-uniform sampling intervals and the variability of impingement rate caused by the patchy appearance of fish schools and daily activity cycles. The estimate is also valid for equally spaced samples.

An estimate of the number of each species returned to the river alive per day was calculated by the same method as total number except that the rate of live specimens per minute was entered into equation 1 instead of rate of all specimens per species impinged per minute. The estimated number of live specimens was divided by the estimated total number impinged and multiplied by 100 to give percent live.

Estimates of the total number and weight of each species impinged per week were calculated by summing the daily estimates and multiplying by 168 (the number of hours in a week) divided by the number of hours included in the daily estimates. The computational formula is given by:

(2)
$$E_w = \left(\sum E_d\right) \cdot \frac{168}{\Sigma H}$$

where:

 E_w = weekly estimated number (or weight)

 E_d = daily estimated number (or weight)

H = number of hours included in daily estimates

Weekly estimates were summed to yield a monthly estimate.

RESULTS

The CWS was fully operational (5-6 circulators in service) during most of January 1 through March 16, June 14 through October 9, and November 14 through December 31. From March 17 through June 13 a planned maintenance outage was in progress. During the outage samples were taken from April 11 through April 27 during which time one circulator was in operation. All circulators were shut down during the remainder of the outage. There was also an outage from October 10 through November 13 during which only 1 - 2 circulators were operated.

A total of 93,853 specimens of 59 fishes and 2,9888 blue crab were taken in 2,195 samples (3,791 min sampled) at the CWS intake (Table 3.1.7-1). From these samples, it is estimated that total impingement in 1978 was 14,362,829 fish (44,810.3 kg) and 363,268 blue crab (9367.4 kg) (Table 3.1.7-2).

The most numerous species were weakfish, bay anchovy, hogchoker, white perch, and blueback herring.

Estimated impingement was greatest during July (est. n = 7,387,809)(Fig. 3.1.7-1). Weakfish (76.9 percent) and bay anchovy (13.7 percent) comprised 90.6 percent of the July estimate (Table 3.1.7-3). Impingement was also high in June (est. n = 3,482,551), August (est. n = 944,912), and December (est. n = 720,100). Weakfish comprised 64.6 percent of the June total and 61.1 percent of that in August. In December white perch and blueback herring comprised 30.4 percent and 28.2 percent of the total, respectively (Table 3.1.7-3).

Species variety was greatest (33) in December and least (12) in March.

Some 61 percent of all fish collected were live, 28 percent were dead, and 11 percent were damaged (Table 3.1.7-1). Of blue crab, 94 percent were live, 5 percent were dead, and 1 percent were damaged. Survival was high for winter flounder (100 percent live), hogchoker (98 percent), northern pipefish (96 percent), windowpane (93 percent), striped cuskeel (87 percent), summer flounder (86 percent), and butterfish (84 percent). Survival was low for gizzard shad (19 percent live), carp (25 percent), Atlantic croaker (32 percent), and channel catfish (33 percent). Most (63 percent) gizzard shad were damaged (Table 3.1.7-1).

Species Discussion

Thirteen fishes were each represented in the sample by more than 300 specimens and together comprised 98.4 percent of the total impingement. These species and blue crab are discussed below.

1. Weakfish, n = 51,006; est. n = 8,729,959 (Table 3.1.72), comprised 60.8 percent of the estimated total number and
23.5 percent (ranked first) of the estimated total weight.
It was taken during June through December. Most (66.2

percent) of the estimated number was impinged during July (Table 3.1.7-3).

A detailed discussion of weakfish impingement during June through September was presented in Section III of the report, Summary Assessment of Weakfish Impingement: Summer 1978 (PSE&G 1978b).

Annual survival was 60 percent; 35 percent were dead, and 5 percent damaged (Table 3.1.7-1). Percent live ranged from 33 in December to 85 in October. During months of abundance (June-September) percent live ranged from 44 to 81 (Table 3.1.7-3).

Fork length ranged from 18 to 253 mm. Weight ranged from 0.1 to 250.6 g.

2. Bay anchovy, n = 14,525; est. n = 2,049,169 (Table 3.1.7-2), comprised 14.3 percent of the estimated total number and 10.4 percent (ranked fourth) of the estimated total weight. It was taken during January, April, and June through December. Most (90.1 percent) of the estimated number was impinged during June through September (Table 3.1.7-3).

Annual survival was 44 percent; 49 percent were dead and 7 percent damaged (Table 3.1.7-1). Percent live ranged from 25 in January to 69 in November. During months of abundance (June-September) percent live ranged from 33 to 52 (Table 3.1.7-3).

Fork length ranged from 13 to 98 mm. Weight ranged from 0.1 to 9.4 g.

3. Hogchoker, n = 9,873; est. n = 1,462,562 (Table 3.1.7-2), comprised 10.2 percent of the estimated total number and 11.1 percent (ranked third) of the estimated total weight. It was taken during January, April, and June through December. Most (81.3 percent) of the estimated number was impinged during June and July (Table 3.1.7-3).

Annual survival was 98 percent; 1 percent were dead and 1 percent damaged (Table 3.1.7-1). Percent live ranged from 67 in January to 100 in April. During months of abundance (June-December) percent live ranged from 90 to 99 (Table 3.1.7-3).

Fork length ranged from 13 to 186 mm. Weight ranged from 0.1 to 111.7 g.

4. White perch, n = 5,743; est. n = 726,480 (Table 3.1.7-2), comprised 5.1 percent of the estimated total number and 22.0 percent (ranked second) of the estimated total weight. It was taken during all months. Most (77.1

percent) of the estimated number was impinged during February and December (Table 3.1.7-3).

Annual survival was 44 percent; 8 percent were dead and 48 percent damaged (Table 3.1.7-1). Percent live ranged from zero in September to 77 in April. During months of abundance (January-March, November, December) percent live ranged from 3 to 72 (Table 3.1.7-3).

Fork length ranged from 38 to 293 mm. Weight ranged from 1.1 to 427.6 g.

5. Blueback herring, n = 3,458; est. n = 308,395 (Table 3.1.7-2), comprised 2.1 percent of the estimated total number and 2.2 percent (ranked eighth) of the estimated total weight. It was taken during all months except March. Most (97.0 percent) of the estimated number was impinged during November and December (Table 3.1.7-3).

Annual survival was 70 percent; 18 percent were dead and 12 percent damaged (Table 3.1.7-1). During months of abundance (November, December) percent live ranged from 69 to 75 (Table 3.1.7-3).

Fork length ranged from 38 to 278 mm. Weight ranged from 0.1 to 134.3 g.

6. Atlantic silverside, n = 1,908; est. n = 170,490 (Table 3.1.7-2), comprised 1.2 percent of the estimated total number and 1.1 percent (ranked eleventh) of the estimated total weight. It was taken during January through March and June through December. Most (70.4 percent) of the estimated number was impinged during August, October, and December (Table 3.1.7-3).

Annual survival was 76 percent; 18 percent were dead and 6 percent damaged (Table 3.1.7-1). Percent live ranged from zero in January to 85 in November. During months of abundance (July-December) percent live ranged from 69 to 85 (Table 3.1.7-3).

Fork length ranged from 23 to 193 mm. Weight ranged from 0.1 to 13.5 g.

7. Silvery minnow, n = 1,350; est. n = 203,655 (Table 3.1.7-2), comprised 1.4 percent of the estimated total number and 5.3 percent (ranked fifth) of the estimated total weight. It was taken during January through March, June and December. Most (86.7 percent) of the estimated number was impinged during January and February (Table 3.1.7-3).

Annual survival was 55 percent; 7 percent were dead and 3 percent damaged (Table 3.1.7-1). Percent live ranged from

25 in March to 100 in June. During months of abundance (January, February, December) percent live ranged from 39 to 69 (Table 3.1.7-3).

Fork length ranged from 33 to 143 mm. Weight ranged from 0.1 to 32.4 g.

8. Spot, n = 1,183; est. n = 128,341 (Table 3.1.7-2), comprised 0.9 percent of the estimated total number and 4.2 percent (ranked sixth) of the estimated total weight. It was taken during June through December. Most (69.5 percent) of the estimated number was impinged during July, August, and November (Table 3.1.7-3).

Annual survival was 71 percent; 14 percent were dead and 15 percent damaged (Table 3.1.7-1). Percent live ranged from 26 in October to 85 in November. During months of abundance (June-August, November, December) percent live ranged from 68 to 85 (Table 3.1.7-3).

Fork length ranged from 23 to 198 mm. Weight ranged from 0.1 to 89.8 g.

9. Atlantic menhaden, n = 1,120; est. n = 126,030 (Table 3.1.7-2), comprised 0.9 percent of the estimated total number and 1.8 percent (ranked ninth) of the estimated total weight. It was taken during June through December. Most (81.7 percent) of the estimated number was impinged during June through August (Table 3.1.7-3).

Annual survival was 63 percent; 22 percent were dead and 15 percent damaged (Table 3.1.7-1). Percent live ranged from 53 in June to 84 in October. During months of abundance (June-August) percent live ranged from 53 to 66 (Table 3.1.7-3).

Fork length ranged from 33 to 238 mm. Weight ranged from 0.2 to 194.7 g.

10. Atlantic croaker, n = 689; est. n = 59,086 (Table 3.1.7-2), comprised 0.4 percent of the estimated total number and 0.1 percent (ranked thirteenth) of the estimated total weight. It was taken during January, and September through December. Most (86.4 percent) of the estimated number was impinged during December (Table 3.1.7-3).

Annual survival was 32 percent; 28 percent were dead and 40 percent damaged (Table 3.1.7-1). Percent live ranged from 8 in January to 88 in September. During December 27 percent were live (Table 3.1.7-3).

Fork length ranged from 23 to 88 mm. Weight ranged from 0.1 to 7.6 g.

11. Butterfish, n = 671; est. n = 54,419 (Table 3.1.7-2), comprised 0.4 percent of the estimated total number and 0.3 percent (ranked twelfth) of the estimated total weight. It was taken during August through October and December. Most (90.7 percent) of the estimated number was impinged during September (Table 3.1.7-3).

Annual survival was 84 percent; 8 percent were dead and 8 percent damaged (Table 3.1.7-1). Percent live ranged from 78 in August to 100 in December. During September 84 percent were live (Table 3.1.7-3).

Fork length ranged from 33 to 158 mm. Weight ranged from 0.8 to 66.3 g.

12. Gizzard shad, n = 454; est. n = 65,333 (Table 3.1.7-2), comprised 0.5 percent of the estimated total number and 3.5 percent (ranked seventh) of the estimated total weight. It was taken during January, February, and December. Most (98.6 percent) of the estimated number was impinged during January and December (Table 3.1.7-3).

Annual survival was 19 percent; 18 percent were dead and 63 percent damaged (Table 3.1.7-1). Percent live ranged from zero in February to 44 in December. During months of abundance (January, December) percent live ranged from 9 to 67 (Table 3.1.7-3).

Fork length ranged from 68 to 333 mm. Weight ranged from 3.2 to 626.5 g.

13. Striped cusk-eel, n = 343; est. n = 38,062 (Table 3.1.7-2), comprised 0.3 percent of the estimated total number and 1.5 percent (ranked tenth) of the estimated total weight. It was taken during April and June through November. Most (92.3 percent) of the estimated number was impinged during July, September, and October (Table 3.1.7-3).

Annual survival was 87 percent; 2 percent were dead and 11 percent damaged (Table 3.1.7-1). Percent live ranged from 79 in July to 100 in April. During months of abundance (July-October) percent live ranged from 79 to 90 (Table 3.1.7-3).

Fork length ranged from 73 to 258 mm. Weight ranged from 6.7 to 58.2 g.

Blue crab, n = 2,988; est. n = 363,268; estimated total weight = 9367.4 kg (Table 3.1.7-2), was taken during June through December. Most (76.0 percent) of the estimated number was impinged during June, July, and October (Table 3.1.7-3)(Fig. 3.1.7-2). Estimated monthly impingement ranged from 8,573 in December to 136,706 in October.

Annual survival was 94 percent; 5 percent were dead and 1 percent damaged (Table 3.1.7-1). Percent live ranged from 88 in June to 98 in November. During months of abundance (June-October) percent live ranged from 88 to 97 (Table 3.1.7-3).

Carapace width ranged from 8 to 208 mm. Weight ranged from 0.1 to 323.0 g.

3.1.7.3 Service Water System (SWS)

INTAKE DESCRIPTION

Service water is withdrawn from the river through an intake located about 122 m north of the CWS intake by six 0.69 m /s pumps per unit. The SWS supplies water for essential internal plant usage. The pumps for each unit are mounted in two wells with three pumps per well. Each well is equipped with three conventional vertical traveling screens. Under normal operating conditions four pumps per unit are operated. Traveling water screen operation is intermittent and is activated by differential pressure. Impinged organisms were washed into troughs leading to removable trash baskets at each end of the intake structure.

MATERIALS AND METHODS

Sampling Schedule and Procedure

All fishes and blue crab impinged on the SWS screens were collected during three 24-hr periods per week. Normally, during each 24-hr period two 12-hr collections were taken. From March 17 through June 16, total 24-hr collections were generally taken. All collections required by the ETS, except one 24-hr sample and one 12-hr sample in December, were taken. These collections were not taken as a result of operational problems and icing conditions at the intake.

Impinged organisms were collected with sampling nets set in the trash baskets. Fishes and blue crab were sorted by species, and the total number and weight of each was determined. All specimens or a representative subsample (at least 100 specimens) of each species were measured to the nearest 5 mm. The length and weight range per species was determined. Weight of detritus taken with the sample was recorded. All data were recorded on a computer compatable field sheet.

Data Reduction

Weekly impingement estimates for each species were calculated by multiplying the number (or weight) taken during each 24-hr sampling period by seven, summing the results, and dividing by the number of 24-hr periods sampled. Weekly estimates were summed to yield a monthly estimate.

RESULTS

A total of 10,829 specimens of 49 fishes and 369 blue crab were taken in 154, 24-hr samples at the SWS intake (Table 3.1.7-5). Estimated total impingement in 1978 was 25,423 fish (137.01 kg) and 857 blue crab (16.93 kg) (Table 3.1.7-6).

. The most numerous species were weakfish, white perch, bay anchovy, hogchoker, and gizzard shad.

Estimated monthly impingement was greatest during July (est. n = 11,097). Weakfish comprised 84.4 percent of the July estimate (Table 3.1.7-7). Impingement was also high in June (est. n = 6,294); weakfish comprised 80.9 percent of fish impinged. Species variety was greatest (23) in January and least (11) in February and September (Table 3.1.7-5).

Although weakfish ranked first in estimated annual number impinged (est. n = 6,439) it ranked only third in estimated weight (20.40 kg), being exceeded by white perch (20.66 kg) and gizzard shad (20.59 kg) (Table 3.1.7-6). Most impinged weakfish were young (age 0+) whereas impinged white perch and gizzard shad included young and adults.

Species Discussion

Eight fishes were each represented in the sample by more than 200 specimens and together comprised 90.9 percent of the total impingement. These species, two less abundant

fishes which are considered important, and blue crab are discussed below.

1. Weakfish, n = 6,439; est. n = 15,024 (Table 3.1.7-6), comprised 59.1 percent of the estimated total number and 14.9 percent (ranked third) of the estimated total weight. It was taken during June through December. Most (98 percent) was impinged during June through August (Table 3.1.7-7). Only single specimens were taken in November and December. Fork length ranged from 23 to 233 mm. Weight ranged from 0.1 to 115.0 g (Table 3.1.7-7).

2. White perch, n = 1,091; est. n = 2,580 (Table 3.1.7-6), comprised 10.1 percent of the estimated total number and 15.1 percent (ranked first) of the estimated total weight. It was taken during all months except August. Most (94 percent) was impinged during January through March and December (Table 3.1.7-7). In September only one specimen was taken. Fork length ranged from 43 to 253 mm. Weight ranged from 1.3 to 223.0 g (Table 3.1.7-7).

3. Bay anchovy, n = 681; est. n = 1,592 (Table 3.1.7-6), comprised 6.3 percent of the estimated total number and 3.4 percent (ranked eighth) of the estimated total weight. It was taken during April through December. Most (94 percent) was impinged during May through August (Table 3.1.7-7). During December only one specimen was taken. Fork length ranged from 33 to 98 mm. Weight ranged from 0.2 to 10.0 g (Table 3.1.7-7).

4. Hogchoker, n = 434; est. n = 1,015 (Table 3.1.7-6), comprised 4.0 percent of the estimated total number and 4.1 percent (ranked sixth) of the estimated total weight. It was taken during March through December. Most (71 percent) was impinged during June and July (Table 3.1.7-7). In March only one specimen was taken. Fork length ranged from 28 to 183 mm. Weight ranged from 0.1 to 127.5 g (Table 3.1.7-7).

5. Gizzard shad, n = 384; est. n = 915 (Table 3.1.7-6), comprised 3.6 percent of the estimated total number and 15.0 percent (ranked second) of the estimated total weight. It was taken during January through March and December. Most (93 percent) was impinged during January (Table 3.1.7-7). It was also common during December (n = 20). Only single specimens were taken in February and March. Fork length ranged from 73 to 218 mm. Weight ranged from 3.7 to 161.5 g (Table 3.1.7-7).

6. Silvery minnow, n = 327; est. n = 709 (Table 3.1.7-6), comprised 2.8 percent of the estimated total number and 6.0 percent (ranked fourth) of the estimated total weight. It

was taken during January through April, June, and December. Most (92 percent) was impinged during January and February (Table 3.1.7-7). Only single specimens were taken during April and June. Fork length ranged from 48 to 163 mm. Weight ranged from 1.1 to 31.6 g (Table 3.1.7-7).

7. Blueback herring, n = 287; est. n = 668 (Table 3.1.7-6), comprised 2.6 percent of the estimated total number and 3.1 percent (ranked ninth) of the estimated total weight. It was taken during January, March through July, November and December. Most (90 percent) was impinged during March, April, and December (Table 3.1.7-7). Few were taken during January (n = 3), May (3), July (2), or July (1). Fork length ranged from 38 to 263 mm. Weight ranged from 1.5 to 222.4 g (Table 3.1.7-7).

8. Atlantic menhaden, n = 206; est. n = 496 (Table 3.1.7-6), comprised 2.0 percent of the estimated total number and 3.9 percent (ranked seventh) of the estimated total weight. It was taken during April through December. Most (81 percent) was impinged during June and July (Table 3.1.7-7). Few (n = 1-9) were taken during the remaining months of occurrence. Fork length ranged from 33 to 223 mm. Weight ranged from 0.2 to 148.0 g (Table 3.1.7-7).

9. Atlantic croaker, n = 130; est. n = 315 (Table 3.1.7-6), comprised 1.2 percent of the estimated total number and 0.2 percent (ranked tenth) of the estimated total weight. It was taken during January, October, and December. Most (98 percent) was impinged during December (Table 3.1.7-7). Two were taken during January and one was taken in October. Fork length ranged from 28 to 73. Weight ranged from 0.1 to 3.8 g (Table 3.1.7-7).

10. Spot, n = 105; est. n = 250 (Table 3.1.7-6), comprised 1.0 percent of the estimated total number and 5.0 percent (ranked fifth) of the estimated total weight. It was taken during January and June through December. Most (68 percent) was impinged during August, September, and November (Table 3.1.7-7). Impingement was low during January (n = 1) and June (3). Fork length ranged from 28 to 168 mm. Weight ranged from 0.1 to 88.9 g (Table 3.1.7-7).

Blue crab, n = 369; est. n = 857; estimated total weight = 16.93 kg (Table 3.1.7-6), was taken during April through December. Most (70 percent) was impinged during October (Table 3.1.7-7). It was also common during November (n = 41). Only one specimen was taken during April. Carapace width ranged from 13 to 193 mm. Weight ranged from 0.2 to 146.5 g (Table 3.1.7-7).

Species	Actual No.	Live	% Surviv	al Damaged
A. rostrata	216	65	6	29
C. oceanicus	3	50	50	0
A. aestivalis	3,458	70	18	12
 A. pseudoharengus A. sapidissima 	44	59	7	34
A. sapidissima B. tyrannus	15	87	13	0
D. cepedianum	1,120 454	63 19	22	15
A. hepsetus	1	100	18 0	63 0
A. mitchilli	14,525	44	49	7
U. pygmaea	2	100	õ	ċ
E. americanus	1	100	0	ō
C. auratus C. carpio	1	0	0	100
H. nuchalis	8 1,350	25	o	75
N. crysoleucas	1,350	55 0	7 0	38
I. catus	13	30	8	100 62
I. nebulosus	15	69	õ	31
I. punctatus	9	33	õ	.67
0. tau	. 8	100	0	0
M. bilinearis U. chuss	2	50	50	0
U, regius	46	46	20	35
R. marginata	1 343	100 87	0	0
S. marina	9	100	2 0	, 11
F. diaphanus	5	100	0	0
F. heteroclitus	35	77	3	20
F. majalis	12	67	0	33
M. martinica Menidia sp.	39	64	32	4 、
M. beryllina	1	0	100	0
M. menidia	5 1,908	0 76	100	0
G. aculeatus	31	87	18 3	6
S. fuscus	48	96 .	2	10 2
M. americana	5,743	44	8	48
M. saxatilis	221	43	5	52
L. macrochirus M. salmoides	18	94	0	6
P. annularis	1 4	100	õ	0
P. flavescens	46	75 72	0 12	25
P. seltatrix	. 114	51	30	16 19
C. hippos	14	100	õ	0
B. chrysura	3	100	Ō	ŏ
C. regalis L. xanthurus	51,006	60	35	5
M. undulatus	1,183	71	14	15 .
P. cromis	689 238	32 67	28	40
C. ocellatus	233	100	4 0	29
M. cephalus	2	100	0	0
A. gutattus	1	100	ŏ	Ő
G. bosci	. 2	100	Ō	õ
P. triacanthus P. alepidotus	671	84	8	8
P. carolinus	12	75	8	17
P. evolans	9 21	88 85	12	o
P. dentatus	43	86	10 4	5
S. aquosus	193	83	14	10 3
P. americanus	14	100	Ĩ	0
T. maculatus	9,873	98	i	ĩ
A. schoepfi	1	100	0	0
Fish Total	93,853	61	28	11
C. sapidus	2,988	94	5	1

TABLE 3.1.7-1 ACTUAL NUMBER AND SURVIVAL OF SPECIMENS TAKEN IN IMPINGEMENT SAMPLES AT THE SALEM CWS IN 1978

IA SALEM IM 1978

TABLE 3.1.7-2 ANNUAL TOTALS FOR THE MORE COMMONLY IMPINGED ORGANISMS, SALEM CWS

Species	Actual No.	Estimated No.	Estimated Wt. (kg)
A. aestivalis	3,458	308,395	989.4
B. tyrannus	1,120	126,030	800.8
D. cepedianum	454	65,333	1,569.3
A. mitchilli	14,525	2,049,169	4,638.2
H. nuchalis	1,350	203,655	2,357.3
R. marginata	343	38,062	678.2
M. menidia	1,908	170,490	479.6
M, americana	5,743	726,480	9,835.9
C. regalis	51,006	8,729,959	10,524.5
L. xanthurus	1,183	128,341	1,908.2
M. undulatus	689	59,086	66.2
P. triacanthus	671	54,419	140.1
T. maculatus	9,873	1,462,562	4,958.5
Total of common fish species	92,323	14,121,981	38,946.2
Total of all fish species	93,853	14,362,829	44,810.3
C. sapidus	2,988	363,268	9,367.4

IA SALEM IM 1978

3.1-349

.

Species	CF	L	Burvival	D*	Actual No.	Estimated No.	Estimated Wt.	Weig Min	ht (g) Max	Leng Min	ch (mm) Max
					January						
			(81	samp.	les, 243 mi	n sampled)					
A. aestivalis D. cepedianum	3 47	0 9	67 23	33 68	3 320	147 54,761	0.8 1,280.8	3.7 8.3	4.7 626.5	73 78	83 333
A. mitchilli H. nuchalis M. menidia	3 64 3	25 60 0	75 5 67	0 34 22	4 756	515 106,923	1,272.3	0.2	1.0 30.4	43 63	48 138
M. americana M. undulatus	· 50 7	18 8	67 22 69	33 60 23	3 200 13	490 46,144 2,005	1.0 369.8 0.6	0.7 1.7 0.2	5.2 108.5	58 53	93 178
T. maculatus	2	67	33	õ	3	1,128	0.6	0.2	$1.8 \\ 1.1$	33 38	58 48
Total of common fish species Total of all fish species					1,302 1,408	212,113 229,209	2,925.9 3,831.1				
			(7)) samp	February ples, 237 m	in sampled)					
A. aestivalis D. cepedianum H. nuchalis M. menidia M. americana	1 8 56 2 77	0 0 39 50 3	100 13 11 50 12	0 87 50 0 85	1 8 379 2 1,778	210 906 69,681 218 341,710	0.9 47.1 820.7 0.7 3,079.9	2.7 14.5 1.6 6.3 1.6	2.7 80.2 32.4 8.3 427.6	63 103 63 103 48	63 178 143 113 268
Total of common fish species Total of all fish species					2,168 2,303	412,725 433,359	3,949.3 5,299.0				

TABLE 3.1.7-3 MONTHLY IMPINGEMENT DATA ON THE MORE COMMON SPECIES, SALEM CWS

CF = catch frequency (number of samples in which the species appeared) + = less than 0.1 kg

i survival: $L = live; D = dead; D^{\pm} = damaged$

IA SALEM IM 1978

	Species	CF	8 9 L	Survival	<u>D*</u>	Actual No.	Estimated No.	Estimated Wt.	Weig Min	ht (g) Max	Leng Min	th (mm) Max
						(51 samples,	March 153 min sample	ed)				
	H. nuchalis M. menidia M. americana Total of common fish spe cies	15 7 46	25 57 21	13 43 9	62 0 70	24 7 276 307	4,132 961 47,589 52,682	49.5 3.9 784.0 837.4	5.0 2.0 2.2	25.4 9.4 217.3	78 73 53	-128 118 268
	Total of all fish species				·	379 (77 samples,	65,352 April 231 min sample	954.5 ed)				
3.1-351	A. aestivalis A. mitchilli R. marginata M. americana T. maculatus	25 8 2 33 27	65 44 100 77 100	20 44 0 7 0	15 12 0 16 0	65 16 3 71 61	5,742 4,315 454 7,186 8,207	21.9 13.0 6.1 67.7 32.7	1.2 1.9 10.3 2.4 0.3	11.0 6.3 24.0 87.4 64.5	63 . 58 129 63 23	93 89 168 213 143
	Total of common fish spe cies Total of all fish specie s					216 264	25,904 31,232	141.4 293.3				

CF = catch frequency (number of samples in which the species appeared) & survival: L = live; D = dead; $D^* = damaged$

1

IA SALEM IM 1978

Species	CF	8 L	Survival D	D*	Actual <u>No.</u>	Estimated	Estimated <u>Wt.</u>	Weig Min	ht (g) <u>Max</u>	Lengt Min	h (mm) <u>Max</u>
						June 196 min sampled	1) -				
A. aestivalis B. tyrannus A. mitchilli H. nuchalis	7 43 55 1	27 53 33 100	64 37 59 0	9 10 8 0	11 251 3,148 2	1,682 34,034 487,389 280	32.9 160.4 1,593.1 +	0.1 0.2 0.1 0.1	134.3 98.3 8.1 0.1	38 33 13 33	278 188 93 33
R. marginata M. menidia M. americana C. regalis L. xanthurus T. maculatus	5 16 42 27 65	86 60 44 68 98	0 40 20 53 30 1	14 0 20 3 2 1	12 5 20 14,087 81 4,280	914 669 3,213 2,250,587 10,336 637,610	24.5 1.3 125.8 2,283.1 3.0 1,804.5	16.0 0.1 1.8 0.1 0.1 0.2	48.3 6.3 219.0 250.6 2.3 66.2	143 23 48 18 23 28	203 88 243 253 63 148
Total of common fish species Total of all fish species					21,897 22,011	3,426,714 3,482,551	6,028.6 6,515.2				
C. sapidus	54	88	11	l	558	87,422	3,838.6	0.7	323.0	13	193
						fuly 347 min sample	ed)				
 A. aestivalis B. tyrannus A. mitchilli R. marginata M. menidia M. americana C. regalis L. xanthurus T. maculatus 	2 92 171 33 15 197 55 186	100 66 40 79 69 38 68 70 98	0 21 52 4 31 12 26 26 26 1	0 13 7 17 0 50 6 5 1	2 310 5,393 94 113 16 28,108 137 2,803	501 43,498 1,010,475 14,642 11,055 1,761 5,682,599 24,401 554,593	0.8 219.8 2,269.2 356.4 8.7 88.7 7,235.7 67.0 1,714.0	8.3 0.4 0.1 6.7 0.2 1.1 0.1 0.4 0.8	8.3 138.9 9.4 58.2 6.0 163.0 166.4 34.1 111.7	98 43 23 73 28 38 28 33 33 33	98 218 93 223 93 218 197 128 186
Total of common fish species Total of all fish species					36,976 37,245	7,343,525 7,387,809	11,960.3 14,251.9				
C. sapidus	124	92	6	2	375	51,992	3,247.6	4.0	244.7	38	183

CP = catch frequency (number of samples in which the species appeared) + = less than 0.1 kg % survival: L = live; D = dead; D* = damaged

IA SALEM IM 1978

.

Species	CF	8 L	Surviva D	1 *	Actual <u>No.</u> Au (400 samples,	Estimated <u>No.</u> gust 522 min sample	Estimated <u>Wt.</u>	Weig Min	ht (g) <u>Max</u>	Lengt Min	h (mm) <u>Max</u>
 λ. aestivalis B. tyrannus λ. mitchilli R. marginata M. menidia M. americana C. regalis L. xanthurus P. triacanthus T. maculatus Total of common fish species Total of all fish species 	4 147 297 13 83 11 357 182 15 227	20 63 35 89 70 33 72 69 78 90	60 17 59 0 27 33 20 22 11 9	20 20 6 11 3 33 8 9 11 1	5 304 1,999 15 215 11 6,050 361 28 873 9,861 9,977	214 25,378 183,207 1,110 18,317 643 577,135 31,172 1,645 81,516 920,337 944,912	4.0 109.3 233.7 3.3 19.5 25.1 621.0 254.3 2.8 485.6 1,758.6 1,786.5	1.1 1.2 0.1 8.4 0.6 63.0 0.2 2.5 1.2 0.7	15.5 103.2 7.0 19.2 6.1 135.8 19.2 59.8 7.6 87.6	53 43 23 113 33 113 23 38 38 28	123 188 93 153 293 253 198 83 163
C. sapidus	139	95	2	3	223	19,587	1,309.3	0.6	236.3	18	183
					(337 samples,	tember 467 min sampl	.ed)				
A. aestivalis B. tyrannus A. mitchilli R. marcinata M. monidia M. americana C. regalis L. xanthurus M. undulatus P. triacanthus T. maculatus	2 58 230 49 74 2260 79 10 73 164	100 73 52 86 73 0 81 51 88 84 99	0 12 42 24 50 11 27 0 8 0	0 15 6 12 3 50 8 22 12 8 1	2 97 1,878 88 145 2 2,639 105 14 612 404	384 8,097 164,871 8,105 12,024 134 207,843 9,124 1,314 49,355 37,876	+ 27.4 164.1 93.1 11.0 15.1 298.4 91.2 0.2 124.5 213.0	3.6 0.1 8.7 0.4 77.6 0.1 4.2 0.1 0.8 0.4	15.2 9.3 32.5 6.3 86.0 41.4 89.8 1.8 66.3 87.0	63 58 113 28 183 33 58 23 33 23	113 98 98 198 193 163 163 163 158 158
Total of common fish species Total of all fish species					5,986 6,077	499,127 506,617	1,308.0 1,053.1				
C. sapidus	153	97	1 [.]	2	428	43,230	355.2	0.1	215.8	8	208

CF = catch frequency (number of samples in which the species appeared) + = less than 0.1 kg $rac{1}{2}$ survival: L = live; D = dead; D* = damaged

IA SALEM IM 1978

ω ·1-353

Species	CF	۴ ۲	surviva D	1 	Actual No.	Estimated No.	Estimated No.	Weigh Min	nt (g) Max	Lengt Min	h (mm) <u>Max</u>
						tober 419 min sample	d)			· .	
 A. aestivalis B. tyrannus A. mitchilli R. marginata M. menidia M. americana C. regalis L. xanthurus M. undulatus P. triacanthus 	2 17 129 60 47 3 50 22 25	100 84 64 90 74 33 85 26 80	0 8 28 20 0 6 15 10	0 8 8 6 67 9 59 10	24 737 125 241 3 107 27 31	305 2,685 82,137 12,393 22,501 324 10,843 2,601 2,137	0.4 28.6 133.8 187.7 30.2 24.4 72.5 76.3 2.2	3.1 3.6 0.1 10.1 0.5 112.5 0.8 16.3 0.5	3.5 36.7 8.4 52.3 13.5 128.5 28.0 70.2 3.5 17.7	73 63 23 123 33 153 43 108 43 38	78 143 252 83 213 188 153 73 98
T. maculatus Total of common fish species	14 100	83 99	10 0	7 1	30 295 1,622	3,141 33,753 172,820	12.6 238.8 807.5	1.5 0.3	46.2	38 23	98 143
Total of all fish species . C. sapidus	200	96	3	1	1,683 1,144	180,294 136,706	831.2 454.0	0.1	222.8	13	173
						ovember , 446 min sampl	ed)				
 A. aestivalis B. tyrannus A. mitchilli R. marginata M. menidia M. americana C. regalis L. xanthurus M. undulatus T. maculatus 	134 22 148 6 58 69 5 74 16 143	75 72 69 85 45 80 85 82 98	15 7 23 0 8 1 0 2 9 0	10 21 8 20 7 54 20 13 9 2	768 29 1,331 6 183 .546 6 294 23 371	96,042 2,561 114,109 444 25,131 59,060 623 33,678 2,606 39,906	287.4 53.9 224.8 7.1 96.7 1,715.0 9.1 996.2 5.5 221.2	0.8 7.0 0.3 14.1 0.9 2.6 18.7 3.9 0.3 0.4	22.3 76.7 30.1 6.7 184.8 35.6 81.3 7.6 64.9	38 83 138 53 53 123 98 33 13	138 183 93 189 168 228 158 168 88 153
Total of common fish species Total of all fish species					3,557 3,622	374,160 381,394	3,616.9 4,000.5				
C. sapidus	88	98	.0	2	176	15,758	106.1	0.1	88.0	8	128

CP = catch frequency (number of samples in which the species appeared) $survival: L = live; D = dead; D^* = damaged$

١

IA SALEM IM 1978

Species	CF	<u>و</u> ۲	Surviva: D	1 	Actual No.	Estimated No.	Estimated Wt.	Wei Min	ght (g) Max	Lengt <u>Min</u>	h (rom) Max
					Dec (275 samples,	ember 530 min sampl	ed)				
 A. aestivalis B. tyrannus D. cepedianum A. mitchilli H. nuchalis M. menidia M. americana C. regalis L. xanthurus M. undulatus P. triacanthus T. maculatus 	137 50 58 17 57 155 217 9 71 116 159	69 67 44 26 69 78 72 33 69 72 33 62 27 100 98	19 10 8 21 2 16 6 11 4 29 0 1	12 23 48 53 29 7 22 56 28 44 0 1	2,599 105 126 19 189 994 2,820 9 173 608 1 783	203,168 9,777 9,666 2,151 22,639 79,124 218,716 329 17,029 51,024 278 67,973	640.3 201.4 241.4 6.5 214.8 306.6 3,540.4 4.7 420.2 57.7 0.2 248.1	0.7 3.2 1.0 2.0 0.7 0.6 3.2 6.8 0.1 1.3 0.1	34.5 194.7 138.3 5.0 28.5 10.5 263.2 27.6 68.4 5.7 1.3 45.4	53 68 63 43 63 48 68 88 83 28 38 13	149 238 218 83 138 193 238 143 173 88 38 123
Total of common fish species Total of all fish species					8,431 8,884	681,874 720,100	5,882.3 5,994.0				
C. sapidus	50	96	2	. 2	84	8,573	56.6	0.1	50.7	13	98

CF = catch frequency (number of samples in which the species appeared) survival: L = live; D = dead; D* = damaged

IA SALEM IM 1978

TABLE 3.1.7-4 ACTUAL NUMBER OF SPECIMENS TAKEN IN IMPINGEMENT SAMPLES AT THE SALEM CWS IN 1978

Species	J	F	<u>M</u>	<u>_A</u>	<u>M J</u>
λ. rostrata	21	5	2	25	9
C. oceanicus	•	-	•		
A. aestivalis A. pseudoharengu	3	1 3		65 1	11
A. sapidissima		5		1	
B. tyrannus					251
D. cepedianum	320	8			
λ. hepsetus A. mitchilli	4			16	
U. pygmaea	1			16	3,148
E. americanus			1		
C. auratus					
C. carpio	1	5		1	_
H. nuchalis N. crysoleucas	756 1	379	24		2
I. catus	4	8			
I. nebulosus	4	2			
I. punctatus	6	1			
0. tau					
M. bilinearis U. chuss	26	2 2	. 9	e	
U. regius	20	2	9	. 6	
R. marginata				3	12
S. marina					•
F. diaphanus	•		1	-	-
F: heteroclitus F. majalis	8 1	4	2 10	3	3
M. martinica	-		10		3
Menidia sp.					, <u>1</u>
M. beryllina		_	_		. 1 1 5 · 1
M. menidia G.•aculaetus	3	2 5	7		5 ·
S. fuscus		2	25	2	2
M. americana	200	1,778	276	71	20
M. saxatilis	18	88	21	1	
L. macrochirus				3	1
M. salmoides P. annularis				. 4	
P. flavescens	1 5	1Ò	1 ·	2	. 3
P. saltatrix		20	-	~	30
C. hippos					
B. chrysura	•				
C. regalis L. xanthurus					14,087
M. undulatus	13				81
P. cromis					
C. ocellatus					
M. cephalus					
A. gutattus G. bosci					
P. triacanthus					
P. alepidotús					
P. carolinus					
P. evolans					•
P. dentatus S. aquosus					8 52
P. americanus					
T. maculatus	3			61	4,280
A. schoepfi					
Fish Total	1,408	2,303	379	264	22,011
No. of species	20	17	12	15	22
Canadana					
C. sapidus					558

IN SALEM IM 1978

.

Species	<u> </u>	λ	<u>_S</u>	_0_	<u>_N</u>	D	Total
A. rostrata	5	18	8	7.		83	216
C. oceanicus	-	1	0	1.	. 83	2	216 3
A. aestivalis	2	5	2	2	768	2,599	3,458
A. pseudoharengus	1	2	-	-	5	32	. 3,438
A. sapidissima		ĩ			ĩ	13	15
B. tyrannus	310	304	97	24	29	105	1,120
D. cepedianum					2)	126	454
A. hepsetus			1				1
A. mitchilli	5,393	1,999	1,878	737	1,331	19	14,525
U. pygmaea		•			27002	ī	2
E. americanus						-	ī
C. auratus						1	ĩ
C. carpio	1						. 8
H. nuchalis						189	1,350
N. crysoleucas				٠			.1
I. catus	1						13
I. nebulosus	4	2				3	15
I. punctatus O. tau						2	9
M. bilinearis			6	1	1		8
U. chuss	·						2
U. regius				1		· · 2	46
R. marginata	94				1		1
S. marina .	3	15	88	125	6		343
F. diaphanus	3	6	•		_	-	9
F. heteroclitus		1	2 3		1	,1	5
F. majalis		1	د		•	11	35
M. martinica	22	11		~	-	1	12
Menidia sp.				2	1		39
M. beryllina	· 1	2	1				1
M. menidia	113	215	145	241	100	994	5
G. aculaetus		-10	115	241	183	334	1,908 31
S. fuscus	1	3	15	18	7		48
M. americana	16	11	2	3	546	2,820	5,743
M. saxatilis			-	ĭ	2	90	221
L. macrochirus				~	- 2	12	18
M. salmoides					-		1
P. annulàris						-	4
P. flavescens	2	1				12	46
P. saltatrix	48	27	8	1			114
C. hippos		8	3	3			14
B. chrysura			1	1		1	3
C. regalis	28,108	6,050	2,639	107	6	9	51,006
L. xanthurus M. undulatus	137	361	105	27	294	178	1,183
P. cromis	-		14	31	23	608	689
C. ocellatus	7	27	10	2	11	181	238
M. cephalus			1	1		-	2
A. gutattus				-		2	2
G. bosci		,	•	1 .			1
P. triacanthus		1 28	610	1			2
P. alepidotus		23	612	30		1	671
P. carolinus		3	·9	-			12
P. evolans	2		2 7	7 12			9
P. dentatus	32	1.	í	12		1	21
S. aquosus	139	*	-	1	•	1	43
P. americanus		1	12	i		4	193 14
T. maculatus	2,803	873	404	295	371	783	9,873
A. schoepfi	-		101	200	571		1
							+
Fish Total	37,245	9,977	6,077	1,683	3,622	8,884	93,853
No. of species	24	28	29	28	21	33	59
C capidus							
C. sapidus	375 .	223	428	1,144	176	84	2,988

IN SALEM IM 1978

TABLE 3.1.7-5 ACTUAL NUMBER OF SPECIMENS TAKEN IN IMPINGEMENT SAMPLES AT THE SALEM SWS IN 1978

Species	3	F	M	_λ_	M	
A. rostrata A. aestivalis A. pseudoharengus	10 3		6 67 3	5 89 1	13 3	11 2 2
B. tyrannus C. cepedianum	362	l	1	. 1	9	95
A. mitchilli U. pygmaea E. americanus	2 1		2 1	5	41	229
C. carpio	2	3		2		1
H. nuchalis	208	93	8	l		1
I. catus	·	-	_			1
I. nebulosus	4	2	1			
I. punctatus	2	1	2			-
0. tau M. bilinearis	1			,		3
U. chuss	12		50	1 6	5	
R. marginata			20	8	13	2
S. marina				•		
F. heteroclitus	10	5	7			
F. majalis	1		48			
M. martinica	-	-	•			
M. menicia	1	1	8	•		
G. aculeatus S. fuscus		1	4	1		
M. americana	154	415	183	26	6	14
M. saxatilis	3	25		20	Ū	1
C. striata	-		•	2	5	-
L. gibbosus	1					
L. macrochirus	4			2	2	
P. annularis	2		2	2	1	4
P. nigromaculatus	2		•	~	ĩ	
P. flavescens P. saltatrix	28	8	8	6		4
B. chrysura						4
C. regalis						2,543
L. xanthurus	1			•		3
M. undulatus	1 2					
P. cromis						
A. gutattus						
G. bosci					• •	
P. triacanthus P. carolinus					1	
P. evolans					T	
E. microstomus					1	
P. dentatus				• 2	5	1
P. oblongus						
S. aquosus						20
P. americanus			•	~~		
T. maculatus			1	22	31	165
Fish Total	316	555	409	182	137	3,102
No. of species	23	11	19	18	15	19
C. sapidus				1	12	13

IA SALEM IM 1978

. •

Species	_ <u>J</u> _	<u> </u>	5	0	N	D	Total
A. rostrata	2	7		3	7	14	78
A. aestivalis	ĩ	•		5	. 23	99	287
A. pseudoharengus	-	1	•			2	2 07 9.
B. tyrannus	78	5	5	4	3	6	206
C. cepedianum		·	-	•••	5	20	384
A. mitchilli	332	36	15	12	10	1	681
U. pygmaea						-	4
E. americanus							2
C. carpio		1					9 .
H. nuchalis						16	327
I. catus							1
I. nebulosus	2	2		1		1	13
I. punctatus		•					5
0. tau					,		3
M. bilinearis							2
U. chuss							73
R. marginata	11	2	1	5		-	42
S. marina		2 1	-				ĩ
F. heteroclitus					1	1	24
F. majalis					-	ī .	50
M. martinica	2	•		•		-	2
M. menidia	23	2		2	1	67	105
G. aculeatus	-			_	-	• •	6
S. fuscus	1	2	· 2	10			15
M. americana	4		ī	2	12	274	1,091
M. saxatilis		1	-	-		5	42
C. striata		-			•	. 3	7
L. gibbosus					•		· 1
L. macrochirus							8
P. annularis							11
P. nigromaculatus	2						- 5
P. flavescens							50
P. saltatrix	9	2					15
B. chrysura				1	1		2
C. regalis	,751	128	12	3	ī	1	6,439
L. xanthurus	10	28	23	12	20	8	105
M. undulatus			-	1		127	130
P. cromis				-	1	23	24
A. gutattus			1		-		ĩ
G. bosci				2		1	. 3
P. triacanthus		1	4	2		. –	ž
P. carolinus				ī			2
P. evolans				ī			2
E. microstomus				ĩ			2
P. dentatus	3	1		ī			13
P. oblongus				2			2
S. aquosus	77			1			98
P. americanus			7				7
T. maculatus	141	27	10	17	5	15	434
	,449	247	81	84	85	682	10,829
No. of species	17.	17	11	21	13	19	49
		_					
C. sapidus	13	9	17	257	41	6	369

IA SALEM IM 1978

Species	Actual <u>No.</u>	Estimated No.	Estimated Wt. (Kg)
A. aestivalis	287	668	4.27
B. tyrannus	206	496	5.29
D. cepedianum	384	915	20.59
A. mitchilli	681	1,592	4.66
H. nuchalis	327 ·	709	8.22
M. americana	1,091	2,580	20.66
C. regalis	6,439	15,024	20.40
L. xanthurus	105	250	6.85
M. undulatus	130	. 315	0.32
T. maculatus	434	1,015	5.64
Total of more common fishes	10,084	23,564	96.90
Total of all fish species	10,829	25,423	137.01
C. sapidus	369	857	16.93

TABLE 3.1.7-6 ANNUAL TOTALS FOR THE MORE COMMONLY IMPINGED ORGANISMS, SALEM SWS.

IA SALEM IM 1978

Species	CF	Actual No.	Estimated No.	Estimated Wt. (Kg)	Weig Min	ht (g) Max	Lengtl Min	h (mm) Max
· · ·				anuary -hr sample s)				
A. aestivalis D. cepedianum H. nuchalis M. americana L. xanthurus M. undulatus Total of more common Total of all fish spe		3 362 208 154 1 2 730 816	7 845 422 368 2 5 1,649 1,907	0.02 19.30 5.15 2.39 0.02 + 26.88 31.69	1.7 8.4 1.5 2.3 9.9 1.4	4.5 161.5 27.1 78.2 9.9 1.6	63 83 48 58 83 43	88 208 133 163 83 43
		•	(12, 24	ebruary -hr samples)				
D. cepedianum H. nuchalis M. americana	1 12 12	1 93 415	2 228 973	0.11 2.44 6.76	46.1 1.1 1.1	46.1 27.6 121.8	158 63 53	158 163 198
Total of more common Total of all fish spe		509 555	1,203 1,312	9.31 11.18				

TABLE 3.1.7-7 IMPINGEMENT DATA ON THE MORE COMMON SPECIES, SALEM SWS

CF = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

IA SALEM IN 1978

TABLE	3.	1	•	7-7			
CONTINUED							

Species	CF	Actual No.	Estimated No.	Estimated Wt. (Kg)	Weight Min	t (g) Max	Length Min	(mm) Max
				March -hr samples)				
A. aestivalis D. cepedianum H. nuchalis M. americana T. maculatus	3 1 5 14. 1	67 1 8 183 1	134 2 17 406 2	0.53 0.11 0.20 4.16 +	2.4 44.0 3.4 1.9 1.4	9.2 44.0 20.1 198.6 1.4	53 158 83 53 43	108 158 128 223 43
Total of more common Total of all fish spe		260 409	561 896	5.00 8.43				
			(12, 24	April -hr samples)				
A. aestivalis B. tyrannus A. mitchilli H. nuchalis M. americana T. maculatus	5 1 2 1 7 11	89 1 5 1 26 22	230 2 12 2 69 53	1.81 0.23 0.03 0.04 0.40 0.46	1.7 99.0 1.0 16.5 3.0 0.3	222.4 99.0 2.8 16.5 13.4 51.2	38 188 58 113 53 33	258 188 73 113 98 133
Total of more common Total of all fish spe		144 182	368 474	2.97 6.01				
C. sapidus	1	1	2	+	2.0	2.0	33	33

CF = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

IA SALEM IM 1978

Species	CF	Actual No.	Estimated No.	Estimated Wt (Kg)	Weigh Min	t (g) Max	Lengt Min	h (mm) Max
			(14,	May 24-hr samples)				
A aestivalis B. tyrannus A. mitchilli M. americana T. maculatus	3 3 11 4 10	3 9 41 6 31	6 17 95 13 66	0.89 0.91 0.25 0.31 0.53	62.5 14.3 0.9 3.5 0.1	194.0 114.4 6.8 95.6 127.5	188 108 43 73 28	263 193 88 188 158
Total of more commo Total of all fish s C, sapidus		90 137 12	197 301 27	2.89 8.39 0.14	0.3	13.7	23	58
			(12,	June , 24-hr samples)	•			
 A. aestivalis B. tyrannus A. mitchilli H. nuchalis M. americana C. regalis L. xanthurus T. maculatus Total of more commons 	2 11 1 9 5 2 11 m fishes	2 95 229 1 14 2,543 3 165 3,052	5 198 484 2 32 5,091 7 374 6,193	0.07 1.02 1.63 0.07 1.71 5.28 + 1.04 10.82	12.0 0.2 31.6 9.1 0.1 0.1 0.4	17.7 72.7 6.7 31.6 113.1 115.0 0.3 44.6	98 33 53 103 43 23 28 33	108 173 88 103 183 233 38 128
Total of more commo Total of all fish s C. sapidus		3,102 13	6,294 30	17.00	6.4	88.5	43	188

TABLE 3.1.7-7 CONTINUED

CF = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

IA SALEM IM 1978

3.1-363

.

TA	BLE	3.1.	7-7
	CONT	INUE	D

Species	CF	Actual No.	Estimated No.	Estimated Wt (Kg)	Weigh <u>Min</u>	t (g) Max	Length <u>Min</u>	(mm) Max
			(1	July 3, 24-hr samples))			
A. aestivalis B. tyrannus A. mitchilli M. americana	1 12 13 4	1 78 332 4	2 205 828 10	0.03 1.19 2.22 0.25	11.5 1.1 1.2 27.1	33.5 5.2 78.0	93 43 53 43	93 143 88 178
C. regalis L. xanthurus T. maculatus	13 6 12	3,751 10 141	9,363 23 346	13.86 0.15 1.16	0.4 0.5 0.7	7.6 22.4 16.1	33 43 38	98 113 93
Total of more common Total of all fish spe		4,317 4,449	10,777 11,097	18.86 21.29				
C. sapidus	4	13	30	1.31	9.2	125.0	53	158
			(1	August 4, 24-hr samples)				
B. tyrannus A. mitchilli C. regalis L. xanthurus T. maculatus	5 11 13 11 7	5 36 128 28 27	12 81 527 60 63	0.26 0.19 1.14 1.52 0.88	1.9 0.4 0.3 8.5 2.6	13.3 4.5 6.2 59.1 80.1	58 33 33 83 58	118 78 93 153 163
Total of more common Total of all fish spe		224 247	743 805	3.99 6.03				
C. sapidus	6	9	20	1.71	23.6	146.5	78	193

CP = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

.

IA SALEM IM 1978

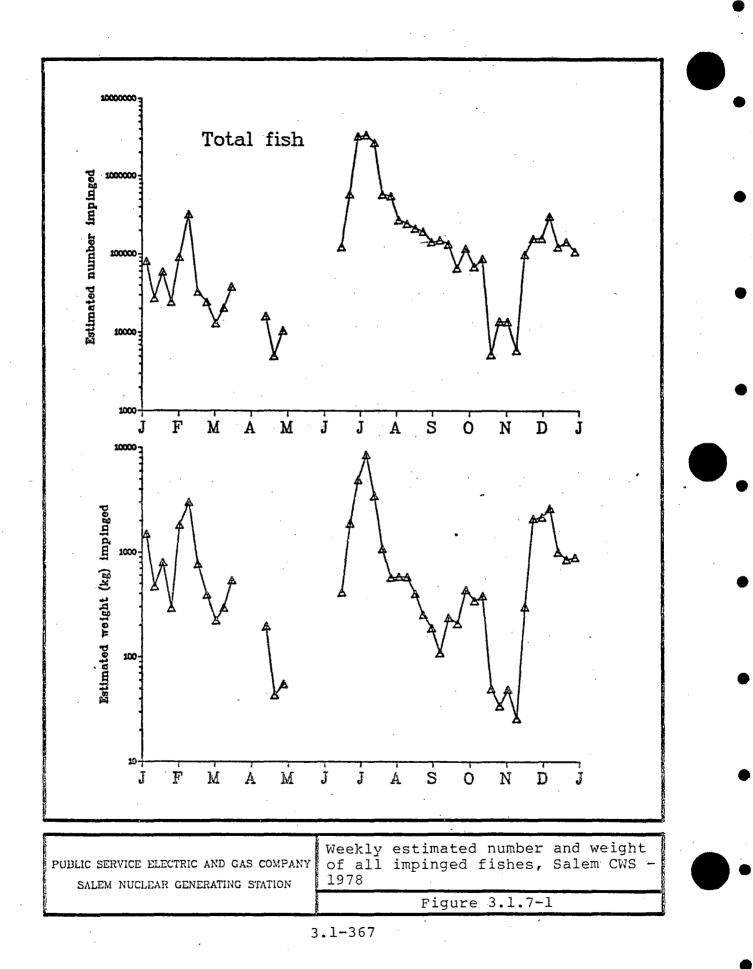
					-			
Species	CF	Actual No.	Estimated No.	Estimated Wt. (Kg)	Weigh Min	it (g) Max	Lengtl Min	h (mm) Max
				eptember 4-hr samples)				
B. tyrannus	3	5	12	0.45	8.7	105.6	93	208
A. mitchilli	8	15	39	0.07	0.3	4.9	33	83
M. americana	1	1	2	0.52	223.0	223.0	253	253
C. regalis	6	12	.33	0.11	1.2	3.3	53	83
L. xanthurus	10	2 3 ⁻	59	1.88	10.6	73.4	93	158
T. maculatus	6	10	23	0.62	0.6	97.5	38	183
Total of more commo	on fishes	66	168	3.65	N			
Total of all fish s		81	204	3.76				
C. sapidus	. 8	17	39	0.51	1.1	17.2	18	93
				October 4-hr samples)				
				-			·	
B. tyrannus	2	4	10	0.11	5.2	15.1	- 73	98
A. mitchilli	7	12 2	28	0.07	0.8	10.0	48	98
M. americana	2	2	5	0.32	55.2	84.0	163	183
C. regalis	3	3	6	0.01	3.0	4.3	73	98
L. xanthurus	8	12	28	1.45	14.1	88.9	113	168
M. undulatus	1	1	2	+	1.6	1.6	58	58
T. maculatus	8	17	40	0.57	0.6	62.2	33	153
Total of more commo		51	119	2.53				
Total of all fish s	pe cies	84	193	5.28				
C. sapidus	14	257	601	1.04	0.2	51.4	13	113
	•							

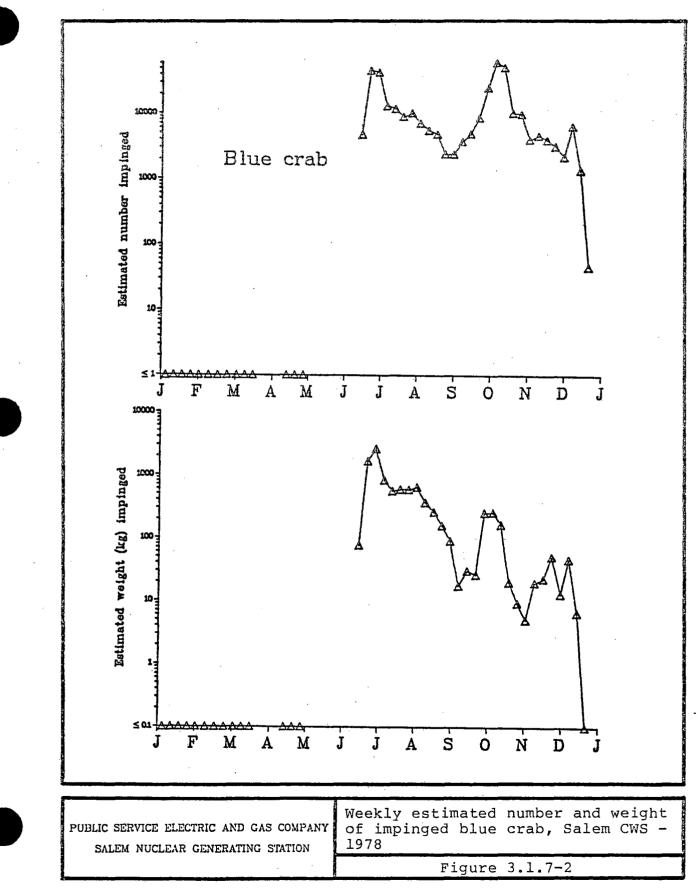
TABLE 3.1.7-7 CONTINUED

CF = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

IA SALEM IM 1978

TABLE 3.1.7-7 CONTINUED


.


				•				
Species	CF	Actual No.	Estimated	Estimated Wt. (Kg)	Weigh Min	t (g) Max	Length Min	n (mm) Max
				November 4-hr samples)				
A. aestivalis B. tyrannus	8 2	23 3	46 7	0.18 0.19	1.6 11.7	24.6 52.4	63 93	138 158
A. mitchilli M. americana	8 3	10 12	23 20	0.20 0.72	1.2 19.1	3.6 84.8	58 118	78 163
C. regalis L. xanthu~us T. maculatus	1 9 5	1 20 5	2 41 11	+ 1.07 0.11	2.9 16.6 0.8	2.9 47.4 32.4	63 98 38	63 143 123
Total of more common	n fishes	74 85	150	2.47		5441	50	
Total of all fish sp C. sapidus	pecies 9	85 41	169 94	4.15 11.17	0.4	28.2	18	58
				December 24-hr samples)				
A. aestivalis B. tyrannus	-7 5	99 6	238 33	, 0.74 0.93	1.5 3.7	5.2 148.0	58 93	88 223
D. cepedianum A. mitchilli H. nuchalis	6.5 3 5	20 1 16	66 2.** 38	1.07 + 0.30	3.7 3.0 1.6	117.8 3.0 20.2	73 73 63	218 73 133
M. americana C. regalis	9.5 1	274 1	682 2	3.12	1.3 3.3	38.1 · 3.3	43 68	158 68
L. xanthurus M. undulatus T. maculatus	4 4.5 8	8 127 15	30 308 37	0.76 0.32 0.27	5.5 0.1 1.2	50.1 3.8 14.3	78 23 33	153 73 93
Total of more common Total of all fish sp		567 682	1,436 1,771	7.51 13.80				
C. sapidus	3	6	14	0.01	0.5	2.7	18	33

CF = catch frequency (number of 24-hr samples in which the species appeared) + = less than 0.01 Kg

3.1-366

IA SALEM IM 1978

3.1-368

•

3.1.8 Entrainment of Planktonic Organisms

(ETS Section 3.1.2.3)

In accordance with Section 3.1.2.3 of the ETS, entrainment studies were conducted in 1978. The continuing objective is to estimate the number and percent survival of planktonic organisms which pass through the Salem Unit 1 circulating water system (CWS). Planktonic organisms included are fish eggs and larvae, microzooplankton, and macroinvertebrates.

3.1.8.1 Summary

MICROZOOPLANKTON

Abundance Studies

A total of 141 microzooplankton samples was collected in 1978. Mean abundance per sampling date ranged_from 3,978/m³ on November 21-22 to a peak density (105,057/m³) on July 12-13. Mean density was generally lower from mid-September through mid-December (3,978 to 30,680/m³) than previous months. The most abundant taxa which comprised 76.7 percent of the total catch were Rotifer spp., copepod nauplii, <u>Acartia tonsa</u>, Gastropoda (veliger), and <u>Pseudodiaptomus</u> coronatus.

Rotifer spp. comprised 28.6 percent of the total catch. It occurred from February through mid-August and mid-October through mid-December with peak density $(74,378/m^2 + 31,248)$ on March 16-17.

Copepod nauplii comprised 17.9 percent of the total catch. It was most abundant from mid-March through early September with peak density $(29,713/m^2 + 16,616)$ on April 19-20.

<u>A. tonsa</u> comprised 11.8 percent of the total catch. It was collected from late June through mid-December with peak density $(15,711/m^3 \pm 7,711)$ on July 12-13.

Gastropoda (veliger) comprised 10.1 percent of the total catch. It was collected from June through October with peak density ($15,266/m^3 + 4,733$) on August 31-September 1.

<u>P. coronatus</u> comprised 8.3 percent of the total catch. It occurred in March and from late June through mid-December with peak density $(26,952/m^3 + 21,890)$ on July 12-13.

Other abundant taxa, which together comprised 21.2 percent of the total catch, were: <u>Ectinosoma</u> spp., Polychaeta (eggs and larvae), <u>Eurytemora</u> <u>affinis</u>, Cirripedia (nauplii and cypris larvae) and Nematoda.

Survival Studies

Thirty-four paired intake and discharge microzooplankton samples were collected during three 24-hr sampling periods in 1978. A total of 2,754 microzooplankters representing 39 taxa were collected in 14.5 m of water filtered. Abundant taxa were copepod nauplii, <u>Eurytemora affinis</u>, <u>Acartia</u> tonsa, Gastropoda, and <u>Ectinosoma spp</u>.

Copepod nauplii were collected on all sampling dates. During April 19-20, mean percent live at 0 hr was 81 in intake samples and 92 in discharge samples; at +12 hr it was 80 and 81, respectively. During June 28-29, the mean percent live at 0 hr was 71 in intake samples and 72 in discharge samples; at +12 hr it was 90 and 75, respectively. During September 13-14, the mean percent live at 0 hr was 91 in intake samples and 81 in discharge samples; at +12 hr it was 33 and 55, respectively.

<u>E. affinis</u> (copepodid) was collected during April 19-20 and June 28-29. During April 19-20 the mean percent live at 0 hr was 87 in intake samples at +12 hr it was 77. The mean percent live at 0 hr was 83 in discharge samples; at +12 hr it was 100. During June 28-29, mean percent live at 0 hr was 85 in intake samples and 82 in discharge samples; at +12 hr it was 61 and 81, respectively.

A. tonsa (copepodid) was collected on June 28-29 and September 13-14. During June 28-29, the mean percent live at 0 hr was 50 in intake samples and 69 in discharge samples; at +12 hr it was 60 and 87, respectively. During September 13-14, the mean percent live at 0 hr was 76 in intake samples and 83 in discharge samples; at +12 hr it was 50 and 62, respectively. Mean percent live during both dates was lower in intake samples than in discharge samples.

Gastropoda (veliger) was collected only during the September 13-14 sampling date. Mean percent live at 0 hr was 71 in intake samples and 88 in discharge samples; at +12 hr it was 64 and 66, respectively.

Ectinosoma spp. was collected only during September 13-14. Mean percent live at 0 hr was 81 in intake samples and 88 in discharge samples; at +12 hr it was 87 in intake and discharge samples.

MACROINVERTEBRATE PLANKTON

Abundance Studies

A total of 1,793,350 macroplankters representing 58 taxa were collected in 128 macroinvertebrate plankton samples in 1978. Mean density per sampling date ranged from 176/100m on March 2-3 to peak density (85,137/100m) on September 13-14. Mean density was_greatest from April to September (7,283 to 85,137/100m) and Noyember 21-22 through mid-December (9,591 to 10,865/100m). The most abundant taxa, which comprised 92.8 percent of the total catch were: Neomysis americana and Rhithropanopeus harrisii.

N. americana comprised 81.6 percent of the total catch. Density was low in March (ca. $40/100m^3$), it increased through June 28-29 (43,076/100m³ + 27,662) and peaked on September 13-14 (77,695/100m³ + 36,101).

<u>R. harrisii</u> comprised 11.2 percent of the total catch. Greatest density occurred from June through mid-August. Peak density (14,299/100m³ + 15,258) occurred on July 12-13.

Other abundant taxa which comprised 6.6 percent of the total catch were: <u>Gammarus spp., Edotea triloba</u>, <u>Corophium spp.</u>, Brachyura, <u>Leucon americanus</u>, <u>Palaemonetes pugio</u>, <u>Crangon</u> septemspinosa, and Hydrozoa (medusae).

Survival Studies

Twenty-three paired intake and discharge macrozooplankton survival samples were collected during three 24-hr sampling periods in 1978: 5 pairs during April 19-20, 7 pairs during June 28-29, and 11 pairs during September 13-14. A total of 46,931 macroplankters representing 28 taxa was collected in 105 m³ of water filtered. The most abundant taxa were: <u>Neomysis</u> <u>americana</u>, <u>Gammarus</u> spp., and <u>Rhithropanopeus</u> <u>harrisii</u>. N. <u>americana</u> was collected on all three sampling dates. During April 19-20 the mean percent live at 0 hr was 71 in intake samples and 70 in discharge samples; at +12 hr it was 33 and 43, respectively. During June 28-29, mean percent live at 0 hr was 81 in intake samples and 95 in discharge samples; at +12 hr it was 71 and 84, respectively. During September 13-14 the mean percent live for juveniles at 0 hr was 98 in intake samples and 96 in discharge samples; at +12 hr it was 94 and 51, respectively. The mean percent live for adults at 0 hr was 99 in intake samples and 83 in discharge samples; at +12 hr it was 92 and 74, respectively.

Gammarus spp. was collected during all three sampling dates. During April 19-20, the mean percent live at 0 hr was 87 in intake samples; at +12 hr it was 91. Mean percent live (90) in the discharge samples remained unchanged throughout the latent period. During June 28-29 the mean percent live for juveniles at 0 hr was 88 in intake samples; at +12 hr it was 87. Mean percent live at 0 hr was 86 in discharge samples; at +12 hr it was 89. During September 13-14, the mean percent live for juveniles at 0 hr was 97 in intake samples and 99 in discharge samples; at +12 hr it was 96 and 98, respectively.

<u>R. harrisii</u> (zoea) was collected during the June 28-29 and September 13-14 sampling dates. Initial and +12 hr survival was high in all samples. During June, the initial mean percent live in the intake (98) samples was unchanged at +12 hr. Mean percent live at 0 hr was 96 in the discharge samples; at +12 hr it was 95. During September 13-14, the mean percent live at 0 hr in intake samples was 97; at +12 hr it was 93. Mean percent live at 0 hr was 100 in discharge samples; at +12 hr it was unchanged.

ICHTHYOPLANKTON

Abundance Studies

A total of 135 ichthyoplankton abundance samples was collected in 1978. Of the 29,984 specimens of 19 taxa collected, bay anchovy (Anchoa mitchilli), naked goby (Gobiosoma bosci), weakfish (Cynoscion regalis), and silversides (Membras sp./Menidia spp.) were most abundant.

Bay anchovy comprised 90.2 percent of the total catch. Eggs, larvae, young, or adults were collected from late June through late November. Eggs and larvae were most abundant in mid-July (mean density per date = 24.924 ± 17.842 and $6.146/m^{-} \pm 2.119$, respectively), young in late August-early September (1.127 ± 1.045), and adults in mid-September (0.085 ± 0.065).

Naked goby comprised 3.7 percent of the total catch. Larvae or young were collected from late June through September and in late November. Larvae were most abundant in mid-July (mean density per date = $0.574/m^2 + 0.233$) and young in late August-early September (0.043 + 0.040).

Weakfish comprised 3.7 percent of the total catch. Larvae or young were collected from late June through mid-September and in early November. A single egg was collected in mid-July. Larvae and young were most abundant in late₃June (mean density per date = 0.613 ± 0.398 and $0.636/m^{-1} \pm 0.513$, respectively).

Silversides comprised 1.5 percent of the total catch. Eggs or larvae were collected from late June through late Augustearly September. Eggs were most abundant in mid-July (mean density per date = $0.007/m^3 + 0.008$) and larvae in mid-August ($0.465/m^3 + 0.758$).

Survival Studies

Twenty-three paired intake and discharge ichthyoplankton survival samples were collected during three 24-hr sampling periods in 1978. Of the 319 specimens of nine species collected, young bay anchovy and larval and young weakfish were most abundant. The mean percent live for bay anchovy young collected on September 13-14 at the intake and discharge was similar both initially (75.0 and 76.0, respectively) and after the 12-hr latent mortality period (20.0 and 20.0, respectively). The initial mean percent live for weakfish larvae and young collected on June 28-29 at the intake (30.2 and 58.8, respectively) was lower than at the discharge (89.5 and 79.6, respectively). This relationship continued through the 12-hr latent period with only slight decreases in mean percent live at either location. The reasons for the relatively low percent live for weakfish larvae and young in the intake samples are not known.

3.1.8.2 METHODS AND MATERIALS

Equipment and procedures used to collect and process entrainment samples in 1978 were the same as those employed in 1977. For a detailed description see Volume 2 of the 1977 Annual Environmental Operating Report. Briefly, entrainment samples were collected at intake and discharge locations using a high capacity centrifugal pump in combination with an abundance chamber and a larval table (Figs. 3.1.8-1 through 3.1.8-4). Microzooplankton and ichthyoplanktonmacroinvertebrate abundance samples were processed at the Delaware laboratory in the same manner as the riverine collections (see Sections 3.1.2 and 3.1.3). Survival samples were processed on site at the field laboratory, and all percentages were calculated on the basis of initial total sample size. High concentrations of detritus and large numbers of macroinvertebrates in survival samples occassionally required extra processing time and subsequent deviation from the prescribed schedule of latent mortality observations.

Conditions permitting, the entrainment monitoring program is scheduled monthly September through May and semimonthly June through August. Replicate samples are to be taken every 4 hr during a 24-hr period. Intake and discharge collections are synchronized with CWS passage time to ensure sampling the same water mass. Intake samples for abundance and survival determinations are integrated with depth and taken inboard of the vertical traveling screens. Discharge samples (for survival only) are collected from a standpipe on the CWS discharge pipe at a point approximately 152 m upstream of the effluence into the river.

Entrainment studies in 1978 were limited in number and scope because of weather, station operating schedule and mechanical problems. Extreme cold and icing during January and February precluded survival sampling. Abundance samples were not collected in January because of traveling screen failures. Salem Unit 1 was not in commercial operation from March 17 through June 13 and from October 10 through November 13. Scheduling of sampling during these periods was hampered by intermittent circulating pump operation and other maintenance related problems.

Microzooplankton, macroinvertebrate, and ichthyoplankton abundance samples were collected as per the ETS schedule during February-April and late June through December. However the number of collections per date during March, April, late June, October and December were fewer than specified because of mechanical problems with CWS components or sampling equipment.

Microzooplankton, macroinvertebrate and ichthyoplankton survival samples were collected in April, late June and September. High concentrations of macroinvertebrates and/or detritus increased the initial processing time and limited the number of samples collected during scheduled sampling periods. Survival sampling was restricted to circulating pump 12B and discharge standpipe 12. Mechanical difficulties with sampling equipment and various components of #12 CWS limited the number of survival sampling periods attempted.

Latent survival samples had, at times, higher survival estimates than samples analyzed immediately. This was due to stunned organisms recovery during holding and the precision of the analytical technique in subsample for survival estimation.

Intake sample integration with depth was not attempted in 1978. Point samples were taken at between 4.6 and 6.1 m below surface. Design and mechanical problems with the integration apparatus have been rectified. However delays in equipment delivery precluded implementation in 1978.

3.1.8.3 Results

MICROZOOPLANKTON

Abundance Studies

One hundred forty-one microzooplankton samples were collected during 14 sampling experiences from February 27 through December 13, 1978 (Tables 3.1.8-1, 3.1.8-2). A total of 60 m of water was filtered and 51 taxa were collected. Total annual mean density was 38,676/m³. Water temperature and salinity ranged from 0.6 to 28.7 C and 1.0 to 12.0 ppt, respectively.

Mean density per sampling date ranged from 3,978/m³ on November 21-22 to 105,057/m³ on July 12-13 (Table 3.1.8-1). Mean density was generally lower from mid-September through mid-December (3,978 to 30,680/m³) than previous months. The 10 predominant taxa, which comprised 97.9 percent of the total annual sample, are discussed below in order of decreasing abundance (Table 3.1.8-2).

Rotifer spp. comprised 28.6 percent of the annual sample and was the most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 11,051/m³. It occurred from February through mid-August and mid-October through mid-December (Table 3.1.8-1). Peak density (74,378/m³ + 31,248) occurred on March 16-17. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Copepod nauplii comprised 17.9 percent of the annual sample and was the second most abundant microzooplankter₃ collected (Table 3.1.8-2). Annual mean density was $6,915/m^3$. It was collected on all sampling dates and was most abundant from mid-March through_early September (Table 3.1.8-1). Peak density (29,713/m³ + 16,616) occurred on April 19-20. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

<u>Acartia tonsa</u> comprised 11.8 percent of the annual sample and was the third most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 4,574/m³. Females were more abundant $(2,017/m^3)$ than copepodids (1,955) or males (582). It was collected from late June through mid-December with peak density $(15,711/m^3 + 7,711)$ on July 12-13 (Table 3.1.8-1). It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 12.0 ppt.

Gastropoda (veliger) comprised 10.1 percent of the annual sample and was the fourth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 3,900/m³. It was collected from June through October with peak density (15,266/m³ + 4,733) on August 31-September 1 (Table 3.1.8-1). It was collected at water temperature 17.3 to 28.7 C and salinity 4.0 to 10.0 ppt.

<u>Pseudodiaptomus coronatus</u> comprised 8.3 percent of the annual sample and was the fifth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 3,238/m³. Females were more abundant (1,551/m³) than males (1,095) or copepodids (592). It occurred in March and from late June through mid-December with peak density (26,952/m³ + 21,890) on July 12-13 (Table 3.1.8-1). It was collected at water temperature 0.6 to 28.7 C and salinity of 3.0 to 12.0 ppt.

Ectinosoma spp. comprised 7.8 percent of the annual sample and was the sixth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was $3,009/m^3$. Adults were more abundant (2,892/m³) than copepodids (117). It was predominant on every sampling date with peak density (6,972/m³ + 3,166) on July 12-13 (Table 3.1.8-1). It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Polychaeta (eggs and larvae) comprised 7.7 percent of the annual sample and was the seventh most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 2,978/m³. Eggs were more abundant (2,394/m³) than larvae (584). It was collected on all sampling dates and was most abundant from February through March and November (Table 3.1.8-1). Peak density $(24,280/m^3 + 15,856)$ occurred on November 1-2. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Euytemora affinis comprised 3.5 percent of the annual sample and was the eighth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was 1,342/m³. Copepodids were more abundant (809/m³) than males (304) or females (225). It was collected on all sampling dates (Table 3.1.8-1). Greatest density occurred from February through July and in December. Peak density (6,663/m³ + 4,746) occurred on July 12-13. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Cirripedia (nauplii and cypris larvae) comprised 1.6 percent of the annual sample and was the ninth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was $638/m^3$. Nauplii were more abundant $(633/m^3)$ than cypris larvae (5). It was collected from June through mid-December and was most abundant from₃June through August (Table 3.1.8-1). Peak density (2,684/m³ + 1,779) occurred on July 12-13. It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 12.0 ppt.

Nematoda comprised 0.6 percent of the annual sample and was the tenth most abundant microzooplankter₃ collected (Table 3.1.8-2). Annual mean density was $224/m^3$. Greatest density occurred from February through₃July and in September (Table 3.1.8-1). Peak density (719/m³ + 1,206) occurred on April 19-20. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Survival Studies

Thirty-four paired intake and discharge samples were collected in 1978; 12 pairs during April 19-20, 10 pairs during June 28-29, and 12 pairs during September 13-14. A total of 2,754 microzooplankters comprising 39 taxa were collected in 14.5 m of water filtered (Table 3.1.8-3).

April 19-20

Nineteen taxa were collected; copepod nauplii and <u>Eurytemora</u> affinis copepodids were most abundant (Table 3.1.8-3).

Ambient water temperature ranged from 10.2 to 11.5 C and salinity ranged from 5.5 to 8.0 ppt.

Initial mean percent live for copepod nauplii in intake and discharge samples was 81 and 92, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 80 and 81, respectively, at +12 hr.

Initial mean percent for <u>E</u>. <u>affinis</u> (copepodids) in intake and discharge samples was 87 and 83, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 77 and 100, respectively, at +12 hr.

June 28-29

Twenty-seven taxa were collected; copepod nauplii, <u>Acartia</u> tonsa, and <u>Eurytemora affinis</u> were most abundant (Table 3.1.8-3). Ambient water temperature ranged from 21.0 to 26.8 C and condenser delta T ranged from 3.8 to 6.1 C. Salinity ranged from 4.0 to 6.0 ppt.

Initial mean percent live for copepod nauplii in intake and discharge samples was 71 and 72, respectively (Table 3.1.8-3). Mean percent live in intake and discharge samples was 90 and 75, respectively, at +12 hr.

Initial mean percent live for <u>A</u>. tonsa females in intake and discharge samples was 85 and 55, respectively (Table 3.1.8-3). Mean percent live in the intake samples decreased through all observations. Mean percent live in the intake and discharge samples was 60 and 71, respectively, at +12 hr.

Initial mean percent live for <u>A tonsa</u> copepodids in intake and discharge samples was 50 and 69, respectively, at the intake and discharge (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 60 and 87, respectively, at +12 hr.

Initial mean percent live for E. affinis copepodids in intake and discharge samples was 85 and 82, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 61 and 81, respectively, at +12 hr.

September 13-14

Twenty-one taxa were collected; Gastropoda (veliger), copepod nauplii, <u>Acartia</u> tonsa, and <u>Ectinosoma</u> spp. were most abundant (Table 3.1.8-3). Ambient water temperature ranged from 21.2 to 31.7 C and condenser delta T ranged from 8.2 to 11.1 C. Salinity ranged from 5.0 to 10.0 ppt.

Initial mean percent live for Gastropoda (veliger) in intake and discharge samples was 71 and 88, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 64 and 66, respectively, at +12 hr.

Initial mean percent live for copepod nauplii in intake and discharge samples was 91 and 81, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 33 and 55, respectively, at +12 hr.

Initial mean percent live for <u>A</u>. tonsa copepodids in intake and discharge samples was 76 and 83, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 50 and 62, respectively, at +12 hr.

Initial mean percent live for Ectinosoma spp. in intake and discharge samples was 81 and 88, respectively (Table 3.1.8-3). Mean percent live in intake and discharge samples was 87 at +12 hr.

MACROINVERTEBRATE PLANKTON

Abundance Studies

One hundred twenty-eight macroinvertebrate plankton samples were collected on 13 sampling dates from March 2 through December 13, 1978 (Tables 3.1.8-4, 3.1.8-5). A total of 6,857.2 cubic meters of water were filtered and 58 taxa were collected. Total annual mean density was 26,153/100m³. Water temperature and salinity ranged from 0.6 to 28.7 C and 1.0 to 15.0 ppt, respectively.

Mean density per sampling date ranged from 176/100m³ on March 2-3 to 85,137/100m³ on September 13-14 (Table 3.1.8-4). Mean density was₃greatest from April through September (7,283 to 85,137/100m³), and November 21-22 through mid-December (9,591 to 10,865/100m³). The 10 predominant taxa which comprised 99.4 percent of the total annual sample are discussed below in order of decreasing abundance (Table 3.1.8-5).

<u>Neomysis</u> <u>americana</u>, the opposum shrimp, comprised 81.6 percent of the annual sample and was the most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 21,657/100m³. It occurred from March through mid-December (Table 3.1.8-4). Density was low in March (ca. 39/100m³); it increased through June 28-29 (43,076/100m³ + 27,662) and peaked on September 13-14 (77,695/100m⁴ + 36,101). It was collected at water temperature 0.6 to 28.7 C and salinity 3.0 to 15.0 ppt.

<u>Rhithropanopeus harrisii</u>, the mud crab, comprised 11.2 percent of the annual sample and was the second most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 2,960/100m³. It occurred from April through mid-December (Table 3.1.8-4). Greatest density occurred from June through mid-August. Peak density (14,299/100m³ + 15,258) occurred on July 12-13. It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 10.0 ppt.

<u>Gammarus</u> spp., the scud, comprised 2.2 percent of the annual sample and was the third most abundant macroinvertebrate plankter₃collected (Table 3.1.8-5). Annual mean density was 573/100m³. It occurred from March through December (Table 3.1.8-4). Generally, density was greatest during June through September; it peaked (1,615/100m³ + 697) on June 28-29. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 15.0 ppt.

Edotea triloba, an isopod, comprised 1.7 percent of the annual sample and was the fourth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 439/100m³. It occurred from March through mid-December (Table 3.1.8-4). Density was greatest during June through early November; it peaked (3,736/100m³ + 3,595) on September 13-14. It was collected at water temperature 1.0 to 28.7 C and salinity 3.0 to 10.0 ppt.

<u>Corophium</u> spp., the scud, comprised 0.7 percent of the annual sample. It was the second most abundant amphipod and the fifth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 197/100m³. It occurred on all sampling dates from March through December (Table 3.1.8-4). Greatest density occurred from July through August and in December. Peak density (704/100m³ + 253) occurred on August 10-11. It was collected at water temperature 0.6 to 28.7 C and salinity 4.0 to 12.0 ppt.

Brachyura comprised 0.7 percent of the annual sample and was the sixth most abundant macroinvertebrate plankter₃ collected (Table 3.1.8-5). Annual mean density was 180/100m³. It occurred from June through mid-August, with peak density (1,642/100m³ + 977) on August 10-11 (Table 3.1.8-4). It was collected at water temperature 23.7 to 28.7 C and salinity 6.0 to 8.0 ppt.

Leucon americanus, a cumacean shrimp, comprised 0.4 percent of the annual sample and was the seventh most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 113/100m⁴. It occurred from June through December, with greatest density during late August through November (Table 3.1.8-4). Peak density (763/100m⁴ + 592) occurred on September 13-14. It was collected at water temperature 5.0 to 28.7 C and salinity 4.5 to 15.0 ppt.

Palaemonetes pugio, the grass shrimp, comprised 0.4 percent of the annual sample and was the eighth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 109/100m². It occurred from April through December, with greatest density in July and August (Table 3.1.8-4). Peak density (344/100m² + 150) occurred on August 10-11. It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 15.0 ppt.

<u>Crangon</u> septemspinosa, the sand shrimp, comprised 0.3 percent of the annual sample and was the ninth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 77/100m³. It occurred on all sampling dates from March through December with peak densities on June 28-29 (391/100m³ + 517) and September 13-14 (360/100m³ + 366) (Table 3.1.8-4). It was collected at water temperature 0.6 to 28.7 C and salinity 4.0 to 15.0 ppt.

Hydrozoa (medusae) comprised 0.2 percent of the annual sample. It was the most abundant hydromedusae and tenth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was 55/100m². It was collected from August through November (Table 3.1.8-4). Peak density (391/100m² ± 262) occurred on September 13-14. It was collected at water temperature 8.5 to 28.7 C and salinity 6.0 to 15.0 ppt.

Survival Studies

Twenty-three paired intake and discharge macrozooplankton

survival samples were collected; 5 pairs during April 19-20, 7 during June 28-29, and 11 during September 13-14. During the September 13-14 sampling period heavy detritus and specimen holding problems prevented the processing of some samples. A total of 46,931 macroinvertebrates representing 28 taxa was collected in 105 m of water filtered (Table 3.1.8-6).

April 19-20

A total of 13 taxa were collected. <u>Neomysis americana</u>, <u>Gammarus spp.</u>, Hirudinea, <u>Crangon septemspinosa</u>, and Polychaeta were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 10.2 to 11.0 C and salinity 5.5 to 8.0 ppt. There was no delta T across the condensers on this date; therefore, any plant-induced mortality must be attributed to pressure and/or mechanical effects.

Initial mean percent live for N. americana in intake and discharge samples was 71 and 70, respectively (Table 3.1.8-6). Mean percent live in the intake samples decreased to 33 percent at +12 hr. Survival in discharge samples decreased to 43 percent at +12 hr.

Initial mean percent live for <u>Gammarus</u> spp. in intake and discharge samples was 87 and 90, respectively (Table 3.1.8-6). Mean percent live in the intake samples was 91 at +12 hr. This increase in percent live was the result of the recovery of previously stunned specimens. Mean percent live in discharge samples was unchanged at +12 hr.

Initial mean percent live for Hirudinea was 94 and 100 in the intake and discharge samples, respectively (Table 3.1.8-6). Mean percent live in intake and discharge samples at +12 hr remained unchanged.

Initial mean percent live for <u>C. septemspinosa</u> in both intake and discharge samples was 66 (Table 3.1.8-6). Mean percent live in intake samples increased to 85 at +4 hr and 86 at +12 hr. This increase resulted from the recovery of previously stunned specimens. Mean percent live in discharge samples increased to 71 at +12 hr.

Initial mean percent live for Polychaeta was 100 at both the intake and discharge (Table 3.1.8-6). This percentage remained unchanged for both intake and discharge samples throughout the 12 hr latent period.

June 28-29

A total of 18 taxa were collected. <u>Neomysis americana</u>, <u>Gammarus spp.</u>, <u>Rhithropanopeus harrisii</u>, <u>Crangon</u> <u>septemspinosa</u>, and <u>Edotea triloba</u> were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 21.0 to 26.8 C and delta T across condenser 12 ranged from 3.8 to 6.1 C. Salinity ranged from 4.0 to 6.0 ppt.

Initial mean percent live for N. americana in intake and discharge samples was 81 and 95, respectively (Table 3.1.8-6). Mean percent live decreased to 71 in intake samples and 84 in discharge samples at +12 hr.

Initial mean percent live for <u>Gammarus</u> spp. (adult) was 73 in intake samples (Table 3.1.8-6). No adults were taken at the discharge. Mean percent live in intake samples decreased to 62 at +12 hr. Initial mean percent live for <u>Gammarus</u> spp. (juveniles) at the intake and discharge samples was 88 and 86, respectively (Table 3.1.8-6). Mean percent live in intake samples decreased to 87 at +12 hr. Mean percent live in discharge samples increased to 89 at +12 hr.

Initial mean percent live for <u>R</u>. <u>harrisii</u> was 98 at the intake and 96 at the discharge. Mean percent live in intake samples remained unchanged at +12 hr; discharge samples remained virtually unchanged.

Initial mean percent live for <u>C</u>. <u>septemspinosa</u> was 29 at the intake and 73 at the discharge. Mean percent live in intake samples decreased to 27 at +12 hr. Mean percent live in discharge samples decreased to 66 at +4 hr and 56 at +12 hr.

Initial mean percent live for <u>E</u>. triloba was 94 at the intake and 100 at the discharge (Table 3.1.8-6). Mean percent live in intake samples decreased to 88 percent at +12 hr. Mean percent live in discharge samples remained unchanged through the 12 hr latent period.

September 13-14

A total of 20 taxa were collected. <u>Neomysis americana</u> <u>Gammarus spp., Edotea triloba, Rhithropanopeus harrisii</u>, and <u>Leucon americanus</u> were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 22.2 to 23.5 C and salinity 6.0 to 9.0 ppt. Delta T across condenser 12 ranged from 7.5 to 11.4 C. Initial mean percent live for N. americana (adult) in intake and discharge samples was 99 and $\overline{83}$, respectively (Table 3.1.8-6). Mean percent live in intake samples decreased to 92 at +12 hr. Mean percent live in discharge samples decreased to 74 at +12 hr. Initial mean percent live for juveniles in intake and discharge samples was 98 and 96, respectively. Mean percent live in intake samples decreased to 94 at +2 hr and then remained unchanged for the remainder of the 12 hr latent period. Mean percent live in discharge samples decreased to 87 at +2 hr, 64 at +4 hr, and 51 at +12 hr.

Initial mean percent live for <u>Gammarus</u> spp. (juveniles) was 97 in intake samples and 99 in discharge samples (Table 3.1.8-6). Mean percent live in intake and discharge samples was 96 and 98, respectively, at +12 hr.

Initial mean percent live for <u>E.</u> triloba (juveniles) was 99 in both the intake and discharge samples (Table 3.1.8-6). Mean percent live in intake samples remained unchanged at +12 hr. Mean percent live in discharge samples decreased to 97 at +12 hr.

Initial mean percent live for <u>R</u>. <u>harrisii</u> (zoea) in intake and discharge samples was 97 and 100, respectively (Table 3.1.8-6). Mean percent live in intake samples decreased to 93 at +12 hr; discharge samples remained unchanged.

Initial mean percent live for <u>L</u>. <u>americanus</u> (adult)was 100 in intake samples and 98 in discharge samples (Table 3.1.8-6). Mean percent live in intake and discharge samples decreased to 92 and 94, respectively, at +12 hr.

ICHTHYOPLANKTON

Abundance Studies

A total of 135 ichthyoplankton abundance samples was collected during 14 sampling experiences from February 27 through December 13, 1978 (Table 3.1.8-7). Ichthyoplankton of 19 taxa including 17,549 eggs, 10,437 larvae, 1,877 young, and 121 adults were taken in 7,203.4 m³ of water filtered; total annual mean density was 4.163/m³. Annual mean density for eggs, larvae, young, and adults was 2.436, 1.449, 0.261, and 0.017/m³, respectively. Taxa of which more than 100 specimens were taken are, in order of decreasing abundance; bay anchovy, naked goby, weakfish, and silversides. These comprised over 99 percent of the total catch and are discussed below. Bay anchovy comprised 90.2 percent of the total catch and was represented by 27,055 specimens including 17,520 eggs, 8,152 larvae, 1,272 young, and 111 adults (Table 3.1.8-7). The annual mean density of eggs, larvae, young, and adults was 2.432, 1.132, 0.177, and 0.015/m², respectively.

Bay anchovy eggs ranked first in and comprised 99.8 percent of the total egg catch (Table 3.1.8-7). Eggs were collected from June 28-29 through August 10-11 at water temperature 21.0 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from $0.153/m^{3} + 0.135$ on July 27-28 to 24.924/m³ + 17.842 on July 12-13 (Table 3.1.8-8). Density per collection on July 12-13 ranged from 5.100 to 107.320/m³.

Viable eggs were taken on all dates during the period of occurrence. Annual mean percent viable was 6.8 and mean percent viable per date ranged from 2.0 on August 10-11 to 12.0 on July 27-28 (Table 3.1.8-9). On July 12-13, when over 86 percent of the egg catch was collected, mean percent viable was 7.4.

Bay anchovy larvae ranked first in and comprised 78.1 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through October 11 at water temperature 17.3 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from $0.011/m^3 + 0.022$ on October 11 to $6.146/m^3 + 2.119$ on July 12-13 (Table 3.1.8-8). Density per collection on July 12-13 ranged from 2.480 to 12.960/m³.

Bay anchovy young ranked first in and comprised 67.8 percent of total young catch (Table 3.1.8-7). Young were collected from July 12 through November 21-22 at water temperature 8.5 to 28.7 C and salinity 5.0 to 12.0 ppt. Mean density per date ranged from $0.002/m^3 \pm 0.005$ on June 28-29 to 1.127 ± 1.045 on August 31-September 1 (Table 3.1.8-8). Density per collection on August 31-September 1 ranged from 0.010 to $5.620/m^3$.

Bay anchovy adults ranked first in and comprised 91.7 percent of the total adult catch (Table 3.1.8-7). Adults were collected from June 28-29 through October 11 at water temperature 17.8 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from $0.002/m^3 \pm 0.004$ on August 31-September 1 to $0.085/m^3 \pm 0.065$ on September 13-14 (Table 3.1.8-8). Density per collection on September 13-14 ranged to $0.260/m^3$.

Naked goby comprised 3.7 percent of the total catch and was represented by 1,119 specimens including 1,085 larvae and 34 young (Table 3.1.8-7). The annual mean density of larvae and young was 0.151 and 0.005/m², respectively.

Naked goby larvae ranked second in and comprised 10.4 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through September 13-14 and on November 1-2 at water temperature 14.5 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from 0.003 on September 13-14 and November 1-2 to $0.574/m^{-4} + 0.233$ on July 12-13 (Table 3.1.8-8). Density per collection on July 12-13 ranged from 0.020 to $1.260/m^{-5}$.

Naked goby young ranked fourth in and comprised 1.8 percent of the total young catch (Table 3.1.8-7). Young were collected on July 12-13, July 27-28, August 31-September 1 and November 21-22 at water temperature 12.0 to 27.0 C and salinity 5.0 to 12.0 ppt. Mean density per date was $0.002/m^3 \pm 0.004$ on July 27-28, August 31-September 1, and November 21-22 and $0.043/m^3 \pm 0.040$ on August 31-September 1 (Table 3.1.8-8). Density per_3collection on August 31-September 1 September 1 ranged to $0.180/m^3$.

Weakfish comprised 3.7 percent of the total catch and was represented by 1,096 specimens including 1 egg, 660 larvae, and 435 young (Table 3.1.8-7). The annual mean density of eggs, larvae, and young was less than 0.001, 0.092, and 0.060/m², respectively.

A single weakfish egg was collected on July 12 at water temperature 24.5 C and salinity 7.0 ppt. Density in the collection was 0.020/m². The egg was not viable.

Weakfish larvae ranked third in and comprised 6.3 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through August 31-September 1 at water temperature 21.0 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from $0.006/m^3 \pm 0.008$ on August 31-September 1 to $0.613/m^3 \pm 0.398$ on June 28-29 (Table 3.1.8-8). Density per collection on June 28-29 ranged from 0.040 to $1.740/m^3$.

Weakfish young ranked second in and comprised 23.2 percent of the total young catch (Table 3.1.8-7). Young were collected from June 28-29 through September 13-14 and on November 1 at water temperature 14.5 to 27.7 C and salinity 4.0 to 10.0 ppt. Mean density per₃date ranged from 0.002/m⁴ + 0.005 on November 1-2 to 0.636/m⁴ + 0.513 on June 28-29 (Table 3.1.8-8). Density per collection on June 28-29 ranged from 0.060 to 2.160/m³.

Silversides taken in entrainment samples at Salem Unit 1 are potentially <u>Menbras martinica</u>, <u>Menidia beryllina</u>, and <u>Menidia menidia</u>. Although current taxonomic literature indicates subtle morphological and meristic differences, the high degree of local and individual specimen variation made identification of eggs and larvae to genus or species tenuous and impracticable. However, young were identified to species and are discussed separately.

Silversides comprised 1.5 percent of the total catch and were represented by 454 specimens including 6 eggs and 448 larvae (Table 3.1.8-7). The₃annual mean density of eggs and larvae was 0.001 and 0.062/m, respectively.

Silverside eggs ranked third in and comprised less than 0.1 percent of the total egg catch (Table 3.1.8-7). Eggs were collected on July 12-13 and on July 27-28 at water temperature 24.5 to 26.6 C and salinity 7.0 to 10.0 ppt. Mean density per date was $0.007/m^3 \pm 0.008$ on July 12-13 and $0.003/m^3 \pm 0.005$ on July 27-28 (Table 3.1.8-8). Annual mean percent viable was 83.3 (Table 3.1.8-9).

Silverside larvae ranked fourth in and comprised 4.3 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through August 31-September 1 at water temperature 21.0 to 28.7 C and salinity 5.0 to 8.0 ppt. Mean density per date ranged from 0.033 on June 28-29 and July 12-13 to 0.470/m on August 10-11 (Table 3.1.8-8). Density₃per collection on August 10-11 ranged from 0.060 to $4.260/m^3$.

Young rough silversides (<u>Membras martinica</u>) were taken on July 12-13, August 10-11, and September 13-14 (1 specimen per date); mean density per date was $0.002/m^{4} \pm 0.004$ on each occasion (Table 3.1.8-8). A total of 30 specimens of Atlantic silverside (<u>Menidia menidia</u>) young were taken from June 28-29 through October 11 and on November 21-22 and December 13. Mean density per date was highest ($0.025/m^{3} \pm$ 0.033) on August 10-11.

A total of four adult Atlantic silversides were taken on July 12-13, August 10-11, and August 31-September 1. Mean density per date ranged from 0.001 ± 0.002 to $0.003/m^3 \pm 0.004$ (Table 3.1.8-8).

Survival Studies

Twenty-three paired intake and discharge ichthyoplankton

survival samples were collected; 5 pairs during April 19-20, 7 during June 28-29, and 11 during September 13-14. A total of 143 larvae, 162, young, and 14 adults of 9 species were collected in 148 m of water filtered (Table 3.1.8-10). Although described below, collections containing less than 10 specimens should not be evaluated singularly nor quantitatively.

April 19-20

The American eel, Anguilla rostrata, was the only species taken; 1 glass eel and 5 elvers were collected at ambient water temperature of 10.2-11.0 C and salinity of 5.5 to 8.0 ppt (Table 3.1.8-10). To conform to the established conventions of data tabulation these specimens were categorized as young and adult, respectively. Initial mean percent live was 100 in intake and discharge samples; mean percent live remained at 100 through the 12 hr latent effects period. There was no delta T across the condensers on this date, therefore, the absence of plant-induced mortality can be evaluated with respect to only pressure and/or mechanical effects.

June 28-29

Seven species were taken: bay anchovy (Anchoa mitchilli), satin fin shiner (Notropis analostanus), rough silverside (Membras martinica), northern pipefish (Syngnathus fuscus), weakfish (Cynoscion regalis, spot (Leiostomus xanthurus), and naked goby (Gobiosoma bosci) (Table 3.1.8-10). Bay anchovy and weakfish were most abundant; the other species were represented by single specimens and are not discussed. Ambient water temperature ranged from 21.0 to 26.8 C and delta T across condenser 12 ranged from 3.8 to 6.1 C. Salinity and DO ranged from 4.0 to 6.0 ppt and from 6.6 to 8.4 mg/l, respectively.

Bay anchovy larvae were taken at the intake (n = 9) and discharge (n = 2); initial mean percent live was 55.6 and 50.0, respectively (Table 3.1.8-10). Mean percent live at the intake was 33.3 at +2 hr and 11.1 at +4 hr. It remained 11.1 for the remaining 8 hr of the latent period. Mean percent live in the discharge samples (50.0) remained unchanged through the 12 hr latent period. Weakfish larvae were taken at the intake (n = 63) and discharge (n = 57); initial mean percent live was 30.2 and 89.5, respectively (Table 3.1.8-10). Mean percent live in the intake samples remained virtually unchanged through the latent period, ranging from 30.2 to 31.7; in the discharge samples it was 87.7 at +2 hr and again at +4 hr; it was 63.2 from +8 hr through +12 hr. Initial mean percent live weakfish young taken at the intake (n = 34) and discharge (n = 49) was 58.8 and 79.6, respectively. Percent live was 52.9 at the intake and 73.5 at the discharge at +12 hr.

September 13-14

Four species were taken: bay anchovy, northern pipefish, Atlantic croaker (<u>Micropogon undulatus</u>), and naked goby (Table 3.1.8-10). Ambient water temperature ranged from 21.2 to 23.5 C and delta T across condenser 12 ranged from 7.5 to 11.4 C. Salinity and DO ranged from 6.0 to 9.0 ppt and 6.4 to 7.9 mg/l, respectively.

Bay anchovy larvae were taken at the intake (n = 3) and discharge (n = 4); initial mean percent live was 100.0 and 0.0, respectively (Table 3.1.8-10). Mean percent live at the intake was 66.7 at +8 hr; at +12 hr all specimens were Initial mean percent live for bay anchovy young taken dead. at the intake (n = 40) and discharge (n = 25) was 75.0 and 76.0, respectively. Percent live was similar in intake and discharge samples through the latent period and at +12 hr it was 20.0 at both locations. Initial mean percent live for bay anchovy adults taken at the intake (n = 7) and discharge (n = 2) was 57.1 and 50.0, respectively. Mean percent live at the intake was 71.4 at +2 hr because of the temporary recovery of a previously stunned specimen. It was 28.6 at +12 hr. Mean percent live in the discharge sample remained at 50.0 through +4 hr. By +8 hr the previously live specimen became stunned and remained in that condition through the remainder of the latent period.

Northern pipefish young were taken at the intake (n = 4) and discharge (n = 3); initial mean percent live was 75.0 and 66.7, respectively (Table 3.1.8-10). Mean percent live in the intake samples remained at 75.0 through +8 hr. At +12 hr it was 50.0. Mean percent live in the discharge sample was 33.3 at +4 hr. It returned to 66.7 at +8 hr and remained there through +12 hr.

Single specimens of Atlantic croaker larvae and naked goby young were taken at the intake and discharge, respectively. Initial mean percent live was 100.0 for both specimens and remained at 100.0 through the 12 hr latent period.

DATE 02.	27/78-02/28/78				
 NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING	4 1.6- 2.0 12.9-13.0 `6.5- 6.6 5.0- 9.0 6				
TOTAL VOLUME FILTERED (M3)	2.0				
•		LIFE		+	95%
 TAXON	SEX	STAGE	NUMBERS/CUBIC METER	**	CONFIDENCE LIMI
 ROTIFER SPP.	Α	A'	65290		37858
NEMATODA	А	A	310		436
POLYCHAETA	А	ε	2205		1845
COPEPOD NAUPLII	А	N	1340		1154
E_ AFFINIS	A	С	430		553
HARPACTICOIDA	A	A	410		387
ECTINOSOMA	A	A	1240		1471
ECTINOSOMA	А	С	420		960
O. COLCARVA	м		50		159

TABLE 3-1-8-1

MEAN DENSITY (NUMBERS/CUBIC METER), BY DATE, OF MICROZOOPLANKTON - 1978.

IA SALEM EN 1978

 		BLE 3.1.8-1 Continued		
DATE 03 NOL OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	/02/78-03/03/78 12 0.6- 1.9 12.6-14-9 7.0 3.0- 6.0 6			
TAXON	SEX	LIFE STAGE	NUMBERS/CUBIC METER	+ 95% - CONFIDENCF L1MIT
 ROTIFER SPP.	A	A	25989	11086
NOTHOLCA	Α	A	37	55
K_ QUADRATA	Α	A	31 .	49
8. CALYCIFLORUS	Α	Α	20	44
NEMATODA	Α	Α	· 591	214
POLYCHAETA	Α	E	2471	793
ACARINA	Ą	А	20	44
COPEPOD NAUPLII	A	N	1362	460
P. CRASSIROSTRIS	А	A	10	22
P. CRASSIROSTRIS	F	Α	17	37
E. AFFINIS	A	С	277	126
E. AFFINIS	F	Α	23	35
E. AFFINIS	M	Α	98	68
P. CORONATUS	А	Ć	10	22
HARPACTICOIDA	А	А	281	177
ECTINOSOMA	А	A	1935	1162
ECTINOSOMA	А	С	601	307
O. COLCARVA	F	A	50	- 110
TARDIGRADA	Α	A	21	46

 		CONTINUED		
	/16/78-03/17/78) 60° 49° 40° 40° 40° 40° 40° 40° 40° 40° 40° 40
NO. OF SAMPLES	10			
WATER TEMPERATURE (C)	2.5- 4.6			
DISSOLVED OXYGEN (MG/L) Ph	11.6-13.8			
SALINITY (PPT)	1.0- 4.0			
PUMPS OPERATING	2-3			
TOTAL VOLUME FILTERED (M3)	5_0			
 TAXON	SEX	LIFE	NUMBERS/CUBIC METER -	95% Confidence limit
ROTIFER SPP.	A	A	74378	31248
NOTHOLCA	А	A	148	141
B. CALYCIFLORUS	А	A	15	34
NEMATODA	А	4	291	270
POLYCHAETA	А	E	6708	1169
POLYCHAETA	Α ·	L	30	68
COPEPODA	А	C	15	34
COPEPOD NAUPLII	A	N	6629	1399
E. AFFINIS	Α	c	230	167
E_ AFFINIS	F	Α	221	180
E. AFFINIS	м	A	117	92
DIAPTOMUS	А	c	16	36
HARPACTICOIDA	А	A .	121 ·	133
ECTINOSOMA	А	A	2113	971
ECTINOSOMA	A	C.	395	357
O_ COLCARVA	A	- C	20	45
C_ BICUSPIDATUS	A	č	72	87

TABLE 3.1.8-1 CONTINUED

.

3.1-393

IA SALEM FN 1978

 		BLE 3.1.8-1 CONTINUED	·	
DATE 047 NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	19/78-04/20/78 12 10.2-11.0 8.8-11.0 7.0- 7.6 5.5- 8.0 1 3.6			
TAXON	SEX	LIFE STAGE	+ NUMBERS/CUBIC METER -	95% CONFIDENCE LIMIT
 ROTIFER SPP.	 A	A A	180	225
ROTARIA	А	А	67	147
NOIHOLCA	А	A	1487	899
KERATELLA	Α	А	363	333
BRANCHIONUS	А	A	15	32
B. CALYCIFLORUS	А	Α	67	147
NEMATODA	Α	Α	719	1206
POLYCHAETA	· A	٤	83	183
PELECYPODA	А	L	83	183
BOSMINA	Α	A	67	· 147
COPEPOD NAUPLII	А	N	29713	16616
T. LONGICORNIS	Α	Α *	15	32
E. AFFINIS	A	С	3816	2583
E. AFFINIS	F	A	457	386
E. AFFINIS	M	A	901	410
DIAPTOMUS	м	A	30	66
HARPACTICOIDA	А	Α	430	731
HARPACTICO IDA	А	С	67	147
ECTINOSOMA	А	Α	456	469
ECTINOSOMA	А	С	200	440
H. FOSTERI	F	Α	111	245
CYCLOPS	Α .	С	67	147
TARDIGRADA	A	A	97	155

.

IA SALEM EN 1978

3.1-394

- -

TABLE 3.1.8-1 CONTINUED

•

DATE	06/28/78-06/29/78			
NO. OF SAMPLES	10			
WATER TEMPERATURE (C)	21.0-26.8		•	
DISSOLVED OXYGEN (MG/L)	6.7- 8.4			
РН	6.5- 7.1			
SALINITY (PPT)	4-0- 6-0			
PUMPS OPERATING	6			
TOTAL VOLUME FILTERED (M3	3) 4.0			
				95%

LIFE			+ 95%		
SEX	STAGE	NUMBERS/CUBIC METER	- CONFIDENCE LIMIT		
A	A	80	181		
Α	Α	25	57		
А	Α	25	57		
А	A	90	137		
А	А	675	1079		
. А	L	35	79		
А	Ł	2175	905		
А	A	95	149		
А	N	7950	6261		
А	С	3240	1998		
F	Α	1455	791		
м	A	1305	854		
Â	C	3020	1369		
F	Α	5485	2946		
!1	А	1310	1110		
А	C	1345	1144		
F	Α	5715	2406		
м	Α	1135	637		
А	А	185	235		
А	A	400	385		
A	С	195	295		
А	A	1360	1115		
A	A	25	57		
А	C	50	113		
F	Α		57		
M	А	40	90		
А	N		896		
A	Ŀ	40	90		
		SÉX STAGE	SEX STAGE NUMBERS/CUBIC METER A A 80 A A 25 A A 90 A A 97 A L 35 A L 2175 A A 95 A L 2175 A L 2175 A L 2175 A A 95 A N 7950 A C 3240 F A 1455 M A 1305 A C 3020 F A 5715 M A 1345 F A 1355 A A 1360 A A 25		

IA SALEM FN 1978

......

····

		TABLE 3.1.8-1 CONTINUED		
DATE '07/ NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH	12/78-07/13/78 12 24.0-25.0 6.2- 8.0			
SALINITY (PPT) PUNPS OPERATING TOTAL VOLUME FILTERED (M3)	5-0-10-0 5-6 4-8			
TAXON	SEX	LIFE Stage	NUMBERS/CUBIC METER	+ 95X - CONFIDENCE LIMIT
INVERT. EGG	A	E	156	247
ROILFER SPP.	A	Ă	212	247
ROTIFERA A	Α	A	576	256
K. VALGA	A	Α	21	46
0. CALYCIFLORUS	Α	Α.	21	46
B. ANGULARIS	Α	A	1160	790
8. CAUDATUS	A	A	21	46
8. URCEOLARIS	Α	A	167	228
PARADICRANOPHORUS	A	Â	21	
NEWATODA	Δ	Δ	212	46
POLYCHAETA	Δ	L	1122	159
GASTFOPODA	Å	L	12851	647
COPEPOD NAUPLII	Δ	N		5173
E_ AFFINIS	2	A	28729 52	9514
E_ AFFINIS	Â	ĉ		115
E. AFFINIS	F	Δ	4035	2385
E. AFFINIS	M	A	951	909
P_ CORONATUS	Δ.	Č	1625	1337
P_ COROHATUS	F	Δ	3622	1602
P. CURDNATUS	51	А А	11986	10734
A. TONSA	A	ĉ	11344	9554
A. TONSA	F	L A	5076 8288	3777
A. TONSA	M	A		2885
HARPACTICOIDA	Δ	A A	2347	1049
HARPACTICOIDA	à	~ ·	365	294
SCOTTOLANA	Δ	۲. ۸	42	92
SCOTTOLANA	Å	ĉ	253	166
ECTINOSOMA	Δ		104	158
ECTINOSOMA	2	Č.	6951	3120
H_ FOSTERI	F	. L A	21	46
CIPRIPEDIA	,		21	46
CRYPTONISCUS LARVAE	A	N	2684	1779
CULLIONISCUS LARAME	Ą	L	21	46

IA SALEM EN 1978 .

.

3.1-396

.

.

		TABLE 3.1.8-1 CONTINUED		
DATE U NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3	7/27/78-07/28/78 12 26-3-27-4 5-4-6-7 6-9-7-4 6-0+8-0 5 3 4-8			
TAXON	SEX	LIFE STAGE	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
INVERT. EGG	Α	E	à	18
TURBELLARIA	А	A	27	41
TURBELLARIA	А	<u> </u>	17	37
ROTIFER SPP.	A	А	128	98
- ROTIFERA A	A	A	13	28
B_ ANGULARIS	A	A	212	241
8. URCEOLARIS	А	A	17	37
ASPLANCHNA	A	Α	33	73
NEMATODA	A	Α	50 .	64
POLYCHAETA	A	E	17	37
POLYCHAETA	A	L	2030	903
GASTROPODA	Α	L	10833	6736
COPEPOD NAUPLII	А	N	14250	4283
E_ AFFINIS	А	Ċ	117	101
E. AFFINIS	м	A	31	46
P. CORONATUS	A	С	194	224
P. CORONATUS	F	Ā	233	170
P. CORONATUS	М	Ą	106	132
A. TONSA	Α	Ċ	6815	2501
A. TONSA	F	Ā	1535	358
A. TONSA	M	4	1182	529
HARPACTICOIDA	А	A	8	18
HARPACTICOIDA	А	C	. 77	92
SCOTTOLANA	A	c C	150	
SCOTTULANA	. F	Ā	38	194 45
ECTINOSOMA	۵	Â	5967	
D. COLCARVA	F	A	5767	3270
0. COLCARVA	M	~	8	18
H. FOSTERI	A	ĉ	0 17	18
C. VERNALIS	Δ	c	50	25
ERGASILUS	Â	C	25	110
CIRRIPEDIA	Δ	N	1988	
CRYPTONISCUS LARVAE	Â	L	131	843 91
TARDIGRADA	Â	A	. 31	69 69

IA SALEM EN 1978

3.1-397

.

	=***	CONTINUED		
DATE NG. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M	08/10/78-08/11/78 12 26.7-28.7 6.0-9.8 7.2-7.4 6.0 4-5 3) 4.8			
TAXON	SEX	LIFE STAGE	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
INVERT. EGG	A	E	3	6
TURBELLARIA	Α	A	3	6
TURBELLARIA	A	L	31	69
ROTIFER SPP.	А	А	8	18
ROTIFERA A	А	* A	10	23
8. ANGULARIS	А	A	191	272
NEWATODA	Α	А	62	64
POLYCHAETA	· A	E	3	6
POLYCHAETA	А	L	397	363
GASTROPODA	A	L	5344	5552
NGINA	A	Α	9	14
COPEPOD NAUPLII	. А	N	4153	2215
E_ AFFINIS	А	C	129	243
E. AFFINIS	F	Α	75	93
E. AFFINIS	M	A	58	46
P. CORONATUS	A	С	711	403
	F	Å	876	628
P. CORONATUS	M	A	256	133
P. CORONATUS	Δ.	Ċ	5003	3724
A. TONSA	Ē	Α.	4316	3064
A. TONSA	M	A	1698	976
A. TONSA		Δ	10	23
SCOTTOLANA		Å	109	161
S. CANADENSIS	A .	ĉ	78	66
S. CANADENSIS	н с	۵. ۲	46	68
S. CANADENSIS	Г А	Â.	3594	2989
ECTINOSOMA	~ F	Δ.	10	23
O. COLCARVA	r A	ĉ	15	24
H_ FOSTERI		A	144	184
H. FOSTERI	F M	· A	21	46
H_ FOSTERI		N	344	248
CIRRIPEDIA	· A		57	78
CRYPTONISCUS LARVAE	A	L		• -

TABLE 3.1.8-1

IA SALEM EN 1978

.

TABLE 3.1.8-1 Continued

DATE 08	/31/78-09/01/78			
NO. OF SAMPLES	. 15			
WATER TEMPERATURE (C)	26_5-27_0			
DISSOLVED OXYGEN (MG/L)	5_1- 6_2			
РН	7_0- 7_3			
SALINITY (PPT)	6.0- 8.0			
PUMPS OPERATING	5-6			
TOTAL VOLUME FILTERED (M3)	4.8			
		LIFE		+ 95%
 TAXON	SEX	STAGE	NUMBERS/CUBIC METER	- CONFIDENCE LIMIT
INVERT_ EGG	A	E	19	30
TURBELLARIA	A	A	10	2.5
TURBELLARIA	А	L	135	7 6
ROTIFERA A	A	A	108	80
BDELLOIDEA	А	A	36	69
K. VALGA	A	A	7	15
B. ANGULARIS	A	A	118	138
B. QUADRIDENTATUS	А	A	10	23
NENATODA	А	Ą	14	31
POLYCHAETA	A	i.	477	291
GASTROPODA	A	L	15266	4733
PELECYPODA	A	L	21	4.6
MOINA	A	A	6	14
COPEPOD NAUPLII	A	N	3465	1509
E. AFFINIS	A	c	14	31
P. CORONATUS	A	c	166	87
P. CORONATUS P. CORONATUS	F M	A	260	104
A. TONSA	M	A C	74	65
A. TONSA	F	A	4053 4181	1283
A. TONSA	r M	A		2523
HARPACTICOIDA	A	A	633	210
HARPACTICOIDA	н	A 2	42 56	52 56
HARPACTICOIDA	A	A		
HARPACTICOIDA	r M	A	24 10	37 23
SCOTTOLANA	-1 	Â	76	87
SCOTTOLANA		ĉ	47	51
SCOTTOLANA	E E	6	24	37
ECTINOSOMA	4	Â	5156	3067
H. FUSTERI	F	A	45	507
ERGASILUS	F M	· A	45	517
CIRRIPEDIA	Δ.	N	2057	596
CIRRIPEDIA	Å	N Y	57	276
CRYPTONISCUS LARVAE	<u> </u>	A	10	23
CRYPTONISCUS LARVAE	Â	L.	97	76
ANTI TOTICOS ENTRE	<u> </u>	ч.	. 71	10

IA SALEM EN 1978

1

1 A	BCE 2-1	-8-1
	CONTINU	ED

DATE 09 NOL OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	/13/78-09/14/78 12 21.2-23.5 6.5- 8.3 6.8- 6.9 6.0- 9.0 5-6 6.6				
 TAXON	SEX	LIFE STAGE	NUMBERS/CUBIC METER	+ -	95% CONFIDENCE LIMIT
 ROTIFER SPP.	Α	A	47		103
NEMATODA	А	Α	262		280
POLYCHAETA	А	L	104		128
OLIGOCHAETA	Δ	Α	113		168
GASTROPODA	А	L	1926		1038
COPEPOD NAUPLII	A	N	1111		950
E. AFFINIS	м	Α	19		42
P. CORONATUS	А	С	19		42
P. CORONATUS	F	Α	327		198
P_ CORONATUS	м	Α	52		81
A. TONSA	Α.	С	1461		738
A. TONSA	F	Α	771		583
A. TONSA	м	Α	85		127
ECIINOSOMA	A	A	1168		643
O_ COLCARVA	А	А	57		90
O. COLCARVA	А	С	33		73
CIRRIPEDIA	А	N	19		42

IA SALEM EN 1978

_+.		1	TABLE 3.1.8-1 Continued		****
	DATE 10. NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	6 17.3-18.0 6.9-7.3 6.9-7.2 6.0-8.0 3 2.4			
	TAXON	SEX	LIFE Stage	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
	TURBELLARIA	A	A	8	21
	ROTIFER SPP.	A	Α	42	52
	NEMATODA	А	A	8	21
	POLYCHAETA	А	٤	1297	83
	POLYCHAEIA	A	L	179	106
	GASTROPODA	А	۱.	151	115
	OSTRACODA	А	A	8	21
	COPEPOD NAUPLII	Α	N	892	355
	E. AFFINIS	м	A	8	21
	P. CORONATUS	Α	C	163	115
	P_ CORONATUS	F	À	209	205
	P. CORONATUS	м	A	97	139
	A. TONSA	А	C	344	244
	A. TONSA	F	A	1411	1012
	A. TONSA	м	A	402	427
	HARPACTICOIDA	А	A	8	21
	HARPACTICOIDA	A	С	122	164
	SCOTTOLANA	Α	C	5	13
	ECTINOSOMA	A	A	2335	902
	CIRRIPEDIA	Α	N	200	172
	CRYPTONISCUS LARVAE	Α	L	25	44

.

IA SALEM EN 1978

.

.

		CONTINUED	·	
DATE 1 NO. OF SAMPLES LATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3	$ \begin{array}{r} 1/01/78 - 11/02/78 \\ 12 \\ 13.0 - 14.5 \\ 8.4 - 9.5 \\ 6.0 - 9.0 \\ 1 - 2 \\ \end{array} $			
TAXON	SEX	LIFE Stage	NUMBERS/CUBIC METER	+ 952 - CONFIDENCE LIMIT
RÚTIFÉR SPP.	Α	A		68
NERATODA	А	A	2	. 5
. PULYCHAETA	Α	E	21320	14330
POLYCHAETA	А	L	2960	1526
OLIGOCHAETA	. A	А	8	18
COPEPOD NAUPLII	Α -	N	1314	1092
E. AFFINIS	Α	C	21	31
E. AFFINIS	F	A	28	61
P. CORONATUS '	A	С	35	43
P. CORONATUS	F	Α	140	111
P. CORONATUS	м	A	154	112
A. TONSA	А	C	205	130
A. TONSA	F	Δ	225	132
A. TONSA	м	Α	119	115
HARPACTICOIDA	Α	A	41	43
_ HARPACTICOIDA	F	A	2	5
S. CANADENSIS	A	Α	21	31
ECTINOSOMA	Α	Α	4010 .	2145
CIRRIPEDIA	. A	N	31	47

TABLE 3-1.8-1 CONTINUED

1

IA SALEM EN 1978

.

IN DALES CH 191

3.1-402

.

		BLE 3.1.8-1 Continued		
DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (N	$\begin{array}{c} 11/21/78 - 11/22/78 \\ 12 \\ 8.5 - 12.5 \\ 5.9 - 8.9 \\ 6.8 - 7.1 \\ 10.0 - 12.0 \\ 5 \end{array}$		•	
TAXON	SEX	LIFE STAGE	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
ROTIFER SPP.	A	A	8	18
NEMATODA	A	Α	35	49
POLYCHAETA	A	E	175	115
PULYCHAETA	A	L	302	171
OLIGOCHAETA	Α	ι	4	Ģ
PELECYPODA	A	L	19	57
ACARINA	A	A	6	14
COPEPGD NAUPLII	A	N	627	297
E_ AFFINIS	A	C	85	91
E. AFFINIS	M	A	6	14
P. CORONATUS	A	C	25	32
P. CORONATUS	F	A	769	602
P. CORONATUS	м	A	556	468
A. TONSA	А	С	140	92
A. TONSA	F	A	196	72
A. TONSA	м	A	48	44
HARPACTICOIDA	A	A	6	10
HARPACTICOIDA	· M	A	17	37
ECTINOSOMA	А	Α	927	493
CIRRIPEDIA	А	N	27	37

IA SALEH EN 1978

-	TABLE 3.1.8-1 CONTINUED								
	DATE 12, NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	/13/78 5.0- 5.8 10.1-11.0 7.1- 7.4 5.0- 6.0 2-3 1.8	LIFE						
	TAXON	SEX	STAGE	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT				
	ROTIFER SPP.	A	A	889	······································				
	NOTHULCA	A	Α	178	382				
	K. QUADRATA	A	A	22	96				
	K. BOSTONIENSIS	Α	A	22	70 96				
	SYNCHAETA	A	A	44	76 96				
	F. LONGISETA	A	A	. 22	96				
	P. HUDSONI	A	Δ	22					
	POLYCHAETA	A	F	533	96				
	POLYCHAETA	A	1	111	287				
	GASTROPUDA	A	-	22	191				
	PELECYPODA	· A	1	22	96 96				
	COPEPOD NAUPLII	A	Ň	2156	1659				
	E. AFFINIS	A	C	333	1159				
	E. AFFINIS	F	Ā	44	96				
	E. AFFINIS	Μ	Ą	200	438				
	P. CORONATUS	A	C	44	191				
	P. CURONATUS	м	Ā	22	96				
	HARPACTICOIDA	A	С	44	96				
	ECTINOSOMA	A	A	1222	1127				
	H. FOSTERI	A	с	22	96				
	C. BICUSPIDATUS	. Α	Ā	22	96				
	CIRRIPEDIA	A	N	22	96				

IA SALEM EN 1978

TABLE 3.1.8-2 RANK, TOTAL NUMBER, ANNUAL MEAN DENSITY AND PERCENT TOTAL CATCH OF MICROZOOPLANKTON - 1978.

DATE	01/01/78-12/31/78
NO. OF SAMPLES	141
WATER TEMPERATURE (C)	0.6-28.7
DISSOLVED OXYGEN (MG/L)	5.1-14.9
PH	6.5- 7.6
SALINITY (PPT)	1.0-12.0
PUMPS OPERATING	1-6
TOTAL VOLUME FILTERED (M3) 60.0

	TAXON	LIFE Stage	SEX	RANK	NUMBER	NUMBERS/CUBIC METER	PERCENT
•••	ROTIFER SPP.	A	A	1	663047	11051	28.6
	COPEPOD NAUPLII	N	A	2	414919	6915	17.9
	GASTROPODA	L	A	3	234007	3900	10.1
	ECTINOSOMA	Α	A	4	173538	2892	7.5
	POLYCHAETA	E	A	5	143653	2394	6.2
	A. IONSA	A	F	6	121002	2017	5.2
	A. TONSA	С	А	7	117307	1955	5.1
	P. CORONATUS	, Α	F	8	93062	1551	4.0
	P. CORONATUS	. A	м	9	65720	1095	5-8
	E_ AFFINIS	С	A	10	48516	809	2.1
	CIRRIPEDIA	Ν.	A	11	37974	633	1.6
	P. CORONATUS	C	A	12	35510	592	1.5
	POLYCHAETA	L	Α	13	35069	584	1.5
	A. TONSA	A	M	14	34916	582	1.5
	E. AFFINIS	A	м	15	18250	304	0.8
	E. AFFINIS	A	F	16	13502	225	0 - o
	NEMATODA	A	A	17 .	13440	224	0.6
	8. ANGULARIS	A	A	18	8172	136	0.4
	HARPACTICOLDA	. A	A	19	7225	120	0.3
	ECTINOSOMA	C	A	20	7000	117	0.3
	NOTHOLCA	A	A	21	6238	104	0.3
	ROTIFERA A	A	А	22	3395	57	0.1
	SCOITOLANA	A	A	23	3183	53	0.1
	SCOTTOLANA	C	A	24	2236	37	0.1
	CRYPIONISCUS LARVAE	L	A	25	1689	28	0.1
	HARPACTICOIDA	C	А	26	1373	23	0.1
	H_ FOSTERI	A	F	27	1273	21	0.1
	KERATELLA	A	A	28	980	16	*
	INVERT. EGG	E	Α	29	893	15	×
	B. URCEOLARIS	A	Α	30	880	15	*
	TURBELLARIA	L	Α	31	879	15	*
	ERGASILUS	Α	м	32	674	11	×
	S_ CANADENSIS	A	Α	33	623	10	*
	TARDIGRADA	Α	A	34	615	10	*

★ - INDICATES BELOW REPORTABLE

IA SALEM EN 1978

3.1-405

1

	LIFE					
TAXON	STAGE	SEX	RANK	NUMBER	NUMBERS/CUBIC METER	PERCENT
OLIGOCHAETA	A	A	35	580	10	*
O. COLCARVA	A	A	36	480	8	*
R. CAUDATUS	Α	A	37	460	8	*
MOILA	A	A	38	455	8	
8. CALYCIFLORUS	Δ	Δ	38	455	8	*
C. VERNALIS	Ċ	Å	40	440	7	*
PELECYPODA	Ŭ	à	41	430	7	÷.
0. COLCARVA	Δ	Ē	42	390	7	-
S. CANADENSIS	ĉ	Å	43	375		# +
C. BICUSPIDATUS	Ċ	2	44	358	6	*
SCOTTOLANA		с с	45	347	8	
CIRRIPEDIA	~	, , ,		273	0	*
	, i	A A	46		5	*
O. COLCARVA	L.	A .	47	260	4	*
E. AFFINIS	A	A	48	250	4	*
K. QUADRATA	A	A	49	225	4	*
S. CANADENSIS	· A	F.	50	221	. 4	*
TURBELLARIA	A	A	51	213	4	*
H. FOSTERI	C	A	52	190	3	*
DIAPTOMUS	A	м	53.	180	3	*
BDELLOIDEA	A	A	54	175	3	*
ASPLANCHNA	Α	A	55	1 60	3	*
BOSHINA	A	Α	55	160	3	*
ROTARIA	A	Α	55	160	3	*
CYCLOPS	C	A	55	160	3	*
C. VERNALIS	A	м	55	160	3	*
ACARINA	A	A	60	150	3	*
O. COLCARVA	A	M	61	140	2	*
K. VALGA	Å	A	62	133	2	- •
HARPACTICOIDA	Â	M	63	130	2	- -
HAPPACIICOIDA	Å	F	64	127	· 2	÷.
ERGASILUS	ĉ	Å	65	120	2	, ,
PARADICRANOPHORUS	د ۸	2	66	100	2	*
	A A	2				*
C. VERNALIS	A .	F	66	100	2	*
C. VERNALIS	A	A	66	100	2	*
H. FOSTERI	A	. M	66	100	2	*
.P. CRASSIROSTRIS	A	F	66	100	2	*
BRANCHIONUS	A	A	71	88	1	*
T. LÚNGICORNIS	А	A	71	88	1	*
DIAPIOMUS	С	Α	73	08	1	*
SYNCHAETA	A	Α	73	80	1	*
COPEPODA	C	Α	75	75	1	*
P. CRASSIROSTRIS	A	· A	76	60	1	*
CRYPTONISCUS LARVAE	· A	Α	77	50	1	*

* - INDICATES BELOW REPORTABLE

.

.

TAXON	LIFE STAGE	SEX	RANK	NUMBER	NUMBERS/CUBIC METER	PERCENT
B. QUADRIDENTATUS	A	A	77	50		************
K. BOSTONIENSIS	Α	A	79	40	1	*
P_ HUDSONI	· A	A	79	40	1	*
F. LONGISÈTA	A	A	79	40	1	*
C. BICUSPIDATUS	Α	Α	79	40	1	*
OLIGOCHAETA	L	Α	83	20	*	*
OSTRACODA	A	Α	83	20	*	÷ -

TABLE 3-1-8-2

* - INDICATES BELOW REPORTABLE

3.1-407

IA SALEM EN 1978

	TABLE	3.1.8-3	
SUMMARY E	Y DATE OF INITIAL	. AND LATENT MEAN PE	RCENT SURVIVAL.
	MICROZOC)PLANKTON -1978.	

DATE	04/19/78	3 -	04/20/78		LIFESTAGE KEY: A = ADULT
LOCATION	INTAKE				C = COPEPODID
COLLECTION TIME	1042	-	0459		L = LARVAE
WATER TEMP. (C)	10.2	-	11.0		N = NAUPLII
COND_ DELTA T (C)	•	-		·	Y = CYPRIS LARVAE
DISS. OXYGEN (MG/L)	8.8	-	11.0		
SALIHITY (PPT)	5.5	-	8.0	,	
VOLUME FILTERED (M3)	3.6				

			1	0	000		0200			
TAX011		LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE ·	PERCENT	PERCEN DEAD
ROTIFER SPP.	A	A	0	0	0	0	0	0	0	0
ROTARIA	. A	A	1	100	0	0	0	0	0	0
NOTHOLCA	A	A	10	100	0	0	7	85	0	14
KERATELLA	Α	Α	Û	0	Û	0	2	0	0	100
BRANCHIONUS	А	Α	0	0	0	0	0	0	0	0
B. CALYCIFLORUS	Α	A	U	0	0	0	0	0	0	C
NEMATUDA	A	Α	0	0	0	0	1	100	0.	0
POLYCHAETA	A	E	0	0	0	0	0	0	0 '	0
PELECYPUDA	A	· L	0	0	0	0	0	0	0	0
BOSMINA	A	A	0	0	0 •	0	0	0	0	0
COPEPUD NAUPLII	4	N	91	81	8	9	85	89	3	7
T. LOUGICORNIS	F	A -	1	0	0	100	0	0	0	0
E. AFFINIS	Α	C	8	87	12	D	7	85	0	14
E. AFFINIS.	F '	Ą	3	33	66	0	3	100	0	0
E. AFFINIS	м	· A	9	100	0	0	1	100	0	0
SUNUTARIO	м	. A	0	0	٥	0	0	0	0	0
HARPACTICOIDA	A	Δ	0	0	0	0	0	. 0	0	0
HARPACTICOIDA	A	C	υ	0	0.	0	0	0	0	0
ECTINOSOMA	А	4	1	100	· 0	0	2	50	0	50
ECTINUSOM4	A	C	3	33	0	66	0	0	0	· o
H. FOSTERI	F	A	0	0	0	0	0	0	U	0
CYCLOPS	А	C	0	0	. 0	0	0	0	0	0
TARDIGRADA	Д	A	1	100	0	0	Ó	0	0	. 0

IA SALEM EN 1978

۰.

1

0400

TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT STUNNED	PERCENT
ROTIFER SPP.	A	A A A A A A A A A A A A A A A A A A A	2		0	100	Ú	0		0
ROTARIA	A	A	0	0	0	0	Ü	0	a	0
NOTHOLCA	A	A	10	50	30	20	· 5	40	20	40
KERATELLA	A	A	1	0	0	100	1	0	0	100
BRANCHIONUS	A	A	0	0	0	0	0	0	0	ð
8. CALYCIFLORUS	Α	A	1	0	0	100	0	0	0	0
NEMATODA	A	A	2	50	0	50	1	0	0	100
PULYCHAETA	Α	E	1	100	0	0	0	0	0	0
PELECYPODA	A	L	1	0	Ο	100	0	0	0	0
BOSMINA	A	A	Ú	0	0	0	1	0	· n	100
COPEPOD NAUPLII	Ą	N	113	92	â	7	83	90	ž	
T_ LONGICORNIS	F	A	υ	0	0	Ô	0	0	ñ	ñ
E_ AFFINIS	A	С	21	76	õ	23	14	85	7	ž
E. AFFINIS	F	A	4	50	25	25	.,	0	0	0
E_ AFFINIS _	M	A	5	80	0	20	ů	n	0	0
DIAPTOMUS	м	A	1	0	õ	100	0	ñ	0	ő
HARPACTICOIDA	A	Α	ú	Ő	n	0	2	0	0	100
HARPACTICOIDA	Α	C	õ	0	0	Ö	1	0	0	100
ECTINUSOMA	A	Ā	ž	100	ő	ů.	0	0	0	100
ECTINOSOMA	A	c	ō		0 0	ñ	0	0	0	0
H_ FOSTERI	F	Ă	0 0	õ	ñ	õ	1	100	n	0
CYCLOPS	A	С	õ	Ő	ů Ú	ň	1	100	0 0	0
TARDIGRADA	A	A	ů Ú	ñ	õ	ő	1	100	U A	0

IA SALEM EN 1978

÷

0800

-

TABLE 3.1.8-3 CONTINUED	

1	2	0	0	
---	---	---	---	--

TAXON	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT Dead
ROTIFER SPP.	A	A	1	100	0	n
RUTARIA	А	Ą	Ó	0	ō	ŏ
NOTHULCA	A	A	. 1	0	ō	10.0
KERATELLA	А	A	· 2	50	50	n ·
BRANCHIONUS	A	Α.	1	100	Ū	Ő
B. CALYCIFLORUS	A	A	D	0	Ō	õ
NEMATODA	Α	Α .	4	25	25	50
POLYCHAETA	A	E	. 0	0	0	Ō
PELECYPODA	A	L	0	0	0	õ
BOSMINA	A	Α	0	0	Õ	ō
COPEPOD NAUPLII	A	N	93	80	7	11
T. LUNGICORNIS	F	Α	0	0	0	D
E. AFFINIS	A	C	. 18	77	11	11
E. AFFINIS	F	A	1	0	Ó	100
E. AFFINIS	M	A	. 7	100	0	0
DIAPTOMUS	M	A	0	0	Ő	ō
HARPACTICOIDA	A	A	3	ō.	ō	100
HARPACTICOIDA	Α	. C	ō	õ	ň	, i i i i i i i i i i i i i i i i i i i
ECTINOSOMA	Α .	Â	ā	· ñ	ñ	ň
ECTINOSOMA	Α	c	1	ñ	ň	100
H. FOSTERI	F	Ă.	ò	0	0	130
CYCLOPS	Å	c	ŏ	õ	0	0
TARDIGRADA	A	Ă	õ	õ	Ő	ŏ

IA SALEM EN 1978

DATE	04/19/74	8 - 04/20/7	8	LIFEGTAGE KEY: A = ADULT
LOCATION	DISCHAR	GE		C = COPEPODID
COLLECTION TIME	1044	- 0505		L = LARVAE
WATER TEMP. (C)	10.9	- 11.5		N = NAUPLII
COND_ DELTA T (C)		•		Y # CYPRIS LARVAE
DISS. OXYGEN (4G/L)	8.4	- 10.2		
SALINITY (PPT)	5.5	- 8.0		
VOLUME FILTERED (M3)	2_8			

TABLE 3_1.8-3 Continued

		K LIFE Stage		0	000		0200			
TARDN	SEX		TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT Dead	TOTAL Number	PERCENT LIVE	PERCENT Stuhned	PERCENT DEAD
TURBELLARIA	A	A	••••••••••••••••••••••••••••••••••••••	100		, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*************		96	
ROTIFÉR SPP.	A	A	1	100	0	õ	2	100	0	Ŭ
NUTHOLCA	A	A	12	75	16	8	6	83	ñ	16
KERATELLA		A	0	ū	ů.	ñ	ň	0	ບ ຄ	100
B. CALYCIFLORUS	A	A	Ū	ō	ũ	ō	'n	ñ	ő	100
NEMATODA	A	Α.	ž	100	õ	ñ	3	33	33	33
POLICHAETA		E	1	100	õ	ñ	õ	- - -	1	
BOSHINA	Α	Ä	Ó	νū	ō	õ	ñ	ñ	ő	õ
OSTRACODA	A	A	0	ō	• 0	ñ	õ	ň	ň	ő
COPEPGD NAUPLII	A	N	154	92	• •	ž	134	88	2	ŝ
E. AFFINIS	A	Ä	0	ā	ò	ō	A	0	ñ	0
E. AFFINIS	Α	C	12	83	ō	16	18	83	11	د
E. AFFINIS	F	Å	ŝ	80	20	0	10	100		5
E_ AFFINIS	M	A	6	100	-0	ů 0	7	100	0	ů
HARPACTICOIDA	A		2	100	0	ň		100	0	Ŭ
HARPACTICOIDA		c	ō	0	ů Ú	0	0	0	0	Ű
ECTINOSOMA	Ä	Ĩ.	2	50	ů,	50	U A	22	ں خ2	U
ECTINOSOMA	Â	. C	1	30	100	20	0	33	00	U
C. BICUSPIDATUS	Ē	Ā	i	õ,	0	100	ŭ	ŭ	0	0

IA SALEM EN 1978

.

8

3.1-411

ŝ

4

				0	400	0800				
TAXON	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT St.Unned	PERCENT DEAD
TURBELLARIA	A	A	0	0						
RGTIFEP SPP.	A	Α	0	Ō	Ö	ŕ · 0	õ	ņ	ő	0
NOTHOLCA	Α	А	6	83	16	ō	ŭ	100	0	0
KERATÉLLA	A	Α	U	0	. 0	Ď	1	001	0 N	100
H. CALYCIFLORUS	А	A	1	0	° 100	Ō	ò	ñ	ň	100
NEMATUDA	Δ	Ą	0	0	0	0	1	100	ň	0 Ú
PULYCHAETA	A	E	1.	100	0	0	1	100	õ	ñ.
805 MINA	A	A	0	0	0	0.	ż	100	ő	n
OSTRACODA	А	A	0	υ	0	0	ō	0	õ	ň
COPEPOD NAUPLII	A	N	202	94	3	1	129	87	ă	उँ
E. AFFI'IS	A	A	Ũ	0	0	0	0	0	õ	តី
E. AFFINIS	A	C	30	90	0	10	8	87	õ	12
E. AFFINIS	F	A	3	100	0	0	6	83	16	
E. AFFIAIS	M	A	0	0	0	0	5	100	ň	ň
HARPACTICOIDA	Α	A	0	U	0	ō	ā	0	ñ	ő
HARPACTICOIDA	A	C	0	0	Ū	Ó	õ	õ	ő	ŏ
ECTILOSOMA	A	Α .	5	80	Ō	20	3	33	ň	66
ECTINOSONA	A	C	0	0	Ö	0	2	100	ő	0
C. BICUSPIDATUS	F	A	υ	ō	Ő	õ	ñ	, 50	ň	ŏ

IA SALEM EN 1978

1-412

ω

			1200						
TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT	PERCENT Stunned	PERCENT DEAD			
TURBELLARIA	A	A	0	()	·····	 0			
ROTIFER SPP_	A	A	õ	ñ	0	0			
NOTHOLCA	A	A	8	62	12	25			
KERATELLA	A	A	õ	Ű	.0	5,			
8. CALYCIFLORUS	A	A	· õ	õ	0	0			
NEMATODA	Α	A	õ	ñ	0	0			
POLYCHAETA	A	E	õ	õ	ő	0			
BOSMINA	Α	A	ñ	ň	n	0			
OSTRACODA	Α	A	2	100	0	0			
COPEPOD NAUPLII	A	N	147	81	8	10			
E. AFFINIS	А	Å	1	0	0	100			
E. AFFINIS	A	c	Å	100	0	100			
E_ AFFINIS	F	A	ž	100	0	0			
E. AFFÍNIS	м	A	5	60	0	40			
HARPACTICOIDA	Α	A	1	100	ŏ	40			
HARPACTICOIDA	A	С	i	100	ă	0			
ECTINOSOMA	A	A	ź	0	õ	100			
ECTINOSOMA	A	С	ō	õ	0	,00			
C. BICUSPIDATUS	F	4	1	100	ŭ	0			

IA SALEM EN 1978

1

LIFESTAGE KEY: A = ADULT C = COPEPODID L = LARVAE N = NAUPLII Y = CYPRIS LARVAE 06/28/78 - 06/29/78 041E

0000

LUCATION	INTAKE		
COLLECTION TIME	1530	-	0647
WATER TEMP. (C)	21.0	-	26.8
CONUL DELTA T (C)	3.8	-	6.1
DISS. OXYGEN (MG/L)	6.7	-	8.4
SALINITY (PPT)	4.0	-	6.0
VOLUME FILTERED (M3)	4_0		

				+						
ΤΑΧΟΝ	5 F X	LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT
RCTIFER SPP.	 A	A A	1	100	0	0	0	0	0	0
B. ANGULARIS	А	A	1	0	100	0	0	0	0	0
B. CAUDAIUS	A	4	0	0	0	0	0	0	0	U
ASPLANCHNA	Å	4	0	υ	ú	0	1	100	0	D
NEMATUDA	A	4	1	100	0	0	3	100	0	U
GASTRUPDDA	A	Α	0	υ	υ	0	3	66	0	33
GASTRUPODA	A	L	5	40	20	40	6	83	0	16
M0144	Α	A	0	0	υ	0	0	0	0	0
COPEPOD NAUPLII	A	N	113	71	15	13	77	71	6	22
E. AFFINIS	A	C	28	85	10	3	13	61	7	30
E. AFFINIS	F	Α	6	66	16	16	8	75	12	12
E. AFFINIS	м	A	7	71	υ	28	2	50	0	50
P. CORONATUS	A	C	2	100	0	0	0	0	0	0
P. CURONATUS	F	A	7 .	85	0	14	3	66	0	33
P. CURONATUS	м	A	0	0	0	0	0	0	0	0
A. TONSA	4	С	2	50	0	50	7	42	28	- 28
A. TUHSA	F	A	21	85	14	0	17	64	11	23
A. TUNSA	м	A	5	60	0	40	6	50	33	16
HARPACTICOIDA	A	4	2	. 50	50	0	0	Ō	0	0
HARPACTICOIDA	A	C	0	0	υ	0	0	Ō	Ó	Ō
SCOTFOLANA	A	A	0	0	υ	0	0	D	0	0
SCOTTOLANA	Α .	C	0	0	· 0	0	0	0	0	0
ECTINOSO 44	А	A	3	33	33	33	5	40	40	20
ECTINOSOMA	Α	С	0	Ú	0	0	0	0	0	0
H_ FOSTERI	¥	A	1	0	100	0	0	0	0	· 0
H_ FOSTERI	м	Α	1	0	100	0	0	0	0	0
C_ VERNALIS	F	A	0	0	0	0	0	0	0	0
C. VERNALIS	ð]	A	0	U	0.	0	0	0	0	0
CIRRIPEDIA	Α	N	5	100	0	0	1	100	0	0

.

IA SALEM EN 1978

0200

ω • 1-414

.

				0400					0800				
TAXON	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD			
ROTIFER SPP.		 A		100	0		0	0	n	()			
B. ANGULARIS	Â	2	ũ	0	õ	0	0	õ	ñ	0 0			
B. CAUDATUS	Â	Â	1	100	ũ	õ	õ	õ	ő	ũ			
ASPLANCHNA	۵	۵	0	0	0		0	0	0	0			
NEMATODA	Δ	2	0	0	0	υ Λ	2	100	ň	0 0			
GASTROPODA	2	^	1	100	0	0	c (75	ő	25			
GASTROPODA	2		7	42	0	57	4 5	80	0	20			
MOINA	2	<u>د</u>	, 0	÷2	0	21	, 0	0	C C	0			
COPEPOD NAUPLII	~	A	107	64	2	32	68	54	6	41			
E. AFFINIS	à	с С	29	65	2	31	11	63	0	36			
E. AFFINIS	ĉ		27	66	5	33	2	100	ň	0			
E. AFFINIS	F 64	A A	12	83	0 0	16	5	100	ñ	ñ			
P. CORONATUS	Δ.	ĉ	10	0	0	0	3	100	ñ	ŏ			
P. CORONATUS	5	<u>د</u>	6	100	ő	0	7	57	n	42			
P. CORONATUS	r M	A .	1	100	0	0	4	100	0	~ L			
A. TOUSA	A.	ĉ	10	50	20	30	11	72	0	27			
A. TONSA	r r	C A	26	65	11	23	25	56	12	32			
A. TONSA	M	A .	10	4Ü	20	40	10	60	10	30			
HARPACTICOIDA	Δ.	Â	,0	100	20	0	0	0	0	0			
HARPACTICOIDA	Â	r	1	0	100	ñ	õ	ő	3	ő			
SCOTTULANA	Δ	4	0	0 0	100	0	õ	õ	ŏ	õ			
SCOTTOLANA	Δ	ĉ	1	100	õ	ů	õ	õ	õ	õ			
ECTINOSOMA	A	A	1	100	ŭ	Ď	1	õ	100	õ			
ECTINOSOMA	A	ĉ	Ś	60	20	20	'n	Ö	0	Õ			
H. FOSTERI	F	Ă	ō	0	ĩõ	0	0	õ	õ	õ			
H. FOSTERI	м	A	õ	õ	õ	0	0	õ	ő	ů			
C. VERNALIS	F	A	1	100	ñ	0	0 0	õ	ŏ	õ			
C. VERNALIS	, M	A.	1	100	ŭ	Ő	0	õ	ŏ	ง้			
CIRRIPEDIA	A	N	5	80	õ	20	3	100	ō	õ			
		••	.		-	~~	3						

.

IA SALEM EN 1978

.

•

•

.

.

1200	1	2	0	υ	
------	---	---	---	---	--

TAXON	SEX	LIFE Stagë	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
ROTIFER SPP.	A	A	0	0	0	0
B. ANGULARIS	A	A	1	100	0	0
B. CAUDATUS	A	Α	0	υ	0	0
ASPLANCHNA	A	A	0	0	0	0
NEMATODA	Α	А	2	100	0	0
GASTROPODA	Α	A	2	50	0	50
GASTROPODA	Α	L	5	80	0	20
MOINA	Α	Α	1	100	0	0
COPEPOD NAUPLII	Α	N	33	90	Ō	9
E. AFFINIS	A	С	18	61	5	33
E. AFFINIS	F	A	5	100	Û	0
E. AFFINIS	м	А	4	25	25	50
P. CORÚNATUS	Α	С	2	100	0	õ
P. CORONATUS	F	Α .	6	83	ō	16
P. CORONATUS	Μ	A	0	D	ō	õ
A. TONSA	A	С	5	60	Ű	40
A. TONSA	F	A	41	60	2	36
A. TONSA	м	А	4	50	ō	50
HARPACIICOIDA	Α	A	4	25	25	50
HARPACTICOIDA	A	C	1	0	0	100
SCOTTULANA	A	Α	· 1	100	Ŭ	0
SCOTTOLANA	Α	C	3	100	0	õ.
ECTINOSOMA	A	Α	5	80	υ	20
ECTINOSOMA	Α	С	. 0	0	0	0
H_ FOSTERI	F	Α	1	100	Ō	ō
H. FOSTERI	м	A	0	Ũ	0	Ō
C. VERNALIS	F	Δ.	0	ŏ	ō	ō
C. VERNALIS	M	Â	· 0	õ	õ	õ
CIRRIPEDIA	Δ.	· N	· 7	71	õ	28

IA SALEM EN 1978

1

LIFESTAGE KEY: A = ADULT C = COPEPODID L = LARVAE N = NAUPLII Y = CYPRIS LARVAE 06/28/78 - 06/29/78 DISCHARGE DATE LOCATION

	DISCHARGE.	
COLLECTION TIME	1534 -	0651
WATER TEMP. (C)	29.0 -	30.2
COND. DELTA T (C)	3.8 -	6.1
DISS. UXYGEN (MG/L)	5.2 -	6.9
SALINITY (PPT)	4.0 -	6.0
VOLUNE FILTERED (M3) 3.6	

		0000					0200			
TAXON	SEX	LIFE STAGE	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT DEAD
ROTIFER SPP.	A	A	()	0	 0			100	0	 0
B. CALYCIFLORUS	A	A	1	100	õ	0 0	ů.	0	0	0
B. ANGULARIS	A	A	1	100	õ	ñ	1	100	0	U O
8. CAUDATUS	A	A	1	100	õ	õ		0	0	0
NEMATODA	A	A	2	50	õ	50	1	100	0	U
POLYCHAETA	A	L	1	100	ő	0		0	0	0
GASTRUPODA	A	L	11	63	ő	36	7	100	0	U
ACARINA	A	, A	0	Ū.	õ	0	4	100	0	0
OSTRACUDA	A	A	1	100	ñ	0	1	100	0	0
COPEPOD NAUPLII	A	N	90	72	13	14	64	59	10	0
E. AFFINIS	A	C	17	82	0	17	13	92	0	29
E_ AFFINIS	F	A	5	60	20	20	2	100	U	(
E. AFFINIS	м	A	1	100	0	0	3	100	0	U
DIAPTOMUS	A	c	1	0	0	100	2		0	0
P_ CORUNATUS	Α	c	2	รม	ő	50	U O	0	0	U
P. CORONATUS	F	Ă	7	71	0	28	U	0 77	U	U
P. CORONATUS	M	A	5	80	20	0	Y 2	100	0	22
AL TONSA	A	Ċ	13	69	20	30	15	73	U	0
A. TONSA	F	Ā		55	0	44	12	87	0	26
A. TONSA	м	A	í.	25	25	50	0	0(0	12
HARPACTICOIDA	A	A	õ	õ	0	50	0	U O	U	Ű
HARPACTICOIDA	A	ć	0	ň	0	0	U	U	Ű	0
SCOTTOLANA	A	Ā	ů Ú	0 . Ú	0	0	0	0	U Q	0
SCOTTULANA .	A	ĉ	0	ő	0	0	0	0	U	0 0
ECTINUSOMA	A	Ā	5	· 40	20	40	U 4	U	U	0
ECTINOSOMA	A	c	2	40	20	100	1	U	100	0
CYCLUPS	A	č	0	ň	0		0	U	0	0
CIRRIPEDIA	A	Ň	6	83	5	U	U	U	U	0
CRYPTONISCUS LARVAE	A	Ĺ	õ	0	16 0	0	1 0	100	0	0

.

IA SALEM EN 1978

PERCENT TAXON LIFE TOTAL PERCENT SEX PERCENT TOTAL PERCENT PERCENT PERCENT LIVE STAGE NUMBER LIVE STUNNED DEAD NUMBER STUNNED DEAD ----...... ____ -----____ --------------..... RÖTIFER SPP. Δ Δ U S. CALYCIFLORUS Ω Δ. 8. ANGULARIS Α Ű Α 5. CAUDATUS A Α NEMATODA A POLYCHAETA a Ł GASTRUPODA L. · 0 ACAPTIA Δ **OSTRACUDA** υ Δ υ COPEPOD NAUPLII ы E. AFFINES С - 7 E. AFFINIS A Ű U E. AFFINIS Δ Ω DIAPTONUS с Ũ P. CORDIATUS С U n P. LURUNATUS n P. CORONATUS Α υ A. TÜRSA C A. TUNSA A A. 1065A A HARPACTICOIDA Ű Α HARPACIICOIDA Ű C n SCOTTOLAVA A SCUTTOLANA С О ECTINUS044 Δ ECT100S084 C CYCLOPS C ο. CIRRIPEDIA Û N CRYPTONISCUS LARVAE L n

IA SALEM EN 1978

ω F Å L ώ

A

TAB	L	E		3	•	1	•	8	-3	
C	0	N	T	I	N	U	E	D		

•	
	1200

TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
ROTIFER SPP.	A	A	0	0	0	 J
B. CALYCIFLORUS	A	A	1	100	U	Ō
B. ANGULARIS	A	A	0	0	0	0
B. CAUDATUS	A	A	Ú	Û	0	0
NEMATODA	A	A	Ú	0	0	Ō
POLYCHAETA	A	L	1	100	0	Ō
GASTROPODA	A	L	7	100	ō	Ō
ACARINA	A	A	0	0	ú	0
OSTRACODA	A	А	1	ú	Ū	100
COPEPOD NAUPLII	A	N	32	75	Û	25
E. AFFINIS	Α	С	11	81	9	9
E_ AFFINIS	F	A	4	75	0	25
E. AFFINIS	М	A	5	100	0	0
DIAPTOMUS	A	C	0	΄ U	0	ŋ
P. CURUNATUS	A	C	0	C	Û	0
P. CORONATUS	F	A	12	100	Ú	0
P. CORÚNATUS	N M	A	3	66	0	33
A. TONSA	A	С	8	87	0	12
A. TOUSA	F	A	14	71	0	28
A. TONSA	ħi.	A	2	50	0	50
HARPACTICOIDA	A	A	0	υ	0	0
HARPACTICOIDA	Α	C	Û	Û	0	0
SCOTTOLANA	A	A	1	0	0	100
SCOTTOLANA	A	C	. 0	0	0	0
ECTINOSOMA	А	Α	13	46	0	53
ECTINUSOMA	A	́С	• 0	0	0	0
CYCLOPS	A	C	υ	0	0	G
CIRRIPEDIA	A	N	1	0	Ú	100
CRYPTONISCUS LARVAE	Α	L	Û	٥	0	0

IA SALEM EN 1978

-				
DATE	09/13/78	8 -	09/14/78	LIFESTAGE KEY: A # ADULT
LUCATION	INTAKE			C = COPEPODID
COLLECTION TIME	0953	-	0502	L = LARVAE
WATER TEMP_ (C)	21.2	-	23.5	N = NAUPLII
COND. CELTA T (C)	8.2	-	11.1	Y = CYPRIS LARVAE
DISS_ OXYGEN (MG/L)	6,5	-	8.3	
SALINITY (PPT)	6.0	•	9.0	
VOLUME FILTERED (M3) 6.6			

				0	000			. 0500				
TAXUN	SEX	LIFE STAGE	TOTAL Number	, PERCENT LIVE	PERCENT Stunned	PEPCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD		
ROTIFER SPP.	A	A	0	0	0	0	. 0	0	0	0		
NEMATODA	Α	Α	3	100	· 0	0	' O	0	0	0		
POLICHAETA	Α	Ł	2	100	υ	0	1	100	0	0		
OLIGOCHAETA	Α	A	· U	0	0	0	0	0	0	0		
GASTRUPJDA	Α	A	0	0	υ	0	0	0	0	0		
GASTRUPODA	Α	L	7	71	14	14	14	50	28	21		
COPERUD NAUPLII	A	- N	12	91	0	8	6	100	0	0		
E. AFFINIS	м	4	υ	Û	Q	۵	0	0	0	0		
P. CORUNATUS	A	C	0	0	0	0	U	U	0	0		
P. CORUNATUS	F	A	2	100	Û	0	3	100	0	. 0		
P. CORUNATUS	M	A	υ	0	0	0	1	0	100	0		
A. TONSA	Α	C	17	76	5	17	12	58	8	33		
A. TUNSA	F	4	12	66	8	25	1	100	0	0		
A. TUNSA	м	A	1	100	0	0	1	0	0	100		
ECTINÓSUMA	А	A	11	81	9	9	10	80	10	10		
O. CULCARVA	Α	A	2	100	0	0	0	0	0	0		
O. COLCARVA	Α	C	0	0	Û	D	1	100	0	0		
CIRRIPEDIA	Α	N	1	100	0	D	0	Ũ	0	0		

IA SALEM EN 1978

3.1-420

.

• •		2.5	45	
п	4	ü	< 1	

TAXON	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT	PERCENT Stunned	PERCENT
ROTIFER SPP.	A	A	Ú	0	0	0	0	0	0	0
NEMATODA	А	Ą	3	100	0	0	0	0	ð	0
POLYCHAETA	A	L	Û	0	Q	0	0	0	. 0	Ũ
OLIGOCHAETA	A	A	0	υ	U	0	0	0	0	0
GASTROPODA	A	A	0	0	0	0	5	100	0	0
GASIKOPODA	A	L	12	83	16	0	11	72	0	27
COPEPOD NAUPLII	Α	N	7	71	0	28	4	75	0	25
E. AFFINIS	ĕ	А	Û	Û	Û	0	1	100	Ũ	0
P. CORUNATUS	A	C	0	Û	U	0	1	100	Ü	0
P. CORUNATUS	F	A	3	66	33	0	2	100	0	Û
P. CORONATUS	м	A	υ	Ű	υ	0	0	0	0	Ú
A_ IONSA	A	С	15	80	0	20	1 Ü	40	J	60
A. TONSA	F	A	4	75 '	0	25	8	75	Û	25
A. TONSA	M	Α	1	0	Û	100	0	۵	0	Û
ECTINOSOMA	A	A	8	75	0	25	8	75	12	12
O. COLCARVA	Α	A	1	100	0	0	0	0	U	Ú
O. CULCARVA	A	C	U	0	0	0	0	0	0	0
CIRRIPÉDIA	A	N	٥	0	0	٥	· O	0	Û	0
				1	200					
TAXON	SEX	LIFE Stage	TUTAL Nümber	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD				
ROTIFER SPP.	A	A		••••••••••••••••••••••••••••••••••••••		100	, (ag - 4)			
NEMATUDA										
D	A	A	()	0 .		O				
POLYCHAETA	A A	A L	0 1	0 · U	Ŭ Q					
OLIGOCHAETA	A A A	A L A	() 1 2	U	Û	100				
	А А А	A L A A	1		0 0					
GLIGOCHAETA	А А А А	A L A A L	1 2	0 50 0	0 0 0 0	100 50				
CLIGOCHAETA GASTRUPODA	A A A A A	A L A L N	1 2 0	0 50 0 64	0 0 0	100 50 0 0				
CLIGOCHAETA GASTRUPODA GASTRUPODA	А А А А А М	A L A L N A	1 2 0 17 6	0 50 64 33	0 0 0 35	100 50 0				
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII	A A A A A A M Å	A L A L N 4 C	1 2 0 17	0 50 64 33 0	0 0 0 35	100 50 0 0 66	•			
CLIGOCHAETA GASTRUPODA GASTRUPODA Copepod Nauplii E. Affinis	A A A A A A M 4 F	A L A L N A C A	1 2 0 17 6 0	0 50 64 33 0 0	0 0 0 35	100 50 0 0 66 0	• •			
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS	А А А А А А А А А М Ц Г М	A L A L N A C A A	1 2 0 17 6 0	0 50 64 33 0 0 100	0 0 0 35	100 50 0 66 0 0 0				
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD HAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS	А А А А А А А А А А К М А	A L A L N A C A A C	1 2 0 17 6 0	0 50 64 33 0 0 100	0 0 35 0 0 0 0	100 50 0 66 0 0 0 0 0 0 0				
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS A. IONSA	A A A A A A A A A A A A A A A A A A A	4 4 4 1 N 4 C 4 C 4 C	1 2 0 17 6 0	0 50 64 33 0 0 100 100 50	0 0 35 0 0 0 0	100 50 0 66 0 0 0 0 50	•			
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS A. TORSA	A A A A A A M 4 F M A F M	4 L A A L N A C A A C A A	1 2 0 17 6 0	0 50 64 33 0 0 100 100 50 66	0 0 35 0 0 0 0 0 0 0 0	100 50 0 66 0 0 0 0 0 50 50 33				•
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS A. TONSA A. TONSA A. TONSA	A A A A A A M A F M A F M A	А 	1 2 0 17 6 0 0 0 0 3 1 4 6	0 50 64 33 0 100 100 50 66 0	0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 50 0 66 0 0 0 0 50 33 0				•
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS A. TOMSA A. TOMSA A. TOMSA ECTIMOSOMA	A A A A A M 4 F M A F M A A	4 L 4 4 L N 4 C 4 A 6 C 4 A 4 A 4	1 2 0 17 6 0 0 0 0 1 4 6 0 8	0 50 64 33 0 100 100 50 66 0 87	0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 50 0 66 0 0 0 0 50 50 33 0 12				
CLIGOCHAETA GASTRUPODA GASTRUPODA COPEPOD NAUPLII E. AFFINIS P. CORONATUS P. CORONATUS P. CORONATUS A. TONSA A. TONSA A. TONSA	A A A A A M À F M A F M A A A	4 L 4 4 L N 4 C 4	1 2 0 17 6 0 0 0 0 3 1 4 6	0 50 64 33 0 100 100 50 66 0	0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 50 0 66 0 0 0 0 50 33 0				

IA SALEM EN 1978

.

DATE	09/13/78	3 -	09/14/78
LOCATION	DISCHARC	ΞE	
CULLECTION TIME	0957		0506
WATER TEMP. (C)	27.0	-	31.7
COND. DELTA T (C)	8.2	-	11.1
DISS. OXYGEN (MG/L)	4 . 4	•	6.0
SALINITY (PPT)	5.0	-	10.0
VOLUME FILTERED (M3)	6.6		

LIFESTAGE	KEY:	Α	Ξ	ADULT
		С	=	COPEPODID
		L	=	LARVAE
		Ν	=	NAUPLII
		Y	ц	CYPRIS LARVAE

				0	000			020	00	
ΤΑχύμ	SEX	LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT	PERCENT	PERCENT DEAD
RUTIFER SPP.	A .	4	0	0	υ υ	0	0,	0	0	0
ROTIFERA A	Α	A	1	100	Û	0	0	0	0	0
NUTHULCA	Α	A	2	50	0	50	0	0	0	0
B. ANGULARIS	A	A	2	50	υ	50	0	0	0	0
NENATODA	A	A	5	Û	0	100	13	23	0	76
POLYCHAETA	A	E	3	33	Ø	66 .	0	0	0	0
POLICHAETA	A	L	0	0	0	0	1	100	0	0
GASTRUPODA	A	A	1	100	0	0	υ	0	0	0
GASTRÚPUDA	A	L	9	88	11	0	18	100	0	0
COPEPOD NAUPLII	Α	N	32	81	3	15	27	77	11	11
COPEPUD NAUPLII	F	4	0	0	υ	0	0	0	0	0
P. CORUNATUS	A	С	1	O	100	0	0	0	0	0
P. CORUNATUS	F	A	5	100	Ũ	0	3.	33	0	66
A. TONSA	A	С	6	83	16	0	21	71	9 .	19
A. TOMSA	F	A	υ	υ	0	0	1	100	0	0
A. TOUSA	м	А	3	100	ð	0	2	50	0	50
HARPACTICOIDA	А	A	0	0	0	0	1	100	0	0
ECTINOSOMA	A	A	9	88	11	0	10	80	20	0
- ECTINOSOMA	A	C	0	0	υ	0	1	100	0	0
C. VERNALIS	F	A	0	0	0	0	0	0	0	0
ERGASILUS	А	А	0	0	0	0	0	0	0	0
CIRRIPEDIA	Α	L	0	0	0	0	0	0	0	0
CIRRIPEDIA	A	N	4	50	50	0	2	0	50	50
CRYPTONISCUS LARVAE	A	L	0	0	0	0	D	0	0	0

IA SALEM EN 1978

TAXON .	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
ROIIFER SPP.	A	A	2	50	0	50	0	0	0	0
ROTIFERA A	A	A	1	100 .	. Ú	0	0	0	Q	υ
NOTHOLCA	A	A	0	0	0	0	0	0	0	Û
H. ANGULARIS	A	A	1	100	0	Û	0	Û	0	Û
NEMATODA	A	A	11	U U	U	100	1	0	0	100
PÚLYCHAETA	A	E	0	0	U	0	Û	0	0	a
POLYCHAEIA	A	L	2	50	D	50	1	100	U	J
GASTROPODA	A	A	Û	0	0	. 0	0	0	0	0
GASIRUPODA	A	L	7	85	14	۵	15	73	0	20
CUPEPUD NAUPLII	A	N	15	33	Ó	60	9	66	0	. 33
COPÉPÚD NAUPLII	F	A	0	Û	, D	0	1	100	0	Ú
P. CÚRU IATUS	A	C	1	Û	Û	100	0	0	0	0
P. COROMATUS	F	A	0	0	0	D	3	65	0	33
A. TUNSA	A	C	11	36	9	54	4	75	0	25
A. TÚNSA	F	A	1	100	۵	0	3.	33	Û	60
A_ TOUSA	ři,	A	1	100	U	0	1	100	0	Û
HARPACTICOIDA	A	A	0	Ű	0	۵	Û	o	0	0
ECTINGSU4A	A	A	5	40	40	50	10	80	. 10	10
ECTINUSONA	A	C	0	۵	U	0	ũ	0	0	Û
C. VERHALIS	F	A	0	υ	D	0	1	100	Ū	. 0
ERGASILUS	A	A	U	0 .	0	0	0	0	0	Û
CIRRIPEDIA .	A	L	0	ü	0	0	1	100	ο.	0
CIRRIPEDIA	A	N	5	80	20	0	1	0	Ō	100
CRYPTONISCUS LARVAE	A	L	0	ú	Û	0	Ó	Ó	0	Û

1200

TAXON	SEX	L1FE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	
ROTIFER SPP.	A	A	Ű	0	0	0	
ROTIFERA A	A	A	0	۵	Û	Ü	
NOTHELLA	A	A	0	0	0	0	
B. ANGULARIS	A	A	U	Û	0	0	
NEFATODA	A	A	1	100	0	0	
POLICHAETA	A	E	ú	0	Û	0	
POLICHAETA	A	L	Ú	Û	Ŭ	0	
GASTRUPJDA	A	A	0	0	U	0	
GASTROPODA	A	L	18	66	Û	33	
COPEPOD NAUPLII	A	N	9	55	· 11	33	
COPEPOD NAUPLII	F	A	۵	0	Q	۵	
P. CORONATUS	A	C	2	50	0	50	
P. CGRUNATUS	F	A	2	100	G	0	
A. TÚNSA	A	C	8	62	0	37	
A. TONSA	F	A	3	33	0	65	
A. IOASA	м	A	1	0	0	100	
HARPACTICOIDA	A	A	1	100	U .	٥	
ECTINOSÓMA	A	A	8	87	0	12	
ECTINUSOMA	A	C	0	0	G.	0	
C. VERHALIS	F	A	U	D	U	0	
ERGASILUS	A	A	1	100	0	0	
CIRRIPEDIA	Α	L	0	Ú	0	0	
CIRRIPEDIA	A	N	1	Û	Û	100	
CRYPTONISCUS LARVAE	A	L	1.	0	100	Û	

IA SALEM EN 1978

0060

DATE	03/02/78-03/03/78		
NO. OF SAMPLES	12		·
WATER TEMPERATURE (C)	0.6- 2.1		
DISSOLVED OXYGEN (MG/L)	12.1-14.2		
РН	7.0		
SALINITY (PPT)	3.0- 6.0		
PUMPS OPERATING	6		
TOTAL VOLUME FILTERED (M	3) 600.0		
			+ 95%
TAXON		NUMBERS/100 CUBIC METERS	-
	*****	6.333	3.002
POLYCHAETA		0.708	0_903
OLIGOCHAETA		0.333	0 - 734
HIRUDINEA -		18.108	
N. AMERICANA		1.875	10.356 2.876
C, ALMYRA		0.183	0_404
E. TRILOBA C. Polita		0.167	0.367
C. LUNIFRONS		0_667	1 - 467
		24.717	21.330
COROPHIUM SPP. GAMMARUS SPP.		104.592	39.886
M. NITIDA		0-442	0.972
M. EDWARDSI		12.967	8.856
CAPRELLIDAE		0_167	0.367
C. SEPTEMSPINOSA		4_425	3,432
INSECTA		0.217	0.477
CHIRONOMIDAE		0_217	0.477

TABLE 3.1.8-4

IA SALEM EN 1978

 ******		TABLE 5.1.8-4 CONTINUED	
NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L)	2.5- 3.6 11.6-13.6		、
PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3)	7.2- 7.3 1.0- 4.0 2-4 400.0		
TAXON		NUMBERS/100 CUBIC METERS	+ 95% - CONFIDENCE LIMIT
 POLYCHAETA OLIGOCHAETA N. AMERICANA C. ALMYRA L. PLUMULOSUS CUROPHIUM SPP. GAMMAPHIS SPO		1.250 2.500 59.000 6.500 0.500 8.250 8.250	1.532 4.072 49.326 6.177 0.774 15.076
GAMMARUS SPP. M. Edwardsi C. Septemspinosa		95.000 22.000 2.500	37.169 15.353 4.623

3.1-425

IA SALEM EN 1978

 	****	IABLE 3.1.8-4 CONTINUED	*****
DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L)	04/19/78-04/20/78 9 10.2-11.0 8.8-11.0		
PH SALINITY (PPT) PUMPS OPERATING	7.0+7.6 5.5-8.0 1		
TOTAL VOLUME FILTERED (M	3) 315.0		+ 95%
 TAXON		NUMBERS/100 CUBIC METER	S - CONFIDENCE LIMIT
N. BACHEI		0.511	0717
POLYCHAETA		39-644	37.401
OLIGOCHAETA		0_633	1.460
HIRUDINEA		229-02	22.509
N_ AMERICANA		6620-289	4757.352
C. ALMYRA		1.556	1.134
E. TRILOBA		1.889 2.522	1 • 894 2 • 988
L. PLUMULOSUS Corophium spp.		16.144	9.384
GAMMARUS SPP.		515.200	176.295
M. EDWARDS1		25_678	19.553
P. PUGIO		0_933	1.076
C. SEPTEMSPINOSA		36 456	28.618
R. HARRISII		0.633	1.460

3

3.1-426

IA SALEM EN 1978

.

18200	NUMBERDY TOO CODIC METERD		
HYDROZOA		U.512	
B. VIRGINICA	555.0	0.512	
POLYCHAETA	1.556	2.144	
OLIGOCHAETA	U_889	1.356	
NUDIBRANCHIA	44_222	32.643	
L. AESTIVA	0.222	0.512	
ARGULUS SPP.	1.333	1.719	
N. AMERICANA	43075,522	27661.084	
L. AMERICANUS	12.222	21,990	
CHIRIDOTEA SPP.	3.333	2.977	
C. ALMYRA	7.778	9.627	
E. TRILOBA	103.556	162.073	
C. POLITA	12.667	10.022	
A. MEDIALIS	3_111	2.675	
COROPHIUM SPP.	47.778	18.741	
GAMMARUS SPP.	1615.333	697.446	
N. NITIDA	n - 555	0.512	
M. EDWARDSI	1.556	2.144	
P. PUGIO	67.178	50.851	
C. SEPTEMSPINOSA	390.389	516 ,655	
BRACHYURA	3.111	2 - 4 4 4	
R. HARRISII	5149.778	5421.909	
U. MINAX	142.222	230.791	
DIPTERA	0.222	0_512	
· -· · · -·			

•

IA SALEM EN 1978

DATE (7/12/78-07/13/78		
NO_ OF SAMPLES	12		•
WATER TEMPERATURE (C)	24.0-25.0		
DISSOLVED OXYGEN (MG/L)	6.2- 8.0		
РН			
SALINITY (PPT)	5.0-10.0		
PUNPS OPERATING	5-6		
TOTAL VOLUME FILTERED (M3	625.2		
			+ 95%
TAXON		NUMBERS/100 CUBIC METERS	
BOUGAINVILLIA SPP.		0.167	0.367
N. BACHEI		2.442	2.379
PLATYHELMINTHES		0.333	0.734
OLIGUCHAETA		0.167	0.367
HIRUDINEA		0.167	0.367
GASTROPODA		0.500	0.790
NUDIBRANCHIA		26.275	9.392
MACOMA SPP.		1.000	1.014
L. POLYPHEMUS		0.167	0.367
L. AESTIVA		28,500	27.153
ARGULUS SPP.		3-992	2.027
CIRRIPEDIA		0.333	0.495
N_ AMERICANA		18567.767	11662.938
L. AMERICANUS		64-658	62.971
CHIRIDOTEA SPP		1.167	1.266
C. ALNYRA		4.167	3.039
E. IRILOBA		414.558	341.809
C. POLITA		12.167	15.596
C. LUNIFRONS		0.833	0-654
A. MEDIALIS		22.883	24.017
COROPHIUM SPP.		315 975	215.939
GAMMARUS SPP.		1573-283	665.528
M. NITIDA		3.108	2.281
MONOCULODES SPP.		0.833	1.008
M. EDWARDSI		5.667	4.750
PARAPLEUSTES SPP.		1_608	1.864
P. PUGIO		129.875	85.655
C. SEPTEMSPINOSA		89_100	59.264
BRACHYURA		24.050	21.841
R. HARRISII		14299.000	15258,005
U. MINAX		0.333	0.734
CHIRONOMIDAE		0.167	0.367

IA SALEM EN 1978

3.1-428

, ,

DATE	07/27/78-07/28/78
NO. OF SAMPLES	12
WATER TEMPERATURE (C)	20.3-27.4
DISSOLVED OXYGEN (MG/L)	5.4- 6.7
РН	6.9- 7.4
SALINITY (PPT)	6.0- 8.0
PUMPS OPERATING	5
TOTAL VOLUME FILTERED (1	43) 600.0

	+ 95%		
TAXQN	NUMBERS/100 CUBIC METERS	- CONFIDENCE LIMIT	
N. BACHEI	3.000	2.453	
PHIALIDIUM SPP.	1.335	1.903	
B. VIRGINICA	68.353	31.524	
D. LEUCOLENA	U.107	0.307	
PLATYHELMINTHES		0.367	
TURBELLARIA	1_833	1.834	
NEMATODA	0.167	0.367	
POLYCHAETA	2.500	1,545	
OLIGOCHAETA	0.500	U.790	
NUDIBRANCHIA	70-855	35.164	
HACONA SPP_	0.833	1.008	
L. POLYPHEMUS	0.353	0.495	
L. AESIIVA	3.167	2.000	
ARGULUS SPP.	19.833	9.009	
N_ ANERICANA	1657.833	1041.202	
L. AMERICANUS	44.500	37.596	
C. ALNYRA	2.500	2.490	
E. TRILOBA	171.107	119.687	
C. POLITA	5,167	4.248	
CIROLANA	0.167	0.367	
C. LUNIFRONS	2.500	1.637	
A. MEDIALIS	· 6.353	3.786	
L. PLUMULOSUS	2.833	2.680	
COROPHIUM SPP.	305.833	115.641	
GAMMARUS SPP.	321,667	189.153	
M. NITIDA	11-667	7.144	
HAUSTORIIDAE	0.167	0.367	
MONOCULODES SPP.	1.500	1.545	
M. EDWARDSI	7.007	5.548	
PARAPLEUSTES SPP.	0.333	0_495	
ORCHESTIA SPP.	0.167	0.367	
P. PUGIO	303.167	104.205	
C. SEPTEMSPINOSA	39.000	31.082	
BRACHYURA	353-167	247.203	
R. HARRISII	12945.833	6651.140	
U. MINAX	25.833	26.459	

IA SALEM EN 1978

TABLE	3.1.8	-4
CONT	INUED	1

DATE	08/10/78-08/11/78
NO. OF SAMPLES	12
WATER TEMPERATURE (C)	26.7-28.7
DISSOLVED OXYGEN (MG/L)	6.0- 9.8
PH	7-2-7-4
SALINITY (PPT)	6.0
PUMPS OPERATING	4-5
TOTAL VOLUME FILTERED (M3) 600.0

TAXON	NUMBERS/100 CUBIC METERS	+ 95% - Confidence Limit
HYDRUZOA (MEDUSAE)	55.833	50.539
N. BACHEI	1.000	1.484
PHIALIDIUN SPP_	3.833	2./87
B. VIRGINICA	29.833	30.010
TURBELLARIA	1.533	1_467
S. ELLIPIICUS	0.167	0.367
RHYNCHOCOELA	1.333	2.256
ANNELIDA	0.167	D.367
POLYCHAETA	3.833	2.198
OLIGOCHAETA	0.333	0.495
NUDIBRANCHIA	3.500	2.307
MACOMA SPP.	0.167	0.367
L. POLYPHEMUS	U.107	0.367
L. AESTIVA	2.000	1.533
ARGULUS SPP.	22.167	9.835
N. AMERICANA	6057.333	6121.981
L. AMERICANUS	43.333	50.027
L. SAVIGNYI	0.167	0.367
C. ALNYRA	1.667	1.783
E. TRILOBA	58.500	39.659
C. POLITA	31.833	24.851
C. LUNIFRONS	4 - 500	2.431
A. MEDIALIS	55.333	26.586
AMPHIPUDA	Û.167	0.367
COROPHIUM SPP.	703.500	252.872
GAMMARUS SPP.	604_167	422.450
M_ NITIDA	24.000	9.131
HAUSTORIIDAE	0.335	0.734
MONUCULODES SPP.	4.167	4.107
M. EDWARDSI	23.167	17.164
PARAPLEUSTES SPP.	3.000	2.201
ORCHESTIA SPP.	· 0.167	0.567
P. PUGIO	343_667	149.549
C. SEPTEMSPINOSA	13.167	12.456
BRACHYURA	1642.167	976.645
C. SAPIDUS	U.167	0.367
R. HAPRISII	1604.667	2792.654
- CHIRONOMIDAE	0.167	0.367

IA SALEM EN 1978

3.1-430

.

1

TABLE	3.1.8-4
CON	TINUED

DATE	08/31/78-09/01/78		
NO. OF SAMPLES	12	• •	
WATER TEMPERATURE (C)	26.5-27.0		
DISSOLVED OXYGEN (MG/L)	5.1- 0.2		
PH	7.0- 7.3		
SALINITY (PPT)	6.0- 8.0		
PUMPS OPERATING	5-6		
TOTAL VOLUME FILTERED (
		· · · ·	
TAXON		NUMBERS/100 CUBIC METERS	+ 95% - CONFIDENCE LIMIT
HYDROZOA (MEDUSAE)		202.200	105.584
HYDROZÚA #1(MEDUSAE) Bougainvillia spp.		12.775	9.115
		0.167	0.367
N. BACHEL		3.992	4.058
B. VIRGINICA		292.208	228.112
RHYNCHOCOELA		0.167	0.367
POLYCHAETA		2-435	1.660
HIRUDINEA		0-167	0.367
NUDIBRANCHIA	•	1.275	1-244
ARGULUS SPP.		10.592	5.344
N. AMERICANA		10952-208	7370.207
L. AMERICANUS		101-658	100.605
C. ALMYRA E. IRILOBA		1-158	1.155
C. POLITA		589-542	353-184
C. LUNIFRONS		34.550	31.065
A. MEDIALIS		1.983	1.412
BOPYRIDAE		5.758	3-801
		0.353	0.734
L. PLUMULOSUS		U.167	0.367
COROPHIUM SPP_		138.592	59,460
GANMARUS SPP_		737.600	708.238
M. NITIDA		7.600	7.113
M. EDWARDSI		53.258	44.522
PARAPLEUSTES SPP.		0.275	0.419
ORCHESTIA SPP.		0.333	0_495
P. PUGIÓ		274.375	135.465
C. SEPTEMSPINOSA		54.433	65 - 542
C. SAPIDUS		3.550	2.628
R. HARRISII		28-883	30,995
U_ MINAX		148-100	105.926

IA SALEM EN 1978

TABLE	3.1.8-4
CONI	INUED

DATE NO. OF SAMPLES	09/13/78-09/14/78		
WATER TEMPERATURE (C)	21.2-23.9		
DISSOLVED OXYGEN (MG/L)	6.3-7.9		
PH	6.6- 7.4		
SALINITY (PPT)	6.0- 9.0		
PUMPS OPERATING	5-6		
TOTAL VOLUME FILTERED (M	13) 600.0		
		•	+ 95%
TAXON		NUMBERS/100 CUBIC METERS	
HYDPOZOA (MEDUSAE)		391-400	261-895
HYDROZUA #1(MEDUSAE)		18.000	10.811
N. BACHEI		. 2_800	3.827
B. VIRGINICA		216.800	168.798
ACTINIARIA		1.000	1.216
POLYCHAETA		3.400	4.105
HIRUDINEA		0.200	0.452
NUDIERANCHIA		1.600	2.111
NACONA SPP.		0_800	1.000
L. AESTIVA	•	2_600	3,238
ARGULUS SPP.		5.600	3-358
N. ANERICANA		77695.000	36101.191
L. ANERICANUS		763_000	591-878
C. ALMYRA		5.000	3.830 3595.399
E. TRILOBA		3736.200	
C. POLITA		22-000	20.622
C. LUNIFRONS		1-400	0.966 18.632
A. MEDIALIS		23-000	1.357
L. PLUMULOSUS		0.600	13.552
COROPHIUM SPP.		51.600 1070.800	626.412
GANMARUS SPP.		9,200	7_636
M. NITIDA		100_600	91.084
N. EDWARDSI		2_000	1.168
PARAPLEUSTES SPP.		0.200	0.452
P. CYPRIS		46-600	36-274
P. PUGIO		360-400	335.983
C. SEPTENSPINOSA		15.600	9.930
C. SAPIOUS		588_000	672.796
R. HARRISII		1_800	2_473
U, MINAX Chironomidae		0.200	. 0.452

IA SALEM EN 1978

•

TAE	۶L	E	3		1	•	8-4
- (0	ΝT	1	N	u	E	D

DATE	10	0/11/78	
NO. OF SA	NPLES	6	
WATER TEM	PERATURE (C)	17.3-18.0	
DISSOLVED	OXYGEN (MG/L)	6.9- 7.3	
РН		6.9- 7.2	
SALINITY	(PPT)	6_0- 8_0	
PUMPS OPE	RATING	3-4	
TOTAL VOL	UME FILTERED (M3)	450.0	

TAXON	NUMBERS/100 CUBIC METERS	+ 95% - Confidence Limit
HYDROZOA (MEDUSAE)	1.083	1.342
ACTINIARIA	0.217	0.557
POLYCHAETA	, Ú.867	1.114
NUDIBRANCHIA	້ 1 ເຮັບ 1	1.027
L. AESTIVA	5.767	4.747
ARGULUS SPP.	1.300	1.220
N. AMERICANA	2402.183	1397.818
L. AMERICANUS	72.850	45.997
C. ALMYRA	2.617	2.155
E. TRILOBA	386.650	276.020
C. POLITA	1,100	2.228
A. MEDIALIS	7.317	9.719
BOPYRIDAE	2.050	4.654
COROPHIUM SPP.	153.983	210.894
GAMMARUS SPP.	288_183	400.533
M. NITIDA	1.100	1.848
M. EDWARDSI	2.217	3.392
PARAPLEUSTES SPP.	62.450	156,195
ORCHESTIA SPP.	0.453	0.705
P. PUGIO	35,967	51.448
C. SEPTEMSPINOSA	7.067	9,410
C. SAPIDUS	1.967	1.919
R. HARRISII	7.733	5.021

•

-

.

IA SALEM EN 1978

•

3.1-433

-

A			
DATE 1 NO. OF SAMPLES	1/01/78-11/02/78 8		
WATER TEMPERATURE (C)	13.5-14.5		
DISSOLVED OXYGEN (MG/L)	7.9- 9.5		
PH	1.7- 7.5		
SALINITY (PPT)	6.0- 8.0		
PUNPS OPERATING	2		
TOTAL VOLUME FILTERED (M3			
			+ 95%
TAXON		NUMBERS/100 CUBIC METERS	- CONFIDENCE LIMIT
HYDROZOA (MEDUSAE)		9_488	20,229
ACTINIARIA		0.250	0.591
RHYNCHOCUELA		. 0.200	0.473
POLYCHAETA		0.663	1.190
HIRUDINEA		0.750	0.866
NUDIGRANCHIA		0.163	0.384
NACUMA SPP.		0.500	1.182
L. AESTIVA		0.250	0.591
N. AMERICANA		1705.738	1535.008
LEUCONIDAE		0.825	1,951
L. AMERICANUS	•	171.688	114.442
C. ALMYRA		14.950	11.281
E. TFILOBA		113.650	87.966
C. POLITA		0.413	0.658
A. MEDIALIS		5-000	, 1.999
BOPYRIDAE		0.500	1.182
COROPHIUM SPP.		83-275	45.489
GAMMARUS SPP.		224.650	129.781
M_ NITIDA		1-325	1.936
M. EDWARDSI		2.875	. 2.425
PARAPLEUSTES SPP.		5-225	2.549
ORCHESTIA SPP.		0_200	0.473
P. CYPHIS		0.163	0_384
P. PUGIO		12.225	15-852
C. SEPTEMSPINOSA		7.400	8_602
C. SAPIDUS		0.200	0-473
R. HARRISII		U_5U0	0.774

IA SALEM EN 1978

.

TABLE 3.1.8-4 Continued

DATE	11/21/78-11/22/78
NO. OF SAMPLES	12
WATER TEMPERATURE (C)	8.5-12.5
DISSOLVED OXYGEN (MG/L)	5.9- 8.9
ЬЧ	6.8-7.1
SALINITY (PPT)	10.0-15.0
PUMPS OPERATING	5
TOTAL VOLUME FILTERED (43) 807.0

TAXON		+ 95% - Confidence Limit
HYDROZOA (MEDUSAE)	1.042	1.527
POLYCHAETA	0.275	0.419
HIRUDINEA	2.875	2.893
NUDIBRANCHIA	U_1U8	0.238
L. AESTIVA	2,250	1.305
N. AMERICANA	10495.042	4750.099
L. AMERICANUS	135.342	115.428
C. ALMYRA	3,325	2.804
. E. TRILOBA	15.933	16.915
BOPYRIDAE	0.883	1.039
CÚROPHIUM SPP.	121.225	85.274
GAMMARUS SPP.	49.175	29-296
ML NITIDA	1.150	1.139
H_ EDWARDSI	2.950	2.851
PARAPLEUSTES SPP.	4.442	1.679
P. PUGIO	12.017	13.057
C. SEPTEMSPINOSA	17.600	
C. SAPIDUS	0_167	15-442
R. HARRISII		0.367
na unrotavaa	0-333	0.734

IA SALEM EN 1978

- IA SALEM

	TABLE 3.1.8-4 CONTINUED							
***************************************	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			*********				
DATE 1	2/13/78							
NO. OF SAMPLES	6							
WATER TEMPERATURE (C)	5.0- 6.0		•					
DISSOLVED OXYGEN (MG/L)	9.9-11.0							
PH	7-1- 7-4							
SALINITY (PPI)	5.0- 6.0							
PUMPS OPERATING	3-5							
TOTAL VOLUME FILTERED (M3	300.0							
					954			

TAXON	NUMBERS/100 CUBIC METER	+ 952 S - CONFIDENCE LIMIT
RHYNCHOCOELA	0.667	1.084
POLYCHAETA	1_333	1.714
HIRUDINEA	5.533	2.168
N. AMÉRICANA	8475.667	7781.627
LEUCONIDAE	0.335	0.857
L. AMERICANUS	6U_667	64.425
C. ALMYRA	9.667	8.121
E. TRILUBA	24.000	23_935
COROPHIUM SPP.	558.667	266.220
GAMMARUS SPP.	324_000	128.420
M. NITIDA	40.667	25.699
M_ EDWARDSI	42.000	11.344
PARAPLEUSTES SPP.	9.335	9.070
P. PUGIO	3.333	2.542
C. SEPTEMSPINOSA	36.667	16.829
R_ HARRISII	0.333	0.857

RANK, TOTAL NUMBER, ANNUAL MEAN DENSITY AND PERCENT TOTAL CATCH OF MACROINVERTEBRATE PLANKTON - 1978.

DATE	03/01/78-12/31/78
NO. OF SAMPLES	128
WATER TEMPERATURE (C)	0.6-28.7
DISSOLVED OXYGEN (MG/L)	5-1-14-2
РН	6.4- 7.6
SALINITY (PPT)	1.0-15.0
PUMPS OPERATING	1-6
TOTAL VOLUME FILTERED (M	43) 6857.2

TAXON	RANK	NUMBER	NUMBERS/100 CUBIC METERS	PERCENT	
N. AMERICANA		1463423	21657-240	81.6	
R. HARRISII	2	200004	2959-865	11.2	
GAMMARUS SPP.	3	38731	573,181	2.2	
E. TRILOBA	د ./	29681	439.250	1.7	
COROPHIUM SPP.	5	13336	197.360	0.7	
BRACHYURA	6	12131	179.527	0.7	
L. AMERICANUS	7	7663	113.405	0.4	
P. PUGIO	8	7363	108.965	0.4	
C. SEPTEMSPINOSA	9	5197	76.911	0.3	
HYDROZOA (MEDUSAE)	10	3689	54.594	0.2	
B. VIRGINICA	11	3661	54.179	0.2	
U. MINAX	12	1804	26.097	.0.1	
N. EDWARDSI	13	1486	21.991	0.1	
NUDIBRANCHIA	14	864	12.786	*	
A. MEDIALIS	15	720	10.655	*	
C. POLITA	16	681	10.078	*	
M. NITIDA	17	475	7.030	*	
PARAPLEUSTES SPP.	18	414	6.127	*	
ARGULUS SPP.	19	394	5.831	*	
C. ALMYRA	20	292	4.321	*	
L. AESIIVA	21	261	3.863	*	
POLYCHAETA	22	258	3-818	*	
HYDROZOA #1(MEDUSAE)	23	180	2.064	*	
C. SAPIDUS	24	112	1.657	*	
HIRUDINEA	25	103	1.524	*	
N. BACHEI	26	81	1-199	*	
C. LUNIFRONS	27	72	1.066	*	
MONOCULODES SPP.	28	39	0.577	*	
PHIALIDIUM SPP.	29	31	0.459	*	
L. PLUMULOSUS	29	31	0.459	*	
OLIGOCHAETA	31	26	0.385	*	
CHIRIDOTEA SPP.	32	. 22	0.326	*	
BOPYRIDAE	32	22	0.326	*	
TURBELLARIA	34	19	0.281	*	
MACOMA SPP.	34	19	0_281	*	

* = INDICATES BELOW REPORTABLE

TAXON	RANK	NUMBER	NUMBERS/100 CUBIC METERS	PERCENT	
RHYNCHOCUELA	36	12	0.178	* .	
ORCHESTIA SPP.	37	7	0.104	*	
ACTINIARIA	37	7	0.104	*	
LEUCONIDAE	39	5	0_074	*	
L. POLYPHEMUS	40	4	0.059	*	
CHIRONOMIDAE	40	4	0.059	*	
PLATYHELMINTHES	42	3	0.044	*	
GASTROPUDA	42	3	0.044	*	
HAUSTORIIDAE	42	3	0.044	*	
GOUGAINVILLIA SPP.	45	2	0.030	*	
CIRPIPEDIA	45	2	0.030	*	
P. CYPRIS	45	2	0.030	*	
S. ELLIPTICUS	48	1	. 0.015	*	
AMPHIPODA	48	1	0.015	*	
ANNELIDA	48	1	0.015	*	
L. SAVIGNY1	48	1	0.015	*	
DIPTERA	48	1 ·	0.015	*	
D. LEUCOLENA	48	1	0.015	*	
CIROLANA	48	1	0.015	*	
NEMATODA	48	1	0.015	*	
CAPRELLIDAE	48	1	0.015	*	
HYDROZOA	48	1	0.015	*	
INSECTA	48	1	0.015	*	

* - INDICATES BELOW REPORTABLE

١

IA SALEM EN 1978

.

· ·

·

.

.

3.1-438

.

				TABLE	3.1	8-6			
SUMMARY	BΥ	DATE	0 F	INITIAL	AND	LATENT	MEAN	PERCENT	SURVIVAL.
		Mi	ACRO	INVERTER	RATI	E PLANK	том —	1978	

ពពពព

DATE	04/19/78		04/20/78
LOCATION	INTAKE		
COLLECTION TIME	1127	-	0510
WATER TEMP. (C)	10.2	-	11.0
COND. DELTA T (C)		-	
DISS. OXYGEN (HG/L)	8.8	~	9.7
SALINITY (PPT)	5.5	-	8.0
VOLUME FILTERED (N3)	13.0		

LIFESTAGE	KEY:	Α	¥	ADULT
				JUVENILE
		М	÷	MEGALOPS
		Z	÷	ZOEA

				e							
TAXON	SEX	LIFE STAGE	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT DEAD	
POLYCHAETA		A	11	100	()	0	Û	0	0 0	0	
OLIGUCHAETA		A	5	100	Ω	0	0	0	0	ù	
HIRUDINEA		A	17	94	Û	5	0	0	0	Ú	
N. AMERICANA		A	3210	71	4	24	٥	0	Q	0	
C. POLITA		A	1	100	0	· 0	0	0	۵	0	
L. PLUMULOSUS		A	1	100	Q	0	0	Ó	0	0	
COROPHIUM SPP.		A	5	100	0	0	0	0	0	0	
GAMMARUS SPP.		A	122	87	. 9	3	0	Û	0	0	
HAUSTURIIDAE		Α	1	100	υ	0	0	0	Û	G	
M. EDWARDSI		A	٥	83	û	16	0	0	0	0	
P. PUGIO		A	1	100	0	0	0	0	0	0	
C. SEPTEMSPINOSA		A	15	66	26	6	· 0	0	0	0	
R_ HARRISII		L	1	100	٥	0	0	Û	0	Û,	
				0	400			08	00		
IAXON	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PFRCENT Stuhned	PERCENT DEAD	
POLYCHAETA		A	5	100	uuuuuuuuuu ()	0	5	100	0	0	
DLIGOCHAETA		A	0	0	0	0	2	100	0	υ	
AIRUDINEA -		A	16	93	Û	6	2	100	Û	0	
AMERICANA		A	2841	39.	1	58	647	36	2	61	
. PÓLITA		A	1	100	0	0	Û	0	0	0	
- PLUMULOSUS		A	1	100	ú	0	1	100	0	0	
COROPHIJM SPP.		A	3	100	0	0	4	100	0	0	
GAMMARUS SPP.		Α	· 7ú	91	1	7	. 101	97	Û	1	
HAUSTORIIÐAE		A	1	100	0	Q	0	Ð	0	Ü	
M_ EDWARDSI		A	3	100	0	0	3	33	0	66	
							n	•		_	
P. PUG10		A	1	100	Ú	U	U	0	U	ū	
		А А .	1 7	100 85 100	ں م	14	9	88 0	0 0	11 0	

IA SALEM EN 1978

0200

		-	1200						
TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT	PERCENT DEAD			
POLYCHAETA		А	11	100	0	0.			
OLIGOCHAETA		Α	2	100	0	Ō			
HIRUDINEA		A	17	94	0 '	5			
N. AMERICANA		Α	3210	33	1	65			
C. POLITA		Α	1	100	0	0			
L. PLUMULOSUS		Ą	1	100	0	Ō			
COROPHIUM SPP.		A	5	100	0	Ō			
GAMMARUS SPP.	· .	, A	122	91	2	5			
HAUSTORIIDAE	-	A	1	100	0	0			
M. EDWARDSI		Α .	6	66	0	33			
P. PUGIO		A	1	100	Ō	Ō			
C. SEPTEMSPINOSA		Α	15	86	Ō	13			
R. HARRISII		J .	1	100	Ō	Ď			

.

TABLE 3.1.8-6 CONTINUED

. Ia salem en 1978

IA SALEM EN 1978

3.1-440

.

DATE	04/19/78	- 04/20/78		LIFESTAGE	KEY:	A ==	ADULT
LOCATION	DISCHARG				· · · -		JUVENILE
COLLECTION TIME	1133	- - 0516				-	MEGALOPS
WATER TEMP. (C)	10.9	- 11.5				Z ≈	ZŨEA
COND_ DELTA T (C)		-					
DISS_ OXYGEN (MG/L)	8.1	- 9.9					
SALINITY (PPT)	5.5	- 8.0					
VOLUME FILTERED (M3) 13.0						

			0000			. 0200				
TAXON SEX	SEX	LIFE Stage	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PFRCENT Stunned	PERCENT Dead
POLYCHAETA		A	8	100	Û	0	0	0	Ū	0
OLIGOCHAETA		A	2	100	0	0	0	0	Û	0
HIRUDINEA		A	11	100	0	0	0	0	Û	0
N. AMERICANA		Ą	4593	7U	5	24	933	63	0	36
COROPHIUM SPP.	•	A	7	71	0	28	0	0	0	0
COROPHIUM SPP.		t	3	100	0	0	U	۵	0	0
GAMMARUS SPP.		A	131	90	7	1	41	82	14	2
M_ EDWARDSI		Α	7	85	Û	14	1	100	0	0
C. SEPTEMSPINOSA		A	6	66	16	16	0	0	0	0
C. SEPTEMSPINOSA		、 J	6	100	0	۵	0	0	۵	0

0400

TAXON	SEX	LIFE Stage	. TOTAL Number	PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PEPCENT Stunned	PERCENT Dead
POLYCHAETA		A	2	100	0	0	7	100	0	0
OLIGOCHAETA		Ą	1	100	. 0	0	2	100	Û	0
HIRUDINEA		Α	1	100	0	0	6	100	0	0
N. AMERICANA		A	1063	59	0	39	2699	40	0	58
COROPHIUM SPP.		Ą	2	100	0	0	6	66	0	33
COROPHIUM SPP.		L	Ü	0	0	Ω	3	100	ũ	Û
GAMMARUS SPP_		A	54	83	12	3	125	89	5	4
M. EDWARDSI		A	2	50	ú	50	7	85	0	14
C. SEPTEMSPINOSA		A	1	100	0	0	3	66	0	35
C. SEPTEMSPINOSA		Ĺ	0	0	0	0	6	100	0	Û

IA SALEM EN 1978

0800

			1200						
TAXON	SEX LIFE Stage		TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCEN DEAD			
POLYCHAETA		A		100					
OLIGOCHAETA		۵	3		U	0			
HIRUDINEA				100	0	0			
N_ AMERICANA		-	11	100	0	0			
COROPHIUM SPP_		A	- 4593	43	0	56			
		A	7	71	Ó	28			
COROPHIUM SPP. GAMMARUS SPP.		J	3	100	ň	20			
		4	131	90		Ů			
M- EDWARDSI		. A	7	85	5	4			
C. SEPTEMSPINOSA		Δ	7	60	U	14			
C. SEPTEMSPINOSA		1		(1	14 .	14			
		J.	6	100	0	0			

TAB	LE	3.	1.	8-6
С	ONT	IN	U E	0

DATE LOCATION 06/28/78 - 06/29/78 Intake LIFESTAGE KEY: A = ADULT J = JUVENILE M = MEGALOPS Z = ZOEA

COLLECTION TIME	1548	-	0610
WATER TEMP. (C)	21.0	-	26.8
COND. DELTA T (C)	3.8	-	6.1
DISS_ OXYGEN (MG/L)	6.6	-	8.4
SALINITY (PPT)	4.0	-	6.0
VOLUME FILTERED (M3)	21.0		

TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
GASTRUPODA	*******	j		100	0	0		100	0	0
NUDIBRANCHIA		A	18	100	0	0	17	100	0	0
ARGULUS SPP.		J	1	100	0	0	1	100	0	0
N. AMERICANA		J	7522	81	• 0	17	5448	79	0	19
L. AMERICANUS		A	9	88	٥	11	4	100	0	υ
C. ALMYRA		J	9	88	0	11	4	100	Û	0
E. TRILOBA		ال	77	94	1	3	46	89	. 2	8
C. POLITA		J	8	87	0	12	8	87	0	12
A. MEDIALIS		J	1	0	U U	100	1	0	0	100
CUROPHIUN SPP.		J	28	92	0	7	14	85	0	14
GAMMARUS SPP.		A	115	73	10	9	0	0	0	· U
GAMMARUS SPP.		t	751	88	2	8	678	87	2	9
M. EGWARDSI		J	5	100	0	0	0	Ó	0	0
P. PUGIO		J	6	83	. 16	0	6	83	16	Ó
C. SEPTEMSPINOSA		j	148	29	3	67	96	13	0	٤6
R_ HARRISII		J	1	Û	Ď	100	0	Ō	ō	0
R. HARRISII		Z	516	98	1	Ó	456	98	1	õ
U. MINAX		Z	14	92	ż	Ô	13	92	7	0

0000

IA SALEM EN 1978

0200

TABLE 3.1.8	-6
CONTINUED	
0400	

TAXON	SEX	LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
GASTRUPUDA		 J	0	0	0	0	2	100	0	 0
NUDIBRANCHIA		A	6	100	0	0	29	100	ō	ō
ARGULUS SPP.		J	0	0	0	0	2	100	0	0
N. AMERICANA		£	3281	75	0	23	9769	76	2	21
L. AMERICANUS		A	6	83	0	16	11	90	Ō	9
C. ALMYRA		L	5	80	· 0	20	10	90	0	10
E4 IRILOBA		J	31	96	0	3	99	86	2	11
C. POLITA		Ŀ	2	100	Û	0	. 9	. 88	0	11
A. MEDIALIS		ť	υ	0	0	0	1	0	0	100
COROPHIUM SPP.		J	19	89	0	10	33	90	0	9
GAMMARUS SPP.		A	115	71	16	12	115	71	16	12
GAMMARUS SPP_		J	220 .	98	0	1	1018	88	2	8
M. ED.ARDSI		J	5	100	0	0	5	100	U	0
P. PUG10		J	0	0	0	0	11	81	18	0
C. SEPTENSPINOSA		J	55	54	1	43	164	26	0	73
R_ HAFRISII		J	1	0	Û	100	1	0	Ō	100
R. HARRISII		Z	85	100	0	0	673	97	1	0
U. MINAX		z	1	100	ō	D	27	92	7	n

1200

тахоч	SEX	LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT	PERCENT DEAD	
GASTROPUDA		J	1	100	()	0	
NUDIERANCHIA		Α	18	100	0	0	
ARGULUS SPP.		J	1	100	0	0	
N. AMERICANA		J	7547	71	2	25	
L. AMERICANUS		A	9	77	0	22	
C_ ALMYRA		J	9	77	0	22	
E. TRILOBA		J	77	88	1	10	
C. PULITA		J	8	87	0	12	•
A. MEDIALIS		Ł	1	. 0	D	100	
COROPHIUM SPP.		J	28	85	0	14	
GAMMARUS SPP.		A	115	62	24	13	
GAMMARUS SPP.		J	749	87	2	9	
M_ EDWARDSI		L	5	100	0	0	
P. PUGIÓ		j	6	83	16	0	
C. SEPTEMSPINUSA		J	148	27	0	72	
R_ HARRÍSII		J	1	0	0	100	
R. HARRISII		Z	516	98	1	O	
U_ MINAX		Z	14	92	7	D	

IA SALEM EN 1978

0800

3.1-444

0000

DATE 06/28/78 - 06/29/78 LOCATION DISCHARGE COLLECTION TIME 1552 -0614 WATER TEMP. (C) 29.0 -30.2 COND. DELTA T (C) 3.8 -6.1 DISS_ OXYGEN (MG/L) 5.1 -7.1 SALINITY (PPT) 4.5 -6.0 VOLUME FILTERED (M3) 21.0

LIFESTAGE KEY: A = ADULT J = JUVENILE M = MEGALOPS Z = ZOEA

0200

TAX04	SEX	LIFE STAGE	TOTAL NUMBER	PERCENT	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT
POLYCHAETA		 A	1	100	0	0	1	100	0	0
OLIGOCHAETA		A	3	100	0	Ō	1	100	0	Ō
NUDIBRANCHIA		A	13		. 0	Ō	7	100	0	0
N. AMERICANA		J	. 7529	95	• 0	3	2358	90	1	8
L. AMERICANUS		Ā	14	100	ō	ō	2	100	Ó	õ
C_ ALMYRA		A	1	100	Ö	Ó	1	100	0	0
C. ALMYRA		j	2	100	0	0	0	0	0	0
E. IRILOBA		Ĵ	27	100	0	Ō	. 4	100	0	0
C. POLITA		J	7	100	Û	۵	6 '	100	0	G
COROPHIUM SPP.		Ĵ	10	90	Û	10	5	80	0	20
GAMMARUS SPP.		j	744	86	· 12	0	123	95	4	0
P. PUGIO		Ĵ	10	100	Ū.	Ō	7	100	0	Ŭ
C. SEPTEMSPINOSA		Ĵ	46	73	4	21	3	33	0	66
R. HARRISII		Z	331	96	2	1	99	94	3	2
U_ MINAX		Z	4	75	25	۵	2	100	D.	0
				0	400			08	00	
TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Sturned	PERCENT DEAD
POLYCHAETA		A A	()	()	······································	0		100	0	•••••••••
OLIGOCHAETA		A	4	100	Ő	õ	4	100	õ	ő
NUDIGRANCHIA		A	5	100	õ	õ	14	100	õ	ő
N. AMERICANA		j	6111	88	ō	10	5496	85	1	12
L. AMERICANUS		Ā	12	100	Ö	0	8	100	ò	0
C. ALMYRA		A	õ	0	õ	õ	2	0	100	ñ
C. ALMYRA		j	2	100	Ō	Ö	2	100	0	õ
E. TRILOBA		Ĵ	17	100	Õ	Ō	13	100	ō	ā
C. POLITA		Ĵ	1	100	ō	ō	11	100	Ó	õ
COROPHIUM SPP.		ł	7	85	υ	14	10	90	0	10
GAMMARUS SPP.		Ĵ	683	92	6	0	586	97	1	0
P. PUGIO		Ĵ	3	100	a	0	14	100	0	0
C. SEPTEMSPINOSA		Ĵ	27	66	0	33	14	35	0	64
R_ HARRISII		Z	247	. 96	1	2	379	95	2	2
U. MINAX		• 2	2	50	50	0	6	83	16	0

IA SALEM EN 1978

3.1-445

.

				12(00	
TAXON	SEX	LIFE Stage	TUTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD
POLYCHAETA		A	2	·	100	
OLIGOCHAETA		Ą	3	100	100	0
NUDIGRANCHIA		A	16	100	Ů	U
N. AMERICANA		j	6893	84	1	U A 7
L. AMERICANUS		Ā	10	100		13
C. ALHYRA		A	10	100	100	U
C. ALMYRA		J	2	100	100	0
E. TRILOBA		J	21	100	0	U
C. POLITA			6	100	0	0
COROPHIUM SPP.		1	4 4		0	0
GAMMARUS SPP_		J	. 11	90	D	9
P. PUGIO		1	707	89	9	1
		J	13	84	0	15
C. SEPTEMSPINOSA		J	30	56	0	43
R. HARRISII		Z	371	95	2	1
U_ MINAX		z	4	75	25	ò

IA SALEM EN 1978

. . . .

0000

	09/13/78 - Intake	09/13/78	LIFESTAGE KEY:			ADULT JUVENILE
COLLECTION TIME	1015 -	2200		- M :	= (MEGALOPS
WATER TEMP. (C)	22.2 -	23.5		Z i	#	ZOEA
COND_ DELTA T (C)	8.0 -	9_9				
DISS. OXYGEN (MG/L)	6.4 -	7.8				
SALINITY (PPT)	6.0 -	9.0				
VOLUME FILTERED (M3)	20.0					

• 、

TAXON	SEX	LIFE STAGE	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT	PERCENT DEAD
HYDRUZOA (MEDUSAE)		A	26	80	0	19	20	45	0	55
PHIALIDIUM SPP_		A	6	100	0	0	0	Û	0	Û
B. VIRGINICA		A	39	35	5	58	12	0	8	61
POLYCHAETA		A	2	100	Ö	٥	Û	0	Ũ	ΰ
N. AMÉRICANA		A	14334	99	Û	0	7739	96	0	3
N. AMERICANA		J	1756	98	0	1	1756	94	1	3
- AMERICANUS		Ą	43	100	0	0 ·	11	100	0	0
E. TRILOBA		Α	18	94	Ŭ	5	0	0	0	Û
E. TRILOBA		J	11ó	99	0	0	52 '	98	· 0	1
A. MEDIALIS		J	8	100	0	0	4	50	50	0
COROPHIUM SPP.		A	3	33	0	66	0	0	Û	Û
COROPHIUM SPP.		J	33	100	۵	0	15	100	0	0
SAMMARUS SPP.		A	20	100	0	0	Û	0	0	G
SAMMARUS SPP.		J	144	97	۵	2	85	97	0	2
L EDWARDSI		A	4	100	0	0	0	0	0	0
I. EDWARDSI		J	.3	100	0	0	3	100	0	0
P. PUGIO		J	2	100	. 0	0	2	100	0	0
. SEPTEMSPINOSA		J	13	100	a	0	3	100	0	0
C. SAPIDUS		J	1	100	0	0	1	100	0	0
C. SAPIDUS		M	2	100	0	0	1	100	0	0
R_ HARRISII		M	2	100	0	0	2	100	D	Ű
R. HARRISII		Z	38	97	0	2	25	100	a	0

•

IA SALEM EN 1978

0200

.

				0400				0800			
TAX0N	SEX	LIFE STAGE	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL NUMBER	PERCENT	PERCENT Stunned	PERCENT 'DEAD	
HYDRUZOA (MEDUSAE) PHIALIDIUM SPP. B. VIRGIMICA POLYCHAEIA H. AYEKICANA A. AYEKICANA L. AYEKICANA L. AYEKICANA E. THILOBA E. THILOBA A. MEDIALIS COROPHIJM SPP. COROPHIJM SPP. GAMMARUS SPP. GAMMARUS SPP. GAMMARUS SPP. GAMMARUS SPP. GAMMARUS SPP. GAMMARUS SPP. COROPHIUM SPP. GAMARUS SPP. S. EDWARDSI P. PUGID C. SEPTEMSPINOSA C. SAPIDUS C. SAPIDUS R. HARRISII R. HAKRISII		A A A A J J A J J J J J J J J J J J J J	20 4 32 20031 0 31 18 71 7 3 12 20 55 4 2 1 1 13 1 1 2 20	40 100 15 100 95 0 93 94 97 85 33 100 100 100 100 100 100 100 100 100	0 6 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0	60 0 78 0 4 0 6 5 2 0 6 6 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 1 9 0 465 1756 9 0 40 2 0 40 2 0 15 0 78 0 15 0 78 0 1 1 1 0 18	60 100 22 0 97 94 100 0 100 50 0 100 0 98 0 100 100 100 100 100 100 100		40 0 77 0 2 5 0 0 0 50 0 0 0 1 0 0 0 1 0 0 0 0 0 0	

.

IA SALEM EN 1978

3.1-448

.

TABLE	3.1.	8-ć
CONT	INUE	D

			1200							
TAXON	SEX	LIFE Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD				
HYDRUZOA (MEDUSAE)		A	32	ó2	0	37				
PHIALIDIUM SPP.		А	8	100	õ	0				
B. VIRGINICA		A	40	20	ž	77				
POLYCHAETA		A	2	100	ā	0				
N. AMERICANA		Α	14971	.92	ũ	7				
N_ AMERICANA		j	1750	94	Ō	5				
L. ANERICANUS		A	39	92	0	7				
E. TRILUBA		A	18	88	0	11				
E. TRILOBA		J	120	99	Û	Ó				
A. MEDIALIS		J	10	90	0	10				
COROPHIUM SPP.		A	3	Q	0	100				
COROPHIUM SPP.		J	27	100	0	0				
GAMMARUS SPP.		A	0	Û	0	õ				
GAMMARUS SPP.		J	155	96	Ö	ž				
N. EDWARDSI		A	. 4	100	ō	ō				
M. EDWARDSI		ز	3	100	Ō	ő				
P. PUGIO		j.	2	100	ō	ů.				
C. SEPTEMSPINOSA		Ĵ	13	100	Ő	ŏ				
C. SAPIDUS		J	1	100	ũ	ŏ				
C. SAPIDUS		M	2	50	ũ	50				
R. HARRISII		M	2	100	ŭ	0				
R. HARRISII		z	31	93	ő	6				

T	A	8	L	E,		3	•	1	•	8	-6	
		С	0	N	ſ	I	N	u	E	D		

.

9/13/78 - 09/14/78 ISCHARGE 1631 - 0514 29.1 - 31.7 7.5 - 11.4 5.5 - 6.9 8.0 - 8.0	LIFESTAGE KEY: A = ADULT J = JUVENILE M = MEGALOPS Z = ZOEA

.

				0000				0200				
TAX0H	S.E X	LIFE STAGE	TOTAL NUMBER	• PERCENT LIVE	PERCENT	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT Dead		
HIGRUZOA (PEDUSAE)		4	27	74	0	25	0	77	0			
N. BACHEI		Ą	1	100	Ō	Ő	, 1	100	0	22		
PHIALIDIUM SPP.		A	1	100	ō	D	4	100	0	0		
S. VIRGINICA		Ą	38	76	õ	23	4	50	0	0		
POLYCHAETA		A	1	100	Ô	0	4	50	0	50		
NUDIBRANCHIA		Α	1	100	ñ	ů N	0	U	U	0		
ACARINA		A	1	100	ñ	0	0	U	0	0		
N_ AMERICANA		A	2130	83	0	16	0	U	0.	0		
N. AMERICANA		J	3249	96	n	70	2220	0	0	0		
L. ARERICANUS		A	58	98	ő	1	2229	87	0	11		
L. AMERICANUS		J	10	100	0	л О	6	100	0	Û		
E. TRILOBA		J	295	99	0	0	10	100	0	0		
C. POLITA		J	2	100	0	U D	68	100	0	0		
A. MEDIALIS		Ĵ	. 2	100	0	0	2	100	0	0		
COROPHIUM SPP_		Ĵ	24	100	0	0 .	1	100	0	0		
GANNARUS SPP.			140	99	· U	U	12	100	0	0		
M. NITIDA		1	140		0	U	66	98	0	1		
M. EDWARDSI		4	2	100	. 0	0	2	100	0	0		
M. EDWARDSI		1	2	100	0	D	0	0	0	0		
P. PUGIO		J 1	(100	0	0	0	0	0	0		
C. SEPTEMSPINOSA		J	4	50	0	50	1	D	0	100		
C. SAPIDUS		J 1	14	50	0	50	4	25	0	75		
C. SAPIDUS		J	1	100	0	0	0	0	0	0		
R. HARRISII		176 8.0	1	100	0	0	0	0	Ő	ŏ		
R. HARKISII		ייז ד	4	100	Ü	0	. 2	100	Ō	ō		
Ne HARRIDII		2	65	100	0	0	9	100	ō	ŏ		

٠

IA SALEM EN 1978

. •

3.1-450

.

				0	400			08	00	
TAXON	SEX	LIFE STAGE	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT DEAD	TOTAL Number	PERCENT LIVE	PERCENT Stunned	PERCENT
HYDROZDA (MEDUSAE)		A	15	73	·	26		•••••••		
N_ BACHEI		A	1	100	ŭ	0	2	40	0	00
PHIALIDIUM SPP.		A	Ó	ũ	ő	0	U	U	0	Û
8. VIRGINICA		A	7	85	• 0	14	0	0	0	0
POLYCHAETA		A	Û	ů	ñ	14	5	33	0	66
NUDIBRANCHIA		A	Û	Ū	ő	0	0	U a	U	0
ACARIIIA		A	Û	Ó	õ	n	0	U O	0	0
N. AMÉRICANA		A	814	53	ů.	46	1316	0 88	0	0
N. AMERICANA		J	1659	64	ů	35	1310 0.	0	0	11
L. AMERICANUS		A	15	93	õ	6	19	94	U O	0
L_ AMERICANUS		J	10	100	0	0	17	94 0	0	5
E. TRILJBA		J	76	98	ñ	1	64	100	U Q	0
C. POLITA		J	Ö	ů Ú	0	0	04	109	U	U
A. MEDIALIS		Ĵ	1	100	0	U O	U	U	0	U
COROPHIUM SPP_		J	8	100	0	0	0	Û	0	0
SAMMARUS SPP.		Ĵ	79	100	0	0	2	100	0	. 0
1_ NITIDA		j.	ĺ.	100	U ()	U O	U	U	0	0
i. EDWARDSI		A	0	0	0	U	U	0	0	U
I. EDWARDSI			0	U 0	U O	U	2	100	. 0	Ű
P. PUGIO		4	1	0	u o	0	0	0	0	0
C. SEPTEMSPINOSA		1	1	0	0	100	0	0	0	0
C. SAPIDUS		, J		0	U	100	4	75	0	25
C. SAPIDUS			0	0	u	U	1	100	0	0
R. HARRISII		M	2	100	U	U O	0	0	0	0
R_ HARRISII		7	2	100	U	U	1	100	0	Û
		6	9	100	۵	U	0	0	0	0

T	AB	L	E		3	-	1	•	8	-	6		
	С	0	Ν	r	I	N	U	E	D				

TAXON	SEX	L 1 F E Stage	TOTAL NUMBER	PERCENT LIVE	PERCENT Stunned	PERCENT	
HYDROZOA (MEDUSAE)		Α	. 34	61	0	38	
N. BACHEI		A	1	100	0	0	
PHIALIDIUM SPP.		A	1	100	Ó	Ō	
B. VIRGINICA		A	60	50	0	50	
POLYCHAETA		Α	2	100	0	0	
NUDIBRANCHIA		A	2	100	0	0	•
ACARINA		A	2	100	0	0	
N_ AMERICANA		А	2130	74	0	25	
N. AMERICANA		J	4269	51	0	48	
L. AMERICANUS		A	76	94	U	5	
L. AMERICANUS		J	10	100	0	0	
E. TRILOBA		J	415	97	υ	2	
C. POLIFA		J	2	100	0	0	
A. MEDIALIS		J	3	100	0	0	
COROPHIUM SPP.		J	31	100	0	0	
GAMMARUS SPP.		J	188	98	Û	1	
M. NITIDA		J	2	100	0	0	
M. EDWARDSI		Å	2	100	0	, O	
M. EDWARDSI		Ĵ	14	78	Ō	21	
P. PUGIO		Ĵ	7	Ō	ō	100	
C. SEPTEMSPINOSA		J	19	42	õ	57	
C. SAPIDUS		3	1	100	ū	0	
C. SAPIDUS		M	ź	100	ō	ō	
R. HARRISII		M	5	100	ŏ	ō	
R. HARRISII		z	119	100	ō	ō	

DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH Salinity (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (5.1- 6.4- 1.0- 1-	5 28.7 14.2 7.6 15.0			
 	RANK		NUMBERS/CUBIC METER		
TOTAL EGGS		17549	2.436 1.449 0.261	58.5	
TOTAL LARVAE		10437	1449	34.8	
TOTAL YOUNG		1877	0.261	6.3	
TOTAL EGGS Total Larvae Total Young Total Adult		121	0.017	0.4	
EGGS:					
A. MIICHILLI	1	17520	2.432	99.8	
UNID. FISH	2	17520 18	0.002	0.1	
MEMBRAS/MENIDIA SPP.	3	6	0.001	*	
T. MACULATUS	4	2	*	*	
N. SAXATILIS	4	2	*	*	
C. REGALIS	6	1	*	*	
LARVAE:				.	
A. MITCHILLI	1 2	8152	1.132	78.1	
G_ BOSCI	2	1085	0.151	10.4	
C. REGALIS	3	660	0.092	6.3	
MEMBRAS/MENIDIA SPP.	4	448	0.062	4.3	
T. MACULATUS	5	73	0.010	0.7	
M. UNDULATUS	6	7	0_001	0.1	
S. FUSCUS	(3	*	*	
ANMODYTES SP.	5 6 7 7	3 2	*	*	
I B HEICKOVELIUU	9	2	*	*	
L. XANTHURUS	10	1	*	* `	
S. MARINA Bothidaf	10	1	*	*	
	10	1	*	*	
UNIDENTIFIABLE FISH	10	1	*	*	
YOUNG: A. MITCHILLI	1	1272	0.177	67.8	
C. REGALIS	2	435	0.060	23.2	

TABLE 3.1.8-7 RANK, TOTAL NUMBER, ANNUAL NEAN DENSITY AND PERCENT TOTAL CATCH OF ICHTHYOPLANKTON - 1978.

* - INDICATES BELOW REPORTABLE

IA SALEM EN 1978

3.1-453

.

TABLE	3.1.8-7
CONT	INUED

***********	*********		*********		
	RANK	NUMBER	NUMBERS/CUBIC METER	PERCENT	
********	*********			* - + • * * * * * * * * * * * * * * * * * *	
YOUNG:					
S. FUSCUS	3	57	0.008	3.0	
G. BOSCI	4	34	0.005	1.8	
M. MENIDIA	5	. 30	U_004	1.6	
A. ROSTRATA	5	30	0.004	1.6	
T. MACULATUS	7	· 5	0.001	0.3	
A. AESTIVALIS	7	5	0.001	0.3	
M. MARTINICA	9	3	*	0_2	
L. XANTHURUS	9	3	*	Ű . 2	
, F. HETEROCLITUS	11	1	*	0.1	
P. TRIACANTHUS	11	° 1	· *	0.1	
M. UNDULATUS	11	1	*	0.1	
		3			
ADULT:					
A. MITCHILLI	1	111	0.015	. 91.7	
M. MENIDIA	2	4	0.001	3.3	
S. FUSCUS	3	2	*	1.7	
T. MACULATUS	3	2	*	1.7	
A. ROSTRATA	3	. 2	*	1.7	

IA SALEM EN 1978

NO. OF SAMPLES Water temperature (C) Dissolved oxygen (MG/L)	12.9-13.7 6.4-6.8 5.0-9.0 5-6			
	NU	MBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT	
TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT		0.008	0.014) TO CI CI
EGGS:			· · · .	
LARVAE:				
YOUNG: A. ROSTRATA		0.008	0.014	
ADULT:	•			

		TABLE 3_1_8-8 CONTINUED	
DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED) 12.1-14.2 7.0 3.0- 6.0 6		+ 95%
		NUMBERS/CUBIC METER	- CONFIDENCE LIMIT
TOTAL EGGS Total Larvae Total Young Total Adult		0.005 0.025	0_006 0.014
EGGS:		•	
LARVAE: UNIDENTIFIABLE FISH Ammodytes sp.		0.002 0.003	0.004 0.005
YOUNG: A_ ROSTRATA		0.025	0.014
ADULT:			
* - INDICATES BELOW RE	PORTABLE		. IA SALEM EN 1978

			TABLE 3.1.8-8. CONTINUED	
	NO. OF SAMPLES Water temperature (C) Dissolved Oxygen (MG/L)	5/78-03/17/78 2-5- 3-6 11-6-13-6 7-2- 7-3 1-0- 4-0 2-4 400-0		
6			NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
د ه و و	TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT		0.013	0.012
	EGGS:			
	LARVAE:			· · ·
	YOUNG: A. Rostrata		0.013	0.012
	ADULT:			
	* - INDICATES BELOW REPORTABL	E		

•

.

	1	TABLE 3.1.8-8 CONTINUED	
DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED UXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING Y TOTAL VOLUME FILTERED (M)	$\begin{array}{c} 04/19/78 = 04/20/78 \\ 9 \\ 10.2 = 11.0 \\ 8.8 = 11.0 \\ 7.0 = 7.6 \\ 5.5 = 8.0 \\ 1 \\ 3) \\ 315.0 \end{array}$	·	
		NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT		0.063 0.003 0.019 0.003	0.038 0.007 0.015 0.007
EGGS: UNID. FISH M. SAXATILIS		0.057 0.006	0.041 0.015
LARVAE: Ammodytes sp.		0.003	0.007
YOUNG: A. Rostrata		0.019	0.015
ADULT: A. ROSTRATA		0.003	0.007

.

3.1-458

DATE	06/28/78-06/29/78
NO. OF SAMPLES	9
WATER TEMPERATURE (C)	21.0-26.8
DISSOLVED OXYGEN (MG/L)	6.6- 8.4
РН	6.4- 7.1
SALINITY (PPT)	4_0- 6_0
PUMPS OPERATING	6
TOTAL VOLUME FILTERED (M	13) 450±0

	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS	1.162	0,745
TOTAL LARVAE	3.131	2.309
TOTAL YOUNG	ΰοοόυ	0.532
TOTAL ADULT	0.020	0.017
EGGS:	•	
A. MIICHILLI	1.162	0.745
LARVAE:	•	
A. MITCHILLI	2.104	2.227
MEMBRAS/MENIDIA SPP.	0.033	0.043
C. FEGALIS	0_613	0.398
L. XANTHURUS	0.002	0.005
G. BOSCI	U_364	0.205
T. MACULATUS	0.013	0.015
YOUNG:	X.	
A. MITCHILLI	0.002	0.005
M. MENIDIA	• 0.002	0.005 .
S. FUSCUS	0.013	0.015
C. REGALIS	0.636	0.513
L. XANTHURUS	0.007	Ω.011
ADULT:		
A. MITCHILLI	0.018	0.016
T. MACULATUS	0.002	0.005

* - INDICATES BELOW REPORTABLE

IA SALEM EN 1978

SALINITY (PPT) Pumps operating	5.0-10.0		
TOTAL VOLUME FILTERED (M3)	5-6		
		NUMBERS/CUBIC METER	+ 95X - CONFIDENCE LIMIT
TOTAL EGGS		24.936	17.855
TOTAL LARVAE		7.385	2.368
TOTAL YOUNG		0-264	0.195
TOTAL ADULT		0_043	0.027
EGGS:			
A. MIICHILLI		24.924	17.842
MEMBRAS/MENIDIA SPP.		0.007	0.008
C. REGALIS		0_002	0.004
T. MACULATUS		0.003	0.007
LARVAE:			
A. MITCHILLI		6-146	2.119
F. HETEROCLITUS MEMBRAS/MENIDIA SPP.		0.002	0.004 0.029
C. REGALIS		0.587	D_267
G. BOSCI		. 0.574	0.233
T. MACULATUS		0.043	0.031
YOUNG:			
A. MITCHILLI		0.032	0.026
F. HEIEROCLITUS		0.002	0.004
M. MARTINICA N. MENIDIA		0.002	0.004
S. FUSCUS		0.003	0.007 0.008
C. REGALIS		0.209	0.008 0.197
G. BOSCI		0.010	0.015
ADULT:			
A. ROSTRATA		0_002	0.004
Á. MITCHILLI M. MENIDIA		0.038 0.003	0.026 0.004

IA SALEM EN 1978

.

TABLE 3.1.8-8 Continued

ŧ

DATE 07/27/78-07/28/78 NO. OF SAMPLES 12 26.3-27.4 WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) 5.4- 6.7 РН 6.9- 7.4 6.0- 8.0 SALINITY (PPT) PUMPS OPERATING 5 TOTAL VOLUME FILTERED (M3) 600.0

	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS		0.134
TOTAL LARVAE	4.973	1 - 954
TOTAL YOUNG	0.190	0.098
TOTAL ADULT	0.012	0.010
EGGS:		· · · ·
A. MITCHILLI	0.153	0.135
MEMBRAS/MENIDIA SPP.	0_003	0.005
LARVAE:		
A. MITCHILLI	4.197	1.792
S. MARINA	0.002	0.004
NEMBRAS/MENIDIA SPP.	0.198	0.132
C. REGALIS	0.022	. 0.018
G. BOSCI	0_528	' 0 . 238
T. MACULATUS	0.027	0.020
YOUNG:		
A_ MITCHILLI	0.172	0,097
M. MENIDIA	0.007	0 _006
S. FUSCUS	0.007	0 .006
C. REGALIS	0.003	0.005
G. BOSCI .	0_002	0.004
ADULT:		
A. MITCHILLI	0_012	0.010

* - INDICATES BELOW REPORTABLE

TABLE	3.1.	8-8
CONT	INUE	D

DATE NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (7.2- 7.4 6.0 4-5		
		NUMBERS/CUBIC METER	+ 95% - Confidence Limit .
TOTAL EGGS Total Larvae Total, young Total Adult	*****	3.037 1.978 0.170 0.035	4.297 1.068 0.083 0.038
EGGS: A. MITCHILLI		3.037	4.297
LARVAE: A. MITCHILLI F. HETEROCLITUS MEMBRAS/MENIDIA SPP. S. FUSCUS C. REGALIS G. BOSCI T. MACULATUS		1.080 0.002 0.470 0.002 0.023 0.365 0.037	0.485 0.004 0.769 0.004 0.025 0.158 0.034
YOUNG: A. MITCHILLI M. MARTINICA M. MENIDIA S. FUSCUS C. REGALIS		0 - 132 0 - 002 0 - 025 0 - 002 0 - 002 0 - 010	0 - 052 0 - 004 0 - 033 0 - 004 0 - 009
ADULT: A. MITCHILLI M. MENIDIA S. FUSCUS		0.032 0.002 0.002	0.037 0.004 0.004

IA SALEM EN 1978

	(TABLE 3_1.8-8 CONTINUED	
NO. OF SAMPLES WATER TEMPERATURE (C) 2 DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT)	/78-09/01/78 12 6.5-27.0 5.1- 6.2 7.0- 7.3 6.0- 8.0 5-6 725.0		-
		NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS		,	
TOTAL LARVAE		0-385	0.148
TOTAL YOUNG Total Adult		1_191 0_004	1.087 0.006
		0.004	0,008
EGGS:			
LARVAE:			
A. MITCHILLI		0.343	0.149
MEMBRAS/NENIDIA SPP. S. Fuscus		0_018	0.016
M. UNDULATUS		0.002 0.007	0.004
G. BOSCI		0.016	0.011 0.012
		0.010	0.012
YOUNG: A. MITCHILLI		4 4 1 7	4 0/5
M. MENIDIA		1.127 0.002	1.045 0.004
S. FUSCUS		0.010	0.013
C. REGALIS		0.006	0.013
G. BOSCI		0.043	0.040
P. TRIACANTHUS		0.002	0_004
T. MACULATUS		0.002	0.004
ADULT:			
A. MITCHILLI		0.002	0.004
M. MENIDIA		0.001	0.002
S. FUSCUS		0.001	0.002

		TABLE 3.1.8-8 CONTINUED	
DATE U NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3	12 21.2-23.9 6.3- 7.9 6.6- 7.4 6.0- 9.0 5-6		
		NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT	~~~~~	U.055 U.492 0.085	0.034 0.359 0.065
EGGS:			
LARVAE: A_ MITCHILLI S. FUSCUS M_ UNDULATUS G. BOSCI T. MACULATUS		0-042 0-002 0-003 0-003 0-005	0 - 033 0 - 004 0 - 005 0 - 005 0 - 005 0 - 006
YOUNG: A. MITCHILLI M. MARTINICA M. MENIDIA S. FUSCUS C. REGALIS M. UNDULATUS T. MACULATUS	·	0 - 438 0 - 002 0 - 002 0 - 040 0 - 007 0 - 002 0 - 002	0.340 0.004 0.004 0.027 0.015 0.004 0.004
ADULT: A. MITCHILLI		0.085	0.065

IA SALEM EN 1978

	TABLE 3-1.8-8 Continued	空电 甲 耻 耻 笔 武 雀 化 神 化 神 身 神 神 神 谷 之 之 之 作 化 化 化 化 化 化 化 日
DATE 10/11/78 NO. OF SAMPLES 6 WATER TEMPERATURE (C) 17.3-18 DISSOLVED OXYGEN (MG/L) 6.9- 7 PH 6.9- 7 SALINITY (PPT) 6.0- 8 PUMPS OPERATING 3-4 TOTAL VOLUME FILTERED (M3) 451	.3 .2 .0	
,	NUNBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
TOTAL EGGS		
TOTAL LARVAE Total Young	0_011 0_095	0.022 0.061
TOTAL ADULT	Ú.U04	0.007
EGGS:		
LARVAE:		
A. MITCHILLI	0.011	0.022
YOUNG:		
A. MITCHILLI	0.060	0.048
M. MENIDIA	. 0.009	0.023
S. FUSCUS	0.027	0.035
ADULT:		
A. MITCHILLI	0.004	0.007
* - INDICATES BELOW REPORTABLE		
· Invitie Decompetentate		IA SALEM EN

***	*****		ABLE 3.1.8-8 Continued	
	DATE 1 NO. OF SAMPLES WATER TEMPERATURE (C) DISSOLVED OXYGEN (MG/L) PH SALINITY (PPT) PUMPS OPERATING TOTAL VOLUME FILTERED (M3	1/01/78-11/02/78 8 13.5-14.5 7.9- 9.5 99.9- 6.0- 8.0 2) 485.0	V	
(U ======			NUMBERS/CUBIC METER	+ 95% ' - Confidence limit
•1 - 466	TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT		0 - 003 0 - 075 0 - 002	0.006 0.083 0.005
	EGGS:			
	LARVAE: G. BOSCI		0.003	0.006
	YOUNG: A. AESTIVALIS A. MITCHILLI C. REGALIS T. MACULATUS		0.003 0.068 0.002 0.003	0.006 0.082 0.005 0.006
	ADULT: T. MACULATUS		0.002	0.005
	* - INDICATES BELOW REPOR	TABLE		

DATE 11/21/78-11/2 NO. OF SAMPLES 12 WATER TEMPERATURE (C) 8.5-12.2 DISSOLVED OXYGEN (MG/L) 5.9-8.2 PH 6.8-7.2 SALINITY (PPT) 10.0-15.4 PUMPS OPERATING 5 TOTAL VOLUME FILTERED (M3) 807	5 9 1 0	
	NUMBERS/CUBIC METER	+ 95% - CONFIDENCE LIMIT
IOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT	0_002 0_045	0.003 0.022
EGGS:		
LARVAE: M_ UNDULATUS BOTHIDAE	. 0.001 0.001	0.002
YOUNG: A. RUSIRATA A. AESTIVALIS A. MITCHILLI M. MENIDIA G. BOSCI	0.003 0.005 0.033 0.002 0.002	0.005 0.006 0.023 0.004 .0004

3.1-467

* - INDICATES BELOW REPORTABLE

DATE NO. OF SAMPLE WATER TEMPERA DISSOLVED OXY PH SALJNITY (PPT PUMPS OPERATI TOTAL VOLUME	S TURE (C) GEN (MG/L))	13/78 5.0-6.0 9.9-11.0 7.1-7.4 5.0-6.0 3-5 250.0				
			NUMBERS	CUBIC METER	+ 95% → CONFIDENCE LIM	IT
TOTAL EGGS TOTAL LARVAE TOTAL YOUNG TOTAL ADULT				0.008	0.014	
EGGS:						
LARVAE:						
YOUNG: M. Menidia T. Maculatus			·	0.004 0.004	0.011 0.011	
ADULT:			٩			

TADIC 7 1 8-8

. . .

•

3.1-468

•

TABLE 3.1.8-9 NUMBER AND PERCENT VIABLE OF FISH EGGS SUMMARIZED BY SPECIES AND DATE - 1978

Date	No. of eggs	Percent viable	Mean salinity
Bay	anchovy, Ar	nchoa mitchil	<u>li</u>
June 28-29 July 12-13 July 27-28 August 10-11	523 15,083 92 1,822	7.3 7.4 12.0 2.0	5.9 7.7 7.7 7.0
Total	17,520	6.8	7.0
Silversi	des, <u>Membras</u>	sp./Menidia	spp.
July 12-13 July 27-28	4 2	75.0 100.0	7.7 7.7
Total	6	83.3	7.7

IA SALEM EN 1978

Month/day/year No. of intake- Range in ambie Range in ambie Range in ambie Range in ambie Range in conde Total volume (discharge sa ent water tem ent D.O.(mg/l ent salinity ent pH enser delta T	perature) (ppt)	(c)				04/19-2 5 10.2-1 8.8-9 5.5-8 7.2-7 0.0 24.0	1.0 .7 .0 .6								
			0			2 Hours	After C	ollectio	n 4			8			12	
Species	Total No.	<u>% Live</u>	X Stunned	7 Dead	%Live	% Stunned	% Dead	<u>% Live</u>	% Stunned	% Dead	<u>% Live</u>	7 Stunned	ZDead	<u>% Live</u>	Z Stunned	7 Dead
Intake Adult: <u>A. rostrata</u>	3	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100 .0	0.0	0.0
Discharge Young: A. rostrata	1	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100 .0	0.0	0.0	100.0	0.0	0.0
Adult: <u>A. rostrata</u>	2	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0

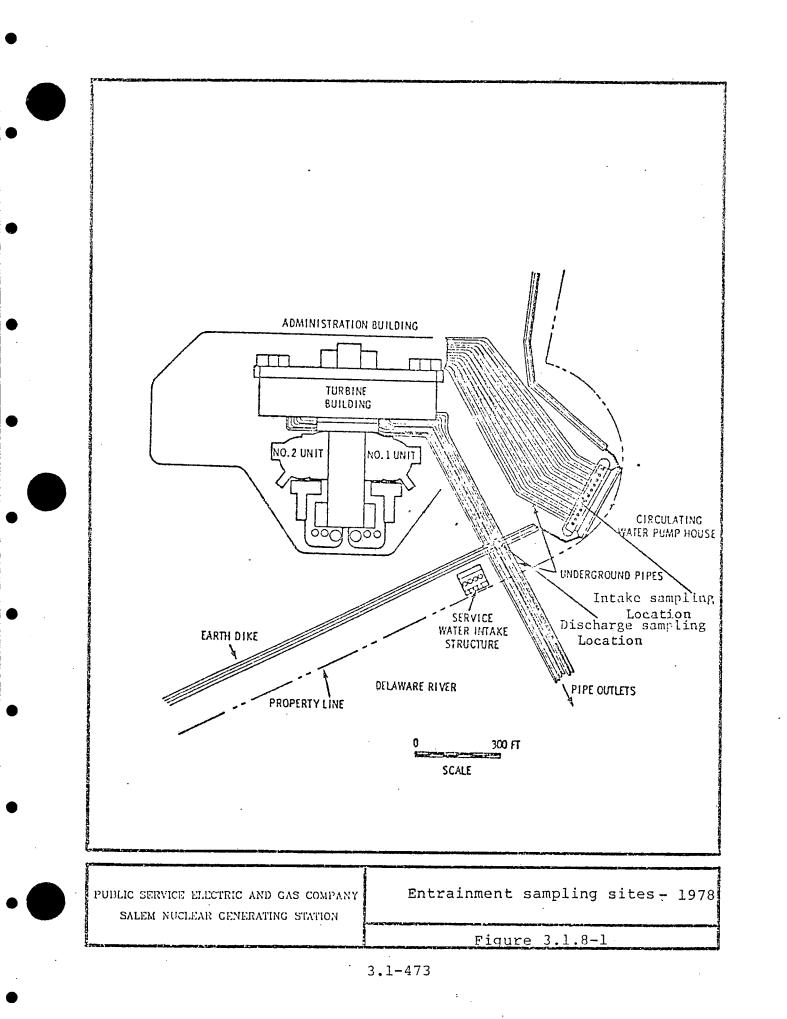
TABLE 3.1.8-10 SUMMARY BY DATE OF INITIAL AND LATENT MEAN PERCENT SURVIVAL OF ICHTHYOPLANKTON-1978

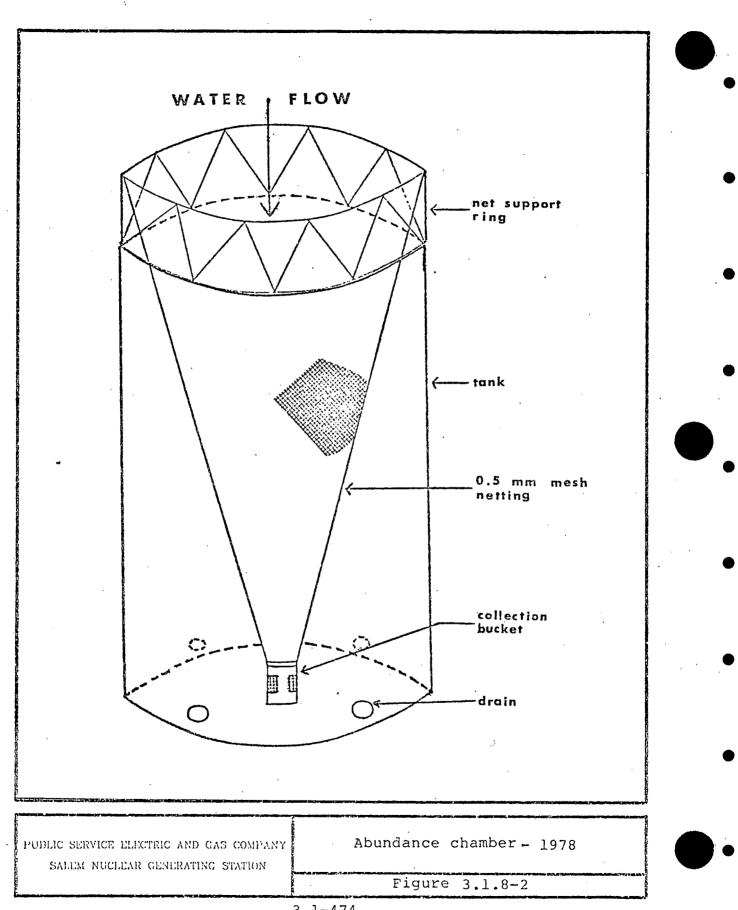
IA SALEM EN 1978

÷

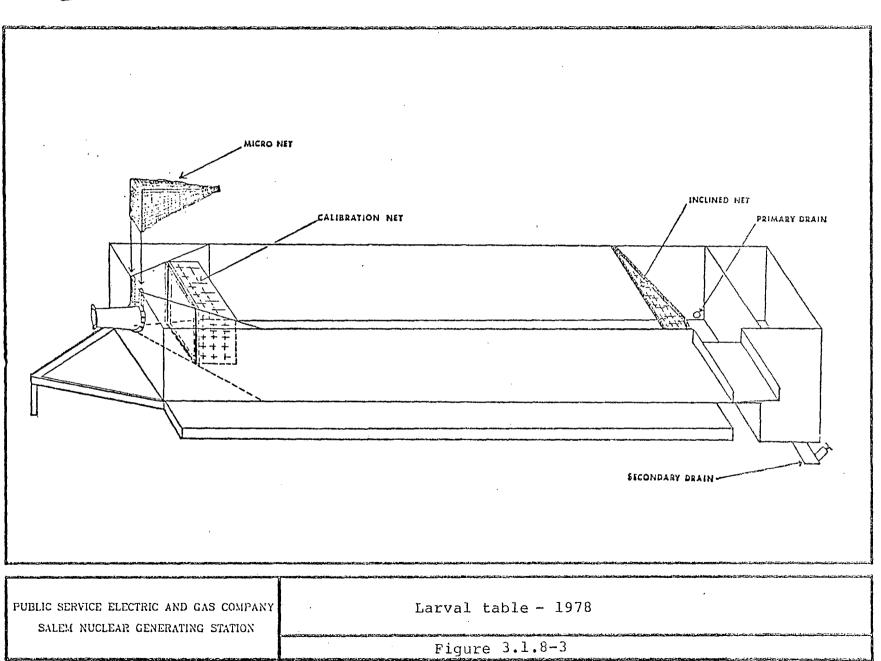
TABLE 3.1.8-10 CONTINUED

Month/day/year No. of intake-d Range in ambien Range in ambien Range in ambien Range in ambien Range in conden Total volume fi	t water tem t D.O. t salinity t pH user delta ₃ 7	nperature C(C)	s (C)				06/28-29/ 7 21.0-26 6.6-8. 4.0-6. 6.5-7. 3.8-6. 42.0	.8 4 0 1 1								
			0			£.	After Co			<i>«</i>	¥ • • •	8 * Cturned	% Dead	% Live	12 % Stunned	% Dead
Species	Total No.	% Live	% Stunned	% Dead	% Live	% Stunned	% Dead	% Live	% Stunned	% Dead	<u>% Live</u>	% Stunned	& Dead	<u>~ 1116</u>	A Stonned	<u>, , , , , , , , , , , , , , , , , , , </u>
Intake Larvae: <u>A. mitchilli</u> <u>M. martinica</u> <u>C. regalis</u> <u>L. xanthurus</u> <u>G. bosci</u> Young: <u>S. fuscus</u> <u>C. regalis</u>	9 1 63 1 1 3 34	55.6 100.0 30.2 100.0 0.0 0.0 58.8	0.0 0.0 1.6 0.0 0.0 0.0	44.4 0.0 68.3 0.0 100.0 100.0 41.2	33.3 100.0 30.2 100.0 0.0 0.0 55.9	0.0 0.0 1.6 0.0 0.0 0.0	66.7 0.0 68.3 0.0 100.0 100.0 44.1	11.1 100.0 31.7 100.0 0.0 0.0 55.9	0.0 0.0 0.0 0.0 0.0 0.0	88.9 0.0 68.3 0.0 100.0 100.0 44.1	31.7 100.0	0.0 0.0 0.0 0.0 0.0 0.0	88.9 0.0 68.3 0.0 100.0 100.0 44.1	11.1 100.0 30.2 100.0 0.0 52.9	0.0 0.0 1.6 0.0 0.0 0.0	88.9 0.0 63.3 0.0 100.0 100.0 47.1
Discharge Larvae: <u>A. mitchilli</u> <u>C. regalis</u> <u>G. bosci</u>	2 57 1	50.0 89.5 0.0	0.0 0.0 0.0	50.0 10.5 100.0	50.0 87.7 0.0	0.0 0.0 0.0	50.0 12.3 100.0	50.0 87.7 0.0	0.0 0.0 0.0	50.0 12.3 100.0	63.2	0.0 0.0 0.0	50.0 36.8 100.0	50.0 63.2 0.0	0.0 0.0 0.0	50.0 36.8 100.0
Young: <u>N. analostanu C. regalis</u> L. xanthurus	15 1 49 1	100.0 79.6 100.0	0.0 16.3 0.0	0.0 4.1 0.0	100.0 81.6 100.0	0.0 14.3 0.0	0.0 4.1 0.0	100.0 83.7 100.0	0.0 10.2 0.0	0.0 4.1 0.0	73.5	0.0 10.2 0.0	0.0 16.3 0.0	100.0 73.5 100.0	10.2	0.0 16.3 0.0

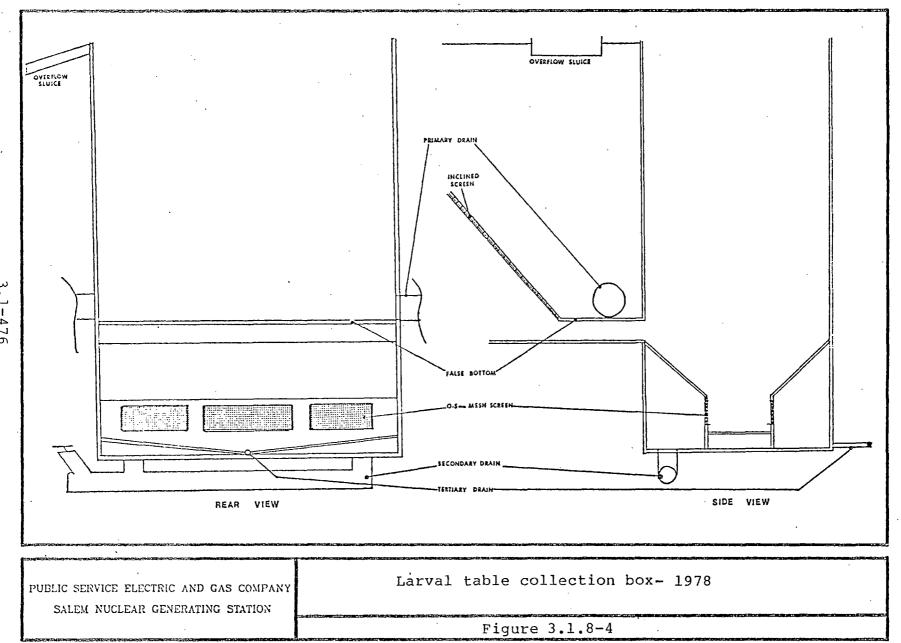

IA SALEM EN 1978


TABLE 3.1.8-10 CONTINUED

Nonth/day/year No. of intake-discharge samples ;	09/13-14/78 11
Range in ambient water temperature (C)	21.2-23.5
Range in ambient D.O. (mg/1)	6.4-7.9
Range in ambient salinity (ppt)	6.0-9.0
Range in ambient pH	6.8-7.0
Range in condenser delta _n T (C)	7.5-11.4
Total volume filtered (m ³)	82.0


		•				Hours	After Co	llection								
			0			2			4			8			12	
Species	Total No.	<u>% Live</u>	% Stunned	% Dead	<u>% Live</u>	% Stunned	% Dead	% Live	% Stunned	% Dead	% Live	% Stunned	7 Dead	% Live	% Stunned	Z Dead
Intake .Larvae:																
A. mitchilli	3	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	66.7	33.3	0.0	0.0	0.0	100.0
M. undulatus	1	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
Young:											•					
A. mitchilli	40	75.0	10.0	15.0	77,5	7.5	15.0	72.5	12.5	15.0	50.0	27.5	22.5	20.0	27.5	52.5
S. fuscus	4	75.0	0.0	25.0	75.0	0.0	25.0	75.0	0.0	25.0	75.0	0.0	25.0	50.0	25.0	25.0
Adult: <u>A. mitchilli</u>	7	57.1	28.6	14.3	71.4	14.3	14.3	57.1	28.6	14.3	42.9	14.3	42.9	28.6	28.6	42.6
Discharge Larvae: <u>A.</u> mitchilli	4	0_0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0
Young: A. mitchilli	25	76.0	8.0	16.0	76.0	8.0	16.0	68.0	16,0	16.0	48.0	36.0	16.0	20.0	4.0	76.0
S. fuscus	3	66.7	0.0	33.3	66.7	0.0	33.3	33.3	33.3	33.3	66.7	0.0	33.3	66.7	0.0	33.3
G. bosci	. 1	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
Adult: <u>A. mitchilli</u>	2	50.0	0.0	50.0	50.0	0.0	50.0	50.0	0.0	50.0	0.0	50.0	50.0	0.0	50.0	50.0

· IA SALEM EN 1978



3.1-474

3.1-475

3.1-476

3.2 TERRESTRIAL (ETS Section 3.1.2.1.2)

This program studies the abundance and distribution of vascular plants and nonfish vertebrates on and near Artificial Island. Emphasis is on species of economic or ecological importance or species classified as rare or endangered (U.S.D.I., 1973).

Research in 1978 included bird surveys, and surveys of bald eagle occurrence, and osprey nesting, and study of diamondback terrapin nesting.

3.2.1 Diamondback Terrapin Nesting Study

(ETS Section 3.1.2.1.2.1)

The objectives are to monitor nesting activity and success of the northern diamondback terrapin, <u>Malaclemys</u> <u>terrapin</u> <u>terrapin</u>. Northern diamondback terrapin inhabit brackish water along the Atlantic coast from Cape Cod to Cape Hatteras. Burger and Monteveechi (1975) stated that most nests were found above the high tide level in flat areas on sand dunes or beaches that have about 20 percent vegetative cover. Generally, it takes the female less than an hour to select a site, dig a flask shaped hole, lay and cover her eggs, and return to the water. Nesting begins in mid-June. Hatching usually begins from mid to late August and may continue into November. Cold weather may cause the young to hibernate in or near the nest and emerge the following spring (Carr, 1952; Lawler and Musick, 1972).

3.2.1.1 Summary

Diamondback terrapin nesting was monitored at three beaches on the Delaware River within 4.8 km of Salem. Nesting was recorded from June 10 through late July, with three activity peaks observed. Degree of activity varied greatly between sites. A total of 127 females was tagged during 1978, with eight recaptures. Estimated number of females utilizing a beach ranged from 30 to 682. Carapace length ranged from 15.3 to 20.6 cm, and age ranged from 12 to 22+ years. Major nest predators were mink, Norway rats, and crows. Blackbacked gulls and great blue herons may have preyed on hatched young both in and out of the nest. Hatching was observed from late August through mid-September. Evidence indicated a total of only 88 young, but this number is highly convervative. Cool spring and summer weather delayed nesting by many females and subsequent hatching of eggs.

3.2.1.2 Study Area

Observations were made from June 10 through November 9, 1978 at suitable nesting beaches at Sunken Ship Cove and near the mouth of Hope Creek, New Jersey, and Liston Point, Delaware (Fig. 3.2.1-1). For description and discussion of these three locations see Volume 2 of the 1977 Annual Environmental Operating Report.

3.2.1.3 Materials and Methods

The three sites were searched during daylight from June into November as required by the ETS. Weekly searches for evidence of nesting were conducted in early June. After first evidence of nesting (June 10), the beaches were monitored three to five times a week through July. Searches for depredated nests and emerging hatchlings were made one to three times a week from August through September. Two searches were conducted during October, and one in November. Each visit consisted of walking the beach and counting turtles, crawl tracks, depredated nests, and eggs. For further description of the study methods see Volume 2 of the 1977 Annual Environmental Operating Report.

In 1978, nests containing unbroken eggs were marked with a numbered stake, and the number of eggs and date recorded. These nests were located by following tracks, finding females on the nest, and random searching. Located nests were monitored for predation. If depredated, the date and number of eggs predated were recorded.

3.2.1.4 Data Reduction

The following formula was developed to provide a rough relative estimate of the number of nesting females utilizing each study area

$$N = \left(\sum \frac{T_s + T_r}{\frac{V}{3}} \right) D$$

where T is the number of turtles sighted, T is the number of tracks counted, V is the number of times the study area was visited over the study period, D is the known number of days of nesting activity, and 3 is the estimated mean number of nests laid per female during the nesting season.

3.2.1.5 Results and Discussion

NESTING ACTIVITY AND EFFORT

Nesting in 1978 began on June 10 and continued through late July. The last dates of observed nesting activity were July 14, 20, and 27 for Sunken Ship Cove, Hope Creek beach, and Liston Point, respectively. Nesting activity varied between sites (Fig. 3.2.1-2, 3.2.1-3). Activity appeared to have three peaks at Liston Point, with the first on June 19 and the second, and highest, on July 6. The third peak occurred four days later on July 10. It is probable the second and third peaks reflected many renesting females. Hildebrand (1932) reported that cultured terrapin may lay from one to five nests per year, but that most lay from one to three nests. Hope Creek also appeared to have three peaks of activity, with the highest observed on June 20. Activity at Sunken Ship Cove slight, but appeared to have two peaks. Nesting activity at this site was greatly affected by heavy usage of the beach by fisherman throughout the summer. Fishermen were present on 23 (85 percent) of the 27 visits made during the active nesting period.

The activity peaks in 1978 did not exhibit the strong cyclic pattern of nesting observed in 1977. In order for cyclic nesting to occur, two criteria must be met (Worth and Smith, 1976). First, there must be no significant immigrant increase in the rookery once seasonal nesting has begun. Second, hormonal synchrony within the nesting population is implied. All three sites had some activity peaks occurring within one day of each other indicating these three nesting populations may belong to one large population. However, many females were probably still immigrating into the rookery areas after nesting had begun. Terrapin appeared to be several weeks behind in their normal seasonal cycle due to the cold spring weather. Terrapin are generally first observed in the spring from early to mid-April, but in 1978 were not observed until mid-May. Therefore, most females were probably not physiologically ready for nesting until late June or early July.

Liston Point had the most nesting activity followed by Hope Creek and Sunken Ship Cove (Table 3.2.1-1). The mean number of combined individuals and tracks observed during nesting was 42.6 at Liston Point, 15.4 at Hope Creek, and 2.6 at Sunken Ship Cove. The estimated number of females utilizing each beach was 30 for Sunken Ship Cove, 211 for Hope Creek, 682 for Liston Point.

Nesting activity on a daily basis appears related to tide and weather. The highest mean number of sightings was during late flood tide under a clear cloud cover (Table 3.2.1-2). More turtles were generally seen during periods of high tide and clear to partly cloudy skies. Burger and Montevecchi (1975) reported a high positive correlation between activity and tidal stage.

A total of 5,653 eggs from 776 nests were recorded during 1978. Most nests were found at Liston Point (505 nests, 4,071 eggs). Hope Creek had 266 nests (1,546 eggs), while only five nests (36 eggs) were located at Sunken Ship Cove. Most of the recorded nests were depredated; 88.3 percent at Liston Point, 87.9 percent at Hope Creek, and 60.0 percent at Sunken Ship Cove.

PREDATION

Marked nests were monitored over the season to determine predation pressure. A total of 63 non-depredated nests were located; 43 at Liston Point, 18 at Hope Creek, and 2 at Sunken Ship Cove. The two nests at Sunken Ship Cove were lost when fishermen removed the stakes. A total of 37 (61.1 percent) of the marked nests were depredated by the end of September; 31 (72.1 percent) at Liston Point and 6 (33 percent) at Hope Creek. Burger (1976) reported that 60 percent of the marked nests in her study were destroyed by raccoons, Procyon lotor, and foxes.

The only predator tracks observed at Sunken Ship Cove were of the norway rat, <u>Rattus norvegicus</u>. Tracks of mink, <u>Mustela vision</u>; norway rat; and crow, <u>Corvus</u> <u>brachyrhynchos</u>, were observed at depredated nests on Hope Creek beach. Mink and rat tracks were commonly observed at Liston Point. Raccoon tracks were also occasionally sighted. Track evidence indicated that mink, raccoon, norway rats, crows, great black-backed gulls; Larus marinus,

and occasionally great blue heron, <u>Ardea</u> <u>herodias</u>, preyed on hatchlings both in and out of the nest.

TAGGED FEMALES

A total of 127 terrapin was tagged during 1978; 56 at Liston Point and 71 at Hope Creek beach. No terrapin were captured at Sunken Ship Cove. Eight tagged terrapin were recaptured in 1978. Six of these were recaptured where originally tagged: three at Liston Point and three at Hope Creek beach. The remaining two had lost their tags.

Mean plastron length and width of the tagged specimens was 16.9 cm (range: 14.9-18.6) and 9.1 cm (8.2-9.1), respectively, at Liston Point and 16.1 cm (14.1-18.4) and 9.0 cm (7.9-9.8) at Hope Creek. Mean carapace length and width was 18.3 cm (range: 16.1-20.6) and 14.0 cm (12.2-15.6), respectively, at Liston Point and 17.3 (15.3-19.2) and 13.3 cm (12.2-14.7) at Hope Creek.

Age of nesting females ranged from 12 to 22+ years. Some of the females captured had completely smooth shells which may indicate they were up to 40+ years (Hildebrand 1932). Mean age at Liston Point was 15.9 years (range: 12-22+), and 16.4 years (13-22+) at Hope Creek.

HATCHLING ABUNDANCE AND ACTIVITY

Hatchlings were first observed August 23, with observations continuing into September. Tracks of 25 young were found at Liston Point, and 19 hatched nests containing 150 eggs were located. Twenty-nine young were observed. No hatchlings were found at Hope Creek and only one track was sighted. Ten hatched nests containing remnants of 45 eggs were found. At Sunken Ship Cove only 33 tracks of young were recorded.

Hatchling activity was greatest during the first two weeks of hatching (Fig. 3.2.1-4). Activity dropped off quickly in September, with the last evidence of hatching observed on September 21. The apparent decrease in hatchling numbers observed in 1978 compared to previous years is felt to be really only a decrease in the number of emerged young. The delay in nesting by many females, coupled with a cooler, wetter incubation period than normal (NOAA, 1978), appeared to delay most hatching to the point where hatchlings did not

emerge from the nest but immediately went into hibernation. Carr (1952) reported that overwintering in the nest is common for turtles both by unhatched eggs and by hatchlings.

	Area	Period	No. of Visits	No. of Non- depredated Nests	No. of Depredated Nests	No. of Non- depredated Eggs	No. of Depredated Eggs	No. of Turtles In Area	No. of Tracks Observed
•	Sunken Ship Cove	10-15 June 16-30 June	4 12	1		10		2	24
		June	16	. 1		10		2	24
		1-15 July 16-31 July	8 4	. 1		10		10	14
		July	12	1		10		10	14
	Subtotal (Adults)		28	2		20		12	38
		1-15 Aug. 16-31 Aug.	1 5		2 1		10 6		20
		August	6		3		16		20
		1-15 Sept. 16-30 Sept.	3 2						13
		September	5						13
		October	2						
		November	1						
	Subtotal (Young)		14		3		16		33
	Total		42	2	· 3	20	16	12	71

TABLE 3.2.1-1 SUMMARY OF NESTING AND HATCHING DATA FOR DIAMONDBACK TERRAPIN - 1978

....

IA SALEM T 1978

Area	Period	No. of <u>Visits</u>	No. of Non- depredated Nests	No. of Depredated <u>Nests</u>	No. of Non- depredated Eggs	No. of Depredated Eggs	No. of Turtles In Area	No. of Tracks Observed
Hope Creek Beach	10-15 June 16-30 June	5 13	2 12	3 66	26 67	24 364	8 44	8 178
	June	18	14	69	93	388	52	186
	1-15 July 16-31 July	9 4	7	52 31	54	322 184	31 6	84 10
	July	13	7	83	54	506	37	94
Subtotal (Adults)		31	21	152	147	894	89	280
	1-15 Aug. 16-31 Aug.	1 4	5	2 3 30	17	162 133		1
	August	5	5	53	17	295		1
	1-15 Sept. 16-30 Sept.	3 2	5	25 5	28	136 29		
	September	5	5	30	28	165		
	October	2		,				
	November	1						
Subtotal (Young)		13	10	83	45	460		1
Total		44	31	•235	192	1,354	89	281

TABLE 3.2.1-1 CONTINUED

IA SALEM T 1978

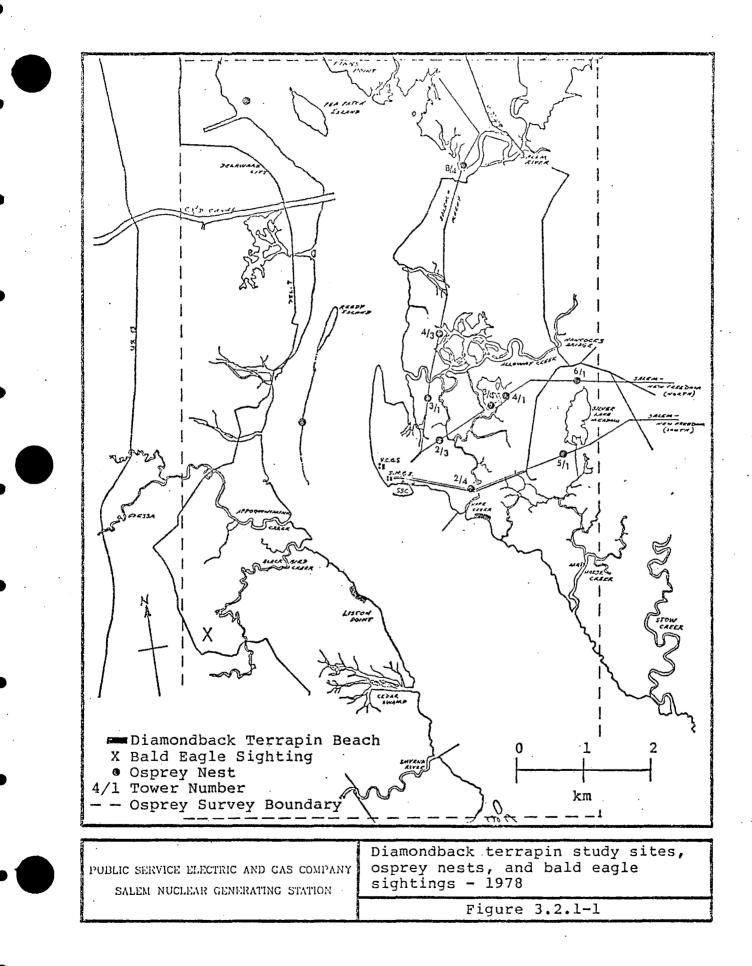
· .

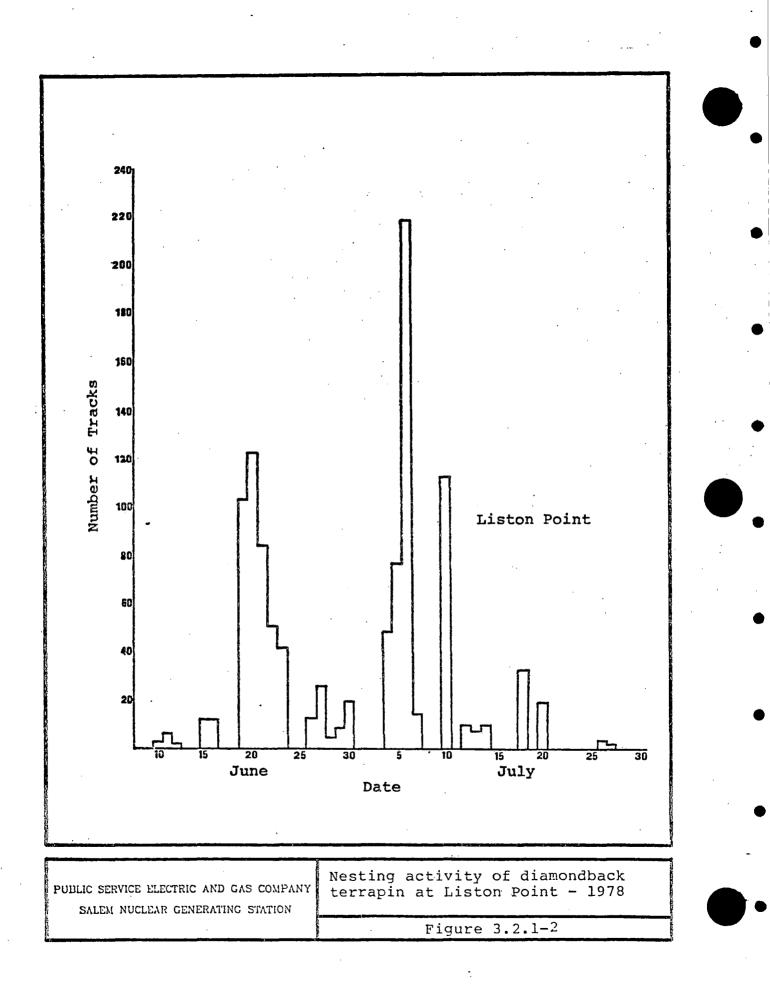
· · · · · ·

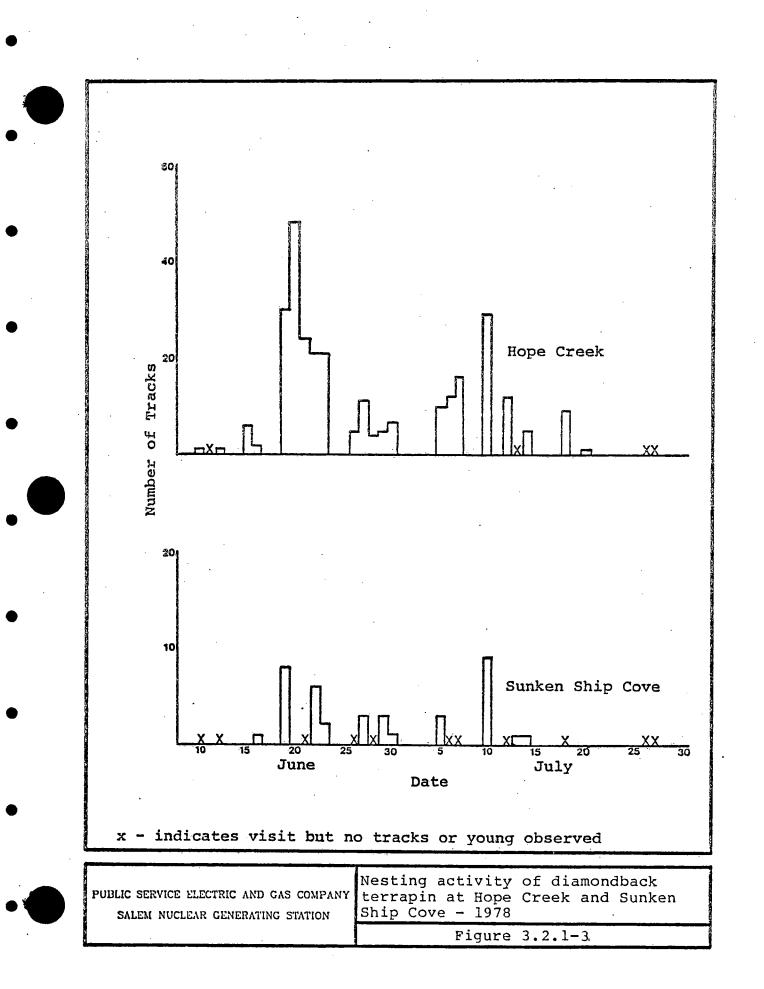
.

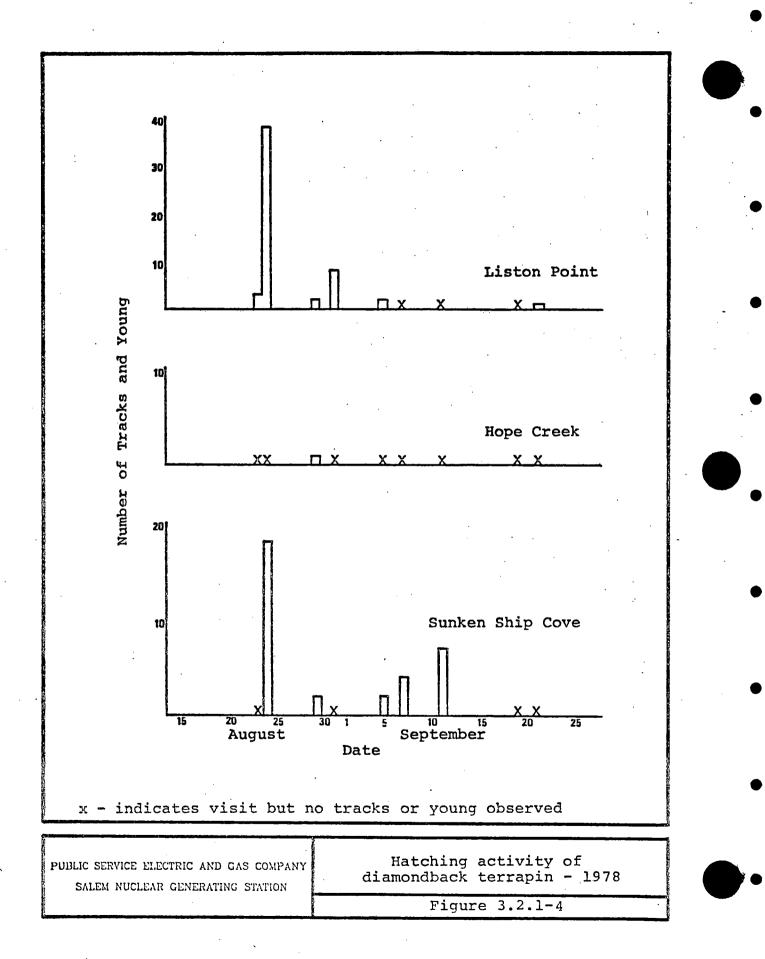
Area	Period	No. of Visits	No. of Non- depredated <u>Nests</u>	No. of Depredated Nests	No. of Non- depredated Eggs	No. of Depredated Eggs	No. of Turtles In Area	No. of Tracks Observed
Liston Point	10-15 June 16-30 June	5 13	12 17	5 , 65	121 190	55 492	5 35	23 488
	June	18	29	70	311	547	40	511
	1-15 July 16-31 July	10 4	12 1	209 57	145 10	1,637 436	40 2	499 58
	July	14	13	266	155	2,073	42	557
Subtotal (Adults)		32	42	336	466	2,620	82	1,068
	1-15 Aug. 16-31 Aug.	1 5	8	54	71	66 424	29	22
	August	6	8	62	71	490	29	22
	1-15 Sept. 16-30 Sept.	3 2	7	43 3.	51 28	319 26		2 1
	September	5	11	46	79	345		3
	October	2				1		
	November	l						
Subtotal (Young)		14	19	108	150	835	29	25
Total		46	61	444	616	3,455	111	1,093

TABLE 3.2.1-1 CONTINUED


IA SALEM T 1978


TABLE 3.2.1-2 DIAMONDBACK TERRAPIN SIGHTINGS RELATED TO TIDE AND CLOUD COVER*- 1978


		Cloud Cover (0-10)		
Tide	Clear (0-3)	Partly Cloudy (4-6)	Overcast .(7-10)	Total
Flood 1	1.6	2.8	0.0	4.4
Flood 2	7.0	2.4	4.2	13.6
Ebb 1	3.3	5.0	5.0	13.3
Ebb 2	0.2	2.7	0.1	3.0
Total	12.1	12.9	9.3	


* Information for tide and cloud cover is from NOAA (1977) and NOAA (1978), respectively.

IA SALEM T 1978

3.2.2 Bird Population Studies (ETS Section 3.1.2.1.2.2)

Bird surveys were conducted during March through December to provide a quantitative assessment of species composition, seasonal abundance, and local distribution within 4.8 to 8.0 km of Salem. Surveys were not conducted during January and February due to weather conditions.

3.2.2.1 Summary

The greatest numbers of individuals and species were sighted during migrations. The abundant species sighted on the river were the Canada goose, laughing gull, great blackbacked gull, Bonaparte's gull, and herring gull. Herons were common from late spring through mid-summer. Abundant waterfowl were the Canada goose, green-winged teal, black duck, and mallard. Black ducks and mallards were the only confirmed year-round residents. Green-winged teal, and Canada geese were commonly observed migrants; Canada geese also wintered in the area.

3.2.2.2 Study Area

The study area was described in Clark (1976). The bird survey covered approximately 11 km of the river and 43 km of tidal creeks. This was divided into six zones to enable correlation of sightings with community type (Fig. 3.2.1-1).

Zone 1 (864 ha or 2,136 acres) includes all of Artificial Island and is composed of pasture, freshwater potholes, tidal marsh, sandy beach, disturbed area, and open water communities.

Zone 2 (1,219 ha or 3,013 acres) is predominantly saltmarsh cordgrass and includes tidal marsh and tidal mud flats on both sides of Alloway Creek. Reed, trees, and shrubs occur along the creek banks.

Zone 3 (226 ha or 558 acres) includes the town of Hancocks Bridge, a part of Alloway Creek west of Salem-Hancocks Bridge Road, and an impounded freshwater marsh vegetated primarily by reed. Zone 4 (1,193 ha or 2,949 acres) includes the tidal marsh surrounding Halfway Creek and Hope Creek downstream from Solters Creek. Reed marsh and low cordgrass marsh are the predominant associations, with reed occupying most of the tidal marsh adjacent to Halfway Creek and lining the banks of most of Hope Creek.

Zone 5 (1,097 ha or 2,710) includes low tidal marsh, tidal mud flats, and farmland surrounding the uppermost region of Hope Creek and all of Solters Creek. Saltmarsh cordgrass is the predominant species.

Zone 6 (497 ha or 1,227 acres) is predominantly low tidal marsh adjacent to Fishing Creek. Saltmarsh cordgrass is the predominant species, but reed occupies much of the creek banks.

3.2.2.3 Materials and Methods

All ETS required samples were collected in 1978. Surveys were made weekly to monthly (weather permitting) throughout the year in areas regularly accessible by boat or foot.

The data are presented as two separate surveys: the river bird survey, including all bird species observed on the survey route on the Delaware River; and the waterfowl survey, including only waterfowl and osprey observed on the river and creeks. Detailed description of the survey methods and route can be found in Volume 2 of the 1977 Annual Environmental Operating Report.

The American coot, <u>Fulica</u> <u>americana</u>, was recorded as a waterfowl species due to similarity of habits and habitat.

3.2.2.4 Results and Discussion

RIVER SURVEY

Approximately 80 percent of the species observed on the river were summer or winter residents, the rest occurred only during migration. About half are known to breed in the general region. The most sightings were during April (\overline{X} = 1,169 individuals), probably the peak month of spring migration (Table 3.2.2-1). March (\overline{X} = 1,020 individuals) also had high migratory activity. The fewest sightings were in June (\overline{X} = 136 individuals).

The most species (26) occurred during April and the fewest (10) in October (Table 3.2.2-1). A total of 58 species was recorded on the river in 1978.

Abundant species on the river in 1978 were the Canada goose, <u>Branta canadensis</u>; laughing gull, <u>Larus atricilla</u>; great <u>black-backed gull</u>, <u>Larus marinus</u>; and herring gull, <u>Larus</u> <u>argentatus</u>. Gulls were usually common but were most <u>abundant during May</u>, July, and August. The laughing gull was the common gull from August through November. Waterfowl, especially Canada geese, were most abundant during March through April. Herons and egrets (Ardeidae) were common during May through July.

Distribution correlated with habitat requirements. Gulls were often sighted where perching was available, e.g., Hope Creek Jetty, Sunken Ship Cove, and the pilings along the west shore of Artificial Island. Dabbling ducks were most often sighted in Sunken Ship Cove, along the west shore of Artificial Island, and in the region of the cove off the northeast side of the island. A flock of 200 to 900 Canada geese was common in this cove during late winter and early These areas offer some shelter from wind and waves. spring. Diving ducks were generally found offshore although small groups were often observed in Sunken Ship Cove. Herons and egrets were usually in quiet, shallow waters along the shore, e.g., the beach at Sunken Ship Cove and behind the pilings on the west shore of Artificial Island.

WATERFOWL SURVEY

Most species occur as winter residents or during migration; only a few breed in the area. Sightings were highest in March (\overline{X} = 1,385 individuals) and April (1,133) (Table 3.2.2-2). This reflected the many Canada geese in the area. Sightings were lowest in July (\overline{X} = 10 individuals). The most species occurred in March (13) and the fewest in July (2). Migration was most active from March through April and September through December. The most abundant waterfowl were Canada geese; green-winged teal, <u>Anas carolinensis</u>; black ducks, <u>Anas rubripes</u>; and mallards, <u>Anas platyrhynchos</u>. Canada geese occurred from March through June and October through December. Black ducks and mallards were the only annual residents regularly observed. Green-winged teal were observed March through May and August through December

Most sightings were in Zones 1, 5, and 6 (Table 3.2.2-3). The most sightings were recorded on the river (Zone 1). Canada geese, black ducks, and mallards were common. Most sightings were of Canada geese.

Zone 5 contains a large area which is mostly open water at high tide and mud flat at low tide. Large numbers of Canada geese; black ducks; pintails, <u>Anas acuta</u>; mallards; and green-winged teal used this area, especially during migration. This zone also contains many narrow streams and ditches lined primarily with saltmarsh cordgrass and very little reed. Saltmarsh cordgrass is an important food and cover plant for waterfowl in this region (Clark, 1976), while reed is of relatively little value for either food or cover. Black ducks and occasionally mallards were flushed from these streams and ditches, especially at high tide.

Zone 6 is predominantly low marsh with many small streams and ditches. Birds often use this area for shelter during high winds. Most sightings were of green-winged teal during migration. Black ducks and mallards were also common.

Table 3.2.2-1 MONTHLY MEAN NUMBER OF BIRD OBSERVATIONS - 1978

Number of Surveys Mean Number of	Jan 0	Feb 0	March 3	April 3	May 3	<u>June</u> 5	<u>July</u> 3	Aug 2	Sept 2	<u>Oct</u> 4	$\frac{Nov}{3}$	Dec 1	Total 29
Individual Sightings Percent by Month			1020.0 25.2	1168.7 28.9	312.7 7.7	136.2 3.4	266.0 6.6	268.5 6.6	186.5 4.6	176.3 4.4	216.0 5.3	293.0 7.3	4043.9
Species					•								
Red-throated loon			0.0	24.0	06.7					1.0	0.7	1.0	0.1
Double-crested cormorant Canada goose			0.3 542.3	24.0 994.7	26.7 6.0	1.4	1.7	3.5	4.0	1.8 2.7	1.3	82.0	6.6 162.8
Snow goose Mallard			10.0 113.7	2.0	4.0					0.2			1.2 12.7
Black duck			47.3	6.7	1.7	0.2			0.5	0.8	1.3	39.0	7.4
Black or mallard Pintail			0.3 53.3	1.3									<0.1 5.7
Blue-winged teal				1.3									0.1
Green-winged teal Canvasback			20.0 5.7	3.3						1.0		4.0	2.6 0.7
Greater scaup			73.0	•									7.6
Common goldeneye Bufflehead			10.7 0.7	0.3					•		1.3		1.1 0.2
Red-breasted merganser											+	3.0	0.1
Unidentified duck Sharp-shinned hawk			6.7							0.3			0.7 <0.1
Marsh hawk			2.3	0.3	0.3	0.2				•••	1.0	1.0	0.5
Red-tailed hawk Eastern merlin				1.3 0.3									0.1 <0.1
American kestrel			0.3							0.2			0.1
Ring-necked pheasant Great egret			1.0	0.7	0.3	2.0	2.0			0.5			0.2 0.6
Snowy egret				0.3	0.7	2.2	4.3			0.5			0.9
Cattle egret Great-blue heron			1.3	0.7	1.7	3.6	1.7	2.5 0.5					0.3
Black-crowned night heron				0.7	3.0	9.4	3.7	0.5					2.3
Glossy ibis American coot					3.0						0.6		0.3
Black-bellied plover				2.7							0.0		0.1
Killdeer			•	0.3		0.4							0.1
Spotted sandpiper Greater yellowlegs				0.7	0.3				0.5				<0.1 0.1
Least sandpiper											6.3		0.7
Semipalmated sandpiper Common snipe			0.7	0.3	1.0	0.2		·1.0					0.2
Great black-backed gull			5.0	8.0	105.0,	75.8	153.7	60.0	38,5	9.0	7.7	. 23.0	50.8
Herring gull Ring-billed gull			5.7 1.3	11.7 6.3	129.3	21.0 3.6	11.7 4.0	12.0 3.5	20.5	18.0	25.7 23.7	87.0 2.0	30.4 4.6
Laughing gull					5.3	14.0	74.7	179.0	115.0	87.3	125.7	51.0	57.8
Bonaparte's gull Least tern							0.3	3.5	4.0		12.3 5.0		$1.3 \\ 1.1$
Common tern							1.3				0.0		0.1
Mourning dove Belted kingfisher				· 1.3	0.3			2.0	1.0	1.0			0.3
-													

IA SALEM T 1978

3.2-19

ŧ

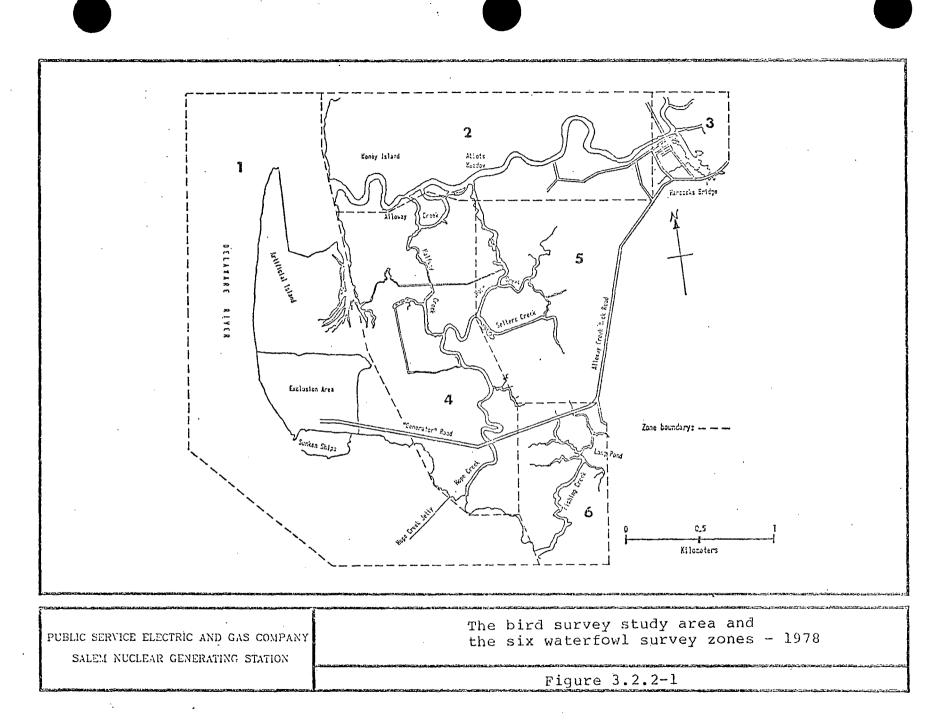
Number of Surveys Nean Number of	Jan 0	Feb 0	March 3	April 3	May 3	June 5	July 3	Aug 2	<u>Sept</u> 2	Oct 4	Nov 3	Dec 1	Total 29
Individual Sightings Percent by Honth			1020.0 25.2	1168.7 28.9	312.7 7.7	136.2 3.4	266.0 6.6	268.5	186.5 4.6	176.3 4.4	216.0 5.3	293.0 7.3	4043.9
Species													
Yellow-shafted flicker Kingbird Barn swallow Tree swallow Rough-winged swallow Common Crow Fish crow			0.3	0.3	0.3 2.0 1.3 2.0	1.4 0.2	2.7 0.3 2.7	0.5	2.0	14.8 0.2 0.5		·	<0.1 <0.1 0.8 2.2 0.2 0.7 0.1
Starling Meadowlark Red-winged blackbird Cowbird Common grackle Unidentified blackbirds Song sparrow			1.3 100.0 16.7	93.3	18.3	0.6	1.3		0.5	4.0 20.5 12.5 1.0	3.3		0.1 0.1 24.9 1.8 0.4 1.7 0.1

Table 3.2.2-1 CONTINUED

.

IA SALEM T 1978

TABLE 3.2.2-2 MONTHLY MEAN NUMBER OF SIGHTINGS OF WATERFOWL AND OSPREY - 1978


Number of Surveys Mean Number of	Mar 3	Apr 3	May 3	June 5	July 2	Aug. 2	Sept 2	Oct 4	<u>Nov</u> 3	Dec 1	Total 28
Individual Sightings Percent by Month	1385.0 41.8	1133.0 34.2	35.7 1.1	16.8 0.5	9.5 0.3	25.0 0.8	187.5 5.7	168.8 5,1	204.3	144.0 4.3	3309.6
Species											
Canada goose Snow goose	833.0 10.0	1024.7 2.0	8.3	2.8				6.0	24.3	82.0	206.8
Mallard Black duck Black or mallard	115.3 137.7 0.3	20.0 26.3 11.3	10.7 9.7	2.4 4.0	0,5	1.0 . 4.0	26.0 25.5	36.8 24.8	31.0 24.3	40.0 14.0	1.3 26.6 29.0 1.8
Pintail Gadwall Blue-winged teal	134.3 1.3	1.3 0.3 1.3					5.5 3.5	0.8	3.3	14.0	15.3 0.2
Green-winged teal Wood duck Canvasback	51.0 2.0 5.7	38.7 1.3	0.7			19.0	126.0	99.8 0.5	119.3	1.0	0.5 47.1 0.4
Greater scaup Common goldeneye Bufflehead	73.0 10.7	0.0				•				4.0	0.8 7.8 1.1
Red-breasted merganser American coot	0.7	0.3				•			1.3	3.0	0.3
Osprey	1.3	5.3	6.3	7.6	9.0	1.0	1.0	0.3	0.7		0.8 0.2

IA SALEM T 1978

Zone	1 15	2 6	3 8	4 5	5 9	6	Total 16
Number of Species. Number of	15	6	. 8	5	9	Ø	10
Individual Sightings	5123	284	769	58	2186	1101	9521
Percent by Zone	53.8	3.0	8.1	0.6	22.9	11.6	5014
			-				
Species							
Canada goose	4545	13	131		1102		5791
Snow goose	36		,		•		36
Mallard	130	91	194	10	220	100	745
Black duck	85	- 72	119	38	291	207	812
Black or mallard	1	1		2		45	49
Pintail	4	46	77	5	287	. 9	428
Gadwall			4		1		5
Blue-winged teal	4				7	3	14
Green-winged teal	14	60	238	1	273	733	1319
Wood duck	•		4		. 4	4	12
Canvasback	21						21
Greater scaup	219						219
Common goldeneye	32						32
Bufflehead	7						7
Red-breasted merganser	3						3
Unidentified duck	20			2			22
American coot	2	1	2		1		6

TABLE 3.2.2-3 SUMMARY BY ZONE OF WATERFOWL SIGHTINGS - 1978

IA SALEM T 1978

3.2.3 BALD EAGLE AND OSPREY MONITORING STUDY

(ETS Section 3.1.2.1.2.3)

The study objectives are to record the occurrence of osprey and bald eagle and to monitor nesting of osprey in the vicinity of Artificial Island. The southern bald eagle, <u>Haliaeetus 1. leucocephalus</u>, is classified as "endangered" (U.S.D.I., 1974); and the North American osprey, <u>Pandion</u> <u>haliaetus carolinensis</u>, as "status undetermined" (U.S.D.I., 1973).

3.2.3.1 Summary

Osprey were observed in the study area from March 15 through October 6. Eleven osprey nests were monitored by helicopter in 1978. Nine nests were located on transmission towers, 1 on pilings, and 1 on a nesting platform. Seven nests contained eggs and were considered active. These nests produced 10 fledged birds for a nesting success of 67 percent, with a mean of 1.11 young/active nest.

Bald eagle were observed once in the study area during 1978. Two birds were sighted May 28 near Taylors Bridge, Delaware.

3.2.3.2 Study Area

The study area extends 16.1 km north, 12.9 km south, and 8.0 km east and west from Salem. The northern boundary is near Finns Point, New Jersey and the southern boundary is just north of Woodland Beach, Delaware (Fig. 3.2.1-1).

The area features riverine, bay, upland field, and wooded habitats. Pilings, range towers, and powerline towers are common.

3.2.3.3 Materials and Methods

Known osprey nests were checked by helicopter about every two weeks during April through August. During flights the region was searched for additional osprey nests and for bald eagle. The number of adults, eggs, nestlings, and fledglings in each nest were recorded. Bald eagle sighted by IA personnel were recorded to location, activity, and age (adult or immature).

3.2.3.4 Results and Discussion

Adult osprey were sighted from March 15 through October 6. Most sightings were made during the bird survey. The most sightings were in July (Table 3.2.2-2). Sightings were of possibly eight adults.

Eleven nests were located and monitored in 1978 (Table 3.2.3-1). Nine nests were located on transmission towers, 1 on pilings, and 1 on a nesting platform. Four nests were known to be inactive or were destroyed early in the season. Seven nests contained a total of 10 young, all of which fledged. The number of eggs and newly hatched young was not recorded for all nests. Most females at the active nests remained on the nest while the helicopter was near. Considering only the seven possible active nests, nesting success in 1978 was 67 percent. The mean number of young fledged per active nest was 1.11. This is well within the 0.95 to 1.30 immatures per adult female that Henny and Wight (1969) estimated is needed each year to ensure population stability.

Two adult bald eagles were sighted flying north over Delaware Route 9 east of Taylors Bridge on May 28 by IA personnel. TABLE 3.2.3-1 OSPREY NESTING AND SUCCESS - 1978

Location of Nests	No. of Eggs Observed	No. of Young Observed	No. of Fledglings Observed
River piling east of Getty Oil Refinery, Delaware City	* *	0	0
Nesting platform, Reedy Island Jetty*	2		
Nests on Transmission Line Towers			
Salem - Keeny 3/1* Salem - Keeny 4/3 Salem - Keeny 8/4 Salem - North 2/3 Salem - North 3/4 Salem - North 4/1 Salem - North 6/1 Salem - South 5/1	0 1 ** ** ** 2 1 **	1 0 1 3 1 0 1 3	1 0 1 3 1 0 1 3
Total	ч	10	10

* = Disappearance of nest.
** = Unable to determine.

3.3 REFERENCES

- Arndt, R. G. 1974. The biology and economics of the blue crab, <u>Callinectes sapidus</u>, in the Delaware River near Artificial Island, 1971. Pages 604-705 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1971. Ichthyological Associates. 709 pp.
- Browne, M. E., L. B. DeLancey, D. A. Randle, and W. H. Whitmore. 1976. A study of zooplankton in the Delaware River in the vicinity of Artificial Island in 1974. Pages 1-152 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1974. Vol. II. Ichthyological Associates. 517 pp.
- Burger, J., and W. A. Montevecchi. 1975. Nest site selection in the terrapin <u>Malaclemys</u> <u>terrapin</u>. Copeia 1975:113-119.
- Burger, J. 1976. Behavior of hatchling diamondback terrapins (<u>Malaclemys</u> terrapin) in the field. Copeia 1976 (4):742-748.
- Carr, A. 1952. Handbook of turtles. Comstock Publishing Assoc., Cornell Univ. Press, Ithaca, NY 542 pp.
- Clark, R. S. 1976. Studies of the marsh and terrestrial ecology in the vicinity of Artificial Island, Salem County, New Jersey. Pages 409-456 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1974. Vol. II. Ichthylolgical Associates. 517 pp.
- Connelly, R. A., G. A. Hayes, T. S. Kartachak, and R. A. Tudor. 1976. A quantitative study of benthic macroinvertebrates of the Delaware River in the vicinity of Artificial Island in 1973 and 1974. Pages 183-366 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January through December 1974. Vol. II. Ichthylolgical Associates. 517 pp.
- Cronin, L. E., J. C. Daiber, and E. M. Hulburt. 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary. Ches. Sci. 3(2):63-93.

- Dixon, W. J. (ed.). 1975. BMDP: Biomedical Computer Programs. University of California Press, Los Angeles. 792 pp.
- Harmic, J. L. 1958. Some aspects of the development and the ecology of the pelagic phase of the gray Squeteague, <u>Cynoscion regalis</u> (Bloch and Schneider) in the Delaware estuary. Ph.D. Thesis (unpubl). Univ. of Del. 80 pp.
- Henny, C. J., and H. M. Wight. 1969. An endangered osprey population: estimates of mortality and production. Auk 86(2):188-198.
- Hildebrand, S. F., and L. E. Cable. 1930. Development and life history of fourteen teleostean fishes at Beaufort, NC. Bull. Bur. Fish., 46 (1930). Bur. Fish. Doc. 1,093:383-488.
- Hildebrand, S. F. 1932. Growth of diamondback terrapins, size attained, sex ratios, and longevity. Zoologica 9(15):551-563.
- Hopkins, T. L. 1965. Mysid shrimp abundance in surface waters of Indian River Inlet, Delaware. Ches. Sci. 6(2):86-91.
- Hulburt, E. M. 1957. The distribution of <u>Neomysis</u> <u>americana</u> in the estuary of the Delaware River. Limnol. Oceanogr. 2(1):1-11.
- Kuntz, A. 1914. The embryology and larval development of <u>Bairdiella chrysura</u> and <u>Anchoa</u> <u>mitchilli</u>. U.S. Bur. Fish., Bull. 33:1-19.
- Laver, G. T., W. T. Waller, D. W. Bath, W. Meeks, R. Heffner, T. Ginn, L. Zubarik, P. Bibko, and P. C. Storm. 1974. Entrainment studies on Hudson River organisms. Pages 37-82 in Proceedings of the second workshop on entrainment and intake screening. Rep. No. 15. The John Hopkins Univ., Baltimore, MD. 347 pp.
- Lawler, A. R., and J. A. Musick. 1972. Sand beach hibernation by a northern diamondback terrapin, <u>Malaclemys terrapin terrapin</u> (Schoepff). Copeia 1972(3):389-390.
- Lindsay, J.A., and N. J. Morrisson. 1974. A study of zooplankton in the Delaware River in the vicinity of Artificial Island in 1973. Pages 342-417 in An ecological study of the Delaware River in the vicinity

of Artificial Island. Progress Report for the period January-December 1973. Ichthyological Associates. 517 pp.

Marriott, F. H. C. 1974. The Interpretation of Multiple Observations. Academic Press, New York. 117 pp.

National Oceanic and Atmospheric Administration. 1977. Tides tables - 1978, East Coast of North and South America. National Ocean Survey, Rockville, MD.

National Oceanic and Atmospheric Administration. 1978. Local Climatological data - Wilmington, Delaware. National Climatic Center, Asheville, NC.

National Oceanic and Atmospheric Administration. 1972. C&GS Chart 294. Delaware River, Smyrna River to Wilmington. National Ocean Survey, Washington, DC.

Nelson, T. C. 1928. On the association of the common goby (<u>Gobiosoma bosci</u>) with the oyster, including a case of parasitism. Nat. Hist. 28(1):78-84.

'Pielou, E. C. 1977. Mathematical Ecology. Wiley -Interscience, New York. 385 pp.

Public Service Electric & Gas Company. 1978a. Biotic Environmental Surveillance. Volume 2 of 3 in 1977 Annual Environmental Operating Report, Salem Nuclear Generating Station - Unit No. 1, January 1 through December 31, 1977. 679 pp.

Public Service Electric & Gas Company. 1978b. Summary Assessment of Weakfish Impingement: Summer 1978. Salem Nuclear Generating Station - Unit 1.

Shannon, C. E., and W. Weaver. 1963. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 117 pp.

United States Department of Interior. 1973. Threatened wildlife of the United States. Bur. Sport Fish. and Wildl. Resource Pub. 114. 289 pp.

United States Department of Interior. 1974. United States list of endangered fauna. U.S. Fish and Wildl. Serv. 22 pp.

Worth, D. F., and J. B. Smith. 1976. Marine turtle nesting on Hutchinson Island, Florida, in 1973. Florida Dept. Nat. Resource, Florida Mar. Res. Pub. No. 18. 17 pp.

3.3-3

Weber, C. I. (ed.). 1973. Macroinvertebrates. 38 pp. in Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. EPA-670/4-73-001. U.S.E.P.A. Cincinnati, Ohio.

Welsh, B. L. 1975. The role of grass shrimp, <u>Palaemonetes</u> <u>pugio</u>, in a tidal marsh ecosystem. Ecology 56(3):513-530.