(NONRADIOLOGICAL)
the attached files are official records of the DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND AQOCGMENTS CHARGED OUT THROUGHTHEMAIT REMOVALS AF ANY
 BE REAERREDUS PILE PERSONNEL.

DEADLINERETURN DATE

Ur 4.2 .74

7904120277

RECORDS FACILITY BRANCH

MARCH 30, 1979

7904120281"

```
1 9 7 8 ~ A N N U A L ~ E N V I R O N M E N T A L ~ O P E R A T I N G ~ R E P O R T ~
                                    (NON-RADIOLOGICAL)
January l Through December 31, 1978
```


TABLE OF CONTENTS

SECTIONTITLEPAGE
1.0 GENERAL 1.1-1
1.1 INTRODUCTION 1.1-1
1.2SUMMARY1.2-1
1.3 COINCLUSIONS 1.3-1
2.0 ABIOTIC MONITORING AND SURVEILLANCE PROGRAMS. 2.l-I
2.1 TEMPERATURE 2.1-1
2.1.1 Condenser Delta Temperature 2.1-2
2.1.2 Maximum Discharge Temperature 2.1-2
2.1.3 Rate of Change of Discharge Temperature 2.1-2
2.2CHEMICAL.2.2-1
2.2.1Chlorine2.2-1
2.2 .22.2.32.2 .42.2.5
Suspended Solids 2.2-6
pH 2.2-11
Dissolved Oxygen 2.2-12
Other Chemicals 2.2-14
3.0 BIOTIC MONITORIMG AND SURVEILLANCE PROGRAMS . 3.1-1
3.1 AQUATIC. 3.1-1
3.1 .1Phytoplankton3.1-2
3.1.2 Ichthyoplankton 3.1-26
3.1 .3 Zooplankton 3.1-71
3.1 .4 Benthos 3.1-116
3.1-5 Blue Crab 3.1-160
3.1.6a Juvenile and Adult Fishes - River 3.1-204
3.1.6b
Juvenile and Adult Fishes - TidalTributaries3.1-222
3.1 .7 Impingement of Organisms 3.1-334
3.1.8 Entrainment of Planktonic Organisms 3.1-369
3.2TERRESTRIAL3.2-1
3.2.1 Diamondback Terrapin IJesting Study 3.2-1
3.2.2 Bird Population Studies 3.2-15
3.2.3 Bald Eagle and Osprey Monitoring Study 3.2-24
3.3 REFERENCES 3.3-1

ACKNOWLEDGEMENT

This report was prepared by Public Service Electric and Gas Company, Newark, New Jersey. Data were collected at the Salem Nuclear Generating Station and in the Delaware Estuary by the staff of Salem Station, the PSE\&G Research and Testing Laboratory and Ichthyological Associates (IA) of Middletown, Delaware. Data analysis and report preparation was performed by the PSE\&G Licensing and Environment Department and the IA staff.

1.1 INTRODUCTION

This report is required by Section 5.6.l.l.l.a of the Environmental Technical Specifications (Appendix B) to Salem Nuclear Generating Station Operating License No. DRP-70. It includes the results of analyses carried out under the nonradiological environmental monitoring requirements described in the Environmental Technical Specifications (ETS). Appendix B became effective on December 11 , 1976 at 7:35 p.m. EST when Salem Nuclear Generating Station (SNGS), Unit 1 , attained initial criticality.

Information from December 11 through December 31,1976 is reported for all required monitoring programs in the 1975 Annual Environmental operating Report (Non-radiological), April 1977. Results of the first full year of Salem Unit l operation were reported in the 1977 Annual Environmental Operating Report (Non-radiological), March 31, 1978. This third such report covers the same information for the period January 1, 1978 through December 31, 1978.

1.2 SUMMARY

Salem Unit 1 was operational during much of 1978 while Salem Unit 2 continued in the construction phase. Two (2) extended maintenance outages, one in the spring and one in the fall, did occur during the operation of Unit 1 , and additional relatively short maintenance periods occurred at other times throughout the year. Daily average reactor power levels achieved during the reporting period and corresponding condenser delta temperature information are given in Figures 2.l-1 through 2.1-3.

The requirements for non-radiological environmental monitoring were divided into two general monitoring and surveillance programs: abiotic and biotic. The abiotic program covered field (estuary), and station monitoring efforts, including plant temperature information and plant and field chemical surveys. Section 2.0 of this report discusses the abiotic program. Meteorological information for 1978 are presented in two (2) 1978 Semiannual Radioactive Effluent Release Reports (RERR-4 and RERR-5) for Salem Station.

The biotic studies were divided into aquatic and terrestrial programs, and the results are presented in Section 3.0. In addition to the field studies, the aquatic effort included substantial monitoring of the intake and discharge for impingement and entrainment.

1.3 CONCLUSIONS

Heat dissipation through the condensers was generally related to reactor power level. The circulating water system experienced intake screen failure and condenser tube plugging at times, requiring operation with fewer than six pumps. However, no environmental impact from the operation of the circulating water system was detected in the Delaware River estuary.

Plant chemical discharges were made in accordance with the Environmental Technical Specification provisions, and chemical usage was compared with predicted waste discharge concentrations. No unusual or significant water quality impacts or chemical concentrations were noted during the period in which estuary water quality samples were taken.

The general ecological survey was conducted in accordance with the provisions of ETS Section 3.l.2.l to determine the effect of plant operation on the ecology of the Delaware River estuary. No significant changes in the ecology of the river in the vicinity of Salem Nuclear Generating Station were observed. .

Aquatic and terrestrial species compositions, densities and abundances were within expected ranges when compared to preoperational monitoring data, except for the number of juvenile weakfish (Cynoscion regalis) within the estuary. Data collected during the summer indicated that the juvenile weakfish population was larger than had been previously observed. Although relatively high impingement rates did occur, there was no indication that the operation of Salem Station had a significant impact on the 1978 year class of weakfish.

SECTION 2.0
ABIOTIC MONITORING AND SURVEILLANCE PROGRAMS

2.1 TEMPERATURE (ETS Section 2.1)

During 1978, Salem Unit 1 was in commerciai operation as a baseioad electric generating station, with production varying from 0 to 1113 MWe.

An extended outage for maintenance started in March and continued through mid-June. Another extended outage occurred in October and November for a period of four weeks. Several shorter ones occurred throughout the year. Average daily power level and average daily delta temperature are presented in Figures 2.1-1 through 2.1-3. These figures demonstrate the close correlation between power level and delta temperature.

There are three parts to the condenser serving the Salem Unit 1 steam turbine, and each is divided into two separate halves. As required by the ETS, condenser temperatures were monitored at the inlet to each condenser half or sheli, for a total of six measurements. Similarly, discharge temperatures were measured in each of the six discharge lines.

The Salem condenser monitoring system utilizes probes called resistor temperature detectors (RTD). These RTD's are interfaced with the plant computer which records the condenser temperature readings on an houriy basis. The data are processed to produce the delta T and maximum discharge temperature information required by the ETS. When the computer monitoring system was out of service, the intake and discharge temperatures were monitored every two hours utilizing local instrumentation located on the condensers.

The results of the temperature monitoring program are summarized in Table 2.1-1. Presented are the average intake, discharge and delta temperatures for the Unit 1 condenser.

The coldest intake temperatures occurred in February $\left[0.6^{\circ} \mathrm{C}\left(33.1^{\circ} \mathrm{F}\right)\right]$ while the highest occurred in July [34.20$\left.{ }^{\circ} \mathrm{C}\left(93^{\circ} \mathrm{F}\right)\right]$. The lowest and highest discharge temperatures occurred in February and August respectively $\left[1.1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)\right]$ and $\left[42.8^{\circ} \mathrm{C}\left(109^{\circ} \mathrm{F}\right)\right]$. The monthly average delta T was fairly consistent throughout the year. No data are reported for April and May because of the plant outage.

2.1.1 Condenser Delta Temperature (ETS Section 2.1.1)

Heat rejected through the condensers varied in response to plant operating conditions and power level. Problems were frequently encountered with the circulating water system, the most common being failures of the vertical traveling intake screens. Nonrepresentative locations of the RTD's and plugging of condenser tubing also contributed to indications exceeding the 16.50F delta T limit with 6 pumps in service at times. Such corrective actions as power reductions or water box cleaning, were generally employed to reduce the delta T. In addition, the RTD's were relocated during the March outage thus rectifying the problem of erroneous readings when the station resumed operation in June.

As mentioned before, the main probiems were with the circulating water vertical traveling screens. Because of a serious detritus loading problem, and also to maximize survival of fish impinged upon the screens, the circulating water traveling screens were operated continuousiy. This caused excessive wear of the screens and related hardware and resulted in frequent breakdowns. Since a circulating pump cannot be operated without its traveling screen, Salem Unit l operated much of the time with fewer than 6 pumps in service.

2.1.2 Maximum Discharge Temperature (ETS Section 2.1.2)

The circulating water intake and discharge temperatures reached their maximums in August. The intake temperature maximum was $30.0^{\circ} \mathrm{C}\left(96.8^{\circ} \mathrm{F}\right)$ while the maximum discharge temperature was $42.7^{\circ} \mathrm{C}\left(109.0^{\circ} \mathrm{F}\right)$. This occurred when fewer than six pumps were operating. ETS Iimits for maximum discharge temperatures were not exceeded in 1978.

2.1.3 Rate of Change of Discharge Temperature (ETS Section 2.1.3)

Section 2.1.3 of the Salem ETS requires that "The rate of change of discharge temperature shall not exceed 80° per hour during normal plant shutdown". In 1978 Salem Unit l, during normal power level reductions did not exceed a rate of change of greater than 15% of full power in one hour. This rate of change is substantialiy less than the 25\% which would require additional monitoring. Correspondingly, the specified rate of change requirement was not exceeded and there was no necessity to increase the frequency of discharge temperature monitoring.

Unplanned power reductions did occur because of the need to protect plant equipment or when, for certain reactor safeguard operations, the plant decreased reactor power level rapidly. No cold shock or other environmental impact attributabie to shutdown was observed.

AVERAGE CONDENSER TEMPERATURES - 1978

Date	Intake Average*	Temp. ${ }^{\circ} \mathrm{C}\left(\mathrm{O}_{\mathrm{F}}\right)$	Discharge Temp. Average* ${ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Delta } \mathrm{T} \\ & \text { rage* } \mathrm{O}^{\mathrm{C}}(\mathrm{OF}) \end{aligned}$	
January	1.3	(34.3)	8.9	(48.1)	7.7	(13.7)
February	0.6	(33.1)	7.9	(46.2)	7.3	(13.2)
March	1.8	(35.2)	8.6	(47.5)	6.8	(12.5)
April**	-		-		-	
May**	-		-		-	
June	23.8	(74.8)	28.7	(83.7)	4.9	(8.9)
July	25.7	(78.3)	32.8	(91.0)	7.1	(12.7)
August	27.8	(82.0)	36.0	(96.8)	8.2	(14.8)
September	24.5	(76.1)	32.8	(91.0)	8.3	(14.9)
October	18.9	(66.0)	23.5	(74.3)	4.7	(8.3)
November	12.3	(54.1)	21.4	(70.5)	9.1	(16.4)
December	7.0	(44.6)	14.6	(58.3)	7.6	(13.7)

*Average of Condenser Circuits 11, I2 and 13
**No power generated in April and May

| PUBLIC SERVICE ELECTRIC AND GAS COMPANY |
| :---: | :--- |
| SALEM NUCLEAR GENERATING STATION |\quad| Daily Average Reactor Power Ievel |
| :--- |
| And Condenser Delta Temperature |

PUBLIC SERVICE ELECTRIC AND GAS COMPANY
SALEM MUCLEAR GENERATING STATION

> Daily Average Reactor Power Level
> And Condenser Delta Temperature

2.2 CHEMICAL

2.2.1 Chiorine
2.2.1.1 Sodium Hypochiorite System (ETS Section

The Salem Nuclear Generating Station uses sodium hypochiorite (NaOCI) solution for treatment of cooiing circuits in order to maintain these circuits free from biofouling. The sodium hypochlorite solution is injected at the intakes immediately behind the vertical traveling screens. The circulating and service water systems chlorination controls are programmed to chlorinate in sequence, not in parallel. The program calls for chlorination three times per day for 30 minutes each.

The Salem Environmental Technical Specifications require that "The concentration of free chlorine in the circulating water system and service water system shall not be greater than $1.0 \mathrm{mg} /$ liter at the outlet of the final heat exchanger". The ETS require a chlorine residual analyzer which is permanentiy located to optimize the monitoring of exchanger residuals.

Several technical problems with the sodium hypochlorite system occurred in 1978 at the Salem Nuclear Generating Station. Consequently, chlorination rook place on only 19 days in 1978. The chlorination system was operated manually from Juiy 5 until August l4 (Table 2.2.1-1).

Due to failure of the automatic control system, the free chlorine residual was determined by manual amperometric titration of grab samples taken during the chlorination cycle.

During the chlorination periods, these analyses of free chlorine residual indicated values between 0 and 0.4 mg/liter. Consequently, because of the additional dilution from other condenser circuits, the concentration at the discharge to the river was less than 0.1 mg/liter.

The weekly river biocide surveys taken during periods of chlorination (described in Section 2.2.1.2) showed a total chlorine residual of $0.03 \mathrm{mg} /$ liter or less on all occasions.

Also, the ecological monitoring program conducted in the vicinity of Artificial Island revealed no effect on the aquatic community from the sodium hypochiorite system.

A mass balance comparing the total quantity of chlorine injected to the volume of circulating and service water chlorinated in 1978 is summarized in Table 2.2.1-2. It demonstrates that the amount of chlorine injected and reduced by chlorine demand, would have resulted in a free chlorine residual at the discharge below detectabie levels. This is consistent with the station's analyses of free chlorine residual.

Actually, the chlorine residuals discharged to the river are further reduced because the system contact time is significantiy longer than the time (5 minutes) between intake and the point at which chlorine residual monitoring occurrs.

ABLE 2.2.1-1
SODIUM HYPOCHLORITE SYSTEM
1978 OPERATING SUMMARY

Water System	Sodium Hypochlorite System		Chlorination	
	In Service	Out of Service	Days	Cycles
Circulating	July 5	July 29	8	14
Service	July 12 August 1	July 31 August 14	$\begin{gathered} 11 \\ 4 \end{gathered}$	26 5

TABLE 2.2.1-2
1978 - CHLORINE INJECTION SYSTEM

(1) Refer to Table 2.2.1-1 for operating summary.
(2) Based on soundings of tank levels in July and August.
(3) 1978 Average during periods of chlorination.
(4) July and August river water summary data (Section 2.2.5.2)

2.2.1.2 Chlorine - River Survey (ETS Section 3.1.1.1)

As stated in Section 2.2.1.1, the circulating and service water systems are periodically injected with sodium hypochlorite to reduce biofouling in the system. During each week of biocide injection, grab samples are taken in the river to measure the free and total residual chlorine. The sampling locations are the same as the monthly river survey, being at the intake, discharge, and outside and downstream of the mixing zone (Figure 2.2.5-1).

In accordance with ETS requirements the concentration in the sample taken outside and downstream of the mixing zone shall not exceed the ambient (intake) total residual level by more than $0.1 \mathrm{mg} / \mathrm{liter}$.

In 1978 the sampling program did not show detectable total residual chlorine increases at any location in the river during the chlorination periods. In all sampling locations the rivers total chlorine residual was less than $0.03 \mathrm{mg} /$ Iiter.

As discussed in Section 2.2.1.1, chlorination did not begin until July 5 and continued only until August 14. During this time the river samples showed no detectable total residual chlorine and no adverse biological impact was noted in the ecological studies (Section 3.1). The biocide samples for the first two weeks in August were inadvertently omitted but station records indicate that the concentration of free residual chlorine at the final heat exchanger did not exceed $1.0 \mathrm{mg} / \mathrm{l}$.

2.2.2 Suspended Solids

2.2.2.1 Suspended Solids Discharge From Non-radioactive Liquid Waste Basin (ETS Section 2.2.2)

The original design of the non-radioactive liquid waste basin was based on processing approximately equal quantities of demineralizer regenerant wastes, steam generator blowdown and service water needed to quench the steam generator blowdown, permitting setting and pH neutralization before discharge to the river.

In 1978, samples for suspended solids were taken from the basin discharge pipe on days when the basin was being discharged, and were analyzed using the filtration/gravimetric method which is recognized by EPA.

This was for year-end comparison with ETS Section 2.2.2 which states that "The average suspended solids concentration in the effluent from the non-radioactive chemical liquid waste disposal system shall not exceed $25 \mathrm{mg} /$ liter on an annual basis". The 1978 suspended solids concentration in the discharge from the nonradioactive waste basin was calculated to be 34.7 mg/liter. This exceeds the ETS limit. A licensee event report (LER 79-13/04L) reporting this was filed with the NRC.

The prime contributor to the high total suspended solids (TSS) concentration was the blowdown quench water, which is service water derived directly from the river. The monthly average TS of the river water during 1978 was $135 \mathrm{mg} /$ liter. (intake area).

Since June 17, 1978, the station discontinued the addition of this quench water. By eliminating the quench water, the TSS concentration of the basin discharge decreased from $59.7 \mathrm{mg} /$ liter in the first two quarters of 1978 to $9.6 \mathrm{mg} / \mathrm{liter}$ in the last two quarters (Table 2.2.2-1).

Another contributor to high TSS concentrations was the high number of demineralizer regenerations necessary to support water requirements of Unit 2 startup-related flushes.

To reduce the number of regeneration cycles a well water pretreatment system will become operationai in 1979.

2.2.2.2 River Survey (ETS Section 3.1.1.3)

Suspended solids concentrations in the river were highly variable (Figure 2.2.2-l) throughout the year, ranging from 25 to $320 \mathrm{mg} /$ liter and averaging $135 \mathrm{mg} /$ liter at the intake (Figure 2.2.5-l). The preoperational data show a larger variation, 5 to $550 \mathrm{mg} / 1$. The 1978 concentrations exceeded the preoperational monthly maximums on 2 occasions, both at the discharge, but the suspended solids concentrations released from the non-radioactive waste basin for the dates (May 23 and December 21) were 5.0 and $2.7 \mathrm{mg} / \mathrm{liter}$. This indicates that the station would have no effect on river TSS concentrations. A paired T-test was performed on TSS data between the intake and discharge locations. No significant (p<.0l) difference was detected for the 1998 data.

Such ambient conditions verify that no station-related impact resulted from TSS concentrations in the non-radioactive liquid waste basin discharge (See Table 2.2.2-2).

TABLE 2.2.2-1
SALEM NON-RADIOACTIVE LIQUID WASTE BASIN TOTAL SUSPENDED SOLIDS (TSS) DATA SUMMARY - 1978

Quarter - 1978	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec
Average (mg/liter)	49.3	70.1	10.0	9.2
Average Before Quench Water Was Curtailed (mg/liter)	59.7			
Average After Quench Water Was Curtailed (mg/liter)		9.6		
Annual Average (mg/liter)				

SALEM MONTHLY RIVER WATER SURVEY TOTAL SUSPENDED SOLIDS (TSS) DATA - 1978

Month	Discharge Area mg/liter	Intake Area mg/liter	Outside and Downstream of the Mixing Zone mg/liter
January*	--	--	--
February	144	132	87
March	62	94	52
April	43	126	62
May	245	201	189
June	227	329	271
July	170	90	89
August	26	61	22
September	111	131	76
October	64	67	75
November	62	77	49
December	184	180	132
Average	122	135	101

1978 Annual Average of TSS in the Delaware River $=119 \mathrm{mg} /$ Iiter
*Samples for the month of January 1978 were not obtained due to inclement weather, ice floes and low tidal conditions.

2.2 .3 pH

```
2.2.3.1 Non-radioactive Liquid waste Basin pH
(ETS Section 2.2.3)
```

The non-radioactive chemical liquid waste disposal system is required to treat non-radioactive Iiquid waste from steam generator blowdown and the make-up demineralizer system to insure that "the pH of the non-radioactive chemical waste disposal system effiuent shall be within the range of 6.0 to 9.0 pH units after mixing with the circulating water discharge stream." (ETS Section 2.2.3).

A pH controlier regulates the pH of the effluent by feeding acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ or caustic (NaOH) to the system. This assures that the waste leaving the basin is acceptable for discharge.

During 1978 the pH of the waste effiuent was maintained and discharged between 6.0 and 9.0 whenever discharges were made. The basin discharges into one of the circulating water discharge pipes. The high circulating water flow compared to the small quantity of water discharged from the waste basin makes it impossible to significantily alter the pH of the circulating water regardless of the pH of the waste basin effluent.
2.2.3.2 River PH (ETS Section 3.1.1.4)

The ecological and water quality monitoring programs on the Delaware River near the station indicated no influence from the operation of the non-radioactive liquid chemical waste basin (refer to Section 2.2.5.2 for a complete discussion of acidity/alkalinity relationships).

2.2.4 Dissolved Oxygen

2.2.4.1 Station Conditions

There was no effect by station operations on dissolved oxygen (D.O.) in the river. Hydrazine was used as an oxygen scavenger in the steam side of the Unit 1 condenser system. Although minor leakage did occur in the condensers, this was in-leakage to the steam side preventing any discharge of hydrazine (refer to Section 2.2.5.l for additional discussion on the use of hydrazine at the station).

2.2.4.2 River Survey (ETS Section 3.1.1.2)

In 1978, dissolved oxygen concentrations were usually higher than the averages in the preoperational data. A definite seasonal trend is present with the lowest concentrations occurring during the warmest months (Figure 2.2.4-1). The variation in D.O. among sampling locations (Figure 2.2.5-1) is very small and a T-test indicates that the station does not affect the concentrations significantly (p<.01).

The June samples indicate a supersaturation at locations $1 \& 2$ which seems unlikely. A more plausible explanation is that there were substances present in the water which caused an interference with the analytical method used, leading to the questionable results.

Dissolved Oxygen as O_{2}
Figure 2.2.4-1

2.2.5 Other Chemicals

2.2.5.1 Chemical Releases (ETS Section 3.1.1.5)

An inventory of chemicals used during the reporting period was made and the quantities discharged daily of each of the chemical constituents in ETS Table 3.l.-3 were estimated. Since the production wells were used to supply certain systems which ultimately discharged to the river, the well water chemical constituents were taken into account also in making the daily estimates of the other chemicals in Table 2.2.5-1. Well water consumption by Salem Unit 1 was 2.02×10^{8} gals. in 1978.

Based on NPDES permit monitoring reports, the Salem Nuclear Generating Station used 28.185×1010 gals. of water for cooling and service purposes in 1978 or an average of $7.72 \times 10^{8} \mathrm{gal} / \mathrm{day}$. This volume was the basis of calculation used to determine the magnitude of the increases over natural river concentrations produced by the chemical releases shown in Table 2.2.5-1.

[^0]
Notes

(1) An unusually high number of demineralizer regenerations necessary to support the initial flushes required for Unit 2 startup combined with normal regenerations necessary for Unit l the resulted in a higher use of sodium hydroxide (NaOH) and suifuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ than anticipated.
(2) The total sodium discharged in the circulating water discharge produced an increase less than 0.5 $\mathrm{mg} /$ Iiter compared to $2000 \mathrm{mg} /$ iiter which is the natural concentration of sodium in water. Therefore, there was no environmental impact.
(3) Sulfate produced an increase of only $1.0 \mathrm{mg} /$ Iiter over a natural concentration in the Delaware River of $570 \mathrm{mg} /$ liter. There was no environmental impact.
(4) Attributable to average copper concentrations in the production wells. This represents a discharge concentration of $0.0056 \mathrm{mg} /$ liter, much lower than $0.082 \mathrm{mg} /$ liter, which is the natural copper concentration in the river. It is concluded that the station did not significantly influence the ambient copper concentration in the river.
(5) Chemical analysis of the production wells yielded a higher content of nitrate $\left(\mathrm{NO}_{3}\right)$ than anticipated. This resulted in higher discharges of concentrations of nitrate to the river than anticipated.

The river water survey indicates similar values for the area surrounding the intake and discharge (See Section 2.2.5.2).

No environmental impact is associated with nitrate values.
(6) Hydrazine was used for oxygen scavenging for Unit 1 and in a test program for Unit 2.

The hydrazine reacts with dissolved oxygen in the steam systems to form nitrogen and water. 44 lb/day of hydrazine were used at the Station. All the hydrazine reacts and decomposes in the system and very little or no hydrazine is discharged.

2.2.5.2 River Water Quaiity (ETS Section 3.1.1.4)

During 1978 PSE\&G conducted a monthiy ambient river water quality sampling and analysis program in accordance with Section 3.1.1 of the Environmental Technicai specifications. No samples were obtained during January because of inclement weather and ice conditions on the river.

Three locations, as given in Figure 2.2.5-1, were sampled once each month. Station l was located near the circulating water system discharge at a depth of 10 feet. Station 2 was next to the Circulating Water System intake at a depth of 8 feet, and Station 3 was outside and downstream of the mixing zone at a depth of 18 feet. The location of Station 3 varied depending on the tidal stage and direction of flow in the vicinity of Artificial Island. On incoming and high slack tides, the sampling point was adjacent to buoy $N 4 R$, approximately 2.5 miles north of the discharge. On outgoing and low slack tides, the sampling point was next to buoy R8L, about 2 miles south of the discharge.

Preoperational data were available from three sampling locations: one near the present intake, one opposite the Station in the river channel, and one near Sunken Ship Cove (Figure 2.2.5-1). Depending on the availability of preoperational data, appropriate comparisons with operational data have been made.

Since the start of the River Water Quality Monitoring Program many changes have occurred with a number of parameters added to the monthly surveys. Some of the parameters are useful indicators of the effect of Salem Station on river water quality while others are not directly related to power plant operation. The following parameters have been shown to be not significantly affected by Station operation and will be recommended for deletion in a forthcoming ETS change request.

1. Methyl Orange Alkainity
2. Phenolphthalein Alkalinity
3. Free Carbon Dioxide
4. Total Volatile Solids
5. Silica
6. Total Organic Carbon
7. Reducing Substances
8. Sulfides
9. Zinc
10. Chromium
11. Manganese
12. Phenols

It is recommended that reporting levels for the remaining parameters be deferred for at least one more year while a broader post-operational data base is developed.

SALINE/FRESH WATER RELATIONSHIPS

The Delaware River near Artificial Island exhibits substantial tidal mixing. This leads to limited vertical stratification of salinity and a spectrum of salinity related chemical concentrations depending on season, fresh water flow, and tidal stage. A typically wide range of values for the following salinity-related chemical parameters was observed in 1978.

Chloride concentrations, expressed as calcium carbonate, varied from $300 \mathrm{mg} /$ liter to $9,000 \mathrm{mg} / \mathrm{liter}$ (Figure 2.2.5-2). The monthly preoperational maximums were exceeded only twice. The highest concentrations occurred during the fall when low rainfall led to reduced river flows, thereby causing the saline waters to penetrate further upstream. Concentrations for 1978 tended to be lower than the 1977 data. In most cases the intake and discharge concentrations were very close with neither location having a consistently higher concentration.

Note - For chloride as NaCl, multiply values given by I.17.

Conductivity followed chloride in its seasonal pattern (Figure 2.2.5-3). Values for 1978 ranged from 500 umhos to 13,000 umhos. The highest values were during the low rainfail period in the summer and autumn months. Preoperational data was only exceeded once by a smali amount. Intake and discharge values were very close for all of 1978 , indicating no plant related effects.

Sulfate values were between 10 and $1,000 \mathrm{mg} / 1$ iter as CaCO_{3} with the highest recordings in the autumn (Figure 2.2.5-4). Four of the 1978 values were greater than the preoperational maximums and three were less than the preoperational minimums. Discharge values were equal to the intake except for November and December when they were greater at the discharge, even though the November and December values were within the preoperational range.

A T-test was performed between the intake and discharge to determine if there was any effect from station operation. No significant difference ($p<.01$) was detected for the 1978 data, despite the use of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in the Salem non-radioactive liquid waste basin.

Calcium ievels were low in 1978 (Figure 2.2.5-5). The range was 30 to $350 \mathrm{mg} /$ iiter as CaCO_{3} with the highest values occurring in the autumn. Compared to the preoperational range of 30 to $750 \mathrm{mg} /$ liter it is not surprising that more than half of the 1978 data was below the preoperational average. In May all three locations were beiow the preoperationai minimums.

The intake and discharge vaiues were almost identical. Consequently, the Station's effect on the river's calcium levels appears to be negligible.

Magnesium values, measured as CaCO_{3} ranged from 100 to $\overline{1,500 \mathrm{mg} / 1}$ iter (Figure 2.2.5-6). The variation is much less than 1977 which ranged from 20 to $2,045 \mathrm{mg} /$ liter. No values were greater than the preoperational maximum values and 2 values were less than the preoperational minimums.

Again the highest values were during the summer and autumn months. Station location 3 had the largest variation. The intake and discharge values were similar for all months except April when the intake concentration was higher. Therefore, it seems that the Station has little or no effect on the river's magnesium levels.

Sodium and Potassium concentrations as CaCO_{3} were measured since October 1972 only at one station, near Sunken Ship Cove, during the preoperational program. During 1978 both of the parameters were measured at all three locations (Figures 2.2.5-7 and 2.2.5-8).

Even with the Iimited preoperational data maximum sodium levels were only exceeded once and potassium twice. As with the previous chemicals the highest values were recorded during summer and autumn.

A T-test was used to check the intake and discharge concentrations of sodium and no significant difference (p<.OI) was noted despite the Station's use of sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl).

PUBLIC SERVICE ELECTRIC AND GAS COMPANY

Calcium As CaCO_{3}
salem nuclear generating station
Figure 2.2.5-5

The Delaware River in the vicinity of Artificial Island is well buffered as a result of the influence of seawater in the estuary. The pH as a resuit has aiways been between 6.0 and 9.0 for all of the monitoring years. The acidity/alkalinity relationships are discussed below.
pH varied from 6.2 to 9.0 in 1978 (Figure 2.2.5-9). The preoperational maximums and minimums were exceeded 8 times. This large variation does not seem to be Iinked to station operation because the intake and discharge value varied together.

The high June value appears to be linked with the high dissolved oxygen values recorded for the same date. Possibly, a large amount of caustic material was present in the river in the vicinity of Artificial Island and led to high pH values and erroneous dissolved oxygen values.

Methyl orange Alkalinity for 1978 followed the preoperational seasonal trend (Figure 2.2.5-10). The highest values were during summer and autumn seasons. Six times the maximum values were exceeded but little difference was apparent between the intake and discharge. The June sample showed a higher value than the preoperational maximum at the intake but not at the discharge. This indicates that the June sample also was affected by the caustic in the water.

Phenolphthalein Alkainity has been zero in all samples taken at Salem under this program and continued to be zero throughout 1978. This is reasonable since the pH has always bracketed the neutral range.

Free Carbon Dioxide for 1978 was consistently lower than the preoperational averages at all three locations (Figure 2.2.5-11). The preoperational range was 0.3 to $24.0 \mathrm{mg} /$ iiter while the 1978 data ranged from 0.0 to $3.5 \mathrm{mg} /$ liter. The 1977 data also showed a reduced range. Since all three locations for 1977 and 1978 have shown low carbon dioxide levels, it is concluded that the station has not affected free carbon dioxide levels.

SOLIDS RELATIONSHIPS

This section describes the behavior of parameters related to suspended matter in the water. Total suspended solids were discussed earlier in Section 2.2.2.2 and should be referred to when examining this section.

Turbidity is measured at salem as nephelometric turbidity units (NTU) which "are considered comparable to the previously reported... Jackson turbidity units (JTU)" (USEPA, Methods for Chemical Analysis of Water and Wastes, 1974), since the traditional Jackson Candle turbidimeter is difficult to use at low turbidity levels.

The highest turbidity ranges were observed at the discharge area for preoperational data, 10 to 480 NTU (Figure 2.2.5-12). The 1978 data for all three locations varied from 1 to 130 NTU. Twice the 1978 data exceeded the preoperational maximums but seven times new minimum values were established. Turbidity, as expected, is highly dependent on the total suspended solids load so like total suspended solids most of the 1978 data was below the preoperational average.

Total Volatile Solids were taken regularly in 1977 and 1978 but only one year of preoperational data is available. The range of the preoperational data was from 50 to $1,700 \mathrm{mg} / \mathrm{liter}$ (Figure 2.2.5-13). Using this range as a comparison to the 1978 data, only twice was the maximum range exceeded, both occurred in september when the values were high for all 3 locations. The highest value was at location 3 (outside and downstream of the mixing zone), not location l (discharge), so apparently the Station had no discernible affect on total volatile solids.

Silica values ranged from 0.15 to $7.1 \mathrm{mg} / \mathrm{liter}$ (Figure 2.2.5-14). As with total volatile solids there was only one year of preoperational data. Using the range of values over that entire year to compare the 1978 data, no 1978 data exceed the preoperational maximum. The intake and discharge values were similar in all months except May when the intake concentration was much higher than the discharge concentration. It, therefore, is likely that the station had no significant effect on the silica concentrations in the river.

OXYGEN/ORGANIC RELATIONSHIPS

The dissolved oxygen levels were discussed in Section 2.2.4 and should be referred to before proceeding in this section.

Biochemical Oxygen Demand (BOD) data were recorded prior to 1977 only at a sampling station near Sunken Ship Cove.

In 1978 BOD was measured at all three locations (Figure 2.2.5-15). Location 1 shows that the 1978 data was below the 1977 data and was below the preoperational average for all months except May. A comparison of all three locations shows that no one location is consistently greater than the others. The levels encountered are low and are reasonable for unpolluted water such as the lower reach of the Delaware River.

Chemical Oxygen Demand (COD) for preoperational data ranged from 0 to $650 \mathrm{mg} /$ ititer (Figure 2.2.5-16). The 1978 data ranged from 10 to $250 \mathrm{mg} / \mathrm{liter}$ and only exceeded a preoperational monthly maximum once. The discharge values were not consistently greater than the intake values so it can be concluded that the station had no detrimental effect on $C O D$ levels.

It should be noted that in saline waters with chioride (CI) concentrations above $1000 \mathrm{mg} / \mathrm{liter}$ (1410 mg/liter as CaCO3) any COD values below $250 \mathrm{mg} / 1 \mathrm{iter}$ are highly questionable because of the high chloride interference. Since most of the 1978 and preoperational data fall into this range, $C O D$ data have little meaning.

Total Organic Carbon (TOC) in 1978 was always below the preoperational maximums. There was no discernable difference between the three sampling locations (Figure 2.2.5-17).

Since the Station discharges very little organic matter, it is expected that the station would have no impact on the TOC levels.

Reducing Substances as $\mathrm{H}_{2} \mathrm{~S}$ was measured to assess the oxi-dation-reduction potential of the Delaware River water near Salem. The preoperational monthly maximums were only exceeded once by the 1978 data. This occurred at the intake (Figure 2.2.5-18).

PUBLIC SERVICE ELECTRIC AND GAS COMPANY
SALEM NUCLEAR GENERATING STATION

The intake values were usually equal to or slightly less than the discharge. This is to be expected since the station does not release any chemicals which would lead to significant reducing substances levels.

Sulfides are an indicator of a highly polluted or anerobic environment. The Delaware River in the Station area has been shown to be well oxygenated, high in dissolved oxygen usually near saturation, and not highly polluted, with low $B O D$ and COD levels. The preoperational data ranged from 0 to $0.1 \mathrm{mg} /$ liter (Figure 2.2.5-19). The minimum accurately detectable level is $0.05 \mathrm{mg} /$ liter. The 1978 data frequently exceeded the preoperational maximums but these values are very close to the minimum detectable levels. Only during June 1978 did a significantly higher value occur and this seems to be related to the interference found in many parameters for the June sample (see dissolved oxygen and pH). The station therefore does not appear to be affecting the sulfide levels in the river.

NITROGEN/PHOSPHORUS RELATIONSHIPS

The nitrogen and phosphorus relationships may be strongly influenced by runoff, agricultural practices, and domestic sewage disposal. By comparison, the operation of Salem Station will normally have an insignificant effect on the Nitrogen/Phosphorus relationship in the Delaware River.

Ammonia as NH_{3} was very low in 1978. The preoperational range was from 0.0 to $3.8 \mathrm{mg} /$ liter while the 1978 data only ranged from 0.01 to $0.7 \mathrm{mg} /$ iiter (Figure 2.2.5-20). The preoperational data has a late winter/early spring peak while the minimum concentrations are found during the summer/autumn period.

Preoperational maximums were exceeded twice, both times at the intake, and new minimums were established six times.

The intake and discharge concentrations were similar with neither locations being predominantly greater. Therefore, the station does not appear to affect the ammonia levels in the river.

Nitrate measured as NO_{3} for 1973 was always lower than the preoperational average (Figure 2.2.5-2l). The preoperational values ranged from 0.05 to $22.0 \mathrm{mg} /$ ifter, while the 1978 data ranged from 1.0 to $7.0 \mathrm{mg} / \mathrm{liter}$. Nine times the 1978 data was below the preoperational minimums. The intake and discharge values were similar and indicate that the Station did not change the NO_{3} content of the river in any appreciable manner.

Kjeldahl Nitrogen is a measure of free ammonia and most organic nitrogen compounds. The preoperational data is Iimited to a location near Sunken Ship Cove. The high preoperational data during June seems exceptional and should be ignored (Figure 2.2.5-22). Normally, the range is between 0 and $10 \mathrm{mg} /$ Iiter, the 1978 data all fall within this range except for the April intake sample. Since the discharge concentration is no greater than the intake values, and agricultural practices greatly influence the Kjeldahl nitrogen in the river, the Station did not signicantly affect the Kjeldahl nitrogen levels in the river.

Total Phosphorus as PO_{4} (Phosphate) in 1978 was high, ranging from 0.2 to $14.5 \mathrm{mg} /$ liter while the preoperational data only ranged from 0.0 to $4.0 \mathrm{mg} / \mathrm{liter}$ (Figure 2.2.5-23). The large variation in the 1978 data is caused by the very high concentrations found during April. April is a month of heavy rains leading to large amounts of runoff. Since all three locations are very high and the station does not discharge significant quantities of phosphorus containing chemicals, it seems likely that the high values originated upstream of the station. An additional point is that the high values are above the accurate range of the method used so that a comparison between the intake and discharge is not viable. It seems logical that the station did not affect the phosphorus concentrations, the ambient variations resulting from runoff to the river.

Thirty (30) second and three (3) minute chlorine demand were determined as part of the river monitoring program.

The 30 second chlorine demand for 1978 ranged from 0.2 to $2.4 \mathrm{mg} / \mathrm{liter}(F i g u r e 2.2 .5-24)$. Six times the 1978 demand was greater than the preoperational maximums and 7 times the 1978 values were below the minimums. The intake and discharge demands were similar with neither location having a consistently greater value.

The 3 minute chlorine demand is usually greater than the 30 second demand for preoperational data. In 1978 the 3 minute demand ranged from 0.2 to $3.8 \mathrm{mg} / 1 \mathrm{iter}$, while the preoperational data ranged from 0.1 to $10.0 \mathrm{mg} / 1 i t e r$ (Figure 2.2.5-25). Only during the June sample did the demand exceed the preoperational average. The reduction in demand at all stations appears to be linked to the reduced ammonia levels present in the river in 1978 。

A comparison of the intake and discharge indicate that neither location had consistently higher or lower demands.

Iron concentrations vary from 0.0 to $11.0 \mathrm{mg} / 1 \mathrm{iter}$ for preoperational data. The 1978 data varied from 0.5 to 13.5 mg/liter (Figure 2.2.5-26). The increased variation during 1978 appears to be due to large natural variations or discharges from sites upstream of the Station. The highest 1978 value of $13.5 \mathrm{mg} /$ ititer was outside and downstream of the mixing zone during June. The concentration at the intake was also high, $9.0 \mathrm{mg} / \mathrm{li} t e r$, but the value at the discharge was only $5.5 \mathrm{mg} /$ liter. April showed a high concentration at the intake, but low concentrations were present at the discharge and downstream of the discharge. These wide fluctuations between locations indicate that "slugs" of iron rich water may be passing downstream. The station does release some iron containing compounds but the releases are small and relatively constant over the year. Therefore, it is concluded that the station did not significantly alter the river's iron concentrations.

Copper levels for preoperational data varied from near 0.0 to $6.5 \mathrm{mg} /$ liter. The 1978 data ranged only from near 0.0 to $0.6 \mathrm{mg} / \mathrm{liter}(F i g u r e 2.2 .5-27)$. Only during November did the discharge value exceed the intake value by an appreciable amount, but this high concentration was still within the preoperational range forthe month. Since the only Station source of copper is small amounts arising from corrosion and only the November sample shows any indication of a higher copper concentration at the discharge, no Station impact is noted.

Chromium levels near the station are very low and near the limit of detection. The preoperational range, excluding the extremely high March data, is between 0.0 and $0.8 \mathrm{mg} / \mathrm{liter}$. The 1978 data is between 0.0 and $0.2 \mathrm{mg} /$ Iiter (Figure 2.2.5-28). Since the station does not discharge any significant quantities of chromium, and all of the 1978 data is close to the limit of detection, it is reasonable to conclude that the station did not affect the chromium levels in the river.

Manganese concentrations ranged from 0.0 to $0.64 \mathrm{mg} /$ liter in the preoperational data. The 1978 data ranged from 0.02 to almost $1.0 \mathrm{mg} / \mathrm{liter}$ with the preoperational maximums being exceeded seven times (Figure 2.2.5-29). Extreme variation was present between locations for most sampiing dates. Since the station does not discharge a significant amount of manganese and the variation in the river is generally high, a Station impact on the manganese levels in the river is unlikely.

Zinc concentrations ranged from 0.0 to near $0.19 \mathrm{mg} /$ iiter (Figure 2.2.5-30 - Note the scale change for location 2). The 1978 data had a smaller range of 0.05 to $0.4 \mathrm{mg} / \mathrm{liter}$. The preoperational maximums were exceeded six times. The discharge and intake locations were similar indicating no significant plant discharge. The high values encountered in 1977 were not seen in 1978. The river's concentration is not affected by the plant since no zinc compounds are discharged into the circulating water system.

PHENOLS

There are no phenol results presented in graphical form because the concentrations were usually below detectable levels. The preoperational data ranged from 0.001 to 0.130 mg/liter, while the 1978 data ranged from below detectable levels to $0.025 \mathrm{mg} /$ liter. The low levels for 1978 are to be expected since the Station does not discharge any chemical in large quantity which contains phenols. Any phenols in the river would result from other sources.

CHROMIUM AT LOCATION I

SECTION 3.0
BIOTIC MONITORING AND SURVEILLANCE PROGRAMS

The results of the General Ecological Survey (ETS Section 3.1.2.1) from January through December 1978 are presented in this section. In addition to the reguired data, additional non-required study data are presented as these data contribute to an understanding of local ecological schedules and relationships. The objective of the studies is to identify significant changes in population characteristics relative to pre-operational levels, and to evaluate these relative to Salem operation.

3.1 AQUATIC (ETS Section 3.1.2.1.1)

The study area is located in the lower Delaware River. It extends approximately 8 km north and 10 km south of the station's location which is on the southern portion of Artificial Island in Salem County, New Jersey about 80 km from the mouth of Delaware Bay and 1.6 km upriver from the head of the bay. Primary emphasis has been directed at the area which is affected by the salem thermal plume, although sampling is done throughout the region.

The Delaware River in this Region is estuarine and is bordered by extensive marshland and occasional small sandy beaches. There is little industrial development on this portion of the river. Width varies from 3 km at Artificial Island over 8 km in the southern portion of the study area.

Limited sampling is also done in three of the four tidal creeks entering the Delaware River in this region: Alloway and Hope creeks in Salem County, New Jersey and Appoquinimink Creek in New Castle County, Delaware. For further information on the character of the area see Volume 2 of the 1977 Annual Environmental Operating Report.

3.1.1 Phytoplankton (ETS Section 3.1.2.1.1a)

A study of phytoplankton which occur in the Delaware River near Artificial Island was initiated in March 1973 and continued in 1978. Objectives are to determine seasonal trends in size, photosynthetic rate, and composition of the standing crop.

3.1.1.1 Summary

Phytoplankton are microscopic plants which live suspended in water, with little or no mobility, and whose distributions are determined largely by local water movements. They are the primary producers which, along with water-born detritus, form the basis of the local estuarine food web.

In 1978 the phytoplankton standing crop was dominated by diatoms. Skeletonema costatum, a diatom that inhabits brackish and marine waters, was the most abundant species. Phyto-flagellates, green algae, blue-green algae, euglenoids and dinoflagellates were present seasonally or throughout the year, but were generally not dominant.

The standing crop, as indicated by mean chlorophyll a level, varied seasonally, being highest from late May through June. Chlorophyll a levels were somewhat lower from July through August and decreased further from September through December.

Phy€oplankton production (photosynthesis) was highest in July and lowest in November and March. Productivity was highest near the surface where light penetration was greatest; it decreased with depth and was negligible at lor 2 m . This abrupt drop in carbon production from the surface to the $2-\mathrm{m}$ depth suggests that local phytoplankton production, which is seasonal and restricted to a relatively shallow euphotic zone, is probably not sufficient to supply the total local primary food base.

Plant detritus also contributes to the local food base. The phaeo-pigments (decomposition products of chlorophyll a) are indicative of the detrital load which fluctuates seasonally. Mean concentrations of phaeo-pigments were highest from late May through early August; low concentrations occurred from March to early May and from late August through December.

Two years (1977 and 1978) of operational studies of phytoplankton have been completed and objectives have been met. The data generated forms an adequate base for assessing the impact of salem on the study area. Review and analysis of the data presented in this and in volume 2 of 1977 Annual Environmental Operating Report, show that seasonal levels of phytoplankton standing crop and surface net productivity were similar to pre-operational (1974-1976) norms. Additionally, there has been no discernible impact on community structure. This was indicated by the annual appearance of similar dominant taxa, particularly the diatoms, which are best represented by Skeletonema costatum.

3.1.1.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Phytoplankton ETS were satisfied. Two replicate samples for pigment studies were collected near the surface and bottom at 10 stations (rable 3.1.1-1, Fig. 3.l.l-l) semimonthly from April through October and monthly in March, November, and December; single 125 ml aliquots from each replicate sample at stations PP05, PP06, and PPO7 were combined and used for taxonomic enumeration. Samples for productivity studies were taken at depths of $0.0 .0 .5,1.0$, and 2.0 meters at stations PP05 and PP07 bimonthly from March through November. No samples were collected in January and February because of severe icing conditions. All samples were taken with an 8.l-liter Van Dorn bottle. For a complete description of gear, gear deployment, collection of physicochemical data, and laboratory procedures refer to Volume 2 of the 1977 Annual Environmental Operating Report.

On March 7 a quality control sample containing known pigment concentrations was obtained from the Environmental Protection Agency. This sample was analyzed to test accuracy and precision of methods used. Measured concentrations were within the limits of reference values provided (Table 3.1.l-2). Additionallyr units used in counting algee genera are given in Table 3.1.1-3.

DATA REDUCTION

Principal components analysis (BMDP4M Eactor Analysis; Dixon, 1975) was used to calculate and display similarities in pigment concentration among stations or groups of stations. This method is described by Marriott (1974) and Pielou (1977). Sampling times were taken as variables ana stations as observations. A sampling time x sampling time (R-mode) product moment correlation matrix was calculated from $\log (X+1)$ transformed chlorophyll a and phaeo-pigment data. The factor scores for each station along only the first three principal component axes were then plotted.

3.1.1.3 Results and Discussion

CHLOROPHYLL A AND PHAEO-PIGMENTS

A total of 680 samples for standing crop studies was taken near Artificial Island on 17 sampling dates from March 23 through December 19, 1978 and analyzed for pigments.

Chlorophyl1 a and phaeo-pignent concentrations varied seasonaliy. The lowest chiorophyll a levels measured were on April 7 (mean $3.5 \mathrm{mg} / \mathrm{m}^{3} \pm 2.1$); the highest measured were on June 7 ($30.8, \pm 10.1$) ($\mathrm{F} \overline{\mathrm{i}} \mathrm{g}$. 3.1.I-2) . Mean standing grop was typically low in March and April (range $3.5-7.6 \mathrm{mg} / \mathrm{m}^{3}$). It increased in May (range $6.4-23.0 \mathrm{mg} / \mathrm{m}^{3}$) and peaked on June 7. Mean chlorophyll a concentration decreased rapidly from late June through August (range $10.0-25.8 \mathrm{mg} / \mathrm{m}^{3}$) and decreased further from September through December (range 5.38.7).

The lowest phaeo-pigment levels measured were on November 6 (mean $4.9 \mathrm{mg} / \mathrm{m}^{3} \pm 2.1$); the highest measured were on June 19 (27.0, ± 14.6) ($\overline{\mathrm{F} i g . ~ 3.1 . l-3) ~ . ~ M e a n ~ c o n c e n t r a t i o n s ~ w e r e ~}$ high frōm late May through early August ($13.4-27.0 \mathrm{mg} / \mathrm{m}^{3}$); low concentrations occurred from March to early May (5.08.4) and from late August to December (4.9-8.7).

Similarity among stations was examined using principal component analysis. The first three principal components axes explained 74.2 percent of the total variance (Factor I $=42.7$ percent; Factor II = 17.9; Factor III = 13.6) for chlorophyll a concentration and 67.5 percent of the total variance (Factor $I=32.1$ percent; Factor II $=19.9$; Factor III $=15.5$) for phaeo-pigment concentration. No stations appeared to be distinctly different from the overall group.

However, a north-south trend in the pattern of seasonal change of pigment concentrations is indicated (Fig. 3.l.l-4, 3.l.l-5). This trend may be related to the effects of fresh water input in the northern and marine or saltwater imput in the southern part of the study area.

Examination of the data indicated that the vertical distribution of mean chlorophyll a concentration was not consistent among stations or from date to date; mean phaeopigment levels were more consistent, being higher near the bottom in 64 percent of the comparisons. 3 The annual mean chlorophyll a concentration was $11.5 \mathrm{mg} / \mathrm{m}^{3}$ at the surface and 11.6 near the bottom. The annual mean phaeo-pigment concentration was $9.4 \mathrm{mg} / \mathrm{m}^{3}$ at the surface and 12.7 near the bottom.

The pattern of seasonal change in phytoplankton standing crop was similar to that of previous years (1974-1977). Annual mean chlorophyll a levels in 1977 and 1978 (8.3, 11.5 $\mathrm{mg} / \mathrm{m}^{3}$) were similar to pre-operational norms (range 8.311.4).

PHYTOPLANKTON PRODUCTIVITY

Data on photosynthetic rate (gross production, net production, and respiration), chlorophyll a concentration, water temperature, and secchi disc reading at stations PP05 and PPO7 are included in Tables 3.1.l-4 and 3.l.l-5.

High levels of turbidity (Secchi disc readings of 8-16 inches) indicated low light penetration. Gross and net productivity levels were highest near the surface where light penetration was greatest. Levels decreased with depth and were negligible at 1.0 and 2.0 meters. In March and November surface levels were also negligible. Surface net photosynthetic rate at Station PPO5 and Station PPO7 was similar except in May when values were higher at Station PP05 ($47 \mathrm{mgC} / \mathrm{m}^{3} / \mathrm{hr}$) than at Station PP07 (Q) (Fig. 3.1.1-6). The production rate was highest ($112 \mathrm{mgC} / \mathrm{m}^{3} / \mathrm{hr}$) in July and lowest (-28 to 28) in March end November.

A rapid decrease with depth of gross and net productivity levels was also typical in previous years (1974-1977). Maximum levels of net productivity have always occurred near the surface in the summer. In 1977 and 1978 these levels (range $112-164 \mathrm{mgC} / \mathrm{m}^{3} / \mathrm{hr}$) were within pre-operational norms (range llo-2s6); winter levels were negligible in all years.

PHYTOPLANKTON COMPOSITION AND DENSIMY

Sixty-five genera representing five divisions were identified in 102 samples taken from March through December at stations PP05, PP06, and PD07 on the transect immediately west of Salem (Table 3.1.1-6). These included 31 genera of diatoms (Bacillariophyta), 23 genera of green algae (Chlorophyta), 5 genera of blue-green algae (Cyanophyta), 3 genera of euglenoids (Euglenophyta), and 3 genera of dinoflagellates (Pyrrophyta).

Phytoplankton fluctuated seasonally in abundance and composition. The lowest densities measured were on April 7 (mean l,648 cells/mi; range 1,394-1,856); common taxa included the diatoms (36.6 percent of the phytoplankton community), particularly skeletonema costatum, phytoflagelates (7.3 percent) and green algae (4.7 percent) (Tables 3.1.1-7, 3.l.l-8). The highest densities measured were on May 25 (mean 13,953 cel1s/ml; range 11,722-17,050); common taxa included the diatoms (84.1 percent of the phytoplankton community), particularly S. costatum and the genus Melosira, phyto-flagellates (6.7 percent), and green algae (7.9 percent).

The diatoms were most abundant; they comprised 30.1 to 87.7 percent of the phytoplankton community, with a mean annual density of 6,060 cells $/ \mathrm{ml}$. Seasonal distribution of diatoms was similar to that of total abundance (Fig. 3.l.i-7). Mean diatom density decreased sharply from late March (8,939 cells/ml) to early April (l,427), increased in late April (5,994), and was highest in late May (11,738). Mean density from June through November fluctuated between 3,836 and 9,522 cells/ml and was lowest in December (800).
S. costatum, a diatom that inhabits brackish and marine waters, was the most abundant phytoplankton species. It comprised 3.8 to 82.7 percent of the phytoplankton community (Table 3.l.l-8, Fig. 3.l.l-8), with a mean annual density of 5,442 cells/ml. A number of genera, particularly Melosira, Cyclotella, Navicula, Nitzschia, Synedra, and Coscinodiscus, also occurred throughout the year (Table 3.l.l-6). They were less numerous than S. costatum, except in December when Melosira, Chaetoceros, añ Asterionella formosa, were each more abundant (6.7,5.7, and 4.4 percent of the phytoplankton community, respectively). Genera such as Asterionella and Chaetoceros, occurred seasonally.

Phyto-flagellates comprised 6.7 to 46.8 percent of the phytoplankton community with a mean annual density of 799 cells/m1. They were most abundant in late March, September, October, and December.

The green algae comprised 1.5 to 16.4 percent of the phytoplankton community with a mean annual density of 431 cells/ml. Abundance was high in May, June, and late October. Ankistrodesmus falcatus was generally the most abundant species from May through December. Other taxa, particularly the genera Chlamydomonas, Chlorella, Crucigenia, and Scenedesmus, were present throughout the year.

The blue-green algae comprised 0.1 to 3.4 percent of the phytoplankton community with a mean annual density of 65 cells/ml. Oscillatoria and Anacystis were the most common genera.

Euglenoids and dinoflagellates comprised only 0.0 to 3.3 percent of the phytoplankton community. For the two divisions combined the mean annual density was 33 cells/ml.

The pattern of seasonal change in phytoplankton composition and abundance was similar to that of previous years (19741977). Mean annual density in 1978 was higher (ca. 7,400 cells/ml) than in the pre-operational years (ca. range 3,5006,400; peak seasonal density (mean 14,000 cells/ml) was within pre-operational norms (ca. range 7,300-14,700). Diatoms, particularly \underline{S}. costatum, were most abundant in all years.
table 3.1.1-1
PHYTOPLANKTON SAMPLING STATIONS.

	Station	Description
	PPO1	Between the mouth of the Chesapeake and Delaware Canal and bell buoy "RB" (ca. 0.1 km west of the mouth of the Chesapeake and Delaware Canal).
	PP02	Between buoy N " B^{\prime} and the northern tip of Artificial Island (ca. 0.5 km north of Artificial Island).
	PP03	Approximately 15 m west of buoy N "A" (ca. 1.0 km west of Artificial Island).
$\stackrel{\square}{1}$	PP04	Between buoy C " $I R$ " and Reedy Island Dike.
∞	PP05	Approximately 15 m west of Salem and the mouth of Sunken Ship Cove.
	PP06	Between buoys R " 2 B " and R " 4 B " (ca. 1.3 km west of Artificial Island).
	PP07	Between Appoquinimink light and buoy "18" (ca. 0.3 km from the Delaware shore).
	PP08	15 m west of Hope Creek Jetty.
	PP10	$1.0 \mathrm{~km} \mathrm{NE} \mathrm{of} \mathrm{Liston} \mathrm{Point}$.
	pP11	Approximately 1.3 km west of the New Jersey shore from a point just north of the mouth of Mad Horse Creek.

TABLE 3.1.1-2.
QUALITY CONTROL SAMPLE CHLOROPHYLL A AND PHAEO-PIGMENTS

```
Nliquot
No.
1
2
Reference values
```

Chlorgphyll a
(mg/m)
5.31
6.09
6.09
5.69
5.69
5.98
6.09 ± 1.1

Phaeo-pigments
$\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
3.77
2.83
3.13
3.97
4.17 ± 1.4

TABLE 3.1.1-3
UNITS USED IN COUNTING ALGAL GENERA
\qquad
CHLOROPIYTA
Actinastrum
Actinastrum
Botryococcus
Crucigenia
Dictyosphaerium
Franceia
Kirchneriella
Lagerheimia
Micractinium
Pediastrum
Quadrigula
Scenedesmus
Selenastrum
Ulothrix
CYANOPHYTA
Agmenellum
Anabaena
Anacystis
Gomphosphaerta
oscillatoria

Unit
Colony
Colony or cell
Colony
Colony
Colony
Colony or cell
Colony
Colony
Colony or cell
Colony
$100 \mathrm{u} f i l a m e n t$
Colony
Colony
Colony

IA SALEM PP 1978
3.1.1-4

SUMMARY BY MONTH OF PRIMARY PRODUCTION AND CHLOROPHYLL A - STATION PPO5.

table 3.1.1-5
SUMMary by month of paimary production and chlorophyll a = station ppor.

date		03/15/78	05/11/78	07/18/78	09121178	11/14/78
TIDE		E日B 2	E日B $?$	EBB SLACK	EBB 2	flood 2
SAL. (PPT) 'SURFACE		4.0	7.0	6.0	6.0	9.0
TEMP.(C)		3.2	12.9	24.4	24.1	9.2
		9.0	14.5	27.0	23.0	17.0
OXYGEN (PPA) SURFACE		12.8	9.0	6.1	7.3	10.4
SECCHI (INCHES)		8	10	16	10	14
surface						
gross photosymihesis	(MG/M3/HR)	7.5	4.6	107.8	65.6	37.5
net photosyntresis	(MG/M3/MR)	9.3	. 0	103.1	65.6	28.7
RESPIRAIION	(MG/M3/HR)	1.8-	4.6	4.6	-4	9.3
CHLOROPHYLL-A	(M G/m3)	5.7	11.9	9.9	5.8	8.6
		1/2-meter				
gross photosymitesis	(MG/M3/HR)	11.2-	- 4.6	56.2	51.5	9.3
NET PMOIOSYHTHESIS	(MG/M3/HR)	9.3-	18.7	42.1	51.5	9.3
RESPIRATION	(MG/M3/HR)	1.80	14.0-	14.0	. 0	. 0
CHLOROPHYLLEA	(MG/M3)	4.9	14.4	5.3	6.1	9.9
		1-meter				
gross photosynthesis	(MG/M3/HR)	6.5	18.7	18.7	4.6	28.1-
NEI PHOTOSYHTHESIS	(MG/M3/HR)	6.5	37.5	9.3	'4.6	. 0
RESPIRATION	(MG/M3/HR)	. 0	18.7-	9.3	. 0	28.1-
CHLOROPHYLL-A	(MG/m3)	4.9	13.2	10.7	5.8	9.4
		2-METER				
gross photosynthesis	(MG/M3/HR)	14.0	4.60	. 0	4.6	$9.3-$
net photosynihesis	($\mathrm{HG} / \mathrm{H} / \mathrm{S} / \mathrm{MR}$)	7.5	9.3	18.7-	. 0	4.60
RESPIRATION	(MG/M3/HR)	6.5	14.0\%	18.7	4.6	4.6-
CHLOROPHYLLEA	(MG/M3)	5.3	15.6	9.9	7.3	10.3

TABLE 3.1.1-6
HYTOPLANKTON TAXA AND THEIR OCCURRENCE-
STATIONS PP05, PP06, and PPO7.

Month Day	$\begin{array}{r} \text { March } \\ 23^{2} \\ \hline \end{array}$	April		$\begin{gathered} \text { May } \\ 10 \quad 25 \end{gathered}$		$\begin{aligned} & \text { June } \\ & 7 \quad 19 \\ & \hline \end{aligned}$		July_{7}		August		September		October		$\begin{gathered} \text { November } \\ 6 \end{gathered}$	December 19
CHLOROPHYTA																	
Actinastrum hantzschia	$\overline{-}$	X	x	-	-	-	-	-	-	-	-	-	-	-	-	-	$\stackrel{\sim}{\sim}$
Ankistrodesmus falcatus	X	X	X	X	x	x	X	x	x	X	x	x	x	X	X	X	x
Botryococcus	-	-	-	-	-	-	$\overrightarrow{\mathrm{x}}$	-	-	-	-	-	-	-	X	-	-
Chlamydomonas	X	X	X	x	x	x	x	x	x	x	x	x	-	-	x	-	-
Chlorella	-	K	X	χ	x	X	x	x	X	x	-	x	x	x	-	-	x
Crucigenia	-	X	X	-	x	-	x	X	-	X	-	X	x	X	X	-	X
Dictyosphaerium pulchellum	-	-	-	-	X	-	-	X	-	X	-	X	-	-	-	-	x
Franceia	-	$\bar{\square}$	-	-	-	-	-	-	$\overrightarrow{-}$	-	X	-	x	-	-	X	-
Golenkinia	-	X	-	-	X	-	-	-	X	-	-	-	-	-	-	-	-
C. radiata	-	-	-	-	-	-	-	-	-	X	X	-	-	-	-	-	-
Gonium	-	-	-	-	-	-	-	-	$\overline{-}$	-	-	-	-	-	-	-	x
Kirchneriella	-	-	-	-	-	-	-	-	X	-	-	-	-	-	-	-	-
Lagerheimia	-	-	-	-	-	-	-	-	-	-	-	X	-	-	X	X	x
Micractinium	-	-	-	-	$\overline{-}$	$-$	-	-	-	-	-	-	-	-	-	-	x
M. pusillum	-	-	-	-	X	-	-	\cdots	-	-	-	-	-	-	-	$\overline{\mathrm{x}}$	x
Oocystis	$\overline{7}$	-	$\bar{\square}$	-	-	-	-	$\overline{\bar{x}}$	-	$\overline{-}$	-	-	-	-	-	X	-
Pediastrum	X	-	X	-	-	-	-	X	-	x	-	-	-	-	-	-	\underline{X}
$\frac{\mathrm{p}}{\mathrm{p}}$ - boryanum	-	\underline{X}	-	-	x	-	-	-	-	-	-	-	-	-	-	-	-
Quadrigula lacustris	-	-	\cdots	-	x	-	-	-	-	-	-	-	-	-	-	-	-
Scenedesmus	X	\cdots	x	X	-	-	X	-	-	-	X	x	-	x	x	X	*
S . abundans	-	-	-	X	X	X	X	X	x	-	X	-	-	-	-	-	-
S. acuminatus	-	-	-	-	X	-	-	-	-	$\overline{-}$	-	-	-	-	-	-	-
S. bijuga	-	-	-	-	-	-	-	-	-	X	x	-	-	-	-	-	$\overline{-}$
S. dimorphus	- -	-	$\bar{\square}$	$\vec{\sim}$	X	-	$\overline{-}$	$\overline{-}$	$\vec{\sim}$	-	X	-	$\bar{\square}$	$\overrightarrow{ }$	-	-	x
S. quadricauda	-	X	x	X	x	x	x	X	x	x	x	-	x	X	x	x	¢
Schroederia		\cdots	-	-	$-$	$\bar{\square}$	\cdots	-	-	X	-	-	-	-	-	-	-
Selenastrum	-	X	-	-	-	X	-	$\stackrel{\rightharpoonup}{x}$	-	-	$\bar{\square}$	-	-	\rightarrow	$\overline{-}$	-	-
Tetrastrum elegans	-	X	-	-	-	$\underline{ }$	-	X	-	-	X	-	-	-	x	-	X
Treubaria setigerum	-	-	-	-	-	\rightarrow	-	-	-	x	-	-	-	-	-	-	-
Ulothrix	-	-	-	\cdots	-	X	-	-	-	-	-	-	-	-	-	-	-
Unidentified colonies	-	X	-	X	-	-	X	-	-	X	X	-	X	-	X	-	x
Unidentified filaments	-	X	K	-	X	-	-	X	-	X	-	-	-	-	-	X	-
EUGLENOPHYTA																	
Euglena	X	X	X	X	x	X	-	X	K	x	X	x	x	x	-	-	-
Phacus	X	$\dot{\text { x }}$	-	X	X	x	-	X	X	-	X	-	-	-	-	-	-
Trachelomonas	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X	-
BACILLARIOPHYTA																	
Centric																	
Biddulphia	-	-	X	-	X	X	$\overline{\mathrm{x}}$	-	-	-	-	-	-	-	x	X	-
Chaetoceros	-	-	-	-	-	-	X	-	X	X	X	x	X	X	X	X	r
Corethron	-	-	-	-	-	-	-	-	-	-	-	-	X	-	-	-	-
Coscinodiscus	X	X	X	X	X	X	x	X	X	x	X	x	x	x	-	x	X
Cyclotella	X	$\overline{\mathrm{x}}$	$\overline{\mathrm{x}}$	x	x	x	X	X	x	x	X	X	x	x	X	X	x
Melosira	X	X	X	X	x	X	X	X	X	X	X	X	X	X	X	X	x
M. granulata	-	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\stackrel{-}{\square}$
Rhizosolenia	$\overline{-}$	-	$\bar{\square}$	$\overline{-}$	$\stackrel{\rightharpoonup}{1}$	$\bar{\square}$	$\bar{\square}$	X	X	-	X	-	$\overline{-}$	-	$\overline{-}$	$\overline{-}$	X
Skeletonema costatum	X	X	X	X	X	X	X	X	X	X	X	X	X	X	x	X	x
Stephanodiscus	$\overline{-}$	$\overline{-}$	-	X	-	-	-	-	-	-	-	-	-	-	X	$\bar{\square}$	X
Thalassiosica	X	X	-	-	-	-	-	-	-	-	-	-	-	X	X	X	-

			$x \times 1$	$11 \times 1 \times x \times$				
		111×11111×x\|××11111×1	$x \times 1$	$11 \times 1 \times x \times$				
			$\times 1 \times$ $\times 1 \times$	$11 \times 1 \times 1$ $11 \times 111 \times$				
			$\times 11$ 1×1	$11 \times 111 \times$ $11 \times 1 \times x \times$				
	出N1	 \|11111111×1 $\times x \times 11111111$	$\begin{array}{ll} x & 1 \\ \times 1 & 1 \end{array}$	$11 \times 1 \times 1 \times$ $11 \times 1 \times 1 \times$				
	$\left.\begin{array}{\|l\|} 3 n \\ \\ n \\ n \end{array} \right\rvert\,$	xxx 1 1 1	$\begin{aligned} & x 11 \\ & 11 x \end{aligned}$	$111 \times 1 \times x$ $1 \times 1 \times 1 / x$				
	$\left.\begin{array}{\|c\|} 0 \\ 0 \\ 5 \\ 5 \\ 5 \end{array} \right\rvert\,$	$1 \times 11111111111 \times x \times 1 \times 111 \times 1$ $1\|x\| 1\|x\| 111\|x \times x \times 1 \times 1\| x \times 1$	$\begin{array}{lll} 1 & 1 & 1 \\ \times & 1 \end{array}$	$\left.\begin{array}{l} x \\ x \\ 1 \\ 1 \end{array} 1 x \times x \times x \times x\right)$				
	\|in	$11 \times 1 \times 111\|x\| x\|x \times x\| x\|1 \times x\|$	$\begin{aligned} & 1 \times 1 \\ & 111 \end{aligned}$	$\begin{aligned} & 1111 \times 1 \times \\ & \times 111 \times 1 \times \end{aligned}$				
	$\begin{aligned} & \text { ⿹ㅢㄱN } \\ & \stackrel{0}{6} \end{aligned}$	\|	xx	x		$\|1 \times x \times x \times 11111 x\| 1$	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{ll\|l\|l\|l} 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$
	${\underset{\sim}{4}}_{\mathscr{H}_{2}^{\prime}}^{N}$		111	$11111 \times$				

ABLE 3.1.1-7

MEAN DENSITY AND PERCENT COMPOSITION OF PHYTOPLANKTON EY DIVISION - STATIONS PPOS, PPOS, AND PPOT.
(NUMBERS / ML)

IA SALEN PD 1978
TABLE 3.1.1-7
CONTINUED

date	08/22178		09112178		09126/78		10/10178		10/24/78	
taxonomic group	$\begin{gathered} \text { MEAN } \\ \text { OENSIIT } \end{gathered}$	PERCENT COMP.	$\begin{gathered} \text { MEAN } \\ \text { DENSITY } \end{gathered}$	PERCENT COMP.	$\begin{gathered} \text { MEAN } \\ \text { DENSITY } \end{gathered}$	PERCENT COMP.	$\begin{gathered} \text { MEAN } \\ \text { DENSITY } \end{gathered}$	PERCENT COMP.	MEAN OENSITY	PERCEHT COMP.
CYANOPHYTA	81.1	. 9	53.5	1.2	68.1	. 8	26.7	. 3	31.0	. 5
ChLOROPHYTA	374.5	4.1	259.0	5.6	288.3	3.5	378.0	3.6	680.1	10.8
EUGLEMOPHYTA	9.3	- 1	5.6	- 1	29.2	- 4	5.6	. 1		
gacillariophyia	7.863.7	85.5	3.835 .9	82.5	6.645.5	81.5	9.259 .9	. 87.7	4.405 .9	69.8
PYRROPHYTA	4.7	. 1	5.6	. 1	11.1	. 1	17.1	. 2	78.7	1.2
phyto-flagellates	858.9	9.3	490.9	10.6	1.106.9	13.6	877.2	8.3	1.118 .6	17.7
total abundance	9.197.2		$4,650.5$		8.149.1		10.564.5		6.314 .3	

3.1-15

	TABLE 3.1.1-8 CONTINUED								
	date	07/25/78	08/11/78	08122/78	09/12/78	09/26178	10110178	10/24/78	19106/78
	taxomomic group								
	*cranuphita			-					
	*CHLOROPHYIA A. FALCATUS S. QIIADHICAUOA	2.5	$\begin{aligned} & 4.4 \\ & 1.3 \end{aligned}$	2.5	4.4	2.9	3.2	9.3	5.0
	*euglenophyta.								
	*BACILLARIOPHYTA crclotella melosira				2.0				1.3
	melosira	81.2	69.4	79.0	74.8			57.8	1.4 59.2
	chaetoceros	1.0	5.8	3.5	2.7	2.1	1.2	3.9	59.2 9.3
ω	nitischia		1.4		1.0		2.1	2.8	2.8
$\stackrel{\square}{1}$	*Prarophyia								
$\stackrel{\rightharpoonup}{\bullet}$	grmnodinium				-			1.2	

DATE
12119178
TAXONOMIC GROUP

* cianophyta
oscillatoria 2.1
achloropirta
A. falcaitus
. gliadricauda
D. pulchellua
8.6
2.9
1.3
* bacillariophyta
cuscinodiscus
crclotelea
melosira
s. custatum
chaEtoceros
A. FORMUSA
nitzschia
APYRROPHYIA
GYRODINLUM

public sehnice blectric and cas combany salbm NuClibar chatratinc situton	Phytoplankton sampling stations-1978
	[jeguce 3.1.]-1

PUBLIC SERVICF ELECTRLC AND CAS COMPARY
Mean and standard deviation of chlorophyll a concentration-1978

Figure 3.1.1-2

Mean and standard deviation of phaeo-pigment concentration-1978

Similarity on first three component axes based on phaeopigment concentration-1978

PUBLIC SERVICE ELECTIRIC AND GAS COMPANY SALEM NUCLDAR GENERATING SABION

Net production by phytoplankton measured in surface samples-1978

Figure 3.1.1-6

public service blectric and cas company salem nuclear generating station

Mean density of phytoplankton by division-stations PP05,PP06, and PP07-1978
Figure 3.1.1-7

3.1.2 Ichthyoplankton (ETS Section 3.1.2.1.1b)

Ichthyoplankton collections have been taken in the Delaware River near Artificial Island since 197l, The continuing objectives are to identify and enumerate fish eggs, larvae, and age $0+$ young in the Artificial Island area and to determine seasonal and spatial distributions in the region.

3.1.2.1 Summary

In 1978, 383 ichthyoplankton samples contained a total of 13,664 eggs, 48,907 larvae, and 322 young of 22 taxa. Bay anchovy (Anchoa mitchilli), weakfish (Cynoscion regalis), naked goby (Gobiosoma bosci), and silversides (Membras sp./Menidia spp.) were the most abundant species. General life history information is presented under Temporal Distribution.

Bay anchovy comprised 87.8 percent of the total catch. Eggs, larvae, or young were collected from May through November. Eggs were most abundant in late June and midJuly, larvae in mid-July, and young in late July. Density of eggs and larvae was greatest at stations south of Salem; of young it was greatest north of Salem.

Weakfish comprised 7.6 percent of the total catch. Eggs, larvae, or young occurred from mid-June through August. Eggs were collected only in mid-July, but were not abundant. Larval abundance characteristically peaked twice; once in mid-June and once in mid-July. Young were most abundant from late June through mid-July. Density of larvae was greatest at stations south of Salem; of young it was greatest north of Salem.

Naked goby comprised 3.6 percent of the total catch. Larvae or young were collected from mid-June through mid-September. Larvae were most abundant in mid-July; young were collected in mid-July and early August, but were never abundant. Density of larvae was greatest at stations south of Salem.

Silversides comprised 0.3 percent of the total catch. Eggs, larvae, or young occurred from mid-June through early August. Eggs and young were collected in mid- and late June and in late July, but were never abundant; larvae were most abundant in late July.

Catch composition and predominant taxa were similar to previous years. Annual mean density was similar to that in 1976, lower than that in 1973, 1974, and 1977, but greater than that in 1975. In 1978 atypically low salinities from May through August probably contributed to a decrease in annual mean density.

3.1.2.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Ichthyoplankton ETS were satisfied. During daylight, samples were taken at ll stations (Table 3.1.2-I, Fig. 3.1.2-1), monthly in March through May and September through November, and semimonthly from June through August. River icing and inclement weather prevented sampling in January, February, and December. Replicate samples were taken at stations IP05 through IP07.
 nets (fitted with General Oceanics digital flowmeters, Model 2030) fished simultaneously near surface and near bottom; middepth samples were taken at stations IP03, IP06, and IP09 where depth (MLW) exceeds $9.0 \mathrm{~m}(20 \mathrm{ft})$. For a complete description of gear, gear deployment, collection of physicochemical data, and laboratory procedures refer to Volume 2 of the 1977 Annual Environmental Operating Report.

DATA REDUCTION

For purposes of data tabulation and discussion, stations were grouped geographically as eastern (IP03, IP05, and IP08), mid-river (IP06 and IP09), and western (IP04, IP07, and IPl0); and north of Salem (IPOl-IP04), on the transect west of Salem (IP05-IP07), and south of Salem (IP08-IPll).

3.1.2.3 Results

GENERAL SAMPLE COMDOSITION

In 1978, 383 ichthyoplankton collections were processed including 168 surface, 47 middepth, and 168 bottom samples
(Table 3.1.2-2). A total of $29.567 .0 \mathrm{~m}^{3}$ of water was filtered and 13,664 eggs, 48,907 larvae, and 322 young of 22 taxa were collected. Taxa represented.by more than 100 specimens, in order of decreasing abundance are: the bay anchovy, weakfish, naked goby, and the silversides. These are discussed below.

SPECIES DISCUSSION

1. Bay anchovy comprised 87.8 percent of the total catch and was represented by 55,230 specimens including 13,624 eggs, 41,414 larvae, and 192 young (Table 3.l.2-2). The annual mean density of eggs, larvae, and young was 0.461 , 1.401 , and $0.006 / \mathrm{m}^{3}$, respectively.

Bay anchovy eggs were taken from May 17 through September 13 at water temperature of 14.7 to 28.0 C and salinity of 1.0 to 10.5 ppt . Mean dȩnsity increased from leşs than $0.001 / \mathrm{m}^{3}$ on May 17 to $2.090 / \mathrm{m}^{3}$ on June 28 and $2.510 / \mathrm{m}^{3}$ on July 12 , then steadily decreased through the remainder of the period (Table 3.1.2-3, Fig. 3.l.2-2). Over 85 percent of the total catch of eggs was taken on June 28 and July 12. The mean density per station on June 28 and July 12 ranged to $18.196 / \mathrm{m}^{3}$ at Station IP09 and to $12.862 / \mathrm{m}^{3}$ at Station IPII3 respectively. Maximum density per collection was $62.410 / \mathrm{m}^{3}$ (June 28, Station IP09, near bottom).

Annual mean density at stations north of, on the transect ${ }_{3}$ west of, and south of Salem was $0.072,0.226$, and $1.091 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was $0.190,0.696$, and $0.223 / \mathrm{m}^{3}$, respectively (Table 3.1.2-5). Annu̧al mean density was greatest at stations IP09 (1.810/m ${ }^{3}$) and IPll (1.568) (Table 3.1.2-6). Mean density per date for stations south of Salem and on the transect west of Salem was greater than for stations north of Salem (Table 3.1.2-3).

Annual mean density for surface, middepth, and bottom was $0.171,0.365$, and $0.845 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2). Over 72 percent of the total catch of eggs was taken in bottom samples.

Of the 13,624 bay anchovy eggs collected 14.0 percent were viable (Table 3.l.2-8). Viable eggs were taken from June 15 to August 31; the highest mean percent viable (33.7) occurred on June 15. At stations north of, on the transect west of, and south of Salem mean percent viable was 19.4, 15.3, and 13.2. Mean percent viable for eastern, mid-river,
and western stations was $16.0,15.0$, and 9.6 percent, respectively. On June 28 and July 12 , when over 76 percent of the viable eggs were collected, mean percent viable was highest (13.4 percent) at stations south of Salem. The annual mean percent viable (33.6 percent per station) was highest at Station IPO6.

In surface, middepth, and bottom collections mean percent viable was $9.9,8.6$, and 15.7 percent, respectively.

Bay anchovy larvae were taken from June 15 through October 27 at water temperature of 13.8 to 28.0 C and salinity $\frac{t}{3} \mathrm{o}$ 12.0 ppt. Mean density per date increased from $1.220 / \mathrm{m}_{3}^{3}$ on June 15 to $8.331 / \mathrm{m}^{3}$ on July 12 and decreased to $0.005 / \mathrm{m}^{3}$ on October 26 (Table 3.l.2-3, Fig. 3.1.2-2). Over 56 percent of the total larval catch was taken on July 12. Mean density per station on this date ranged from $0.777 / \mathrm{m}^{3}$ at Station IP02 to $28.818 / \mathrm{m}^{3}$ at Station IP09. Maximum density per collection was $42.549 / \mathrm{m}^{3}$ (July 12, Station IP09, near surface).

Annual mean density for stations north of, on the transect west of, and south of Salem was $0.438,0.998$, and $2.753 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was 0.749, 1.406, and 1.886, respectively (Table 3.l.2-5). Annual mean density per station was greatest at stations IP09 (3.525/m) and IPl0 (3.075) where over 43 percent of the total larval catch was taken (Table 3.1.2-6). From June 15 to July 12 mean density per date was greatest south of Salem and at mid-river stations. Subsequently, catch decreased with no discernible pattern (Tables 3.1.2-3, 3.1.2-7).

Annual mean density for surface, middepth ${ }_{3}$ and bottom collections was $1.747,0.971$, and $1.107 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2).

Bay anchovy young were taken from June 28 through November 22 at water temperatures of 9.8 to 28.0 C and salinity of 1.0 to $\frac{1}{3} 1.0$ ppt. Mean density ${ }_{3}$ per date increased from $0.002 \% \mathrm{~m}^{3}$ on June 28 to $0.041 / \mathrm{m}^{3}$ on July 27 , and fluctuated at low levels through the remainder of the period (Table 3.1.2-3, Fig. 3.1.2-2). Over 42 percent of the total catch of young occurred on July 27. 3 The mean density per station on this date ranged to $0.388 / \mathrm{m}^{3}$ (Station IPOI) with a maximum density per collection of $0.588 / \mathrm{m}^{3}$ at Station IPOl, near the surface.

Annual mean density for stations north of, on the transect west of, and south of Salem was 0.019, 0.001, and $0.001 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, mid-river, and
western stations it was $0.003,0.001$, and $0.002 / \mathrm{m}^{3}$, respectively (Table 3.l.2-5), The highest annual mean density per station $\left(0.067 / \mathrm{m}^{3}\right)$ occurred at station IPOI (Table 3.1.2-6).

Annual mean density for surface, middepth and bottom collections was $0.011,0.001$, and $0.002 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2). Over 85 percent of the total catch of young was collected in surface samples.
2. Weakfish comprised 7.6 percent of the total catch and was represented by 4,796 specimens including 2 eggs, 4,709 larvae, and 85 young (Table 3.1.2-2). The annual mean density of eggs, lagvae, and young was less than 0.001 , 0.159 , and $0.003 / \mathrm{m}^{3}$, respectively.

Two eggs were collected on July 12 at station IPll (one near surface and one near bottom) at water temperature of 22.0 to 23.7 C and salinity of 7.0 ppt. Mean density on this date was $0.001 / \mathrm{m}^{3}$ (Tables 3.l.2-3). Only one of two eggs collected was viable (Table 3.1.2-8).

Larvae were collected from June 15 through August 10 at water temperature of 20.0 to 28.0 C and salinity to 10.0 ppt. Maximum mean density per date occurred on June 15 (0.907/ m^{3}); a secondary peak occurred on July 12 (0.689) (Table 3.1.2-3, Fig. 3.1.2-3). Values ranged from $0.005 / \mathrm{m}^{3}$ on August 10 to $0.107 / \mathrm{m}_{3}$ on June 28 . Maximum density per collection was $16.216 / \mathrm{m}^{3}$ (June 15 , Station IP08, near bottom). This single collection represented 35 percent of the total larval catch (1,654 of 4,709 specimens).

Annual mean density at stations north of, on the transect ${ }_{3}$ west of, and south of Salem was $0.013,0.080$, and $0.386 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was $0.399,0.184$, and $0.063 / \mathrm{m}^{3}$, respectively (Table 3.l.2-5). From June 15 through July 27 mean density per date was greatest south of salem. Subsequently, catch decreased with no discernible pattern (Table 3.l.2-3). From June 15 through July 12 mean density per date was greatest at eastern and mid-river stations with no discernible pattern after this period (Table 3.1.2-7).

Annual mean density in for surface, middepth and bottom collections was $0.050,0.240$, and $0.268 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2).

Weakfish young were collected from June 15 through July 12 and from August 10 through August 31 at water temperature of 21.0 to 28.0 C and salinity to 10.0 ppt. Maximum mean density per date occurred on June $28\left(0.024 / \mathrm{m}^{3}\right)$ and July 12
$\left(0.010 / m^{3}\right)$. Other levels were equal to or less than $0.001 / \mathrm{m}^{3}$ (Table 3.1.2-3, Fig. 3.1.2-3). On June 28 mean density per station ranged to $0.131 / \mathrm{m}^{3}$ at Station IP03. Maximum density per collection was $0.359 / \mathrm{m}^{3}$ (June 28, Station IP03, middepth).

Annual mean density for north of, on the transect west of , and south of Salem was $0.005,0.003$, and $0.001 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, midriyer, and western stations it was $0.008,0.002$, and $0.003 / \mathrm{m}^{3}$, respectively (Table 3.l.2-5). From June 15 to July 12 mean density per date was greatest either north of, or on the transect west of, Salem. Subsequently, catch decreased with no discernible pattern (Table 3.l.2-3).

Annual mean density for surface, middepth and bottom collections was $0.001,0.008$, and $0.004 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2).
3. Naked goby comprised 3.6 percent of the total catch and was represented by 2,241 specimens including 2,238 larvae and 3 young. The annual mean density of larvae and young was 0.076 and less than $0.001 / \mathrm{m}^{3}$, respectively (Table 3.1.2-2).

Larvae were collected from June 15 through September 13 at water temperature of 20.0 to 28.0 C and salinity of 1.0 to 10.0 ppt . Mean density per date increased from $0.003 / \mathrm{m}^{3}$ on June 15 to $0.396 / \mathrm{m}^{3}$ on July 12; density steadily decreased through the remainder of the period (Table 3.1.2-3, Fig. 3.1.2-4 $\frac{1}{3}$. Mean density per station ${ }_{3}$ on July 12 ranged from $0.023 / \mathrm{m}^{3}$ at Station IP02 to $1.873 / \mathrm{m}^{3}$ at Station IP09. Maximum density per collection was $2.218 / \mathrm{m}^{3}$ (July 12 , Station IP09, near surface).

Annual mean density for stations north of, on the transect west of, and south of Salem was $0.029,0.059$, and $0.142 / \mathrm{m}^{3}$, respectively (Table 3.1.2-4). For eastern, mid-river, and western stations it was $0.073,0.104$, and 0.036 , respectively (Table 3.l.2-5). Annual mean density was greatest ($0.198 / \mathrm{m}^{3}$) at Station IP09; at other stations it ranged from 0.017 (Station IP02) to $0.184 / \mathrm{m}^{3}$ (Station IPII) (Table 3.l.2-6). From June 15 through July 27 mean density per date was greatest south of Salem. Subsequently, Catch decreased with no discernible pattern. For eastern, midriver, and western stations mean density per date followed no discernible pattern (Table 3.1.2-7).

Annual mean density for surface, middepth and bottom collections was $0.060,0.112$, and $0.084 / \mathrm{m}^{3}$, respectively.

A total of three naked goby young was collected on July 12, and August 10 at water temperature of 26.6 to 27.6 C and salinity of 1.0 to 5.0 ppt. Mean density per date was less than $0.001 / \mathrm{m}^{3}$ on July 12 and $0.001 / \mathrm{m}^{3}$ on August. 10 . One specimen per station was taken near bottom at stations Ip02, and IP07 on August 10 and at Station IP09 on July 12.
4. Silversides taken in the Salem study area are potentially one of three species. Although current taxonomic literature indicates subtle morphological and meristic differences, the high degree of local and individual specimen variation made identification of eggs and larvae to genus or species tenuous and impracticable. However, young were identified to species and are discussed separately.

Silversides comprised 0.3 percent of the total catch and were represented by 191 specimens including 8 eggs, 182 larvae, and 1 young (Table 3.1.2-2). Annual mean density of eggs, larvae, 3 and young was less than $0.001,0.006$, and less than $0.001 / \mathrm{m}^{3}$, respectively.

Eggs of the silversides were collected on June 15, June 28, an July 27 at water temperature of 21.0 to 27.0 C and salinity of 0.5 to 6.0 ppt . Mean density on these dates was $0.001,0.001$, and $0.002 / \mathrm{m}^{3}$, respectively (Table 3.1.2-3). Seven of the eight eggs collected were taken in bottom collections (Table 3.1.2-2). All eggs collected were viable (Table 3.1.2-8).

Larvae were collected from June 15 through August 10 at water temperature of 20.0 to 27.5 C and salinity to 10.0 ppt. Mean density per date increased from $0.008 / \mathrm{m}^{3}$ gn June 15 to $0.037 / \mathrm{m}^{3}$ on July 27, then decreased to $0.013 / \mathrm{m}^{3}$ on August 10 (Table 3.1.2-3, Fig. 3.1.2-5).

Annual mean density for stations north of, on the transect $\frac{7}{3}$ west of, and south of Salem was $0.007,0.008$, and $0.003 / \mathrm{m}^{3}$, respectively (Table 3.l.2-4). For eastern, mid-river, and western stations it was $0.002,0.002$, and $0.013 / \mathrm{m}^{3}$, respectively (Table 3.1.2-5). Annual mean density was greatest $\left(0.021 / \mathrm{m}^{3}\right)$ at Statiogn IP07; at other stations it ranged from 0.001 to $0.018 / \mathrm{m}^{3}$ (Table 3.1.2-6).

Annual mean density for surface, middepth ${ }_{3}$ and bottom collections was $0.004,0.001$, and $0.010 / \mathrm{m}^{3}$ (Table 3.1.2-2). Bottom samples contained over 64 percent of the larval catch.

One young Atlantic silverside (Meniaia menidia) was collected on June 28 at Station IPl0 near bottom at water
temperature of 25.9 C and salinity of 4.5 ppt. Mean density on this date was less than $0.001 / \mathrm{m}^{3}$ (Tables 3.1.2-3).

COMPARISON OF YEARS

Since 1971 from 19 to 26 taxa of ichthyoplankton have been collected annually. Fishes taken each year were bay anchovy, naked goby, river herrings (Alosa spp.), weakfish, Atlantic silverside, silversides, northern pipefish (Syngnathus fuscus), white perch (Morone americana), striped bass (Morone saxatilis), American eel (Anguilla rostrata), and spot (Leiostomus xanthurus). Species taken for the first time in 1978 were the goldfish/carp (Carassius sp./Cyprinus sp.) and white sucker (Catostomus commersoni) (Table 3.1.2-9).

The total abundance of ichthyoplankton increased from 1971 through 1974. In 1975 annual mean density decreased by 60 percent, from $3.836 / \mathrm{m}^{3}$ in 1974 to $1.556 / \mathrm{m}^{3}$. In 1976 and 1977 it increased to 5.347 and $25.215 / \mathrm{m}^{3}$, respectively. Annual mean density decreased to $2.128 / \mathrm{m}^{3}$ in 1978.

The bay anchovy has dominated annual catch since 1971. Percent of the total catch has ranged from 77.3 to 97.7. In 1978 it comprised 87.8 percent of the total catch. Eggs of the bay anchovy have comprised from 96.0 to 99.9 percent of each annual egg catch. The percent egg catch (99.4 percent) was simila̧ in 1978. Annual mean density was highest (13.728/m ${ }^{3}$) in 1977, increasing 400 percent from the 1976 level. In 1978 annual mean density of eggs was over 29 times less than that in 1977. Annual mean percent viable was 14.0 in 1978 , but has ranged from 11.6 in 1975 to 25.2 in 1977. Since 1971 bay anchovy larvae have comprised from 68.7 to 98.2 percent of the annual larval çatch. Annual mean density was highest in 1977 ($10.885 / \mathrm{m}^{3}$), similar in 1976 (1.685) and 1978 (1.401), and low in 1973, 1974, and 1975 (0.197, 0.725, and 0.479, respectively).

Weakfish ${ }_{3}$ density increased from 1971 through 1975 ($0.021 / \mathrm{m}^{3}$), decreased in 1975 (0.008) and peaked in 1977. Annual mean density in $1977\left(0.413 / \mathrm{m}^{3}\right)$ was more than 19 times greater than in 1975, 51 times greater than in 1975, and 2 times greater than in 1978. From 1974 through 1978 annual mean density of young weakfish remained low (≤ 0.001 to $0.003 / \mathrm{m}^{3}$).

Mean denşity of naked goby increased from 1971 through 1976 (0.446/m ${ }^{3}$); it decreased in 1977 (0.121) and again in 1978 (0.076).

In 1978 the annual mean density $\left(2.128 / \mathrm{m}^{3}\right)$ of ichthyoplankton was similar to most other years (range 0.931 to 4.046), but was less than 12.5 percent $\left(17.921 / \mathrm{m}^{3}\right)$ of 1977 densities. During May through August of 1977 and 1978 mean salinity ranged from 3.0 to 15.0 ppt and 1.4 to 4.2 ppt, respectively: in previous years (1972-1977) it ranged from 1.7-9.0 ppt:. Lower salinities in 1978 probably contributed to the slight decrease in ichthyoplankton density.

TEMPORAL DISTRIBUTION

During March through May at least seven species were taken. They were the marine spawned American eel and sand lance (Ammodytes spp.); the freshwater spawned white perch, striped bass, river herrings, and white sucker; and the estuarine spawned bay anchovy (Fig. 3.1.2-6). These species were taken in relatively low density per date (not exceeding $0.008 / \mathrm{m}^{3}$) (Table $3.1 .2-3$). The occurrence of marine spawned ichthyoplankton was the result of migration or transport to low salinity nursery grounds. The occurrence of freshwater spawned ichthyoplankton was largely the result of transport from upriver or from local tidal tributaries. The first occurrence of an estuarine spawned species during this period was on May 17.

During June through September, the period of maximum ichthyoplankton density, at least 13 species were collected. They were the marine spawned spot and windowpane (Scophthalmus aquosus); the freshwater spawned striped bass, white perch, river herrings, and minnows (Cyprinidae); and the estuarine spawned bay anchovy, weakfish, naked goby, hogchoker (Trinectes maculatus), black drum (Pogonias cromis), silversides, and northern pipefish. Bay anchovy, weakfish, and naked goby, the most abundant taxa during this period, were the product of local and downbay spawning. The occurrence in the study area of ichthyoplankton spawned downbay was the result of upstream estuarine transport. Bay anchovy spawns in early evening (Hildebrand and Cable, 1930) and eggs have a relatively short incubation period (Kuntz, 1914). Peak density in June and July indicate that spawning occurred near the study area. Weakfish eggs have a longer incubation period (Harmic, 1958), and were in late stages of development (tail-bud and tail-free) when collected, suggesting a downbay origin. Naked goby eggs have not been taken in the area. The naked goby attaches its eggs to oyster and clam shells during spawning (Nelson, 1928). The adhesive nature of the egg and the historic lack of suitable substrate preclude its occurrence in samples taken near Artificial

Island. Larvae and young of these three species occur in the area throughout the period and use it as a nursery.

During October through December three species were taken. They were the marine spawned Atlantic croaker (Micropogon undulatus) and the estuarine spawned bay anchovy and northern pipefish. The specimen of bay anchovy and northern pipefish which occurred during this period were products of earlier spawns. Although Atlantic croaker were taken in extremely low mean density per date (equal to or less than 0.001), this period typically represents their period of maximum abundance. The Atlantic croaker spawns offshore from September through January (Hildebrand and Cable, 1930). Larvae and young are subsequently transported up the estuary and occur in the area throughout the period.

Station	Location
IP01	Between buoys "3" and C "27" and approximately .23 m east of the mouth of Chesapeake and Delaware Canal.
IP02	Between buoy N " B " and the northern tip of Artificial Island.
IP03	Between buoys N " $? R$ " and R " $4 B$ " and equidistant from the shipping channel and New Jersey shore.
IP04	Between buoys C "3R" and C "3B" and equidistant from the shipping channel and Reedy Island Dike.
IP05	Between buoys R "4B" and N "loL" and 92 m west of Artificial Island.
IP06	Between buoys R " 4 B " and N "lOL" and 46 m east of the shipping channel:
IP07	Between buoys R "2" and N "loL" and equidistant from the shipping channel and the Delaware shore.
IP08	Between buoys R " 8 L " and R " 6 L " and 46 m southwest of the Hope Creek Jetty.
IP09	Between buoys R " 8 L " and R " $6 \mathrm{~L} "$ and 46 mortheast of the shipping channel.
IPl0	Between buoys R "8L" and R "6L" and equidistant from the shipping channel and the Delaware shore.
IPll	Between buoys R " $6 L$ " and R " $4 L$ " ana equidistant from the shipping channel and the New Jersey shor

TABLE 3.1.2-2
TOTAL AUMBER AND ANNUAL MEAN DENSITY OF ICHTRYOPLANKTON

	$\begin{aligned} & \text { DEPIH SAYPLED } \\ & \text { MO. OF SAMYLES } \\ & \text { VOL. FILTEAED (A3) } \end{aligned}$	$\begin{gathered} \text { SURFACE } \\ 168 \\ 14.312 .2 \end{gathered}$		$\begin{gathered} \text { MIDDEPTM } \\ 47 \\ 3.519 .8 \end{gathered}$		$\begin{aligned} & \text { BOTTOM } \\ & 168 \\ & 11.735 .0 \end{aligned}$		$\begin{aligned} & \text { TOIAL } \\ & 3 \times 3 \\ & 29.567 .0 \end{aligned}$	
		NUMBER	densily	NOMPER	OENSITY	NIMCER	OEHSITY	numger	DEnsity
	rotal egos	2.454	.172	1-286	. 365	9.914	. 845	13.664	. 462
	total lativa	26.852	1.876	4.677	1.329	17.378	1.481	48.907	1.654
	total rojeg	183	.013	42	. 012	97	. 008	322	. 011
	E65s:								
	UGIOEMIIFIABLE FISH ALGSA SPD.	4	*			1	*	4	*
	A. PITCMILI	2.443	. 171	1.284	. 365	9.897	. 843	13.026	.631
	CARASSIUS/Crpritus					1	*	1	*
		1	*			7	. 001	8	*
ω	r.a-Erlcata	4	*			2	*	6	*
\square	4. Saxhlitis	10	.001	2	. 001	5	*	17	-0.01
$\stackrel{7}{1}$	C= regilds	1	*			1	*	2	+
ω	T. Mickatus	1	*					1	*
\cdots	LARUAE:								
	U'IDEMIffable f1SH	67	. 005			2	*	69	. 003
	ALOSA SPP.	21	.1101	1	*	8	. 001	30	. 0.91
		25,001	1.74 ?	3.417	. 971	12.996	1.107	41.414	1.401
	cybrialiag	15	. 001	1	*	16	. 001	32	-6.31
	Csussslus/crprimus	5	*					3	*
	c. Cus\%czsjui	1	*					18	*
		52	. 1104	2	. 001	118	. 010	182	. 030
	\%Oitios Spp.	3	*	1	*	${ }^{6}$. 001	10	*
	H. A.EnICAIA	52	. 104	1	*	35	. 003	88	- U03
	4 - Saxillits	15	. 001	2	-001	11	. 001	28	-0.4
	SCIAETIGAE					1	$\stackrel{*}{*}$	$\begin{array}{r}1 \\ 4 \\ \hline\end{array}$	* 5 *
	C. HEGiLls	718	.050	846	. 240	3.145	. 268	4.709	. 159
	* - リルultrus					1	*	1	*
	P. cso:is	1	*			2	*	3	*
	sumourtes SP.	4	*					4	*
	S. busci	861	. 060	395	-112	982	.084.	2.238	. 076
	S. arousus					1	*	1	*
	T. maculaius	23	. 002	11	.003	54	. 005	93	. 003

[^1]0

TABLE 3.1.2-2
CONTINUED

depth sampled	Surface		midotera		вotrom		raral	
	number	density	number	oensity	NJMAER	derisity	rumazer	densitr
young:								
A. rositata	7	*			11	.001	18	. 011
a. hitcriblit	164	. 011	4	. 001	24	.002	192	. 0.10
4. meniola					1	- *	1	*
s. fuscus	2	*	9	. 10 cis	9	-001	2	. 0.1
C. regilis	10	.001	29	. 008	ho	.004	\&s	-ivs
L. xatimurus					1	*	!	*
m. unoulatus					1	*	1	*
G. busci					3	*	3	*
S. Aowasus					1	*	1	*

TABLS 3.1.2-3
mean mensipy fer date of ichthyorlankton taken at stations

date		23122178			04/20178			dotal
location	NORTH	WEst	south	rotal	NORIM	WESI	south	
no. of samples	9	14	$\dot{\square}$	32	9	14	9	32
SAL. KAMJE (PPT)	0.0-0.0	1.0- 3.0	3.0-6.0	0.0- 0.0	2.10-9.3	4.0-0.0	7.5-9.0	2.0-9.0
TEMP. RivGE (C)	5.1-6.0	4.3-5.2	4.0-4.9	$4.0-8.0$	10. $5-11.2$	11.0-11.3	10.8-11.0	10.8-11.3
VOL. FILTERED (43)	309.0	827.4	os 1.0	1.850 .6	871.8	1.201 .4	211.0	2.984 .2
total egss					-1414	.006	. 002	. 040
total larvae			. 002	. 001	.011.	. 003		. 005
rotal roung	.005	. 005	. 012	. Oud	.001	. 001		. 001
EGGS:								
unjociaifiable fish M. SAxAtilis			.		$\begin{array}{r} -002 \\ -011 \end{array}$. 004	. 002	$\begin{array}{r} .001 \\ .005 \end{array}$
larvae:								
m. americana					.008			. 002
M. SAXAIILIS AMMODYES			. 002	. 001	. .002	. 002		. .001
roung:								
a. nosinata	. 0015	. i) ${ }^{\text {a }}$	- 212	.0us	. 1001	. 001		.100

* = 'belon repuititale level

	TABLE 3.1.2-3 CONTINUED								
	Qate		05/17	178			06/151		
	Location	north	west	south	total	NORTH	WESt	south	total
	:0. of samples	9	14	\bigcirc	32	9	13	9	31
	SAL. RAMGE (fPi) TEPP. RAYGE (C)	$\begin{array}{r} 1.0-2.0 \\ 14.7-15.0 \end{array}$	$\begin{array}{r} 3.0-3.0 \\ 14.5-14.8 \end{array}$	$\begin{array}{r} 3.0-6.0 \\ 14.5-15.4 \end{array}$	$\begin{array}{r} 1.0-0.0 \\ 16.5-15.4 . \end{array}$	$\begin{aligned} & 0.0-3.0 \\ & 19.8-22.0 \end{aligned}$	$\begin{aligned} & 0.0-1.5 \\ & 20.8-21.4 \end{aligned}$	$\begin{aligned} & 1.0-6.0 \\ & 20.0-20.8 \end{aligned}$	$\begin{aligned} & 0.0-6.0 \\ & 19.8-22.0 \end{aligned}$
	YCL. FILTEPED (M3)	800.0	1.101.2	808.5	2.769 .7	866.1	801.0	950.9	2.678 .6
	totaleges	. 005	. 005	. 004	.004		. 009	. 203	. 075
	total larvae	-051	. 311	. 006	. 022	-150	1.016	5.165	2.209
	total ruugg	. 101			*	. 002		.002	. 004
	egos:								
ω	bidotitifiasle fish alosa spe. A. Milcullel	.001 .001	. 001	. 001	.001 $*$ $*$. 007	. 203	. 074
i	cauassius/crprinus		. 001		*				
	mengustrevioia spr.						. 002		. 001
ω	H. americana	. 002	. 004		. 002				
6	laruat								
		-006			. 002	. 002	. 070		. 023
	Alost spp.	. 609	. 201		.003				
	A.pirichill					. 021	. 534	2.954	1.220
	crpuliajose cazassius/cranivus						. 0008		. 012
	cazassjus/creatives c. comusoly	. 001			- *		. 003		. 004
	"Etsuas/mellala spe.					. 016	. 007	. 002	. 008
	Yezulit spa.	.002		. 002	. 001	-007			. 002
		. 015	. 007	. 002	. 0108	. 045	. 022		-022
	4. SAxMilis c. RtGAlis	.017	. 203	. 001	. 007	-005	. .301		-062
	P. cro.1s					-006	. .361	2.220 .009	.907
	G. buscl						. 002	-006	. 003
	s. A0u0sus							. 001	*
	rounc:								
	A. rustraia	.001			*	. 001			*
	5. Fuscus.							. 001	*
	¢. REditis					. 001			*
	S. Abuosus							.001	*
	* = belun reportaele level								

	table 3.1.2-3 CONTINUED								
	date		$00 / 28$				07/12		
	locailion	NORTH	wEST	sourt	total	north	wESt	south	rotal
	no. of samples	9	14	9	32	9	14	9	32
	Sal. Range (ppt)	1.0-2.5	3.0-4.0	3.0-5.5	1.0-5.5	2.0-7.9	4.0-5.0	4.0- 6.0	200-3.0
	TEMP. RAVGE (C)	26.0-26.1	25.1-25.5	24.2-27.0	24.0-27.0	$22.0-26.0$	$24.0-24.9$	$23.2-24.5$	22, $0-25.0$
	vol. filterio (m3)	015.4	001.2	740.6	2.221 .2	859.8	1.045.1	845.4	2,801. 8
	total eggs	. 057	. 565	5.522	2.081	. 102	1.356	0.172	2.511
	total larvae	. 546	1.300	7.089	2.945	2.438	5.503	20.931	9.442
	total rouyg	. 008	. 020	. 005	. 228	. 010	. 022	. 008	. 014
ω	egos:								
$\stackrel{+}{\square}$	A. Mirchilli	. 057	. 562	5.522	2.690	-102	1.355	6.169	2.510
1	memarashanioia spp.		. 003		.001				
$\stackrel{\sim}{\circ}$	c. kevalis f. maculatus						. 001	. 002	. 001
	larvae:		.						
	undoentifitale fish	. 002	. 001		. 001				
	alosa spr.	. 002			545				
	a. mitchilli	. 448	. 758	0.480	2.545	2.294	4.638	18.442	8.331
	memdíaslichidia SPP.	-011	. 003	. 015	. 010	. 030	. 006	. 001	. 012
	C. revalis	. 051	. 059	. 197	-107	. 060	. 457	1.565	.689
	P. crumis		. 001		${ }^{*}$				
	G. busci	. 034	. 228	. 394	. 230	. 048	. 269	. 902	. 380
	T. Maculatus			.003	. 001	. $006{ }^{\prime}$. 013	.021	. 014
	rours:								
	A. mitcailli	.008			. 002		. 006	.002	. 003
1	m. mesiola			. 001					
	S. fuscus		-001	. 003	.001		. 002	. 001	. 001
	c. regalis	. 060	. 317	. 001	.024	-1310	. 014	. 003	. 010
	L. xaminurus		. 301		*				
	6. busci							. 001	*
	* = eflom reportable	evel							

	TABLE 3.1.2-3 CONTINUED									
	date		07127				$08 / 10$			
	location	nurth	west	south	iotal	NORTH	WESt	south	total	
	no. of sayples	9	14	9	32	9	14	9	32	
	SAL. RAIIGE (PPI)	5.0-7.0	5.5-7.5	5.0-10.0	5.0-10.0	3.10-7.0	4.5-5.0	5.0-6.0	3.0-7.0	
	TEYP. RANGE (G) vol. filterio (M3)	$27.00-27.5$ 634.9	$20.5-28.0$ 838.8	$25.5-27.0$ 512.8	$25.5-28.0$ 1.980 .5	25.4-27.6	20.2-27.6	${ }_{\text {26.6-27.0 }}^{798.7}$	$25.4-27.6$ 2.482 .7	
	total eges	. 797	. 377	. 950	. 659	. 001	. 284	. 146	. 158	
	total larvae	1.706	5.533	3.004	3.672	. 842	. 911	1.159	. 971	
	tojal roung	. 123		. 006	. 041	. 050	. 003	. 001	. 016	
ω	egas:									
$\stackrel{1}{1}$	A. MITCHILLI ${ }_{\text {MEMERS }}$. 794	. 377	.948 .002	. 657	. 001	. 284	. 146	. 158	
\vdash	darvas:									
	a. Mithilli	1.550	5.236	2.638	3.389	. 677	. 816	1.039	. 848	
	MEMgGESMENIDIA SPP.	.003	. 372	. 021	. 037	. 014	. 018	. 000	. 013	
	c. Regalis	. 036	. 063	. 028	. 050	. 007	. 007	. 001	. 065	
	6. boscl	.093	. 106	. 322	. 183	. 124	. 059	. 110	. 094	
	t. maculatus	-017	. 217	. 004	. 014	. 020	. 010	. 003	. 010	
	rouns:							-		
	A. Mitchilli	.123		. 006	. 041	. 046	. 001	. 001	-014	
	s. fuscus					. $000{ }^{\circ}$. 001	
	C. REgalis					. 001	. 0001			.
	* = belod reportable	evel								

TABLE 3．1．2－3
CONTINUED
てワーT•ع

date	33／31／78					09／13／78			
LOCAYION	NORTH	WEST	Sourt	total		NORTH	WEST	SOUTH	TOYAL
NO．OF SAMPLES	9	14	9	32		9	14	9	32
SAL－RANGE（PPT）	4．0－6．5	6．5－9．0	7．5－10．0	$4.0-10.0$	．	5．0－10．5	－5．0－5．5	7．Ci－9．0	3．0－10．5
TEMP．RAVGE（C）	27．1－28．0	26．2－27．1	26．1－26．5	20．1－28．0		25．0－25．8	24．2－26．4	23．0－24．3	23．0－26．6
VOL．FILTERED（M3）	810.3	913.1	733.1	2．461．5		810．3	846.7	848.0	2．505．0
TOTAL EGGS	． 002	． 059	． 014	． 020		． 001	.002	.004	－0132
total larvat	.094	． 015	． 057	． 054	－	－037	． 038	． 018	． 037
TOTAL YOUVG	． 009	． 201	． 004	． 004		． 035	．008	． 001	． 074
EGGS：	．								
A．Miderille	． 002	． 039	． 014	． 020		．0U1	． 002	． 004	． 002
LARVAE：						．			
A．MITCHILLI	． 091	． 009	． 055	． 050		． 035	． 035	． 018	． 027
SCIAEIJJAE							． 0001		＊
G．tivSCl	． 002	．Oư？	.003	．004		． 002	． 001		． 0061
yousio：						－			
A．PiItCHILLI	．Uu7			：002		． 032	.004		． 012
S．fusgus			． 003	． 001	\cdot	－002	． 005	．001	． 003
C．regalis	.001	． 201	． 001	． 001					

＊＝Belún repurtagle level

TABLE 3.1.2-4
ANNUAL. MEAN DENSITY OF ICHTHYOPLANRTON TAREN AT STATIONS NORTH OF, ON THE TRANSECT WEST OF, AND SOUTH OF SALEM

	Lucarion	north	west	south	TOTAL
	larvae:				
	S. Aquusus			*	*
	t. saculatus	.003	.003	. 003	.003
	rousu:				
	a. mustrata	. 001	*	. 001	. 001
	A. Michilli	. 019	. 001	. 001	. 000
ω	5. fuscus	*	. 001	. 001	. 001
-	c. mevilis	. 005	.00s	.001	.003
1	L. xatinjajs		*	-01	-
s	G. Uneulatus		*		*
U	6. auscl	*	*	*	*

- x belua repurtadle level

	LOCATIOA	EASt	In10-RIVER	WEST	rotal
	10. OF SGYPLES	do	155	96	311
	SAL. RAIGGE (PPT)	0.0.11.0	0.0-11.0	0.0-9.5	0.0-11.0
	TEMP. KAこdGE (C)	4.3-27.0	4.0-28.0	4.6-27.9	4.0-23.0
	VOL. FILTEREO (43)	4.931 .3	10.083 .9	7.707.7	23.387.9
	TOTAL EGGS	. 190	. 697	. 226	.433
	total laryae	1.250.	1.710	2.007	1.707
	tgital roung	. 013	. 034	. 006	. 007
	EG6S:				
	U:IDEMIIFIABLE FISH	*		*	*
ω	alusa sfp.		*		*
i	${ }^{2}$. MIICHILLI	.190	. 696	. 223	. 432
$\stackrel{-}{1}$	CARMSSIUS/CYPRINUS		*		
1			*	*	*
$\stackrel{+}{\sim}$	4. Artellcala		*	*	*
0	4. Suxalitis	*	*	. 001	-
	I. maculatus		*		*
	LARVat:				
	unidentifiable fish		.006	*	. 003
	ALOSA SHPM, A. AICHILLI	-74*	- $1.40{ }^{*}$	1.88*	1.427
	crpri:ilua	- ${ }^{*}$. 001	1.8	. 001
	Carasslus/cypainus		*		-
		. 002	. 1102	. 013	. 000
	moxutic Spp.	*		. 001	*
	4. A-thicaia	. 001	. 002	. 003	. 102
	m. Samalilis	. 001	*	. 001	. 6101
	SCIAEHIDAE		*		*
	C. REGALIS	. 399	. 184	. 063	. 189
	P. Cxosils		*	*	,
	A Mmbories SP.	*	*	*	*
	G. ausca	. 073	. 104	. 030	. 075
	S. manosus			*	*
	i. haculatus	. 003	. 004	. 003	. 003

TABLE 3.1.2-5

CONTINUED

LOCATIGA	EASt	MID-RIVER	West	TOTAL
roung:				
	. 001	*	. 1001	. 091
A. rostraia	-003	-001	. 002	. 602
m. Segiluia			*	
5. fuscus	. 001	. 001	003	
C. HEGMLIS	. 008	. 002	. 003	. 0013
L. xi:.injaus		*		*
m. uroulatus		*	*	*
G. dusci		\star	*	*
S. Aunusjs	*			
* = belux reportagle leyel			IA SALEM IP 1978	

TABLE 3.1.2-6

ANNUAL MEAAN DENSITY PER STATYON OF ICHTHYORLANKTON

STATIUA,	[Put					1 PO 2			
oepth sampleo	Surface	M10	QOTton	folat		Surface	M10	BOTTOM	TOTAL
NO. UF SAMples	12	2	12	24		12	0	12	24
VOL- FILIERED (r3)	1,137.8		732.8	1.870 .0		1,150.2		972.7	2,122-7
TOIAL EGS	. 024		.057	. 037		. 017		. 021	. 018
total larvae	1.089		. 753	. 957		. 299		. 239	. 238
total roung	. 111		. 001	.068	-	. 007		. 016	. 011
EGGS:									
umidetilfiahle fish						.002			. 001
A. NITCHILL	. 020		. 056	. 054		. 013		. 017	. 015
MEMERASJPETIOIA SPP.								. 032	-001
M. AMERICAMA	. 001.			-010 1					
4. Saxalillis	. 003		. 0001	. 002		. 002		. 001	. 001
Larvag:									
UVIOE:TIfiajue fish			-001	. 001		.003			-00?
AlOSA SPD.	. 031		. 004	. 008		. 006		. 031	- 0 is,
A. MItCmllli	1.011		. 685	. 883		. 20.3		. 118	. 186
Cypximbuas	. 002			. 001		. 000		. 011	-663
C. Cosamesomi						. 001			*
MEVARAS/ME:1014 SPP.	.014		. 019	.018		.003		. 005	. 0004
munuiat spo.			. 001	. 001				.003	.(3) 1
M- 2HERICAMA	. 010		. 047	. 009		.01)		. 011	. 010
M- SARAIILIS	. 002		.003	. 0 uz		. 003		. 003	-033
C. begatis	.003		. 015	-01) 7		. 001		. 017	. 008
M. uroulatus								.031	\square
A HMudytes SP.					-	. 001			*
G. ecosci	. 1133		. 018	.027		. 1003		. 035	. 017
t. maculaijs	.002			.001		. 001		. 0.02	- 00:
Youing :									
A. rusimata			. 001	.1001					
A. Sitchilli	. 111			.067		. 007		. 011	-009
S. fuscus		,						=001	4
C. REGALIS								. 003	. 007
G. Buscl								. 001	*

	TABLE 3.1.2-6 CONTINUED									
	Statiu:		1903							
	depta sayaleo	Surface	M10	BUTIOM	TUTAL *	surface	MID	вотtoy	lotal	
	no. of sauples	12	12	12	30	12	0	12	24	
	vol. Filtered (43)	1.033 .7	879.1	997.4	2.909 .2	1,107.3		770.7	1,878.0	
	total egos	. 164	. 253	. 086	. 157	. 006		. 100	. 045	
	total larvae	. 654	-436	. 335	-478	. 456		. 231	. 364	
	total yojug	. 011	.031	. 018	.010	. 016		. 004	. 011	
	E6G5:									
	uaidemifinsle fish	. 001			*					
	A. Mitcmill	.142	. 253	. 086	.156	. 005		. 099	. 043	
ω						. 001			-0, 01	
-	4. Saxatilis	. 001			*			.001	-061	
A	Larvae:									
	unidemifiable fish					. 003			-0n2	
	Acosa spe.	. 001		. 001	. 0011			. 001	-001	
	A-Pltchllt	-021	-334	. 269	. 414	. 421		. 135	- 3174	
	CrPmitioat	- 0101		- 001	. 001	. 001		. 003	-002	
		-.002	-101	.007	-003	. 0031		. 0105	-0,16	
	4. i-equcana	-u0z		. 003	. 102	.010		. 008	-i197	
	\%. sixilitis	. 604	- 002		. 002	. 002		. 036	. 023	
	c. etuals		-1)38	-1124	-023	-002		. 432	-014	
	G. T 0 cci	. 018	. 958	. 023	. 032	. 008		. 632	. 013	
	t. maculatus	. 002	-63	. 006	-004	. 006		. 009	-007	
	roung:									
	A. rostrata			. 001	*	. 002		.001	-002	
	4. Mrichllit	. 011		. 004	. 005	. 008		.031	-005	
	S. Ruscus		.002	. 013	. 0.011	. 006		. 001	. 001	
	* = eflun peppriable level									

TABLE 3.1.2-6

mABLE 3.1.2-6
CONTINUED

MABLE 3.1.2-7
MEAN DENSITY PFR DATE OF ICHCHYOPLANKTON TAKEN AT EASTERN, MID-RIVER, AND WESIERN STATIONS

TABLE 3.1.2-7 CONTINUED

DATE	06128178				07/12/78			
Location	EASt	MIDRIVER	WEST	toial	EASt	MIDRIVER	-Fsif	rotal
no. of Samples	9	ϑ	8	20	9	9	H	20
SAL. RAMGE (PPI)	2.0-5.0	3.0-5.0	2.0-4.5	2.0-3.0	3.0-5.0	4.0. 5.0	2.5-6.0	2.5-h.0
TEMP. RAVGE (C)	24.0-25.9	25.1-27.0	25.0-20.0	24.0-27.0	24.3-26.0	23.2-24.5	23.4-26.0	25-2-20.0
VOL. FILIERED (M3)	609.3	571.8	560.4	1.741 .5	600.4	786.1	752.6	2.174.1
total eggs	. 235	0.852	. 728	2.506	2.229	1.395	1-3is	1.718
total laryae	2.857	3.655	2.161	2.895	3.493	14.127	10.093	9.817
total ruuidg	. 061	. 012	. 023	. 033	. 023	. 011	- 1115	. 070
EGGS:								
A. mitcrilli	. 230	0.852	. 728	2.504	2.227	1.395	1.003	1.717
MEMBRES/4EMIDIA SPP.	. 005			. 002				
T. maculatus					- 0112			*
larvae:								
Utidotirifiable fish		. 002		. 1007				
A. Mitchilli	2.378	3.300	1.913	2.531	2.843	11.551	10.534	8.abie
membeisluenloia spp.	. 002	. 003	. 020	. 008	. 002	. 0109	-11) 34	- Ju5
C. REEALIS	-199	.103	- 664	. 124	. 312	1.679	. 246	- 724
P. CRONIS			. 002	. 001				
G. acsci	. 279	. 267	. 162	. 231	. 321	. 767	.093	-6cs
t. haculatus		.			. 011	. 620	. 014	.015
Young:								
A. mitchilli					-11)6	. 605		.004
4. MESiJda			. 002	. 001				
S. fuscus	.005			. 042	.003	. 001		-6.11
C. REGALIS	. 054	. 012	. 021	. 030	. 014	. 004	-.115	. 011
L. xatimuzus	. 002			. 001				
G. BOSCI						. 001		*
* * belod reporiable	LEvEl							

TABLE 3.1,2-7
CONTINUED

TABLE 3.1.2-7
CONTINUED

* a Belon reportable level

TABLE 3.1.2-7
CONTINUED

O.tie	10126/78				11/21/78			
LOCATIOM	EASt	MIDRIVER	WES T	IOTAL	EASt	MIDRIVER	WEST	TOIAL
Ro. of sayples	9	9	8	20	7	9	8	24
SAL. RANJE (FPT)	6.0-11.0	9.5-12.0	5.5-12.0	5.5-12.0	6.0-8.0	7.0-9.0	5.5-8.0	5.5-9.0
TEHP. RAVGE (C)	13.8-14.0	14.0-14.0	13.0-14.1	13.8-14.1	9.5-11.8	11.0-11.1	9.8 -10.6	9.5-11.8
VOL. FILIEREO (\%3)	717.5	672.8	683.3	$2,073.6$	341.1	570.3	025.4	1.536 .8
total egos								
total larvae	. 001	. 001	. 012	. 005				
total yuung			. 0,01	*	. 015	. 005	. 003	. 007
larvae:								
A. Mitcmilli	. 001	. 001	. 012	. 005				
Young:								
A. MITCMILLI					. 015	. 002	. 003	
s. fuscus			. 001	*		. 002		. 001
m. undulatus						. 002		.009
OAIE	11/22178							
location	EASt	MIDRIVER	WEST	TOTAL				
PO. OF SAxples	2			2				
SAL. RANGE (PPT)	9.0-10.0	- *	-	9.0-10.0				
TESP. RA:GE (C)				11.0-11.1				
YOL. FILIERED (M3)	215.1	0.0	. 0.0	215.1				
Total eges								
total larvae								
total roung								
\# a beloa repurtabl	level							

TABLE 3.1.2-8
NUMBERS AND PERCENT VIABLE OE FISH EGGS SUMMARIZED BY SPECIES, 1978

COMPARISON OF COMBINED CATCH OF ICHTHYOPLANKTON TAKEN FROM 1971 THROUGH 1978

	T'ABLE 3.1.2-9 CONTINUED										
		1973					1974				
	SPECIES	N	RANK	PERCENT of total	N/MS	N/C	N	RANK	PERCEMT OF TOTAL	(1/m3	f. $/ 6$
	A. MIICHILLI	19,623	1	82.9	0.253	40.5					
	G. BDSCI	1.776	2	7.5	0.023	40.5 3.7	348.084 14.094	2	95.4	3.561	40\%.1
	ALOSA SPP. B. TYRAMNUS	17		7.5 <0.1	<0.001	3.7 <0.1	14.094 34	2	5.9 <0.1	0.148 <0.001	16.5
	B. TyRalunus C. Regalis	11		<0.1	<0.101	<0. 1	158	9	<0.1	0.001 0.002	<0.1 0.2
	M. menioia	146 48	6	0.6	0.002	0.3	835	3	0.2	0.0097	1.0
	S. Fuscus	70	9	0.2	<0.001	0.1	13		<0. 1	60.009	<0.1
	MEMERAS/IENIDIA SPP.	76	7	0.4	0.cus	0.1 0.2	177	8	<0.1	0.002	0.2
	t. Miaculatus	3		<0.1	<0.001	<0.1	0		0	<0.001	<0.1
	M. americana	10 83	8	<0.1	<0,001	<0.1	73		<0.1	0.001	0.1
	a. pseudjharengus	83 3	8	0.3	0.001	0.2	333	4	0.1	0.0006	0.2
	B. chaysura	2		<0.1	<0.001	<0.1	0		0	0	0
i	M. unuulatus	326	4	1.4	<0.001	<0.1	0		0	0	0
1	M. SAXAIILIS	52		0.2	<0.004	0.7	180	7	0.1	0.002	0.2
σ	FUidDULUS SPP.	1,1488	3	4.8	0.1015	2.4	196	6	0.1	0.002	0.2
N	MOROLE SPP-	168	5	0.7	0.002	0.3	4		<0.1.	<0.001	<0.1
	A. ROSTRAIA	0		0	0	0	3		<0.1	<0.001 <0.001	<0.1
	L. xaminjels	26	10	0.3	<0.001	0.1	313	5	0.1	0.003	0.4
	F. meteroclitus	0		0.	-0.001	<0.1	27		<0.1	<0.001	<0.1
	C. HIFPOS	0		0	0	0	0		0	0	u
	P. SALTATRIX P. EvOLivs	1		<0.1	<0.001	<0.1	0		0	0	0
	P. triacaritus	0		0	0	0	0		0	0	0
	H. tuctoralis	0		0		0			<0.1	<0.001	<0.1
	M. Marijuica P. americamus	0		0	0	0	97	10	0	0	0
	P. M, Mericanus I. neaulosus	0		0	0	0	0	10	<0.1	0.001	0.1
	1. Neaulosus S. iquosjs	0		0	0	0	0		0	0	0
	P. flavesceids	2		0	${ }^{0}$	0	0		0	0	0
	G. aculeatus	1		<0.1	<0.001	<U. 1	9		<0.1	<0.001	<0. 1
	O. cepedianuin	0		- 0	<0.001	<0.1	0		0	0	0
	O. Iau	i)		0	0	0	1		<0. 1	<0.001	<0.1
	P. ofntarus	0		0	0	0	7		<0.1	<0.001	<0. 1
	E. MICROSTOMUS P. MARINJS	0		0	0	0	5		<0.1	60.001	<0.1
	cluparinas	0		0	0	0	1		<0.9	<0.001	<0.1
	cyprinidae	0		0	0	0	9		<1). 1	<0.001	<0.1
				0	0	0	23		<0.1	<0.001	<0.1
	total	23,674		100.0	0.306	48.9	364.689		100.6	3.836	420

TABLE 3.1.2-9
CONTINUED

		1975					1976				
	Species	N	pank	PERCENT OF TOTAL	$11 / 43$	N/C	N	RANX	PERCENT OF TOTAL	N/M3	N/C
	a mitchilli	94.920	1	77.3	1.202	97.?	191.672	1	90.9	4.860	334.5
	5. busc:	24.462	2	19.9	0.310	25.2	17.588	2	8.3	0.446	50.7
	alosa sfp.	52	9	<0.1	0.001	0.1	66	9	<0.1	0.002	0.1
	3. Trimirius	49	10	<0.1	0.001	0.1	144	5	0.1	0.004	0.2
	C. ktgelis	1.040	3	1.3	u.U21	1.7	302	4	0.1	0.008	0.5
	4 - iombiula	25		<0.1	(0).(1)1	<0. 1	5		<0.1	<0.001	<0.1
	S. fuscus	93	8	0.1	0.001	0.1	36		<0.1	0.001	0.1
	MESHESSMEHIUIA SPP.	116	7	0.1	0.001	0.1	68	8	<0. 1	0.002	0.1
	A. 2tstidatis	12		<0. 1	<0.001	<U. 1	9		<0.1	<0.001	<0.1
	T. maccilates	7		< 0^{-1}	<0.001	<0.1	6		<0.1	<0.001	<0.1
	\therefore - hetsicaira	15		<0.1	<u. 001	(1) 1	24		<0.1	0.001	< 0.1
	\therefore - psevuohajemgus	2		<0.1	(0).001	<0.1	1		<0.1	<0.001	<0.1
	a- Chtrsida	4		<0.1	<0.001	<0. 1	5		<0.1	<0.001	<0.1
	- गnobualus	501	5	0.4	0.006	0.5	624	3	0.3	0.016	1.1
	\because - Sixatilis	44		<0.1	0.001	<0.1	27		<0.1	<0.001	<0.1
	fundulde 5pp.	1		<0. 1	<0.001	<0.1	0		0	0	0
	Hozuide Spp.	0		0	0	0	0		0	0	0
	4. gerrblia	160	6	0.1	0.002	0.2	91	7	<0.1	0.002	0.2
ω	4. Rosimatis	614	4	0.5	0.008	0.6	51		<0.1	0.001	0.1
-	L. Sataltuxus	40		<0.1	0.001	<0.1	53	10	<0.1	0.001	0.1
\square	f. atiefoclitus	0		0	0	0	4		<0.1	<0.001	<0.1
1	C. hlppus	0		0	0	0	0		0	0	0
\cdots	P. Sattataix	0		0	0	0	0		0	0	0
ω	P. evolais	0		0	0	0	0		0	0	0
	F. TKificiothus	0		0	0	1	0		0	0	0
	H. muchalis	0		0	0	0	0		0	0	0
	Q- Martlyica	71		0.1	0.001	0.1	107	6	<0. 1	0.003	0.2
	P. infulcious	0		0	0	0	0		0	0	0
	I. hesulosos	0		0	0	0	0		0	0	0
	S. furosss	3		<0.1	<0.001	<0.1	0		0	0	0
	P- flinviscens	0		0	0	0	0		0	0	0
	G. aculeatis	0		0	0	0	0		0	0	0
	D. cepeciamat	1		<0.1	<0.001	<0.1	0		0	0	0
	O. Tiul	0		0	0	0	0		0	0	0
	F. demiatios	3		<0.1	<0.001	<0.1	0		0	0	0
	t. michustomus	0		0	0	0	1		<0.1	<0.001	<0.1
	P. maridus	0		0	0	0	0		0	0	0
	clugelohe	0		0	0	0	1		<0.1	<0.001	<0.1
	crprioidae	21		<0.1	<0.001	<0-1	4		<0.1	<0.001	<0.1
	Leporis Sp.	1		<0.1	<0.001	<0.1	-		0	0	0
	P. chamis	1		<0. 1	<0.001	<0.1			0	0	0
	AMMGOTES SP.	5		<0.1	<0.001	<0.1	0		0	0	0
	R. hergimata	1		<0.1	<0.001	<0.1	0		0	0	0
	ScIaElidat	0		0	0 -	0	1		<0.1	<0.001	<0.1
	Jotal	122.861		100.0	1.556	126.4	210,890		100.0	5.347	368.0

IA SALEM IP 1978

PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING S'IATION

Temporal abundance of bay anchovy ichthyoplankton - 1978

public service becctric and gas company salem nuclealo generating station	Temporal abundance of weakfish ichthyoplankton - 1978
	Figure 3.1.2-3

-

PUBLIC SERVICE ELECTRIC AND GAS COMPANY salem nuclear generating station

Temporal abundance of naked goby ichthyoplankton - 1978

PUBLIC SERVICE ELECTRIC AND GAS COMPANY
SALEAS NUCLEAR CENERATING STATION

3.1 .3
 Zooplankton (ETS Section 3.1.2.1.1c and d)

Quantitative zooplankton collections were made in the Delaware River near Salem on 32 sampling dates from March 22 through December 13, 1978. Objectives were to determine seasonal and spatial variation in microzooplankton and macroinvertebrate plankton composition and abundance immediately offshore of Artificial Island, in the region of the Salem Unit I thermal plume, and in regions to the north and south.

3.1.3.1 Summary

Microzooplankton are invertebrates not retained by a $0.5-\mathrm{mm}$ mesh conical net but retained by a $0.08-\mathrm{mm}$ mesh net; macroinvertebrates are retained on the $0.5-\mathrm{mr}$ mesh net. One hundred fourteen invertebrate species were identified in the 681 microzooplankton and 335 macroinvertebrate plankton samples analyzed. Annual mean microzooplankton and macroinvertebrate planktoh densities were approximately $66,000 / \mathrm{m}^{3}$ and $10,000 / 100 \mathrm{~m}^{3}$, respectively. Monthly mean microzooplankton density was high from March through May (ca. $115,000 / \mathrm{m}^{3}$) and then decreased through September (ca. $\left.19,000 / \mathrm{m}^{3}\right)$. It remained low in October and November and then increased in December (ca. $71,000 / \mathrm{m}^{3}$). Copepods, rotifers, and polychaetes were the most abundant taxonomic groups and accounted for 58, 29, and 6 percent, respectively, of the total microzooplankton sample. Acartia tonsa, Eurytemora affinis, Ectinosoma spp., Notholca spp., and Branchionus spp. were predominant. Two distinct communities of microzooplankters occurred seasonally during 1978. A tidal river community consisting of limnetic and oligohaline organisms such as rotifers, cyclopoid copepods, and cladocerans occurred during periods of lowest salinity (winter and spring). An estuarine community predominated by euryhaline calanoid copepods and meroplanktonic larvae of benthic invertebrates occurred during periods of higher salinities (late spring through fall). The pattern of seasonal change in microzooplankton abundance was similar to that of recent years (1973-1977).

Macroinvertebrate monthly męan density was low from March through May (ca. $1,000 / 100 \mathrm{~m}^{3}$), increased to a peak during June (ca. §4and decreased through November (ca. 5,023/100 m^{3}). Neomysis americana and Rhithropanopeus harrisii were most abundant, comprising 94.2 percent of the total annual sample. Other predominant taxa included:

Gammarus spp., Uca minax, Blackfordia virginica, Palaemonetes pugio, Edotea triloba, Corophium spp., Brachyura, and Crangon septemspinosa.

3.1.3.2 Materials and Methods

All zooplankton samples required by ETS were collected.
Microzooplankton samples were collected from March through December during daylight at 12 stations and over $12-h r$ periods at three stations extending west of Salem (Table 3.1.3-1, Fig. 3.l.3-1). All microzooplankton samples were collected with a filter pump plankton sampler (Fig. 3.1.3-2) fitted with a number 20 net (0.08 mm mesh). For a more detailed description of sampling gear, gear deployment, collection of physicochemical data and laboratory procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

Macroinvertebrates were collected from March through November in the ichthyoplankton program from just below surface and just above bottom with $1 / 2$-meter plankton nets of $0.5-m m$ mesh. Detailed aescriptions of sampling and laboratory materials and methods are described in section 3.1.2.1.lb and Section 3.l.2.l.lc and d, respectively, of the 1977 Annual Environmental Operating Report. In 1978 samples from stations IPO1, IP02, IP03, IP04, IP05, IP06, IP07, IP08, IP09, IP10, IP11, IP2I, and IP22 were processed; samples from stations IP05, IP06, IP07, IP21, and IP22 were replicated. Also in 1978 , the taxon Brachyura represented megalops of Uca minax and Rhithropanopeus harrisii (after August 31 megalops were identified to species).

3:1.3.3 Results and Discussion

GENERAL SAMPLE COMPOSITION

One hundred fourteen invertebrate taxa were identified in the 681 microzooplankton and 334 macroinvertebrate samples collected and analyzed (Tables 3.1.3-2 through 3.1.3-6). Annual mean microzooplankton and macroinvertebrate blankton density was approximately $66,000 / \mathrm{m}^{3}$ and $10,000 / 100 \mathrm{~m}^{3}$, respectively.

Monthly mean microzooplankton density during 1978 was hign from March through May (ca. $115,000 / \mathrm{m}^{3}$) after which it decreased through september to approximately $19,000 / \mathrm{m}^{3}$. Monthly mean density remained low in october and November and then increased in December to $71.000 / \mathrm{m}^{3}$ (Fig. 3.1.3-3). Extremely high density of copepod nauplii ($60.614 / \mathrm{m}^{3}$) accounted for the December increase. 3 The peak monthly microzooplankton density of $126,572 / \mathrm{m}^{3}$ occurred during March.

Microzooplankton density during March through December, 1978 ($66,388 / \mathrm{m}^{3}$) was greater than observed in previous years (1973-1977). Mean3 density during these years ranged from 31,433 to $46,340 / \mathrm{m}^{3}$. The pattern of seasonal change in microzooplankton abundance was similar to that of recent years (1973-1977).

Copepods, rotifers, and polychaetes were the three most abundant taxonomic groups, comprising 58; 29, and 6 percent, respectively, of the total microzooplankton sample (Table 3.1.3-7). Common organisms were Acartia tonsa, Eurytemora affenis, Ectinosoma spp., Notholca spp., Branchionus spp.r and Gastropoda (veligers). Microzooplankton community structure, i.e., species composition, duxing 1978 was similar to that of recent years (1973-1977).

Macroinvertebrate monthly mêan density was low from March through May (ca. $1,00 \mathrm{~g} / 100 \mathrm{~m}^{3}$), increased to a peak during June (ca. $37,000 / 100 \mathrm{~m}^{3}$) and decreased through November (ca. 5,000/100 m) (Fig. 3.1.3-3). Neomysis americana and Rhithropanopeus harrisii were most abundant comprising 94.2 percent of the total annual sample (Table 3.1.3-8). Other common taxa included: Gammarus spp., Uca minax, Blackfordia virginica, Palaemonetes pugio, Edotea triloba, Corophium spp., Brachyura and Crangon septemspinosa.

MICROZOOPLANKTON COMPOSITION

An overview of each major taxonomic group is presented together with detailed discussion on predominant species in each group.

Aschelminthes

Fifteen genera of Rotifera were represented by more than 25 species. Rotifers were typically associated with low
salinity waters. Seasonally, they were most abundant from March through mid-June comprising over 52 percent of the microzooplankton sample (Table 3.1.3-4). Rotifer spp., an "artificial" taxon including illoricate rotifers that contract upon preservation making specific identification impossible without the addition of a relaxing agent or close examination of trophi, was the most abundant rotifer and second most abundant microzooplankton taxon collected. It had an annual density of $13,477 / \mathrm{m}^{3}$ and it comprised over 20 percent of the annual sample (Table 3.l.3-7). Density was greatest from March through May (Fig. 3.1.3-4). Peak density (209,545/m3) occurred on March 22 (Table 3.1.3-2). It was collected at water temperature of 5.9 to 38.0 C and salinity of 0.0 to ll.0 ppt. Examination of trophi of randomly selected illoricate individuals indicated that most were Synchaeta spp. which tolerate brackish waters.

Notholca $s p$. was the second most abundant rotifer ($3,360 / \mathrm{m}^{3}$) and sixth ranking microzooplankter (Table 3.1.3-7). Density was greatest from April through June ${ }_{3}$ (Fig. 3.l.3-4). Peak density occurred on May 17 (44,867/m) (Table 3.1.3-2). It was collected at water temperature of 6.0 to 27.2 C and salinity of 0.0 to 8.0 ppt.

Keratella quadrata was the third most abundant rotifer
(1,309/m) and ninth ranking microzooplankter (Table 3.1.3-7). Density was greatest during May with a peak density on May 17 (17,014/m) (Table 3.1.3-2; Fig. 3.1.3-4). It was collected at water temperature of 7.0 to 22.0 C and salinity of 0.0 to 7.0 ppt .

The genus Branchionus ranked third and was represented by at least eight species. Of these, B. angularis was predominant. It ranked tenth among all microzooplankters and comprised 1.4 percent of the annual sample ($945 / \mathrm{m}^{3}$) (Table 3.1.3-7). Density was greatest from May to July (Fig. 3.1.3-4). Greatest density occurred on May 17 $\left(6,968 / \mathrm{m}^{3}\right)$ and May $25(6,326)$ (Table 3.1.3-2). It was collected at water temperature of 7.0 to 29.0 C and salinity of 0.0 to 10.0 ppt.

The nematode worms collected were either free-living benthic or terrestrial forms washed into the water from local soils. The annual mean density was $97 / \mathrm{m}^{3}$. Density was greatest from March through June. Deak density ($488 / \mathrm{m}^{3}$) occurred on March 22 (Tables 3.1.3-2). Nematodes were collected at water temperature of 6.0 to 28.0 C and salinity of 0.0 to 14.0 ppt.

Annelida

Polychaete eggs and larvae had an annual density of $4,043 / \mathrm{m}^{3}$ and were the fifth most abundant microzooplankter (Table 3.1.3-7). Density was greatest during October through December (Fig. 3.1.3-5). Monthiy peak density (40,381/m ${ }^{3}$) occurred on October 26 (Table 3.1.3-2). Eggs and larvae were collected at water temperature of 5.9 to 29.0 C and salinity of 0.0 to 15.0 ppt.

Mo1lusca

Larval gastropods (veligers) had an annual mean of $1,432 / \mathrm{m}^{3}$ and were the eighth most abundant microzooplankter (Table 3.1.3-7). They were most abundant during June through September (Fig. 3.1.3-5). Peak density (12, $254 / \mathrm{m}^{3}$) was on July 27 (Table 3.1.3-2). It was collected at water temperature of 6.5 to 29.0 C and salinity of 0.0 to 14.0 ppt. Larvae are believed to be young of gastropods occurring in local tidal marshes or further south in Delaware Bay (Lindsay and Morrisson, 1974).

Larval pelecypods (mostly free-swimming veliger larvae) were collected intermittently throughout the year. The annual density was $134 / m^{3}$. ${ }^{\text {Density was greatest during october }}$ with a peak $\left(2,476 / \mathrm{m}^{3}\right.$) occurring on October 26 (Tables 3.1.32). Larvae were collected at water temperature of 6.0 to 28.0 C and salinity of 5.0 to 14.0 ppt. Macoma balthica has consistently been one of the most abundant adult pelecypods collected near Artificial Island (Connelly et al. 1976) and is probably the source of many of the larvae collected.

Arthropoda

Six genera of Cladocera were collected: Bosmina, Moina, Ceriodaphnia, Chydorus, Leydigia, and Alona. Cladoceran density was greatest during May and June (Table 3.l.3-2). Bosmina spp., which was the most abundant cladoceran and fourteenth most abundęnt microzooplankter, had an annual mean density of $336 / \mathrm{m}^{3}$ (Table 3.1.3-7). Density was greatest during May and June. A peak density of $5,864 / \mathrm{m}^{3}$ was collected on May 25 (Table 3.1.3-2). Bosmina spp. occurred at water temperature of 7.0 to 27.2 C and salinity of 0.0 to 7.0 ppt.

Copepoda

Adults and copepodids of at least 15 species of copepods were collected during 1978. Nauplii (early developmental stages) plus juveniles and adults of the three most abundant copepods comprised over 40 percent of the total microzooplankton sample. Nauplii were collected on every sampling date and were the most abundant microzooplankton taxon (27,014/m3) (Table 3.1.3-7). Taxonomic subtleties made species identification impracticable. The presence of several species in this category may have masked specific density differences. Copepod nauplii mean densities were highest during April through June and December (Fig. 3.1.36). Peak density ($116,909 / \mathrm{m}^{3}$) occurred on December 6 (Table 3.1.3-2). Two species of calanoid copepods, Eurytemora affinis and Acartia tonsa, were dominant members of the microzooplankton community accounting for 7.0 and 6.6 percent, respectively, of the annual sample (Table 3.1.3-7). E. affinis predominated from March through mid-June and \underline{A}. tonsa predominated for the remainder of the year (Table 3.1.3-2, Fig. 3.1.3-6).

Acartia tonsa, the most abundant species of copepod (4,6807m) and third ranking microzooplankter, reached maximum density of $20,425 / \mathrm{m}^{3}$ on July 12 (Tables 3.1.3-7, 3.1.3-2; Fig. 3.1.3-6). Described as a euryhaline species by Cronin et al. (1962), A. tonsa was collected in the study area at water temperature of 6.0 to 29.0 C and salinity of 0.0 to 15.0 ppt.

Eurytemora affinjs was the second most abundant copepod species ($4,349 / \mathrm{m}^{3}$) and fourth most abundant microzooplankter (Table 3.1.3-7). Densities were greatest from March through June with a maximum density of $24,723 / \mathrm{m}^{3}$ collected on April 25 (Table 3.I.3-2, Fig. 3.1.3-6). E. affinis was collected at water temperature of 5.9 to $29.0^{\circ} \mathrm{C}$ and salinity of 0.0 to 11.0 ppt .

The harpacticoid copepod, Ectinosoma spp., was the third most abundant copepod and seventh ranking microzooplankter with an annual density of $2,278 / \mathrm{m}^{3}$ (Table $3.1 .3-7$). It was abundart every month except March (Table 3.1.3-2). A peak density of $8,607 / \mathrm{m}^{3}$ was collected on July 27 (Table 3.1.32). It was collected at water temperature of 5.9 to 29.0 C ana salinity of 0.0 to 14.0 ppt.

Cirripedia nauplifi and cypris, which together had an annual density of $625 / \mathrm{m}^{3}$ were the eleventh most abundant microzooplankters. They were most abundant during May through September and reached peak density of $4,891 / \mathrm{m}^{3}$ on

June 28 (Table 3.l.3-2). They were collected at water temperature of 6.0 to 29.0 C and salinity of 0.0 to 14.0 ppt. Most were probably larvae of Balanus improvisus, the only adult barnacle which sets near Artificial Island (see Section 3.1.4).

Tardigrades were collected during April, May, and June amd had an annual density of $4.0 / \mathrm{m}^{3}$. Greatest density ($58 / \mathrm{m}^{3}$) was collected on May 17 (Table 3.1.3-2). Tardigrades were collected at water temperature of 12.5 to 27.8 C and salinity of 2.0 to 5.0 ppt.

MACROINVERTEBRATE PLANKTON COMPOSITION

The 10 predominant macroinvertebrate plankters, which comprised 99.5 percent of the macroinvertebrate sample during 1978 (Table 3.1.3-8), are discussed in order of decreasing abundance.

Neomysis americana, the opossum shrimp, was the most abundant macroinvertebrate collected. Annual mean density was $7,520 / 100 \mathrm{~m}^{3}$. It comprised approximately 75 percent of the total sample and was collected throughout the year (Tables 3.1.3-8, 3.1.3-3). Greatest density occurred from June through November (Fig. 3.1.3-7). Peak density $\left(40,839 / 100 \mathrm{~m}^{3}\right.$) occurred on June 15 (Table 3.1.3-3). It was collected at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 12.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from May through ivovember (Fig. 3.l.3-8). Mean density was greater near bottom than near surface on all sampling dates (Table 3.l.9-9). N. americana apparently congregates on or near the bottom during daylight (Hulburt, 1957; Hopkins, 1965; and Browne et al., 1976).

Rhithropanopeus harrisii larvae, including zoeae and megalops of this brackish water mud crab, were the second most abundant macroinvertebrate collected. Annual mean density was $1,926 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was abundant from June through September (Fig. 3.1.3-9). Peak density (11, 140/100m) occurred on July 27 (Table 3.1.3-3). It was collected at water temperature of 4.3 to 28.0 C and salinity of 0.0 to 11.0 ppt.

Gammarus spp. (probably including G. fasciatus, G. tigrinus, and G. daiberi) was the third most abundant macroinvertebrate collected. Annual mean density was $215 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected throughout the
year, with highest densities occurring during June ${ }_{3}$ through September (Fig. 3.1.3-10). Peak density ($846 / 100 \mathrm{~m}^{3}$) occurred on August 10 (Table 3.1.3-3). It was taken at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 11.5 ppt. The seasonality of juveniles indicated that most reproduction occurred during May through October (Fig. 3.1.3-11). Greater density occurred near bottom than near surface on all sampling dates (Table 3.1.3-9). It occurred in higher densities at northern stations than at southern stations (Table 3.1.3-10). Gamarus spp. is essentially a freshwater organism; therefore, this north-south distribution probably corresponds to the salinity gradient.

Uca minax, including zoeae and megalops of the red-jointed fiddler crab, were the fourth most abundant macroinvertebrate collected. Annual mean density was $124 / 100 \mathrm{~m}^{3}$ (Table $3.1 .3-8$). It was collected during June through September (Fig. 3.l.3-9). Peak density ($1,869 / 100 \mathrm{~m}^{2}$) occurred on June 28 (Table 3.1.3-3). It was collected at water temperature 19.8 to 27.5 C and salinity 0.0 to 10.0 ppt. Densities were greatest at stations IP03, IP05, IP08, and IPIO (Table 3.1.3-10). Since U. minax adults inhabit the intertidal zone along banks of tidal streams and river, the greater densities of U. minax larvae at these stations may be due to the proximity of these stations to shore (Fig. 3.1.3-1).

Blackfordia virginica, a hydromedusa, was the fifth most abundant maçroinvertebrate plankter. Annual mean density was $92 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It occurred from July through September (Fig. 3.1.3-7). Peak density (1,105/100 m^{3}) occurred on August 31 (Table 3.1.3-3). It was collected at temperature of 23.0 to 28.0 C and salinity of 3.0 to 10.5 ppt. The seasonality of juveniles indicated that most reproduction occurred from July through August (Fig. 3.1.312). Greater density of B. virginica occured near bottom than near surface (Table $\overline{3} \cdot 1.3-9$). Generally it occurred in greater densities at southern stations than at northern stations (Table 3.l.3-10). This observation corroborates findings of Cronin, Daiber, and Hulburt (1962) that B. virginica is typically found in waters with salinities exceeding 7.5 ppt.
palaemonetes pugio, the grass shrimp, was the sixth most abundant maçroinvertebrate collected. Annual mean density was $26 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected from April through November (Table 3.1.3-3). Greatest densities occurred from June through August (Fig. 3.1.3-13). Peak density (169/100m) occurred on July 27 (Table 3.1.3-3). pugio was collected at water temperature of 10.2 to 28.0 and salinity of 0.0 to 11.0 ppt. It occurred mostly as
juveniles 2 to 7 ma long. The seasonality of juveniles indicated that most reproduction occurred during June through September (fig. 3.1.3-14). It is rarely collected in benthic samples in the study area (see Section 3.1.4) probably because it typically inhabits shallow water grass habitats (Welsh, 1975).

The isopod, Edotea triloba, was the most abundant isopod and seventh most abundant macroinvertebrate. Annual mean density was $22 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected throughout the year and was most abundant during July through September (Table 3.1.3-3, Fig. 3.1.3-7). Peak density ($96 / 100 \mathrm{~m}^{3}$) occurred on September 13 (Table 3.1.3-3). It was collected at water temperature 4.3 to 28.0 C and salinity of 0.0 to 11.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from June through October (Fig. 3.1.3-15). Mean density was greater near bottom than surface on all sampling dates (Table 3.1.3-9). Generally, E. triloba occurred in greater densities at southern stations than northern stations (Table 3.1.3-10).

Corophium spp, was the second most abundant amphipod and eighth most abundant macroinvertebrate collected. Annual mean density was $19 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected throughout the year, with highest densities occurring from July through November (Table 3.1.3-3, Fig. 3.l.3-10). Peak density ($59 / 100 \mathrm{~m}^{3}$) occurred on August 10 (Table 3.1.3-3). It was collected at water temperature of 4.3 to 28.0 C and salinity of 2.0 to 10.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from June through November (Fig. 3.1.3-16). Mean density was greater near bottom than near surface on all sampling dates (Table 3.1.3-9). Corophium spp. typically occurred in greater densities at northern stations than southern stations (Table 3.1.3-10).

Brachyura ranked ninth among maçroinvertebrates collected. Annual mean density was $16 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected from July through August (Fig. 3.1.3-9). Peak density ($114 / 100 \mathrm{~m}^{3}$) occurred on August 10 (Table 3.1.3-3). It was collected at water temperature of 22.0 to 28.0 C and salinity of 2.0 to 10.0 ppt.

Crangon septemspinosa, the sand shrimp, ranked tenth among macroinyertebrates collected. Annual mean density was $14 / 100 \mathrm{~m}^{3}$ (Table 3.1.3-8). It was collected on all sampling dates. Greatest densities occurred from June throu̧gh September (Fig. 3.1.3-13). Peak density ($127 / 100 \mathrm{~m}^{3}$) occurred on June 15 (Table 3.1.3-3). It was collected at water temperature of 4.0 to 28.0 C and salinity of 0.0 to 10.0 ppt. The seasonality of juveniles indicated that most reproduction occurred from May through September (Fig. 3.1.3-17).

Mean density was greater near bottom than surface on all sampling dates (Table 3.l.3-10).

TABLE 3.2.3-1
MICROZOOPLANKTON SAMPLING STATIONS - 1978

Station

2P01

$2 P 03$

2P04
2P05
$2 P 06$

ZP07

ZP08
ZFIO
ZP1.1
$2 P 12$
2P21

ZP22

Description
Between the mouth of the Chesapeake and Delaware Canal and bell buoy "RB"
(ca. 0.2 km east of the mouth of the Chesapeake and Delaware Canal.

Approximately 15 m west of buoy N"A" (ca. 1 km west of Artificial Island). Between buoy C"lR" and Reedy Island Dike.

Approximately 15 m west of Salem and the mouth of Sunken Ship Cove.

Between buoys $R: 2 B^{\prime \prime}$ and $R^{\prime \prime} 4 B^{\prime \prime}$ (ca. 1.2 km west of Artificial Island).

Between Appoquinimink Light and buoy "IB" (ca. 0.4 km off Delaware shore).

15 m west of Hope Creek Jetty.
1 km NE of Liston Point
Approximately 1.2 km west of New Jersey shore from a point just north of the mouth of Mad Horse Creek.

Approximately 1.6 km NE of Delaware Point.
In Hope Creek, approximately 3.2 km from its mouth.

In Hope Creek, approximately 1.4 km from its mouth.

TABLE 3.1.3-2
MICROZOOPLANKION MEAN DENSITY PER SAMPLING PERIOD

	date	03/22178	03129178	04/20/78	04/25/78	05/17/78	05/25/78	06/15/78	06/28/78	07/12/78
	day or night	12 HOUR	DAY	12 hour	oay	12 Hour	DAY	12 Hour	DAY	DAY
	PEAIOIMIUA			214	29					
	N. Scimilllans								17	
	ROIIFER SPP.	209.545	15.200	360	506	8.727	29.094	2.004	230	205
	RUIIFERA A							449	510	56
	notholca	158	467	556	2.673	44.867	13.657	4.657	16	6
	keratella		2	9	14	422	1.321	74		
	k. quadrata	10	19		63	17.014	9.029	36		
	B. calrciflorus	4	38	214	509	1.995	4.644	1.365	48	
	B. Angularis	9	5	39	58	6.968	6.326	2.878	627	1,071
	日. Variadilis						- 122	20		
	B. cauvatus						26	2.410	185	39
	B. URTEJLARIS		1			18	44	60		
	B. Olvensicarnis							45		
	3. PLICAIILIS			-						6
	6. guadildentatus			\cdots		27	66	68	7	2
	K. bustoniensis		*	3		372	654	74		
ω	x. Longispina						34			
\cdots	P. patulus		\star			6				
1	polvaitara		16			45	151	55		
∞	PLuEsoma						7	56		
N	ASPLAT,CHA				7	424	2.192	57	47	
	F. Loingiseta				29	1,195	1.491	281		
	hematooa	488	143	53	132	159	355	228	171	3
	polichata	1,832	16	27	22			109	312	551
	oligochaeta		5			9	29	18		
	GAStagrod		5					119	2.790	4.114
	PELEGYPODA			4						
	BoSHIM.A		20°	2	9	231	5.864	553	7	25
	osphiola					3	36	84	14	
	moina							58	166	
	ceriouarhnia							9		
	chrookus		2				44			
	alula					9				
	LEYOIGIA SP.									
	COPEPOU MAUPLII	6.954	12,442	94.264	64.511	39,753	25.580	20.459	66.658	17,971
	E. affiols	889	3,301	12.662	24.723	9.548	6.351	19.454	3.524	4.484
	diapluidjs	15	31	4		18	36	${ }^{4}$		
	P. Corovatus			3				683	3.415	1.672
	A. iolisa				7		14	7.014	12,333	20.425
	HARFAGIICOIDA	99	67	33	103	273	394	86	86	1
	scottulana		11			54	129	385	510	180
	ECtinusova	640	237	346	2.418	$3,002$	2.339	1.852	4.619	1.337
	E. CURTICORNE					18				
	0. colcarva	15		18						
	H. FOSTERI		26	9		9	44	67	260	286
	CYCLOPS	83	156	399	448	1.118	3.041	434	22	35

ω	
\vdots	
\vdots	
∞	
ω	
ω	

date	03/22178	$03 / 29178$	04/20/78	04/25/78	05/17/78	05/25/78	06/15/78	06/28/78	07/12/78
day or night	12 hour	day	12 hour	day	12 hour	DAY	12 hour		day
c. VERNALIS	12	7	57	25	80	767	12 143	101	DAY
c. aicuspidatus	20	110	97	149	154	325	9	22	1
E. GGilis							4		
t. prasinus			4						
Efigasilus							2		
cryptoniscus larvae					551	1.118	304	4.889	1,318
tardigrada				7	58			14	
total	220,783	32.368	109,387	96.513	137.171	115,342	66,708	101.677	53,799
No. SAMPLES	39	24	39	24	39	24	39	24	24

date	03/22178	$03 / 29178$	04/20/78	04/25/78	05/17/78	05/25/78	06/15/78	06/28/78	07/12/78
day or night	12 hour	day	12 hour	day	12 hour	DAY	12 hour		day
c. VERNALIS	12	7	57	25	80	767	12 143	101	DAY
c. aicuspidatus	20	110	97	149	154	325	9	22	1
E. GGilis							4		
t. prasinus			4						
Efigasilus							2		
cryptoniscus larvae					551	1.118	304	4.889	1,318
tardigrada				7	58			14	
total	220,783	32.368	109,387	96.513	137.171	115,342	66,708	101.677	53,799
No. SAMPLES	39	24	39	24	39	24	39	24	24

CONTINUED

					BLE 3.1.3-2 Cunirinued					
	date	07/27/78	08/10/78	08/31/78	09/13/78	09/27/78	10/18/78	10126/78	11/15/78	11/21/78
	day or might	12 hour	12 hous	oar ${ }^{\text {a }}$	12 hour	day	12 hour	Day	oay	12 hour
	invert. egg		${ }^{*}$	26	9	4	5			
	turbellaria		7	33	6	7		5		
	ROTIFER SPF.	64	13	23		5	19	4	70	190
	rotifera a	9	,	44	4	13		18	1	
	botlloigea			41	6			1	5	
	notholca	8	*			2				
	keratella	11								
	b. calyciflorus		2		175			128		*
	B. angularis	80	549	92	175	7				
	8. caudatus	1	5	*						
	B. diversicoris				*					
	b. havanaensis		5							
	B. Plicailis	1	1							
	b. quadridentatus					1		4	12	
	lecane						2			
	asplanchna	10	3	1						
	nematoda	19	5	4	18	11	12	8	27	6
ω	polychatia	1.233	555	138	53	95	5.895	40.381	14.448	3.726
$\stackrel{-}{\square}$	oligochaeta		*	2	1	4	1		10	
1	gastrupoda	12.254	4.549	2.496	1.596	668	41	4	7	
∞	pelecrpoda	16	1	5			4	2,476	57	51
$\stackrel{1}{\infty}$	acarima					5				
	crustacea			17						
	bosmina		*					1		
	moina		13	2	10					
	OStracoia				6.966	15 7.717	6.279	3.572		5.503
	COPEPOD NAUPLİ P. CRASSIROSTRIS	10,34,9	11.642	5.066		70717 32	60279	3.572	13.371	5.503
	p. parvus					1				
	E. Asfivis	13	197	$?$	6	2	2	18		80
	P. corovatus	+ 520	-351	291 5.632	247 7.040	626 8.253	103 3.760	261 3.290	264 3.229	665 2.529
	a. romsa	10.342 33	9.037 31	50632 44	7.040 52.	8. 48	63	60	59	${ }_{8}$
	scotiolama	121	162	62	27,	12	68	20	39	
	ectinosoua	8.607	4.990	327	2,028	783	1,857	769	5.750	1.539
	E. curticorne	16	13	84	$2{ }^{1}$	381	4	13		
	h. fosteri	5	116	52	7		*			1
	crelops	6	4	32	2		1	3	5	*
	c. vernalis	3	3							
	c. bicusploatus			4		${ }_{11}^{1}$				
	ergasilus argulus spp.	32	2	91	7	11		5		
.	cirripedia	1,060	632	955	511	406	267	190	170	50
	cryptoniscus larvae	1	27	13	13	24	5	20		
	total	44.826	32:936	15,598	18,826	19.148	18,350	51.282	37.543	14,356
	ho. samples	39	48	24	48	24	55	24	24	57

TABLE 3.1.3-2
CONTINUED

OATE	12106/78	12/13/78
OAY OR NIGHy	day	12 HOUR
TJSBELLARIA	24	
ROTIFER SPP.	284	2.941
NOTHOLCA		117
k. qladirata		2
B. CALYCIflorus	*	1
B. Varlabilis	*	
B. caudatus	1	
B. Havanamensis	,	2
K. BoStoniensis		20
SYNCHAEIA	*	2
NEIMAIODA	68	25
polychatia	10.854	608
GASTEUPJDA	*	1
PELECYPODA	41	13
HOINA		2
coperoda		3
COPEPUD NAUPLII	116.909	4.318
E. AFFINIS	488	1.217
diapionus		*
p. coronatus	212	89
A. yonsa	340	362
harpacticoida	40	25
SCutiolana	*	
ecilnosoma	1.197	978
O. colcarva	,	1
H. fosieri	3	11
cyclars	*	2
C. VERNALIS		3
C. BICUSPIDATUS		1
E. AGILIS	1	
ClRripedia	62	20
total	130.457	10,778
NO. SAMPLES	23	39

1A. SALEM 2P 1978

TABLE 3.1.3-3
machoinvertebrates mean density per sampling period DTE

DAY OR NIGHT
M. PROLIFE
HPDOZOA

HyOROZOA
HyOROZO (MEDUSAE)
HYOROZOA A1 (MEDUSAE)
golugalivillifa spp.

- GELIA Spp

PHILIUIUM SPP
日. virginica
m. Leioni
B. ovita
rurbellafia
polychagia
OLIGUChaETA
HIRUOIAEA
GASTRUPODA
MUO:GNavCHI
MACO:A SPP.
C. POLYPWEMUS
L. KIHDII
L. AESTIV

ERGASILIDAE
Rrgulus spp
IRRIPEOIA

- americaina
- apericabus
supuoa
CHIRIDOREA Spp.
C. ALDIYRA
E. Triloga
C. POLITA
C. Lunifrows
ayphipuca
L. PLunivlosus

COROPHIUM SPP.
GAHMAKUS SPP.
M. nitida
haustoriadae
MONOCULJDES SPP.
M. EOHAROSI

PARAPLEUSTES SPP
OKCRESTIA SPP.
P. PUGIJ
C. SEPTEMSFINOSA
(Numbers/100 cubic meters)

	TABLE 3.1.3-3 CONTINUED									
	date	03/22178	04/20/78	05/17178	06/15/78	06/28/78	07/12/78	07/27/78	08/10/78	08/31/78
	day or might	day	oay	day						
	grachyura					*	2	06	114	5
	c. sapidus									1
	b. haminsil	*		*	144	2.776	8.081	11.140	9.823	800
	u. minas				7	1.869	148	205	8	
	insecta				*	*				
	dipitaa		*							
	crisidam			*						
	ChIRONOMIDAE CHAETOGNATHA	*	*	*	*	*				
	total	298	856	649	41,862	32,510	15.242	16.431	15.983	0.802
i	no. samples	28	28	27	28	28	28	28	28	28
\cdots										
$\stackrel{1}{ }$										

			TABLE 3.1.3 CON'TINUED			
	date	09/13/78	10126178	10/27/78	11/21/78	11/22/78
	day or night	day	day	oar	oar	oar
	hrorozoa (medusae)	12	On		25	88
	hyorozua al medusae	2				
	bougainvillia spp.	2	- *			
	N. bachei	9	*		*	
	Phialidium spp.					
	ACIINIARIA		*			
	cienophora		*		3	7
	b. ovata		*			
	rhymchocoela		*			
	polychaeta	1	*		*	*
	Oligulamea		$*$		5	*
	nuditranchia	*	*			
	macoma spp.	*				
ω	L. aestiva	*			4	*
,	argulus spp.	1	5 ${ }^{*}$	5	5120	
	n. americana	12,765	5.314	2.705	5.120	89
1	L. americanus	18	5		? ${ }^{\text {c }}$	2
∞	c. almrra	1	1	$?$	1	
∞	E. triloza	96	13	4	1	3
	c. polita	*	*			
	c. Linifrons		*			
	A. MiEdIALIS COROPHIUM SPP.	13^{*}	15	8	51	6
	gammarus spp.	281	35	61	12	
	m. nitida	15	*		*	
	M. EDwardsi	15	*	4	- *	
	PARAPLEUSIES SPP.	2	*		*	
	P. Pugio Spr.	16	*		*	
	c. SEPTEMSPINOSA	8	6		4	
	c. sapidus	${ }^{1} 1$	*			
	R. Harrisit U. Minax	921	*	2	*	
	Toital	14,316	5.406	2.791	5.241	193
	no. samples	28	26	2	24	4

TABLE 3.1=3-4
MICROZOOPLANKTON SEASONAL MEAN DENSITY (NUMBERS/CUBIC METER) -1978.

TARLE 3.1.3-5
macroinvertegrate plankton seasonal mean oensity (nukbers/100 cubic meters) -1978

table 3.1.3-0́
invertegrates collected in association with ThE PLANKTON COMMUNITY-1978.

```
KEY: F = FRESHNATER: G = BRACKISH: M= MARINE:
    T = TERRESTRIAL
```

SCIENTIfic Name
ORIGIN
comb JeLLIES

ROTIFERS

CLADOCERAN
(WATERFLEAS)
HOLOPLANKTON ***
CTENOPHORA SPECIES B,M
GEROE OVATA BOM
MNEMIOPSIS LEIOYI B,M
ROTIFER SPECIES . F.B
BDELLOIDEA SPECIES F
ASPLANCHNA SPP. F
BRANCHIONUS ANGULARIS F.8
8. CALYCIFLORUS F:B
B. CAUDATUS F

日. DIVERSICORNTS F
B. HAVANAENSIS FeB
8. PLICATILIS B
B. QUADRIDENTATUS FEB
B. URCEOLARIS F
B. VARIABILIS F

FILINIA LONGISETA F
KELLICOTTIA BOSTONIENSIS F
K. LONGISPINA F

KERATELLA SPP. F
K. QUADRATA F

LECANE SP. F
NOTHOLCA SPP. F.B.
PLATYIAS PATULUS . F
PLOESOMA SPP. F
POLYARTHRA SPP. F
ROTIFER A F,B
SYNCHAETA SPP. F.B.M
ALONA SP. F
BRANCHIOPODA SPECIES F
BOSMINA SPP. F
CERIOOAPHNIA F
CHYDORUS SPP. F
DAPHNIA SPP. F
LEPTODORA KINDTII F,B
LEYDIGIA SP. F
MOINA SPP. F

	TYCHOPLANKTON ***	
SPONGE	MICROCIONA PROLIFERA	8, M
ANEMONE	ACTINIARIA SPECIES	B, M
FLATWORM	TURBELLARIA SPECIES	F, B, in
ROUNOWORM	NEMATODA SPECIES	F,B,M, T
SEGMENTED WORM	POLYChaEte Species OLIGUCHAETE SPECIES	$\begin{aligned} & \mathrm{F}, \mathrm{~B}, \mathrm{~m} \\ & \mathrm{~F}, \mathrm{~B} \end{aligned}$
LEECH	HIRUDIAEA SPECIES	B, M
	RHYNCOCOELA SPECIES	B, M
SNAIL	NUOIGRANCHIA	B,M
HORSESHOE GRAE	limulus polyphemus trilogite LARVAE	B, M
WATER MITE	ACARINA SPECIES	F
SEED SHRIMP	OSTRACODA SPECIES	$F \cdot B$
WATER BEAR	TARDIGRADA SPECIES	$8 \cdot T$
COPEPOD		
CYCLOPOID	EUCYCLOPS AGILIS	F
	ERGASILIDAE	F,B,M
	ERGASILUS SP.	F, B, M
HARPACTICOID	ECTINOSOMA SPP.	B, M
	ECTINOSOMA CURTICONE	B.M
	SCOTTOLANA SPP.	B
	LAOPHONTE SPP.	8
	HARPACTICOIDA SPECIES	B.M
FISH LOUSE	ARGULUS SPP.	F, 8, M
CUMACEAN	LEUCON AMERICANUS	8
TANAIO	LEPTOCHELIA SAVIGNYI	$B \cdot M$

TABLE 3.1.3-6 CONTINUED			
COMMON NAME		SCIENTIFIC NAME	ORIGIN
	***	$\text { TYCHOPLANKTON } \star \star *$ CONTINUED	
ISOPODA		ISOPODA CASSIDINIDEA LUNIFRONS CHIRIDOTEA SPP. CHIRIDOTEA ALMYRA CYATHURA POLITA EDOTEA TRILOBA MICRONISCUS LARVAE CRYPTONISCUS LARVAE BOPYRIDAE	$\begin{aligned} & F, B, M \\ & B \\ & B \\ & B \\ & F, B \\ & B, M \\ & B, M \\ & B, M \\ & B, M \end{aligned}$
AMPHIPODA		COROPHIUM SPP. GAMMARUS SPP. LEPTOCHEIRUS PLUMULOSUS MONOCULODES SPP. MONOCULODES EDWAROSI melita Nitida ORCHESTIA SPP. HAUSTORIDAE SPECIES parapleustes spp. PARAMETABELLA. CYPRIS	$\begin{aligned} & F, B \\ & F, B \\ & B, M \end{aligned}$
MYSID SHRIMP OPOSSUM SHRIMP		NEOMYSIS AMERICANA	B, M
GRASS SHRIMP		PALAEMONETES PUGIO	B
SAND SHRIMP		CRANGON SEPTEMSPINOSA	B
blue crab		CALLINECTES SAPIDUS POST MEGALOPS	B.M
MUD CRAB		RHITHROPANOPEUS HARRISII POST MEGALOPS	B
INSECT		INSECTA DIPTERA LARVAE CULICIDRE LARVAE CHIPOMOMIDAE LARVAE	$\begin{aligned} & F, B, T \\ & F, B, T \\ & F, B, T \\ & F . \end{aligned}$
ARROW WORM		CHAETOGNATHA SPP.	B.N

TABLE 3.1.3-7
MEAN DENSITY (numbers/cubic meter), TOTAL DENSITY, AND CUMULATIVE PERCENT OF 10 PREDOMINANT MICROZOOPLANKTERS - 1978

	Rank	Taxon	Major Taxonomic Group	Annual Mean Density	Total Annual Density	8 of Total	Cumulative g of Total
	1	Copepod nauplii	Copepoda	27,014	540,290	40.7	40.7
ω	2	Rotifer spp.	Rotifera	13,477	269,548	20.3	61.0
1	3	Acartia tonsa	Copepoda	4,680	93;602	7.0	68.0
u	4	Eurytemora affinis	Copepoda	4,349	86,977	6.6	74.6
	5	Polychaeta eggs and larvae	Annelida	4,043	80,856	6.1	80.7
	6	Notholca spp.	Rotifera	3,360	67,192	5.0	85.7
	7	Ectinosoma spp.	Copepoda	2,278	45,557	3.5	89.2
	8	Gastropoda veliger larvae	Gastropoda	1,432	28,645	2.1	91.3
	9	Keratella quadrata	Rotifera	1,309	26,176	2.0	93.3
	10	Branchionus anqularis	Rotifera	945	18,899	1.4	94.7

TABLE 3.1.3-8
MEAN DENSITY (numbers/100 cubic meters) AND CUMULATIVE PERCENT OF 10 PREDOMINANT MACROINVERTEBRATE PLANKTERS-1978

	Rank	Taxon	Major Taxonomic Group	Annual Mean Density	8 of Total	Cumulative \% of Total
	1	Neomysis americana	Mysidacea	7,520	74.98	74.98
	2	Rhithropanopeus harrisii	Decapoda	1,926	19.20	94.18
	3	Gammarus spp.	Amphipoda	215	2.14	96.32
ω	4	Uca minax	Decapoda	124	1.24	97.56
$\begin{aligned} & 1 \\ & 6 \\ & 6 \end{aligned}$	5	Blackfordia virginica	Hydrozoa	92	0.92	98.48
	6	Palaemonetes pugio	Decapoda	26	0.26	98.74
	7	Edotea trilaba	Isopoda	22	0.22	98.96
	8	Corophium spp.	Amphipoda	19	0.19	99.15
	9	Brachyura	Decapoda	16	0.16	99.31
	10	Crangon septemspinosa	Decapoda	14	0.14	99.45

IA SALEM ZP 1978

TABLE 3.1.3-9
MEAN SAMPLING DENSITTES (numbers/ 100 cubic meterl BY DATE AND DEPTH OF THE 10 PREDOMINANT MACROINVERTEBRATES IN 1978

		3/22	4/20	5/17	6/15	6/28	7/12	7/27	8/10	8/31	9/13	10/25-27	11/21-22
N. americana	S	27		69	1,085	6,396	2,073	67		127	163		318
	B	430	1,421	591	66,999	46,499	9,376	8,925	8,514	8,287	25,118	6,749	6,917
R. harrisii	S	0	0	*	28	3,096	8,577	6,580	6,750	853	1,153	*	1
	B	*	0	*	169	2,427	7.276	15,522	13,935	909	512	1	*
Gammarus spp.	S	21	1	40	15	79	84	31	71	86	9	13	2
	B	66	19	250	766	954	117	534	1,418	1,200	612	65	18
U. minax	S	0	0	0	8	2,183	204	166	11	0	1	0	0
	B	0	0	0	4	1,961	72	291	4	0	*	0	0
B. virginica	S	0	0	0	0	0	0	94	142	630	33	0	0
	B	0	0	0	0	0	*	220	201	1,237	256	0	0
P. pugio	S	0	*	0	24	71	41	76	47	49	19	*	*
	B	0	0	0	8	47	80	272	107	60	11	0	*
E. triloba	S	*	0	*	*	2	4	5	2	3	19	5	1
	B	0	*	1	3	47	44	161	17	60	144	22	4
Corophium spp.	5	1	1	3	3	4	34	21	17	1	2	14	11
	B	4	2	4	6	7	45	60	77	8	24	20	77
Brachyura	S	0	0	0	0	*	1	25	13	2	\dagger	\dagger	+
	B	0	0	0	0	*	4	95	157	10	\dagger	\dagger	\dagger
C. septemspinosa	S	0	0	1	0	1	*	*	*	0	0	0	0
	B	5	4	15	212	72	15	24	9	*	18	9	5

$t=$ All Brachyura identified to species after $8 / 31 / 78$ * $=$ Less than 1
$s=$ surface, $\mathrm{B}=$ bottom

TABLE 3.1.3-10
MEAN SAMPLING DENSITIES (numbers/100 cubic meters) BY Station and derth of the lo predominant macroinvertebrates, 1978

		1P01	IP02	IP03	IP04	$\underline{\text { IP05 }}$	$\underline{\text { 1P06 }}$	$\underline{\text { IP07 }}$	IP08	IP09	IP10	IP11
N. amerícana	S	$\begin{array}{r} 890 \\ 8,963 \end{array}$	$\begin{array}{r} 109 \\ 8,889 \end{array}$	$\begin{array}{r} 232 \\ 22,433 \end{array}$	$\begin{array}{r} 4,369 \\ 13,614 \end{array}$	$\begin{array}{r} 3,308 \\ 20,088 \end{array}$	$\begin{array}{r} 236 \\ 39,202 \end{array}$	$\begin{array}{r} 654 \\ 11,414 \end{array}$	$\begin{array}{r} 105 \\ 27,574 \end{array}$	$\begin{array}{r} 2 \\ 13,325 \end{array}$	$\begin{array}{r} 48 \\ 6,874 \end{array}$	2,711 ${ }^{4}$
R. harrisii	S	$\begin{array}{r} 2,356 \\ 2,923 \end{array}$	$\begin{aligned} & 2,708 \\ & 3,393 \end{aligned}$	$\begin{aligned} & 3,168 \\ & 6,876 \end{aligned}$	$\begin{aligned} & 1,724 \\ & 3,052 \end{aligned}$	$\begin{aligned} & 3,750 \\ & 1,848 \end{aligned}$	$\begin{aligned} & 3,048 \\ & 3,026 \end{aligned}$	$\begin{aligned} & 1,776 \\ & 3,152 \end{aligned}$	$\begin{aligned} & 2,428 \\ & 6,803 \end{aligned}$	$\begin{aligned} & 1,122 \\ & 2,984 \end{aligned}$	$\begin{aligned} & 1,415 \\ & 1,737 \end{aligned}$	1,348 2,323
Gammarus spp.	S	$\begin{array}{r} 186 \\ 1,921 \end{array}$	$\begin{array}{r} 20 \\ 524 \end{array}$	$\begin{array}{r} 30 \\ 456 \end{array}$	$\begin{array}{r} 62 \\ 755 \end{array}$	$\begin{array}{r} 98 \\ \hline 817 \end{array}$	993	342^{6}	4 65	$2{ }^{*}$	5 76	2 15
U. minax	S	$\begin{array}{r} 16 \\ 4 \end{array}$	$\begin{array}{r} 142 \\ 60 \end{array}$	$\begin{aligned} & 145 \\ & 115 \end{aligned}$	0 16	$\begin{gathered} 468 \\ 73 \end{gathered}$	1 30	111 49	1,098 1,564	42 9	324 12	12 206
B. virginica	S	*	$\begin{array}{r} 3 \\ 11 \end{array}$	7 9	4 13	$\begin{aligned} & 97 \\ & 79 \end{aligned}$	$\begin{aligned} & 36 \\ & 29 \end{aligned}$	704	$\begin{array}{r} 91 \\ 190 \end{array}$	$\begin{array}{r} 16 \\ 207 \end{array}$	$\begin{aligned} & 17 \\ & 64 \end{aligned}$	542 313
P. pugio	S	$\begin{aligned} & 24 \\ & 36 \end{aligned}$	$\begin{aligned} & 21 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 68 \end{aligned}$	${ }_{2}{ }^{9}$	$\begin{aligned} & 51 \\ & 36 \end{aligned}$	27 22	$\begin{aligned} & 33 \\ & 57 \end{aligned}$	$\begin{aligned} & 34 \\ & 67 \end{aligned}$	10 87	25 43	35 66
E. triloba	S	$\frac{1}{2}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	5 24	19	$\begin{aligned} & 18 \\ & 77 \end{aligned}$	57	${ }_{20}^{1}$	88	74	$5{ }^{1}$	2 50
Corophium spp.	S	$\begin{array}{r} 9 \\ 26 \end{array}$	$\begin{aligned} & 16 \\ & 75 \end{aligned}$	$\begin{array}{r} 5 \\ 35 \end{array}$	3 3 3	$\begin{array}{r} 71 \\ 106 \end{array}$	$13 *$	${ }_{6}^{*}$	${ }_{3}^{*}$	0 3	*	${ }_{4}^{*}$
Brachyura	B	5 26	${ }_{24}^{1}$	${ }_{48}^{\frac{1}{8}}$	0 5	$\begin{aligned} & 39 \\ & 98 \end{aligned}$	73	1 5	35	4	3	$\frac{1}{5}$
c. septemspinosa	s	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	22	68	*	$5{ }^{*}$	69	30^{*}	50	$3{ }_{1}^{0}$	17	0 1

* $=$ Less than 1
$S=$ surface, $B=$ bottom

punlic service llectric and gas company	
Salem nuclear generating simion	Zooplankton sampling stations-19.78

public service bilectric and gas combany salem nuclear ceinerating siation	Temporal abundance of Polychaeta and Gastropoda-1978
	Figure 3.1.3~5

3.1-104

public service bicctric and gas company salem nuclear generating station	Temporal abundance of N . americana B. virginica, and E. triloba-1978
	Fiqure 3.1.3-7

PUBLIC SERVICE: LUECTRIC AND GAS COMEANY SALEM NUCLL:AR GENERATINC STATION

Temporal abundance of R . harrisii, U. minax, and Brachyurā-1978

pumbic sebrice licctric and gas company SALEA NuCllan generathe smtion	Temporal abundance of Gammarus spp. and Corophium spp. - 1978
	Figure 3.1.3-10

PUULIC SERVICE ELECTRIC AND GAS COMPANY
Length frequency distributions for Gammarus spp. - 1978

Figure 3.1.3-11

public service ehectric and gas company salem nucle:ar generating station	Length frequency distributions for B. virginica - 1978
	Figure 3.1.3-12

 C. septemspinosa - 1978 Salem nuclear generating stiliton

public semvice mecticic and gas company	
salem nuclar generning sintion	Length frequency distributions for p. pugio - 1978

pUMLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STMTION	Length frequency distributions for Corophium spp. - 1978
	Figure 3.1.3-16

public service biectric and gas company SALEM NuCLEAR GENERATING STATION

Length frequency distributions for C. Septemspinosa - 1978

Figure 3.1.3-17

```
3.1.4 Benthos (ETS Section 3.1.2.1.1e)
```

Benthos of the Delaware Estuary has been studied since 1971. Objectives are to estimate and monitor changes in species diversity, distribution, density, and biomass.

3.1.4.1 Summary

The same eight taxa were taken at all stations in 1977 and 1978. Balanus improvisus, Scolecolepides viridis, and Cyathura polita ranked within the top six in both density and biomass in 1975-1978. Simple diversity (number of species) and the index of diversity were higher at the southern stations in 1978. Both measures of diversity were higher during the high salinity summer and fall months. The annual mean diversity index was highest at Station T5Sl, 7.6 km southeast of Salem. Station $T 4 \mathrm{~S} 2$, just south of Salem, had the highest annual mean simple diversity and the highest annual mean density and biomass of all stations in 1977 and 1978. Seasonally, mean density was greatest during July and August and mean biomass was greatest during March through June in 1978.

The benthos community has not changed in the two operational years (1977 and 1978) from the pre-operational years (19711976). Review of the data on species composition and distribution, diversity, density, and biomass indicate no discernible impact on the benthos by Salem 1 .

3.1.4.2 Materials and Methods

FIELD AND LABORATORY

The requirements of the Benthos ETS were satisfied. Triplicate samples were taken at 14 stations on six transects (Table 3.1.4-1, Fig. 3.1.4-l) monthly during March through November. Water depth and substrate description, based on visual inspection, at each station is reported in Table 3.1.4-2. All samples were taken during daylight with a Ponar grab sampler which samples an area $0.05 \mathrm{~m}^{2}$ to a depth of approximately 15 cm . In 1978 , l26 collections (378 individual grabs) were taken and analyzed. For a more detailed description of sampling gear, gear deployment,
collection of physicochemical data and laboratory procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

TAXONOMIC CONSIDERATIONS

In 1978 a continuing effort was made to identify all benthic invertebrates to the lowest taxonomic level. Wherever taxonomic changes relative to previous IA reports are made, the previously cited name is referenced. An organism referred to as Annelida in 1975-77 was re-identified to the class Turbellaria in 1978.

3.1.4.3 Results and Discussion

GENERAL SAMPLE COMPOSITION

A total of 79 taxa has been collected since 1971 (Table 3.1.4-3). In 1978, 60 taxa were collected. Organisms collected in 1978 but not in 1971-1977 include a flatworm, Turbellaria \#l; the snail Hydrobia sp.; and an insect larvae in the family Ceratopogonidae.

Twenty-three taxa were taken at from one to three stations (Table 3.1.4-4). Euplana gracilis, Eteone heteropoda, Diptera, Ceratopogonidae, Culicoides sp., and Bowerbankia gracilis were each represented by single specimens. Stylochus ellipticus, Doridella obscura, and Modiolus demissus were taken only at T4S2 (gravel-shell substrate) in 22, ll, and 33 percent, respectively, of the total grabs taken (Table 3.l.4-4). Parahaustorius sp. was collected at T3Sl (30 percent of total grabs), T3S2 (33 percent), and T7Sl (l5 percent), (all with sand substrate). The remaining 13 taxa were taken infrequently. Many of these are at the northern limits of their range in the estuary.

Organisms taken at all stations in the Salem study area in 1978 were Garveia franciscana, Sertularia argentea, Rhynchocoela, Scolecolepides viridis, Paranais litoralis, Neomysis americana, Chiridotea almyra, Cyathura polita, Corophium lacustre, and Crangon septemspinosa. These, except for C. almyra and C. septemspinosa, had been taken at all stations also in 1977. S. viridis, a polychaete, and C. polita, an isopod, had a high percent occurrence at almost every station, indicating their importance in the study
area. G. franciscana, a hydroid, had its highest percent occurrence at 22S2 (100 percent), T4S2 (100 percent), 22Sl (96 percent), T4Sl (96 percent), and $\operatorname{T8S} 2$ (96 percent). S. argentea, a hydroid, had its highest percent occurrence at T4S3 (96 percent) and T4S2 (93 percent). Rhynchocoela, a nemertean worm, had its highest percent occurrence at T4S2 (93 percent) and T5S2 (85 percent). P. litoralis, an oligochaete, had its highest percent occurrence (100 percent) at T2Sl, T4SI, T4S2, and T8S2. It had a very low percent occurrence (4-41 percent) at T3S1, T3S2, T7SI (sand substrate), and T7S2 (hard clay substrate). C. almyra, an isopod, had its highest percent occurrence at three sand stations, T3S2 (81 percent), T3S1 (74 percent), and T7S1 (67 percent), thus demonstrating a sand substrate preference. N. americana and C. septemspinosa had a low percent occurrence at almost every station.

Edotea triloba, Gammarus spp., and Monoculodes edwardsi were taken at 13 of 14 stations in 1978 with a low percent occurrence at all stations. Other taxa widely distributed in the study area were Hartlaubella gelatinosa, Turbellaria, Tricladida, Nereis succinea, Polydora sp., Oligochaeta \#1, Macoma balthica, and Leucon americanus.

SPECIES DISCUSSION

Balanus improvisus, Scolecolepides viridis, and Cyathura polita ranked within the top six species in both density and biomass in 1975-78. Paranais litoralis and Polydora sp. also ranked within the top six species in density for all four years and Turbellaria ranked in the top six in density in 1977 and 1978. The high ranking of these organisms in density and biomass indicates their importance in the community structure. These six species, which comprised 76.3 percent and 53.9 percent, respectively, of the annual mean density and biomass, are discussed below.
P. litoralis, an oligochaete, ranked first in density and I7th in biomass (Table 3.1.4-5). Annual mean density of this species was greatest at T4Sl. It occurred at every station during the year with a percent occurrence ≥ 89 percent at 9 of the 14 stations (Table 3.1.4-4). It had a lower percent occurrence at stations with predominantly sand substrates (T3SI, T3S2, T7Sl) and clay substrates (T3S3, T7S2). P. litoralis occurred in 266 grabs or 70.4 percent of the annual sample (Table 3.1.4-5).
B. improvisus, a barnacle, ranked second in density and first in biomass (Table 3.1.4-5). Annual mean density and
biomass at Station T4S2 were higher than all other stations. The occurrence and abundance of this species is directly related to availability of substrate, e.g., gravel and shell, which is suitable for setting of larvae. It occurred at 10 of the 14 stations sampled during 1978 but its percent occurrence was high at only T4S2 (93 percent) (Table 3.1.44). The amount of suitable substrate in the study area is reflected in the occurrence of B. improvisus in only 17.2 percent (65 grabs) of the total grabs (Table 3.1.4-5). Despite the apparent lack of suitable substrate, this species ranks high in the annual sample due to its extremely high density and biomass at T4S2.
S. viridis, a polychaete, ranked third in density and second in biomass (1976-78) (Table 3.1.4-5). Annual mean density and biomass of this species were highest at T2S2 and also were high at most other stations except T7S2. $\underline{S}_{\text {. }}$ viridis had the highest number of occurrences (319) of any taxa and was found at every station (Tables 3.l.4-5, 3.1.4-4). The only relatively low percent occurrence (30 percent) of this polychaete was at T7S2 which is dominated by another spionid polychaete, polydora sp. The high ranking of $\underline{\text { S }}$. viridis in density and biomass and i.ts high percent occurrence at every station indicates the importance of this resident species.

Turbellaria, a flatworm, ranked fourth in density and 2 2nd in bionass (Table 3.l.4-5). Annual mean density and biomass of this species was highest at T3S2 (sand substrate) and high only at T2S2, T3SI, and T7Sl (all with sand substrate). It occurred at 11 of the 14 stations sampled during 1978 but its percent occurrence was relatively high at only T2S2 (67 percent), T3S2 (63 percent), T3Sl (44 percent), and T7Sl (37 percent) (Table 3.l.4-4). Turbellaria occurred in 18.8 percent (7l grabs) of the total grabs (Table 3.1.4-5).

Polydora sp., a polychaete, ranked fifth in density and 18 th in biomass (Table 3.l.4-5). Annual mean density and biomass of this species were highest at T7S2. This species occurred at 11 stations but had a relatively high percent occurrence at only T7S2 (96 percent), T3S3 (52 percent), and T5Sl (52 percent) (Table 3.1.4-4). This polychaete occurred in 25.4 percent (96 grabs) of the total grabs (Table 3.l.4-5).
C. polita, an isopod, ranked sixth in density and biomass and was taken at all stations (Tables 3.1.4-5; 3.1.4-4). Annual mean density of this species was highest at T5SI. C. polita had the second highest number of occurrences (303) and was taken in 80.2 percent of the total annual grabs (Table 3.l.4-5). This isopod had its lowest percent occurrence (30 percent) at T3S2, a station with a sand substrate (Table 3.1.4-4). It had a relatively high percent
occurrence (≥ 46 percent) at all other stations. Its high ranking for density and biomass and its high number of occurrences throughout the study area indicates the importance of this species.

SMATION DISCUSSION
Station T2SI

This inshore station with a substrate of fine sand, clay, and some detritus (Table 3.1.4-2) is on the northernmost transect (fig. 3.1.4-1). It ranked eighth in density $\left(2,460.0 / \mathrm{m}^{2}\right)$ and 13 th in biomass ($613.6 \mathrm{mg} / \mathrm{m}^{2}$) in 1978 (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and C. polita, comprised 84.3 and 77.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T2S2

This station has a substrate of sand interspersed with clay and detritys (Table 3.1.4-2). It ranked sixth in density $\left(2,815.6 / \mathrm{m}^{2}\right)$ and fifth in biomass ($1,594.9 \mathrm{mg} / \mathrm{m}^{2}$) (Table 3.1.4-6). The top three ranking taxa, Turbellaria, \mathbb{C}. lacustre, and S. viridis, comprised 88.5 and 75.5 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T3SI

This station had a substrate of fine sand with small amounts of mud and detritus (Table 3.1.4-2). It ranked 12 th in n_{2} density $\left(1,511.1 / \mathrm{m}^{2}\right)$ and third in biomass ($3,025.4 \mathrm{mg} / \mathrm{m}^{2}$) (Table 3.l.4-6). The high ranking in biomass is due mainly to the very high occurrence of Gammarus spp. in May. The top three ranking taxa, Gammarus spp., S. viridis, and Turbellaria, comprised $7 \overline{7.0}$ and 73.8 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

The substrate at this station consists of black sand with very little mud and detritus (Table 3.l.4-2). It ranked third in density ($3,157.0 / \mathrm{m}^{2}$) and 11 th in biomass (752.6 $\mathrm{mg} / \mathrm{m}^{2}$) (Table 3.1.4-6). The top three ranking taxa, Turbellaria, C. almyra, and S. viridis, comprised 92.6 and 70.4 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5). Turbellaria accounted for 80.1 percent of the annual mean density but only 2.5 percent of the biomass.

Station T3S3

The substrate at this station consists of clay and organic mud, some sand, and detritys (Table 3.1.4-2). It ranked llth in density ($1,795.6 / \mathrm{m}^{2}$) and 12 th in biomass (674.4 $\mathrm{mg} / \mathrm{m}^{2}$) (Table 3.1.4-6). The top three ranking taxa, Polydora sp., S. viridis, and P. litoralis, comprised 69.1 and 25.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T4SI

The substrate at this station consists of organic mud, clay, and detritus (Table 3.1.4-2). This station ranked secong in density $\left(3,169.6 / \mathrm{m}^{2}\right)$ and fourth in biomass ($1,727.5 \mathrm{mg} / \mathrm{m}^{2}$) (Table 3.l.4-6). The top three ranking taxa, \mathcal{P}. litoralis, S. Viridis, and E. triloba, comprised 85.6 and 38.0 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5). P. litoralis accounted for 73.3 percent of the annual mean density but only 2.0 percent of the biomass.

Station T4S2

The substrate at this station consists of sand, gravel, shell, mud, and detritus (Table 3.1.4-2). This station ranked first in density ($7,831.1 / \mathrm{m}^{2}$) and biomass (12,315.9 $\mathrm{mg} / \mathrm{m}^{2}$) (Table 3.l.4-6). The top three ranking taxa, B.
improvisus, p. litoralis, and N - Succinea, comprised 79.7 and 72.7 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T4S3

The substrate at this station consists of clay and detritus (Table 3.1.4-2). It ranked last of 14 statigns in density $\left(667.4 / \mathrm{m}^{2}\right)$ and 10 th in biomass ($1,096.3 \mathrm{mg} / \mathrm{m}^{2}$) (Table $3.1 .4-$ 6). The top three ranking taxa, P. litoralis, \underline{S}. viridis, and \mathbb{N}. americana, comprised 68.5 and 24.0 percent, respectively, of the annual mean density and biomass at this station (Table 3.l.4-5).

Station T5Sl

The substrate at this station consists of sandy clay and detritus (Table 3.l.4-2). It ranked fourth in density $\left(2,880.0 / \mathrm{m}^{2}\right)$ and seventh in biomass $\left(1,666.4 \mathrm{mg} / \mathrm{m}^{2}\right)$ (Table 3.1.4-6). The top three ranking taxa, P. litoralis, C. polita, and Polydora sp., comprised $46 . \bar{\sigma}$ and 14.4 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T5S2

The substrate at this station consists of sand, gravel, shell, organic mud, and some detritus (Table 3 3.1.4-2). This station ranked seventy in density $\left(2,506.7 / \mathrm{m}^{2}\right)$ and second in biomass ($3,095.9 \mathrm{mg} / \mathrm{m}^{2}$) (Table $3.1 .4-6$). The top three ranking taxa, P. litoralis, \underline{S}. viridis, and C. polita, comprised 73.5 and 20.6 percent, respectivel \bar{y}, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T7S1

The substrate at this station is composed mainly of fine black sand with some clay and detritus (Table 3.1.4-2). This station ranked 13 th in density ($1,093.3 / \mathrm{m}^{2}$) and eighth
in biomass ($1,313.6 \mathrm{mg} / \mathrm{m}^{2}$) (Table $3.1 .4-6$). The top three ranking taxa, S . viridis, Turbellaria, and Gammarus spp., comprised 73.7 and 58.6 percent, respectively, of the annual mean density and biomass at this station (Table 3.l.4-5).

Station T7S2

The substrate at this station is composed mainly of hard clay (Table 3.l.4-2). This station ranked 1Qth in density ($1,991.9 / \mathrm{m}^{2}$) and 14 th in biomass ($562.7 \mathrm{mg} / \mathrm{m}^{2}$) (Table $3.1 .4-$ 6). The top three ranking taxa, polydora sp., C. polita, and Gammarus spp., comprised 93.3 and 56.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.l.4-5). Polydora sp. accounted for 82.2 percent of the annual mean density and 14.0 percent of the biomass at this station.

Station T8S1

This station has a substrate of organic mud with detritus and sand (Table 3.l.4-2). It ranked fifth in density $\left(2,829.6 / \mathrm{m}^{2}\right)$ and ninth in biomass ($1,189.3 \mathrm{mg} / \mathrm{m}^{2}$) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, N. americana, and C. polita, comprised $54 . \bar{I}$ and 22.9 percent, respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

Station T8S2

The substrate at this station is composed of organic mud, sand, and some detritus (Table 3.1.4-2). It ranked ninth in density ($2,151.9 / \mathrm{m}^{2}$) and sixth in biomass ($1,671.2 \mathrm{mg} / \mathrm{m}^{2}$) (Table 3.1.4-6). The top three ranking taxa, P. litoralis, S. viridis, and $C_{\text {. polita, }}$ comprised 88.1 and 50.9 percent . respectively, of the annual mean density and biomass at this station (Table 3.1.4-5).

SPECIES DIVERSITY

Analysis of species diversity provides a neans of detecting changes in communty structure. Two components of species diversity are species richness (number of species) and the numbers of individuals in each species. The mean number of species at each station in 1978 ranged from 9 at T3S2 and T7S2 to 22 at T4S2 (Table 3.1.4-7). In 1977, the range was from 9 at T3S2 to 24 at T4S2.

Salinity and sediment type are two principle parameters controliing species composition and abundance. Mean simple diversity (number of species) per region was higher at the southern stations ($\bar{X}=17$) than at the northern stations (\bar{X} = 11). Mean simple diversity ranged from 9 to 13 in the northern transects $(2,3,7)$ and from 13 to 22 in the southern transects (4, 5, 8).

Maximum mean simple aiversity per month occurred in November ($\overline{\mathrm{X}}=16$) (Table 3.1.4-7). Other months with high diversities were August and October ($\overline{\mathrm{X}}=15$). This correlated with high salinity during August through November. The minimum mean simple diversity occurred in April and June ($\overline{\mathrm{X}}=12$).

The maximum monthly number of species per station was 28 at T4S2 in July and November (Table 3.1.4-7). The minimum number was five at T 7 S 2 in April and May. This low diversity is probably due to the hard clay substrate and the low salinity.

Maximum annual mean simple diversity per station occurred at station T4S2 ($\overline{\mathrm{X}}=22$) which has a gravel and shell type substrate (Table 3.l.4-7). Minimum simple diversity occurred at stations with sand or clay substrates. Annual mean simple diversity was lowest $(\bar{X}=9)$ at T3S2 (sand substrate) and T7S2 (clay substrate), ranking just behind T2S2 (sand substrate) and T3S3 (clay substrate) ($\bar{X}=10$).

Another measure of diversity is a diversity index. One common index which accounts for both components of species diversity is the Shannon-Weaver index (Shannon and Weaver, 1963). This function is recommended by that u.S. Environmental Protection Agency (Weber, 1973) for calculating mean diversity. The yearly mean diversity index per station ranged from 0.857 at T7S2 to 1.993 at T5Sl (Table 3.1.4-7). In 1977, the range was from l.028 at T3Sl to 1.974 at T5S1.

The mean diversity index per region was higher at the southern stations ($D=1.601$) than at the northern stations ($D=1.167$). It ranged from 0.857 to 1.337 in the northern transects $(2,3,7)$ and from 1.048 to 1.993 in the southern transects (4, 5, 8) (Table 3.1.4-7). This trend correlates with salinity.

The maximum mean diversity index per month occurred in October ($D=1.637$) and the minimum occurred in July ($D=$ l.138) (Table 3.l.4-7). The low diversity in July was due to the numerical dominance of Polydora sp., Paranais litoralis, and Balanus improvisus, which represented 71.7 percent of the monthly sample.

The maximum monthly diversity indices per station occurred at T5Sl ($D=2.395$) and T7Sl ($D=2.385$) in September as a result of the high salinities. The minimum indices occurred at T7S2 in August ($D=0.112$) and at T3S2 in May ($D=$ 0.289). These resulted from the numerical dominance of Polydora sp. at T7S2 and Turbellaria at T3S2.

The maximum annual mean diversity indices per station occurred at T5Sl ($D=1.993$) which has a sandy clay substrate, and at T8SI ($D=1.846$) which has an organic mud and detritus substrate. Station $T 4 S 2$, which has a gravel and shell substrate, and ranked first in simple diversity, - did not have a high index of diversity due to the numerical dominance of Balanus improvisus. The minimum mean diversity indices occurred at T7S2 ($D=0.857$) which has a hard clay substrate and, at T3S2 ($D=1.031$) which has a black sand substrate. Station T7S2 was dominated numerically by Polydora sp. and T3S2 was dominated by Turbellaria.

DENSITY

In 1978 the annual mean density per station ranged froy $667.4 / \mathrm{m}^{2}$ at T4S3, just southwest of Salem, to $7,831.1 / \mathrm{m}^{2}$, at T4S2, just south of Salem (Table 3.l.4-6). In 1977, it ranged from $944.7 / \mathrm{m}^{2}$ at T 3 Sl , just west of Salem, to $12,471.3 / \mathrm{m}^{2}$ at Tis 2 . Ealanus improvisus was the most abundant organism at T 452 in 1978 , comprising 60 percent of the annual total. Organisms at this station comprised 21.2 percent of the 1978 sample. Total density at Station T4S2 was higher than all other stations for 5 of the 9 months sampled. Total density was highest at mis2 in July due to the very high density of B. improvisus ($11,687 / \mathrm{m}^{2}$) which comprised 82.9 percent of the monthly total.

Paranais litoralis $\left(\bar{x}\right.$ density $\left.=674.2 / \mathrm{m}^{2}\right)$, Balanus improvisus $\left(370.8 / \mathrm{m}^{2}\right)$, and Scolecolepides viridis $\left(309.4 / \mathrm{m}^{2}\right)$ comprised $25.6,14.1$, and 11.7 percent, respectively, of the 1978 sample (Table 3.1.4-5). In 1977, P. litoralis $(\bar{X}=$ $728.4 / \mathrm{m}^{2}$), B. improvisus $\left(626.1 / \mathrm{m}^{2}\right)$, anç S . viridis (520.3/m) Comprised $26.2,22.5$, and 18.7 percent, respectively, of the annual mean density. Other numerically important organisns in 1978 were Turoellaria, polydora sp., Cyathura polita, and Corophium lacustre. These seven taxa comprised 80.7 percent of the annual mean density.
P. litoralis was the numerically dominant taxon in March, May, September, and October (Eig.3.l.4-2). Other taxa which ranked first were Polydora sp. in July and August, B. improvisus in June, C. lacustre in November, and Turbellaria in April (Figs. 3.1. $\overline{4}-3,3.1 .4-2$). Also ranking among the first three on a monthly basis were S. viridis, Neomysis americana, and C. polita.

BIOMASS

Estimated mean biomass per station ranged from $562.7 \mathrm{mg} / \mathrm{m}^{2}$ at T7S2, 3.7 km northwest of salem, to $12,315.9 \mathrm{mg} / \mathrm{m}^{2}$ at T4S2, just south of Salem (Table 3.1.4-6). In 1977, it ranged Erom $558.3 \mathrm{mg} / \mathrm{m}^{2}$ at $T 3 S 3,3.0 \mathrm{~km}$ west of Salem, to $15,988.4 \mathrm{mg} / \mathrm{m}^{2}$ at T 4 S 2 . Balanus improvisus comprised 65.9 percent of the oiomass at T4S2 in 1978. Total biomass at Station T4S2 was higher than all other stations for 7 of the 9 months sampled.
Balanus improvisus $\left(646.3 \mathrm{mg} / \mathrm{m}^{2}\right)$ comprised 28.8 percent of the biomass of all taxa taken in 1978 (Table 3.1, 4-5). Scolecolepides viridis ranked second (406.8 mg/m ${ }^{2}$) with 18.1 percent, and Macoma balthica ranked third ($243.7 \mathrm{mg} / \mathrm{m}^{2}$) with 10.9 percent. In $1977, \mathrm{~B}$. improvisus ($810.3 \mathrm{mg} / \mathrm{m}^{2}$) comprised 33.2 percent of the biomass of all taxa. S. viridis ranked second $\left(504.1 \mathrm{mg} / \mathrm{m}^{2}\right)$ with 20.6 percent, and M. balthica ranked third ($309.9 \mathrm{mg} / \mathrm{m}^{2}$) with 12.7 percent. In June, July, August, and November 1978 B. improvisus comprised the highest monthly biomass (Fiḡ.3.1.4-4). . viridis ranked first in March, April, and September, Gammarus spp. ranked first in May, and M. balthica ranked first in October. Other taxa ranking among the first three on a monthly basis in 1978 were Microciona prolifera, Crassostrea virginica, Cyathura polita, and Crangon septemspinosa (Fig. 3.1.4-5).

Seasonal mean abundance of the predominant benthic taxa is reported in Table 3.1.4-8. Mean density was greatest during July and August due to the abundance of Polychaeta (32.1 percent), Balanus improvisus (23.5 percent), and oligochaeta (22.7 percent) (Fig.3.1.4-6). Mean density was lowest during September through November. Oligochaeta ranked first in density during March through June and September through November. Polychaeta ranked first during July and August and ranked second during March through June and September through November. B. improvisus ranked second during July and August.

Mean biomass was greatest during March through June due to the abundance of B. improvisus (32.5 percent) and Polychaeta (22.6 percent) (Fig.3.1.4-7). Mean biomass was lowest during July and August. B. improvisus ranked first in biomass during March through August. Pelecypoda ranked first during September through November and ranked second during July and August. Polychaeta ranked second during March through June and September through November.

TABLE 3.1.4-1
LOCATION OF nENTHOS STATTONS AND PRRTOD OR SAMPLING - 1978

Locotion		Description	Years Samplea
Transect 2 Stacion	1:	Two hundred meters west of New Jersey shore (Eagle Islanci:. On a line between white buoy " B " and cable tower which is directly east (90 degrees).	1971 to present
Station	2:	fifty meters west of white buoy "B".	1971 to Present
Transect 7			
Station	1:	About 50 meters from shore of Artificial Island on a line from Bayview lighthouse and red buoy " $2 \mathrm{R}^{\prime}$.	1972 to Present
Station	2:	Midway between Reedy Island Dike and Delaware River channel on a line between Bayview lighthouse and red buoy " 2 R".	1.972 to Present
Transect 3			
Station	1:	About 50 meters offshore Artificial Island, from a point 300 meters upstream from site of plant discharge.	1971 to present
Station	2:	About 200 meters from red buoy $R^{\prime \prime} 4 B^{n}$ on a line with this buoy and Bayvier lighthouse.	1971 to present
Station	3:	About 200 meters downriver from bell buoy $R^{n} 2^{n}$ on a line with light buoy and smoke stacks at Getty petroleum.	1971 to Present
Transect 4			
Station	1:	Sample in cove by Sunken ships about 100 meters from north bank and 200 meters from east end of cove.	1971 to Present
station	$2:$	On a line between Taylors Bridge Light and Stony Point 250 meters from the New Jersey shore.	1971 to present
Station	$3:$	On a line between Taylors Bridge Light and Stony Point 400 meters from the New Jersey shore.	1971 to present
Transect 8			
Station	1:	Haliway between Hope Creek Jetty and Mad Horse Creek and 100 meters offshore.	1972 to Present
Station	$2:$	Midway between Alder Cove and black buoy "7L".	1972 to Present
Transect 5			
station	1:	150 meters off small sandy beach in front of Mad Horse Creek Tower.	1971 to Present
Station	2:	Midway between Mad Horse Creek Tower and channel buoy " 6 L ".	1971 to Present

TABLE 3.1.4-2
LOCATION, DEPTH, SUDSTRATE, AND NUMDER OF GRAES - 1970

Location	Fith Survey Travl Zone	Approximate Meters	Depth (Mean Low	Water) Fect	Subetrate	$\begin{aligned} & \text { No. of Grabs } \\ & 1978 \\ & \hline \end{aligned}$
Transect 2 station 1	z-5	1.0		3.5	Very Elne sand, clay, and nome detritus	27
Station 2	$z-5$	7.0		24.0	Sand interspersed with clay and detritua	27
Transect 3 Etation 1	E-2	4.0		13.0	Fine black sand, some mud, and detritus	27
Station 2	E-2	6.0		20.0	Coarse black sand, very little mud, and detritus	27
station 3	N-1	3.0		10.0	Clay and organic mud, some sand, and detritus	27
Transect 4 Station 1	E-1	1.0		3.0	Organic mud, elay, and detritus	27
Station 2	E-1	5.0		16.5	Sand, gravel, shell, some mud, and detritus	27
Station 3	E-1	9.0		30.0	Clay and detritus	27
Fransect 5 Station 1	SE-3	1.5		5.0	Hard sandy clay and detritus	27
Station 2	SE-3	5.0		16.5	Sand, gravel, shell, organic mud, and some detritus	27
Transect 7 Station 1	8-4	4.0		13.0	Fine black sand, some clay, and detritus	27
Station 2	RIE-2	6.5		22.0	Hard clay, very little detritus	27
Transect 8 Station 1	SE-3	1.5		5.0	Organic mud, detritug and some sand	27
Station 2	5E-3	4.5		25.0	Organic mud, sand, and some detritus	27

TabLE 3.1.4-3
Phylogenetic list of benthic invertebrates - 1978

Phylum	Order	Family	Genus	Species	Year of capture
Porifera	Poecilosclerida	Microcionidae	Microciona	prolifera (Ellis and Solander 1786)	1972-78
Cnidaria	Hydrozoa				1976-78
	Athecata	Clavidae	Cordylophora	caspia (Pallas 1771)	1971-73, 1975-77
		Bougainvilliidae Campanularidae	Garvela	franciscana (Torrey 1902)	1971-78
			Hartlaubella	gelatinosa (Pallas 1766)	1971-78
		Campanulinidae			1977-78
		Sertularidae	Sertularia	argentea Linne 1758	1971-78
	Actiniaria	Diadumenidae	Diadumene	leucolena (Verrill 1866)	1973-78
platyhelminthea	Class Turbellaria				1975-78
		*	*Turbellaria 1		1978
	Tricladida				1977-78
	polycladia	Stylochidae	Stylochus	ellipticus (Girard 1850)	1972-78
		Leptoplanidae	Euplana	gracills (Girard 1850).	1976-78
Rhynchocoela					1973-78
Annelida	Class Polychaeta phyllodocida				
		Phyllodocidae Nereidae	Laeonereis	culveri (Webster 1879)	$\begin{aligned} & 1973-74,1976-78 \\ & 1973-78 \end{aligned}$
			Nereis	```succinea (frey and Leuckart 1847)```	1971-78
		Glyceridae	Glycera	dibranchiata Ehlers 1868	1973-77
		Goniadidae	Glycinde	solitaria Webster 1879	1974, 1975-78
	Spionida	Spionidae	Polydora	sp.	1973-78
			Polydora	Ligni Webster 1879	1977
			Scolecolepidea	viridis (Verrill 1873)	1973-78
			Streblospio	benedicti Webster 1879	1973-78
		Sabellarildae	Sabellaria	vulgaris Vercill 1873	1975-77
	Terebellida	Pectinarildae	Pectinaria	gouldi (Vercill 1873)	1977
		Ampharetidae	Hypaniola	grayi Pettibone 1953	1975-70
	Class Oligochaeta				1971-78
		Naididae	*Oligochata Paranals	litorālis (Mullar i784)	$1973-78$ $1971-78$
	Class Hirudinea				1971-75, 1977-78
nollusce	Class Gastropoda Mesogastropoda Cephalaspidea				1975-78
		Hydrobildae Pyramidellldac	Hydrobla	sp.	1978
					1975-77
			Turbonilla	sp.	1975-76 1977-79
	Nudibranchia	Corambidae			1974-75, 1977-78
	Class Pelecypoda Pteroconchida	Corambidae	Doridella	obscura (Verrill 1870)	1976-75
		Mytilidae	Modiolus	demissus (Dillyn 1817)	1971-78
		Ostreidae	Crassostrez	virginlca (Gmelin 1792)	1971-78
	Eeterodontida	Dreissenidas	Congeris	leucophaeta (Conrad 1831)	1972-74, 1976
		Tellinldae	Macoma	balthica (Linne 1758)	1971-78
			Macoma	tenta (Say 1834)	1975-77
		Solenidae Mactridas			1977
			Mulinia	lateralis (6ay 1822)	1974, 1976-78
			Rangia	cuneata (Gray 1031)	1971-76
		Kyacidac	Hye	argnacia (linne 2758)	1975-76

[^2]proportion each taxon occurred in total samples - 1978

Transect Station	2					4					7.				$\begin{gathered} \text { Taren } \\ \text { at } n /: 4 \\ \text { staticns } \end{gathered}$
H. prolifera	-	. 04	. 22	. 11	-	. 04	. 04	. 19	-	. 37	. 04	. 07	-	. 37	10/14
Hydrozoa	-		-	-	-	-	-	-	.11	-	-	-	. 04	-	2/14
G. Exanciscana	. 96	1.00	. 74	. 70	. 70	.96	1.00	. 93	. 48	. 89	. 74	. 41	. 48	. 95	14/14
Campanclaridae	-		. 04	-	-	. 04	-	-	-	. 07	-	-	-	. 04	4/14
H. gelatinosa	. 04	. 04	. 04	-	-	. 04	. 11	. 15	. 04	. 22	. 07	-	. 04	. 04	11/1i
Canpanulinidae	. 04	-	. 07	-	. 04	-	. 22	-	. 22	. 07	. 07	-	. 07	-	8/14
S. arcentea	. 78	. 19	. 63	. 44	. 67	. 59	. 93	. 96	. 04	. 78	. 52	. 67	. 15	. 89	14/15
D. leucolena	-	-	-	-	-	-	. 04	-	. 04	-	$\stackrel{-}{-}$	-	-	-	2/14
Turbellaria	. 04	. 67	. 44	. 63	. 04	-7	. 04	. 07	. 19	-	. 37	-	. 07	. 07	11/14
Turbellaria ll	-	-	-	-	-	. 07	-	-	-	-	-	-	. 07	-	2/1:
friclasida	. 37	. 07	. 04	-	. 07	. 44	. 19	. 07	. 22	. 19	. 04	-	. 30	. 04	12/14
S. ellipticus	-		-	-	-	-	. 22	-	-	-		-	-	-	1/1:
E. gracilis	-	-	7	-	-	. 04	-	-	-	-	-	-	-	-	1/14
Fhynchocoela	. 41	. 41	. 37	. 22	. 26	. 74	. 93	. 33	. 70	. 85	. 48	. 26	. 81	. 81	14/:4
E. Letercpoda			-	-	-	\cdots		-	-	. 04	-	-			1/14
L. culveri	-	-		-	-	. 11	-	-	-	-	-	-	-	-	1/14
N. succinea	. 04	. 04	-	-	. 22	. 44	. 89	-	. 78	. 33	. 07	. 26	. 81	.11	11/14
G. solitaria			4	04				9	.11	1	-	. 04	. 11	. 04	$4 / 14$
polyjora sp.	- 0^{-}	1.0	. 04	. 04	. 52	. 11	. 48	.19	.52	. 11	. 25	. 96	. 44		11/2:
S. viridis	1.00	1.00	. 89	. 81	. 59	. 63	. 81	. 93	. 96	. 93	. 96	. 30	1.00	1.00	16/14
S. benedicti				\rightarrow.	-	. 07	. 15	.04	. 44	. 33	-	-	. 26	. 04	7/14
H. grayi	. $0 ¢$	-	-	$-$	-	-	-	-	. 07	-	-	-	-	-	2/i4
01 j̧aciaeta	. 07	-	-	. 04	-	. 11	. 11	. 04	. 22	-	\cdots	. 04	. 11	. 04	9/14
01:gsehasta 11	. 04	. 04	.11	-	$\stackrel{7}{7}$. 63	. 89	.19	. 96	1.00	. 11	. 04	1.00	. 37	12/14
P. litaralis	1.00	. 89	. 26	. 04	. 48	1.00	1.00	. 89	. 96	. 93	. 11	. 04	.96	1.00	14/14
Hirueinea	-	-	-	-	-	. 04		-		. 04		-	-	-	2/14
Gastropoda	-	-	-	-	-	-	. 19	-	. 07	. 07	-	-	-	. 04	4/14
Hydrobia sp.	-	-	-	-	-	. 07	. 11	-	. 26	-	-	-	. 11	. 04	5/14
Nudibranchia	. 04	-	-	-	-	-	. 04	-	-	-	-	-	-	-	2/14
D. obscura	-	-		-		-	. 11	-	-						1/14
\%. detissus	-	-	-	-	-	-	. 33	-	-	-	-	-	-	-	1/14
C. virginica	-	-	. 04	-	-	-	. 63	-	. 04	-	-	-	-	-	.3/1:
M. baletica	. 15	. 04	. 04	-	. 11	. 59	. 59	. 59	. 37	. 81	. 04	-	. 78	. 67	12/14
M. lateralis	-	-	-	\sim		-	-	. 07	-	. 11	-	-	. 04	. 11	4/16
H. arenaria	-	-	-	-	-	-	. 04	-	. 19	-	-	-	. 07	-	3/15
B. irprovisus	-	. 04	. 04	-	. 19	-	. 93	. 11	. 37	. 22	-	. 04	. 30	. 19	10/:4
11. americana	. 26	. 37	.44	. 56	.48	. 44	. 52	.44	. 52	. 48	.94	. 33	.48	. 48	14/14
L. americanus	.19	-	. 04	. 07	. 19	. 33	. 04	. 11	-	.37	. 04	. 04	. 19	.19	12/14
c. al-ya	. 22	. 67	. 74	. 81	. 11	.15	. 04	. 04	. 19	. 07	. 67	. 07	. 07	. 11	19/14
E. Eriloba	.33		. 04	. 04	. 37	. 56	. 30	. 07	. 26	. 26	. 11	. 26	.48	. 15	13/14
c. golita	.96	. 64	. 56	. 30	. 85	. 96	1.00	. 89	. 96	. 89	. 63	. 93	1.00	. 85	14/1:
C. Ienifrons	-	-		-	. 04	-	. 04.	-		-		-	\rightarrow	-	2/:
2. plumulosus	. 74	-	$\stackrel{\square}{7}$	$\stackrel{-}{\square}$	-	. 19	. 04	-	. 78	. 04	-	$\stackrel{-}{-}$. 78	-	6/1:
C. lacestre	.33	. 26	. 22	. 04	. 15	. 30	. 78	. 07	. 56	.11	. 19	. 22	. 41	. 04	14/14
Gsmesrus spp.	. 33	. 41	. 33	. 26	.48	. 37	. 44	. 30	.33	. 07	. 26	. 41	. 22	-	23/1:
M. nitida	-	-	-	. 04	. 04	. 07	.33	. 04	-	. 07	-	. 07	. 04	. 07	$9 / 14$
Parahaustorius sp.	5	-	. 30	. 33	-	-	-	-	-	$-$. 15	-	-	$-$	$3 / 14$
H. edwardsi.	. 37	. 19	. 25	. 07	. 07	. 19	-	. 11	. 26	. 19	. 26	. 04	. 26	. 22	13/14
Parapleustes ap.	-	-	-	-	-	-	.11		. 04	-	-	-	-	-	$2 / 14$
P. fuglo	-	-	$\stackrel{\square}{7}$	-	. 04	-	-	\pm	3	\bigcirc	-	-	-	-	1/14
C. septemspinosa	. 22	. 07	. 19	. 07	. 11	. 15	. 41	. 15	.33	. 07	.15	. 25	. 30	.19	14/14
R. havisii.	-		-	-	. 07	. 04	. 52	-	. 11	.11	. 04	. 30	. 15	-	$3 / 14$
Diptera	-	. 04	-	-	.	-	-	-	-	-	-	-	-	-	1/14
Ceratopogonidau	-	-	-	$=$	-	-	-	-	-	-	-	-	. 04	-	1/14
Culicoides sp.		-	-	-	-	\sim	-	. 04	-	-	-	-	-	-	1/i
Chironomidae	. 26	-	-	-	-	-	. -	-	-	-	-	~	$\stackrel{-}{\square}$	-	1/14
Ctenostoinata	-	-	-	\sim	. 07	-	. 89	. 04	. 26	. 30	$\stackrel{-}{-}$	-	.36	-	6/1:
A. vicovici	. 04	-	. 07	. 04	-	. 07	. 06	. 26	-	.11	. 04	-	-	. 04	$9 / 14$
B. gracilia		-	. 04	-		01			6				$\overline{5}$	19	$1 / 14$
Henbraniporidae	-	-	.12	-	-	. 08	. 78	. 07	. 26	-30	-	-	. 15	-19	8/16

TABLE 3.1.4-5
annual pank of benthic taxa near artificial island in the delaware river, 1978.

TABLE 3.1.4-5
CONTINUED

	TABLE 3.1.4-5 CONTINUED										
	Station	T251									
			mean					ORY			
	batik by number	taxa	density	${ }_{8 Y}^{8}$	fauna	CuMED *	number of	weight	$x \text { yr }$	rank ay	
	1	P. Litoralis	1.676.3		68.148	68.148	27	41.5	0.763	2	
	$?$	S. viriois	336.3		13.672	81.820	27	398.6	64.961		
	3	c. Potila	62.2		2.529	84.349	20	38.1	6.250	3	
	4	Crizurouidae	60.7		2.468	36.817	7	3.2	. 522	12	
	5	IRICLajes	50.5		2.378	86.195	10	1.2	. 196	15	
	0	L. ploclesus	45.2		1.858	91.033	20	7.5	1.222	8	
	7	Rhricgacoela	43.7		1.777	. 92.810	11	4.0	. 652	10	
	8	c. alyram	27.4		1.114	93.924	6	6.2	1.610	9	
	9	m. EDMAROSI	21.5		-874	94.798	10	3.2	. 522	12	
	10	G. Fraiciscana	14.3		-785	95.583	26	37.9	6.177	4	
	10	M. Ambricama	19.3		. 785	96.368	7	3.6	. 587	11	
	12	4. 3altrica			-663	97.031	4	. 7	. 114	19	
	12	gamandis sp.	16.3		. 603	97.094	9	12.7	2.070	$?$	
	14	S. frobeata	15.0		. 634	98.328	21	19.0	3.096	\bigcirc	
ω	15	E. triloza	8.6		- 390	98.718	9	2.4	. 391	14	
-	16	c. licustag	8.9		. 362	99.080	9	-8	. 130	13	
$\stackrel{\square}{\square}$	17	c. SEpienspinosa	6.7		- 272	99.352	6	29.9	4.873	5	
1	18	L. americanus	5.9		. 240	94.392	5	. 9	. 147	17	
$\stackrel{\rightharpoonup}{\omega}$	19	oligoghaeta	3.7		. 150	99.742	2	. 1	. 016	23	
$\stackrel{\omega}{u}$	20	oligushieta 1	1.5		. 001	99.803	1			27	
u	21	a. vizuvici	. 7		. 028	97.831	1	-1	. 016	23	
	21	ijremliama	- 7		. 028	99.859	1	. 3	. 049	20	
	21	h. Gelatinosa	- 7		. 028	99.887	1	.3	. 049	20	
	21	H. Grari	.7		. 028	99.915	1	. 2	. 033	22	
	21	nudibianchia	-7		. 028	99.943	1	. 1	.016	23	
	21	caypatiulinidae	. 7		. 028	99.971	1			27	
	21	N. Succinea	.7		. 028	99.989	1	1.1	. 179	16	
* BeLOh reportagle level IA SALEM B 1978											

ABLE 3.1.4-5 CONTINUED

TABLE 3.1.4-5
CONTINUED

TABLE 3.1.4-5 CONTINUED										
STATIOH: T3S1										
		MEAN					DRY			
RANX GY		DENSITY	\%	fauna	CUMED :	nutber of	WEIGHT	2 BY	RANK BY	
number	taxa	(NO/SOM)	Br	number	By huiber	occurremces	(MG/50 M)	WEIGHT	WEIGHT	
1	GAMMATUS SP.	632.6		41.864	41.864	9	1.789.8	54.159	1	
2	S. Vitiols	297.8		19.707	61.571	24	432.7	14.302	2	
3	turbeclatia	232.6		15.393	76.98 .4	12	10.8	. 357	14	
4	N. AMEfichita	103.7		6.863	83.82%	12	18.3	. 005	12	
5		86.7		5.738	89.565	20	85.8	2.836	4	
8	6. Pulita	39.3		2.601	92.160	15	59.2	1.957	7	
7	Rhrichocotla	28. 1		1.560	44.1126	11	43.5	1.438	8	
8	G. Fixavciscana	14.8		. 979	95.005	20	63.6	2.108	6	
9	Paramausigaius SP.	13.3		. 880	95.885	8	40.4	1.335	9	
10	5. Ahtebuta	12.6		. 834	96.719	17	73.9	2.445	5	
11	c. Lacustag	0.7		. 443	47.162	6	. 8	. 026	17	
11	P. LItomatis	0.7		-443.	97.605	7	. 2	.007	20	
11	polroora sp.	0.7		. 443	98.048	1	. 2	. 007	20	
14	M. Proliftas	4.4		- 291.	98.359	6	333.3	11.017	3	
15	c. SEPJEASPIT.0SA	3.7		. 245	98.584	b	12.1	. 400	13	
10	- A Allalca	3.0		. 199	98.783	1	32.1	1.051	\bigcirc	
10	\cdots - Eunatiosi	3.0		-199	98.482	4	. 4	. 013	48	
18	MEMERAYIFURIDAE	2.2		. 146	$99.1<8$	3			29	
18	oligocmatia 1	2.2		. 146	99.274	3	4.2	. 138	15	
20	c. virsinica	1.5		. 099	-99.373	1	18.4	. 608	11	
20	CAMPA:AULIAIDAE	1.5		. 049	99.472	2.			29	
20	TRIClatioa	1.5		. 099	99.511	1	. 1	. 003	23	
20	L. AmERICANUS	1.5		. 049	89.670	1			29	
20	4. Viouricy	1.5		. 090	99.769	2	. 1	. 063	23	
25	E. Thilosa	- 7		. 046	99.815	1			<9	
25	3. Gracills	.7		. 046	99.861	1	. 2	. 007	20	
25	h. gelatinosa	- 7		. 046	99:907	1	3.0	. 099	16	
25	Camparilatione	. 7		. 046	89.953	1			29	
25	B. IAPROVISUS	.7		. 046	99.999	1	. 3	.010	19	

TABLE 3.1.4-5
CONTINUED

a a belod reportable level

TABLE 3.1.4-5
CONTINUED

Station: I3s3		: 1 EAis			CIMED \%	NUMBER OF	ORY	4 BY	RANK BY
RANK BY		DENSIIY	\%	fauna			WEIGHT		
number	16xa	(NO/SQ M3	Br	NUMBER	by Number	OCCIJRENCES	(HG/SO M)	WEIGHT	WEIGHT
1	FOLTDORA SP.	852.6		47.485	47.485	14	44.2	6.555	4
2	S. VIsiois	203.0		11.3116	58.791	16	115.6	16.847	2
3	P. Lituralis	185.9		10.354	69.145	15	16.9	2.566	10
4	3. İpruvisus	144.6		8.332	77.477	5	267.7	39.710	1
5	c. POLITA	1 10. 1		7.135	- 86.012	23	59.9	8.883	3
\bigcirc	N. AnEEICAIGA	126.7		7.457	91.064	15	25.0	3.718	8
7	GaMadrus Sp.	22.2		1.236	92.905	13	26.4	3.415	\bigcirc
8	$x_{\text {c }}=$ G4LItica	19.3		1.075	93.480	3	22.4	3.322	9
\bigcirc	E. triluza	18.5		1.030	95.110	10	1.0	.148	10
10	L. AMEHICANUS	17.0		. 947	95.457	b	. 8	. 119	17
11	G. findiciscana	14.1		. 785	96.742	19	41.0	6.080	5
12	S. ARSE:IEA	13.3		. 741	97.483	18	8.2	1.216	12
13	Rrinchócotla	11.9		. 663	98.146	7	1.9	. 282	15
14	r- SuCciliea	8.7		. 446	98.642	0	4.4.	. 653	13
15	co lacusiat	0.7		. 373	49.1115	4	. 6	. 089	$1{ }^{\circ}$
16	C. Alvira	3.7		. 206	94.221	5	3.0	. 445	14
17	C. SEpituspinosa	3.0		.107	94.388	3	11.4	1.691	11
18	P. Pugiu	2.2		.123	89.511	1	. 1	. 015	19
19	4. EOARAROSI	1.5		. 084	99.595	2			20
19	cienustumata	1.5		. 084	99.619	2			26
19	2. Hartisil	1.5		. 084	99.763	2	25.5	3.782	7
19	PRIClatol	1.5		. 084	99.447	2			26
23	4. PIIIDA	. 7		. 039	49.886	1			19
23	turbellamia	. 7		. 039	99.925	1	-1	. 015	14
23	GAmpahulindoae	.7		. 039	99.964	1	.1	. 015	18
23	C. Lunlfrons	. 7		. 039	100.003.	1			26

TABLE 3.1.4-5
CONTINUED

CONTINUED								
STATION: TLSI								
		MEAIN				DRY		
RaNk By		DENSITY	\% FAuna	CUMED C	NUMEER OF	WEIGHT	x \% ${ }^{\text {y }}$	RANK BY
Number	taxa	($\mathrm{NO/SO} \mathrm{~m}$)	by number	By Number	occurrences	(MG/SO M)	WEIGHI	WEIGHY
1	P. litoralis	2.322 .2	73.267	73.267	27	34.8	2.015	5
2	5. VIRIDIS	260.0	8.203	81.470	17	608.1	35.208	2
3	E. triloea	129.6	4.089	85.550	15	12.8	. 741	8
6	t. Baltmica	6U. 1	1.843	87.452	16	821.6	47.571	1
5	triclajida	59.3	1.871	84.323	12	1.1	. 064	19
6	Rmyacmucoela	58.5	1.846	91.169	20	24.1	1.395	7
7	OLIGUGMAETA 1	40.7	1.473	92.642	17	10.4	. 002	9
8	C. POLIIA	45.2	1.426	94.068	<6	66.1	3.82%	4
9	Gammazus spa	52.6	1.029	95.1097	16	3.3	. 507	13
10	n. ayericana	26.1	. 642	45.939	12	5.9	. 342	11
11	L. AyEricanus	21.5	-678	96.017	9	. 7	.041	21
12	G. Finatciscana	14.3	. 609	97.226	26	69.0	3.995	3
13	A. SuCciota	13.3	-420	97.646	12	8.0	. 663	10
1:	PULYOUKA Sp.	12.6	. 398	98.044	3	- 3	. 417	26
15	S. argeidiea	11.9	. 375	98.419	16	34.2	1.980	0
10	OLIgoghata	1.4	-253	98.652	3	. 4	.023	25
17	c. lacustae	5.9	-186	98.838	8	. 2	. 012	27
17	M. EOnAFOSI	5.9	-180	99.024	5	1.0	. 058	20
19	C. Alitrat	5.2	. 164	49.188	4	2.7	. 156	16
18	M. Nitioa	5.2	-184	99.352	2	. 7	. 041	21
21	L. Pluyulosus	3.7	-117	94.469	5	3.6	. 208	15
22	C. SEPTEMSPINOSA	3.0	. 095	98.504	4	2.4	. 139	17
23	L. culveai	2.2	. 069	99.635	3	2.4	.139	17
23	rungellariay	2.2	. 068	89.702	2			34
25	S. BESEDICII	1.5	-0047	99.744	2			34
25	hrorueia	1.5	. 047	99.796	2	. 5	. 029	24
2 s	a. viouvici	1.5	. 047	99.843	2	.7	.041	21
28	h. gelatidosa	- 7	.022	99.865	1	. 1	. 006	28
28	E. GRacilis	. 7	. 022	94.887	1			34
28	4. prolifera	- 7	. 022	99.909	1	5.8	.336	12
28	CATPANULARIOAE	. 7	. 022	99.431	1			34
28	MEYERAVIPGRIDAE	- 7	-022	99.953	1			34
28	hiruoinea	. 7	. 022	99.975	1	. 1	. 006	28
28	R. HARKISII	. 7	. 022	99.997	1	4.1	.237	14

* * belon reportable level

TABLE 3.1.4-5
CONTINUED

* EELOH REPORTASLE LEVEL

TABLE 3.1.4-5
CONTINUED

2ABLE 3.1.4-5
CONTINUED

	TABLE 3.1.4-5 CONTINUED										
	station	1751									
			mean					DRY			
	rank by		oensify	χ	fauna	CUMED ${ }^{\text {a }}$	number of	WEIGH	x 8y	rank by	
	number	14xa	(no/Se 4)	BY	numier	by number	occurrences	(mg/Som)	WEIGHT	WEIGHT	
	1	5. Viciois	465.9		42.614	42.614	26	678.3	51.629	1	
	2	turemllamia	258.5		23.044	66.258	10	4.8	. 365	12	
	3	gamearjs sp.	81.5		7.454	73.712	7	80.4	6.576	3	
	4	c. almiras	t1.5		5.625	74.337	18	57.0	4.359	4	
	5	c. pouta	52.6		4.811	84.148	17	40.5	3.539	5	
	-	B. anemilata	28.9		2.043	86.791	12	6.5	. 495	11	
	7	intimenocoela	25.9		2.369	89.160	13	7.9	. 601	10	
	y	polypora sp.	23.0		2.104	91.264	4	1.2	. 091	10	
	9	-. Fraicischina	14.8		1.354	92.618	20	39.6	3.014	${ }^{6}$	
	10	P. lituralis	13.3		1.217	93.835	11	. 4	. 030	20	
	10	c. lacusize	13.3		1.217	95.052	5	. 5	. 038	19	
	12	S. 2figeviea	10.4		. 951	96.0015	14	25.0	1.903	8	
	13	- EDandosi	7.4		-677	90.640	7	1.1	. 084	17	
	14	E. Tijues	0.7		. 613	97.293	3	-4.	. 030	20	
	14	tricladica	6.7		-613	97.906	1			26	
ω	16	paramajigarius sp.	5.2		-476	98.382	4	8.0	. 609	9	
-	10	c. SEPTEMSPIROSA.	5.2		-476	98.858	4	307.0	23.367	13	
1	18	Ao succhiea	2.2		- 201	29.059	2	3.2	. 244	13	
-	18 20	OLIGUCALETA ${ }^{\text {a }}$	2.2 1.5		-201 -137	99.260 49.397	3 2	2.1 .8	. 1000	15 18	
\&	20	R. Hañisit	1.5		. 137	99.514	1	2.7	. 200	14	
G	20	campanuldabag	1.5		. 137	99.671	2	.1	. 008	22	
	20	L. Ateulcaives	1.5		-137	99.808	1			20	
	24	n. battajca	-7		. 004	99.872	1	. 1	. 008	22	
	24	m. prolifera	.7		. 064	99.936	1	34.1	2.596	7	
	24	a. viduvici	. 7		. 064	100.000	1	- 1	. 008	22	
	* = 8EL	an reportagle level									B 1978

TABLE 3.1.4-5
CONTINUED

CONTINUED

Station:	1852	MEAN			DRY			\% EY	RANK By
Rank by		DEASITY	*	fauna	Cumbo \%	number of	WEIGHT		
NUMBER	TA2A	(NO/SO4)	BY	NuMber	BY NLMBER	OCCURRENCES	(HG/SO M)	WEIGHT	WEIGHT
1	P. LITGMRLJS	1.107.4		51.431	51.431	27	28.7	1.717	8
2	S. viriois	637.8		30.574	82.045	27.	631.0	37.700	1
3	C. POLITA	131.1		0.043	38.138	23	191.6	11.406	3
4	bhynchucotla	60.0		2.784	40.927	22	35.6	2.130	7
5	OLIGCLHAETA 1	34.1		1.585	92.512	10	24.0	1.436	10
0.	N. ARERICAI:A	24.6		1.376	93.883	13	17.9	1.079	11
$?$	M. EtLIHICA	27.4		1.274,	95.162	18	400.4	24.319	2
0	g. frimeiscana	19.3		. 647^{\prime}	40.059	20	20.5	1.705	9
8	S. iñerater	17.8		. 827	96.806	24	75.6	4.404	5
10	C. SEPIEMSPINOSA	8.0		. 414	97.300	5	164.2	4.826	4
11	M. Prolitera	7.4		. 344	97.044	10	38.4	2.298	6
11	E. iniluga	1.4		. 344	97.488	4	1.6	. 096	15
13	4. EDNANDSI	0.7		. 311	98.299	6	. 6	. 036	19
14	3. İparuvisus	5.9		. 274	48.573	5	16.1	. 903	12
15	c. aterra	5.2		. 242	98.815	3	3.6	. 215	14
10	L. 2wERIC:NuS	4.4		. 205	99.8120	5	1.0	.060	16
17	ME:OKגう!puridat	3.7		. 172	99.142	5			30
17	Iuabellafia	3.1		. 172	99.304	2	. 7	. 042	18
17	Y. Latekalis	3.4		. 134	99.503	3	4.7	. 281	13
20	n. Succinea	2.2		. 102	97.645	3	. 3	. 018	22
21	4. HItIJa	1.5		. 070	94.675	2	. 4	. 024	20
22	triclajida	- 7		. 033	99.708	1	- 1	-006	25
22	- solitaria	. 7		.03s	49.741	1			30
22	A. viouvici	- 7		.03s	99.784	1	-3	. 018	22
22	c. licustre	.7		. 033	99.807	1	- 1	.000	25
22	5. átitoictio	. 7		. 0133	99.840	1	. 2	. 012	24
22	ca*panularioae	.7		. 033	99.873	1	. 1	. 006	25
22	n. gelatinosa	.7		. 033	99.906	1	-1	. 006	25
22	GAStígroda	. 7		. 033	98.959	1	. 8	.048	17
22	oligochaera	. 7		. 033	99.972	1	. 4	. 024	20
22	mrdrogia	.7		. 033	100.005	1	. 1	.006	25

* a beloa repoktagle level

TABLE 3.1.4-6

TABLE 3.l.4-7
COMParison of the shanon-weaver diversity
INDEX (D), SIMPLE DIVERSITY (s), AND TOTAL SPECIMENS (N)-1978

		March	April	May	June	July	Rugust	September	October	November	Hesa
	s	13	10	12	12	14	11	12	13	16	13
22S1	N	1,894	2,587	1,961	4,067	3,988	414	1.120	2,120	3,994	2,461
	D	1.102	0.913	1.301	1.024	1.003	1.957	1.625	1.141	1.050	1.235
T2 52	5	12	6	9	11	6	12	11	10	12	10
	N	1,542	9.087	2,040	1,600	447	521	953	421	8.735	2,816
	D	0.932	0.632	1.186	1.337	1.399	1.856	1.772	1.748	0.694	1.284
T3S1	s	10	15	11	11	9	13	6	14	16	12
	N	994	887	6,154	2,260	594	480	481	773	981	1,512
	D	1.272	1.601	0.404	1.207	1.330	1.871	0.677	1.423	1.365	1.239
T3S2	s	7	7	9	9	11	12	6	10	10	9
	N	573	7.174	12,753	4,160	846	688	267	736	1.220	3,157
	D	1.083	0.472	0.289	0.741	1.441	1.428	1.245	1.299	1.277	1.031
23S3	E	7	7	11	8	13	9	15	12	9	10
	N	167	841	2,321	1,086	5,561	1,794	2,475	766	1.154	1.796
	D	1.735	0.652	1.244	1.646	0.433	0.596	1.528	1.876	0.939	1.123
T4S1	s	19	17	13	. 14	15	14	14	18	18	16
	N	4,322	3,534	3,581	2,080	2,820	2,401	3,075	4,147	2,572	3,170
	D	0.927	1.067	1.335	2.269	0.696	0.990	0.974	0.940	1.237	1.043
26S2	s	22	17	18	19	28	27	17	23	28	22
	N	4.036	4,005	4,374	13,693	14,094	11,824	1.955	5,152	11.351	7,852
	D	1.951	1.515	1.741	0.831	0.867	1.475	1.752	1.889	1.695	1.524
5653	s	12	10	19	7	9	17	14	14	16	13
	N	774	214	1,469	154	267	700	648	861	929	669
	D	2.745	1.915	1.608	1.669	1.768	1.968	1.991	1.786	1.528	1.775
T5S1	s	20	17	15	15	13	22	23	24	20	19
	,	1,541	1,421	2,427	3,508	4,333	3,320	4.515	3,695	1,163	2,881
	D	2.383	1.915	1.496	1.772	1.190	2.239	2.395	2.204	2.343	1.953
T5S2	s	22	16	19	11	13	17	12	19	23	17
	N	4,936	1,552	4,374	213	2,568	2,940	266	2,923	2,797	2,502
	D	1.626	1.616	1.349	2.152	1.431	1.719	2.101	1.559	1.946	1.722
T7S1	s	8	12	${ }_{8}^{8}$	14	10	12	19	6	${ }^{8}$	12
	N	2,160	1,141	1,121	1,748	1.313	362	747	835	419	1,094
	D	0.655	0.897	0.839	1.521	0.843	1.845	2.385	1.373	1.674	1.337
T7S2	s	6	5	5	8	11	8	12	14	13	9
	${ }^{\text {a }}$	1,281	1,713	247	1,015	1,901,	6,320	3,107	761	1,587	1,992
	D	0.404	0.501	0.905	1.306	0.939	0.112	0.786	1.959	0.804	0.857
TBSL_{1}	5	15	15	19	14	17	20	22	23	18	18
	N	1,715	1,515	2,283	4,681	4,847	1,794	4,820	2,6:7	1,174	2,821
	D	1.980	1.767	2.023	1.206	1.538	2,215	1.491	2.083	2.223	1.346
T8S2	5	8	10	16	14	12	15	14	16	13	13
	N	1.700	2,479	3.295	2,327	2,820	2,707	1,615	1,647	730	2,152
	D	0.704	1.387	1.120	1.333	1.051	1.331	1.362	1.636	1.745	1.299
Kean	${ }^{8}$	13	12	13	12	13	15	14	15	16	
	\%	1,974	2,725	3,457	3,042	3,314	2,590	1,850	1,963	2,776	
	D	1.321	2.204	2.303	1.364	1.138	1.543	1.579	1.637	1.666	

TABLE 3.1.4-8
SEASONAL MEAN DENSITY AND BIOMASS OF bENTHOS TAKEN NEAR ARTIfICIAL ISLANO in the oElaware RIVER, 19 f8.

[^3]-
table 2.1.4-8 CONPINUED

[^4]Monthly mean density of the top ranking benthic taxa - 1978

Figure 3.1.4-2

public service mincmaic and cas comban'y
Monthly mean density of the top ranking benthic taxa - 1978

Figure 3.1.4-3
\square
pumaic service biectrac and gas company salem nuclear cienerating stamon

Monthly mean biomass of the top ranking benthic taxa - 1978

public service beretric and gas company salem nuclemb generating sfation	Seasonal mean density of benthos 1978
	Figure 3.1.4-6


```
3.1.5 Blue Crab (ETS Section 3.1.2.l.lf)
```

The blue crab, Callinectes sapidus, is the most commercially valued aquatic organism in the Delaware estuary; it also supports an active sport fishery. This report discusses economics, abundance, distribution, and life stage of blue crab in the 1978 commercial pot fishery and in trawl and seine samples. The pot fishery generally captures crab larger than 76 mm (carapace width), while trawls and seines, which sample all sizes, are more effective in taking small crab.

3.1.5.1 Summary

The blue crab was abundant and well distributed throughout the study acea in all but winter months. Crab utilized the area for growth, mating, and nursery; spawning occurs farther south near the mouth of Delaware Bay.

Data on commercial aspects of the fishery were obtained by census and interview of selected crabbers who operate in the study area. Biological data were obtained from commercial crab pot catches, and in trawl and seine samples.

In 1978, there were 36 licensed commercial crabbers (18 each in New Jersey and Delaware) who were known to operate in this area.

The 1978 hard crab catch in the study area for Delaware and New Jersey combined was conservatively estimated at 12,000 bushels; 1,500,000 individual crab, or $219,360 \mathrm{~kg}$ of whole crab. The New Jersey portion of this catch was 99 percent of the state's entire reported landings of hard blue crab. The Delaware portion comprised 72 percent of that state's landings.

The 1978 catch of peeler crab in the study area was estimated at 110,000 individuals. The New Jersey estimated portion comprised more than 100 percent of that state's entire reported landings, which indicates an underestimate by the state; the Delaware portion accounted for 66 percent of that state's entire catch.

Economically, the dockside value of the 12,000 bushels of hard crab was $\$ 192,000$ ($\$ 16 / b u s h e l$), and of the 110,000 individual peeler crab was $\$ 50,600$ ($\$ 0.46 /$ individual).

Mature male crab comprised 52.5 percent of the commercial catch in the study area.

Over 94 percent of the crab taken in seine and trawl samples occurred from May through November. In daylight trawl samples, crab were more abundant in the southern portion of the study area. Typically, more crab were taken at night than during daylight.

Peaks in trawl and seine catch were in June and October. Crab taken in June were generally older than one year; the October crab catch was mostly individuals spawned in 1978. The decrease in catch of older, marketable adults after June reflected their removal from the population by commercial crabbers.

The mean size-class distribution of crab in trawl and seine samples reflected growth from January through August; its subsequent decrease reflected recruitment into the sample of the 1978 year-class.

Numerous observations of crab matings were noted throughout the southern study area, while sporadic sightings of eggbearing female crab were only reported from the extreme southern reaches.

3.1.5.2 Materials and Methods

COMMERCIAL CATCH

All samples required by this ETS section were taken. Commercial catch data were obtained by census, interview, and accompanying crabbers who usually operate in the study area from May through October. The commercial season legally extends from March through November. A sub-sample of crabbers known to operate in the study area were censused by means of monthly questionnaires which ask for daily catch statistics. For a detailed description of catch landing estimation and catch sub-sampling and sample processing procedures see Volume 2 of the 1977 Annual Environmental Operating Report. Briefly, licensed crabbers fish baited pots and sort their catch into two groups: hard crab and peeler crab. The hard crabs are further sorted into categories of graded value (based on size, sex, condition, and market demands).

The categories may vary, but are generally No. I (large mature male), No. 2 (small mature male), and No. 3 (mature female). Hard crab which are damaged or less than 5 inches (127 mm) in width, and peeler crab of less than 3 inches (76 mm) must, by law, be released.

TRANL AND SEINE SAMPLE

All samples required by this ETS were taken. Samples were taken in all months except January and February when severe icing conditions precluded operations. For details of trawl and seine sampling procedures see Volume 2 of the 1977 Annual Environmental Operating Report.

Briefly, otter trawls were hauled on the bottom in river and creek trawl zones and seines were hauled at river and creek seine stations on a semimonthly schedule (Figs. 3.1.5-1, 3.1.5-2, 3.1.5-3). The trawl and seine crab sample was processed in the same manner as the commercial catch.

DATA REDUCTION

Data are discussed on the basis of the following statistics: $\mathrm{bu} / \mathrm{pd}=$ number of bushels (bu) of crab captured in a pot (p) during one day (d); $n / p d=$ number of individual crab (n) captured in a crab pot (p) fished for one day (d); $n / T=$ number of crab (n) taken per trawl haul (T); and $n / C o l l .=$ number of crab (n) per seine collection (Coll.).

3.1.5.3 Results

Following a second consecutive winter (1977-1978) of unusually low temperature, crab catch levels remained severely reduced in the study area as compared to catches prior to 1977. This continued reduction was reflected in the commercial and trawl and seine catch.

COMMERCIAL CATCH

Of the 36 licensed commercial crabbers who operated in the study area for most of the 1978 season, 18 were based in New Jersey and docked primarily in upper Mad Horse Creek, at Hancocks Bridge on Alloway Creek, and at the mouth of Stow Creek. The remaining 18 were based in Delaware and docked primarily at Flemings Landing on the Smyrna River, Collins Beach on the Delaware River, and at Delaware City. Most were family operations, and 65 persons ranging in age from their midteens to late 50 's were involved in crabbing. Data on the commercial crab pot catch was collected from June through November.

Hard Crab

Data supplied by nine crabbers (five based in New Jersey, four in Delaware) for 1978 indicate that their combined total catch of hard crab was over 4,304 bushels (Table 3.1.5-1). Of these, 3,221 bushels were taken in New Jersey. Twentyseven crabbers who did not participate in the program are estimated to have taken over 7,700 bushels. The total catch of hard crab from the study area in 1978 probably exceeded 12,000 bushels. The annual estimated hard crab catch in previous years ranged from 7,000 bushels in 1977 to 45,000 bushels in 1975.

The total take of hard crab from the study area in 1978 was approximately $1,500,000$ individuals (based on mean number of 125 crab per bushel in 1971 and 1976). By weight, the catch in 12,000 bushels was about $219,360 \mathrm{~kg}$ (based on mean weight of 18.3 kg per bushel in 1978). These estimates are conservative. Catch by small scale operations, the frequent reporting of smaller than realized catch, raiding of pots, and illegal crabbing all account for an unknown component of the actual harvest.

The largest catch (unadjusted for effort) in New Jersey and Delaware waters combined was 2,091 bushels in July (Table 3.1.5-1). The August catch ranked second: September, third: October, fourth; followed by June and November.

Monthly catch data adjusted to a per unit effort basis (bu/pd) are presented in Table 3.1.5-2. Based on the combined effort in New Jersey and Delaware, the largest catch was in July (0.0612); the smallest was in June (0.0117). The New Jersey catch was largest in July (0.0736)
and smallest in September (0.0366); the Delaware catch was largest in July (0.0457) and smallest in June (0.0117). The adjusted catch was higher in New Jersey in all months sampled. In 36 of 39 months sampled over the past seven years adjusted catch was higher in Delaware.

Data on the 1978 New Jersey commercial catch, most of which comes from the Delaware Estuary (including the study area), indicate that 71 crabbers licensed to fish 9,138 pots took some 7,080 bushels of hard crab (1978 pers. comm. with L. Albertson Huber, New Jersey Division of Fish, Game, and Shell Fisheries). Study program data indicate that the 18 crabbers operating near Artificial Island took 99 percent of this total.

Data on the 1978 Delaware commercial crab catch, most of which comes from the same area, indicate that 40 crabbers took a reported total of 6,948 bushels of hard crab (1978 pers. comm. with Richard W. Coles, Delaware State Department of Natural Resources and Environmental Control). Study program data indicate that the 18 crabbers who operated near Artificial Island took 72 percent of this reported total.

Peeler Crab

All nine crabbers who regularly completed questionnaires also submitted data on their catch of peeler crab (Table 3.1.5-3). These nine took 36,346 peeler crab (75 percent by the five New Jersey crabbers) from June through November 1978. The catch by 27 crabbers who did not participate in the program is estimated at 73,654 peeler crab (41,032 by 14 Delaware fishermen). The total peeler crab catch in the study area in 1978 is conservatively estimated at 110,000 individuals. Annual estimated peeler crab catch in the study area in previous years ranged from 39,700 individuals in 1973 to 233,870 individuals in 1976.

The largest monthly catch, based on combined data from nine crabbers in New Jersey and Delaware, was 22,326 crab in July (Table 3.1.5-3). The monthly n / pd of peeler crab was highest in July in New Jersey (0.8501) and Delaware (0.5154), and lowest in October (0.0112 and 0.0094, respectively) (Table 3.1.5-4).

On the average, New Jersey crabbers took more peeler crab than did Delaware crabbers. In each of the previous seven years, adjusted catch had been higher in Delaware.

Records on the New Jersey 1978 commercial catch from the Delaware Estuary indicate that 71 crabbers took a reported 56,000 peeler crab (1978 pers. comm. with L. Albertson Huber). Study program data indicate that the 18 New Jersey crabbers who operated near Artificial Island took 107 percent of this total.

Records on the 1978 Delaware commercial catch from the Delaware Estuary indicate that 40 crabbers took a reported 75,900 peeler crab (1978 pers. comm. with Richard W. Coles). Study program data indicate that the 18 Delaware crabbers operating near Artificial Island took 66 percent of this total.

Economic Aspects

The wholesale price per bushel of hard crab in 1978 averaged $\$ 26$ for No. $1, \$ 16$ for No. 2, and $\$ 11$ for No. 3. A reasonable average price in 1978 was $\$ 16$ per bushel. The 12,000 bushels taken from the study area in 1978 had an estimated dockside value of $\$ 192,000$.

The peeler crab catch is usually sold to buyers at dockside who hold them until they molt and are soft. The price to crabbers averaged 46 cents per peeler crab. At this price, the 110,000 peeler crab taken by commercial crabbers in 1978 had an estimated value of $\$ 50,600$.

A more lucrative but much smaller market for peeler crab is to local sport fishermen who consider them preferred bait for fishes such as weakfish. The retail price per dozen ranged from $\$ 8$ to $\$ 12$ and averaged $\$ 9$.

Composition of Catch by Sex, Size, and Stage of Development

A total of 1,352 blue crab taken in 149 individual crab pot samples was examined (Tables 3.1.5-5, 3.1.5-6). These were taken in zones SWI through NWl, RI2, and SEl through SE3 on seven dates from July 12 to October 20 (Fig. 3.l.5-1). Catch data adjusted for effort (individuals/pd) are presented in Table 3.1.5-5. Mean monthly catch was highest in July (17.0 crab/pot) and lowest in September (5.9). The mean catch per pot in 1978 was 9.1 crab. Prior to 1978 , mean pot catch ranged from 5.5 crab in 1977 to 21.6 crab in 1976.

Data on catch composition (percent catch) are presented in Table 3.1.5-6. Mature male crab comprised 52.5 percent of the 1978 catch. Percent catch was highest in october (72.9) and lowest in September (32.1).

Immature male crab comprised the smallest percent of the annual catch (1,4). Percent catch was highest in October (2.6) and lowest in August and September (0.4).

Mature female crab comprised 32.2 percent of the annual catch. Percent catch was highest in September (61.0) and lowest in October (9.4).

Immature female crab comprised 13.9 percent of the annual catch. Percent catch was highest in July (17.2) and lowest in September (6.4).

Of 28 peeler crab (2.l percent of the total catch) (Table 3.1.5-7) taken in 149 samples, 3.6 percent was mature male, 3.6 percent was immature male, and 92.8 percent was immature female.

Monthly mean width of crab, by sex and developmental stage, are presented in Tables 3.1.5-8 through 3.1.5-11 and summarized in Table 3.1.5-12. The mean size of mature male crab was 127.4 mm in July; it increased to 150.3 mm in September (Table 3.1.5-8). At the end of monitoring in October mean size had decreased to 141.2 mm .

The monthly mean size of immature male ranged from 103.2 mm in July to 110 mm (1 specimen) in August (Table 3.1.5-9).

The mean size of mature female ranged from 152.0 mm in July to 167.5 mm in October (Table 3.1.5-10).

The monthly mean size of immature female ranged from 114.6 mm in September to 125.2 mm in August (Table 3.1.511).

TRAWL AND SEINE SAMPLE

Trawl Catch

A total of 873 crab was taken in 863 bottom trawl collections in the Delaware Estuary. Over 94 percent (828) was captured from May through November in 662 collections. Of the total, 822 were taken in 849 collections during daylight and 51 were taken in 14 collections at night.

During daylight 775 were taken in 762 collections in the west sector (which includes zones NW2-SWl), and the east sector (which includes zones NE2-SEO, RII, and RI2) combined, and 47 were taken in 87 collections in the shipping channel. An additional 10 crab were taken in 111 collections in the local tidal creeks (Fig. 3.l.5-2). The mean catch per trawl in the Delaware Estuary in 1978 was 1.0 crab; it had ranged from 0.6 in 1977 to 5.0 in 1975.

In combined river trawl samples during daylight in the west sector, 286 crab were taken in 260 collections (Table 3.1.5-13). In the east sector, 489 crab were taken in 502 collections (Table 3.1.5-14).

No crab were taken in March and only one crab was taken in April (zone SEl). From May through August crab remained sparsely distributed (n / T range over the period; 0.2-0.8, west sector: 0.l-0.5, east sector) (Figure 3.1.5-4).

Catch increased markedly in September (1.7, west sector; l.5 east sector), and peaked in October (4.2, west sector; 4.3, east sector). Catch decreased in November (2.3, west sector; 1.6 r east sector) and December (0.6 , west sector; 1.0, east sector).

In west and east sectors, annual catch per zone increased from north to south (Fig. 3.1.5-5). Within the west sector, annual catch was greater in zones SWl through W3 (n / T range: 0.9-1.8) than in zones NWl and NW2 (n / T range: 0.2-0.4). Within the east sector, annual catch was greater in zones SE0 through SSC (n / T range: l.l-2.7) than in zones E2 through NE2 (n/T range: 0.2-0.6).

The annual n / T was similar in the west sector (1.1 crab) and in the east sector (1.0).

A total of 47 crab was taken in 87 hauls ($n / T=0.5$) made in the shipping channel from March through December (Table 3.1.5-15).

In night samples from March through October in Zone W3, 3 crab ($n / T=0.4$) were taken in 7 hauls (Table 3.1.5-16); in Zone SSC 48 crab ($n / T=6.9$) were taken in 7 hauls (Table 3.1.5-17). The greatest catch occurred in zone SSC in September ($n / T=18.0$). More crab were taken at night (n / T $=3.6$) than during daylight (1.0).

Seven crab ($\mathrm{n} / \mathrm{T}=0.2$) were taken in Appoquinimink Creek and three (0.l) were taken in Alloway Creek from March through December. No crab were taken in 28 collections in Hope Creek. All crab taken in Appoquinimink Creek occurred in

October ($\mathrm{n} / \mathrm{T}=1.2$), while crab occurred in Alloway Creek in July ($n / T=0.3$), September (0.3), and October (0.2).

Seine Catch

A $68.6 \mathrm{~m}, 1.3 \mathrm{~cm}$ mesh bag seine was fished during daylight and at night semimonthly from March through October at Augustine Beach and at Sunken Ship Cove (stations AUB3 and SSC6, Fig. 3.1.5-l). During daylight, crab were taken in June and August through October samples (Tables 3.l.5-18, 3.1.5-19). At night crab were taken in May, June, and August through october (Table 3.1.5-20, 3.1.5-21). During daylight, 27 crab were taken in 7 collections at Station AUB3, and 25 crab were taken in 7 collections at Station SSC6. At night, 115 crab were taken in 7 collections at Station AUB3, and 54 crab were taken in 7 collections at Station SSC6. Annual mean catch for combined stations at night ($n / C o l l$. $=12.1$) was greater than during daylight (3.7).

Ten seine stations on the Delaware Estuary were sampled semimonthly during daylight from March through December with $3.0 \mathrm{~m}, 0.3 \mathrm{~cm}$ mesh and $7.6 \mathrm{~m}, 0.6 \mathrm{~cm}$ mesh seines (stations PHDl-MHC8, Fig. 3.1.5-1). A total of 74 crab were taken in 170 collections all of which occurred from May through November (Table 3.1.5-22). Annual mean catch per station was highest (l. 4 specimens) at Station AUB3. Highest monthly mean catch was in September (2.4 specimens).

From March through December, 4 crab were taken in 42 collections ($n / C o l l .=0.1$) in Appoquinimink Creek and 5 crab were taken in 37 collections (0.1) in Alloway Creek (Fig. 3.1.5-3). Monthly mean catch per sample was highest in September in both Appoquinimink ($\mathrm{n} / \mathrm{Coll} .=1.0$) and Alloway creeks (1.7).

Size-Class Distribution

Size-class distribution of crab taken in trawl and seine catches from April through December is given in Tables 3.1.5-23 through 3.1.5-32.

Monthly mean width of crab taken in the river by trawl during daylight increased from 48 mm (l specimen) in April to 128.3 mm in July (west sector) and 139.0 mm in August
(east sector) (Tables 3.1.5-23, 3.1.5-24; Fig. 3.1.5-6). The appearance in the population of smaller individuals of the 1978 year-class in July and August contributed, along with removal of larger specimens by crabbers, to a decrease in monthly mean width in August (l08.5 mm, west sector) and September (75.9 mm , east sector) and subsequent months. The mean width of crab decreased steadily through December (36.0 mm , west sector; 35.9 mm , east sector). Mean size of crab taken in combined west and east sectors in 1978 was 59.0 mm . It had ranged from 49.6 mm in 1973 to 87.6 mm in 1971.

Crab taken in the shipping channel during daylight were largest (130.5 mm) in July (Table 3.1.5-25). Crab taken at night were largest in August (one 160 mm specimen, W3) and June (94.7 mm, SSC) (Tables 3.1.5-26, 3.l.5-27).

Specimen size in creek trawls (70.7 mm, Appoquinimink; 57.7 mm , Alloway) was similar to that in river trawls.

Crab taken by 68.6 m seine during daylight were largest in June at AUB3 (76.0 mm) and August at SSC6 (124.5 mm) (Tables 3.1.5-28, 3.1.5-29). At night, maximum size occurred in June at AUB3 (95.5 mm) and in September at SSC6 ($39^{\circ} .5 \mathrm{~mm}$) (Tables 3.1.5-30, 3.1.5-31).

The mean width of crab taken by 3.0 m and 7.6 m seines in the river during daylight was greatest in July (59 mm, 1 specimen) (Table 3.1.5-32).

Mean width of crab taken by 3.0 m seine in Appoquinimink and Alloway creeks was greatest in August (31.0 mm) and September (36.6) respectively.

OBSERVATIONS ON MATING AND EGG-BEARING CRAB

During 1978 a total of 203 observations of mating was reported in July and August by four commercial crabbers who operate in the southern part of the study area. In 1978, two commercial crabbers reported 2 captures of egg-bearing female crab in August and September, in zones SE3 and SWl.

TABLE 3.1.5-1
buShels of marketable hard blue crab CALLINECTES SAPIDUS, LANDED CCMMERCIALLy IM 1978

Crabber	June	Yuly	Aug	Sept	Oct	Nov	Total per Crabber
- ,	NEW JERSEY						
A-1		518	332	77			927
B-2		429	239	141 ${ }^{\text { }}$	114		923
C		307	283	52	*		642
I-1		372	*	*	*		372
J		120	86	80	71		357
Totals		1.746	940	350	185		3,221
DELAWARE							
J-3		173	111				284
J-d	16	103	90	42			251
π		27	123	33			133
M-I		42	110	110	101	2	365
Totals	16	345	434	185	101	2	1,083
Totals for All							
Crabbers and	16						
Grand Total	16	2,091	1,374	535	286	2	4.304

TABLE 3.1.5-2
MEAN NUMBER OF BUSHELS OF MARKETABLE HARD BLUE CRAB, CALI,INECTES SAPIDUS. LANDED COMMERCINLIY IN 1978

TABLE 3.1.5-3
NUMBER OF INDIVIDUAL MARKETABLE PEELER
BLUE CRAB, CALLINFCTES SAPIDUS, LANDED COMMERCIALLY IN 1978

Crabber	June	July	Aug	Sept	Oct	Nov	Total per Crabber
			NEW JERSEY				
N-1		9.320	4.785	125			14,430
B-2		2,068	1,387	140	55		3,650
C		2,044	*	*	*		2,044
I-1		2,609	*	*	-		2.609
J		3.158	1,478	9	0		4,645
Totals		19.399	7,650	274	55		27.378
			DELAWARE				
J-3		881	1,616				2,497
J-4	689	779	182	4			1.654
X		426	1.249	123			1,798
M-1		841	2,092	58	27	1	3,019
Totals	689	2.927	5,139	185	27	1	8,968
$\begin{aligned} & \text { Totals } \\ & \text { for All } \end{aligned}$							
Crabbers and Grand Total	689	22,326	12,789	459	82	1	36,346

TABLE 3.1.5-4
MEAN NUMBER OF INDIVIDUAL MARKETABLE PEELER BLUE CRAB, CALLINECTES SAPIDUS, LANDED COMMERCIALLY IN 1978

Crabber	June	July	Aug	Sept	Oct	Nov	Weighted Total Mean per Crabber
			NEW JERSEY				
A-1		1.5330	0.9457	0.0661			1.0965
B-2		0.4381	0.3584	0.0384	0.0224		0.2447
c		0.3698	*	*	*		0.3698
I-1		0.6287	*	*	*		0.6287
J		1.2811	0.6907	0.0046	0		0.5850
Monthly 0.8501 0.6649 0.03640 .0172							
DELAWARE							
J-3		0.2917	0.5247				0.4093
J-4	0.5029	0.3640	0.0827	0.0027			0.2300
π		0.5757	0.4678	0.1255			0.4096
M-1		0.8302	0.5233	0.0181	0.0094	0.0164	0.2711
Monthly 0.5029 0.5754 0.3996 0.04880 .00940 .0164							
Means	0.5029	0.5154	0.3996	0.0488	0.0094	0.0164	
Monthly							
Heans							
for All							
Crabbers							
* Data not	plied						

TABLE 3.1.5-5
MEAN NUMBER OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN per Sampled crab pot in 1978. NUMBER OF POTS SAMPLED ARE IN PARENTHESES

	Zones	June	July		August		September		October		Mean	
	SE-3		18.0	(20)			5.1	(23)			11.1	(43)
	SE-2				8.5	(8)					8.5	(8)
	SE-1				5.2	(17)					5.2	(17)
	Mean (East zone)		18.0	(20)	6.28	(25)	5.1	(23)			9.3	(58)
	NW-1				6.6	(5)					6.6	(5)
	RI-2				8.3	(3)					8.3	(3)
ω	W-3				4.7	(3)					4.7	(3)
-	W-2				4.3	(8)					4.3	(8)
$\stackrel{1}{1}$	W-1		18.0	(5)	5.0	(4)					12.2	(9)
U	SW-2		8.1	(12)							8.1	(12)
	SW-1						6.9	(19)	8.7	(22)	7.9	(41)
	Mean (West zone)		15.8	(17)	5.5	(23)	6.9	(19)	8.7	(22)	8.9	(81)
	Mean (Combined zones)		17.0	(37)	6.7	(48)	5.9	(42)	3.7	(22)	9.1	(149)

IA SALEM CR 1978

TABLE 3.1.5-6
CATCH AND PERCENT OF BLUE CRAB, CALLINECTES SAPIDUS, IN CRAB POT SAMPLES

CATCH AND PERCENT OF blue CRAB, CALLINECTES SAPIDUS, IN CRAB POT SAMPLES BY SEX AND DEVELOPMENTALS STAGE IN 1978									
zone	Matur Catch	$\begin{gathered} \text { Male } \\ 8 \end{gathered}$	Immet Catch	$\begin{gathered} \text { e Male } \\ \frac{8}{8} \\ \hline \end{gathered}$	Mature Catch	$\underset{\%}{\text { Female }}$	Immature Catch	$\begin{gathered} \text { Female } \\ z \\ \hline \end{gathered}$	Total
	: July								
SE3	163	45.4	11	3.1	118	32.9	67	10.7	359
W1	50	55.6	1	1.1	20	22.2	19	21.1	90
512	104	58.1			53	29.6	22	12.3	179
Total	317	50.5	12	1.9	191	30.4	108	17.2	628
	- August								
SE2	41	60.3	1	1.5	21	30.9	5	7.4	68
SEI	68	76.4			13	14.6	8	9.0	89
N61	24	72.7			5	15.2	4	12.1	33
RI2	15	60.0			9	36.0	1	4.0	25
W3	8	57.1			4	28.6	2	14.3	14
W2	12	35.3			15	44.1	7	20.6	34
W1	5	25.0		-	7	35.0	8	40.0	20
Total	173	61.1	1	0.4	74	26.2	35	12.4	283
September									
SE3	31	26.3	1	0.9	76	64.4	10	8.5	118
SW1	49	37.4			76	58.0	6	4.6	131
Total	80	32.1	1	0.4	152	61.0	16	6.4	249
October									
SWl	140	72.9	5	2.6	18	9.4	29	15.1	192
Total	140	72.9	5	2.6	18	9.4	29	15.1	192
Grand Total	710	52.5	19	1.4	435	32.2	188	13.9	1,352

TABLE 3.1.5-7

number and percentage of peeler blue crab CALLINECTES SAPIDUS, TAKEN BY CRAB POT in 1978

Zone	July		$n^{\text {August }} \text { Percent }$		September n Percent		Octaber n Percent		All months Combined n Percent	
58-3	19	5.0			0	0.0			19	4.0
SE-2			1	1.5					1	1.5
SE-1			1	1.1					1	1.1
Total and Percentage	19	5.0	2	1.3	0	0.0			21	3.3
NW-1			1	3.0					1	3.0
RI-2			0	0.0					0	0.0
W-3			0	0.0						0.0
W-2			1	2.9					1	2.9
W-1	2	2.0	0	0.0					2	1.8
SW-2	2	1.0							2	1.0
\$W-1					0	0.0	1	0.5	1	0.3
Total and Percentage	4	2.5	2	1.6	0	0.0	1	0.5	7	1.0
Total and Percentage for All Zones Combined	23	3.7	4	1.4	0	0.0	1	0.5	28	2.2

TABLE 3.1.5-8
MEAN CARAPACE WIDTH (in mm) OF MATURE MALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRAES MEASURED, IN PARENTHESES

zone	July	August	September	October	Mean of Means
SE-3	124.7(163)		148.7(31)		136.7(194)
SE-2		143.0(41)			143.0 (41)
SE-1		142.7(68)			142.7(68)
Mean of Means	124.7(163)	142.8(109)	148.7(31)		
NW-1		137.3(24)			137.3(24)
RI-2		135.5(15)			135.5 (15)
W-3		150.8 (8)			150.8 (8)
W-2		134.8(12)			134.8(12)
W-1	128.7(50)	128.8(5)			128.8(55)
SW-2	128.8(104)				128.8 (104)
SW-1			151.9(49)	141.2(140)	146.6 (189)
Mean of Means	128.8(154)	137.4(64)	151.9(49)	142.2(140)	
Mean of Means (All zones).	127.4(317)	139.0(173)	150.3 (80)	141.2(140)	

	TABLE 3.1.5-9 MEAN CARAPACE WIDTH (in mm) OF IMMATURE MALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRABS MEASURED, IN PARENTHESES				
Zone	July	August	September	October	Mean of Means
SE-3	102.3(11)		105(2)		$103.6(12)$
SE-2		210(1)	10s(1)		$110(1)$
Mean of Means	102.3(11)	110 (1)	110 (1)		
RI-2					
W-3					
W-2					
W-1	104(1)				104(1)
SW-2 104 (1)					
SW-1				107.0(5)	107.0(5).
Mean of Means	104(1)			107.0(5)	
Mean of Means (All Zones)	103.2(12)	$110(1)$	105(1)	107.0(5)	

TABLE 3.1.5-10
MEAN CARAPACE WIDTH (in mm) OF MAmURE FEMALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF CRABS MEASURED, IN PARENTHESES

zone	July	August	September	October	Mean of Means
SE-3	151.0(118)		161.5(76)		156.2(194)
SE-2		164.8(21)			164.8(21)
SE-1		162.2(13)			162.2(13)
Mean of Means	251.0(118)	163.5(34)	161.5(76)		
NW-1		168.4(5)			168.4(5)
RI-2		272.3(9)			172.3(9)
W-3		258.5(4)			158.5 (4)
W-2		170.9(15)			270.9(15)
W-I	151.6(20)	170.9(7)			161.2(27)
SW-2	153.5 (53)				153.5(53)
SW-1			168.5(76)	167.5(18)	168.0(94)
Mean of Means	152.6(73)	$168.2(40)$	168.5(76)	167.5 (18)	
Mean of Means (All zones)	152.0(191)	166.8(74)	165.0(152)	$167.5(18)$	

TABLE 3.1.5-11
MEAN CARAPACE WIDTH (in mm) OF IMMATURE FEMALE BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978. NUMBER OF. CRABS MEASURED, IN PARENTHESES

	Zone	July	August	September	October	Plean of Means
	SE-3	119.2(67)		107.3(10)		113.2(77)
	SE-2		125.0(5)			125.0 (5)
ω	SE-1		125.9 (8)			125.9(8)
$\stackrel{1}{\vdash}$	Mean of Means	119.2(67)	125.4(13)	107.3(10)		
0	NW-1		119.5(4)			119.5(4)
	RI-2		$117(1)$			117 (1)
	W-3		134.5(2)			134.5(2)
	W-2		122.9(7)			122.9(7)
	W-1	118.3(19)	131.3(8)			124.8(27)
	SW-2	119.0(22)				$119.0(22)$
	SW-1			122.0(6)	124.1(29)	123.0(35)
	Mean of Means	118.6(41)	125.0 (22)	122.0(6)	124.1(29)	
	Mean of Means (All Zones)	118.8(108)	125.2(35)	114.6(16)	124.1(29)	

TABLE 3.1.5-12
SIZE-CLASS (carapace width in mm) DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN BY CRAB POT IN 1978

		July					August			September			
	Carapace width (mm)	Mature Male	$\begin{aligned} & \text { Immature } \\ & \text { Male } \end{aligned}$	Mature Female	Immature Female	Mature Male	Imature Male	Mature Female	Immature Female	Mature Male	Immature Male	Mature Female	Immature Female
	70-74												1
	75-79									.			
	80-84												
	85-89												
	90-94		1		(1)								1
	95-99	1	2		1 (1)								
	100-104	8	3 (1)		4 (3)	2				1			1
	105-109	20	5		5 (5)	2			1	3	1		3
	110-114	39		1	14 (5)	2	1		2	2		1	2
	115-119	41			21 (5)	8			6 (1)	1		1	3
-	120-124	41		1	24 (1)	17			3 (2)	7		1	1
\mapsto	125-129	34		1	8 (1)	11			8	7			1
1	130-134	36		4	6	19			6	,			1
上	135-139	35		11	3	24			4	8		2	2
\checkmark	140-144	29		21		22			1	5		1	
\cdots	145-149	16		30		16		5	(1)	7		1	
	150-154	8		39		18		4		4		11	
	155-159	6		37		12		7		5		14	
	160-164	3		26		13		11		6		28	
	165-169			14		1		1.5		9		24	
	170-174	.		5		6		16		7	..	28	
	175-179			1				6		8		16	
	180-184							8		5	?	18	
	185-189							2		1		18 5	
	190-194												
	195-199												
	200-204												
	205-209												
	n	317	11 (1)	191	86 (22)	173	1	74	31 (4)	80	1	152	16
	\bar{x}	126.7	102.4	151.7	119.0	140.8	110	167.0	125.9	150.7	105	165.0	112.8

IA SALEM CR 1978

TABLE 3.1.5-12 CONTINUED

Carapace Width (mm)	October				Total			
	Mature	Inmature	Mature	Immature	Mature	Immature	Mature	Immature
	Male	Male	Female	Eemala	Male	Male	Feemale	Female
70-74								1
75-79								
80-84								
85-89		(1)				(1)		
90-94						1		1 (1)
95-99					1	2		1 (1)
100-104	*	1			11	4 (1)		5 (3)
105-109	4			,	29	6		12 (5)
110-114	2	1		3	45	2	2	21 (5)
115-119	8	2		5	58	2	1	35 (6)
120-124	13			5	78		2	33 (3)
125-129	11			4	56		1	21 (1)
130-134	13		1	3	68		5	16
135-139	18			3	85		13	12
140-144	17			2	73		22	
145-149	10		1	1	49		37	1 (1)
150-154	13	1			43		54	
155-159	10				33		58	
160-164	6		3		28		68	
165-169	4		5		14		58	
170-174	5		3		18		52	
175-179	2		3		10		26	
180-184	3		2		8		28	
185-189					1		7	
190-194	1				2		1	
195-199				-				
200-204								
205-209								
n	140	4 (1)	18	29	710	17 (2)	435	162 (26)
$\bar{\chi}$	141.2	107.0	167.5	124.1	135.7	104.3	159.6	120.8

IA SALEM CR 1978

TABLE 3.1.5-13
MONTHLY MEAN NUMBER OF BLUE GRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT 8Y 4.9 METER TRAWL IN WEST RIVER ZONES, 1978.

LOCAIION	JAN		FEB		MAR		APR		MAY		JUN		JUL	
	N/t	T	N/T	T	N/T	1	N / T	T	N/T	T	N/T	T	N/t	\dagger
Nw2	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.3	4.0	0.3	4.0
Na1	-	-	-	-	0.0	2.0	0.0	5.0	0.0	4.0	U. 0	6.0	0.5	4.0
w-3	-	-	-	-	0.0	3.0	0.0	5.0	0.0	5.0	0.8	6.0	0.3	4.0
n-2	-	-	-	-	0.0	2.0	0.0	4.0	0.3	4.0	0.5	4.0	0.0	4.0
$w-1$	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.3	4.0	0.3	4.0
S*2	-	-	-	-	0.0	2.0	0.0	4.0	0.5	6.0	1.8	5.0	1.0	4.0
Sm 1	-	-	-	-	0.0	2.0	0.0	4.0	0.3	4.0	1.8	4.0	0.0	4.0
crab totals	0.0		0.0		0.0		0.0		5.0		25.0		9.0	
NO. COLL.		-		-		15.0		30.0		31.0		33.0		28.0
N/T	-		-		0.0		0.0		0.2		0.8		0.3	

LOCATIUN	AUG		SEP		OCT		NOV		DEC				
	N/T	\top	N/t	1	N/T	T	N/T	T	N/T	1	$\begin{aligned} & \text { CATCH } \\ & \text { / UNIT } \\ & \text { EFFORT } \end{aligned}$	NO. COLL.	$\begin{aligned} & \text { CRAB } \\ & \text { TOTALS } \end{aligned}$
Nat	0.5	2.0	0.5	2.0	2.5	4.0	0.0	4.0	0.0	2.0	0.4	32.0	14.0
$\mathrm{N} \sim 1$	0.0	4.0	0.0	2.0	1.3	4.0	0.3	4.0	0.0	2.0	0.2	37.0	8.0
w-3	0.0	5.0	0.4	5.0	5.0	5.0	1.3	4.0	0.0	2.0	0.9	44.0	38.0
$w-2$	0.5	4.0	1.3	4.0	5.0	4.0	8.0	4.0	2.0	2.0	1.8	36.0	66.0
w-1	0.5	4.0	1.3	4.0	3.5	4.0	2.8	4.0	0.0	2.0	0.9	36.0	34.0
$\sin 2$	0.3	4.0	0.0	4.0	4.5	4.0	0.0	4.0	0.5	2.0	1.5	39.0	60.0
5×1	1.0	4.0	1.3	4.0	7.8	4.0	3.5	4.0	2.0	2.0	1.8	36.0	66.0
CRAB totals	10.0		42.0		123.0		63.0		9.0				286:0
NO. COLL.		27.0		25.0		29.0		28.0		14.0		250.0	
N/t	0.4		1.7		4.2		2.3		0.6		1.1		
M/T = NUMBER	10 m	Nute Col	CION.									A SALEM	1978

TABLE $3-1-5-14$ CRTHLY MEAN NUMBER OF GLUE CRAB. CALLINECTES SAPIDUS, IAKEN DURING DAYLIGHT by 4.9 METER TRAWL IN EAST AND REEDY ISLAND ZONES, 1978.

LOCATION	JAN		FEB		MAR		AFK		May		JUN		JUL	
	N/T	T	N/T	I	N/T	\dagger	W/T	I	N / T	T	N/T	T	N/t.	I
NE2	-		-	-	0.0	2.0	0.0	4.0						
NE 1	-		-		0.0	2.0	0.0	4.0	0.0	4.0 4.0	0.3	4.0	0.0	2.0
E-0	-		-		0.0	2.0	0.0	4.0	0.0 0.0	4.0 4.0	0.0 0.0	4.0 4.0	0.0 0.0	4.0
E-5	-		-		0.0	2.0	0.0	4.0	0.0	4.0	0.3	4.0	0.0	4.0
kI2	-	-	-		0.0 0.0	2.0	0.0	4.0	0.3	4.0	0.0	4.0	0.3	4.0
R11	-	-	-		0.0	2.0	0.0 0.0	4.0	0.0	4.0	0.3	6.0	0.0	4.0
E-3	-		-		0.0	2.0	0.0	4.0	0.0 0.0	4.0	0.0	5.0	0.5	4.0
E-2	-		-		0.0	2.0	0.0	4.0	0.3	4.0	0.0 0.0	4.0	0.5 0.5	4.0
SSC	-	-	-		0.0	2.0	0.0	3.0	0.3	3.0	2.3	3.0	0.5	4.0 2.0
E-1 SE3	-	-	-	-	0.0	2.0	0.0	4.0	0.5	4.0.	0.3	4.0	0.5	4.0
SE2	-	-	-	-	0.0	2.0	0.0	4.0	0.0	4.0	0.0	40	0.0	4.0
SE1	-	-	-		0.0	2.0 2.0	0.0	4.0	0.0	4.0	0.8	4.0	0.8	4.0
SEO	-	-	-	-	0.0	2.0	0.0	4.0		4.0	0.5 0.8	4.0	2.0 0.5	4.0
crab totals	0.0		0.0		0.0		1.0		6.0		20.0		29.0	
NO. COLL.		-		-		30.0		59.0		59.0		62.0		56.0
N/T	-		-		0.0		0.0		0.1		0.3		0.5	
n/t = numger per 10 minute collection.														
											IA SulEM Cf 1978			

MONTHLY MEAN NUMEER OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT By 4.9 METER TRAWL IN CHANHEL ZONES, 1978.

monthly mean number of bluble cray, callinectes sapious, taken at night BY 4.9 METER TRAWL IN $20 N E W-3,1978$.

monthly mean number of bluble cab, callitinectes sapidus, taken at night BY 4.9 METER TRANL IN ZONE SSC, 1978.

LOCATION	JAN		FEB		MAR		APR		Mar		Jun		JUL	
	N/T	T	N/T	1	N/T	T	N/T	T	N/T	τ	N/T	\dagger	N/T	T
ssc	-	-	-	-	0.0	1.0	0.0	1.0	6.0	1.0	3.0	1.0	-	-
crab rotals	0.0		0.0		0.0		0.0		6.0		3.0		. 0.0	
NO. COLL.		-		-		1.0	-	1.0		1.0		1.0		-
N/T	-		-		0.0		0.0		6.0		3.0		-	
$\mathrm{N} / \mathrm{t}=$ number	R 10		ION.									SALE	1978	

n/t = Numaer per 10 minute collection.
monthly mean number of blue crable callinectes sapidus. taken during daylight by ob.o meter seine at augustine beacii, 1978.

LOCATION	JAN		fee		Mar		APR		may		JUN		jul	
	N/COLL	COLL	N/COLL	coll	N/COLL	coll	N/COLL	COLL	N/COLL	coll	N/COLL	coll	N/COLL	coll
A	-	-	-	-	0.0	1.0	0.0	1.0	0.0	1.0	8.0	1.0	-	-
crab totals	0.0		0.0		0.0		0.0		0.0		8.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
n/COLL	-		-		0.0		0.0		0.0		8.0		-	
LGCation	aug		SEP		OCT		Nov		DEC					
	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	- $\mathrm{N} / \mathrm{COLL}$	COLL	N/COLL	COLL	$\begin{aligned} & \text { CATCH } \\ & \text { COOLL- } \\ & \text { EGTION } \end{aligned}$	NO. COLL.	$\begin{aligned} & \text { CRAB } \\ & \text { TOTALS } \end{aligned}$	
AUE 3	6.0	1.0	7.0	1.0	6.0	1.0	-	-	-	-	3.9	7.0	27.0	
crab totals	6.0		7.0		6.0		0.0		0.0				27.0	
No. COLL.		1.0		1.0		1.0						7.0		
n/coll	6.0		7.0		6.0		-		-		3.9			

monthly mean number of blue crable $3.1 .5-19$ HMEER OF BLUE CRAE, CALLINECTES SAPIDUS, TAKEN OURING DAYLIGHT
BY O8.6 MEIER SEINE AT SUNKEN SHIP COVE BEACH, 1978.

location	JAN		fE8		Nar		APR		MAY		JUN		JUL	
	N/COLL	COLL	$\mathrm{N} / \mathrm{COLL}$	COLL	$\mathrm{N} / \mathrm{COLL}$	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	n/COLL	COLL
ssco	-	-	-	-	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	-	-
crab tutals	0.0		0.0		0.0		0.0		0.0		0.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
n/COLL	-		-		0.0		0.0		0.0		0.0		-	
LOCATION	aug		SEP		OCT		NOV		DEC					
	H/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	CATCH 1 COLLECTION	NO. COLL.	$\begin{aligned} & \text { CRAB } \\ & \text { TOTALS } \end{aligned}$	
ssco	2.0	1.0	23.0	1.0	0.0	1.0	-	-	-	-	3.6	7.0	25.0	
crab iotals	2.0		23.0		0.0		0.0		0.0				25.0	
NO. COLL.		1.0		1.0		1.0						7.6		
n/coll	2.0		23.0		0.0		-		-		3.6			

monthly mean number of blue crab, callinectes sapidus. taken at night by 68.6 METER SEINE AT AUGUSTINE BEACH, 1978.

LOCATION	Jan		FEB		MAR		APR		may		Jun		Jut	
	N/COLL	COLL	$\mathrm{N} / \mathrm{COLL}$	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL
a 4 es	-	-	-	-	0.0	1.0	0.0	1.0	1.0	1.0	4.0	1.0	-	-
crat totals	0.0		0.0		0.0		0.0		1.0		4.0		0.0	
180. COLLL.		-		-		1.0		1.0		1.0		1.0		-
N/COLL	-		-		0.0		0.0		1.0		4.0		-	
											SALEM CR 1978			

TAGLE $3-1.5-20$
CONTINUED

honthly mean number of blue chab, callinectes sapious, taxen at night GY ó. 0 METER SEINE AT SUNKEN SHIP COVE gEACH, 1978.

location	JAN		fEa		MAR		APR		mir		Ju*		Jul	
	$\mathrm{N} / \mathrm{COLL}$	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	n/ COLL	coll
SSCo	-	-	-	-	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	-	-
crab totals	0.0		0.0		0.0		0.0		1.0		0.0		0.0	
NO. COLL.		-		-		1.0		1.0		1.0		1.0		-
N/COLL	-		-		0.0		0.0		1.0		0.0		-	
LOCATION	AUG		StP		OCT		Nov		OEC					
	H/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	CATCH 1 COLL- ECTION	NO. COLL.	CRAB TOTALS	
ssco	0.0	1.0	53.0	1.0	0.0	1.0	-	-	-	-	7.7	7.0	54.0	
crab rotals	0.0		53.0		0.0		0.0		0.0				54.0	
NO. COLL.		1.0		1.0		1.0						3.0		
N/COLL	0.0		53.0		0.0		-		\cdots		7.7			

TABLE 3.1.5-22
MONTHLY MEAN NUMBER OF GLUE CRAB, CALLINECTES SAPIDUS, TAKEN OURING DAYLIGHT BY 3.0 AND 7.6 METER SEINE AI RIVER SEINE STATIONS, 1978.

Locallon	JAN		F EB		MAR		APR		May		JUN		JUL	
	$\mathrm{N} / \mathrm{COLL}$	COLL	N/COLL	COLL	N/COLL	coll	N/COLL	COLL	N/COLL	COLL	N/COLL	coll	N/COLL	COLL
PHOT.	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
S6\%で	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
Alits	$=$	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	1.5	2.0	0.0	1.0
Si3a	$=$	-	-	-	0.0	1.0	0.0	2.0	0.5	2.0	0.0	2.0	0.0	2.0
REI4	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	1.5	2.0	0.0	2.0
ELPj	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
085a	-	-	-	-	0.0	1.0	0.0	2.0	0.5	2.0	0.0	2.0	0.0	2.0
ssco	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	1.0	1.0
HOP 7	-	-	-	-	0.0	1.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0
MHCB	-	-	-	$=$		1.0	0.0		0.0	2.0		2.0	0.0	2.0
CRAB rotals	0.0		0.0		0.0		0.0		2.0		6.0		1.0	
NO. COLL.		-		-		10.0		20.0		20.0		20.0		18.0
N/COLL	*		-		0.0		0.0		0.1		0.3		0.1	
LOCATION	AUG		SEP		OCT		NOV		DEC					
	$\mathrm{N} / \mathrm{COLL}$.	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	N/COLL	COLL	$\begin{aligned} & \text { CATCH } \\ & \text { CCOLL- } \\ & \text { ECTION } \end{aligned}$	NO. COLL.	$\begin{aligned} & \text { CRAB } \\ & \text { TOTALS } \end{aligned}$	
PHD1	0.0	2.0	0.5	2.0	0.0	1.0	0.0	2.0	0.0	1.0	0.1	17.0	1.0	
SG62	0.5	2.0	0.0	2.0	0.0	1.0	0.0	2.0	0.0	1.0	0.1	17.0	1.0	
Als 3	0.5	2.0	5.0	2.0	0.0	2.0	5.0	2.0	0.0	1.0	1.4	17.0	24.0	
ST3A	0.5	2.0	6.5	2.0	0.0	1.0	0.0	2.0	0.0	1.0	0.9	17.0	15.0	
RE14	0.5	2.0	8.5	2.0	0.0	1.0	0.0	2.0	0.0	1.0	1.2	17.0	21.0	
ELPS	0.0	2.0	0.5	2.0	0.0	1.0	0.0	2.0	0.0	1.0	0.1	17.0	1.0	
OBSA	0.0	2.0	0.5	2.0	0.0	1.0	0.0	2.0	0.0	1.0	0.1	17.0	2.0	
SSCo	0.0	2.0	0.5	2.0	0.0	2.0	0.0	2.0	0.0	1.0	0.1	17.0	2.0	
HOP 7.	0.0	2.0	0.0	2.0	0.0	1.0	0.5	2.0	0.0	1.0	0.1	17.0	1.0	
HHCS	0.0	2.0	1.5	2.0	0.0	1.0	1.5	2.0	0.0	1.0	0.4	17.0	6.0	
CRAB TOTALS	4.0		47.0		0.0		14.0		0.0				74.0	
NO. COLL.	20.0		20.0		12.0		20.0		10.0		170.0			
N/COLL	0.2		2.4		0.0		0.7		0.0		0.4			
									1978					

CRBLE 3.1.5-23
SIze-class oistrigution of blue crab, callinectes sapidus, yaken during daylight BY 4.9 IMETER TRAWL IN WEST RIVER ZONES, 1978 .

CARAPACE												
WIDTH (4M)	JAN	FEB	MAR	APR	MAY	Jun	JUL.	aug	SEP	$06 T$	Nov	DEC
001-0u5	-	-	-	-	-	-	-	\cdots	-	-	-	
OUn-U10	-	-	-	-	-	-	. -	-	1	-	\cdots	-
011-015	-	-	-	-	-	-	-	-	4	3	2	-
016-U20	-	-	-	-	-	-	-	2	5	2	3	1
021-425	-	-	-	-	-	-	-	-	7	16	21	*
128-1130	-	-	-	-	-	1	-	1	1	19	8	2
031-us5	-	-	-	-	-	-	-	$=$	3	14	6	1
03n-U60	-	-	-	-	-	-	-	-	-	9	4	1
041-445	-	-	-	-	-	-	-	-	1	5	3	3
046-usu	-	-	-	-	1	1	-	-	1	2	2	-
U59-455 $050-065$	-	-	-	-	1	-	\square	-	1	5	2	1
$050-160$ $001-655$	-	-	-	-	-	-	-	-	1	4	2	-
$061-055$ $000-4 / 0$	-	-	-	-	1	1	-	-	3	7	2	-
$000-4 / 0$ $071-015$	-	-	-	-	-	1	-	-	2	9	2	-
071-0195 $070-000$	-	$=$	-	\cdots	-	1	-	$=$	$\overline{1}$	$?$	1	$=$
0×1-iys	-	-	-	\cdots	-	1	-	-	1	5	1	$=$
08n-u>0	-	-	-	-	1		-	-	-	1	2	-
991-075	-	-	-	-	1	3	-	-	1	4		-
090-100	-	-	-	-		2	1	-	1	1	1	-
161-105	-	-	-	-	-	5	-	-	-	3	1	-
100-110	-	-	-	-	-	1	-	1	2		1	\sim
111-115	-	-	-	-	-	1	1	-		-	-	-
	-	-	-	-	-	2	-	1	1	-	-	-
121-125	-	-	-	-	-	2	2	-	-	-	-	-
120-130	-	-	-	-	-	\pm	1	-	-	i	1	-
131-135	$=$	-	-	-	-	-	1	-	-	-	1	-
130-140	-	-	-	-	-	-	1	-	-	1	-	-
$\begin{aligned} & 141-145 \\ & 160-150 \end{aligned}$	-	-	-	-	-	-	-	1	-	1	-	-
$\begin{aligned} & 160-150 \\ & 151-155 \end{aligned}$	$=$	-	$=$	-	-	1	2	1	-	-	-	-
$\begin{aligned} & 151=155 \\ & 150-100 \end{aligned}$	-	-	-	-	-	-	$=$	$=$	-	-	\pm	-
101-15s	-	-	-	-	-	-	$=$	1	1	-	$=$	-
$100-110$	"	-	-	-	-	-	-	1	-	-		-
171-175	-	-	-	-	-	-	-	1	1	1	\cdots	\cdots
$\begin{aligned} & 17 b-130 \\ & 181-135 \end{aligned}$	-	\square	\cdots	-	-	-	-	-	\square	-	-	-
					-	-	*	-	1	-	-	\cdots
total meas.	-	-	-	-	5	25	9	10	39	122	53	9
Total taken	-	-	-	\cdots	5	25	9	10	42	123	63	9
HEAN	-	-	*	\bigcirc	69.0	84.1	128.3	108.5	54.0	50.4	39.83	30.0
											la shl	CR 1878

TABLE 3-1.5-26
SIze-class distribution of blue crab, callinectes sapidus, taken during dayligh By 4.9 METER TRAWL IN EAST AND REEOY ISLAND ZONES, 1978.

CARAPACE												
WIUTH (ay)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0 CT .	NOV	DEC
Uu1-u's	-	-	-	\cdots	-	-	-	-	-	-	-	-
0010-010	-	-	-	-	-	-	-	-	-	-	-	-
011-015	-	-	-	-	-	-	-	-	1	1	3	2
010-020	-	-	-	-	1	-	-	-	4	14	7	8
$0<1-U 25$	-	-	-	-	-	-	-	-	2	41	19	5
v2c-usu	-	-	-	-	1	-	-	-	4	31	16	3
031-035	-	-	-	-	-	1	-	-	4	25	12	6
0.30-440	-	-	-	-	-	-	-	-	4	12	8	-
041-1145	-	-	-	-	1	2	-	-	3	9	5	1
040-U50	=	-	-	1	-	-	-	-	7	10	4	1
051-055	-	-	-		2	1	-	-	14	7	2	-
050-us?	-	-	-	-	-	-	-	-	4	9	2	1
(is)-i) 5	\cdots	-	-	-	-	\cdots	-	-	3	6		1
-00-070	-	-	-	-	-	1	-	-	-	6	-	-
$011-075$	-	-	-	-	-	1	-	-	2	- 6	1	1
UPO-103	-	-	-	-	-	1	1	-	-	- 6	1	-
081-us5	-	-	-	-	\bullet	2	-	-	2	5	1	-
000-u7i	-	-	-	-	1	-	-	-	1	8	2	-
091-075	-	-	-	-	-	2	-	1	1	4		-
U40-130	-	-	-	-	-	1	2		-	2	2	-
101-135	-	-	-	-	-	1	3	-	-	4	-	-
1100-110	-	-	-	-	-	2	1	-	-	1	-	1
$111-115$	-	-	-	-	-	1	-	1	-	4	-	-
$110-120$	-	-	-	\sim	-	-	3	-	-	1	-	-
$121-125$	-	-	-	-	-	1	3	-	1	4	-	-
$120-130$	-	-	-	-	-	-	4	2	-	-	-	-
$131-135$	-	-	-	-	-	1	1	-	2	1	-	-
136-140	-	-	-	-	-	-	1	3	-	- 1	-	-
14,145	-	-	-	-	-	-	-	2	-	-	-	-
$140-150$ 151515	-	-	-	-	-	-	3	2	3	2	-	-
$151-155$ $150-150$	-	-	-	-	-	-	1	-	-	2	-	-
$\begin{aligned} & 156-150 \\ & 101-155 \end{aligned}$	-	-	-	-	-	-	3 2	1	1	2	-	5
$\begin{aligned} & 101-165 \\ & 100-170 \end{aligned}$	-	-	-	\pm	-	-	2	1	1	2	-	1
171-175	-	-	-	-	-	\cdots	-	-	1	1	-	-
170-150	-	-	-	-	-	-	-	-	1	2	-	-
131-135	-	-	-	-	-	-	1	1	3		-	-
180-170	-	-	-	-	-	-	-	-	-	-	-	-
191-175	-	-	-	-	-	-	-	-	1	-	-	-
190-200	-	-	-	-	-	-	-	-	-	-	-	-
201-235	-	-	-	1	-	-	-	-	1	-	-	3
total meas.	-	-	-	1	6	20	29	12	74	229	85	30
Totil taken	-	-	-	1	6	20	29	13	74	229	87	30
mear	-	-	-	48.0	47.0	82.6	130.5	139.0	75.9	53.1	34.9	35.9
											IA SALEM	CR 1978

TABLE 3．1．5－25
IzE－CLASS DIStribution of blue crab．callinectes sapidus，taken ouring oaylight BY 4．9 MEYER TRAWL IN CHANNEL ZONES， 1978.

CARAPACE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	，SEP	OCT	Nov	OEC
WIDTH（M．H）												
001－005	－	－	－	－	－	－	－	－	－	－	－	－
0006010	－	－	－	－	－	－	－	－	－	－	－	－
011－015	－	－	－	－	－	－	－	－	1	－	－	－
01ヶ－020	－	－	－	－	－	－	－	－	3	－	\sim	－
021－025	－	－	\cdots	－	－	－	\cdots	－	－	－	－	1
026－030	－	－	－	－	－	－	－	－	1	－	－	2
031－035	－	－	－	－	－	－	－	－	－	－	2	－
036－040	－	－	－	－	－	－	－	－	－	3	－	－
041－045	－	－	－	－	－	－	－	－	2	3	i	－
046－050	－	－	－	－	－	－	a	－	2	－	－	1
051－055	－	－	－	－	－	－．	－	－	2	－	\sim	－
056－050	－	－	－	－	－	－	－	\cdots	1	－	－	－
161－u65	－	－	－	－	－	－	－	－	1	－	－	－
060－070	－	－	－	\sim	－	－	－	－	1	－	－	－
071－075	－	－	－	－	－	－	－	－	－	－	－	\sim
070－080	－	－	－	－	－	－	－	－	－	1	－	－
081－035	－	－	－	－	－	－	－	－	1	1	－	\sim
0180－070	－	－	－	－	－	－	－	－	－	－	－	－
091－ベจ5	－	－	－	－	－	－	－	－	3	－	－	－
09\％－103	－	－	－	－	－	－	－	－	－	1	－	－
101－105	－	－	－	－	－	－	－	－	－	－	－	\cdots
106－110	－	－	－	－	－	－	2	－	－	－	－	1
111－115	－	－	－	－	－	－	1	－	－	－	－	1
110－120	－	－	－	－	－	－	3	－	－	－	\cdots	－
121－125	－	－	－	－	－	－	1	－	－	－	－	－
126－130	－	－	－	－	－	－	－	－	－	－	－	－
$131-135$ $138-140$	－	－	－	－	－	－	7	－	－	2	－	－
$136-140$ $141-145$	－	－	－	－	－	－	1	－	－	－	－	$=$
146－150	－	－	－	－	－	－	－	－	－	－	\sim	－
151－155	－	－	－	－	－	－	－	－	－	－	－	－－
156－160	－	－	－	－	－	－	－	－	－	1	－	－
161－165	－	－	－	－	－	－	－	－	1	－	－	－
106－170	－	－	－	－	－	－	1	－		－	－	－
171－175	－	－	－	－	－	－	1	－	－	－	－	－
dotal meas．	－	－	－	－	－	－	11	－	19	9	3	5
total taken	－	－	－	－	－	－	11	－	19	9	3	5
MEAN	－	－	－	－	－	－	130.5	－	57.8	88.2	34.7	47.6
											IA SAL	C8 1978

TABLE 3.1.5-26
SIZE-CLASS DIStribution of bluf crab. Callinectes sapidus, taken at night BY 4.9 METER TPAWL IN ZONE W-3. 1978.

$\begin{aligned} & \text { CARAPACE } \\ & \text { WIOTH (MY) } \end{aligned}$	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	$0 C T$	Nov	DEC
							-	-	-	-	-	-
001-005	-	-	-	-	-	-	-	-	-	-	-	-
$008-010$ $1119-015$	-	-	-	-	-	-	-	-	1	-	-	
1010-020	-	-	-	-	-	-	-	-	-	-	-	-
021-025	-	-	-	-	-	-	-	-	-	\cdots	-	
020-1330	*	-	-	-	-	-	-	-	-	-	-	
0.31-035	-	-	-	-	-	-	-	-	-	-	-	
030-440	\cdots	-	-	-	-	-	-	-	-	-	-	
041-14.5	-	-	-	-	-	-	-	-	-	-	-	
046-050	-	-	-	-	-	-	-	-	-	-	-	
051-0155	-	-	-	-	-	-	-	-	-	-	-	
115n-U50	-	-	-	-	-	-	-	\cdots	-	-	-	-
1351-055	-	-	-	-	-	-		-				
000-073	-	-	\because	-	-	-		-				
071-0)15	-	-	-	-	-	-	-	-		-	-	
(170-030	-	-	-	-	-	-	-	-	-	-	-	
081-1)35	-	-	-	-	-	1	-	-	-	-	-	-
086-090	-	-	-	\cdots	-	-	-	-		-	-	-
091-675	-	-	-	-	-	-		-				
199ヶ-1 30	-	-	-	-	-	-	-	-	-		-	
101-105	\sim	-	-	-	-	-	-	-	-	-	-	
106-110	-	-	-	-	-	\square	-	-	-	-	-	
111-115	-	-	-	-	-	-	-	-	-	-	-	-
119-120	-	-	-	-	-	-	-	\square	-	-	-	-
121-125	-	-	-	-	-	-	-	\square	-	-	-	-
126-130	-	-	-	-	-	-	-	-	-	-	-	-
131-135	-	-	-	-	-	-	-	-	-	-	-	-
136-140	-	-	-	-	-	-	-	-	-	-	-	-
141-145	-	-	-	-	-	-	-	-	-	-		-
146-150	-	-	-	-			-	-				-
151-155	$=$	-	-	-	-	-	-	1	-	-	-	-
150-150	$=$	-	-	-			-					
total meas.	-	-	-	-	-	1	-	1	1	-	-	-
rotal taken	-	-	-	-	-	- 1	*	1	1	-	-	-
mean	\cdots	"	-	-	-	82.0	\cdots	160.0	14.0	-	-	-
											SA	1978

table 3.1.
SIZE-CLASS distribution of blue crab, callinectes sapidus. taken at night BY 4.9 METER TRAWL IN ZONE SSC. 1978.

CARAPACE												
WIDTH (MM)	JAN	FE日	MAR	APR	may	JUN	JUL	aug	SEP	OCT	NOV	DEC
001-005	-	-	-	-	-	-	-	-	\cdots	-	\cdots	-
000-010	-	-	-	-	-	-	-	-	-	-	-	-
011-015	-	-	-	-	-	-	-	-	3	-	-	-
016-020	-	-	-	-	-	-	-	1	3	-	-	.
021-025	-	-	-	-	-	-	-	1	3	-	-	-
126-030	-	-	-	-	1	-	-	4	1	1	\cdots	-
031-035	-	-	-	-	-	-	-	-	3	-	-	-
036-060	-	-	-	-	3	-	-	-	-	1	-	-
041-045	-	-	-	-	-	-	-	-	-	1	-	-
140-050	-	-	-	-	-	-	-	-	1	4	-	-
051-u55	-	-	-	-	-	-	-	-	3	2	-	-
050-uso	-	-	-	-	-	-	-	-	1	-	-	-
061-055	-	-	-	-	1	-	-	\cdots	-	-	-	-
166-473	-	-	-	-	-	-	-	-	-	-	-	-
071-075	-	-	-	-	-	1	-	-	-	2	-	-
078-080	-	-	-	-	-	-	-	-	-	-	-	*
081-035	-	-	-	-	-	-	-	-	\cdots	-	-	-
08or-u*	-	-	-	-	-	-	-	-	-	1	-	-
091-095	-	$\stackrel{-}{-}$	-	-	-	-	-	-	-	1	-	-
090-100	-	-	-	-	1	1	-	-	-	2	-	-
101-105	-	-	-	-		-	-	-	-	2	-	-
106-110	-	-	-	-	-	-	-	-	-	-	-	-
111-115	-	-	-	-	-	1	-	-	-	-	-	$=$
116-120	-	-	-	$-$	-	-	-	-	-	-	-	-
total meas.	-	-	-	-	6	3	*	6	18	15	-	*
total taxen	-	-	-	-	6	3	-	6	18	15	-	-
mean	-	-	-	-	50.5	94.7	-	26.5	30.9	61.7	-	-
											SA	1978

TARLE 3.1.5-28
SIZE-CLASS OISTRIBUTION OF BLUE CRAG, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT By 68.6 METER SEINE AT AUGUSTINE BEACH. 1978.

Size-class distribution of blue crab, gallinectes sapious, taken during daylight By 68.6 heter seine at sunken ship cove geath, 1978.

> SIZE-CLASS DISTRIBUTION OF BLUE CRAB, CALLINECTES SAPIDUS, TAKEN AT NIGHT by 68.6 METER SEINE AT AUGUSTINE BEACH, 1978.

SIZE-CLASS OISTRIBUIION OF BLIUE CRAB CALINECTES SAPIDUS, TAKEN AT NIGHT by 68.6 METER SEINE AT SUNKEN SHIP COVE bEACH, 1978.

CARAPACE												
WIDIH (MY)	JAN	feg	MAR	APR	may	JUN	JUL	Aug	SEP	OCT	Nov	DEC
001-005	-	-	-	-	-	-	-	-	-	-	-	-
00t-010	-	-	-	-	-	-	-	-	-	-	-	-
011-015	-	-	-	-	\cdots	-	-	-	2	-	\cdots	-
0io-020	-	-	-	-	-	-	\cdots	-	3	-	-	-
021-025	-	-	-	-	-	-	-	-	5	-	-	-
026-030	-	-	-	-	-	- ${ }^{\text {- }}$	-	-	6	-	-	-
031-035	-	-	-	-	1	-	-	-	4	-	-	-
036-0440	-	-	-	-	-	-	-	-	1	-	-	-
041-045	-	-	-	-	-	-	-	-	1	-	-	-
04t-050	-	-	-	-	-	-	-	-	1	-	-	-
051-055	-	-	-	-	-	-	-	-	4	-	-	-
U50-060	-	-	-	-	-	-	-	-	1	-	-	-
061-005	-	-	\rightarrow	-	-	-	-	-	4	-	-	-
006-070	-	-	-	-	-	-	-	-	1	-	-	-
071-075	-	-	-	-	-	-	-	-	1	-	-	-
076-080	-	-	-	-	-	-	-	-	1	-	-	-
081-455	-	-	-	-	-	-	-	-	-	-	-	-
08ヶ-u70	-	-	-	-	-	-	-	-	-	-	-	-
091-095	-	-	-	-	-	-	-	-	1	$\stackrel{-}{\square}$	-	-
090-100	-	-	-	-	-	-	-	-	-	-	-	-
total meas.	-	-	-	-	1	-	-	-	35	-	\cdots	-
total taken	-	-	-	-	1	-	-	-	53	-	\cdots	-
MEAL	-	-	-	-	33.0	-	-	-	39.5	-	-	-
IA SALEAM CR 1978												

SIZE-CLASS DISTRIBUTION OF BLIJE CRAB, CALLINECTES SAPIDUS, TAKEN DURING DAYLIGHT 8Y 3.0 AND 7.6 METER SEINES AT RIVER SEINE STATIONS. 1978.

-

$$
0
$$

pumbe semice dactrac and gas compary

Creek trawl locations-1978 shbm xheldar genmating sthton

public service blectric and cas company	
salem nuclear generating station	Creek seine locations-1978

public service mectric and gas compamy	
salem nuchar ceneraming smmon	Spatial distribution of blue crab in river trawl collections-1978

3.1-202

public service baectric and gas combany SALEM NUCLEAR GENERATING smTION	Seasonal size distribution standardized for effort of blue crab in river trawl collections-1978
	Figure 3.1.5-6

```
3.1.6a Juvenile And Adult Fishes - River
    (ETS Section 3.1.2.1.1g)
```

The fishes of the Delaware River near Artificial Island were sampled in 1978 by seine, trawl; and gill net within the area illustrated in Figure 3.1.6a-1. Objectives of the daylight seine and trawl programs were to determine l) species composition, 2) spatial and temporal distribution, and 3) relative abundance of Eishes. The objective of the night seine and trawl program was to identify diel differences in species abundance. The objective of the gill net program was to determine the period of occurrence and distribution of alosids during migratory movements through the study area.

3.1.6a.1 Summary

Some lll species of 51 families have been taken from the study area and contiguous regions since the study began in mid 1968 (Table $3.1 .6 a-1$). In 1978, 148,538 specimens of 54 species of 31 families were taken in combined daylight seine, trawl, and gill net collections. All but the rainbow trout and harvest fish had been collected in previous years. The catch included freshwater, estuarine, and marine species which utilized the region primarily as a nursery or feeding area.

Weakfish (49,615 specimens), bay anchovy (36,861), hogchoker $(33,919)$, white perch $(2,909)$, spot $(1,067)$, Atlantic croaker (994), American eel (814), and blueback herring (594) were most abundant in the trawl catch and comprised nearly ninety-nine percent of the annual catch. Atlantic silverside $(5,022)$, bay anchovy $(4,400)$, Atlantic menhaden (658), and mummichog (484) were the most abundant species taken by seine and comprised about ninety percent of the annual catch. Atlantic menhaden (6,776), blueback herring (1,478), alewife (370), bluefish (121), and American shad (30) comprised nearly ninety-nine percent of the gill net catch.

Catch composition correlated strongly with seasonal variations in salinity and water temperature. Fewest species and specimens were taken in March, a period of low water temperature and salinity. The catch in deeper waters comprised primarily white perch. No fish were taken in abundance in the shore zone.

Species variety and specimen counts increased during April through June, a period of rising water temperature and salinity. Many summer residents including bay anchovy,

Atlantic menhaden, bluefish, and summer flounder were taken during this period. Juvenile weakfish appeared in very large numbers in late June. Adult alosids (American shad, blueback herring, alewife) were taken during pre-spawning migrations.

Bay anchovy, hogchoker, and white perch were predominant in the trawl catch during April and May. Weakfish replaced white perch as one of the predominant species in June. In the shore zone bay anchovy, Atlantic menhaden, Atlantic silverside, and mummichog were most abundant.

Species number and abundance remained high through September as the summer ichthyofaunal community became established. Several marine strays including inshore lizardfish, Atlantic needlefish, and harvestfish appeared in the catch during this period. Weakfish, bay anchovy, and hogchoker were predominant in the offshore catch; in the shore zone, Atlantic silverside and bay anchovy were predominant.

As temperature declined during October through December, summer residents began emigration from the study area and were gradually replaced by winter species. Juvenile herrings and American shad were taken as they migrated through the region from upriver nursery areas.

Weakfish numbers dropped drastically during this period. However, bay anchovy and hogchoker continued to be taken in large numbers offshore during October and November. In the shore zone only Atlantic silverside was abundant.

By December only hogchoker and white perch were taken in abundance offshore. No fish were taken in abundance in the shore zone during this period.

3.l.6a.2 Seine

Seines were hauled during daylight to determine species composition and the spatial and temporal distribution of fishes in the shore zone. Night collections were also made to identify diel differences in species abundance.

MATERIALS AND METHODS
Field

All seine samples required under this ETS were collected. Biweekly seine collections were taken during daylight at ten stations from March 17 through December 12 (Table 3.l.6a-2,

Fig. 3.1.6a-1). Inclement weather and river icing precluded sampling during January, February, early March, and late December. Corresponding night and day collections were taken monthly from March through October except during July, at stations SSC6 and AUB3. Collections were taken about 12 hr apart on two consecutive days.

Two types of seine were employed: a $7.6-\mathrm{m} x .1 .2-\mathrm{m}$ (25.0-x 4.0-ft) bag seine with $6.4-\mathrm{mm}(1 / 4-i n)$ stretch mesh and a $3.0-\mathrm{m} \times 1.2-\mathrm{m}(10.0-\mathrm{x} 4.0-\mathrm{ft})$ flat seine with $3.2-\mathrm{mm}$ (1/8-in) stretch mesh.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977; for a complete description see the 1977 Annual Environmental Operating Report.

Data Reduction

Data are discussed on the following statistics: $s=$ species variety, $n=$ number of specimens, and $n / c o l l=$ number of specimens per collection.

To show the temporal abundance of the more abundant species, catch data ($n / c o l l$) were transformed by the $\log (x+1)$ and the mean plus and minus one standard deviation and the range for each month were plotted.

To show the spatial distribution of these species the above listed parameters plus the 95 percent confidence interval of the mean were calculated and plotted for each station for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September 16 through December 15).

Catch composition between combined east and west stations was compared using Spearman's coefficient of rank correlation.

Principal components analysis (BMDP4M Factor Analysis; Dixon, 1975) was used to calculate and display similarities in the catch composition among. stations. This method is described by Marriott (1974) and Pielou (1977). The 13 more abundant species were included as variables and stations as observations. A species by species (R -mode) product moment correlation matrix was calculated from $\log (x+1)$ transformed catch data. The factor scores for each station along only the first three component axes were plotted.

RESULTS

Temporal Catch Composition

A total of 11,661 specimens of 31 species were taken in 170 seine collections (Table 3.1.6a-3). Atlantic silverside ($\mathrm{n}=5,022$), bay anchovy (4,400), Atlantic menhaden (658), and mummichog (484) were most abundant and comprised 90.1 percent of the total catch.

Seasonal catch patterns were evident. March and April were characterized by low species variety (s = 3 and 5) and abundance $(\mathrm{n} / \mathrm{coll}=1.8$ and 3.3). Mummichog and Atlantic silverside were predominant (85.7 percent of the catch). Species variety and abundance increased through June ($s=16 ; n / c o l l=164.7$) as large numbers of adult bay anchovy and young Atlantic menhaden, along with several less abundant summer residents, including spot, weakfish, and hogchoker moved into the study area. Atlantic silverside and mummichog were also taken in abundance. During July through September species variety (monthly $s=16-17$) and abundance (monthly $\mathrm{n} / \mathrm{coll}=.72 .6-159.0$) remained high.

Several marine strays including inshore lizardfish, and Atlantic needlefish were taken during the period. The catch was predominated by young of the Atlantic silverside and bay anchovy. In October species variety ($3=8$) decreased as the marine strays and several summer residents emigrated from the area. However, the catch remained high ($\mathrm{n} / \mathrm{coll}=74.1$) because of the abundance of Atlantic silverside ($n / c o l l=63.2$). Species variety increased in November ($s=12$) but decreased in December (4) as lingering estuarine species migrated downay. Abundance decreased in both months ($n /$ coll $=12.8$ and 4.3, respectively).

Spatial Catch Composition

The annual $n / c o l l$ was 85.6 for east stations and 51.6 for west stations. The five west stations yielded 29 species; the five east stations yielded l8. Sixteen species were common to east and west stations. Spearman's rank correlation coefficient ($r_{s}=.798, \mathrm{p} \leq 0.0001$) indicates a high degree of correlation ${ }^{\text {between the catches of the two }}$ groups.

Between-station similarity based on catch composition was plotted along the first three component axes in Figure 3.1.6a-2. These components explain 71.1 percent of the total variance (Factor $I=30.9$ percent; Factor $I I=25.2$; Factor III $=15.0$).

Two groups of stations can be identified. One closely associated group is SSC6, HOP7, and MHC8. These stations are located on the east shore south of Salem and may experience similar physicochemical conditions. A second group, less closely associated, consists of the five stations on the west side of the river plus Station ELP5. Station OB5A is not closely associated with any other station and is most distant from the first group both on the figure and geographically. The general north-south trend along axis I suggests that a factor such as salinity has a strong influence on catch composition.

Species Accounts

The following discussion traces the abundance and distribution of the four more abundant species. They are presented in order of decreasing abundance and based on summary data in Table 3.1.6a-3 and Figures 3.1.6a-3 through 17. Additional data have been included which are not presented in tables but are contained in the PSE\&G aquatic data base.

1. Atlantic silverside ($\mathrm{n}=5,022$, young and adult) comprised 43.1 percent of the total catch (Table 3.1.6a-3). Length range was $12-120 \mathrm{~mm}$.

It was collected from March through December (Fig. 3.1.6a-3). During spring Atlantic silverside was collected in low numbers at all four stations south of Salem but was most abundant at HOP7 (Fig. 3.l.6a-4). It was taken at only two of six statons north of Salem. Most captures were adult. Abundance increased through July as age $0+f i s h$ were recruited into the catch. After June the catch was almost entirely age 0+. The catch declined in August but increased in September. Abundance during summer was greater than during spring at all stations. There was a general increase in abundance from north to south but the catch was greatest at MHC8 and AUB3 (Fig. 3.1.6a-5). The species remained abundant through October but the catch declined sharply in November and remained low in December (Fig. 3.l.6a-3). The catch during fall was less than during summer at all stations. The greatest abundance during fall was at SSC6 (Fig. 3.1.6a-6).

Atlantic silverside comprised 85.3 percent of the catch in October; from May through September it comprised 24.2 to 59.7 percent of the monthly catch.

It was collected at all stations but the catch was greatest at MHC8 ($n=1,302$) where 25.9 percent of the annual catch
was taken (Table 3.l.6a-3). The annual $n /$ coll was 33.8 for east stations and 25.2 for west stations. The n/coll for night collections was 20.3; for comparable day collections it was 53.1.
2. Bay anchovy ($\mathrm{n}=4,400$, young and adult) comprised 37.7 percent of the total catch (Table 3.1.6a-3). Length range was $16-91 \mathrm{~mm}$.

It was collected from May through November (Fig. 3.l.6a-7). During spring bay anchovy was taken at eight stations and in low numbers (Fig. 3.l.6a-8). All were age l+ or older. Abundance during summer was greater than during spring at all stations as age $0+$ fish were recruited into the catch (Fig. 3.l.6a-9). When abundance peaked in July they predominated the catch. Abundance decreased in August but increased to July levels in September (Fig. 3.1.6a-7). Station OB5A had the greatest catch during the period. During fall abundance decreased steadily. Bay anchovy was taken at all stations except SSC6 but abundance at each station was less than during summer (Fig. 3.l.6a-l0). Greatest abundance was at ST3A.

Bay anchovy comprised 64.8, 62.2, and 47.3 percent of the catch in May, September, and August, respectively. During other months the percentage ranged from 13.6 to 32.0 .

It was collected at all stations but the catch was greatest at Station OB5A ($n=1,146$) where 26.0 percent of the annual catch was taken (Table 3.1.6a-3). The annual $\mathrm{n} / \mathrm{coll}$ was 35.4 for east stations and 16.3 for west stations. The n/coll for night collections was 14.0; for comparable day collections it was 13.4.
3. Atlantic menhaden ($\mathrm{n}=658$, age $0+$ and $1+$ young) comprised 5.6 percent of the total catch (Table 3.1.6a-3). Length range was $22-160 \mathrm{~mm}$.

It was collected from May through September (Fig. 3.1.6a-ll). During spring it was taken at eight stations and in low numbers. During this period there was a slight increase in abundance from north to south (Fig. 3.l.6a-12). The catch (predominantly age $0+$) peaked in June and declined in July and August. During summer Atlantic menhaden was taken at all stations (Fig. 3.l.6a-13). Abundance was greater than during spring at seven stations. It was no longer most abundant at southern stations; it was most abundant at $O B 5 A$ and $A U B 3$. Only one specimen was taken during fall.

Atlantic menhaden comprised 17.1 percent of the July catch. During other months it comprised less than 3.1 percent.

It was taken at all stations but the catch was greatest at OB5A ($n=207$) where 31.5 percent of annual catch was taken (Table 3.1.6a-3). The annual $n / c o l l$ was 5.8 for east stations and 1.9 for west stations. On June 19-20, 146 specimens were taken in two night collections while 49 were taken in two day collections. None were taken in other daynight collections.
4. Mummichog ($n=484$, young and adult) comprised 4.2 percent of the total catch. Length range was $22-111 \mathrm{~mm}$.

It was taken from March through September and in November and December (Fig. 3.1.6a-l4). The catch was low from March through May but peaked in June. Abundance subsequently decreased through September. During spring mummichog were taken at all stations except HOP7 (Fig. 3.1.6a-l5). It was most abundant at ST3A and AUB3. During summer it was taken at the same stations and at about the same abundance as during spring (Fig. 3.l.6a-16). Abundance during fall was less than during summer at eight stations. None were taken in October and few were taken in November ($n / \operatorname{coll}=0.6$) and December (0.5). It was most abundant at AUB3 (Fig . 3.1.6a-17). None were taken at HOP7, OB5A, or SGB2.

Mummichog comprised 88.9 and 40.9 percent of the monthly catch in March and April, respectively. During other months it comprised from 1.1 to 11.6 percent of the monthly catch.

It was taken at all stations except HOP7. The catch was greatest at ST3A ($\mathrm{n}=158$) where 32.6 percent of the annual catch was taken (Table 3.1.6a-3). The annual n/coll was 4.7 for west stations and 1.0 for east stations. The $n / c o l l$ for night collections was 8.l; for comparable day collections it was 5.6.

Preoperational Comparison

Annual rank and percent of catch of the four more abundant species in 1978 were within or above the range for the preoperational period 1970 through 1976 (Table 3.1.6a-4). Annual abundance ($n /$ coll) for three of the species equaled or exceeded the abundance in 1975 or 1976 (Table 3.1.6a-5). The Atlantic menhaden was less abundant in 1978 than in 1975 or 1976. Other species that were less abundant include the tidewater silverside and bluefish. The weakfish was more abundant.

Trawling during daylight was conducted to determine l) species composition, 2) relative abundance, and 3) spatial and temporal distribution of the fishes which frequent the deeper waters of the river. In addition night trawling was conducted to identify diel differences in species abundance.

MATERIALS AND METHODS

Field

All trawl samples required under this ETS were collected. Biweekly bottom trawl samples were taken during daylight from March 13 through December 18 in 19 of 22 river zones and 5 channel zones (Table 3.l.6a-6, Fig. 3.l.6a-l). Zones NE2, RII, and RI2 were sampled biweekly to monthly. Inclement weather and river icing precluded sampling in January, February, early March, and late December. Corresponding night and daylight collections were taken monthly from March through October except for July at zones W-3 and SSC. Collections were taken about 12 hr apart on two consecutive days.

A standard river collection was a $10-m$ in tow ($5 \overline{\mathrm{~m}}$ in in zone SSC) of a 4.9-m (16-ft) semiballoon otter trawl. A standard channel collection was a $20-\mathrm{min}$ tow. Night collections were of 5 -min duration.

Sample processing and collection of physicochemical data were as in 1977: for a complete description see the 1977 Annual Environmental Operating Report.

Data Reduction

Data are discussed on the following statistics: s = species variety, $n=$ number of specimens, $T=$ number of standard hauls, $T^{*}=$ number of hauls in which a species appeared, n / T $=$ number of specimens per 10 min of sampling time, and n / T^{*} $=$ number of specimens per haul (10-min effort) in which a species was taken.

Monthly mean and standard deviation were calculated from log (x + l) transformed catch per effort values of pooled semimonthly collections. Seasonal mean, standard deviation,
$1=3.8-0 \mathrm{~m}$ stretched mesh $\mathrm{NO}_{0} .9$ thread body, 3.2 -cm stretched mesh No. 15 thread cod end, innterliner of 1.3-0im Nio, 63 knotless nylon netting inserted and hogtied in cod end.
and 95 percent confidence interval were calculated from log ($x+1$) transformed regional catch per effort values for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September l6 through December 15). Regions were defined as follows: the northwest region contained zones NWI and NW2; the central-west region contained zones $W-1, W-2$, and $W-3$; the southwest region contained zones $5 W 1$ and $S W 2$; the north channel region contained zones CHA3, CHA4, and CHA5; the south channel region contained zones CHAl and CHAD; the northeast region contained zones NEI, NE2, and E-6; the central-east region contained zones E-1, E-2, E-3, E-4, E-5, RII, and RI2; the southeast region contained zones SEO, SE1, SE2, and SE3.

Catch composition among the combined west, east, and channel zones was compared using Spearman's coefficient of rank correlation. Figure 3.1.6a-l depicts the zones east and west of the shipping channel as well as those within the channel. Zones RIl and RI2, although west of the channel, were grouped with east zones.

Principal components analysis (BMPD4M Factor Analysis: Dixon, 1975) was used to calculate and display similarities in the catch composition among zones. This method is described by Marriott (1974) and Pielou (1977). The thirteen most abundant species were included as variables and zones as observations. A species by species (R-mode) product moment correlation matrix was calculated from log (x + 1) transformed catch data. The factor scores for each zone along only the first three component axes were plotted.

RESULTS

Temporal Catch Commposition

A total of 128,093 specimens of 45 species were taken in 848 trawl collections from west, east, and channel zones (Table 3.1.6a-7). Weakfish ($n=49,615$), bay anchovy (36,861), hogchoker $(33,919)$, white perch $(2,909), \operatorname{spot}(1,067)$, Atlantic croaker (884), American eel (814), and blueback herring (594) were most abundant and comprised nearly ninetynine percent of the total annual catch.

As in previous years, strong seasonal patterns in catch were evident. Species variety ($s=5$) and fish abundance ($n / T=2.7$) were lowest in March. Although not abundant, white perch comprised most of the catch. Both catch statistics increased through May ($\mathrm{s}=20$; $\mathrm{n} / \mathrm{T}=68.7$). Many summer residents, including bay anchovy, Atlantic menhaden, bluefish, and summer flounder appeared in the catch during this period as did yearling shad and herrings. Bay anchovy, hogchoker, and white perch were predominant. These three
species, along with blueback herring, were taken most often.
Species variety remained high (monthly $s \geq 20$) through August as the summer ichthyofaunal community became established. Catch per effort peaked during summer, with June and July n / T values of 266.6 and 265.2 , respectively. Juvenile weakfish appeared in very large numbers during this period and along with bay anchovy and hogchoker comprised more than ninety-eight percent of the summer catch. The preceding three species, along with American eel, spot, and Atlantic menhaden, were taken most often.

The number of species taken increased during fall (monthly $s \geq 26$) as summer species were gradually replaced by winter species. However, relative abundance declined (monthly $n / T<164.0$), largely because of the emigration of weakfish. Bay anchovy and hogchoker again were the most abundant species taken, although spot, American eel, Atlantic croaker, white perch, and blueback herring appeared in moderate numbers. These seven species, along with black drum, were taken most often. During December, only hogchoker and white perch were taken in abundance as catch continued to decline $(n / T=84.7)$.

Spatial Catch Composition

Spearman's coefficient of rank correlation based on annual species catch per effort data among combined west, east, and channel zones were significant. The strongest correlation ($r_{s}=.810, p \leq 0.0001$) exists between the channel and east groups. This is probably explained by the similarity of water depth in these areas as well as common circulation and tidal patterns along the channel and eastern portion of the study area. The weakest correlation ($r_{s}=.637, p \leq 0.0001$) occurs between the channel and west groups.

Principal components analysis of annual species catch per effort data by zone revealed similar results (Fig. 3.1.6a-18). The first three component axes explain 64.1 percent of the total variance (Factor $I=32.2$ percent; Factor $I I=19.4$; Factor $I I I=12.5$. Three major groups are indicated in this analysis. The five channel zones, two Reedy Island zones, and zone SEO form one group. The central and southern east zones are grouped together along with zones E-6, NWI, and SW2. The third group includes most west zones as weli as zones NEl and NE2. zones SSC, W-3, and E-5 appear as unique areas. The position of the three major groups indicates degree of similarity; the channel and east groups being most proximate thus most similar, and conversely, the west and channel groups being furthest apart and least similar.

The eight most abundant species, each represented by more than 500 specimens, are discussed in order of decreasing abundance. The following accounts of these species are based primarily on annual summary data presented in Table 3.1.6a-7, and monthly and seasonal data presented in Eigures 3.1.6a-19 through 45. Additional data have been included that are not presented in tabular form but are contained in the PSE\&G aquatic data base.

1. Weakfish ${ }^{l}(n=49,615$, almost all age $0+$ young) comprised 38.7 percent of the total catch. Catch frequency was 426 (of 848). The annual n / T was 54.1 ; the n / T^{*} was 106.6 (Table 3.1.6a-7). Length range was $12-756 \mathrm{~mm}$.

The abundance of age 0+ weakfish in 1978 was of unprecedented magnitude. In fact, the catch in the last two weeks of June was greater than the combined annual catches from 1973 through 1977. It was taken from June through November (Fig. 3.1.6a-19). Although a few were taken earlier, peak abundance occurred during the last two weeks of June as young-of-year fish immigrated into the study area from down bay spawning grounds. Catches in the central and southern zones were greater than in the northern zones. Abundance remained high during the summer and as the season progressed weakfish became more uniformly distributed (Figs. 3.1.6a-19 and 20). The catch of weakfish decreased sharply in September and continued to decline through November, as these fish began their annual migration out of the estuary (Eig. 3.l.6a-19). Although catch levels during fall were lower in all regions from those of summer, relative abundance among regions remained uniform (Fig. 3.1.6a-21).

Weakfish comprised $79.8,61.2$, and 35.7 percent of the catch in June, July, and August, respectively.

It was taken in all zones but was most abundant, based on annual n / T values, in zones RI2, $W-3, R I l$, and CHA4. It was least abundant in zones E-6 and SE3 (Table 3.l.6a-7). The annual n / T^{*} value west of the shipping channel was 111.3; to the east it was 106.5. The n / T for night collections was 27.6; for comparable day collections it was 74.4.
2. Bay anchovy ($n=36,861$ r young and adult) comprised 28.8 percent of the total catch. Catch frequency was 560. The annual n / T was 40.2; the $\mathrm{n} / \mathrm{T}^{*}$ was 60.7 (Table 3.1.6a-7). Length range was $12-105 \mathrm{~mm}$.

It was taken from April through December (Fig. 3.1.6a-22). Large numbers were first taken in May as the upbay migration of adult fish into the area heightened. Although it was taken throughout the study area during spring, abundance increased from north to south (Fig. 3.1.6a-23). Catch

1 This discussion of weakfish is based only on samples taken under ETS. Additional information can bë̉ found in "Summary Assessment of Weakfish Impingement: Summer 1978, (PSE\&G 1978b)
decreased in June as fish moved downbay to spawn but increased in July as these fish returned and young-of-year began to appear in the catch. The catch of bay anchovy declined slightly in August (Fig. 3.l.6a-22). Although it was taken in all regions during summer the greatest catch occurred in the central-west region, the lowest was in the channel regions (Fig. 3.l.6a-24). Catch was greater than spring levels in the three east regions and the central-west and northwest regions. Catch increased through November as young-of-year fish continued to be recruited into the local population and adults seeking warmer waters moved downriver into this area (Fig. 3.l.6a-22). Catch dropped sharply in December as these fish continued their movements to more suitable environs downbay. The distribution during fall was similar to that of summer although the catch was greater in all but the central-west and southwest regions (Fig. 3.1.6a-25).

Bay anchovy comprised 82.4 percent of the catch in May and from 24.7 to 51.2 percent of the monthly catch from July through November.

It was taken in all zones but was most abundant, based on annual n / T values, in zones SSC, $W-2, E-1$, and $W-3$. It was least abundant in zones $\mathrm{E}-3, \mathrm{RI}-2, \mathrm{E}-4$, and in the channel zones (Table 3.1.6a-7). The annual n / T^{*} value west of the channel was $90 . \dot{3}$; to the east it was 66.4. The n / T for night collections was 10.4; for comparable day collections it was 109.0.
3. Hogchoker ($n=33,919$, young and adult) comprised 26.5 percent of the total catch. Catch frequency was 584 , the greatest of all species. The annual n / T was 37.0 ; the n / T^{*} was 55.4 (Table 3.1.6a-7). Length range was $22-192 \mathrm{~mm}$.

It was taken from March through December (Fig. 3.1.6a-26). Few were taken in March. Catch increased through May as yearlings and subsequently, older fish immigrated into the study area from wintering grounds downbay. During spring it was taken in all regions. Catch levels were similar in regions of abundance but were very low in the channel regions (Fig. 3.l.6a-27). The abundance of hogchoker continued to increase through August (Fig. 3.1.6a-26). This was evidenced by the greater catch in all regions during summer. The distribution was similar to that of spring. (Fig. 3.1.6a-28). The catch during this period was predominated by yearlings. Abundance remained high through October as young-of-year fish began to appear in the catch. However, it dropped in November and continued to decline in December, as larger fish and then smaller specimens migrated downbay (Fig. 3.1.6a-26). It continued to be taken in all regions during fall. Abundance was greatest in the two central regions and the northeast region. Catch was lower than summer levels in three regions, most notably in the southwest region. It was greater than summer levels in the northwest, central-west, and central-east regions.

Hogchoker comprised 60.5 percent of the catch in December and from 32.6 to 51.0 percent of the monthly catch from August through November.

It was taken in all zones but was most abundant, based on annual n / T values, in zones $W-3, E-5, W-1$, SWl, and $E-6$. it was least abundant in RI2, RIl, and in the channel zones (Table 3.1.6a-7). The annual n / T^{*} value west of the channel was 73.5; to the east it was 57.1. The n / T for night collections was 86.8 , for comparable day collections it was 37.5 .
4. White perch ($\mathrm{n}=2,909$, young and adult) comprised 2.3 percent of the total catch. Catch frequency was 273. The annual n / T was 3.2; the $\mathrm{n} / \mathrm{T}^{*}$ was 10.3 (Table 3.l.6a-7). Length range was $32-287 \mathrm{~mm}$.

It was taken from March through December (Fig. 3.1.6a-30). Catch was moderate in March and increased in April as yearlings and then older fish were taken. However, catch declined in May as many of these fish migrated upriver or into local tributaries. Although it was taken in all regions during spring, it was most abundant in the northeast, central-west, and southwest regions (Fig. 3.1.6a31). Catch increased slightly in June but few were taken through the remainder of summer (Fig. 3.1.6a-30). During summer it was taken in abundance only in the northwest and northeast regions and was absent from the catch in the south channel and southeast regions (Fig. 3.1.6a-32). It was again common in October and November. Abundance peaked in December as fish of several age groups were taken as they migrated through the study area enroute to wintering grounds downbay (Fig. 3.1.6a-30). During fall, it was taken in all regions. Catch was greatest in the central and northern regions west and east of the channel (Fig. 3.1.6a-33).

White perch comprised $83.3,45.2$, and 30.2 percent of the catch in March, April, and December, respectively.

It was taken in all zones but was most abundant, based on annual n / T values, in zones $S W-1, E-5, S S C$, and NE2. It was least abundant in the central and southern east zones and the channel zones (Table 3.1.6a-7). The annual n / T^{*} value west of the channel was 13.7; to the east it was 9.8. The n / T for night collections was 4.7 , for comparable day collections it was 3.8.
5. Spot ($\mathrm{n}=1,067$, almost all age $0+$ young) comprised 0.8 percent of the total catch. Catch frequency was 203. The annual n / T was 1.2 ; the n / T^{*} was 5.3 (Table 3.1.6a-7). Length range was $22-233 \mathrm{~mm}$.

It was taken from June through December (Fig. 3.1.6a-34). Few were taken in June. Catch increased through August as larger young-of-year immigrated into this area from downbay (Fig. 3.l.6a-34). Although it was taken in all regions during summer its abundance was greater in the
northern and central regions (Fig. 3.1.6a-35). Catch dropped slightly in September but increased again in October (Fig. 3.l.6a-34). This increase probably resulted from movements of spot into the study area from upriver nursery areas with the approach of winter. Abundance decreased through December as larger and subsequently, smaller fish continued their downbay migration. Catch was greater than summer levels in five regions, most notably in the southwest and southeast regions (Fig. 3.1.6a-36). However, the distribution during fall was generally similar to that in summer.

Spot comprised less than 2.4 percent of any monthly catch.
It was taken in all zones except RIl. It was most abundant, based on annual n / T values, in zones SSC, NE2, W-2, NEI, and NW2 and least abundant among the central and southern east zones and the channel zones (Table 3.1.6a-7). The annual n / T^{*} value west of the channel was 6.l; to the east it was 5.6. The n / T for night collections was 3.8; for comparable day collections it was 8.0 .
6. Atlantic croaker ($n=884$, all but one age $0+$ young) comprised 0.7 percent of the total catch. Catch frequency was 100. The annual n / T was 1.0 ; the $\mathrm{n} / \mathrm{T}^{*}$ was 7.9 (Table 3.1.6a-7). Length range was $16-90 \mathrm{~mm}$.

It was taken from September through December (Fig. 3.1.6a37). Few were taken in September. Catch increased in October, peaked in November, and decreased in December. Croaker was well distributed among regions during this period although the catch was greatest among west regions (Fig. 3.I.6a-38).

Atlantic croaker comprised 5.7 percent of the November catch but less than 2.5 percent of any other monthly catch.

It was taken in all zones except $E-2$. It was most abundant, based on annual n / T values, in zones SW2, NW2, and RIl and least abundant among the central east zones (Table 3.l.6a7). The annual n / T^{*} value west of the channel was 14.9 ; to the east it was 3.5 . The small number of Atlantic croaker taken in day-night collections precludes any comparison.
7. American eel ($n=814$, several age groups) comprised 0.6 percent of the total catch. Catch frequency was 219. The annual n / T was 0.9 ; the n / T^{*} was 3.4 (Table 3.1.6a-7). Length range was $35-566 \mathrm{~mm}$.

It was taken from April through December (Fig. 3.1.6a-39). Few were taken from April through June. During this period it was taken in all regions except the south channel and northeast regions (Fig. 3.1.6a-40). Numbers increased in July and August but decreased in September (Fig. 3.1.6a-39). Catch during summer was greater than spring in all regions.

It was taken in greatest abundance in the central-east and northeast regions (Fig. 3.1.6a-41). Catch decreased gradually through December (Fig. 3.1.6a-39). It was again taken in all regions during fall although catch in all but one region decreased from summer levels (Eig. 3.l.6a-42).

American eel comprised less than i. 7 percent in any monthly catch.

It was taken in all zones but was most abundant, based on annual $n /{ }^{\text {ri }}$ values, in zones RII, RI2, and W-l. It was least abundant in zones CHAl, CHA2, SEO, and SE3 (Table 3.1.6a-7). The annual n / T^{*} values west of the channel was 3.1; to the east it was 4.4. The n / T for night collections was 2.8; for comparable day collections it was 0.4.
8. Blueback herring ($\mathrm{n}=594$, mostly age $0+$ and $1+$ young) comprised 0.5 percent of the total catch. Catch frequency was 125. The annual n / T was 0.6 ; the $\mathrm{n} / \mathrm{T}^{*}$ was 4.4 (Table 3.1.6a-7). Length range was 53-235 mm.

It was taken from April through August and during November and December (Fig. 3.l.6a-43). Relatively large numbers were taken during April. The catch comprised exclusively age $1+$ specimens. Numbers decreased in May. It was taken in relatively uniform abundance in all regions during spring (Fig. 3.1.6a-44). Few were taken from June through August (Fig. 3.1.6a-43). It was again taken in abundance in November and December as age $0+f i s h$ passed through the area from upriver nursery grounds (Fig. 3.1.6a-43). Yearlings also appeared in the catch but in low numbers. It was taken in nearly equal abundance in all regions (Fig. 3.1.6a-45).

Blueback herring comprised about 17.7 of the April catch but less than 2.5 percent of any other monthly catch.

It was taken in all zones but was most abundant, based on annual n / T values, in zones SSC, NEI, $\mathrm{E}-1$, and $\mathrm{E}-2$. It was least abundant in zones $E-5, S E 0, W-2, W-3$, and NWI (Table 3.1.6a-7). The annual n / T^{*} value west of the channel was 3.3; to the east it was 5.3. The n / T for night collections was 1.7; for comparable day collections it was 25.0 . However, these results are biased by one large catch (125 specimens) taken during one day collection. The night catch was greater in all other day-night collections.

Preoperational Comparison

Monthly and annual trawl catch per effort values (n / T^{*}, based on samples in which the species was taken) of weakfish, bay anchovy, hogchoker, spot, and Atlantic croaker during 1978 were within or exceeded the range recorded during the preoperational years 1970-1976 (Table 3.1.6a-8).

The zero catch of blueback herring in March was below the preoperational range. However, unusually low water temperature that month may have inhibited the immigration of these fish into the study area. The catch of blueback herring in April was well within the preoperational range. The catch of American eel in May was below the preoperational range. However, in other months the catch was well within this range. The monthly catch of white perch in April, May, July, and November were below the respective monthly preoperational range. However, the reduced catch in 1978 appears to follow an observed decline in the local abundance of white perch since 1972.

3.1.6a.5 Gill Net

Gill nets were fished in the spring and fall to monitor the period of occurrence and distribution of alosids during migratory movements through the study area.

MATERIAL AND METHODS

Field

All samples required under this ETS were collected. Collections were taken during daylight at four zones from March 23 through November 24 (Fig. 3.1.6a-46). Monthly effort was 31.5 drift hours in March, 33.0 in April, 31.5 in May, 19.5 in June, 5.0 in September, 35.0 in October, and 16.0 in November.

Samples were taken with 91.4-m floating gill nets. constructed of nylon monofilament in stretched mesh sizes of $2.5(1 \mathrm{in}), 3.8(11 / 2 \mathrm{in}), 7.9(31 / 8 \mathrm{in})$, and $14.0(5 \mathrm{l} / 2$ in) cm.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977, for complete description see the 1977 Annual Environmental Operating Report.

Data Reauction

Data are discussed with the following statistics: $n=$ number of specimens, $n / d r i f t h r=$ number of specimens per drift hour, and $n / d r i f t ~ h r^{*}=$ number of specimens per drift
hour in which the species was taken.

RESULTS

A total of 8,884 specimens of 20 species were taken in 171.5 drift hours (76.5 west of the shipping channel, 95.0 in the east) (Tables 3.1.6a-9 and 10). The following accunits are of the three alosid species taken, Atlantic menhaden, and bluefish. Together these fishes comprised 98.8 percent of the total catch. Summary catch data are presented in Tables $3.1 .6 a-9$ through 11.

SPECIES ACCOUNTS

1. Atlantic menhaden ($\mathrm{n}=6,776$, young and adult) comprised 76.3 percent of the total catch. Length range was 67-298 mm .

It was collected from April through November (Table 3.1.6a9). The $n /$ drift.hr* was high (Table 3.l.6a-l0) and indicative of the schooling behavior of this species. Catch was greatest in May ($n /$ drift $h r=92.5$), October (72.3), and November (48.0). In the spring the catch comprised yearlings and older age groups. Length range was 96-298 mm.

In the fall most fish taken were young-of-year and ranged in length from $67-150 \mathrm{~mm}$. The remainder were of older age groups (length range $151-274 \mathrm{~mm}$).

It was Eaken both east and west of the channel during all months. However, in May abundance was greater east of the shipping channel (n/drift hr = ll4.l east vs. 59.8 west).
 west.
2. Blueback herring ($n=1,478$, young and adult) comprised 16.6 percent of the total catch. Length range was 79-315 mm.

It was collected in all months except September (Table 3.1.6a-9).

Adults ($\mathrm{n}=51$), enroute to spawning areas, were taken from March through May, with the greatest weekly $\mathrm{n} / \mathrm{drift}$ in late April (Table 3.1.6a-11). There were 1,140 yearlings taken in the spring; most were caught in May (Table 3.l.6a-9).

Young-of-year ($n=287$) were taken during October and November as they emigrated from nursery areas. Weekly n/drift hr during the fall was greatest during the first two weeks of November (Table 3.l.6a-ll).

It was taken both east and west of the channel during all months except March. The annual $n / d r i f t ~ h r ~ w a s ~ g r e a t e r ~ i n ~$ the east (12.7) than west (3.6).
3. Alewife ($n=370$, young and adult) comprised 4.2 percent of the total catch. Length range was $71-310 \mathrm{~mm}$.

It was collected from March through June and in October and November. The alewife was the first of the alosid species to be taken in large numbers during the spring season, indicating its relatively early spawning habit. Adults ($n=$ 300), enroute to spawning areas, were taken from March through mid-May. Weekly $\mathrm{n} / \mathrm{drift} \mathrm{hr}$ during the spring was greatest from late March through mid-April (Table 3.1.6a-ll). Five yearlings were taken in the spring.

Young-of-year ($n=65$), emigrating from nursery areas, were taken during October and November. During this period weekly $n / d r i f t ~ h r ~ w a s ~ g r e a t e s t ~ f r o m ~ m i d-O c t o b e r ~ t h r o u g h ~ m i d-~$ November (Table 3.1.6a-11).

It was taken east and west of the channel in all months. The $n / d r i f t h r$ was greater in the west during March, April, and October but greater in the east during June and November.
4. Bluefish ($\mathrm{n}=121$, young and adult) comprised l.4 percent of the total catch. Length range was $86-544 \mathrm{~mm}$.

It was collected from May through November (Table 3.1.6a-9). Catch was greatest during June ($n /$ drift $\mathrm{hr}=$ 1.3), September (5.4), and October (1.7).

Older fish comprised most of the catch in May and June. Length range was $350-466 \mathrm{~mm}$. The remainder were yearlings.

From September through November young-of-year (length range $90-200 \mathrm{~mm}$) predominated the catch.

The species was taken east and west of the channel during all months. The $n / d r i f t h r$ was greater in the west during May, September, and October. It was greater in the east during June and November.
5. American shad ($n=30$, young and adult), comprised 0.3 percent of the total catch. Length range was llo-505 mm.

It was collected from March through June and in November (Table 3.l.6a-9). Adults ($n=21$) enroute to spawning areas were taken from March through May. The weekly $\mathrm{n} / \mathrm{drift}$ hr in the spring was greatest during mid-April (Table
3.1.6a-ll). Seven yearlings were taken from late May through June. Two young-of-year were taken in mid-November.

The $n / d r i f t h r$ was greater in the east for all months except April.

3.1.6b Juvenile and Adult Fishes - Tidal Tributaries (ETS Section 3.1.2.1.1g)

The fishes of three tidal tributaries of the Delaware River near.Artificial Island, Appoquinimink Creek, Delaware and Alloway and Hope creeks, New Jersey, were sampled in 1978 by seine and trawl (Figs. 3.l.6b-l and 2). Objectives were to l) identify species and life stages that utilize the tributaries and 2) describe seasonal changes in species composition and distribution.

3.1.6b.1 Summary

A total of 4,299 specimens of 33 species were taken in combined seine and trawl collections. The catch comprised freshwater, brackish water, and estuarine species. Mummichog ($\mathrm{n}=915$), Atlantic silverside (811), banded killifish (374), silvery minnow (259), and tessellated darter (252) were the most abundant species taken by seine. Together these fish comprised some 82 percent of the annual catch. Hogchoker (n = 302), white perch (205), spot (150), weakfish (106), and brown bullhead (92) were the most abundant species taken by trawl and comprised nearly 76 percent of the annual catch.

Several species including mummichog, white perch, brown bullhead, and hogchoker were taken in nearly all months of sampling. However, for most species the period of occurrence was seasonal and strongly related to water temperature and salinity.

During spring, the catch was predominated by fresh and brackish water species, eg. mummichog and banded killifish in the shore zone and white perch in the deeper waters. Hogchoker was taken in abundance in the deeper waters. Peak catch in the shore zone occurred during summer as large numbers of fresh and brackish water species (e.g. tessellated darter and silvery minnow) and estuarine fishes (e.g. Atlantic silverside and bay anchovy) were taken. Catch in deeper waters increased slightly over spring levels. Weakfish and hogchoker were the only species taken in abundance. White perch and bay anchovy were common.

The catch in the shore zone decreased sharply during fall. Only Atlantic silverside and mumichog were taken in
abundance. However, peak catch in deeper waters occurred during this period as the numbers of several fresh and brackish water species increased. Spot, hogchoker, white perch, and brown bullhead were most abundant.

By December only mummichog remained in abundance in the shore zone. Silvery minnow and white perch were common in the deeper waters.

3.1.6b. 2 Materials and Methods

FIELD

All samples required under this ETS were collected. Biweekly to monthly seine and trawl samples were taken during daylight from March 27 through December 2l. Seines were hauled at three stations each in Alloway and Appoquinimink creeks (Table 3.l.6b-l, Fig. 3.l.6b-l). Trawls were hauled in three zones each in Appoquinimink and Alloway creeks and two zones in Hope Creek (Table 3.l.6b-2, Fig. 3.1.6b-2).

Gear included a $3.0-\mathrm{m}$ x $1.2-\mathrm{m}$ (l0.0-ft x 4.0-ft) flat seine with $3.2-\mathrm{mm}$ (1/8-in) stretched mesh and a $2.7-\mathrm{m}$ (9.0-ft) semi-balloon otter trawl.

Gear deployment, sample processing, and collection of physicochemical data were as in 1977; for a complete description see the 1977 Annual Environmental Operating Report.

DATA REDUCTION

Data are discussed on the following statistics: $s=$ species variety, $n=$ number of specimens, $T=$ number of trawl hauls, $\mathrm{n} / \mathrm{T}=$ number of specimens per trawl haul, and $\mathrm{n} / \mathrm{coll}=$ number of specimens per seine collection.

Monthly mean and standard deviation for the more abundant species were calculated from $\log (x+1)$ transformed catch per effort values of pooled semimonthly or monthly collections. Seasonal means by station or zone were calculated from log (x +1) transformed catch per effort values for spring (March 16 through June 15), summer (June 16 through September 15), and fall (September 16 through December 15).

Principal components analysis (BMPD 4 M Factor Analysis; Dixon, 1975) was used to calculate and display similarities in the catch composition among zones and stations. This
method is described by Marriott (1974) and Pielou (1977). The twelve more abundant species taken by seine and the nine taken by trawl were included as variables and stations or zones as observations. A species by species (R-mode) product moment correlation matrix was calculated from log (x + l) transformed catch data. The factor scores for each zone along only the first three component axes were plotted.

3.1.6b.3 Results

TEMPORAL CATCH COMPOSITION

A total of 3,173 specimens of 26 species were collected in 79 seine collections; 1,126 specimens of 20 species were taken in 111 trawl collections (Tables 3.l.6b-3 and 4). Thirty-three species were taken in all; 13 were taken by both gear types. The most abundant species taken by seine were mummichog ($n=915$), Atlantic silverside (811), banded killifish (374), silvery minnow (259), and tessellated darter (252). Together these comprised 82.3 percent of the annual catch. Hogchoker ($n=302$), white perch (205), spot (150), weakfish (106), and brown bullhead (92) were the most abundant species taken by trawl and comprised 75.9 percent of the annual catch.

Several species, including mummichog, white perch, brown bullhead, and hogchoker were taken in nearly all months of sampling. However, the period of occurrence of other species was seasonal and correlated strongly to variations in salinity and water temperature.

From March through May species variety and fish abundance were low. The catch comprised fresh or brackish water species and the estuarine hogchoker, bay anchovy, and Atlantic silverside. During this period mummichog and banded killifish predominated the shore zone catch; hogchoker, white perch, and brown bullhead were most abundant in deeper waters.

The number of species taken, particularly in the shore zone, increased in June as both adult and young-of-year of many freshwater species and alosids appeared as spawning activities of these fishes peaked. Several estuarine species, including Atlantic menhaden, spot, and weakfish were first taken. Fewer species were taken during July and August. Catch levels in the shore zone peaked during the summer season as large numbers of Atlantic silverside, mummichog, silvery minnow, and tessellated darter appeared in the catch. Bay anchovy, white perch, and Atlantic menhaden were taken in moderate numbers. In the deeper waters catch increased slightly over spring levels; weakfish and hogchoker were most abundant.

Species variety and catch levels decreased in the shore zone during fall. The catch of nearly all species was lower than during summer, particularly those that were abundant during the summer. Although abundance decreased, Atlantic silverside and mummichog remained the most abundant species in the shore zone. Conversely, species variety and catch levels increased in the deeper waters. Spot, hogchoker, white perch, and brown bullhead were most abundant. By December, few species were taken in the shore zone and only mummichog was abundant. In the deeper waters, ten species were taken but their catch was low. Silvery minnow and white perch were common.

SPATIAL CATCH COMPOSITION

A total of 2,036 specimens of 19 species were taken by seine in Alloway Creek and 1,137 specimens of 22 species were taken in Appoquinimink Creek (Table 3.l.6b-3). Fifteen species were common to both tributaries. The more abundant species in one tributary were also abundant in the other. Abundant in both tributaries were mummichog, Atlantic silverside, banded killifish, silvery minnow, tessellated darter, bay anchovy, and white perch. Bluegill, pumpkinseed, alewife, and white crappie were among the fishes taken only in Appoquinimink Creek; spot, bluefish, largemouth bass, and black crappie were taken only in Alloway Creek.

The trawl catch was 692 specimens of 19 species in Appoquinimink Creek, 381 specimens of 16 species in Alloway Creek, and 53 specimens of 10 species in Hope Creek (Table 3.l.6b-4). Catch composition in Appoquinimink and Alloway creeks was similar. Most species abundant in one tributary were also abundant in the other; white perch and brown bullhead were abundant only in Appoquinimink Creek and bay anchovy only in Alloway Creek. The more abundant species common to both tributaries included hogchoker, spot, and weakfish. Species taken only in Appoquinimink Creek were gizzard shad, mummichog, striped bass, and yellow perch. Winter flounder was taken only in Alloway Creek. Species variety and abundance were low in Hope Creek and species taken were also taken in the other tributaries.

Similarity in catch among seine stations and trawl zones was calculated through the principal component analysis (Figs. 3.1.6b-3 and 4). The first three components of the station comparison explain 90.0 percent of the total variance (Factor $I=37.4$ percent; Factor II $=29.7$; Factor III = 22.9). From the analysis, stations ALLl, ALL2, and APP3 are grouped, as are ALL3 and APP5 (Fig. 3.1.6b-3). Station APP5 appears unique. The first three components of the zone comparison explain 87.1 percent of the total variance (Factor $I=65.4$ percent; Factor II $=12.3$; Factor III =
9.4). The analysis indicates that zones HOPl, HOP2, and ALL4 are similar and form one group (Eig. 3.1.6b-4). In addition, zones APP3 and ALLI are grouped with zone APPI. Zones APP5 and ALI5 appear dissimilar from other zones.

The grouping of the zones and stations in relation to tributary mileage (distance from mouth) suggests that a factor such as salinity has a strong influence on catch composition.

SPECIES ACCOUNTS

The eight most abundant species, each represented by more than 200 specimens in the combined seine and trawl catch, dare discussed in order of decreasing abundance. The following species accounts are based on annual summary data presented in Tables 3.1.6b-3 and 4 and monthly and seasonal data presented in Figures 3.1.6b-5 through 22. Additional data have been included that are not presented in tabular form but are contained in the PSE\&G aquatic data base.

1. Mummichog ($n=916$, young and adult) comprised 21.3 percent of the total seine and trawl catch. All but one were taken by seine. Tre annual $n / c o l l$ was 11.5 (Table 3.1.6b-3). Length range was $13-108 \mathrm{~mm}$.

It was taken from March through December (Fig. 3.1.6b-5). Large numbers were taken from March through July, except in May. After July the catch declined through November and increased to peak levels in December.

Distribution of mummichog in Alloway and Appoquinimink creeks was dissimilar (Fig. 3.1.6b-6). In Alloway Creek the catch was greatest during all seasons at the station furthest downstream (ALL3). The catch at ALLl was greater than ALL2 during spring and fall but was less than ALL2 during summer. In Appoquinimink Creek most of the spring catch was collected at APP3 followed in order by APP6 and APP5. During summer the catches at APP3 and APP6 were nearly equal; none were collected at APP5. Few were taken during fall.
2. Atlantic silverside ($n=811$, young and adult) comprised 18.8 percent of the total seine and trawl catch. All were collected by seine. The annual $n / c o l l$ was 10.3 (Table 3.1.6b-3). Length range was $18-97 \mathrm{~mm}$.

It was taken in April and June through November (Fig. 3.1.6b-7). Abundance peaked in July and declined steadily through November except in October when the catch increased slightly.

Abundance during summer and fall was greatest at stations nearest the mouths (ALL3, APP6) of both tributaries (Fig. 3.1.6b-8). In Alloway Creek the catch at ALL2 was greater than ALLl during summer and fall. In Appoquinimink Creek none were taken at APP5 during summer and few were taken at APP3 and APP5 during fall.
3. Banded killifish ($\mathrm{n}=374$, young and adult) comprised 8.7 percent of the total seine and trawl catch. All were taken by seine. The annual n/coll was 4.7 (Table 3.l.6b-3). Length range was $18-91 \mathrm{~mm}$.

It was taken from April through December except during August and November (Fig. 3.1.6b-9). Peak abundance occurred in April and the catch declined steadily thereafter. Few were taken in September, October, and December.

In both tributaries abundance during spring was greatest at the stations furthest upstream and decreased progressively downstream (Fig. 3.l.6b-l0). The distribution was similar in Alloway Creek during summer. Few were taken during summer in Appoquinimink Creek or during fall in either tributary.
4. White perch ($\mathrm{n}=324$, several age groups) comprised 7.5 percent of the total seine and trawl catch. Some 63 percent were taken by trawl. The annual n / T and $n / c o l l$ were 1.8 and 1.5, respectively (Tables $3.1 .6 \mathrm{~b}-3$ and 4). Length range was $13-208 \mathrm{~mm}$.

It was taken by trawl from March through November (Fig. 3.1.6b-11). Large numbers were taken in April and October. Catch declined from April through August and increased through october.

It was taken by seine from June through October (Fig. 3.1.6b-12). Peak abundance was in June and the catch declined steadily thereafter.

During spring, white perch were most abundant in the trawl zones furthest upstream (Fig. 3.l.6b-13). In the summer the catch was similar in all zones although lowest in the zones closest to the mouths of the tributaries. During fall, the distribution in Appoquinimink Creek was similar to that in spring. Few were taken in Alloway Creek during fall.

Seine catch distributions were similar to trawl in that abundance was greatest at stations furthest upstream (Fig. 3.1.6b-14).
5. Hogchoker ($n=307$, mostly age $0+$ young) comprised 7.l percent of the total seine and trawl catch. All but five were collected by trawl. The annual n / T was 2.8 (Table 3.1.6b-4). Length range was $30-156 \mathrm{~mm}$.

It was collected from March through November (Fig. 3.1.6b15). Large numbers were first taken in April. Catch decreased in May but increased to peak numbers in September. Abundance steadily declined through November.

During spring, distribution in Alloway and Appoquinimink creeks was similar; abundance increased in an upstream progression (Fig. 3.1.6b-16). During summer, the catch in Alloway Creek was greatest at ALL4; in Appoguinimink Creek abundance remained greatest upstream. During fall, as fish migrated down both tributaries, abundance decreased in the upstream zones.
6. Silvery minnow ($n=304$, young and adult) comprised 7.1 percent of the total seine and trawl catch. Some 85 percent were collected by seine. The annual $\mathrm{n} / \mathrm{coll}$ was 3.3 (Table 3.1.6b-3). Length range was $14-124 \mathrm{~mm}$.

It was taken in April and June through October (Fig. 3.1.6b-17). Few were taken in April. Abundance peaked in June and decreased steadily through October.

Distribution during summer was similar in both tributaries with greatest abundance occurring at upstream stations (Fig. 3.1.6b-18). This pattern continued during fall in Appoquinimink Creek; few were taken during fall in Alloway Creek.
7. Tessellated darter ($\mathrm{n}=252$, young and adult) comprised 5.9 percent of the total seine and trawl catch. All were taken by seine. The annual $n / c o l l$ was 3.2 (Table $3.1 .6 \mathrm{~b}-3$). Length range was $15-86 \mathrm{~mm}$.

It was taken from June through October except in August (Fig. 3.1.6b-19). Peak abundance occurred in June after which the catch declined steadily.

Distribution was restricted to upstream stations of both tributaries during all seasons (Fig. 3.l.6b-20).
8. Bay anchovy ($\mathrm{n}=218$, young and adult) comprised 5.1 percent of the total seine and trawl catch. Some 65 percent were collected by seine. The annual $\mathrm{n} / \mathrm{coll}$ was 1.8 (Table 3.1.6b-3). Length range was $14-81 \mathrm{~mm}$.

It was collected by seine from June through October (Fig. 3.1.6b-21). Abundance was low in June, increased to peak level in August, and subsequently decreased.

Distribution in the two tributaries was dissimilar (Fig. 3.1.6b-22). In Alloway Creek it was taken in abundance only during summer when it occurred more abundantly at stations ALL2 and ALL3. In Appoquinimink Creek it was taken in low numbers during all seasons and was taken only at APP6 during spring and summer and APP3 during fall.

$$
3.1-228
$$

those species raken outside of, but adjacent to. the study area have the locality noted in parentheses
AFTER IHE CUHMON MAME. HAGITAT: M = MARINE: B = GRACKISH (SALINITY 1-10 PPT) ; F = FRESH. PRIMARY ACTIVITY IN AREA:
M = YIGRANT: SP = SPAWNING IN AREA: SF = SUMMER FEEDING; WF = WINTER FEEDING; N = NURSERY: R = RESIDENT SPECIES: ST = STRAY tyfe of geaf: $t=$ trawle s e SEINE, G g gill net. species ubserved but not collecteo are marked with an asterisk.

IA SALEM FF 1978

TABLE 3.1.6a-1
CONTINUED

TABLE3.1.6a-1 CONTINUED

STEごES H	HABITAT	PRIM ACTI IN A	$\begin{aligned} & \text { Y } \\ & \text { TY } \\ & \text { A } 1968 \end{aligned}$	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
chatioduvildae - butteffalyfishes													
CHAETGOON OCELGATUS-SPOTFIN BUTTERFLYFISH	\cdots	st	-	-	-	-	-	-	T	-	-	-	-
hugilidat - mullets	\cdot												
MUGIL CEPMALHS-SIRIDEO MULLET	M, B,F	S 8	-	s	S	-	-	5	S	-	5		-
Hugil Curema-ahite riullet	M,8.F	S ${ }^{\text {T }}$	-	-	S	S	-	-	S	-	s	s	-
$\begin{aligned} & \text { SPHYRAEMA GOREALIS-NORTHERN SENNET } \\ & \text { (LENES) } \end{aligned}$	M	-	-	-	S	-	-	-	-	-	-	\cdots	-
uranoscopidae - starghzers													
astruscopus ojitatus-nurthern Stargazer	M $=8$	$s T$	r	-	T	S	T	-	S.T	\boldsymbol{T}	r	T	\boldsymbol{T}
gosilcae - goales													
GOSIUSOMA EOSCI-NakED GOBY	M,Bef	N, Sf	T	S.t	S.t	S,T	S.t	S.T	S,T	S,T	S.T	1	T
```GOB10504A GIMSEURGI-SEABOARD GOBY ( mDODLAND BEACH )```	M.B	$\mathbf{S F}$	$T$	$T$	$\boldsymbol{T}$	T	$r$	-	S	S		$\underline{-}$	
Scombridat - mackerels and tunas													
SCOMSER SCOVAKUS-ATLAATIC MACKERAL	M	ST	-	-	-	$T$	-	-	-	-	-	-	-
$\begin{aligned} & \text { SCOUBEZOYORUS MACILATUS-SPANISH } \\ & \text { MACKERAL } \end{aligned}$	M	ST	-	-	-	-	-	-	-	-	G	-	-
stromateidae - butteaflshes													
PEPRILUS IRIACAMTHUS-bUTEERFISH	M, B	SF	r	1	T	T	-	T	T	T.G	$\dagger$	T,G	T.G
PEPRILUS alepidotustiarvestaish	$M$	ST	-	-	-	-	-	-	-	$\cdots$	-		
triglivas - SEargairs													
PRIO:CUTUS CAROLIMUS-HGRTHERN SEAROBIN ( EOMERS beaCh )	M	ST	-	-	$\boldsymbol{\gamma}$	S.t	Y	-	$\boldsymbol{\gamma}$	-	T	7	$\boldsymbol{\gamma}$
PRIONOTUS EVOLAMS-Stalpeo searobin	$\mathrm{H} . \mathrm{B}$	S 1	$\dagger$	$\boldsymbol{r}$	-	$r$	T	-	S.r	T	S.T	-	$\boldsymbol{T}$
COTTIOAE - SCULPINS													
hyoxocephalus aenaeus-grubar (Leines)	M	-	-	-	*	s	-	-	-	-	-	-	-
Bothidie - Lefteye flounder													
ETADPUS MICROSTOMUS-SMALLNOUTH SLOUNDER	M. 8	ST	-	-	S	s	$T$	-	-	T	-	T	-
Pidralichithes demiatios-summer flounder	M, 8	ST	T	T	5,T	S.T	S,T,G	S, T	S.T,G	S.t	S. 7	S.t	T.G
paralichthys oblongus-fourspot   flounder	H. ${ }^{\text {a }}$	$5 T$	-	-	-	-	-	-	Tog	T	-	-	-
Scophthalmus aquosus-tindoonpane	$\mathrm{M} \cdot \mathrm{B}$	ST	-	T	S.T	S,T	-	r	S.T	7	T	S.T	1

TABLE 3.1.6a-1
CONTINUED


```
 TABLE 3.1.6a-2
DESCRIPTION OF SEINE STATIONS - }197
```

LOCAIIOA:
DESCRIPILOH: eorios cancerinas
SLOPE OF BERCI: vegetation:

LOCATIOI:
OESCRIPIIOK:
eotioy carosition
SLOPE OF REICI:
GEETATIOX:

Iest shore of Delanare River at mouth of Peach Houso Ditch.
Station consists of a ditch ca. 70 yds long and a beach ca. 50 yds long. A small submerged sand bar extends across the wouth of the ditch. Sand ard nud.
Ten to 15 degrees at high tide; 3 to 5 degrecs at loe tido.
Little vegetation lmediately adjacent to beach or ditch. Area north and south of ditch vogetated sith earsh grass.

## SGB2

Test shore of Dolanare Rlver at "San Groen's Beach" located i/4 wile north of the mouth of Appoquiniaink Creek.
Station consists of $1 / 2-n i l e$ long beach. A sxall sand cllff about 8 ft high parallels the beach and slopes to beach level tomand tho northern end of the area.
Sand at high tide; sand-wud-rubble at lor tids,
Ten degrees at high tide; 5 degrees at lop tide.
He aquatle vegotation prosent.

Lochica:
DESCRIPTION:
BOTHO COEFOSIIICH
SLOFE OF EEACI:
VEGEThtion:
cocarion:
DESCRIPTIOT;
sortor coupcillos
SLOFE OF BEACH:
vegetailat:

LOCAIIOA:
DESCRIPIICR:
80tray courcsinlas.
SLOPE ©F BEACH: VEETATICA:

## SIJA

Test shore of Delarare River, $3 / 4$ Elle north of Canadas Beach.
Station conslsts of $1 / 4-\mathrm{allg}$ lorg beach intorrupted by clumps of poat and bozich grass. Thousand Acre sarch apllipool and a ahallor ditch located at southorn enid of station.
Sand and rud at high tide; aud at lor tide.
Flfteen to 20 degrees at high tids; 5 to 10 degrees at loy tide.
Little aquatic vegotation present. Beach bordered by hith warsh grass.

Dolanare River east sidg of Reedy Island.
Station consista of $1 / 2$-alle long beach at northern ond of laland.
Sand and sud.
Ton to 15 degress st all tidel phases.
No aguatic vogetation. Beach bordered by high marsh grase. IA SALEM FF 1978


LOCATION:
EESCRIPTIO:
bortoy casposition
SLOPE OF REACH:
VEEETATIOK:

OCAIIOH:
DESCRIPIION:
bottor coupositions
SLOPE OF BEACH:
kegetatial:

LOCAIIOA:
DESCRIPTIOH:
BOTICH DESCRIPTIOK:
SLOPE OF BEACH:
VEgETATIOI:

LOCATION:
OESCRIPIION:
EOTTCH COMPOSITIOH
SLOPE of BEACH:
veestation:

085A
East shore of Delavare River at Oakrood Beach.
Station consists of I-alle section of beach located $3 / 4$ eile north of Elsiribaro Point.
and and gravel.
Ten to 20 degrees at high tide; 5 to io degreas at low tido.
No aquatic vegetation present.

## SCS

East shore of Delazare River, in Sunken Shlp Covo, on the southorn ond of Artificial Island.
Station consists of an 80 -yard beach at tho east ond of Sunken Ship Cove. A sunken ship's hull forase all at east and. Soft sand at high tide and aud at lon tide.
Trenty degrees at high tide; 5 degrees at ion tide.
Ho aquatic vegetation present. High marsh grass prescnt about 30 yde inshoro.

## HOP?

East shore of Delararo River; redge-shaped beach south of Hope Crook batieen tougr and bay arrasr.
Station consists of 70 -yard seclion of beach flanked by atcep paat banke and intorruptod by cluspe of paat and basch aramse
Sand and gravel zith some hard wud.
Five to 10 degrees at all tidel phases.
Ho aquatic vegetation present.

## HiCB

East shore of Delayare Rlver north of Had Horse Croek.
Station consists of beach about 70 yds long.
Sand and nud.
Tan to 12 degrees at high tida; 5 to 10 dograos at loe tide.
Shoreline bordered by high earsh grass.

TABLE 3.1.6a-3
TOTAL NUMBER, RANK, AND PERCENT OF TOTAL DAYLIGHT SEINE CATCH - 1978

Station	PHO1	SGb2	AUB 3	St3A	REI4	085A	ELPS	SSC6	HOP?	MHCB			
NO. OF COLLS ${ }^{\text {N (10) }}$	17	17	17	17	17	17	17	17	17	${ }_{17}$	T01AL		
NO. Of COLLS. 113$\}$	17	17	17	17	17	17	17	17	17	17	170 170		
NO. Of COLLS. (15)													
NO. OF SPECIES	18	15	16	20	14	14	13	13					
NO. OF SPECIHENS	924	669	1.273	1.071	451	2.063	850	1.149	1,059	$2,152$	$11.661$		
SPECIES												RANK	PST
M. menidia	504	316	773	352	200	131	236	557		1,302			
A. Mitchilli	265	269	262	440	153	1.146	473	307	308	1.302 717	5.022 4.400	1	43.1 37.7
CYPRITAOAE		38	13	39	7	537	40	4			4.400 678	2	37.7 5.8
B. Tiramedus	42	5	60	24	34	207	52	59	72	103	658	4	5.8
F. Heteruclitus	68	8	125	158	38	8	27	41		11	484	5	5.6 4.2
L. xaminjrus	3	9	11	6	8	1	1	100		3	142	6	4.2
F. Majilis	9		9	1	1		3	83	22	14	142	6	1.2
C. Fegulis	18	11	3	9		5	8	1			72 55	8	- 6
9. dinericava	2	1	4	15	2	8		1			33	8	- 5
H. SAMATILIS	1	1	3	2	1	6	5				33 19	10	- 3
P. croils	1	1	1	6	2		1	1	1		14	11	-2
A. Rositata		3	2			7		1	1		14	11	-1
P. Saliatrix	2			1	2	3	2		1		11	13	- 1
H. NuChalis	1	1		4	1	1	1			1	10	14	. 1
T. maculatus		4	2					3			9	15	-1
P. E:ERICStMU5				4	1			1			6	16	-1
S. FUSCuS S. FOEIEVS	1		2	2							5	17	- 0
A. AESIIVALIS					1	2	1	1	3	1	5	17	. 0
F. OIAPHANUS	3	1									4	19	. 0
C. Carpio				3							3	21	-0
C. Ausaius			1	1							2	22	-0
M. undulatus			2								2	22	. 0
1. Nebulosus				2							2	22	.0
C. variegatus	1					1					1	25 25	- 0
m. berrllina	1										1	25 25	-0
Po flayescens	1										1	25 25	-0
C. MIPPOS	1										1	25 25	-0
L. MACKOCHIRUS		9									1	25 25	-0
P. AnNularis				1							1	25 25	-0
P. higromaculatus				1							1	25 25	-0

ABLE 3.1.6a-4
ANNUAL RANK AND PERCENT OE SEINE CATCH DURING 1970-1978

M. menidia	2
A. mitchilli	1
B. tyrannus	3
F. heterocilitus	6


	1978	
	Rank	percent of catch
M. menidia	1	43.1
A. mitchilli	2	37.7
3. tyrannus	3	5.6
F. heteroclitus	4	4.2

EEINE CATCH PER TABLE 3.1.6a-5
SEINE CATCH PER EFFORT (N/COLL) DURING 1975-1978 OF THE MOST ABUNDANT SPECIES TAKEN IN 1978. A DASH INDICATES NO COLLECTIONS


*     * Less than 0.1

TABLE $3.1 .6 \mathrm{a}-\mathrm{\sigma}$
DESCRIPTION OF RIVER TRAWL zONES－ 1978

## Zorder Linits

Souttiern：Line fros the entrance to the Chesapeake and Delauare Canal to the bestern boundary of the shipping channol
sistem：$\quad[=12$ ans ra shore
Eistera：Pea Patch lsland and the sestern boundary of the shipping channel
Rertiem：Line fron Hea Castle to Buoy 50

Southern：Cable area on east side of Reedy island；and line from northern tip of Reedy isiand to a point on the western boundary of the shipping channel 70 jarus above 3coy 5R．
astern：Dilastre shore．
Eastarn：Peedy laland and western toundary of the shipping channel
Norstern：Line iron the entrarice to the Cliesapeake and Delamare Canal to the sestern beundary of the shipping channel．

Southem：Line from the southern tip of Hickory Island（at nouth of Salen Rivor） to eastern toundary of shipping channel（across from Buoy 5l）． Eastarn beurdary of shipping channel．
Eastam： $\mathrm{i}=\mathrm{z}$ Jersey shore．
hortirern：Line fros Penssville to Buoy 60.
Socthem：Line fron Elsinboro Point to a point on tho eastern boundary of tho shicping chanel $\}, 500$ yards belou Ruoy N2H．
Izsさem：Eastera boundary of shipping channel．
Eastarn：Hez Jersey share．
Northem：Lina fros socthern tip of Hickory Island（mouth of Salen River）to eastern toundary of shippling channel（across channel froa Beoy 5N）．

Southem：Lire fros Delasare Point to a point on the westorn boundary of the stippirg cheral tol yards beloy duoy R6L

50
Eastern：Eestera boundary of shipping channel
Hortiem：Lire fros costin of Ray＇s Ditch to point on the nestern boundary of the shizoing ctarnel 1,000 yards belor Buoy 18
Southem：Liee fres Eakeoven Point to Buoy 42 （39 $21^{\prime \prime} \mathrm{N}$ latltudo ，
ระ

Deiazare stiore
Ēstern：Zistern tountary of shipping channel．
Herthem：Lina frie Dalzaire point to a point on the yestern boundary of the shipring channel 400 yards bolog Buoy RaL．

Shore
East：Harsh（Pea Patch ｜slar，d）and surnerged dike．

West：Karsh and Delamer City bulkhead．

East：Marsh interrupted by sand beach（Reedy （sland）．

Hest：Harsh interrupted
by sand teach.

## East：Hzrsh Interrupted

 by sand beach．West：none

East：Harsh interrupted
by sand beach．
hast：none

East：nona
West：Marsh interrupte
by sand beach．

East：ncne
Rest：Warsh interrupted by sand beach．

Deptia ai	
Meen Lor	こっただ，
$\xrightarrow{\text { 翮ter（ } \mathrm{f} \text {（ })}$	1 y
	Hard and wit end
Hode： 10 ft	
Range： $1 / 2 \mathrm{ft}$ to 40 ft	Soft zud
Lode： 11 ft	
－	
$\text { Range: } \begin{aligned} & 1 / 2 \mathrm{ft} \text { to } \\ & 40 \mathrm{ft} \end{aligned}$	Herd and soit eed
Hode： 10 ft	
$\begin{aligned} \text { Range: } 1 \mathrm{ft} \mathrm{to} \\ 43 \mathrm{ft} \end{aligned}$	Hird and ecites
Hodg： 9 ft	
Renga： $1 / 2$ ft to 34 ft	Hard acd   soft sed
Yode： 13 ft ．	
$\text { Range: } \begin{aligned} & 1 \mathrm{ft} \text { to } \\ & 33 \mathrm{it} \end{aligned}$	Hand $2: 0$ soit ced
Koda： 13 ft	


	20ne		Porder Lisits	Store		D=pth at Kizen Lor Hater ( ft )	$\begin{aligned} & \text { Eoitoa } \\ & \text { Ty }=1 \end{aligned}$
	SE3	Soutifin:   nestern:   Esstern:   hort::orn:	Line frea 500 yards above routh of Mad horse Creek to a point on the essiara boutdery of the shipping channel 400 yards belou Buoy R6L. Eisiern touctary of shipping channel.   lis: Jersey sinore.   Linc fros Hope Creck Jetty to Buoy R8L.	East:	karsh interrupted by sand beach. none		inerd and soit $\because$ d
	SE2	Southem:   nestern:   Eastero:   horthem:	Lire fron Arnold Point to a point on the eastern boundary of the shizaing charrel 1 aile belon Euoy R厶L.   Eastern boudary of shipping channel.   !is: derse; store.   Line froa 5CJ yards above nouth of wad Horse Creek to a point on the eastem toindary of the shipping channel 400 yards belon Buoy RoL.	East:	Marsh interrupted by sand beach. none	Range:1 ft to      30 ft   Mode:   13 ft,$~$	!ard and soft buid
$\omega$	$\leq \subseteq 1$	Seythern:   Western:   Easiern:   licethera:	Line fro- Bueks Point tozer to Buoy 12.   Eestern bendary of shipping channel.   lis: dersey store,   Line frov frrold foint to a foint on the eastem boundary of the stifping chanel I aile belos Buoy R4L.	East:	Marsh interrupted by sand beach. none	Renge: 3 ft to   31 ft   Hode: 13 ft	Hard and soit Eud
$\stackrel{N}{\sim}$	Sf0	Southem:   Res!em:   Estitm:   liorthera:	Line fron Sea breeze to Ship John Shoal. Esstern bouderary of shipping channel. Ily Jersey store.   Line from Ouniks Point tower to Buoy 42.	East:	Marsh interrupted by sand beach.   none		Mard and soít eud
	- -1	Southem:   Festern:   Esstern:   Sicrthem:	Line for fiy's Ditch to Hope Creek Jetty.   Celzaere slicre.   hesiern tourciry of shipping channel to Buoy 18 , to southern tip of Recdy Island Dike.   Line fron lo.er break to llight at southern tip of Reedy Island Dike.	East: Rest:	Rocky along Reedy Island Dike.   Marsh Interrupted by sand beach.	Range:1 ft to      Lode: 32 ft	Hard toid sand; rock near dike, recky
	8-2	Southem:   hestera:   Enstem:   Rerthem:	Lise fros lower break to llght at southern tip of Reedy Island Dike. Dilz:2re share.   Reedy Island Dike.   Line fros reet' of Augustine Creek to point on Recdy Island Dike, 1,000 yards below light beloa break in Reedy Island Dike.	East:	Rocky   Marsh interrupted by sand teach.	```Range: 1 ft to 19 ft Hode: & ft```	Soft end send; rocky near dike
	5	Soutiaen:   Esstern:   Esstern:   fiorthem:	Line fros couth of Augustine Creek to point on Reody Island Diko, 1,000 yards talo: IIght beloa braak in Reedy Island Dike.   Delazare store.   Recey Island Dike.   Cable area east of Reedy Isiand.		Rocky   Yarsh Interrupted by sand beach.	$\begin{aligned} & \text { Range: } 1 / 2 \mathrm{ft} \text { to } \\ & 22 \mathrm{ft} \\ & \text { Hods: } 8 \mathrm{ft} \end{aligned}$	Soft eud sand; rocky near dike

TABLE 3.1.6a-6
conrinuen

## Border Linits

Southern: Lise frca Hope Creek Jetty to Buoy RaL.
Gastern: Eastern toundary of shipping channel.
Eastern: Eastern toundery of shipping channel.
Eastem: liea Jersey shore.
Northern: Line fron western tip of Sunken Ships to a point on the eastern boundary of the shipping ctannel 1,500 yards beloa Buoy R2B.

Southern: Lire fron nestern tip of Sunken Ships to a polnt on the eastern boundary of the shippirç chamel 1,5CJ yards beloa Buoy R2B.
Easterr: Wer Jersey siore (Artificial Island).
restern: - Eastern Eatudery of shipaing channel.
Horthem: Line fros a foint 1,500 yards north of the southern tip of artificial Island to a point on the eastern boundary of the shipping channel 100 yards atove Eloy R2a

Southem: Line froa a point 1,500 yards north of the southem tip of Artificial sland to a foint on the eastern boundary of the shipping channel 100 yards belos Euoy Ris
Yestern: Eastern boundary of shipping channel.
Eastem: Sise Jersey shore
Nortrem: Line tros a polnt 2,003 yards south of northern tlp of Artificial Island to a foint on the eastern boundary of the shipping channel 100 yards above fuoy P?2.

Southem: Line fron a point 2,000 yards south of the northern tip of Artificial tsland to a point on the eastern beundary of the shipping channal 100 yards atova \&:Sy RiR
Tastera: Eastera tecu:dary of shipflig channel.
Eastern: liea dersey store.
hirthem: Lire fron roorih tip of Artificial Island to a point on the eastern toundary of tha shipping channel 1,000 yards above buoy Mitr.

Southem: Line frov northern tip of Artificial Istand to a point on the eastem bounary of the shlpaing charnal 100 yards above buoy HRR.
Testem: Enstera Eeundary of shloping chancel.
Eastem: - lien Jersey store.
Hurtham: Line iroz a pint t 0 yards south of Straight. Ditch to' a point on the eastern boundary of the shipplag channal 100 yards sbove Buoy N6R.

East: Marsh interrupted by sand beach.

Hest: none

East: Rock tall
Rest: none

East: Rock mall
Mest: none

Depth at	
Hean lor	60tion
Hie $\overline{\text { er }}$ ( ft )	Ive
$\text { Range: } \int_{40 \mathrm{ft}}$	Fird send and aud
Mode: 17 ft	
$\text { Range: } \begin{aligned} & 11 \mathrm{ft} \text { to } \\ & \text { il } \mathrm{ft} \end{aligned}$	Gird sarid and $=u d$
Kode: 20 ft	
$\text { Range: } \begin{aligned} & 7 \mathrm{ft} \text { to } \\ & 33 \mathrm{ft} \end{aligned}$	Hard sond and nud
Hode: 23 ft	
$\text { Range: } \begin{aligned} & 10-\mathrm{ft} \text { to } \\ & 35 \mathrm{ft} \end{aligned}$	Herd sand a.d x : d
Mode: 26 ft	
$\text { Range: } \begin{aligned} 1 \mathrm{ft} \text { to } \\ \text { il ft } \end{aligned}$	Pard and soft eud
Hoda: 16 ft	


	20:8		Eordor Linits	Shor		Depth at Yean LOB Finter ( ft )	$\begin{aligned} & \text { Coiton } \\ & \text { Iyze } \end{aligned}$
	E-5	Southern:   Hestorn:   Eastern:   Siorthem:	Line fron a ajint 400 yards south of Straight ditch to a point on thie eastera bojaciary of the shipsing channe? 1,000 yards above Buoy M6R. Easisra bujedary of shipping chanal.   lien jersey sitore.   Lire frea Elsintoro Point to a point on eastern boundary of shlpping charnel 1,500 yards beloa Buoy M2ll.	East: fest:	Marsh interrupted by sand beach. none	```Range: \| ft to 4 3 ~ f t Made: 16 ft```	Hard and sotit send and nud
$\stackrel{\omega}{\omega}$	RII	Souihera:   hésiem:   Esstem:   horinern:	Line iron scathern tip of Reedy Island Dike to Bioy 18.   REajy liland Cite.   त̈ะsiera tcustery of shipping channet.   Lire scuth of fleshing green $2 \frac{1}{2}$-second light on Reedy Island Dike to a foint on the iestern boundary of the shipping channel 100 yards south of $\mathrm{E}: \mathrm{O} \%$ CIR.		none   Rocky (Reecy Island   Dike); narsh, sand beach (Reedy island).	Range: 1 ft to 32 it   Kode: 22 ft	Pcoky (near   dike); soit ejd
$\begin{aligned} & \sim \\ & \omega \\ & \omega \end{aligned}$	R12	Scuthem:   Mesiarn:   Exstem:   Hiorthern:	Line south of flashing green $2 \frac{1}{2}$-second IIght on Reedy Island Dike to a paitit on the aestern boundary of the shipping channel approxinately ico yards sesth of Ruoy CIR.   Reedy Islaid Dike.   Restern toundary of shippirg channel.   Lise fron iorthern tip of Reedy lsland to a point on the western boundary of trie shipping chamel 1 , 000 yards above luoy 5R.	East:   mest:	none   Rccky (Reedy Island   Dike); marsh, sand beach (Reedy Island).	Range: 2 ft to 38 ft Yode: 22 ft	nocky (neer.   dike); scft sud
	556	Sautifera:   Testera:   Eastern:   Nerthern:	Pires of Suriken Snips.   Lire fron western tip of Sunken Shlps to southem tip of Artificial island.   Ring of Sunken Ships.   hea Jersey shore (hrtificial Island).	East:   Hest:   North:   South:	```hood hall none Sand beach, rock zall Mood M2ll```	$\begin{aligned} & \text { Range: } 1 \mathrm{ft} \text { to } \\ & \\ & \text { Hode: } 9 \mathrm{ft} \end{aligned}$	Soft aud and sand

TABLE 3.1.6a-7
ANMUAL TRAWL CATCH STATISTICS - 1978

zONE		CHA1				CHA						
NO. Of COLLECTIONS		18				18						
NO. Of SPECIES		19				15						
NO. OF SPECIMENS		1.380				1.390				2.88		
SPECIMENS/10 MIN TRAWL	( $\mathrm{N} / \mathrm{T}$ )	37.8				38.6				80		
SPECIES	NUMEER	N/T	T*	N/T*	NUMBER	N/T	T*	H/T*	NUMEER	N/t	T*	N/T*
A. oxyrhynchus									2	. 1	2	. 5
2- Rostrata	3	- 1	3	- 5	4	. 1	2	1.0	26	. 7	6	2.2
A. AESTIVALIS	11	. 3	2	2.8	21	. 6	3	3.5	10	. 3	1.	5.0
A. PSEudoharengus	5	-1	2	1.3	4	.1	2	1.0	3	.9	2	. 8
A. Sapioissima	1		1	. 5								
8. Tyrativas					8	. 2	2	2.0	5	. 1	2	1.3
A. MITCHILLI	269	7.5	12	11.2	281	7.8	14	10.0	113	3.1	15	3.8
1. Puxictarus									1		1	. 5
S. FOETEVS	1		1	- 5								
0. rall	6	. 2	3	1.0								
R. margivata	3	. 1	2	-8	5	. 1	4	. 6	1		1	. 5
m. menioia					1		1	- 5				
P. Evolays									1		1	. 5
m. imericana	2	. 1	1	1.0	4	. 1	2	1.0	11	. 3	3	1.5
M. Saxatilis					1		1	. 5	2	. 1	1	1.0
P. Saltatrix	1		1	. 5					2	- 1	1	1.0
C. PEGALIS	866	24.1	11	39.4	12010	28.1	10	50.5	2,261	62.8	10	113.1
L. xamthurus	3	-1	2	-8	3	. 1	2	. 8	11	. 3	3	1.8
H. undularus	45	1.3	3	7.5	27	. 8	3	4.5	49	1.4	2	12.3
P. CRCMIS	3	. 1	2	- 8	3	. 1	2	. 8	11	. 3	4	7.4
a. guttatus	1		1	- 5								
P- YRIACSATHUS	3	. 1	1	$1-5$	5	. 1	4	. 6	7	. 2	3	1.2
P. ALEPIDJTUS	1		1	- 5								
S. aoluosus	4	. 1	3	-7								
r. haculatus	132	3.7	8	8.3	13	. 4	8	-8	365	10.1	10	18.3
T* NUMBER OF TRAML HAULS HITH SPECIESN/YA SPECIMENS/IO MIN YRAWL IN WHICH SPECIES WAS TAXEN												



zone		E-1				E-2						
NO. Of COLLECTIONS		36				36						
NO. OF SPECIES		22				1.6						
NO. OF SPECIMENS		5.546				3.433				2,8		
SPECIMENS/10 MIN TRAWL	(N/T)	154.1				95.4				79		
SPECIES	NUMBER	N/T	T*	N/T*	number	N/T	「*	N/7*	NUMBER	N/T	T*	N/T*
A. oxyrhynchis									2	. 1	$?$	1.0
A. ROSTRATA	39	1.1	9	4.3	45	1.3	9	5.0	23	- 0	3	2.9
A. AESIIVALIS	39	1.1	3	13.0	35	1.0	9	3.9	28	. 8	5	5.6
A. pseudjuarengus	4	. 1	4	1.0	2	. 1	1	2.0				
A. SAPIDISSIMA	1		1	1.0	1		1	1.0				
B. Trratidus	1		1	1.0	2	-1	2	1.0	1		1	1.0
A. Mitchilli	2,814	78.2	28	100.5	565	15.7	22	25.7	356	9.9	22	16.2
1. phaictatus					1		1	1.0	1		1	1.0
O. Ta!	1		1	1.0								
R. Margivata	6	- 2	4	1-5	5	-1	3	1.7	6	. 2	3	2.0
4. Mehidia	2	. 1	2	1.0								
S. fuscus	1		1	1.0								
m- AmERICAAA	24	. 7	7	3.4	29	-8	8	3.5	121	3.4	8	15.1
M. SAXATILIS	2	-1	1	2.0					2	. 1	$\geq$	1.0
P. Smitapix					2	-1	2	1.0				
C. Hipeos	9	. 3	1	9.0								
C. REEitis	1.694	41.5	16	93.4	1.467	40.8	20	73.4	1.294	35.9	17	70.1
L. xitithurus	72	2.0	8	9.0	11	. 3	7	1.6	5	. 1	4	1.3
*. Uridulatius	3	. 1	3	1.0					4	.1	3	1.3
P. Cromis	6	. 2	4	1-5	11	: 3	7	1.6	2	. 1	1	2.0
P- triacavirus	5	. 1	1	5.0	1		1	1.0				
P- aLEPJdorus	1		1	1.0								
P. dentayijs	5	-1	3	1.7	1		1	1.0				
P- Arericanus	1		1	1.0								
t- maculatus	1.016	28.2	21	48.4	1.255	34.9	22	57.0	1.010	28.1	21	45.1

f* NUMEER OF TRAWL HAULS WITH SPECIES
H/T* SPECIMENS/10 MIN TRAWL IN WHICH SPECIES WAS TAKEN

TABLE 3.1.6a-7
CONTINUED

20ne		E-4				E-5						
NO. OF COLLECTIONS		36				36						
no. of species		19			-	20						
No. OF SPECIMENS		3.618				7.569				4.2		
SPECIMERS/10 RIN TRAWL	(N/T)	100.5				210.3				118		
SPECIES	number	N/T	T*	N/T*	number	N/T	T*	N/T*	NUMAER	N/T	T*	N/T*
A. oxyrhynchus									1		1	1.0
A. ROSTRAT	13	. 4	9	1.4	21	- 6	11	1.9	63	1.8	11	5.7
A. Aestivalis	17	- 5	7	2.4	9	. 3	4	2.3	10	. 3	6	1.7
A. PSEujorlrengus	1		1	1.0	5	. 1	5	1.0	2	- 1	2	1.0
4. Sisidoissima	1		1	1.0	1		1	1.0				
B. Iraskujs	2	- 1	2	1.0	4	. 1	3	1.3	10	. 3	6	1.7
D. cefedianum					1		1	1.0				
A. MITCHILLI	213	5.9	20	10.7	1.643	45.6	19	86.5	1.168	32.4	20	58.4
c. CARPIo					1		1	1.0		. 1	2	1.0
1. catus						,			3	- 1	3	1.0
I. befulasus	2	.1	1	2.0					4	. 1	2	2.0
1. Pariciatus	3	. 1	2	1.5	6	. 2	4	1.5	13	. 4	8	1.6
R. Narsimita	4	-1	3	1.3	1		1	1.0				
S. funcuis	1		1	1.0								
M. Luticatas	98	2.7	10	9.8	340	9.4	10	34.0	76	2.1	13	5.8
M. saxaidiss	2	. 1	1	2.0	15	- 4	2	7.5				
P. Saliatrix					2	. 1	2	1.0	3	. 1	3	1.0
C. Regalis	1.909	53.0	18	106.1	1e205	33.5	20	60.3	- 598	16.6	17	35.2
L. xarimurus	8	. 2	5	1.6	37	1.0	11	3.4	37	1.0	10	3.7
H. uniulitus	6	. 2	3	2.0	10	- 3	4	2.5	8	- 2	4	2.0
F. CREMIS	3	-1	3	1.0	9	. 3	7	1:3	6	- 2	4	1.5
P. triacanthus	1		1	1.0	8	. 2	4	2.0	3	. 1	2	1.5
P. oentatus					4	-1	2	2.0	3	. 1	3	1.0
S. Aowosus	1		1	1.0					1		1	1.0
t. haculatus	1.333	37.0	23	58.0	4.247	118.0	26	163.3	2.249	62.5	25	90.0
T* NUMBER Of trabl hauls with species												
H/I* SPECIRENS/40 MIN	TRAWL IN	WHICH	S	TAXEN						IA	FF	

AbLE 3.1.6a-7
CONTINUED

ZONE		NE1										
No. Of COLLEETIONS		NE1				NE2						
NO. Of SPECIES		19				28						
NO. Of SPECIMENS		4.398				- 20						
SPECIMENS/10 MIN TRAWL	( $\mathrm{N} / \mathrm{T}$ )	137.4				$5.495$				3.5		
	(N/T)	137.4								126		
SPECIES	NUMEER	N/T	『*	N/T*	NUMBER	N/T	Y*	N/T*	NUMBER	N/T	1	N/Y*
a. rostrata	6	- 2	5	1.2	16							
A. AESTIVALIS	74	2.3	6	12.3	24	. 9	8	2.0	114	4.1	$?$	-16.3
a. PSELDOHARENGUS	5	. 2	3	1.7	7	- 3	5	4.8	10	- 4	4	2.5
8. trrankus	7	. 2	5	1.4	6	. 2	6	2.3 1.0	9	- 3	4	2.3
D. cepedianum					1	- 2	1	1.0	19	. 7	$\delta$	3.2
A. MIJCHILLI	865	27.0	'20	43.3	1.470	52.5	14	105.0	231	8.3	19	
C. carpio	2	. 1	1	2.0	1		1	1.0	231	8.3	10	12.2
H. MuChalis	9	. 3	2	4.5	6	. 2	4	1.5				
I. Carus	1		1	1.0	2	. 1	2	1.0				
I- beaulosus	2	. 1	2	1.0	18	- 6	7	2.6				
1. PudCtatus	4	. 1	4	1.0		. 1	2	1.5				
O. Tau												
S. fuscus									1		1	1.0
m. aniricama	125	3.9	15	8.3	224	8.0	16	14.0	20	. 7	19	1.0 1.8
M- SAXitILIS	1		1	1.0	5	. 2	5	1.0				1.8
P. flatescens					1		1	1.0				
P. Salitiaix	1		1	1.0	2	. 1	2	1.0	3		5	
C. REGiLIS	1.329	41.5	13	102.2	2.100	75.0	11	190.9	2.987	106.7		228.8
L. xastiurus	80	2.8	12	7.5	90	3.2	8	11.3			13	
H. undulatus	4	. 1	3	1.3	15	. 5	5	3.0	66	2.4	ó	11.0
P. cromis	12	. 4	6	2.0	12	. 4	3	4.0	4	. 1	3	1.3
P. thiagaithus									1		1	1.0
P. Desitatus	2	. 1	1	2.0								
S. acuosus									2	. 1	1	2.0
r. maculatus	1.859	58.1	26	77.5	1.492	53.3	21	71.0	85	3.0	13	6.5
T* NUMBER OF TRAWL HA N/T* SPECIMENS/IO MIN	ULS WIYH	PECIES WHICH	S	AXEN								

TABLE 3.1.6a-7
CONTINUED

zove		RI2										
No. Of Collections		28				SE0						
HO. Of SPEGIES		15				36						
Ho. Of SPECIMENS		5.401				26 4.548						
SPECIMERS/10 MIN TRAWL	( $\mathrm{N} / \mathrm{T}$ )	5.401 192.8				4,548				3.8		
	(n/t)	192.8				126.3				106		
SPECIES	Number	N/T	T*	N/T*	number	$\mathrm{N} / \mathrm{T}$	T*	N/T*	NUMBER	N/T	T*	N/T*
P. Maritues	1		1	1.0								
R. Botis jus					1		1					
A. oxyrhinchus					1		1	1.0				
A. RCSTRATA	85	3.0	8	10.6	$4^{\circ}$	- 1	4	1.0				
A. AEStivalis	12	. 4	5	2.4	6	- 2	3	2.0	18	- 5	7	2.6
a. pSEucomarengus	3	. 1	1	3.0		- 2	3	2.0	30	. 8	4	7.5
8. IYEiaidy	23	. 8	9	2.6	1				8	- 2	2	4.0
A. Mitchilli	428	15.3	16	26.8	1.917	53.3	25	78.7	897	${ }^{-2}$	3	2.0
S. foeters					1	53.3	15 1	76.7 1.0	892	24.8	23	38.8
O. tau					38	1.1	12	3.0				
U. Causs					2	. 1	12	3.2 2.0	14	-4	7	2.0
r. Margivata					13	- -4	7	2.0	6	- 2	1	6.0
H. retiola	3	. 1	2	1.5	13	- 4	7	1.9	21	. 6	,	2.6
S. Fuscus			2	1.5	2	-1	1		1		1	1.0
4- mamilcana	31	1.1	11	2.8	29	. 8	5	2.0 5.8	42	-1	2	1.0
M. SAxitilis					2	-	1	5.8 1.0	42	1.2	5	8.4
c. striata					2	- 1	1	2.0				
P. SALTATzix	2	. 1	2	1.0	3	. 1	2	1.5				
C. Regalis	4.612	164.7	11	419.3	2.226	61.8	19	117.2	1.750		1	1.0
L. xasimurus	7	. 3	2	3.5	5	$\bigcirc 1$	4	117.2	1.750	48.6	21	83.5
M. Moulatus	23	- 8	6	3.8	7	. 2	2	3:5	15	- 3	5	1.8
P. criomis	6	- 2	5	1.2	4	. 1	3	1.3	9	- 3	5	3.0
a. gutiatus					7	- 2	3	2.3	9	- 3	3	3.0
G. bosci					2	-1	2	1.0				
P. tinlacauthus						. 1	3	1.3				
P. aleplootus					2	-1	1	2.0				
P- ofmiatus	1		1	1.0	1		1	1.0				
S. hquosus					3	-1	3	1.0		-1	5	1.5
T. macularlis	164	5.9	16	10.3	266	7.4	24	11.1	975	27.1	24	2.6 40.6

TA hUMSER OF TRAGL HAULS WITH SPECIES
N/Y\# SPECIMENS/TO MIA TAAGL IN 甘HICH SPECIES WAS TAKEN :

TABLE 3.1.6а-7
CONTINUED

zone		SE2				SE3				S		
NO. Of COLLECTIONS		36				36						
NO. OF SPECIES		21				24						
NO. OF. SPECIMENS		4.073				3.710				7.13		
SPECIMENS/10 HIN TRAUL	(N/T)	113.1				103.1				375.		
SPECIES	number	N/T	**	N/Y*	Number	N/T	1*	N/T*	number	$N / T$	T*	$\mathrm{N} / \mathrm{T}:$
A. rosirata	28	. 8	8	3.5	5	-1	4	1.3	7	-4	6	2.3
A. AESTIVALIS	33	-9	7	4.7	22	. 6	6	3.7	55	2.9	5	22.0
A. pSEudjaramgus	6	.2	2	3.0	8	. 2	4	2.0	4	- 2	4	2.0
A. SAPIDISSIMA					1		1	1.0	4	- 2	3	2.7
B. Tyramius					5	-1	2	2.5	1	- 1	1	2.0
D. cepeoianum									1	. 1	1	2.0
A. mitcailli	1.439	60.0	22	65.4	1,318	36.6	27	48.8	5.424	285.5	31	349.9
I. Catus									2	- 1	1	4
1. neEulosus									4	. 2	2	4.0
S. fueievs					1		1	1.0				
O. TAU	11	. 3	4	2-8	7	. 2	5	1.4				
U. Chilss	2	. 1	2	1.0	11	. 3	3	3.7	6	. 3	4	3.0
R. Mirgivata	10	. 3	6	1.7	1		1	1.0	1	-1	1	2.0
m. metidoia					18	- 5	1	18.0	5	. 3	2	5.0
S. Fiscus	4	. 1	3	1.3	6	. 2	6	1.0	6	- 3	5	2.4
P. EvOLAVS	1		1	1.0	2	- 1	1	2.0				
m. dnericana	32	. 9	6	5.3	27	. 8	8	3.4	165	8.7	15	22.0
M. Saxatilis	4	. 1	2	2.0					1	. 1	1	2.0
P. SALTATRIX					1		1	1.0	1	-1	1	2.0
C. hippos									5	. 3	3	3.3
C. REGALIS	1.467	60.8	20	73.4	585	16.3	17	34.4	802	42.2	19	84.4
L. xinthurus	13	-4	6	2.2	54	1.5	8	6.8	127	6.7	23	11.0
*. unoulatus	7	. 2	2	3.5	3	-1	2	1.5	1	- 1	1	2.0
P. crumis	15	. 6	6	2.5	7	- 2	7	1.0	10	- 5	5	4.0
A. Gutitius	1		1	1.0	1		1	1.0				
G. bisci	1		1	1.0								
P. tifacantmus	4	.1	2	2.0	7	. 2	3	2.3	1	. 1	1	2.0
P. ALEPİOTUS	1		1	1.0								
P. dentatus	3	. 1	2	1.5	4	. 1	2	2.0	12	-6	8	3.0
5. aquosus					3	. 1	2	1.5	2	. 4	2	2.0
r. maculatus	991	27.5	29	34.2	1.613	46.8	26	82.0	488	25.7	53	29.6
Y* NUMAER Of TRAWL HAULS WITH SPECIESN/TE SPECIMENS/IO MIN TRAWL IN WHICH SPECIES HAS TAKEN												



TABLE 3.1.6a-7
CONTINUED

zone		SW2				W-1						
NO. OF COLLECTIONS		36				36						
No. df Species		23				21						
NO. OF SPECIMENS		5.867				5.721				7.8		
SPECImens/io min trawl	( $\mathrm{H} / \mathrm{T}$ )	163.0				158.9				217		
SPECIES	number	N/T	T*	N/T*	NUMBER	N/T	r*	N/T*	NUMEER	N/T	T*	N/T*
A. Rosirata	39	1.1	16	2.4	100	2.8	13	7.7	40	1.1	9	4.6
A. AEStivalis	14	. 4	4	3.5	28	. 8	8	3.5	6	. 2	3	2.0
2. pseudonarengus	16	. 4	5	3.2	3	-1	2	1.5	2	. 1	1	2.0
A. Stpioissima	1		1	1.0	4	-1	1	4.0				
B. Tribsitus	15	. 4	6	2.5	10	. 3	7	1.4	9	- 3	5	1.3
D. cepedianum	3	. 1	1	3.0	1		1	1.0				
A. Mitchillit	1.503	41.8	26	57.8	1,813	50.4	29	62.5	5,112	142.0	27	189.3
C. Cañio					6	. 2	2	3.0	2	- 1	2	1.0
I. Caius					2	. 1	2	1.0				
I. nefulosus	2	.1	2	1.0	1		1	1.0	4	-1	3	1.3
0. Tad	1		1	1.0								
U. cmuss					1		1	1.0				
U. REGIJJS	1		1	1.0								
R. maf́lvata	1		1	1.0								
m. meniola									1		1	1.0
S. fuscus	5	- 1	2	2.5	9	. 3	8	1-1	6	. 2	4	1.5
m. americana	102	2.8	14	7.3	160	4.4	15	10.7	234	6.5	10	14-3
M. saxailits					1		1	1.0	8	. 2	6	1.3
P. Hignouaculatus					1		1	1.0			1	1.0
P. Salitirix									1		1	9.0
	2.297	63.8	19	120.9	979	27.2	18	54.4	921	25.6	19	48.5
L. xairinjous	35	1.0	9	3.9	81	2.3	14	5.8	103	2.9	15	6.7
4.0 uniulatus	229	6.4	5	45.8	26	. 7	4	6.5	25	. 7	7	3.3
P. CrCMls	14	. 4	9	1-6	28	. 8	11	2.5	6	. 2	4	1.5
G. Bosci	2	. 1	2	1.0					2	. 1	2	1.0
P. triacanthus	1		1	1.0								
P. ALEPIDOTUS	1		1	1.0								
P. oentatus	1		1	1.0	3	-1	3	1.0	6	. 2	4	1.5
S. acuosus	2	. 1	2	1.0								
r. Maclicitus	1.582	43.9	24	65.9	2.464	68.4	30	82.1	1,353	37.6	36	39.8

* number of trabl hauls with species N/T* SPEEIMENS/1O MIN TRAWL IN WHICH SPECIES bAS TAKEN

table 3.1.6a-7
CONTANED


ZONE		rota		
No. of collegtions		848		
No. Of SPECIES		45		
NO. OF SPECIMENS		8,083		
SPECIMEMS/10 MIN YRAWL	( $\mathrm{H} / \mathrm{T}$ )	139.7		
Species	hunder	N/t	1*	N/T*
P. Marimus	1		1	1.0
R. GONASUS	1		1	1.0
A. oxyrhyidetus	6		6	- 8
A. rositata	814	. 9	219	3.4
A. AESTIVALIS	504	. 6	125	4.4
A. pseudoharengus	126	. 1	66	1.8
A. SApIoISSima	20		13	1.4
日. Tyraninus	258	. 3	111	2.1
o. cepedianum	15		8	2.0
A. mitchilli	36,861	40.2	560	60.7
C. CARPIO	25		14	1.8
H. nuchalis	15		6	2.5
1. catus	13		12	-1.1
1. nebulosus	66	. 1	35	1.9
1. Punctaius	53	.1	38	1.3
S. foetens	3		3	. 8
O. TAU	83	. 1	36	2.1
U. chilss	37		15	2.8
U. Regius	1		1	1.0
R. Marginata	83	. 1	48	9.5
M. NEMIDIA	32		11	2.9
S. Fuscus	48	. 1	38	1.4
P. CAROLIAUS	1		1	1.0
P- EvOLANS	4		3	1.0
M. americana	2.909	3.2	273	10.3
M. Saxailisis	74	. 1	40	1.7
C. striala	2		1	2.0
L. macrochirus	1		1	1.0
P. Antularis	2		2	1.0
P. nigromaculatus	2		2	1.0
P. flavescens	3		3	1.0
P. Saltatrix	30		28	1.0
c. hlppos	14		4	5.6
C. REGALIS	49.615	54.1	426	106.6
L- xanthurus	1.067	1.2	203	5.3
M. undulatus	884	1.0	100	7.9
P. cromis	231	. 3	120	1.8
a. gutitatus	11			1.2
G. BOSCI	8		8	1.0
P. triacanthus	56	. 1	32	1.3
P. ALEPIDOIUS	6		5	1.0
P. DENTATUS	62	. 1	43	1.6
S. AOHOSUS	36		25	1.3
P. americanus	1		,	1.0
r. maculatus	33.919	37.0	584	55.4
f* Number of trawl halls witil species   N/t* Specimens/10 min trawl in which sfectes was taken				

IA SALEM FF 1978
 species gaken in 1978. a dash indicates no collectrons.



TABLE 3.1.6a-10
ANNUAL GILL NET CATCH - 1978

$t=$ number of specimens per drift hour in which the species was taken.
$t=n$ per drift hour less than 0.05 .

TABLE 3.1.6a-11
WEEKLY NUMBER PER DRIFT HOUR (n/DRIFT hr), OF. ALOSID SPECIES YAKEN BY GILL NETS - 1978

	Mesh Size (cm)	7.9								
	Month	March		Apri			May		June	October
	Week	19-25'26-31	2-8	9-15	16-22	7-13	21-27	28-31	4-10	8-14
	No. of Drifts	816	8	8	4	3	8	8	6	2
	No. Of Drift Hours	412	8	8	4	3	7.5	7	6	1
	Alosa spp.				0.3					
	A. aestivalis	0.1	0.3	1.1	8.8	0.7		0.3		
	A. pseudoharengus	0.511 .5	9.0	9.6	2.0	0.7				
	A. sapiḋssima		0.1			0.3				
	Mest Size (cm)			14.						
$\omega$	Month	March		Apri						
$\cdots$	Week	19-25 26-31		9-15	16-22		21-27			
1	No. of Drifts	418	7	4	2	2	2			
N	No. Of Drift Hours	213.5	7	4	2	2	2			
$\bigcirc$	A. aestivalis									
	A. pseudoharengus			0.3						
	A. sapidissima	0.4	0.3	1.3	3.0					

Mesh Size (cm)
Month
keek
No. of Drifts
No. Of Drift Hours
A. Eestivalis
A. pseudoharengus
A. sapidissima



POMLIC SERVICE LIECTRCC AND GAS COMPANY salem nucleal genemating station	Similarity of seine catch on first. three component axes based on specie composition-1978
	Figure 3.1.6a-2

## Legend

$\nabla$ Upper range

+ One stundurd deviation
$\times$ Mean
- One standurc deviation
$\triangle$ Lower range
- 

 	Temporal abundance of Atlantic silverside by seines - 1978
	Figure 3.1.6a-3

3.1-263

# 泪 

REEDY ISI.ANO (G)
fugustine bencil (o)
胱

SIM GREEN'S BEACH (6)

PEACH HOUSE DITCH (G)


OAKHOOD BEACH (G)

ELSINBORC POINT (6)

SUNKEN SHIP COVE (6)

hope creek (6)

mad honse cneek
(6)


public shmice blectric and gas company salem nuclear genbraying stmion	Seine catch statistics of Atlantic silverside in spring-1978
	Figure 3.1.6a-4

3.1-264

ST. Gronges rineck (0)

REEDY ISLANO (G)
nUGUSTINE BEACH (j)

SAM GREEN'S BEACH (E)

PEACH HOUSE DITCH (O)

ORKHCOD BEACH (G)

## ELSINBORO POINT (6)

SUNKEN SHIP COVE (5)

MOPE CREEK (O)

MOD HORSE CREEK (G)


-0. 31	0.32	0.95	1. 3 9	$2{ }^{2} \mathbf{3}$	2. 85



Her


shmem nuchina gembathe sthtion	Seine catch statistics of Atlantic silverside in summer-1978
	Figure 3.1.6a-5


3.1-266

3.1-267

# <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">-0. 54</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0.0 .9</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0.12</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1. 20</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.77</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">|  | -0. 54 | 0.0 .9 | 0.12 | 1. 20 | 1.77 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |</table-markdown></div> <br> $F=1$ 

REEDY ISLAMO (G)

RUEUSTINE BENCH (G)

SAM GBEEN'S EERCI (G)


PERCH HOUSE DITCH (6)


OAKHOOD BEACH (6)


ELSINBORU POINT (6)


SUNKEN SHIP COVE (6)


HOPE CRIEEK (6)


MND HONSE CREEK (G)


Pumbic service blectme and cas combany Salem nuclaiar generating station

> Seine catch statistics of bay anchovy in spring-l978

Figure 3.1.6a-8
3.1-268

3t. pronges creek (g)

REEDY 1SI.RND (G)
fugustine berch (5)

SAM GREEN'S BEACH (O)

PEACH HOUSE DITCH (G)

ORKHOCD DEACH (G)

## ELSINEORO POINT (G)

## SUNKEN SHIP COVE (5)

## HOPE CREEK (8)

mad horge cmeek (6)


 	Seine catch statistics of bay anchovy in summer-1978
	Figure 3.1.6a-9

ST. \&だORGES CMTFK (J)

RETOY 15 SIMRO (3)

RUGUSTINE BEACH (5)

SחM GREEN.'S BEACH (S)

PERCH HUUSE DITCH (5)

ORKWOCD BEחCH (5)

ELSINBORO POINT (5)

SUNIEN SHIP COVE (5)

HOPE CREEK (5)

MOO llORSE CREEK (5)

$1+1$



PUBLIC SERVICE EARCIRIC NND CAS COMDAMY SALEM NUCL,LAR GENERATING SHDMON

Seine catch statistics of bay anchovy in fall-1978


Temporal abundance of Atlantic menhaden by seines - 1978

st. gromers racek (o)

REEOY ISLAND (G)
nUCUSTINE BENCH (6)

SBM GREEN'S BEACH (S

PERCH HOUSE DITCH (6)


OAKHOOO BEACH (6)

ELSINBORG PGINT (6)

SUNKEN SHIP COVE (6)


HOPE CREEK (6)

HRO HOMSE CAEEK (G)

aILANTIC MENIIDDEN ${ }^{2}$ SPAING 2.29

PUBLIC SERVICE blectric and gas combany
$\qquad$ $\pm$青 $\Longrightarrow$

Seine catch statistics of Atlantic menhaden in spring-1978

$$
\text { Figure } 3.1 .6 a-12
$$

sヶ. GEOnGRS CREEK (G)

GEEDY ISLAND (G)

AUGUSTINE: BEAC:I (S)

SAM GREEN'S BERCH (G)

PERCH HOUSE DITCH (6)

OAKHOCD EEACH (6)

ELSINBURO POINT (G)

SUNKEN SIIIP COYE (5)

ROPE RREEK (G)

MAD MORSE CREEK (G)
 $1+\square$




Seine catch statistics of Atlantic menhaden in summer-1978

Figure 3.1.6a-13


PUBLIC SERHCE BAKCMIC AND GAS COMDANY salem nuclema ghembating smaton

Temporal abundance of mummichog by seines-1978

Figure 3.1.6a-14

ST. EEORGES CMEEK (G)

RE:COY ISL.IND (G)

AUGUSTINE BERCH (G)

SAM GREEN'S BEACH (G)

PEACH HOUSE DITCH (6)

OחKKOCD BEACH (6)

ELSINBORO POINT (O)

SUNKEN SHIP COVE (G)

HOPE CREEK (6)

HAD HORSE CREEK (G)


PUBLIC SERFICR EIECRRIC AND GAS COMBANY  	Seine catch statistics of mummichog in spring-1978
	Figure 3.1.6a-15

3.1-275


HOPE CREEK (6)

MOD HORSE CREEK (G)

pumalic service blectric and cas company SALEM NUCLABA GENERATING STMION

Seine catch statistics of mummichog in summer-1978

Figure 3.1.6a-16
3.1-276

ST. riEORGE:S CREF:IS (5)

REEDY ISLAND (5)

BUGUSTINE BEACH (5)

SAM GREEN'S BEACII (5)

PEACH HOUSE DITCH (5)


ORKMOCD BEACH (5)

ELSIMEORO POINT (5)
$H-1=1$
$1 F=1$

HOPE CMEEK (5)

MRD HORSE CREEK (5)


RANEE





HOnTMHEST BEGION (G)



CENTAML. -HEST REGION (G)


SOUTHNEST REGION (E)


NORTH CIARNEL REGION (E)


SOUTH CHMNNEL REGJON
(G)

-

NORTHEAST REGION (G)

CENTRAL. -EAST REGION (6)


SUUTHENST REGION (E)




Trawl catch statistics of weakfish in fall-1978


HOMTHEEST MEGIDN (G)

CENTBAL.-WEST BEGICN (O)
(G)

SOUTHWEST REGION (6)



## NORTHEAST REGICN (6)



3.1-283


## CGMTBAL -HEST REGICN (G)

SOUTHAEST REGION (G)

WORTH CIIRNNEL REGICN (6)

SOUTH CMANNEL REGION \{S\}

NORTHEAST REGION (ธ்)

CENTRAL-EAST REGION
(8)

SUUTHEAST REGION (6)

$\xrightarrow{\square}$


pubaic servich mactric and gas company   samem nughina generathes staton	Trawl catch statistics of bay anchovy in summer-1978
	Figure 3.1.6a-24

3.1-284

HOMTHWEST MEGION (6)

CENTBAL WE:ST REGION (G)

SOUTHWEST REGION (G)


NORTII CHANHEL REGION
(6)

SOUTH CHANNEL REGION (G)


NORTIEAST REGION (G)

CENTMAL-ERST REGION (G)

SUUTHEAST REGION (6)


3.1-285


pumac semvice barcthe mid cas componi  	Temporal abundance of hogchoker by trawl-1978
	Figure 3.1.5a-26

3.1-286
$\cdots \quad 0.14 \quad 0.35 \quad 1.30 \quad 2.05 \quad 2.39$


CENTAAL - HLSST REGION (G)


SOUTHHEST REGION (E)


NORTH CHONNEL REGICN (G)

SOUTH CHRNNEL REGION (G)
由


CENTRAL-ERST REGION (6)


PUBLIC SERVICE: LAECHRIC ANJ GAS COMDAMY


Trawl catch statistics of hogchoker in spring-1978

Figure 3.1.6a-27


NORTHEAST REGION (G)

CENTRAL-EAST REGIAN (G)

SOUTHEAST REGION (G)


public seminice mectric and gas compary shiem nuclearr generating sthtion	Trawl catch statistics of hogchoker in summer-1978
	Figure 3.1.6a-23

## HOMTHHEST RICGION (G)



CENTARL. -HEST REGION (G)

SOUTHWEST REGION (G)


NOBTH CHIHNEL REGION (E)


## NURTHEAST REGION (6)

CENTRAL -EEAST REGION (G)

SOUTHENST REGION (6)


Pumac sebvie berctric and cas compani SALEA NUCLDAR GLDNRRATHE SFATIOM	Trawl catch statistics of hogchoker in fall-1978
	Figure 3.1.6a-29

3.1-289


pumble gervice medetric and gas company saldm nuchara gembrating station	Temporal abundance of white perch by trawl-1978
	Figure 3.1.6a-30

nortihest megion (a)

CENTAAL. WE:ST PE:GION
(G)

SOUTHWEST REGION (E)

NORTH CHBNNEL FEGION (S)


SOUTH CHANNEL REGION (G)

CENTRAL -EAST REGION


SOUTHENST REGION (G)


Trawl catch statistics of white perch in spring-1978

Figure 3.1.6a-31
3.1-291

Nomthm:sy negion (5)

CEHTARL.-WEST BEGION (G)

SOUTHHEST REGION (G)

HORTH CHANNEL REGICN (S)

SOUTH CIIRNNEL REGION (G)

NOMTHENST REGION (6)

CENTRAL -EAST REGION (G)

SOUTIEAST REGION (6)

pumbic service habctric and gas combany SALEM NUCLBMA GBNERATING STATION

Trawl catch statistics of white perch in summer-1978

Figure $3.1 .6 a-32$
3.1-292

HORTIMEST ILGION (6)

CENTAAL -HEST REGION (G)

SUUTIWEST REGION (G)


NORTI CHANNEL REGION (6)
1毛

SOUTH CHONNEL REGION (6)


NORTHEAST REGIUN (6)

CENTRAL.-ERST REGION (6)


SOUTHEAST REGION (G)


PUBLIC SEMVICE ELECMRAC AND GAS COMI'ANY SALBM NUCLDMR GBNBRATMG SMAON

Trawl catch statistics of white perch in fall-1978

Figure 3.1.6a-33


public service llectric and gas combany	
salem nucllar generating stmion	Temporal abundance of spot by   trawl-1978

NOMTHWE:Sii nEGION (S)

CENTRAL. -NEST RFGION (G)

SOUTIHEST REGION (G)

NORTH CHATNEL REGION (6)

SOUTH CHRNNEL REGION (G)

NORTHEAST REGION (G)

CENTRAL-ERST REGION (G)


SUUTHEAST REGION (6)


public semvice biectric and cas company samba nuclear genbrating smaton	Trawl catch statistics of spot in summer-1978
	Figure 3.1.6a-35

3.1-295

NonTHWE:5 MEGION (G)

CENTAOL -hEST REGION (G)

SOUTHFESY REGION (G)

NORTH CIIANNEL. PEGICN (G)

SOUTH CiARMNEL REGICN (8)

NORTHERST REGION (6)

CENTRAL EEAST REGION (G)

SOUTHEAST REGICN (6)


## 由

血


PUBLIC SBRYICE ELECTRIC AND GAS COMI'ANY


Trawl catch statistics of spot in fall-1978

Figure 3.1.6a-36


PUALIC SERACE EAECTRIC AND GAS COMDANY   SADBE NUCLBA: GLNDRATHKG STAMON	Temporal abundance of Atlantic croaker by trawl-1978
	Figure 3,1.6a-37

Monvmilist neglon (o)

EENTMOL. HEST RECION (G)

SOUTHBEET REGICN (E)

NORTH CHANNEL. REGION (G)

SOUTH CHANNEL REGION (6)

## NORTHEAST REGION (6)

CENTRAL-ERST REGION (G)

SUUTHENST REGIUN (S)


PUALIC SERVICE: ELACCDRLC AND CAS COMI'ANY
SALEM NUCLIAR CLENERATMNG SINIION

$11=1$

$\Longrightarrow$


Trawl catch statistics of Atlantic croaker in fall-1978

Figure 3.1.6a-38
3.1-298


+ One standurd deviation $\times$ Mcem
+ One standard deviation
$\triangle$ Lower range

PUBLIC SERVICE RMCTRIC AND GAS COMPANY SALEM RUChiAR GBNERATHE STATION	Temporal abundance of American eel by třawl-1978
	Figure 3.1.6a-39

```
hontmhest megion (g)
CENTRAL-HEST MEGION (6)
 星
SCUTHHEST REGION (6)
NORTH ChgNNEL REGION (6)
SOUTH CHANHEL REGION (G)
NORTHEASt REGICN (6)
CENTRAL-EAST REGION (6)
SOUTHERST REGION (G)
#
```



```
 GMEHICAN EEL - SPRING
```

PUBLIC SERVICE ELECTRIC AND GAS COMpaNY
SALEM NuCLEAR GENERATING STA!!on

```
Trawl catch statistics of American eel in spring-1978
```

Figure 3.1.6a-40
nomtinest region (s)

CENTAIL-WEST PEGION (G)

SOUTHKEST REGION (6)

NORTH CHANNEL REGICN (G)

SOUTH CHANNEL REGICN (8)

NORTHERST REGION (5)

CENTAML-EAST REGICN (G)

SOUTHEAST REGION (6)



PUMBLC SERVICE EEEECIRIC ANJ GAS COMPANY salem nuclear generating smaton

Trawl catch statistics of American eel in summer-1978

Figure $3.1 .6 \mathrm{a}-41$
monthmest recion（s）

EENTAML：－HEST REGICN（G）

SOUTHMEST REGION（6）

NORTH CHINNEL REGION（6）

SOUTH．CHANNEL REGICN（E）
hORTHEAST REGION（6）

CENTRAL－ERST REGION（G）

SOUTHERST FREGION（6）

-0.19	0.15	0.19	0.71	0.99	1.27

由 $\rightleftharpoons$
 $\square$者


由


PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION

Trawl catch statistics of American eel in fall－1978

Figure 3．1．6a－42
3．1－302


PunbIC SERYCE LLECTRC AND GAS COMBADY sabla Nuchbin glenemetive station	Temporal abundance of blueback herring by trawl-1978
	Figure 3.1.6a-43

$3.1=303$

3.1-304

3.1-305


0
PUMHC SERVICE EILECTRIC AND GAS COMDAMy sulbim nuchear genbrating smmon

Gill net zone locations - 1978

STATEA	Locatios	SHOPE	Botioy courosition	EOTIM: SLOPE
Appoquinitink				
3	Stall gravel beach 0.75 mile below Silver Lake dan, 9.75 niles urstreza frow mouth.	$50 \%$ narsh; $30 \%$ pasture; $20{ }^{d}$ wooded	70 soft aud; $30 \%$ gravel	10-3.3 cegrees
5	Base of nooded barik tordering soutn branch of Dranyer Creek 0.5 aile Lpstream fron Road 429 bridge, 9 niles upstrean from mouth.	50f. wooded bank; $50 \%$ narsh	60 ${ }^{3}$ mud-detritus; 40 8 sand-grayel	20-35 degreas
5	Beach at Fennimore Landing, 1 mile upstream from mouth.	Sand-bank, meadou, some trees	50\% sand-gravel, 108 nud-clay	5-15 degrees
Allosay				
1	Ease of rooded bank, 2 ailes upstrean from Quinton (Route 49) bridge, 11.5 miles upstrean from mouth.	Hooded	80z gravel-sand;   $20 z$ clay, scae silt	20-30 degrees
2	Gravel beach 0.5 mile below Quinton (Route 49) bridge, 9 miles ipstrean froi zouth.	90\% pasture ; $10 \%$ narsh, some trees	$80 \%$ gravel-sand;   205 nud	15-25 degrees
3	Sand ber at mouth of secord ditch off south side of creek (upper end of Elsinboro Creek tributary), 1 mile upstrean from nouth.	Sand bar, marsh	80\% sand; 20 soft aud, detritus	30-40 degrees

DESCRIPTION OF TRANL ZONES - 1978

2CHE	LOCATIOM	SHORE	DEPTH	somew TYre
Aproquiniaink				
1	Creek channel 7.75 to 8.75 miles upstrean' from mouth (Rte. 13 bridges delinit lower end of trail zonel.	75 ${ }^{\circ}$ marsh; $20 \%$ nooded ; $5 \%$ residential (launs), a fea docks	$5-15 \mathrm{ft}$	$\begin{aligned} & \text { Cravel, sand, } \\ & \text { aid } \end{aligned}$
3	Creek charnel 5.25 to 0.5 miles upstrean from mouth (Rte. 293 bridge at diessa delimits end of tram zone).	$80 \%$ marsh; $15 \%$ residential (lams), a feu docks; $5 \%$ wooced	$5-25 \mathrm{ft}$	Ĝravel, sard, a:d
5	Creek charnel from mouth to 1.75 miles upstream.	90\% marsh; 10\% neador	$3-25 \mathrm{ft}$	Grevel, sarid, cud
Allozay				
1	Creek charnel 8.0 to 9.5 niles upstream from mouth (QuintonRite. 49 bridge delinits upper end of trawl zone).	80\% marsh; 15d mooded; 5\% residential (lawrs)	$3-15 \mathrm{ft}$	
4	Creek chenrel 2.5 to 4.75 miles upstream from mouth (Hencocks Bridge deliaits upper end of tranl zone).	$70 \%$ marsh; $30 \%$ residential (cotteges, lamns, marina), several docks	5-20 ft	$\begin{aligned} & \text { Gravel, safi, } \\ & \text { reid } \end{aligned}$
5	Creak chamel from mouth to 2.5 miles upstrean.	Harsh	10-25 ft	$\begin{aligned} & \text { Gravel, sard, } \\ & \text { cuit } \end{aligned}$
Hope				
1	Creek channel of Halfway Creek from the intersection at Hope Creek to a poirt midnay to Alloway Creek.	Harsh, a fey cabirs and docks	8-20 it	$\begin{aligned} & \text { Eraral, } s=:=\frac{d}{}, \\ & =m \end{aligned}$
2	Creek channe! frca S.N.G.S. bridge upstrean to a point midmay to the intersection with Halfway Creek.	Harsh	$8-30 \mathrm{ft}$	Oravel, serid, $\operatorname{sid}$

TABLE 3.1.6b-3
CREEK SEINE CATCH STATISTICS-1978


IA SALEM FF 1978

TABLE 3.1. 6b-4
CREEK TRAWL CATCH STATISTICS-1978

		APPO	UINIMINK	CREEK			alloway	creek			HOPE		
	NO. Of Collections		42			,	41						
	NO. OF SPECIES		19				16						
	NO. OF SPECIMENS		692				381						
	SPECIM	(N/T)	16.5				9.3				1.		
	SPECIES	number	N/T	I*	N/T*	number	$N / T$	T*	N/T*	NUMBER	$\mathrm{N} / \mathrm{T}$	7*	N/T*
	A. Rostrata	34	. 8	17	2.0	18.	. 4	7	2.6	2	. 1	2	1.0
$\omega$	A. aEStivalis	9	.2	3	3.0	1		1	1.0	4	. 1	3	1.3
;	A. PSEUJJHARENGUS	1		1	1.0	1		1	1.0				
$\longmapsto$	B. Tyrasidus	3	- 1	2	1.5	3	-1	3	1.0				
$\stackrel{1}{\omega}$	D. CEFEDIA MUM	1		1	1.0								
$\stackrel{\omega}{\omega}$	A. HITCHILLI	18	-4	6	3.0	52	1.3	11	4.7	6	. 2	4	1.5
$\bigcirc$	C. CARPIO	37	- 2	4	1-8	8	-2	4	2.0				
-	H. Ruchalis	32	- 8	7	6.6	13.	. 3	5	2.6				
	I. Catus	3	. 1	3	1.0	$3{ }^{\text { }}$	-1	3	1.0	2	. 1	2	1.0
	1. Héulosus	77	1.8	12	6.4	13	- 3	5	2.6	2	. 1	1	2.0
	1. functatus	29	.7	12	2.4	6	. 9	4	1.5				
	F. heiterjclitus	1		1	1.0								
	H. AnERICABA	171	4.1	29	5.9	30	. 7	13	2.3	4	.1	4	1.0
	H. Sixitilis	2		2	1.0								
	P. flavescens	4	. 1	2	2.0								
	C. REGILIS	36	. 9	5	7.2	53	1.3	10	5.3	17	. 6	4	4.3
	L. xa:trjRus	60	1.4	5	12.0	89	2.2	7	12.7	1		1	1.0
	P. CROMIS	2		2	1.0	1		1	1.0	1		1	1.5
	P. henekichuos					4	. 1	2	2.0				
	r. maculatus	202	4.8	25	8.1	86	2.1	17	5.1	14	. 5	6	2.3
	Tx mumber of trabl hauls with species M/T* SPECIMENS/5 MIN TRAWL IN WHICH SPE			ECiEs	AKEN								

TABLE 3.1.6b-4
CONTINUED


T* NUMBER OF TRAWL HAULS WITH SPECIES N/TA SPECIMENSIS MIN TRAWL IN WHICH SPECIES WAS TAKEN

IA SALEM FF 1978


public serfice meetrite and gas company salem nucledr chenerating station	Creek seine locations-1978
	Figure 3.1.6b-1



PUBLIC SERVICE LERCHRE AND GAS COMPANY  	Creek trawl locations-1978
	Figure 3.1.6b-2



public service lemetrac and cas company   salem nuclear generating station	Similarity of seine catch on first three component axes based on species composition-1978
	Figure 3.1.6b-3

3.1-314


public service mactric and cas company saldm nuchbar? gembrating stamon	Similarity of trawl catch on first three component axes based on species composition-1978
	Figure 3.l.6b-4

3.1-315



bublic serijer miectric and cas compary   salem nucindar generating station	Seasonal mean seine catch of mummichog-1978
	Figure 3.1.6b-6




Seasonal mean seine catch of Atlantic silverside-1978

Figure $3.1 .6 \mathrm{~b}-8$



puble gervice bldetric and gas company  	Seasonal mean seine catch of banded killifish-1978
	Figure 3.1.6b-10

3.1-321


PUBLIC SERVICE ERACRRIC AND GAS COMPANY salem nucheilk chabrating station

Temporal abundance of white perch by trawl-1978

Figure 3.1.6b-11


public service biectric and cas company SAILEM NUCIM:NE GENERATING SPATION	Temporal abundance of white perch by seine-1978
	Figure 3.1.6b-12





PUBGIC SERIICE EIECTRIC AND GAS COMPANY shaem nucleal generating simtion	Seasonal mean trawl catch of white perch-1978
	Figure 3.1.6b-13

3.1-324


PUBLIC SERVICE ELECRIC AND GAS COMDAMY sabem nuclemir ghenbrating siathon

Seasonal mean seine catch of white perch-1978





PUBLIC SERTICE BRECTRIC AND CAS COMPAMY	Seasonal mean trawl catch of hogchoker-1978
	Figure 3.1.6b-16



puble gervich biectric and cas company salem nuchleal genfrating stamon	Temporal abundance of silvery minnow by seine-1978
	Figure 3.1.6b-17

3.1-328


PUBLIC SERVICR EICCTRIC AND CAS COMDANY

Seasonal mean seine catch of silvery minnow-1978


public service hlectaic and gas company salem nuclemr gembizating strtion	Temporal abundance of tessellated darter by seine-1978
	Figure 3.1.6b-19

[^5]

pumac service biectinc and cas combany SALBM NUCLDAR GBNERATHG SWATION	Seasonal mean seine catch of tessellated darter-1978
	Figure 3.1.6b-20



public servich mectric and cas company sampm nuchbar conhrating station	Temporal abundance of bay anchovy by seine-1978
	Figure 3.1.6b-21



PUBLIC SERVICE RLECTRIC AND GAS COMPANY salbm NuCleme cenorative staton

Seasonal mean seine catch of bay anchovy-1978

Figure 3.1.6b-22

### 3.1.7 Impingement of Organisms (ETS Section 3.1.2.2)

In accordance with Section 3.1.2.2 of the ETS studies of impingement at Salem were conducted in 1978. principal objectives are to determine species composition and to quantify number of fishes and blue crab impinged on the circulating (CWS) and service water (SWS) intake screens and to determine survival rates of organisms impinged at the circulating water intake.

This section presents a summary of results during January through December 1978 as reported in Monthly progress Reports, numbers io through 21, to NRC.
3.1.7.1 Summary

At the CWS intake a total 93,853 specimens of 59 fishes and 2,988 blue crab were taken in 2,195 samples (3,791 min sampled). From these samples it is estimated that total impingement was $14,362,829$ fish (44,310.3 kg) and 363,268 blue crab (9,367.4 kg).

The most numerous fishes were weakfish ( 60.8 percent of the estimated total number), bay anchovy ( 14.3 percent), hogchoker (10.2 percent), white perch (5.l percent) and blueback herring ( 2.1 percent). The most important fishes by weight were weakfish ( 23.5 percent), white perch ( 22.0 percent), hogchoker (ll.l percent), bay anchovy (10.4 percent), and silvery minnow (5.3 percent).

Estimated monthly impingement was greatest during July. Weakfish and bay anchovy comprised most ( 90.6 percent) of the July estimate. Impingement was also high in June, August, and December.

Some 61 percent of all fish collected were live, 28 percent were dead, and 11 percent were damaged. Of blue crab, 94 percent were live, 5 percent were dead, and 1 percent were damaged.

At the SWS intake a total of 10,829 specimens of 49 fishes and 369 blue crab were taken in $154,24-h r$ samples. Estimated total impingement was $25,423 \mathrm{fish}(137.01 \mathrm{~kg})$ and 857 blue crab (16.93 kg).

The most numerous fishes were weakfish (59.1 percent of the estimated total number), white perch ( 10.1 percent), bay anchovy (6.3 percent), hogchoker (4.0 percent), and gizzard shad (3.6 percent). The most important fishes by weight were white perch (15.1 percent), gizzard shad (15.0
percent), weakfish (14.9 percent), silvery minnow (6.0 percent), and spot (5.0 percent).

Estimated monthly impingement was greatest during July. Weakfish comprised 84.5 percent of the July estimate. Impingement was also high in June; weakfish comprised 80.0 percent of the fish impinged.

### 3.1.7.2 Circulating Water System (CWS)

INTAKE AND FISH RESCUE SYSTEM DESCRIPTION

The circulating water system intake and the fish rescue system were described in detail in Volume 2 of the 1977 Annual Environmental Operating Report.

In brief, the principal components of the fish rescue system are vertical traveling water screens fitted with fish buckets, a low pressure fish removal system, a high pressure trash removal system, troughs to return impinged organisms to the river, and counting pools for sampling purposes.

Prior to July 14, 1978, the combined flow of the fish trough and the trash trough were discharged through a common outfall located at the north end of the intake structure. To reduce recirculation of discharged material during ebb tide a south discharge was put into operation. This permitted screen-wash flow to be discharged in the direction of tide.

For sampling, both troughs can be diverted to two counting pools, located at the north and south ends of the intake, which have been designed to minimize collection stress. Prior to July 14 , only the north counting pool was operational. Thereafter both pools were used depending on the direction of screen wash discharge.

## MATERIALS AND METHODS

Sampling Schedule

All samples required by the Impingement ETS were taken. Prior to June 29, fishes and blue crab impinged on the CWS screens were sampled during three, $24-\mathrm{hr}$ periods per week. A minimum of four $3-\mathrm{min}$ samples for survival and abundance were taken at approximately 6 -hr intervals (1200, 1800, 0000: 0600).

On June 29 it was determined that during periods of heavy detrital loading long periods in the counting pool were negatively biasing survival estimates. The procedure during periods of heavy detritus was modified to sample 1 min of Elow for survival and abundance and a subsequent 2 min of flow for abundance only.

On July 11 , the sampling schedule was changed to increase the number of sampling days per week to seven and to increase the sampling frequency within each day. On three days per week the schedule became four 3 -min samples per day for survival and abundance taken at approximately $6-h r$ intervals plus as many $l-m i n$ abundance samples as practicable taken throughout the balance of the day. On the remaining four days as many l-min abundance samples as practicable were taken. On September 15 , the sampling schedule was reauced to six days per week due to the reduction in the number of fish impinged.

Sampling Procedure

Before each survival sample was taken, the appropriate pool was filled to a depth of about 25 cm with water filtered through a nylon mesh filter bag. Sampling was initiated by rapidly removing the filter bag. After 1 or 3 min flow of total screen wash water had entered the pool sampling was terminated by re-inserting the filter bag.

Organisms were allowed a 5-min acclimation period after which the pool was drained. During draining impinged organisms were collected with dip nets and their condition determined according to the following criteria.

Live: Swimming vigorously, no apparent orientation problems, behavior normal.

Dead: No vital signs, no body or opercular movement, no response to gentle probing.

Damaged: Struggling or swimming on side, indication of abrasion or laceration.

All specimens in each category were sorted by species, and the total number and weight of each was determined. All specimens or a representative subsample (at least 100 specimens) of each species, drawn equally from each condition category if possible, were measured to the nearest 5 mm . Length and weight range per species and per condition category was also determined. Individuals and small numbers per species (as a group) were weighed to the nearest
0.1 g with an Ohaus 1600 Series triple beam balance. Large numbers per species were mass weighed to the nearest gram with a Salter suspended scale.

Abundance samples were taken by diverting a l-to 3 -min flow of screen wash water to a counting pool. After sampling, the pool was drained immediately, all organisms were removed and sorted by species, and the total number of each was determined. The largest and the smallest specimen of each species was measured to the nearest 5 mm .

With all samples the numbers of pumps and screens in operation, screen speed, tidal stage and elevation, air temperature (C), sky condition, wind direction, and wave height at the time of each sample were recorded. Measurements of water temperature (C) in the pool were taken with a mercury thermometer or a Yellow Springs Instrument Company Model 51 A oxygen analyzer, and of salinity (ppt) with an American Optical Corporation salinity refractometer, Model 10419. Detritus taken with the sample was weighed to the nearest 0.1 kg with a Dillon dynomometer or a Salter suspended scale. All data were recorded on a computer compatible field sheet.

## Data Reduction

An estimate of the total number (est. n) and weight of each species impinged per day was calculated by first multiplying the mean impingement rate per minute for the interval between each two consecutive samples times the number of minutes in the interval and summing the interval estimates. The sum of the interval estimates was then scaled to 24 hr by multiplying by 1440 (the number of minutes in 24 hr ) divided by the sum of the time intervals between all samples. The general computational formula is given by:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{d}}=\left[\sum\left(\mathrm{T} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{2}\right)\right] \cdot \frac{1440}{\Sigma T} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& E_{d}=\text { daily estimated number (or weight) } \\
& T=\text { number of minutes in interval between } \\
& \text { consecutive samples } \\
& R_{I}=\text { rate } / \text { min at start of interval } \\
& R_{2}=\text { rate/min at end of interval }
\end{aligned}
$$

If samples were taken over less than a $12-h=$ period the sum of the interval estimates was scaled only over the period between the first and last samples.

This method of estimation eliminates the bias inherent in computing a straight mean estimated number per 24 hr by taking into account non-uniform sampling intervais and the variability of impingement rate caused by the patchy appearance of Eish schools and daily activity cycles. The estimate is also valid for equally spaced samples.

An estimate of the number of each species returned to the river alive per day was calculated by the same method as total number except that the rate of live specimens per minute was entered into equation 1 instead of rate of all specimens per species impinged per minute. The estimated number of live specimens was divided by the estimated total number impinged and multiplied by 100 to give percent live.

Estimates of the total number and weight of each species impinged per week were calculated by summing the daily estimates and multiplying by 168 (the number of hours in a week) divided by the number of hours included in the daily estimates. The computational formula is given by:
(2)

$$
E_{W}=\left(\sum E_{d}\right) \quad \frac{168}{\sum H}
$$

where:
$E_{W}=$ weekly estimated number (or weight)
$E_{d}=$ daily estimated number (or weight)
$\mathrm{H}=$ number of hours included in daily estimates
Weekly estimates were summed to yield a monthly estimate.

## RESULTS

The CWS was fully operational (5-6 circulators in service) during most of January 1 through March 16 , June 14 through October.9, and November 14 through December 31. From March 17 through June 13 a planned maintenance outage was in progress. During the outage samples were taken from April 11 through April 27 during which time one circulator was in operation. All circulators were shut down during the remainder of the outage. There was also an outage from

October 10 through November 13 during which only 1 - 2 circulators were operated.

A total of 93,853 specimens of 59 fishes and 2,9888 blue crab were taken in 2,195 samples ( 3,791 min sampled) at the CWS intake (Table 3.1.7-1). From these samples, it is estimated that total impingement in 1978 was $14,362,829$ fish ( $44,810.3 \mathrm{~kg}$ ) and 363,268 blue crab (9367.4 kg) (Table 3.1.7-2).

The most numerous species were weakfish, bay anchovy, hogchoker, white perch, and blueback herring.

Estimated impingement was greatest during July (est. $\mathrm{n}=7,387,809$ )(Fig. 3.1.7-1). Weakfish (76.9 percent) and bay anchovy ( 13.7 percent) comprised 90.6 percent of the July estimate (Table 3.1.7-3). Impingement was also high in June (est. $\mathrm{n}=3,482,551$ ), August (est. $\mathrm{n}=944,912$ ), and December (est. $n=720,100$ ). Weakfish comprised 64.6 percent of the June total and 6l.l percent of that in August. In December white perch and blueback herring comprised 30.4 percent and 28.2 percent of the total, respectively (Table 3.1.7-3).

Species variety was greatest (33) in December and least (12) in March.

Some 61 percent of all fish collected were live, 28 percent were dead, and 11 percent were damaged (Table 3.1.7-1). Of blue crab, 94 percent were live, 5 percent were dead, and 1 percent were damaged. Survival was high for winter flounder (100 percent live), hogchoker (98 percent), northern pipefish (96 percent), windowpane ( 93 percent), striped cuskeel ( 87 percent.), summer flounder ( 86 percent), and butterfish ( 84 percent). Survival was low for gizzard shad (19 percent live), carp ( 25 percent), Atlantic croaker (32 percent), and channel catfish (33 percent). Most (63 percent) gizzard shad were damaged (Table 3.1.7-1).

Species Discussion

Thirteen fishes were each represented in the sample by more than 300 specimens and together comprised 98.4 percent of the total impingement. These species and blue crab are discussed below.

1. Weakfish, $\mathrm{n}=51,006$; est. $\mathrm{n}=8,729,959$ (Table 3.1.72), comprised 60.8 percent of the estimated total number and 23.5 percent (ranked first) of the estimated total weight. It was taken during June through December. Most (66.2
percent) of the estimated number was impinged during July (Table 3.1.7-3)。

A detailed discussion of weakfish impingement during June through September was presented in Section III of the report, Summary Assessment of Weakfish Imoingement: Summer 1978 (PSE\&G1978b)。

Annual survival was 60 percent: 35 percent were dead, and 5 percent damaged (Table 3.l.7-1). Percent live ranged Erom 33 in December to 85 in October. During months of abundance (June-September) percent live ranged from 44 to 81 (Table 3.1.7-3).

Fork length ranged from 18 to 253 mm . Weight ranged from 0.1 to 250.6 g .
2. Bay anchovy, $n=14,525$; est. $n=2,049,169$ (Table 3.1.7-2), comprised 14.3 percent of the estimated total number and 10.4 percent (ranked fourth) of the estimated total weight. It was taken during January, April, and Jume through December. Most ( 90.1 percent) of the estimated number was impinged during June through September (Table 3.1.7-3).

Annual survival was 44 percent; 49 percent were dead and 7 percent damaged (Table 3.1.7-1). Percent live ranged from 25 in January to 69 in November. During months of abundance (June-September) percent live ranged from 33 to 52 (Table 3.1.7-3).

Fork length ranged from 13 to 98 mm . Weight ranged from 0.1 to 9.4 g.
3. Hogchoker, $n=9,873$; est. $n=1,462,562$ (Table 3.1.7-2), comprised 10.2 percent of the estimated total number and 11.1 percent (ranked third) of the estimated total weight. It was taken during January, April, and June through December. Most ( 81.3 percent) of the estimated number was impinged during June and July (Table 3.1.7-3).

Annual survival was 98 percent; $l$ percent were dead and 1 percent damaged (Table 3.1.7-1). Percent live ranged from 67 in January to 100 in April. During months of abundance (June-December) percent live ranged from 90 to 99 (Table 3.1.7-3).

Fork length ranged from 13 to 186 mm . Weight ranged from 0.1 to 111.7 g.
4. White perch, $n=5,743$; est. $n=726,480$ (Table 3.1.7-2), comprised 5.1 percent of the estimated total number and 22.0 percent (ranked second) of the estimated total weight. It was taken during all months. Most (77.l
percent) of the estimated number was impinged during February and December (Table 3.1.7-3).

Annual survival was 44 percent; 8 percent were dead and 48 percent damaged (Table 3.1.7-1). Percent live ranged from zero in September to 77 in April. During months of abundance (January-March, November, December) percent live ranged from 3 to 72 (Table 3.l.7-3).

Fork length ranged from 38 to 293 mm . Weight ranged from 1.1 to 427.6 g .
5. Blueback herring, $n=3,458$; est. $n=308,395$ (Table 3.1.7-2), comprised 2.1 percent of the estimated total number and 2.2 percent (ranked eighth) of the estimated total weight. It was taken during all months except March. Most ( 97.0 percent) of the estimated number was impinged during November and December (Table 3.l.7-3).

Annual survival was 70 percent; 18 percent were dead and 12 percent damaged (Table 3.1.7-1). During months of abundance (November, December) percent live ranged from 69 to 75 (Table 3.1.7-3).

Fork length ranged from 38 to 278 mm . Weight ranged from 0.1 to 134.3 g .
6. Atlantic silverside, $\mathrm{n}=1,908$; est. $\mathrm{n}=170,490$ (Table 3.1.7-2), comprised l. 2 percent of the estimated total number and l.i percent (ranked eleventh) of the estimated total weight. It was taken during January through March and June through December. Most ( 70.4 percent) of the estimated number was impinged during August, October, and December (Table 3.1.7-3).

Annual survival was 76 percent; 18 percent were dead and 6 percent damaged (Table 3.1.7-1). Percent live ranged from zero in January to 85 in November. During months of abundance (July-December) percent live ranged from 69 to 85 (Table 3.1.7-3).

Fork length ranged from 23 to 193 mm . Weight ranged from 0.1 to 13.5 g .
7. Silvery minnow, $\mathrm{n}=1,350$; est. $\mathrm{n}=203,655$ (Table 3.1.7-2), comprised l.4 percent of the estimated total number and 5.3 percent (ranked fifth) of the estimated total weight. It was taken during January through March, June and December. Most ( 86.7 percent) of the estimated number was impinged during January and February (Table 3.1.7-3).

Annual survival was 55 percent; 7 percent were dead and 3 percent damaged (Table 3.l.7-1). Percent live ranged from

25 in March to 100 in June. During months of abundance (January, February, December) percent live ranged from 39 to 69 (Table 3.1.7-3).

Fork length ranged from 33 to 143 mm . Weight ranged from 0.1 to 32.4 g .
8. Spot, $n=1,183$; est. $n=128,341$ (Table 3.1.7-2), comprised 0.9 percent of the estimated total number and 4.2 percent (ranked sixth) of the estimated total weight. It was taken during June through December. Most ( 69.5 percent) of the estimated number was impinged during July, August, and November (Table 3.1.7-3).

Annual survival was 71 percent; 14 percent were dead and 15 percent damaged (Table 3.l.7-1). Percent live ranged from 26 in October to 85 in November. During months of abundance (June-August, November, December) percent live ranged from 68 to 85 (Table 3.1.7-3).

Fork length ranged from 23 to 198 mm . Weight ranged from 0.1 to 89.8 g .
9. Atlantic menhaden, $\mathrm{n}=1,120$; est. $\mathrm{n}=126,030$ (Table 3.l.7-2), comprised 0.9 percent of the estimated total number and 1.8 percent (ranked ninth) of the estimated total weight. It was taken during June through December. Most ( 81.7 percent) of the estimated number was impinged during June through August (Table 3.1.7-3).

Annual survival was 63 percent; 22 percent were dead and 15 percent damaged (Table 3.1.7-1). Percent live ranged from 53 in June to 84 in October. During months of abundance (June-August) percent live ranged from 53 to 66 (Table 3.l.73).

Fork length ranged from 33 to 238 mm . Weight ranged from 0.2 to 194.7 g .
10. Atlantic croaker, $\mathrm{n}=689$; est. $\mathrm{n}=59.086$ (Table 3.1.72), comprised 0.4 percent of the estimated total number and 0.1 percent (ranked thirteenth) of the estimated total weight. It was taken during January, and September through December. Most ( 86.4 percent) of the estimated number was impinged during December (Table 3.1.7-3).

Annual survival was 32 percent; 28 percent were dead and 40 percent damaged (Table 3.1.7-1). Percent live ranged from 8 in January to 88 in September. During December 27 percent were live (Table 3.1.7-3).

Fork length ranged from 23 to 88 mm . Weight ranged from 0.1 to 7.6 g .
11. Butterfish, $\mathrm{n}=671$; est. $\mathrm{n}=54,419$ (Table 3.1.7-2), comprised 0.4 percent of the estimated total number and 0.3 percent (ranked twelfth) of the estimated total weight. It was taken during August through October and December. Most ( 90.7 percent) of the estimated number was impinged during September (Table 3.1.7-3).

Annual survival was 84 percent; 8 percent were dead and 8 percent damaged (Table 3.l.7-1). Percent live ranged from 78 in August to 100 in December. During September 84 percent were live (Table 3.l.7-3).

Fork length ranged from 33 to 158 mm . Weight ranged from 0.8 to 66.3 g .
12. Gizzard shad, $n=454 ;$ est. $n=65,333$ (Table 3.l.7-2), comprised 0.5 percent of the estimated total number and 3.5 percent (ranked seventh) of the estimated total weight. It was taken during January, February, and December. Most ( 98.6 percent) of the estimated number was impinged during January and December (Table 3.1.7-3).

Annual survival was 19 percent; 18 percent were dead and 63 percent damaged (Table 3.l.7-1). Percent live ranged from zero in February to 44 in December. During months of abundance (January, December) percent live ranged from 9 to 67 (Table 3.1.7-3).

Fork length ranged from 68 to 333 mm . Weight ranged from 3.2 to 626.5 g .
13. Striped cusk-eel, $n=343$; est. $n=38,062$ (Table 3.1.7-2), comprised 0.3 percent of the estimated total number and 1.5 percent (ranked tenth) of the estimated total weight. It was taken during April and June through November. Most (92.3 percent) of the estimated number was impinged during July, September, and October (Table 3.l.73)。

Annual survival was 87 percent; 2 percent were dead and 11 percent damaged (Table 3.1.7-1). Percent live ranged from 79 in July to 100 in April. During months of abundance (July-October) percent live ranged from 79 to 90 (Table 3.1.7-3).

Fork length ranged from 73 to 258 mm . Weight ranged from 6.7 to 58.2 g .

Blue crab, $n=2,988$; est. $n=363,268$; estimated total weight $=9367.4 \mathrm{~kg}$ (Table $3.1 .7-2$ ), was taken during June through December. Most ( 76.0 percent) of the estimated number was impinged during June, July, and October (Table 3.1.7-3)(Fig. 3.1.7-2). Estimated monthly impingement ranged from 8,573 in December to 136,706 in October.

Annual survival was 94 percent; 5 percent were dead and 1 percent damaged (Table 3.1.7-1). Percent live ranged from 88 in June to 98 in November. During months of abundance (June-October) percent live ranged from 88 to 97 (Table 3.1.7-3).

Carapace width ranged from 8 to 208 mm . Weight ranged from 0.1 to 323.0 g.

### 3.1.7.3 Service Water System (SwS)

INTAKE DESCRIPTION

Service water is withdrawn from the river through an intake located about 122 m north of the CWS intake by six $0.69 \mathrm{~m}^{3} / \mathrm{s}$ pumps per unit. The SWS supplies water for essential internal plant usage. The pumps for each unit are mounted in two wells with three pumps per well. Each well is equipped with three conventional vertical traveling screens. Under normal operating conditions four pumps per unit are operated. Traveling water screen operation is intermittent and is activated by differential pressure. Impinged organisms were washed into troughs leading to removable trash baskets at each end of the intake structure.

MATERIALS AND METHODS
Sampling Schedule and Proceaure

All fishes and blue crab impinged on the SWS screens were collected during three $24-h r$ periods per week. Normally, during each 24-hr period two 12-hr collections were taken. From March 17 through June 16 , total $24-\mathrm{hr}$ collections were generally taken. All collections required by the EnS, except one $24-\mathrm{hr}$ sample and one l2-hr sample in December, were taken. These collections were not taken as a result of operational problems and icing conditions at the intake.

Impinged organisms were collected with sampling nets set in the trash baskets. Fishes and blue crab were sorted by species, and the total number and weight of each was determined. All specimens or a representative subsample (at least 100 specimens) of each species were measured to the nearest 5 mm . The length and weight range per species was determined. Weight of detritus taken with the sample was
recorded. All data were recorded on a computer compatable field sheet.

Data Reduction

Weekly impingement estimates for each species were calculated by multiplying the number (or weight) taken during each $24-h r$ sampling period by seven, summing the results, and dividing by the number of $24-\mathrm{hr}$ periods sampled. Weekly estimates were summed to yield a monthly estimate.

## RESULTS

A total of 10,829 specimens of 49 fishes and 369 blue crab were taken in 154, $24-\mathrm{hr}$ samples at the SWS intake (Table 3.1.7-5). Estimated total impingement in 1978 was 25,423 fish (l37.0l kg) and 857. blue crab (l6.93 kg) (Table 3.1.7-6).

- The most numerous species were weakfish, white perch, bay anchovy, hogchoker, and gizzard shad.

Estimated monthly impingement was greatest during July (est. $\mathrm{n}=11,097$ ). Weakfish comprised 84.4 percent of the July estimate (Table 3.l.7-7). Impingement was also high in June (est. $n=6,294$ ); weakfish comprised 80.9 percent of fish impinged. Species variety was greatest (23) in January and least (11) in February and September (Table 3.l.7-5).

Although weakfish ranked first in estimated annual number impinged (est. $n=6,439$ ) it ranked only third in estimated weight ( 20.40 kg ), being exceeded by white perch ( 20.66 kg ) and gizzard shad (20.59 kg) (Table 3.1.7-6). Most impinged weakfish were young (age $0+$ ) whereas impinged white perch and gizzard shad included young and adults.

## Species Discussion

Eight fishes were each represented in the sample by more than 200 specimens and together comprised 90.9 percent of the total impingement. These species, two less abundant
fishes which are considered important, and blue crab are discussed below.

1. Weakfish, $n=6,439$; est. $n=15,024$ (Table 3.1.7-6), comprised 59.1 percent of the estimated total number and 14.9 percent (ranked third) of the estimated total weight. It was taken during June through December. Most (98 percent) was impinged during June through August (Table 3.1.7-7). Only single specimens were taken in November and December. Fork length ranged from 23 to 233 mm . Weight ranged from 0.1 to 115.0 g (Table 3.1.7-7).
2. White perch, $n=1,091$; est. $n=2,580$ (Table 3.1.7-6), comprised 10.1 percent of the estimated total number and 15.1 percent (ranked first) of the estimated total weight. It was taken during all months except August. Most (94 percent) was impinged during January through March and December (Table 3.1.7-7). In September only one specimen was taken. Fork length ranged from 43 to 253 mm . Weight ranged from 1.3 to 223.0 g (Table 3.1.7-7).
3. Bay anchovy, $\mathrm{n}=681$; est. $\mathrm{n}=1,592$ (Table 3.1.7-6), comprised 6.3 percent of the estimated total number and 3.4 percent (ranked eighth) of the estimated total weight. It was taken during April through December. Most (94 percent) was impinged during May through August (Table 3.1.7-7). During December only one specimen was taken. Fork length ranged from 33 to 98 mm . Weight ranged from 0.2 to 10.0 g (Table 3.1.7-7).
4. Hogchoker, $n=434$; est. $n=1,015$ (Table 3.1.7-6), comprised 4.0 percent of the estimated total number and 4.1 percent (ranked sixth) of the estimated total weight. It was taken during March through December. Most (71 percent) was impinged during June and July (Table 3.1.7-7). In March only one specimen was taken. Fork length ranged from 28 to 183 mm . Weight ranged from 0.1 to 127.5 g (Table 3.1.7-7).
5. Gizzard shad, $\mathrm{n}=384$; est. $\mathrm{n}=915$ (Table 3.1.7-6), comprised 3.6 percent of the estimated total number and 15.0 percent (ranked second) of the estimated total weight. It was taken during January through March and December. Most (93 percent) was impinged during January (Table 3.1.7-7). It was also common during December ( $n=20$ ). Only single specimens were taken in February and March. Fork length ranged from 73 to 218 mm . Weight ranged from 3.7 to 161.5 g (Table 3.1.7-7).
6. Silvery minnow, $\mathrm{n}=327$; est. $\mathrm{n}=709$ (Table 3.1.7-6), comprised 2.8 percent of the estimated total number and 6.0 percent (ranked fourth) of the estimated total weight. It
was taken during January through April, June, and December. Most ( 92 percent) was impinged during January and February (Table 3.1.7-7). Only single specimens were taken during April and June. Fork length ranged from 48 to 163 mm . Weight ranged from 1.1 to 31.6 g (Table 3.1.7-7).
7. Blueback herring, $n=287$; est. $n=668$ (Table 3.1.7-6), comprised 2.6 percent of the estimated total number and 3.1 percent (ranked ninth) of the estimated total weight. It was taken during January, March through July, November and December. Most ( 90 percent) was impinged during March, April, and December (Table 3.1.7-7). Few were taken during January ( $\mathrm{n}=3$ ), May (3), July (2), or July (1). Fork length ranged from 38 to 263 mm . Weight ranged from 1.5 to 222.4 g (Table 3.1.7-7).
8. Atlantic menhaden, $n=206$; est. $n=496$ (Table 3.1.76 ), comprised 2.0 percent of the estimated total number and 3.9 percent (ranked seventh) of the estimated total weight. It was taken during April through December. Most ( 81 percent) was impinged during June and July (Table 3.1.7-7). Few ( $n=1-9$ ) were taken during the remaining months of occurrence. Fork length ranged from 33 to 223 mm . Weight ranged from 0.2 to 148.0 g (Table 3.1.7-7).
9. Atlantic croaker, $n=130$; est. $n=315$ (Table 3.1.7-6), comprised 1.2 percent of the estimated total number and 0.2 percent (ranked tenth) of the estimated total weight. It. was taken during January, October, and December. Most (98 percent) was impinged during December (Table 3.l.7-7). Two were taken during January and one was taken in october. Fork length ranged from 28 to 73 . Weight ranged from 0.1 to 3.8 g (Table 3.1.7-7).
10. Spot, $\mathrm{n}=105$; est. $\mathrm{n}=250$ (Table 3.1.7-6), comprised 1.0 percent of the estimated total number and 5.0 percent (ranked fifth) of the estimated total weight. It was taken during January and June through December. Most ( 68 percent) was impinged during August, September, and November (Table 3.1.7-7). Impingement was low during January ( $n=1$ ) and June (3). Fork length ranged from 28 to 168 mm . Weight ranged from 0.1 to 88.9 g (Table 3.1.7-7).

Blue crab, $\mathrm{n}=369$; est. $\mathrm{n}=85.7$; estimated total weight $=$ 16.93 kg (Table 3.1.7-6), was taken during April through December. Most ( 70 percent) was impinged during October (Table 3.1.7-7). It was also common during November ( $n=41$ ). Only one specimen was taken during April. Carapace width ranged from 13 to 193 mm . Weight ranged from 0.2 to 146.5 g (Table 3.1.7-7).

ABLF 3.1.7-1
ACTUAI :IUMRER NND :UTRVTVAI, OF SPHCIMFNG TAREA IN IMWIHCHAENT SNHPLES AT THE SALEH CHS IN 1978

Spectes	Actuas Bo.	İive	3 Sur Doad	Damaged
A. rostrata	216	65	6	29
C. oceanicust	3	50	30	0
A. acstivalis	3,458	70	18	12
A. pserdonarengus	44	59	7	34
A. sapldissima	15	87	13	0
B. tyrannus	1.120	63	22	15
D. cepedianum	454	19	18	63
A. hepsetus	1	100	0	0
A. mitchilli	14,525	44	49	7
U. pygmaea	2	100	0	0
E. americanus	1	100	0	0
C. auratus	1	0	0	100
C. carpio	8	25	0	+ 75
H. nuchalis	1,350	55	7	38
W. crysoleucas	1	0	0	200
I. catus	13	30	8	62
I. nebulosus	15	69	0	31
I. punctatus	9	33	0	67
O. tau	8	100	0	0
M. bilinearis	2	50	50	0
U. chuss	46	46	20	35
U. reqius	1	100	2	0
R. marginata	343	87	2	11
S. marina	9	100	0	0
$F$ F diaphanus	5	100	0	0
$F$ F. heteroclitus	35	77	3	20
F. majalis	12	67	0	33
M. martinica	39	64	32	4
Menidia sp.	1	0	100	0
M. beryliina	5	0	100	0
M. menidia	1,908	76	18	5
G. aculeatus	1, 31	87	3	10
S. fuscus	48	96	2	2
M. americana	5,743	44	8	48
M. saxatilis	221	43	5	52
L. macrochirus	18	94	0	6
M. salmoides	1	100	0	0
P. annularis	4	75	0	25
P. flavescens	46	72	12	16
P. saltatrix	114	51	30	19
C. hippos	14	100	0	0
B. chrysura	3	100	0	0
C. regalis	51,006	60	35	5
i. xanthurus	1.183	71	14	15
M. undulatus	689	32	28	40
P. cromis	238	67	4	29
M. ocellatus	2	100	0	0
A. gutattus	2	100	0	0
G. bosci	1	100 100	0	0
. triacanthus	671	+84	8	0 8
P. alepidotus	12	75	8	17
. carolinus	9	88	12	17
- evolans	21	85	10	5
. dentatus	43	86	4	10
. aquosus	193	83.	24	3
- americanus	14	100	0	0
T. maculatus	9.,873	98	1	1
A. schoepfi	1	100	0	0
Fish Total	93,853	61	28	11
C. sapidus	2,988	94	5	1

TABLE 3.1.7-2
ANNUAL TOTALS FOR THE MORE
COMMONLY IMPINGED ORGANISMS, SALEM CWS
$\left.\begin{array}{lrrr}\text { Species } & \begin{array}{rl}\text { Actual } \\ \text { No. }\end{array} & \begin{array}{l}\text { Estimated } \\ \text { No. }\end{array} & \begin{array}{r}\text { Estimated } \\ \text { Wt. }\end{array} \\ \text { A. aestivalis }\end{array}\right)$

IA SALEM IM 1978

MONTHLY IMPINGEMENT DATA ON THE MORE COMMON SPECTES, SALEM CWS

Species
A. aestivalis
D. cepedianum
A. mitchilli
H. nuchalis
M. renidia
M. americana
M. undulatus
T. maculatus
Total of common fish species
Total of all fish species


3	0	67	33	3	147	0.8
47	9	23	68	320	54,761	$1,280.8$
3	25	75	0	4	515	+
64	60	5	34	756	106,923	$1,272.3$
3	0	67	33	3	490	1.0
50	18	22	60	200	46,144	369.8
7	8	69	23	13	2,005	0.6
2	67	33	0	3	1,128	0.6
				1,302	212,113	$2,925.9$

(79 samples, 237 min sampled)
A. aestivalis
D. cepedianum
H. nuchal is
M. menidia
M. americana

Total of common fish species
total of all fish species

1	0	100
8	0	13
56	39	11
2	50	50
77	3	12


0	1
87	8
50	379
0	2
85	1,778
	2,168
	2,303

210
906
69,681
218
341,710
412,725
433,359
0.9
47.1
820.7
0.7
$3,079.9$
$3,949.3$
$5,259.0$

2.7	2.7	63	63
14.5	80.2	103	178
1.6	32.4	63	143
6.3	8.3	103	113
1.6	427.6	48	268

$C F=$ catch frequency (number of samples in which the species appeared)

+ mess than 0.1 kg
- survival: $L=$ live; $D=$ dead; $D^{*}=$ damaged

TABLE 3.1.7-3
CONTINUED

Species

H. nuchalis
M. menidia
M. americana

15	25	13	62
7	57	43	0
46	21	9	70

(51 samples, March 153 min sampled)

Total of common fish species Total of all fish species

24	4,132	49.5
7	961	3.9
276	47,589	784.0
307	52.682	837.4
379	65,352	954.5



CF = catch frequency (number of samples in which the species appeared) 8 survival: $L$ a live; $D=$ dead: $D *=$ damaged



[^6]|  | Species | \% survival |  |  |  | Actual No. | Estimated No. | Estimated No. | $\begin{aligned} & \text { Weig } \\ & \text { Min } \\ & \hline \end{aligned}$ | $\begin{aligned} & (\mathrm{g}) \\ & \mathrm{Max} \\ & \hline \end{aligned}$ | Leng Min | $\begin{gathered} (\mathrm{mm}) \\ \mathrm{Max} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | october |  |  |  |  |  |  |  |  |  |  |
|  | A. aestivalis | 2 | 100 | 0 | 0 | 2 | 305 | 0.4 | 3.1 | 3.5 | 73 | 78 |
|  | B. tyrannus | 17 | 84 | 8 | 8 | 24 | 2,685 | 28.6 | 3.6 | 36.7 | 63 | 143 |
|  | A. mitchilli | 129 | 64 | 28 | 8 | 737 | 82,137 | 133.8 | 0.1 | 8.4 | 23 | 83 |
|  | R. ramginata | 60 | 90 | 2 | 8 | 125 | 12,393 | 187.7 | 10.1 | 52.3 | 123 | 258 |
|  | M. menidia | 47 | 74 | 20 | 6 | 241 | 22,501 | +30.2 | 0.5 | 13.5 | 33 | 83 |
|  | M. americana | 3 | 33 | 0 | 67 | 3 | , 324 | 24.4 | 112.5 | 123.5 | 153 | 213 |
|  | C. regalis | 50 | 85 | 6 | 9 | 107 | 10,843 | 72.5 | 0.8 | 28.0 | 43 | 188 |
|  | L. santhurus | 22 | 26 | 15 | 59 | 27 | 2,601 | 76.3 | 16.3 | 70.2 | 103 | 153 |
|  | M. undulatus | 25 | 80 | 10 | 10 | 31 | 2,137 | 2.2 | 0.5 | 3.5 | 43 | 73 |
| $\omega$ | P. triacanthus | 14 | 83 | 10 | 7 | 30 | 3,141 | 12.6 | 1.5 | 17.7 | 38 | 98 |
| $\omega$ | T. maculatus | 100 | 99 | 0 | 1 | 295 | 33,753 | 238.8 | 0.3 | 46.2 | 23 |  |
| $\stackrel{1}{1}$ | Total of common fish species |  |  |  |  | 1,622 | 172,820 | 807.5 |  |  |  |  |
| $\omega$ | Total of all fish species. |  |  |  |  | 1,683 | 180,294 | 831.2 |  |  |  |  |
| is | C. sapidus | 200 | 96 | 3 | 1 | 1,144 | 136,706 | 454.0 | 0.1 | 222.8 | 13 | 173 |
|  |  | November <br> (330 samples, 446 min sampled) |  |  |  |  |  |  |  |  |  |  |
|  | A. aestivalis | 134 | 75 | 15 | 10 | 768 | 96,042 | 287.4 | 0.8 | 22.3 | 38 | 138 |
|  | B. tyranrus | 22 | 72 | 7 | 21 | 29 | 2,561 | 53.9 | 7.0 | 76.7 | 83 | 183 |
|  | A. mitchilli | 148 | 69 | 23 | 8 | 1,331 | 114,109 | 224.8 | 0.3 | 7.0 | 33 | 93 |
|  | R. margisata | 6 | 80 | 0 | 20 | 1.36 | -444 | 7.1 | 14.1 | 30.1 | 133 | 189 |
|  | M. renicia | 58 | 85 | 8 | 7 | 183 | 25,131 | 96.7 | 0.9 | 6.7 | 53 | 168 |
|  | M. arericana | 69 | 45 | 1 | 54 | . 546 | 59,060 | 1,715.0 | 2.6 | 184.8 | 53 | 228 |
|  | C. regalis | 5 | 80 | 0 | 20 | - 6 | 523 | 1.71 | 18.7 | 35.6 | 123 | 158 |
|  | L. xanthurus | 7 A | 85 | 2 | 13 | 294 | 33,678 | 996.2 | 3.9 | 81.3 | 98 | 168 |
|  | M. undulatus | 16 | 82 | 9 | 9 | 23 | 2,606 | 5.5 | 0.3 | 7.6 | 33 | 88 |
|  | T. maculatus | 143 | 98 | 0 | 2 | 371 | 39,906 | 221.2 | 0.4 | 64.9 | 13 | 153 |
|  | Total of common fish species |  |  |  |  | 3,557 | 374,160 | 3,616.9 |  |  |  |  |
|  | Total of all fish species |  |  |  |  | 3,622 | 381,394 | 4,000.5 |  |  |  |  |
|  | C. sapidus | 88 | 98 | 0 | 2 | 176 | 15,758 | 106.1 | 0.1 | 88.0 | 8 | 128 |
|  | CP = catch frequency (number of samples in which the species appeared) 8 survival: $L=$ live $D=$ dead; $D^{\star}=$ damaged |  |  |  |  |  |  |  |  |  |  |  |

TABLE 3.1.7-3
CONTINUED

	Species	CF	\% Survival ${ }_{\text {* }}$			Actual   No.	Estimated No.	Estimated Wt.	Wei Min	$\text { ht (g) } \begin{array}{r} \text { Max } \\ \hline \end{array}$	Length Min	$\begin{aligned} & \text { (man) } \\ & \mathrm{Max} \end{aligned}$
			December   (275 samples, 530 min sampled)									
	A. aestivalis	137	69	19	12	2.599	203.168	640.3	0.7	34.5	53	148
	B. tyrannus	50	67	10	23	105	9,777	201.4	3.2	194.7	68	238
	D. cepedianura	58	44	8	48	126	9.666	241.4	3.2	138.3	68	218
	h. mitchilli	17	26	21	53	19	2,151	6.5	1.0	5.0	43	83
	H. nuchalis	57	69	2	29	189	22,639	214.8	2.0	28.5	63	138
	M. menidia	155	78	16	7	994	79,124	306.6	0.7	10.5	48	193
	M. arericana	217	72	6	22	2,820	218,716	3,540.4	0.6	263.2	48	238
	C. regalis	9	33	11	56	9	329	4.7	3.2	27.6	68	143
	L. xanthurus	71	68	4	28	178	17,029	420.2	6.8	68.4	83	173
$\omega$	S. unculatus	116	27	29	44	608	51, 278	57.7 0.2	0.1	5.7	28	88
i	P. triacanthus	1	100	0	0	78	278 67.973	248.2	1.3	1.3	38	38 123
$\stackrel{\rightharpoonup}{1}$	T. Eaculatus	159	98	1	1	783	67,973	248.1	0.1	45.4	13	123
$\omega$	Total of common fish species					8,431	681,874	5,882.3				
$\square$	Total of all fish species					8,884	720,100	5,994.0				
	C. sapidus	50	96	2	2	84	8,573	56.6	0.1	50.7	13	98

$C F=$ catch frequency (number of samples in which the species appeared)
8 survival: $L=$ lives $D=$ dead; $D^{*} m$ damaged

TABLE 3.1.7-4
nctunl number of refecmens taken In IMPINGEMENT SAMPLES AT THE SARMM CNS IN 1978


TABLE 3.1.7-4 CONTINUED


TABLE 3.1.7-5
actual number of specimens taren in IMPINGEMENT SMMPLES AT THE SALEM SWS IN 1978

Species	3	$\mathrm{F}^{2}$	M	$\lambda$	M	Ј
A. rostrata	10		6	5	13	11
A. aesttvalis	3		67	89	3	2
A. pseudoharengus			3	1		2
B. tyrannus				1	9	95
C. cepedianum	362	1	1			
A. mitchilli				5	41	229
U. pygmaea	2		2			
E. americanus	1		1			
C. carpio	2	3		2		1
H. nuchalis	208	93	8	1		1
I. catus						1
I. nebulosus	4	2	1			
I. punctatus	2	1	2			
O. tau						3
M. bilinearis	1			1		
U. chuss	12		50	6	5	
R. marginata				8	13	2
S. marina						
F. heteroclitus	10	5	7			
E. majalis	1		48			
M. martinica						
M. menicia	1	1	8			
G. aculeatus		1	4	1		
S. fuscus						
M. americana	154	415	183	26	6	14
M. saxatilis	3	25	7			1
C. striata				2	5	
L. gibbosus	1					
L. macrochirus				2	2	
P. annularis	2		2	2	1	4
P. nigromaculatus	2				1	
P. flavescens	28	8	8	6		
P. saltatrix						4
B. chrysura						
C. regalis						2,543
L. xanthurus	1					3
M. undulatus	2					
P. cromis						
A. gutattus						
G. bosci						
P. triacanthus						
P. carolinus					1	
P. evolans						
E. microstomus					1	
P. dentatus				2	5	1
P. oblongus						
S. aquosus						20
P. americanus						
T. maculatus			1	22	31	165
Fish Total	316	555	409	182	137	3,102
No. of species	23	11	19	18	15	19
C. sapidus				1	12	13


Species	J	A	S	0	N	D	Total
A. rostrata	2	7		3	7	14	78
A. aestivalis	1				23	99	287
A. pseudoharengus		1				2	9.
B. tyrannus	78	5	5	4.	3	6	206
C. cepedianum						20	384
A. mitchilli	332	36	15	12	10	1	681
U. pygmaea					.		4
E. americanus							2
C. carpio		1					9
H. nuchalis						16	327
I. catus							1
I. nebulosus	2	2		1		1	13
I. punctatus							5
O. tau							3
M. bilinearis							2
U. chuss							73
R. marginata	11	2	1	5		.	42
S. marina		1					1
F. heteroclitus					1	1	24
F. majalis						1	50
M. martinica	2						2
M. menidia	23	2		2	1	67	105
G. aculeatus							6
S. fuscus	1	2	2	10			15
M. americana	4		1	2	12	274	1,091
M. saxatilis		1				5	42
C. striata							7
L. gibbosus							1
L. macrochirus							8
P. annularis							11
P. nigromaculatus	2						5
P. flavescens							50
P. saltatrix	9	2					15
B. chrysura				1	1		2
C. regalis	3,751	128	12	3	1	1	6,439
L. xanthurus	10	28	23	12	20	8	105
M. undulatus				1		127	130
P. cromis					1	23	24
A. gutattus			1				1
G. bosci				2		1	3
P. triacanthus		1	4	2			7
P. carolinus				1			2
P. evolans				1			1
E. microstomus				1			2
P. dentatus	3	1		1			13
P. oblongus				2			2
S. aquosus	77			1			98
p. americanus			7	-			7
T. maculatus	141	27	10	17	5	15	434
Fish Total	8.449	247	81	84	85	682	10,829
No. of species	27.	17	11.	21	13	19	49
c. sapidus	13	9	17	257	41	6	369

TABLE 3.1.7-6
ANNUAL TOTALS FOR THE MORE COMMONLY IMPINGED ORGANISMS, SALEM SWS.

Species :	Actual. No.	Estimated No.	$\begin{aligned} & \text { Escinated } \\ & \text { Wt. (Kg) } \end{aligned}$
A. aestivalis	287	668	4.27
B. tyrannus	206	496	5.29
D. cepedianum	384	915	20.59
A. mitchilli	681	1,592	4.66
H. nuchalis	327	709	8.22
M. americana	1,091	2,580	20.6б
$\omega \quad$ C. regalis	6,439	15,024	20.40
$\underset{\sim}{1}$ L L. xanthurus	105	250	6.85
O) M. undulatus	130	315	0.32
T. maculatus	434	1,015	5.64
Total of more common fishes	10,084	23,564	96.90
Total of all fish species	10,829	25.423	137.01
C. sapidus	369	857	16.93

IA SALEM IH 1978








PUBLIC SERVICE ELECTRIC AND GAS COMPANY salem nuclear generating station

Weekly estimated number and weight of all impinged fishes, Salem CWS 1978

Figure 3.1.7-1


PUBLIC SERVICE ELECTRIC AND GAS COMPANY salem nuclear generating station

Weekly estimated number and weight of impinged blue crab, Salem CWS 1978

Figure 3.1.7-2

### 3.1.8 Entrainment of Planktonic Organisms

(ETS Section 3.1.2.3)

In accordance with Section 3.1 .2 .3 of the ETS entrainment studies were conducted in 1978 . The continuing objective is to estimate the number and percent survival of planktonic organisms which pass through the salem Unit l circulating water system (CWS). Planktonic organisms included are fish eggs and larvae, microzooplankton, and macroinvertebrates.

### 3.1.8.1 Summary

MICROZOOPLANKTON

## Abundance Studies

A total of 141 microzooplankton samples was collected in 1978. Mean abundance per sampling date ranged from $3,978 / \mathrm{m}^{3}$ on November 2l-22 to a peak density (105,057/m) on July 1213. Mean density was generally lower from mid-September through mid-December ( 3,978 to $30,680 / \mathrm{m}^{3}$ ) than previous months. The most abundant taxa whicn comprised 76.7 percent of the total catch were Rotifer spp., copepod nauplii, Acartia tonsa, Gastropoda (veliger), and Pseudodiaptomus coronatus.

Rotifer spp. comprised 28.6 percent of the total catch. It occurred from February through mid-August and mid-October through mid-December with peak density ( $74,378 / \mathrm{m}^{3} \pm 31,248$ ) on March 16-17.

Copepod nauplii comprised 17.9 percent of the total catch. It was most abundant from mid-March through early September with peak density $\left(29,713 / \mathrm{m}^{3} \pm 16,616\right)$ on April 19-20.
A. tonsa comprised ll. 8 percent of the total catch. It was Collected from late June through mid-December with peak density $\left(15,711 / m^{3} \pm 7,711\right)$ on July 12-13.

Gastropoda (veliger) comprised l0.l percent of the total catch. It was collected from June through October with peak density $\left(15,266 / m^{3} \pm 4,733\right)$ on August 3l-September 1 .
P. Coronatus comprised 8.3 percent of the total catch. It occurred in March and from $\frac{1}{3}$ ate June through mid-December with peak density $\left(26,952 / \mathrm{m}^{3} \pm 21,890\right)$ on July 12-13.

Other abundant taxa, which together comprised 21.2 percent of the total catch, were: Ectinosoma spp., Polychaeta (eggs and larvae), Eurytemora affinis, Cirripedia (nauplii and cypris larvae) and Nematoda.

## Survival Studies

Thirty-four paired intake and discharge microzooplankton samples were collected during three $24-\mathrm{hr}$ sampling periods in 1978. A total of 2,754 microzooplankters representing 39 taxa were collected in $14.5 \mathrm{~m}^{3}$ of water filtered. Abundant taxa were copepod nauplii, Eurytemora affinis, Acartia tonsa, Gastropoda, and Ectinosoma spp.

Copepod nauplii were collected on all sampling dates. During April 19-20, mean percent live at 0 hr was 81 in intake samples and 92 in discharge samples; at +12 hr it was 80 and 81 , respectively. During June 28-29, the mean percent live at 0 hr was 71 in intake samples and 72 in discharge samples; at +12 hr it was 90 and 75 , respectively. During September 13-14, the mean percent live at 0 hr was 91 in intake samples and 81 in discharge samples; at +12 hr it was 33 and 55, respectively.
E. affinis (copepodid) was collected during April 19-20 and June 28-29. During April 19-20 the mean percent live at 0 hr was 87 in intake samples at +12 hr it was 77 . The mean percent live at 0 hr was 83 in discharge samples; at +12 hr it was 100. During June 28-29, mean percent live at 0 hr was 85 in intake samples and 82 in discharge samples; at +12 hr it was 61 and 81 , respectively.
A. tonsa (copepodid) was collected on June 28-29 and September 13-14. During June 28-29, the mean percent live at 0 hr was 50 in intake samples and 69 in discharge samples; at +12 hr it was 60 and 87 , respectively. During September 13-14, the mean percent live at 0 hr was 76 in intake samples and 83 in discharge samples; at +12 hr it was 50 and 62 , respectively. Mean percent live during both dates was lower in intake samples than in discharge samples.

Gastropoda (veliger) was collected only during the September 13-14 sampling date. Mean percent live at 0 hr was 71 in intake samples and 88 in discharge samples; at +12 hr it was. 64 and 66, respectively.

Ectinosoma spp. was collected only during September 13-14. Mean percent live at 0 hr was 81 in intake samples and 88 in discharge samples: at +12 hr it was 87 in intake and discharge samples.

## MACROINVERTEBRATE PLANKTON

## Abundance Studies

A total of $1,793,350$ macroplankters representing 58 taxa were collected in 128 macroinvertebrate plankton samples in 1978. Mean density per sampling date ranged from $176 / 100 \mathrm{~m}$ on March $2-3$ to peak density $\left(85,137 / 100 m^{3}\right)$ on September 1314. Mean density was ${ }^{2}$ greatest from April to September $\left(7,283\right.$ to $\left.85,137 / 100 \mathrm{~m}^{3}\right)$ and Noyember $21-22$ through midDecember ( 9,591 to $10,865 / 100 \mathrm{~m}^{3}$ ). The most abundant taxa, which comprised 92.8 percent of the total catch were: Neomysis americana and Rhithropanopeus harrisii.
N. americana comprised 81.6 percent of the total catch. Density was low in March (ca. $40 / 100 \mathrm{~m}^{3}$ ), it increased through June $28-29\left(43,076 / 1 Q 0 m^{3}+27,662\right)$ and peaked on September $13-14\left(77,695 / 100 \mathrm{~m}^{3} \pm 3 \overline{6}, 101\right)$.
R. harrisii comprised 11.2 percent of the total catch. Greatest density occurred from June through mid-August. Peak density $\left(14,299 / 100 \mathrm{~m}^{3} \pm 15,258\right)$ occurred on July 12-13.

Other abundant taxa which comprised 6.6 percent of the total catch were: Gammarus spp., Edotea triloba, Corophium spp., Brachyura, Leucon americanus r Palaemonetes pugio, Crangon septemspinosa, and Hydrozoa (medusae).

## Survival Studies

Twenty-three paired intake and discharge macrozooplankton survival samples were collected during three $24-h r$ sampling periods in 1978: 5 pairs during April 19-20, 7 pairs during June 28-29, and 11 pairs during September 13-14. A total of $46,93 \frac{1}{3}$ macroplankters representing 28 taxa was collected in $105 \mathrm{~m}^{3}$ of water filtered. The most abundant taxa were: Neomysis americana, Gammarus spp., and Rhithropanopeus harrisii.
N. americana was collected on all three sampling dates. During April 19-20 the mean percent live at 0 hr was 71 in intake samples and 70 in discharge samples; at +12 hr it was 33 and 43 , respectively. During June $28-29$, mean percent live at 0 hr was 81 in intake samples and 95 in discharge samples; at +12 hr it was 71 and 84 , respectively. During September l3-14 the mean percent live for juveniles at 0 hr was 98 in intake samples and 96 in discharge samples; at +l2 hr it was 94 and $5 l$ respectively. The mean percent live for adults at 0 hr was 99 in intake samples and 83 in discharge samples; at +12 hr it was 92 and 74 , respectively.

Gammarus spp. was collected during all three sampling dates. During April 19-20, the mean percent live at 0 hr was 87 in intake samples; at +12 hr it was 91 . Mean percent live (90) in the discharge samples remained unchanged throughout the latent period. During June $28-29$ the mean percent live for juveniles at 0 hr was 88 in intake samples; at +12 hr it was 87. Mean percent live at 0 hr was 86 in discharge samples; at +12 hr it was 89. During September l3-14, the mean percent live for juveniles at 0 hr was 97 in intake samples and 99 in discharge samples; at +12 hr it was 96 and 98 , respectively.
R. harrisii (zoea) was collected during the June 28-29 and September l3-l4 sampling dates. Initial and +12 hr survival was high in all samples. During June, the initial mean percent live in the intake (98) samples was unchanged at +12 hr . Mean percent live at 0 hr was 96 in the discharge samples; at +12 hr it was 95. During September 13-14, the mean percent live at 0 hr in intake samples was 97; at +12 hr it was 93. Mean percent live at 0 hr was 100 in discharge samples; at +12 hr it was unchanged.

## ICHTHYOPLANKTON

## Abundance Studies

A total of 135 ichthyoplankton abundance samples was collected in 1978. Of the 29.984 specimens of 19 taxa collected, bay anchovy (Anchoa mitchilli), nakea goby (Gobiosoma bosci), weakfish (Cynoscion regalis), and silversides (Membras sp./Menidia spp.) were most abundant.

Bay anchovy comprised 90,2 percent of the total catch. Eggs, larvae, young, or adults were collected from late June through late November. Eggs and larvae vere most abundant in mid-July (mean density per date $=24.924 \pm 17.842$ and $6.146 / \mathrm{m}^{3} \pm 2.119$, respectively), young in late August-early September $(1.127 \pm 1.045)$, and adults in mid-September $(0.085 \pm 0.065)$.

Naked goby comprised 3.7 percent of the total catch. Larvae or young were collected from late June through September and in late November. Larvae were most abundant in mid-July (mean density per date $=0.574 / \mathrm{m}^{3} \pm 0.233$ ) and young in late August-early September ( $0.043 \pm 0 . \overline{0} 40$ ).

Weakfish comprised 3.7 percent of the total catch. Larvae or young were collected from late June through mid-September and in early November. A single egg was collected in midJuly. Larvae and young were most abundant in late ${ }_{3}$ June (mean density per date $=0.613 \pm 0.398$ and $0.636 / \mathrm{m}^{3} \pm 0.513$, respectively).

Silversides comprised 1.5 percent of the total catch. Eggs or larvae were collected from late June through late Augustearly September. Eggs were most abundant in mid-July (mean density per date $=0.007 / \mathrm{m}^{3} \pm 0.008$ ) and larvae in midAugust $\left(0.465 / \mathrm{m}^{3} \pm 0.758\right)$ 。

## Survival Studies

Twenty-three paired intake and discharge ichthyoplankton survival samples were collected during three 24 -hr sampling periods in 1978. Of the 319 specimens of nine species collected, young bay anchovy and larval and young weakfish were most abundant. The mean percent live for bay anchovy young collected on September 13-14 at the intake and discharge was similar both initially (75.0 and 76.0, respectively) and after the $12-\mathrm{hr}$ latent mortality period (20.0 and 20.0 , respectively). The initial mean percent live for weakfish larvae and young collected on June 28-29 at the intake (30.2 and 58.8, respectively) was lower than at the discharge (89.5 and 79.6, respectively). This relationship continued through the l2-hr latent period with only slight decreases in mean percent live at either location. The reasons for the relatively low percent live for weakfish larvae and young in the intake samples are not known.

Equipment and procedures used to collect and process entrainment samples in 1978 were the same as those employed in 1977. For a detailed description see Volume 2 of the 1977 Annual Environmental Operating Report. Briefly, entrainment samples were collected at intake and discharge locations using a high capacity centrifugal pump in combination with an abundance chamber and a larval table (Figs. 3.1.8-1 through 3.1.8-4). Microzooplankton and ichthyoplanktonmacroinvertebrate abundance samples were processed at the Delaware laboratory in the same manner as the riverine collections (see Sections 3.l.2 and 3.l.3). Survival samples were processed on site at the field laboratory, and all percentages were calculated on the basis of initial total sample size. High concentrations of detritus and large numbers of macroinvertebrates in survival samples occassionally required extra processing time and subsequent deviation from the prescribed schedule of latent mortality observations.

Conditions permitting, the entrainment monitoring program is scheduled monthly September through May and semimonthly June through August. Replicate samples are to be taken every 4 hr during a $24-h r$ period. Intake and discharge collections are synchronized with CWS passage time to ensure sampling the same water mass. Intake samples for abundance and survival determinations are integrated with depth and taken inboard of the vertical traveling screens. Discharge samples (for survival only) are collected from a standpipe on the CWS discharge pipe at a point approximately 152 m upstream of the effluence into the river.

Entrainment studies in 1978 were limited in number and scope because of weather, station operating schedule and mechanical problems. Extreme cold and icing during January and February precluded survival sampling. Abundance. samples were not collected in January because of traveling screen failures. Salem Unit $l$ was not in commercial operation from March 17 through June 13 and from October 10 through November 13. Scheduling of sampling during these periods was hampered by intermittent circulating pump operation and other maintenance related problems.

Microzooplankton, macroinvertebrate, and ichthyoplankton abundance samples were collected as per the ETS schedule during February-April and late June through December. However the number of collections per date during March, April, late June, October and December were fewer than specified because of mechanical problems with CWS components or sampling equipment.

Microzooplankton, macroinvertebrate and ichthyoplankton survival samples were collected in April, late June and September. High concentrations of macroinvertebrates and/or detritus increased the initial processing time and limited the number of samples collected during scheduled sampling periods. Survival sampling was restricted to circulating pumo l2R and discharge standpipe 12. Mechanical difficulties with sampling equipment and various components of \#12 CWS limited the number of survival sampling periods attenpted.

Latent survival samples had, at times, higher survival estimates than samples analyzed immediately. This was due to stunned organisms recovery during holding and the precision of the analytical technique in subsample for survival estimation.

Intake sample integration with depth was not attempted in 1978. Point samples were taken at between 4.6 and 6.1 m below surface. Design and mechanical problems with the integration apparatus have been rectified. However delays in equipment delivery precluded implementation in 1978.

### 3.1.8.3 Results

## MI CROZOOPLANKTON

Abundance Studies

One hundred forty-one microzooplankton samples were collected during 14 sampling experiences from February 27 through December 13, 1978 (Tables 3.1.8-1, 3.1.8-2). A total of $60 \mathrm{~m}^{3}$ of water was filtered and 51 taxa were collected. Total annual mean density was $38,676 / \mathrm{m}^{3}$. Water temperature and salinity ranged from 0.6 to 28.7 C and 1.0 to 12.0 ppt, respectively.
Mean density per sampling date ranged from $3,978 / \mathrm{m}^{3}$ on November 21-22 to $105,057 / \mathrm{m}^{3}$ on July 12-13 (Table 3.1.8-1). Mean density was generally lower from mid-September through mid-December ( 3,978 to $30,680 / \mathrm{m}^{3}$ ) than previous months. The 10 predominant taxa, which comprised 97.9 percent of the total annual sample, are discussed below in order of decreasing abundance (Table 3.1.8-2).

Rotifer spp. comprised 28.6 percent of the annual sample and was the most abundant microzooplankter collȩted (Table 3.1.8-2). Annual mean density was $11,051 / \mathrm{m}^{3}$. It occurred from February through mid-August and mid-October through midDecember (Table 3.1.8-1). Peak density ( $74,378 / \mathrm{m}^{3} \pm 31,248$ ) occurred on March 16-17. It was collected at watertemperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Copepod nauplii comprised 17.9 percent of the annual sample and was the second most abundant microzooplankter collected (Table 3.l.8-2). Annual mean density was $6,915 / \mathrm{m}^{3}$. It was collected on all sampling dates and was most abundant from mid-March through early September (Table 3.1.8-1). Peak density $\left(29,713 / \mathrm{m}^{3} \pm 16,616\right)$ occurred on April 19-20. It was collected at wā̄er temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Acartia tonsa comprised ll. 8 percent of the annual sample and was the third most abundant microzooplankter çollected (Table 3.l.8-2). Annual meąn density was 4,574/m. Females were more abundant $\left(2,017 / m^{3}\right)$ than copepodids $(1,955)$ or males (582). It was collected from $\frac{1}{3}$ ate June through midDecember with peak density ( $15,711 / \mathrm{m}^{3} \pm 7,711$ ) on July $12-13$ (Table 3.1.8-1). It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 12.0 ppt .

Gastropoda (veliger) comprised 10.1 percent of the annual sample and was the fourth most abundant microzooplankter collectȩd (Table 3.1.8-2). Annual mean density was $3,900 / \mathrm{m}^{3}$. It was collęcted from June through October with peak density $\left(15,266 / m^{3} \pm 4,733\right)$ on August 3l-September 1 (Table 3.1.8-1). It was collected at water temperature 17.3 to 28.7 C and salinity 4.0 to 10.0 ppt .

Pseudodiaptomus coronatus comprised 8.3 percent of the annual sample and was the fifth most abundant microzooplankter collected (Table 3.l.8-2). Annual mean density was $3,238 / \mathrm{m}^{3}$ 。 Females were more abundant ( $1,551 / \mathrm{m}^{3}$ ) than males ( 1,095 ) or copepodids (592). It occurred in March and from late June through mid-December with peak density ( $26,952 / \mathrm{m}^{3} \pm 21,890$ ) on July 12-13 (Table 3.1.8-1). It was collected at water temperature 0.6 to 28.7 C and salinity of 3.0 to 12.0 ppt.

Ectinosoma spp. comprised 7.8 percent of the annual sample and was the sixth most abundant microzooplankter çollected (Table 3.1.8-2). Annual meąn density was 3,009/m3. Adults were more abundant $\left(2,892 / \mathrm{m}^{3}\right.$ ) than copepodids (117). It was predominąnt on every sampling date with peak density $\left(6,972 / \mathrm{m}^{3} \pm 3,166\right)$ on July 12-13 (Table 3.1.8-1). It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Polychaeta (eggs and larvae) comprised 7.7 percent of the annual sample and was the seventh most abundant microzooplankter collected (Table 3.l.8-2). Annual mean density was $2,978 / \mathrm{m}^{3}$. Eggs were more abundant $\left(2,394 / \mathrm{m}^{3}\right)$ than larvae (584). It was collected on all sampling dates
and was most abundant from February through March ${ }_{3}$ and November (Table 3.1.8-1). Peak density (24,280/m $\mathrm{m}^{3}+15,856$ ) occurred on November 1-2. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Euytemora affinis comprised 3.5 percent of the annual sample and was the eighth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was $1,342 / \mathrm{m}^{3}$. Copepodids were more abundant ( $809 / \mathrm{m}^{3}$ ) than males (304) or females (225). It was collected on all sampling dates (Table 3.1.8-1). Greatest density occurred from February through July and in December. Peak density $\left(6,663 / \mathrm{m}^{3} \pm\right.$ 4,746 ) occurred on July 12-13. It was collected at waEer temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

Cirripedia (nauplii and cypris larvae) comprised 1.6 percent of the annual sample and was the ninth most abundant microzooplankter çollected (Table 3.1.8-2). Annual meąn density was $638 / \mathrm{m}^{3}$. Nauplii were more abunaant ( $633 / \mathrm{m}^{3}$ ) than cypris larvae (5). It was collected from June through mid-December and was most abundant from ${ }^{3}$ June through August (Table 3.1.8-1). Peak density ( $2,684 / \mathrm{m}^{3} \pm 1,779$ ) occurred on July 12-13. It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 12.0 ppt.

Nematoda comprised. 0.6 percent of the annual sample and was the tenth most abundant microzooplankter collected (Table 3.1.8-2). Annual mean density was $224 / \mathrm{m}^{3}$. Greatest density occurred from February through ${ }_{3}$ July and in September (Table 3.1.8-1). Peak density ( $719 / \mathrm{m}^{3} \pm 1,206$ ) occurred on April 19-20. It was collected at wate $\bar{r}$ temperature 0.6 to 28.7 C and salinity 1.0 to 12.0 ppt.

## Survival Studies

Thirty-four paired intake and discharge samples were collected in 1978; 12 pairs during April 19-20, 10 pairs during June 28-29, and 12 pairs during September 13-14. A total of 2,754 microzooplankters comprising 39 taxa were collected in $14.5 \mathrm{~m}^{3}$ of water filtered (Table 3.1.8-3).

April 19-20

Nineteen taxa were collected; copepod nauplii and Eurytemora affinis copepodids were most abundant (Table 3.1.8-3).

Ambient water temperature ranged from 10.2 to 11.5 C and salinity ranged from 5.5 to 8.0 ppt.

Initial mean percent live for copepod nauplii in intake and discharge samples was 81 and 92, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 80 and 81 , respectively, at +12 hr .

Initial mean percent for E. affinis (copepodids) in intake and discharge samples was 87 and 83 , respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 77 and 100 , respectively, at +12 hr .

June 28-29

Twenty-seven taxa were collected; copepod nauplii, Acartia tonsa, and Eurytemora affinis were most abundant (Table 3.1.8-3). Ambient water temperature ranged from 21.0 to 26.8 C and condenser delta $T$ ranged from 3.8 to 6.1 C . Salinity ranged from 4.0 to 6.0 ppt.

Initial mean percent live for copepod naplii in intake and discharge samples was 71 and 72, respectively (Table 3.l.83). Mean percent live in intake and discharge samples was 90 and 75 , respectively, at +12 hr .

Initial mean percent live for $A$. tonsa females in intake and discharge samples was 85 and $5 \overline{5}$, respectively (Table 3.l.83). Mean percent live in the intake samples decreased through all observations. Mean percent live in the intake and discharge samples was 60 and 7l, respectively, at +l2 hr.

Initial mean percent live for $A$ tonsa copepodids in intake and discharge samples was 50 and 69r respectively, at the intake and discharge (Table 3.l.8-3). Mean percent live in the intake and discharge samples was 60 and 87 , respectively, at +l2 hr.

Initial mean percent live for $E$. affinis copepodids in intake and discharge samples was 85 and 82 , respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 61 and 81 , respectively, at +12 hr .

Twenty-one taxa were collected; Gastropoda (veliger), copepod nauplii, Acartia tonsa, and Ectinosoma spp. were most abundant (Table 3.1.8-3). Ambient water temperature ranged from 21.2 to 31.7 C and condenser delta ranged from 8.2 to ll.l C. Salinity ranged from 5.0 to 10.0 ppt.

Initial mean percent live for Gastropoda (veliger) in intake and discharge samples was 71 and 88, respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 64 and 66, respectively, at +12 hr .

Initial mean percent live for copepod nauplii in intake and discharge samples was 91 and 81, respectively (Table 3.1.83). Mean percent live in the intake and discharge samples was 33 and 55 , respectively, at +12 hr .

Initial mean percent live for $\bar{A}$. tonsa copepodids in intake and discharge samples was 76 and 83 , respectively (Table 3.1.8-3). Mean percent live in the intake and discharge samples was 50 and 62 , respectively, at +12 hr .

Initial mean percent live for Ectinosoma spp. in intake and discharge samples was 81 and 88 , respectively (Table $3.1 .8-$ 3). Mean percent live in intake and discharge samples was 87 at +12 hr .

## MACROINVERTEBRATE PLANKTON

## Abundance Studies

One hundred twenty-eight macroinvertebrate plankton samples were collected on 13 sampling dates from March 2 through December 13, 1978 (Tables 3.1.8-4, 3.1.8-5). A total of $6,857.2$ cubic meters of water were filtered and 58 taxa were collected. Total annual mean density was $26,153 / 100 \mathrm{~m}^{3}$. Water temperature and salinity ranged from 0.6 to 28.7 C and 1.0 to 15.0 ppt , respectively.

Mean density per sampling date ranged from $176 / 100 \mathrm{~m}^{3}$ on March 2-3 to $85,137 / 100 \mathrm{~m}^{3}$ on September 13-14 (Table 3.1.84). Mean density was $_{3}$ greatest from April through September $\left(7,283\right.$ to $\left.85,137 / 100 \mathrm{~m}^{3}\right)$, and November $21-22$ through midDecember $\left(9,591\right.$ to $\left.10,865 / 100 \mathrm{~m}^{3}\right)$. The 10 predominant taxa which comprised 99.4 percent of the total annual sample are
discussed below in order of decreasing abundance (Table 3.1.8-5).

Neomysis americana, the opposum shrimp, comprised 81.6 percent of the annual sample and was the most abundant macroinvertebrate plankter collecteđ̧ (Table 3.1.8-5). Annual mean density was $21,657 / 100 \mathrm{~m}^{3}$. It occurred from March through mid-December (Table 3.1.8-4). Density was low in March $\left(\mathrm{ca}_{3} 39 / 100 \mathrm{~m}^{3}\right)$; it increased through June 28-29 $\left(43,076 / 100 \mathrm{~m}_{3}^{3} \pm 27,662\right)$ and peaked on September $13-14$ $\left(77,695 / 100 \mathrm{~m}^{3} \mp 36,101\right)$. It was collected at water temperature $0 . \bar{\sigma}$ to 28.7 C and salinity 3.0 to 15.0 ppt .

Rhithropanopeus harrisii, the mud crab, comprised 11.2 percent of the annual sample and was the second most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was $2,960 / 100 \mathrm{~m}^{3}$. It occurred from April through mid-December (Table 3.1.8-4). Greatest density occurred from June through mid-August. Peak density $\left(14,299 / 100 \mathrm{~m}^{3}+15,258\right)$ occurred on July 12-13. It was collected at wāter temperature 5.0 to 28.7 C and salinity 4.0 to 10.0 ppt.

Gammarus spp., the scud, comprised 2.2 percent of the annual sample and was the third most abundant macroinvertebrate plankter collected (Table 3.l.8-5). Annual mean density was $573 / 100 \mathrm{~m}^{3}$. It occurred from March through December (Table 3.1.8-4). Generally, density was greateşt during June through September; it peaked (1,615/100 $\mathrm{m}^{3} \pm 697$ ) on June 2829. It was collected at water temperature 0.6 to 28.7 C and salinity 1.0 to 15.0 ppt.

Edotea triloba, an isopod, comprised 1.7 percent of the annual sample and was the fourth most abundant macroinvertebrate plankter colleçted (Table 3.l.8-5). Annual mean density was $439 / 100 \mathrm{~m}^{3}$. It occurred from March through mid-December (Table 3.l.8-4). Density was greateşt during June through early November; it peaked (3,736/100m ${ }^{3} \pm$ 3,595) on September 13-14. It was collected at water temperature 1.0 to 28.7 C and salinity 3.0 to 10.0 ppt .

Corophium spp., the scud, comprised 0.7 percent of the annual sample. It was the second most abundant amphipod and the fifth most abundant macroinvertebrate plankter ${ }_{3}$ collected (Table 3.1.8-5). Annual mean density was $197 / 100 \mathrm{~m}^{3}$. It occurred on all sampling dates from March through December (Table 3.1.8-4). Greatest density occurred from July through August and in December. Peak density ( $704 / 100 \mathrm{~m}^{3} \pm$ 253) occurred on August 10-11. It was collected at watertemperature 0.6 to 28.7 C and salinity 4.0 to 12.0 ppt.

Brachyura comprised 0.7 percent of the annual sample and was the sixth most abundant macroinvertebrate plankter collected (Table 3.1.8-5). Annual mean density was $180 / 100 \mathrm{~m}^{3}$. It occurred from June through mid-August, with peak density $\left(1,642 / 100 \mathrm{~m}^{3} \pm 977\right.$ ) on August 10-11 (Tabie 3.1.8-4). It was collected at water temperature 23.7 to 28.7 C and salinity 6.0 to 8.0 ppt.

Leucon americanus, a cumacean shrimp, comprised 0.4 percent of the annual sample and was the seventh most abundant macroinvertebrate plankter colleçted (Table 3.1.8-5). Annual mean density was $113 / 100 \mathrm{~m}^{3}$. It occurred from June through December, with greatest density during late August through November (Table 3.1.8-4). Peak density (763/100m $\pm$ 592) occurred on September 13-14. It was collected at water $\bar{r}$ temperature 5.0 to 28.7 C and salinity 4.5 to 15.0 ppt.

Palaemonetes pugio, the grass shrimp, comprised 0.4 percent Of the annual sample and was the eighth most abundant macroinvertebrate plankter colleçted (Table 3.1.8-5). Annual mean density was $109 / 100 \mathrm{~m}^{3}$. It occurred from April. through December, with greatest density $\frac{i}{3} n$ July and August (Table 3.1.8-4). Peak density ( $344 / 100 \mathrm{~m}^{3} \pm 150$ ) occurred on August lo-ll. It was collected at water temperature 5.0 to 28.7 C and salinity 4.0 to 15.0 ppt.

Crangon septemspinosa, the sand shrimp, comprised 0.3 percent of the annual sample and was the ninth most abundant macroinvertebrate plankter collȩ̧cted (Table 3.l.8-5). Annual mean density was $77 / 100 \mathrm{~m}^{3}$. It occurred on all sampling dates from March through ${ }_{3}$ December with peak densities on June $28-29\left(391 / 100 \mathrm{~m}^{3} \pm 517\right)$ and September 13$14\left(360 / 100 \mathrm{~m}^{3} \pm 366\right)$ (Table $\left.3.1 .8-4\right)$. It was collected at water temperature 0.6 to 28.7 C and salinity 4.0 to 15.0 ppt.

Hydrozoa (medusae) comprised 0.2 percent of the annual sample. It was the most abundant hydromedusae and tenth most abundant macroinvertebrate plankter çllected (Table 3.1.8-5). Annual mean density was $55 / 100 \mathrm{~m}^{3}$. It was collected from August through November (Table 3.1.8-4). Peak density ( $391 / 100 \mathrm{~m}^{3} \pm 262$ ) occurred on September 13-14. It was collected at wate $\bar{r}$ temperature 8.5 to 28.7 C and salinity 6.0 to 15.0 ppt.

## Survival Studies

Twenty-three paired intake and discharge macrozooplankton
survival samples were collected; 5 pairs during April 19-20, 7 during June 28-29, and ll during September 13-14. During the September 13-14 sampling period heavy detritus and specimen holding problems prevented the processing of some samples. A total of 46,931 maçroinvertebrates representing 28 taxa was collected in $105 \mathrm{~m}^{3}$ of water filtered (Table 3.1.8-6).

April 19-20

A total of 13 taxa were collected. Neomysis americana, Gammarus spp., Hirudinea, Crangon septemspinosa, and Polychaeta were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 10.2 to 11.0 C and salinity 5.5 to 8.0 ppt. There was no delta $T$ across the condensers on this date; therefore, any plant-induced mortality must be attributed to pressure and/or mechanical effects.

Initial mean percent live for $N$. americana in intake and discharge samples was 71 and 70 , respectively (Table 3.1.86). Mean percent live in the intake samples decreased to 33 percent at +12 hr . Survival in discharge samples decreased to 43 percent at +12 hr .

Initial mean percent live for Gammarus spp. in intake and discharge samples was 87 and 90 , respectively (Table 3.1.86). Mean percent live in the intake samples was 91 at +12 hr . This increase in percent live was the result of the recovery of previously stunned specimens. Mean percent live in discharge samples was unchanged at +12 hr .

Initial mean percent live for Hirudinea was 94 and 100 in the intake and discharge samples, respectively (Table 3.1.8-6). Mean percent live in intake and discharge samples at +12 hr remained unchanged.

Initial mean percent live for $\mathbb{C}$. septemspinosa in both intake and discharge samples was 66 (Table 3.1.8-6). Mean percent live in intake samples increased to 85 at +4 hr and 86 at +12 hr. This increase resulted from the recovery of previously stunned specimens. Mean percent live in discharge samples increased to 71 at +12 hr .

Initial mean percent live for Polychaeta was 100 at both the intake and discharge (Table 3.l.8-6). This percentage remained unchanged for both intake and discharge samples throughout the 12 hr latent period.

June 28-29

A total of 18 taxa were collected. Neomysis americana, Gamarus spp., Rhithropanopeus harrisii, Crangon septemspinosa, and Edotea triloba were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 21.0 to 26.8 C and delta $T$ across condenser 12 ranged from 3.8 to 6.I C. Salinity ranged from 4.0 to 6.0 ppt.

Initial mean percent live for $N$. americana in intake and discharge samples was 81 and $9 \overline{5}$, respectively (Table 3.1.8-6). Mean percent live decreased to 71 in intake samples and 84 in discharge samples at +12 hr .

Initial mean percent live for Gammarus spp. (adult) was 73 in intake samples (Table 3.1.8-6). No adults were taken at the discharge. Mean percent live in intake samples decreased to 62 at +12 hr . Initial mean percent live for Gammarus spp. (juveniles) at the intake and discharge samples was 88 and 86 , respectively (Table $3.1 .8-6$ ). Mean percent live in intake samples decreased to 87 at +12 hr . Mean percent live in discharge samples increased to 89 at +12 hr.

Initial mean percent live for $\underline{R}$. harrisii was 98 at the intake and 96 at the discharge. Mean percent live in intake samples remained unchanged at +12 hr ; discharge samples remained virtually unchanged.

Initial mean percent live for C. septemspinosa was 29 at the intake and 73 at the discharge. Mean percent live in intake samples decreased to $27 \mathrm{at}+12 \mathrm{hr}$. Mean percent live in discharge samples decreased to $66 \mathrm{at}+4 \mathrm{hr}$ and $56 \mathrm{at}+12 \mathrm{hr}$.

Initial mean percent live for E. triloba was 94 at the intake and 100 at the discharge (Table 3.1.8-6). Mean percent live in intake samples decreased to 88 percent at +12 hr . Mean percent live in discharge samples remained unchanged through the 12 hr latent period.

September 13-14

A total of 20 taxa were collected. Neomysis americana Gammarus spp., Edotea triloba, Rhithropanopeus harrisii, and Leucon americanus were most abundant (Table 3.1.8-6). Ambient water temperature ranged from 22.2 to 23.5 C and salinity 6.0 to 9.0 ppt. Delta $T$ across condenser 12 ranged from 7.5 to 11.4 C .

Initial mean percent live for $N$. americana (adult) in intake and discharge samples was 99 añ 83 , respectively (Table 3.1.8-6). Mean percent live in intake samples decreased to $92 \mathrm{at}+12 \mathrm{hr}$. Mean percent live in discharge samples decreased to 74 at +12 hr . Initial mean percent live for juveniles in intake and discharge samples was 98 and 96 , respectively. Mean percent live in intake samples decreased to $94 \mathrm{at}+2 \mathrm{hr}$ and then remained unchanged for the remainder of the 12 hr latent period. Mean percent live in discharge samples decreased to $87 \mathrm{at}+2 \mathrm{hr}, 64 \mathrm{at}+4 \mathrm{hr}$, and 5 l at +12 hr .

Initial mean percent live for Gammarus spp. (juveniles) was 97 in intake samples and 99 in discharge samples (Table 3.1.8-6). Mean percent live in intake and discharge samples was 96 and 98 , respectively, at +12 hr .

Initial mean percent live for E. triloba (juveniles) was 99 in both the intake and discharge samples (Table 3.l.8-6). Mean percent live in intake samples remained unchanged at +12 hr . Mean percent live in discharge samples decreased to $97 \mathrm{at}+12 \mathrm{hr}$.

Initial mean percent live for $R$. harrisii (zoea) in intake and discharge samples was 97 and loo, respectively (Table 3.1.8-6). Mean percent live in intake samples decreased to 93 at +12 hr ; discharge samples remained unchanged.

Initial mean percent live for $\underline{L}$. americanus (adult)was 100 in intake samples and 98 in discharge samples (Table 3.l.8-6). Mean percent live in intake and discharge samples decreased to 92 and 94 , respectively, at +12 hr .

## ICHTHYOPLANKTON

## Abundance Studies

A total of 135 ichthyoplankton abundance samples was collected during 14 sampling experiences from February 27 through December 13, 1978 (Table 3.1.8-7). Ichthyoplankton Of 19 taxa including 17,549 eggs, 10,437 larvảe, 1,877 young, and 121 adults were taken in $7,203.4 \mathrm{~m}^{3}$ gf water filtered; total annual mean density was $4.163 / \mathrm{m}^{3}$. Annual mean density for eggs, laŗvae, young, and adults was 2.436, l.449, 0.261 , and $0.017 / \mathrm{m}^{3}$, respectively. Taxa of which more than 100 specimens were taken are, in order of decreasing abundance; bay anchovy, naked goby, weakfish, and silversides. These comprised over 99 percent of the total catch and are discussed below.

Bay anchovy comprised 90.2 percent of the total catch and was represented by 27,055 specimens including 17,520 eggs, 8,152 larvae, l. 272 young, and lil adults (Table 3.1.8-7): The annual mean density of eggs, laryae, young, and adults was $2.432,1.132,0.177$, and $0.015 / \mathrm{m}^{3}$, respectively.

Bay anchovy eggs ranked first in and comprised 99.8 percent of the total egg catch (Table 3.1.8-7). Eggs were collected from June 28-29 through August l0-11 at water temperature 21.0 to 28.7 C and salinity $\frac{4}{3} .0$ to 10.0 ppt. Mean density per date ${ }_{3}$ ranged from $0.153 / \mathrm{m}^{ \pm} \pm 0.135$ on July $27-28$ to $24.924 / \mathrm{m}^{3} \pm 17.842$ on July 12-13 (Table 3.1.8-8). Density per colleģion on July 12-13 ranged from 5.100 to $107.320 / \mathrm{m}^{3}$.

Viable eggs were taken on all dates during the period of occurrence. Annual mean percent viable was 6.8 and mean percent viable per date ranged from 2.0 on August lo-ll to 12.0 on July 27-28 (Table 3.1.8-9). On July 12-13, when over 86 percent of the egg catch was collected, mean percent viable was 7.4.

Bay anchovy larvae ranked first in and comprised 78.1 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through October 11 at water temperature 17.3 to 28.7 C and salinity 4,0 to 10.0 ppt. Mean density per date ${ }_{3}$ ranged from $0.011 / \mathrm{m}^{3}+0.022$ on October ll to $6.146 / \mathrm{m}^{3} \pm 2.119$ on July $12-1 \frac{1}{3}$ (Table 3.1.88). Density per collection on July 12-13 ranged from 2.480 to $12.960 / \mathrm{m}^{3}$.

Bay anchovy young ranked first in and comprised 67.8 percent of total young catch (Table 3.1.8-7). Young were collected from July 12 through November 21-22 at water temperature 8.5 to 28.7 C and salinity 5,0 to 12.0 ppt . Mean density per date ranged from $0.002 / \mathrm{m}^{3} \pm 0.005$ on June $28-29$ to $1.127 \pm$ 1.045 on August 3l-Septembér 1 (Table 3.l.8-8). Density per collection on August 3l-September 1 ranged from 0.010 to $5.620 / \mathrm{m}^{3}$ 。

Bay anchovy adults ranked first in and comprised 91.7 percent of the total adult catch (Table 3.i.8-7). Adults were collected from June 28-29 through October 11 at water temperature 17.8 to 28.7 C and salinity 4,0 to 10.0 ppt. Mean density per date ranged from $0.002 / \mathrm{m}^{\mathrm{L}} \pm 0.004$ on August
 3.l.8-8). $3^{\text {Density per collection on September 13-14 ranged }}$ to $0.260 / \mathrm{m}^{3}$.

Naked goby comprised 3.7 percent of the total catch and was represented by l,l19 specimens including l,085 larvae and 34 young (Table 3.1.8-7). The annulal mean density of larvae and young was 0.151 and $0.005 / \mathrm{m}^{3}$, respectively.

Naked goby larvae ranked second in and comprised 10.4 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through September 13-14 and on November l-2 at water temperature 14.5 to 28.7 C and salinity 4.0 to 10.0 ppt. Mean density per date ranged from 0.003 on September 13-14 and November $1-2$ to $0.574 / \mathrm{m}^{3} \pm$ 0.233 on July 12-13 (Table 3.1.8-8) . Density per collēction on July 12-13 ranged from 0.020 to $1.260 / \mathrm{m}^{3}$.

Naked goby young ranked fourth in and comprised 1.8 percent of the total young catch (Table 3.1.8-7). Young were collected on July 12-13, July 27-28, August 3l-September 1 and November 2l-22 at water temperature 12.0 to 27.0 C and salinity 5.0 to 12.0 ppt. Mean density per date was $0.002 / \mathrm{m}^{3} \pm 0.004$ on July $27-28$, August 31-September 1 , and November $\overline{2} 1-22$ and $0.043 / \mathrm{m}^{3} \pm 0.040$ on August $31-$ September 1 (Table 3.1.8-8). Density pe $\bar{r}_{3}$ collection on August 3lSeptember 1 ranged to $0.180 / \mathrm{m}^{3}$.

Weakfish comprised 3.7 percent of the total catch and was represented by 1,096 specimens including legg, 660 larvae, and 435 young (Table 3.1.8-7). The annual mean density of eggs, larvae, and young was less than $0.001,0.092$, and $0.060 / \mathrm{m}^{3}$, respectively.

A single weakfish egg was collected on July 12 at water temperature 24.5 C and $\mathrm{S}_{3}$ salinity 7.0 ppt . Density in the collection was $0.020 / \mathrm{m}^{3}$. The egg was not viable.

Weakfish larvae ranked third in and comprised 6.3 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through August 3l-September lat water temperature 21.0 to 28.7 C and salinity 4,0 to 10.0 ppt. Mean density per date ranged from $0.006 / \mathrm{m}^{3} \pm 0.008$ on August 3l-September 1 to $0.613 / \mathrm{m}^{3} \pm 0.398$ on June $28-29$ (Table 3.1.8-8). Density per collection on June 28-29 ranged from 0.040 to $1.740 / \mathrm{m}^{3}$ 。

Weakfish young ranked second in and comprised 23.2 percent of the total young catch (Table 3.1.8-7). Young were collected from June 28-29 through September 13-14 and on November 1 at water temperature 14.5 to 27.7 C and salinity ${ }_{3}$ 4.0 to 10.0 ppt . Mean density per date ranged from $0.002 / \mathrm{m}^{3}$ $\pm 0.005$ on November $1-2$ to $0.636 / \mathrm{m}^{3} \pm 0.513$ on June $28-29$ (Table 3.1.8-8). Density per collection on June 28-29 ranged from 0.060 to $2.160 / \mathrm{m}^{3}$.

Silversides taken in entrainment samples at Salem Unit lare potentially Menbras martinica, Menidia beryllina, and Menidia menidia. Although current taxonomic literature indicates subtle morphological and meristic differences; the high degree of local and individual specimen variation made identification of eggs and larvae to genus or species tenuous and impracticable. However, young were identified to species and are discussed separately.

Silversides comprised 1.5 percent of the total catch and were represented by 454 specimens including 6 eggs and 448 larvae (Table 3.1.8-7). The 3 annual mean density of eggs and larvae was 0.001 and $0.062 / \mathrm{m}^{3}$, respectively.

Silverside eggs ranked third in and comprised less than 0.1 percent of the total egg catch (Table 3.1.8-7). Eggs were collected on July 12-13 and on July 27-28 at water temperature 24.5 to 26.6 C and salinity 7.0 to 10.0 ppt. Mean density per date was $0.007 / \mathrm{m}^{3} \pm 0.008$ on July $12-13$ and $0.003 / \mathrm{m}^{3}+0.005$ on July 27-28 (Table 3.1.8-8). Annual mean percent viable was 83.3 (Table 3.1.8-9).

Silverside larvae ranked fourth in and comprised 4.3 percent of the total larval catch (Table 3.1.8-7). Larvae were collected from June 28-29 through August 3l-September 1 at water temperature 21.0 to 28.7 C and salinity 5.0 to 8.0 ppt. Mean density per date ranged from 0.033 on June 28-29 and July 12-13 to $0.470 / \mathrm{m}^{3}$ on August 10-11 (Table 3.1.8-8). Density per collection on August lo-1l ranged from 0.060 to $4.260 / \mathrm{m}^{3}$.

Young rough silversides (Membras martinica) were taken on July 12-13, August 10-11, and September $13-1 \frac{4}{3}$ ( 1 specimen per date); mean density per date was $0.002 / \mathrm{m}^{3} \pm 0.004$ on each occasion (Table 3.1.8-8). A total of 30 specimens of Atlantic silverside (Menidia menidia) young were taken from June 28-29 through October 11 and on November 21-22 and December 13. Mean density per date was highest $\left(0.025 / \mathrm{m}^{3} \pm\right.$ 0.033 ) on August 10-11.

A total of four adult Atlantic silversides were taken on July 12-13, August 10-11, and August 31-September 1. Mean density per date ranged from $0.001 \pm 0.002$ to $0.003 / \mathrm{m}^{3} \pm$ 0.004 (Table 3.1.8-8).

## Survival Studies

Twenty-three paired intake and discharge ichthyoplankton
survival samples were collected; 5 pairs during April 19-20, 7 during June 28-29, and 11 during September 13-14. A total of 143 larvae, $162_{3}$ young, and 14 adults of 9 species were collected in $148 \mathrm{~m}^{3}$ of water filtered (Table 3.1.8-10). Although described below, collections containing less than 10 specimens should not be evaluated singularly nor quantitatively.

April 19-20

The American eel, Anguilla rostrata, was the only species taken; 1 glass eel and 5 elvers were collected at ambient water temperature of $10.2-11.0 \mathrm{C}$ and salinity of 5.5 to 8.0 ppt (Table 3.1.8-10). To conform to the established conventions of data tabulation these specimens were categorized as young and adult, respectively. Initial mean percent live was 100 in intake and discharge samples; mean percent live remained at 100 through the 12 hr latent effects period. There was no delta $T$ across the condensers on this date, therefore, the absence of plant-induced mortality can be evaluated with respect to only pressure and/or mechanical effects.

June 28-29

Seven species were taken: bay anchovy (Anchoa mitchilli), satin fin shiner (Notropis analostanus), rough silverside (Membras martinica), northern pipefish (Syngnathus fuscus), weakfish (Cynoscion regalis, spot (Leiostomus xanthurus), and naked goby (Gobiosoma bosci) (Table 3.1.8-10). Bay anchovy and weakfish were most abundant; the other species were represented by single specimens and are not discussed. Ambient water temperature ranged from 21.0 to 26.8 C and delta $T$ across condenser 12 ranged from 3.8 to 6.1 C . Salinity and DO ranged from 4.0 to 6.0 ppt and from 6.6 to $8.4 \mathrm{mg} / \mathrm{l}$, respectively.

Bay anchovy larvae were taken at the intake ( $\mathrm{n}=9$ ) and discharge ( $n=2$ ); initial mean percent live was 55.6 and 50.0, respectively (Table 3.1.8-10). Mean percent live at the intake was 33.3 at +2 hr and ll.l at +4 hr . It remained ll.l for the remaining 8 hr of the latent period. Mean percent live in the discharge samples (50.0) remained unchanged through the 12 hr latent period.

Weakfish larvae were taken at the intake ( $n=63$ ) and discharge ( $n=57$ ); initial mean percent live was 30.2 and 39.5, respectively (Table 3.1.8-10). Mean percent live in the intake samples remained virtually unchanged through the latent period, ranging from 30.2 to 31.7 i in the aischarge samples it was 87.7 at +2 hr and again at +4 hr ; it was 63.2 Eron +8 hr through +12 hr . Initial mean percent live weakfish young taken at the intake $(n=34)$ and discharge ( $n=49$ ) was 58.8 and 79.6 , respectively. Percent live was 52.9 at the intake and 73.5 at the discharge at +12 hr .

September 13-14

Four species were taken: bay anchovy, northern pipefish, Atlantic croaker (Micropogon undulatus), and naked goby (Table 3.l.8-10). Ambient water temperature ranged from 21.2 to 23.5 C and delta T across condenser 12 ranged from 7.5 to ll.4 C. Salinity and DO ranged from 6.0 to 9.0 ppt . and 6.4 to $7.9 \mathrm{mg} / 1$, respectively.

Bay anchovy larvae were taken at the intake ( $n=3$ ) and discharge ( $n=4$ ); initial mean percent live was 100.0 and 0.0, respectively (Table $3.1 .8-10$ ). Mean percent live at the intake was 66.7 at +8 hr ; at +12 hr all specimens were dead. Initial mean percent live for bay anchovy young taken at the intake $(n=40)$ and discharge $(n=25)$ was 75.0 and 76.0, respectively. Percent live was similar in intake and discharge samples through the latent period and at +12 hr it was 20.0 at both locations. Initial mean percent live for bay anchovy adults taken at the intake ( $n=7$ ) and discharge ( $\mathrm{n}=2$ ) was 57.1 and 50.0 , respectively. Mean percent live at the intake was 71.4 at +2 hr because of the temporary recovery of a previously stunned specimen. It was 28.6 at +12 hr . Mean percent live in the discharge sample remained at 50.0 through +4 hr . By +8 hr the previously live specimen became stunned and remained in that condition through the remainder of the latent period.

Northern pipefish young were taken at the intake ( $n=4$ ) and discharge ( $n=3$ ); initial mean percent live was 75.0 and 66.7, respectively (Table 3.1.8-10). Mean percent live in the intake samples remained at 75.0 through +8 hr . At +12 hr it was 50.0. Mean percent live in the discharge sample was $33.3 \mathrm{at}+4 \mathrm{hr}$. It returned to $66.7 \mathrm{at}+8 \mathrm{hr}$ and remained there through +12 hr .

Single specimens of Atlantic croaker larvae and naked goby young were taken at the intake and discharge, respectively. Initial mean percent live was 100.0 for both specimens and remained at 100.0 through the 12 hr latent period.

TABLE 3.1.8-1
MEAN DENSITY (NUMBERS/CUBIC METER), BY DATE, OF MICROZOOPLANKTON-1978.


TABLE 3.1.8-1 COTVINUED


TABLE 3.1.8-1
CONTINUEO

DATE	$03 / 16 / 78-03 / 17 / 78$
NO. OF SAMPIES	10
WAIER TEMPEKATURE (C)	$2.5-4.6$
DISSOLVEO OXYGEN (MG/L)	$11.6-13.8$
PH	
SALINITY (PPY)	$1.0-4.0$
PUMPS OPERATING	$2-3$
TOTAL VOLUME FILTERED (M3)	5.0


	LIFE				85\%	
TAXON	SEX	Stagt	NUMEERS/CHEIC	METER	COnFIOENCF	LIMIT
ROTIFER SPP.	A	A	74378		31248	
NOTHOLCA	A	A	148		141	
B. CALYCIflorus	A	A	15		34	
NEMATODA	A	4	291		270	
POLYCHAETA	A	E	6708		1169	
POLYChaEta	A	1.	30		68	
COPEPODA	A	c	15		34	
COPEPOD NAUPLII	A	N	6029		1399	
E. AFFINIS	A	c	230		167	
E. AFFINIS	F	A	221		1 ह́f	
E. AFFINIS	M	A	117		$9 ?$	
OIAPTOMUS	A	c	16		35	
HARPACTICOIDA	A	A	121.		13.3	
ECIINOSOMA	A	A	2113		971	
ECTINOSOMA	A	$c$	395		357	
O- colcarva	A	c	20		45	
C. BICUSPIDATUS	A	c	72		87	

TARLE 3.1.8-1


## TABLE 3.1.8-1

COHTTNUED


# takle 3.1.8-1 

CONTINUED

table 3.1.8-1 CONTINUED


TAEI.E 3.1.8-1
CONTINUED


CONTINUED


TABLE 3.1.8-1 CONTINUED



CONTINUEO
COLS


IA SALEM EN 1978


TABLE 3-1.8-1 CONTINUEO							
OATE 12	13/78						
HO. OF SAMPLES	3						
meter tenperature (C)	5.0-5.8						
EISSOLVED oxygen (ifg/L)	10.1-11.0						
9 H	7.1-7.4						
SuLINIty (PPI)	5.0-6.0						
Pumps operating	2-3						
rotal volury filtered (m3)	1.8						
		LIfe			+	95\%	
taxon	SEX	SIAGE	NUMbers/Cubic	METER	-	confideace	LIMIT
KOIIfer Spp.	A	A	889			912	
mothulca	A	A	178			382	
K. Quadrata	A	A	22			96	
K. boStoniensis	A	A	22			96	
Stachatia	A	A	44			96	
F. Lohgiseta	A	A	22			96	
P. HUOSOSI	A	A	22			96	
PGerchatia	A	E	533			287	
OQCCHETA	A	$L$	111			191	
GESTROPUDA	A	L	22			96	
PELECYPUDA	A	L	22			96	
COPEPOD NAUPLII	A	N	2156			1659	
E. AFFINIS	A	c	333			1159	
E. AFFIMIS	F	A	44			96	
E. AFFINIS	M	4	200			438	
P. coromatus	A	c	44			191	
P. curonatus	M	a	22			96	
HARPACIICUIDA	A	c	44			96	
EGTINOSOMA	A	A	1222			1127	
H. FOSTERI	A	c	22			96	
C. BICUSPIDATUS	A	A	22			96	
cikripedia	A	N	22			96	



*     - indicates gelow reportable

TABLE 3.1.8-2
COHTINUED

TAXON	$\begin{array}{r} \text { LIFE } \\ \text { STAGE } \end{array}$	SEX	RANK	NUMEER	NUMBERS/CUBIC METER	PERCENT
OLIGOCHAEIA	A	A	35	580	10	*
0. colcaíva	1	A	36	480	8	*
R. caudajus	A	A	37	460	8	*
molta	A	A	38	455	8	*
E. calyciflorus	A	A	38	455	8	*
C. VEkMalis	c	A	40	440	7	*
pelecrpoda	L	A	41	430	7	*
O. colcarva	A	F	42	390	7	*
s. CANADENSIS	c	A	43	375	6	*
c. gicuspioatus	c	A	44	358	6	*
scotiolana	A	F	45	347	6	*
GIREIPEDIA	Y	A	46	273	5	*
O. colcarva	C	A	47	260	4	*
E. AFFIMIS	A	A	48	250	4	*
x. auAdrata	A	A	49	27.5	4	*
S. cancotrisis	A	F	50	221	14	*
lursellaria	A	A	51	213	4	*
H. FOSTERI	C	A	52	190	3	*
diaptorus	A	M	53	180	3	*
EDELLOLDEA	A.	A	54	175	3	*
ASPLANCHMA	A	A	55	160	3	*
605.144	A	A	55	160	3	*
hotaria	A	A	55	160	3	*
crclops	c	A	55	160	3	*
C. VERNALIS	A	M	55	160	3	*
acafilla	A	A	60	150	3	*
o. colcarva	A	M	61	140	2	*
K. VALGA	A	A	62	133	2	*
hegracticoida	A	M	63	130	2	*
habfagilcoida	A	F	64	127	2	*
ekgasilus	c	A	65	120	2	*
PARADICRANOPHORUS	A	A	66	100	2	*
C. VERRAALIS	A	$F$	66	1013	2	*
C. VEklialis	A	A	66	100	2	*
H. Fosteri	A	M	66	100	2	*
P. CRASSIROSTRIS	A	$F$	66	100	2	*
ERASCHIOHUS	A	A	71	88	1	*
T. Lungicornis	A	A	71	88	1	*
diafiomus	c	A	73	80	1	*
Sriditatia	A	A	73	80	1	*
copepgda	c	A	75	75	1	*
Po CRASSIROSTRIS	A	A	76	60	1	*
cryptoniscus larvae	A	A	77	50	1	*

*     - indicates below reportable

TABLE 3.1.8-3
suymary by date of initial and latent mean percent survival.
MICROZOOPLANKTON -1978

DATE	04/19178	- 04120178
Locasio.	antake	
collection timp	1042	0459
water tesip. (C)	10.2	11.0
cond delta r (c)		-
DISE - OXYGEN (HG/L)	8.8	11.0
Stididitr (PPT)	5.5	8.0
VOLUNE FILTERED (M3)	3.6	

LIFESTAGE KEY: A = ADULT
C = COPEPODID
$\mathrm{L}=\mathrm{LARVAE}$
$N=$ NAUPLII
$Y=$ CYPRIS LARVAE


IA SALEM EN 1978

					$\begin{array}{r} \text { TABLE } \\ \text { CON } \end{array}$	$3.1 .8-3$   INUED					
	TAXON	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	toral. number	PERCENT LIVE	percent   Sturned	PERCENT DEAD	TOTAL number	PERCENT LIVE	PERCENT stunined	$\begin{aligned} & \text { PERCENT } \\ & \text { OEAD } \end{aligned}$
	ROTIFER SPP.	A	A	2	0	0	100	0	0	0	0
	rotania	A	A	0	0	0	0	0	0	0	0
	notholca	A	A	10	50	30	20	- 5	40	20	40
	kEkAIELLA	4	A	1	0	0	100	1	0	0	100
	Braluchiovus	A	A	0	0	0	0	0	0	0	0
	a. calrciflorus	A	A	1	0	0	100	0	0	0	0
	nematooa	A	A	2	50	0	50	1	0	0	100
	pulychaeta	A	E	1	100	0	0	0	0	0	0
	pelecypood	,	L	1	0	0	100	0	0	0	0
	busmitha	A	A	0	0	0	0	1	0	0	100
	COFEPOD MAUPLII	4	N	113	92	b	7	83	90	3	0
	T. LORGICORNIS	F	A	0	0	0	0	0	0	0	0
	E. affivis	A	c	21	76	0	23	14	85	7	7
$\omega$	E. AFPIAIS	F	A	4	50	25	25	0	0	0	0
-	E. Affivis	m	A	5	80	0	20	0	0	0	0
$\stackrel{\square}{1}$	DIAPTOMUS	M	A	1	0	4	100	0	0	0	0
1	hakpacticuida	A	A	0	0	0	0	2	0	0	100
$\stackrel{+}{0}$	HARPACTICOIDA	A	c	0	0	0	0	1	0	0	100
6	ECTIMOSOMA	A	A	2	100	0	0	0	0	0	0
	ECTITCOSO:A	A	$c$	0	0	0	0	0	0	0	0
	h. fosteri	+	A	0	0	0	0	1	100	0	0
	cyclups	A	c	0	0	0	0	1	100	0	0
	TiRDIGRGDA	4	A	0	0	0	0	1	100	0	0

TABLE $3.1 .8-3$
CONTINUED

taxon	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$				
			fotal NUMBER	PERCENT live	PERCENT   STUPNED	PERCENT DEAD
ROTIFER SPP.	A	A	1	100	0	0
ROTARIA	A	A	0	0	0	0
nothelca	A	A	1	0	0	100
keratella	A	A	2	50	50	0
branchionus	A	A	1	100	0	0
B. CALYCIflorus	A	4	0	0	0	0
NEMATODA	A	A	4	25	25	50
Polvchaeta	A	$\varepsilon$	0	0	0	0
PELECYPODA	A	L	0	0	0	0
BOSMIMA	A	A	0	0	0	0
COPEPOU NAUPLII	A	N	93	80	7	11
T. LOMGICORNIS	F	A	0	0	0	0
E. AFFINIS	A	c	18	77	11	11
E. AFFINIS	F	A	1	0	0	100
E. AFFINIS	m	A	7	100	0	0
diaftomjs	M	A	0	0	0	0
HARPACIICOIDA	A	A	3	0	0	100
HARPACIICOIDA	A	C	0	0	0	0
ECIINOSOMA	A	A	0	0	0	0
ECTINOSO:AA	A	c	1	0	0	100
H. fosteri	F	A	0	0	0	0
crctops	A	c	0	0	0	0
tardigrada	A	A	0	0	0	0

IA SALEM EN 1978

## ABLE 3.1.8-3

CONTINUEO


00000200


					$\begin{array}{r} \text { TABLE } \\ \text { CON } \end{array}$	$\begin{aligned} & 3.1 .8-3 \\ & \text { IHUED } \end{aligned}$					
						00					
	TA×0:4	sex	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	total NUMBER	PERCENT LIVE	PERCENT   STUNNED	percent DEAD	TOTAL NUMGER	PERCENT LIVE	percent   Stunned	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
	Turbillaria	4	A	0	0	${ }^{0}$	0	0	---	0	
	ROTIFEP SPP.	$\stackrel{A}{4}$	A	0	0	0	0	0	0	0	0
	Wathilca	A	A	6	83	16	0	4	100	0	0
	keratella	${ }^{\text {a }}$	${ }_{4}^{4}$	0	0	${ }^{0}$	0	,	0	0	100
	iscaatuos	$\stackrel{1}{4}$	A	1	${ }_{0}^{0}$	100 0	0	0	0 100	0	${ }_{0}^{0}$
	Fulrchieit	A	E	1	100	0	0	1	100	0	0
	goswham	A	A	0	0	0	0	2	100	0	0
	- Sitacues	A	A	0	0	0	0	0	0	0	0
$\omega$	- copepod mauplit	A	N	202	94	3	1	129	87	8	3
$\cdots$	E. AfFlisis	${ }_{4}^{4}$	${ }_{\text {a }}$	${ }^{0}$	0	0	0	0	0	0	0
$\stackrel{-}{1}$	E. aftivis	F	${ }_{\text {a }}$	3	100	0	10 0	8	87	0	12
\&	E. affinis	M	A	0	0	0	0	5	100	16	0
$\stackrel{ }{ }$	mappacilicoida	A	A	0	0	0	0	a	0	0	0
N	hagpacticoida	A	c	0	0	0	0	0	0	0	0
	ECIL:0ssma	A	A	5	80	0	20	3	33	0	
	Ecrimosona	A	c	0	0	0	0	2	100	0	0
	c. 6icuspidatus	F	A	0	0	0	0	0	0	0	0

TABLE 3.1.8-3
CONTINUED

taxon	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TUTAL number	$\begin{aligned} & \text { PERCENT } \\ & \text { LIVE. } \end{aligned}$	PERCENT   StUNAED	PERCENT DEAD
rurbellaria	A	A	0	0	0	
ROTIGEES SPP.	A	A	$a$	0	0	0
motholca	A	A	8	62	12	25
KERAIELLA	A	A	0	0	0	0
B. Calyciflorus	A	A	0	0	0	0
nematoda	A	A	0	0	0	0
polychamia	A	E	0	0	0	0
BOSIAINA	A	A	0	0	0	0
ostracuoa	4	A	2	100	0	0
COPEPOD NAUPLII	A	$N$	147	81	8	10
E. AFFIMIS	A	A	1	0	0	100
E. AFFIVIS	A	c	8	100	0	0
E. AFFINIS	F	4	4	100	0	0
E. AFFINIS	in	A	5	60	0	40
HARPACIICOIDA	A	A	1	1 nn	0	40
HARPACIICOIDA	A	c	1	100	0	9
ECTIMOSOMA	A	A	2	0	0	100
ECTIHOSOMA	A	c	0	0	0	10
c. bicuspidatus	f	4	1	100	0	0

table'3.1.8-3
CONIINUED

0,te	08/28/78	- 06/29/78
Lucatiua	INTAKE	
collection tiye	1530	0647
miter leqp. (C)	21.0	26.8
cosu. pelta T (C)	3.8	6.1
DISS. OXYGEN (:3G/L)	6.7	8.4
SALINIty (PPT)	4.0	6.0
VOLUME filttatid (nS)	4.0	

LIFESTAGE KEY: A $=$ ADULT
= COPEPODIO
$L=$ LARVAE
$N=$ NAUPLII
$Y=$ CYPRIS LARVAE

SALINITY (PPT) 4.0
4.0

0000
0200

	14.00\%	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TOTAL number	$\begin{aligned} & \text { PERCENT } \\ & \text { LIVE } \end{aligned}$	PERCENT   Stunned	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	TOTAL NUMBER	PERCENT LIVE	percent   STUNNED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
	RGtifer spp.	A	A	1	100	0	0	0	0	0	0
$\omega$	B. Al.gularis	A	A	1	0	100	0	0	0	0	0
-	B. Ciubatus	A	4	0	0	0	0	0	0	0	0
$\stackrel{\rightharpoonup}{1}$	Asplatheyda	A	A	0	0	0	0	1	100	0	0
1	CEEPICJa	A	A	1	100	0	0	3	100	0	0
$\stackrel{+}{\square}$	gastrupjoa	A	A	0	0	0	0	3	66	0	33
-	gastrupoos	A	L	5	40	20	40	6	83	0	16
盛	H0144	A	A	0	0	$\cup$	0	0	0	0	0
	COPEPOO NaUPLII	A	N	113	71	15	13	77	71	6	22
	E. Affidis	A	$c$	28	85	10	3	13	61	7	30
	E. AFFIMIS	F	A	6	66	16	16	8	75	12	12
	E. Affivis	M	A	$?$	71	0	28	2	50	0	50
	P. corduatus	A	c	2	100	0	0	0	0	0	0
	P. Cuhovatus	F	A	7	85	0	14	3	66	0	33
	P. Curovatus	$\cdots$	A	0	0	0	0	0	0	0	0
	a. Toisa	4	C	2	50	0	50	7	42	28	28
	A . Tu:isa	F	A	21	85	14	0	17	64	11	23
	2. Tuirsa	${ }^{1}$	A	5	60	0	40	6	50	33	16
	hafplcticoida	A	4	2	50	50	0	0	0	0	0
	HAPPACIICOIDA	A	c	0	0	0	0	0	0	0	0
	Scotrolaia	2	A	0	0	0	0	0	0	0	0
	scortulana	1	c	0	0	0	0	0	0	0	0
	ECTID.0SO4A	A	A	3	33	33	33	5	40	40	20
	ECTINOSjA	A	c	0	0	0	0	0	0	0	0
	H_ fosteri	F	A	1	0	100	0	0	0	0	0
	h. fosteri	8	A	1	0	100	0	0	0	0	0
	C. Veriralis	F	A	0	0	0	0	0	0	0	0
	c. vermalis	9	A	0	0	0.	0	0	0	0	0
	CIRR'IPEDIA	A	N	5	100	0	0	1	100	0	0
										IA SALEM EN 1978	



ABLE 3.1 .8
CONTINUED

TAXON	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TOTAL NUMBER	PERCENT LIVE	PERCENT stunneo	$\begin{gathered} \text { PERCENT } \\ \text { DEAD } \end{gathered}$
ROTIFER SPP.	A	A	0	0	0	0
B. AhGularis	A	A	1	100	0	0
B. caudatus	A	A	0	0	0	0
ASPLANCHILA	A	A	0	0	0	0
NEMAIOUA	A	A	2	100	0	0
gastropoon	A	A	2	50	0	50
GASTEOPODA	A	L	5	80	0	20
muina	A	A	1	100	0	0
COPEPOD NAUPLII	A	N	33	90	0	9
E. AFFINIS	A	c	18	61	5	33
E. AFFINIS	F	A	5	100	0	0
E. AFFINIS	M	A	4	25	25	50
P. corunatus	A	c	2	100	0	0
P. coronatus	F	A	6	83	0	16
P. corovatus	M	A	0	0	0	0
A. torsa	A	C	5	60	0	40
A. tohsa	F	A	41	60	2	36
A. torsa	M	A	4	50	0	50
harpacilcoida	A	A	4	25	25	50
HARPACTICOIDA	A	c	1	0	0	100
scottolana	A	A	1	100	0	0
SCOTIOLANA	A	c	3	100	0	0
ECTINOSOMA	A	A	5	80	0	20
ECTINOS0:4	A	c	0	0	0	0
H. Fosteni	F	A	1	100	0	0
H. FOStERI	M	A	0	0	0	0
C. vernalis	F	A	0	0	0	0
C. VEKNALIS	M	A	0	0	0	0
cIRRIPEDIA	A	N	7	71	0	28


date	00/28178-06/29178		
Location	discharge		
COLLEGIION TIME	1534	-	0651
WATER TEYiP. (C)	29.0	-	30.2
CO:0. OELTA T (C)	3.8		6.1
dISS. UXYGEN (HG/L)	5.2	-	6.9
SALIMITY (PPT)	4.0		6.0
volume filtereo (m3)	3.6		

```
.LIFESTAGE KEY:A = ADULT
```

$\begin{array}{lrlr}\text { COLLEGIION TIME } & 1534 & - & 0651 \\ \text { WATER TEYP. (C) } & 29.0 & - & 30.2 \\ \text { COHO OELTAT TC) } & 3.8 & - & 6.1 \\ \text { ISSE UXYGEH (IGG/L) } & 5.2 & - & 6.9 \\ \text { SALIAITY (PPT) } & 4.0 & - & 6.0\end{array}$
VOLUME FILTEREO (M3) $3.6-6.0$

				U000				0200			
	Taxued	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TOTAL number	$\begin{aligned} & \text { PERCENT } \\ & \text { LIVE } \end{aligned}$	PERCENT   STUNNED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	TOTAL number	PERCENT LIVE	PERCEN:   STUNAED	FERCENT DEAD
$\omega$	fotifer Spp.	A	1	0	0	0	0	1	100		
$\mapsto$	B. calrciflorus	A	A	1	100	0	0	0	0	0	0
1	B. mugularis	A	A	1	140	0	0		100	0	0
A	B. caudajus	A	A	1	100	0	0		0	0	0
$\mapsto$	nematuda	A	A	2	50	0	50	1	100	0	0
$\checkmark$	polichatia	A	1		100	0	0	0	0	0	0
	gssitiupoia	A	L	11	65	0	36	7	100		0
	ACARIIAM	A	A	0	0	0	0	1	100	0	0
	OSTKACODA	A	A	1	100	0	0	1	100	0	0
	COPEPOD MAUPLII	A	N	90	72	13	14	64	59	0	0
	E. AFFINIS	A	c	17	82	0	17	13	59	10	29
	E. AFFINIS	F	A	5	60	20	20	3	92 100	0	7
	E. AFFIuIS	M	A	1	100	0	0	3	100	0	0
	oiaptomas	A	c	1	0	0	100	${ }_{0}$	100	0	0
	P. conunatus	A	$c$	2	50	0	50	0	0	0	U
	P- cgronatus	+	A	7	71	0	28	9	77	0	23
	P. corcvatus	M	A	5	80	20	0	2	100	0	0
	4. roirsa	2	c	13	69	0	30	15	73	0	20
	a. 101.54	$F$	A	9	55	0	44	8	87	0	12
	A. Toissa	,	A	4	25	25	50	0	0	0	12
	harpacticgida	A	A	0	0	0	0	0	0	0	0
	harpacticoida	A	c	0	0	0	0	0	0	0	0
	scorrolana	A	4	0	0	0	0	0	0	0	0
	scotrulana	A	c	0	0	0	0	0	0	0	0
	Ectilicsoma	A	A	5	40	20	40	1	0	100	0
	ECTIHOSJMA	A	c	2	0	0	100	0	0	10	0
	Crclups	A	$c$	0	0	0	0	0	0	0	0
	circipedia	A	N	6	83	16	0	1	100	0	0
	Cryptohiscus larvae	A	1	0	0	0	0	0	0	0	0

IA SALEKEN 1978


TA日LE 3.1.8-3
continued

TAXOH	SEX	LIfE Stage	TOIAL NUMBER	PERCENT L.IVE	PERCENT   stunned	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
ROILFEK SPP.	A	A	0	0	0	0
B. Calyciflorus	A	A	7	100	0	0
B. arigulailis	A	A	0	0	0	0
B. caudatus	A	A	0	0	0	0
nematoua	A	A	0	0	0	0
polrchaeta	A	L	1	100	0	0
gastrupiod	A	L	7	1150	0	0
acarima	4	a	0	0	$u$	0
OSTEACODA	A	A	1	4	0	130
COPEPOD NAUPLII	A	N	32	75	0	25
E. AFFIVIS	A	$c$	11	81	9	9
E. AFFIALS	F	A	4	75	0	25
E. AFFINIS	$\cdots$	A	5	100	0	0
diaptorus	A	C	0	0	0	1
P. curunatus	A	$¢$	0	c	0	0
P. curonatus	F	A	12	100	0	0
P. corunatus	1 m	A	3	66	0	33
A. YOHSA	A	c	8	87	0	12
A. rolisa	F	4	16	71	0	28
a. tomsa	$\cdots$	A	2	50	0	50
HARPACTICOIDA	A	A	0	0	0	0
HARPACIICOIDA	A	c	0	0	0	0
scottolana	A	A	1	0	0	100
scotiolana	A	c	0	0	0	0
ECTINOSO.AA	A	A	13	40	0	55
ectinusoma	A	c	0	0	0	0
cyctops	A	c	0	0	0	0
CIRKIPEDIA	4	N	1	0	$u$	100
cryptoniscus larvae	A	L	1	0	0	0



0400 0800

TAAGIV	SEX	Life staue	TOTAL NUMBER	PERCENT   L. IVE	PERCENT   stunned	PERCENT DEAD	TOTAL number	$\begin{aligned} & \text { PERCEHT } \\ & \text { LIVE } \end{aligned}$	FERCENT   Sturice	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
ROTIFER SPP.	A	A	0	0	0	0	0	0	0	0
nemarcioa	A	A	3	100	0	0	0	0	0	0
polychaeta	A	$L$	0	0	0	0	0	0	0	0
oligochatia.	A	A	0	0	1	0	0	0	0	0
gasiropjoa	A	A	0	1	0	0	5	100	0	0
GASIKOHODA	A	L	12	83	10	0	11	72	0	27
COPEPOL NaUPLII	A	N	7	71	0	28	4	75	0	25
E. hitionis	i	A	0	0	0	0	1	100	0	0
P. curusatus	A	c	0	0	0	0	1	100	U	0
P. conuyatus	F	A	3	06	33	0	2	100	0	0
P. curvinatus	M	A	0	U	0	0	0	0	0	0
A. Jutisa	A	c	15	80	0	20	10	40	0	00
a. toinsa	F	A	4	75	0	25	8	75	0	25
A. Tohisa	$\cdots$	A	1	0	0	100	0	0	0	0
ECtinosoya	A	2	8	75	0	25	8	75	12	12
o. colcasva	A	4	1	100	0	0	0	0	$\checkmark$	0
o. culcarva	A	c	0	0	0	0	0	0	0	0
CInkIPEOIA	A	N	0	0	0	0	0	0	0	0
1200										
TA×OH	SEX	LIfE STAGE	TUTAL number	PERCENT   LIVE	PERCENT   S TUNNED	PERCENT DEAD				
fotifer Spp.	A	A	1	0	0	100		.		
mamatuda	A	A	0	0	0	0				
pultraneia	4	L	1	0	0	100				
cliguchata	A	A	2	50	0	50				
gastrupoja	A	A	0	0	0	0				
gastrupuda	A	L	17	04	35	0	-			
COPEPGD NAUPLII	4	N	6	33	0	66				
E. AFFİIS	M	4	0	0	$\cup$	1				
f. conconatus	$\dot{4}$	c	1	0	0	0				
P. curovatus	F	A	3	100	0	0				
P. curcyatus	H	A	1	110	0	0				
A. 10idsa	4	c	4	50	0	50				
A. roisa	F	A	6	6o	0	33				
A . Torisa	M	A	0	0	0	0				
ecticosoma	A	A	8	8 ?	0	12				
o. colcarva	A	A	0	0	0	0	.			.
o. colcarva	A	c	0	0	0	0				
cirkipeida	A	N	0	0	0	0				

TABLE 3.1.8-3
CONTINUED

oate	07/13178	- 09/14/78
LOCatas:	discharge	
Cullection ilme	0957	0506
Water tevip. (C)	27.0	31.7
Cuidu. jelta t (C)	8.2	11.1
DISS. Uxigen (MG/L)	4.4	6.0
Salimlir (PPT)	5.0	10.0
volume filtered (ms)	6.6	

```
LIFESTAGE KEY: A = ADULI
\(C=\) COPEPOOID
\(L=\) LARVAE
\(N=\) NAUPLII
\(y=\) cypris larvae
```

Salioul UxGEN (NG/
VOLUME FILTERED (43)
0200

1axu゙,	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGGE } \end{aligned}$	TOTAL number	percent LIVE	PERCENT   stunneo	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	total Number	PERCENT LIVE	PERCENT   STUNNED	$\begin{aligned} & \text { PERCENT } \\ & \text { OEAD } \end{aligned}$
RUIIfER SPP.	A	A	0	0	0	0	0	0	0	0
ROIIGETA A	A	A	1	100	0	0	0	0	0	0
Huthulca	A	A	2	50	0	50	0	0	0	0
a. abuularis	A	A	2	50	0	50	0	0	0	0
MEMAlU0a	A	A	5	0	0	100	13	23	0	76
polrchatia	A	E	3	33	0	66	0	0	0	0
polichatia	A	1	0	0	0	0	1.	100	0	0
gasirupoua	A	A	1	100	0	0	0	0	0	0
gastrinjua	A	L	9	88	11	0	18	100	0	0
COPEPOU NAJPLII	A	N	32	81	3	15	27	77	11	11
COPEPUO 4AUPLII	F	4	0	0	U	0	0	0	0	0
P. coruvatus	A	c	1	0	100	0	0	0	0	0
P. curuvatus	F	A	5	100	0	0	3.	33	0	66
A. T0:15a	A	c	6	83	16	0	21	71	9	19
A. 10.15 a	F	A	0	U	0	0	1	100	0	0
A. 101354	M	A	3	100	0	0	2	50	0	50
HARPACTICOIDA	$A$	A	0	0	0	0	1	100	0	0
ectimusjat	A	A	9	88	11	0	10	80	20	0
ECTItiosjua	A	c	0	0	0	0	1	100	0	0
C. VERMALIS	F	A	0	0	0	0	0	0	0	0
ergasilus	A	A	0	0	0	0	0	0	0	0
CIAmipedia	A	L	0	0	0	0	0	0	0	0
ciridredia	A	N	4	50	50	0	2	0	50	50
CRypioniscus larvas	A	L	0	0	0	0	0	0	0	0

IA SALEM EN 1978


TABTE S.1.8-4
mean density (numbers 1100 Cutic meters), gr date, of macroinvertebrate plankton - 1978.

03/16/78-03/17/78
NO. OF SAMPLES
2.5-3.0
2.5-3.0
11.6-15.0
11.6-15.0
7.2-7.3
7.2-7.3
1.0-4.0
1.0-4.0
2-4
2-4
400.0
400.0
NUMEERS/100 CUBIC METERS - CONFIDENCE LIMIT
POLYCHAETA
OLIGOCHAETA
N. AMERICANA
C. ALMYRA
2.500
1.532
4.072
49.326
4.177
6.1724
4.714
15.676
37.109
15.553
4.023

CONTINUED


IABLE 3.1.8-4
CONTINUED

DATE	$106 / 28 / 78-00 / 29 / 78$
NO. OF SAMPLES	9
WATEK IEMPERATUKE (C)	$21.0-20.8$
DISSOLVEO OXYGEN (MG/L)	$6.0-8.4$
PH	$0.4-7.1$
SALINIIY (PPT)	$4.0-0.0$
PUMPS OPERATING	0
TOTAL VOLUME FILTERED (M3)	450.0

$$
\text { NUMBERSSIUU CUBIC METERS } \quad \text { - CUNFIDENCE LIMIT }
$$

## TAXON

HYOROZOA
B. VIRGINICA

POLYCHAETA
OLIGOCHAEIA
NUDIBRANCHIA
L. AESIIVA

ARGULUS SPP.
N. AHERICANA
L. amiericanus

CHIRIDOTEA SPP.
C. ALIMYRA
C. ALIMYRA
E. TRILOUA
C. POLITA
A. MEDIALIS

COKOPHIUM SPP.
GAMMARLUS SPP.
M. NIIIDA
M. EDWARDSI
P. PUGIO
C. SEPTEMSPINOSA

BRACHYURA
R. HARRISII
U. MINAX

DIPTEKA

0.222	0.512
0.222	0.512
1.556	2.144
U. 8 84	1.556
44.222	32.643
U. 222	0.512
1.335	1.719
43075.522	27661.684
12.222	21.970
3.353	2.477
7.775	9.527
103.556	162.073
12.667	10.022
3. 111	$? .675$
47.778	18.741
1615.333	697.446
U.222	0.512
1.550	2.144
07.178	50.851
390.359	516.655
3.111	2. 4.44
5149.778	5421.909
142.222	230.791
0.222	0.512

TABLE 3.1.8-4
CONTINUED




## TABLE SOMTAC-4



COMIINUED

TABLE 3.1.8-4 COMIINUEO			
DATE 09	13/78-09/14/78		
no. of Saiflees	10		
WATEF TEMPERATURE (C)	21.2-23.9		
DISSOLVED OXYGEN (MG/L)	6.3-7.9		
PH	6.6-7.4		
SALINITY (PPT)	6.0-9.0		
PUMPS OPERATING	5-6		
total volume filtered (m3)	600.0		
		-	$+\quad 95 \%$
taxon		numbers 1100 cubic meters	- Confidence limit
HYDFOZOA (MEDUSAE)		391.400	261.895
hyorozua h1 (medusae)		18.000	10.811
N. GAChei		2.800	3.827
日. VIRGIMICA		210.800	168.798
ACTIMIARIA		1.000	1.216
polrchaeta		3.400	4.105
Hikudimea		0.200	0.452
NUDIERABCHIA		1.600	2.111
bacona spp.		0.807	1.000
L. aEStIVa		2.600	3.238
ARGULUS SPP.		5.600	3.358
N. Anericaina		77645.000	36101-191
L. AnEFICAINUS		765.000	591.478
C. almirya		5.000	3.850
E. iriloba		3736.200	3595.399
c. polita		22.000	20.622
c. Lunifrons		1.400	10.966
A. MEDIALIS		23.000	18.632
L. PLumulosus		0.600	1.357
COROPHIUAS SPP.		51.600	- 13.552
gammakus Spp.		1070.800	620.412
M. NITIDA		9.200	7.636
M. Euwardsi		100.600	91.084
PARGPLEUSTES SPP.		2.000	1.168
P. CyPRIS		0.200	0.452
F. Pugio		46.600	36.274
C. SEPTENSPINOSA		360.400	335.983
C. SAPIOLS		15.600	9.930
r. harrisila		588.000	672.796
U. Mlfiax		1.8100	2.473
chirghomidae		0.200	0.452



TABLE 3.1.8-4
CONTINUED

$\text { TABLE } 3.1 .8-4$CONTINUED			
DATE 11	01/78-11/02/78		
NO. Of SAMPLES	8		
water tenperature (C)	13.5-14.5		
DISSOLVED OXYGEN (MG/L)	7.9-9.5		
HH			
SALINIIY (PPT)	6.0-8.0		
PUMPS OPERATING	2		
fotal volume filtered (m3)	485.0		
			+ 95\%
IAXON		numbers 1100 cubic meters	- confidence limit
hyogozoa (Medusae)		9.488	20.229
actiniaria		0.250	0.591
rayrichucuela		0.200	0.473
polychatia		0.663	1.190
hirudinea		0.750	0.866
hudigramichia		0.165	0.384
Macuna spp.		0.500	1.182
L. AESIIVA		0.250	0.591
N. AmERICANA		1705.158	1535.008
leuconioae		0.825	1.951
L. Americanus	,	171.688	114.442
C. ALMYRA		14.950	11.281
t. tfiloga		113.650	87.966
c. POLITA		0.413	0.658
A. megialis		2.000	1.999
gopyridiam		0.500	1.182
COROPHIUM SPP.		85.275	45.489
gammakus Spp.		224.050	129.781
M. Nitloa		1.325	1.936
M. Eonarosi		2.875	. 2.425
PARAPLEUSTES SPP.		5.225	2.549
ORCHESTIA SPP.		0.200	0.473
P. CrPhis		0.163	0.384
P. Pugio		12.225	15.852
c. SEPTEHSPINOSA		7.400	8.602
C. SAPIDUS		0.200	0.473
R. HAREISII		0.540	0.774



ABLE 3.1.8-4


## TABLE 3.1.8-5

rank, total number, ainnual mean density and percent total catch of macroinvertebrate plankton - 1978.


[^7]| taxon | RANK | number | NUMBERS/100 CUBIC METERS | PERCENT |
| :---: | :---: | :---: | :---: | :---: |
| Rhyinchocoela | 30 | 12 | 0.178 | * |
| orchestia spp. | 37 | 7 | 0.104 | * |
| actiniaria | 37 | 7 | 0.104 | * |
| LEUCONIDAE | 39 | 5 | 0.074 | * |
| L. POLYPhEmus | 40 | 4 | 0.059 | * |
| CHIRONOMIDAE | 40 | 4 | 0.059 | * |
| platyhelminthes | 42 | 3 | 0.044 | * |
| GASTROPODA | 42 | 3 | 0.044 | * |
| haustorijoae | 42 | 3 | 0.044 | * |
| gougainvillia spp. | 45 | 2 | 0.030 | * |
| CIRRIPEDIA | 45 | 2 | 0.030 | * |
| P. CrPRIS | 45 | 2 | 0.030 | * |
| S. ELLIPTICUS | 48 | 1 | 0.015 | * |
| AMPHIPODA | 48 | 1 | 0.015 | * |
| anNELIOA | 48 | 1 | 0.015 | * |
| L. SAVIGNYI | 48 | 1 | 0.015 | * |
| diptera | 48 | 1. | 0.015 | * |
| D. levcolema | 48 | 1 | 0.015 | * |
| cirolana | 48 | 1 | 0.015 | * |
| cematcoa | 48 | 1 | 0.015 | * |
| caprellidae | 48 | 1 | 0.015 | * |
| HYDROZOA | 48 | 1 | 0.015 | * |
| INSECTA | 48 | 1 | 0.015 | * |

*     - indicates below reportable

AbLE 3.1.8-6
Sumiary by daye of initial and l.atent mean percent survival MACROINVERTEGRAIE PLANKTOA - 1978



TABLE 3.1.8-6
CONTINUED

date	04/19/78-04/20/78	LIfeStage key: ${ }^{\text {a }}$ = AdULT
LOCATIOS	DISCHARGE	J = Juvenile
collection time	$1133-0516$	M = MEGALOPS
Hater tevpe (c)	10.7 - 11.5	$z=20 E A$



| DISS-OXYGEN (HG/L) | 8.1 | $=9.9$ |
| :--- | :--- | :--- | :--- |
| SALIHIYY (PPI) | 5.5 | -8.0 |

balimity pert
$5.5 — 8.0$
13.0
0000

000 . 0200


TAXON	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TOIAL NUBBE	PERCENT LIVE	PERCEMT   stunned	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
POLYCHAEIA		A				
oligochaeta		4	2		0	0
hirudiuea		A	11	100	0	0
H. Aatricana		A	4593	100	0	0
COROPHIUM SPP.		A	4593	43	0	56
COROPHIUM SPP.			?	71	0	28
gammarus spp.		4	131	100	0	0
M- EDwarosi		A	131	90	,	4
C. SEPTEMSPINOSA		A	7	85	0	14
C. SEPTENSPINOSA		$\checkmark$	6	71	14	14
			6	100	0	0

TABLE 3.1.8-6
CONTINUED


				$\begin{gathered} \text { TABLE 3.1.8-6 } \\ \text { CONTINUED } \\ 0400 \end{gathered}$				0800			
	taxan	sex	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	total number	PERCENT live	PERCENT   Stunned	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	TOTAL. NUMBER	percent live	PERCENT STUNNED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
	gastrupuga		$J$	0	0	0	0	2	100	0	0
	nuodematchia		A	6	100	0	0	29	100	0	0
	argulus spp.		J	0	0	0	0	2	100	0	0
	h. Americana		J	3281	75	0	23	9769	76	2	21
	L. amimericanus		A	\%	83	0	16	11	90	0	9
	C. almpan		J	5	80	- 0	20	10	90	0	10
	E. Tf:L03d		J	31	96	0	3	99	86	2	11
	c. folita		J	2	100	0	0	9	88	0	11
	a. Meusalis		J	0	0	0	0	,	0	0	100
	corophiun sppo		d	19	89	0	10	33	90	0	9
	Gapmaris spa.		4	115	71	16	12	115	71	16	12
	Gaimithus SPP.		J	220	98	0	1	1018	38	2	8
	M. E0namdit		J	5	100	0	0	5	100	0	0
	P. Pugio		J	0	0	0	0	11	81	18	0
	c. septeispinosa		J	55	54	1	43	164	26	0	73
	R. Hatrisil		J	1	0	0	100	1	0	0	100
	a. hamrisil		z	85	100	0	0	673	97	1	0
$\omega$	$u$. minax		2	1	100	0	0	27	92	7	0
$\stackrel{\square}{1}$				1200							
$\begin{aligned} & \stackrel{\Delta}{\Delta} \\ & \stackrel{\Delta}{\Delta} \end{aligned}$	14x0:4	SEX			Percent						
			stage	Number	live	STUNNED	DEAD				
	gastrufuda		J	1	100	0	0				
	muotermichia		A	18	100	0	0				
	argulus spp.		,	1	100	0	0				
	N. AMEMCAMA		$J$	7547	71	2	25				
	L. americaujs		A	9	77	0	22				
	C. atmpa		J	9	77	0	22				
	E. triloza		$J$	77	88	1	10				
	c. pulita		J	8	87	0	12				
	2. rikulalis		J	1	0	0	100				
	coroprly Spp.		J	28	85	0	14				
	gammatus Spr.		${ }^{4}$	115	62	24	13				
	GAmmath SPP.		J	749	87	2	9				
	M. EOwardsi		,		100	0	0				
	P. PuGij C. Statempinasa		J	$\begin{array}{r}6 \\ \hline 8\end{array}$	83 27	16 0	72				
	R. Hatrisit		J	1	0	0	100				
	r. Hakrisis		2	516	98	1	0				
	U. minax		2	14	92	7	0				

CONTINUED


0000
0200


If SALEMEN i978

			1200			
TAXOH	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	yOTAL NUMBER	PERCENT LIVE	PERCENT   STUNHED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
- polychaeta		A	2	0	100	
oligochaeta		4	3	100	10	0
Nudigranchia		A	16	100	0	0
N. Antericana		J	6893	84	1	13
L. AhERICANUS		A	10	100	0	0
C. Alifra		A	1	100	100	0
C. Almyra		J	2	100	0	0
E. TRILOBA		J	21	100	0	0
C. POLITA		J	9	100	0	0
CORGPHIUM SPP.		J	11	90	0	0
gamparus spp.		J	707	89	9	1
P. PUGIO		J	13	84	0	15
C. SEPTEMSPINOSA		J	30	56	0	43
R. HARRISII		2	371	95	2	1
U. MINAX		2	4	75	25	0

IA SALEM EN 1978

Table 3.1.8-6
CONTINUE

DATE	09113/78	- 09/13/78
LOCATIOA	INTAKE	
COLLECIION TIME	1015	2200
nATER IEMP. (C)	22.2	23.5
cono. delta f (C)	8.0	9.9
DISS. OXYGER (HG/L)	6.4	7.8
SALIMITY (PPI)	6.0	9.0
voluat filtered (id3)	20.0	

# LIfESTAGE KEY: A = ADULT <br> $J=$ JUVENILE <br> $J=$ JUVENILE $M=$ MEGALOPS <br> 2 = 20EA 

OISS OXYGER (MG/L) 6.4 - 7.8
SALIMIY (PPI) $\quad 8.0$

0000
0200

TAXOH	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { SIAGE } \end{aligned}$	total kuinber	PERCENT LIVE	PERCENT   S TUAMED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	total NUMBER	$\begin{aligned} & \text { PERCENT } \\ & \text { LIVE } \end{aligned}$	percent STUNAED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$
hroruzot (MEDUSAE)		a	26	80	0	19	20	45	0	55
PHIALIDIUA SPP.		A	6	100	0	0	0	0	0	4
B. virgiaica		1	39	35	5	58	12	0	8	41
polychaeta		A	2	100	0	0	0	0	0	U
M. Antimicama		A	14334	99	0	0	7739	96	0	3
W. AmEkICAMA		J	1750	98	0	1	1750	94	1	3
L. Anenicanus		A	43	100	0	0	11	100	0	0
E. rallosa		A	18	94	0	5	0	0	0	0
E. Ifiloja		J	$11{ }^{\circ}$	99	0	0	52	98	0	1
A- megialis		$\checkmark$	8	100	0	0	4	50	50	0
COROPHIJY SPP.		4	3	33	0	66	0	0	0	0
COROPHIUM SPP.		$\checkmark$	33	100	0	0	15	100	0	0
gammarus spp.		A	20	100	0	0	0	0	0	0
GAMAARUS SPP.		$J$	144	97	0	2	85	97	0	2
M. EDWARDSI		A	4	100	0	0	0	0	0	0
A. Ednardsi		J	3	100	0	0	3	100	0	0
P. Pugio		$J$	2	100	0	0	2	100	0	0
C. SEPIEHSPIHOSA		$\downarrow$	13	100	0	0	3	100	0	0
C. SAPIDUS		$J$	1	100	0	0	1	100	0	0
C. Sapious		N	2	100	0	0	1	100	0	0
R. Hakrisil		M	2	100	0	0	2	100	0	0
r. HaRkISİ		z	38	97	0	2	25	100	0	0




TABLE 3.1.8-6
CONIINUEO

ofte	09/13/78-09/14/78		
LOCATiO'	DISCHAR		
coliection time	1631	-	0514
water texpr (c)	29.1	-	31.7
Cu:id. delra ${ }^{\text {( }}$ (C)	7.5	-	11.4
OISS. oxycell (hG/L)	5.5	-	0.9
SALluIty (fPT)	8.0	-	8.0
VOLUSE Filtereo (M3)	17.0		

LIfeStage ker: $A=$ ADULT
$J=$ JUVENILE
M $=$ MEGALOPS
$z=z 0 E A$

0000

$\omega$	TAXO:	SEX	$\begin{aligned} & \text { LIFE } \\ & \text { STAGE } \end{aligned}$	TOTAL NumeER	- PERCENT LIVE	PERCENT   STUANED	$\begin{aligned} & \text { PERCENT } \\ & \text { DEAD } \end{aligned}$	TOTAL NUMBER	PERCENT LIVE	PERCENT   STUNRIED	$\begin{aligned} & \text { PERCEHT } \\ & \text { DEAD } \end{aligned}$
+	Hrufuzija (fegusat)		a	27	74						
1	is. EACTEI		A	1	100	0	25	9	77	0	22
$\xrightarrow[0]{\square}$	PHIALIUIU' SPP.		A	1	100	0	0	1	100	0	0
0	S- virisinica		A	38	76	0	23	4	100	0	0
	polychatia		A	1	100	0	0	4	50	0	50
	NULIBRATHEAA		A	1	100	0	0	0	0	0	0
	- CAR 1:is		A	1	100	0	0	0	0	0	0
	N- astericama		4	2130	83	0	16	0	0	0	0
	id. AnEticara		J	3249	96	0	3	220	0	0	0
	L. Arericasus		A	58	98	0	1	2229	87	0	11
	L. amehicamus		J	10	100	0	0	6	100	0	0
	E. Tfiluja		J	295	99	0	0	10	100	0	0
	C. POLITA		J	2	100	0	0	68	100	0	0
	A. AEOIALIS		J	2	100	0	0	2	100	0	0
	COROPHIUY SPF.		J	24	100	0	0		100	0	0
	GABRAKUS SPP.		J	140	99	0	0	12	100	0	0
	$\therefore$ - dition		J	2	100	0	0	66	98	0	1
	$\cdots$ E0marosi		A	2	100	0	0	2	100	0	0
	M. EDindios I P. Pugio		$J$	$?$	100	0	0	0	0	0	0
	C. SEPIEMSPINOSA		$J$	4	50	0	50	1	0	0	0
	C. SAPIDUS		$J$	14	50	0	50	4	25	0	100 75
	C. Sapious		$\cdots$	1	100	0	0	0	0	0	75
	8. HAERISII		4	1	100	0	0	0	0	0	0
	R. Harkisid		z	4 65	100 100	0	0	2	100	0	0
				6	100	0	0	9	100	0	0

0400

TAXON		0400					0800			
	SEX	LIfe   STAGE	TOTAL Number	percent LIVE	PERCENT   STUNNED	PERCENT	TGTAL	Percent	PERCEIT	Percemt
RYDGOLOA (MEDUSAE)								LIVE	STUMiED	DEAU
N. bachei		A	15	73	0	26	5	40	0	00
Prialiuluh spp.		A	1	100	0	0	0	0	0	0
g. virginica		A	7	85	- 0	${ }_{1}^{0}$	1	0	0	0
polvcragia		A	0	8	0	14	3	33	0	Do
nuoleranchia		4	0	0	0	0	0	0	0	0
ACARIIGA		A	0	0	0	0	0	0	0	0
N. americaina		A	814	53	0	46	1310	0 88	0	0
N. Astrijcama		$\downarrow$	1859	64	0	35	13:0	88	0 0	11
L. amtericatius		A	15	43	0	6	19	94	0	\%
L. amekicanus		J	10	100	0	0	0	0	0	0
E. Triljoa		J	70	98	0	1	84	100		0
C. POLIIA		J	0	0	0	0	0	0	0	0
A. MEDIALIS		J	1	100	0	0	0		0	0
COKOPHIUA SPr.		J	8	100	0	0	0	100	0	0
GAMiAdRUS SPP.		$J$	79	100	0	0	0	0	0	0
B. EDrarcosi		J	0	0	0	0	0	0	0	U
M. EDwARDSI		a	0	0	0	0	2	100	0	0
P. Puólo		J	1	0	0	0	0	0	0	0
C. StPIEMSPINOSA		J	1	0	0	100	0	0 75	0	0
C. SAPIDUS		J	0	0	0	100	4	75	0	25
C. SAPIDUS		$\cdots$	0	0	0	0	1	100	0	0
r. harrisil		M	2	100	0	0	0	0	0	0
R. Harkisil		2	9	100	0	0	1	100	0	\%
					0	0	0	0	0	0

it Saleh en 1978


TAELE 3.1.8-7
rank. TOTAL NUMBER, ANHUAL NEAN DENSITY AND PERGENT TOTAL CATCH OF ICHIHYOPLANKTON - 1978.


Ia SALEM EH 1978

	rank	number	numbers/cubic meter	percent
Young:				
s. fuscus	3	57	0.008	3.0
g. bosci		34	0.005	1.8
in. memidia	5	30	0.004	1.6
A. rosirata	5	30	0.004	1.6
T. Maculatus	$\stackrel{7}{7}$	5 5	0.001 0.001	0.3 0.3
m. martinica	9	3	*	0.2
L. xanthurus	9	3	*	0.2
F. heteroclitus	11	1	*	0.1
P. TRIACANTHUS	11	1	*	0.1
m. undulatus	11	1	*	0.1
ADULT:				
A. Mitchilli M. Menioia	2	111 4	0.015 0.001	91.7 3.3
s. fuscus	,	2	*	1.7
t. maculatus	3	2	*	1.7
a. rosirata	3	2	*	1.7

tafle 3-1.8-8
MEAN DENSITY (NIJMEERS/CU日IC METER). BY DATE OF ICHTHYOPLANKTON - 1978.


DATE	$03 / 02 / 78-03 / 03 / 78$
NOG OF SAMPLES	12.
WATER TEMPERATURE (C)	$0.6-2.1$
DISSOLVED OXYGEN (MG/L)	$12.1-14.2$
PH	7.0
SALINITY (PPT)	$3.0=6.0$
PUMPS OPEPATING	6
TOTAL VOLUME FILTERED (M3)	600.0



NUMPERS/CUBIC METER $\quad$ - CONFIDENCE LIMIT
$\qquad$


0.005	0.006
0.025	0.014

total larvae
TOTAL YOUNG
0.025
0.014

TOTAL ADULT

EGGS:
LARVAE:
UNIDENTIFIABLE FISH
AMMOOYTES SP.
0.004
0.003
0.005

YOUNG:
A. ROSTRATA
0.025
0.014

ADULT:

*     - INDICATES BELOW REPORTABLE

```
DATE 03/16/78-03/17/78
NO. OF SAMPLES 8
WATER TEMPERATURE (C) 2.5-3.6
OISSOLVED OXYGEN (MG/L) 11.6-13.6
 7.2-7.3
 1.0-4.0
 2-4
(PPT)
FUMPS OPERATING
400.0
```



## ADULT:

*     - INDICATES below reportable

DATE	$04 / 19 / 78-04 / 20 / 78$
NO. OF SAMPLES	9
WATER TEMPERATURE (C)	$10.2-11.0$
DISSOLVEU UXYGEN (MG/L)	$8.8-11.0$
PH	$7.0-7.6$
SALINITY (PPT)	$5.5-8.0$
PUMPS OPERATING	1
TOTAL VOLUME FILTERED (M3)	315.0



*     - Indicates below reportable

TABLE 3.1.8-8 CONTINUED

```
DATE 06/28/78-06/29/78
NO. OF SAMPLES &
WATER TEMPERATURE (C) 21.0-26.8
DISSQLVED OXYGEN (MG/L) 6.0=8.4
PH
SALINITY (PPT)
PUMPS OPERATING
TOTAL VOLUME FILTERED (M3)
 6.0=8.4
 4.0-6.0
 6
 450.0
```

    \(95 \%\)
    NUMBERS/CUBIC METER

- CONFIUENCE LImit

*     - Indicates below reportable

DATE	$07 / 12 / 78-07 / 13 / 78$
NO- OF SAMPLES	12
WATER TEIAPERATURE (C)	$24.0-25.0$
DISSOLVED OXYGEN (MG/L)	$6.2-8.0$
PH	$98.9-10.0$
SALINITY (PPT)	$5.0-10.0$
FUMPS OPERATING	$5-6$
TOTAL VOLUME FILTEREO (N3)	625.2

NUMBERS/CUBIC METER

TOTAL EGGS	24.936	17.855
total larvae	7.385	2.368
total young	0.264	0.195
rotal adult	0.043	0.027
EGGS:		
2. MIICHILLI	24.924	17.842
Membrasimenioia spp.	0.007	0.008
c. regalis	0.002	0.004
I. maculatus	0.003	0.007
larvae:		
A. MITCHILEI	6.146	2.119
F. heteroclitus	0.002	0.004
PEMBRAS/AENIDIA SPP.	0.103 .3	0.029
C. regalis	0.587	0.267
G. BOSCI	0.574	0.233
t. maculatus	0.043	0.031
young:		
A. MIfCHILLI	0.032	0.026
F. heieroclitus	0.002	0.004
m. Martinica	0.002	0.004
M. MENIDIA	0.003	0.007
S. Fuscus	0.007	0.008
C. REGALIS	0.209	0.197
G. BOSCI	0.010	0.015
A. rostrata	0.002	0.004
A. MlTCHILLI	0.038	0.026
M- MENIDIA	0.003	0.004

*     - indicates below refortable


TABLE 3.1.8-8
CONTINUED

DATE	$08 / 10 / 78-08 / 11 / 78$
NOG OF SAMPLES	12
WATER TEMPERATURE (C)	$26.7-28.7$
OISSOLVEO OXYGEN (MG/L)	$6.0-9.8$
PH	$7.2-7.4$
SALINIYY (PPT)	6.0
PUMPS OPERATING	$4-5$
TUIAL VOLUME FILIERED (M3)	600.0

NUMBERS/CUBIC METER - CONFIDENCELIMIT
TOTAL EGGS
TOTAL LARVAE
IOTAL, YOUNG
TOTAL ADULT

EGGS:
A. MITCHILLI

Larvat:
A. MITCHILLI
F. HETERUCLITUS

MEMBRAS/mENIDIA SPP.
S. FIJSCUS
. HEGALIS
G. BOSCI
T. maculatus

YOUNG:
a. MITCHILLI

- MARIINICA
m. MENIDIA
S. FUSCUS
C. REGALIS

ADULI:
A. MiJCHILLI
M. MENIDIA
S. FUSCUS

*     - INDICATES BELOW REPORTABLE

3.037	4.297
1.978	1.068
0.170	0.083
0.035	0.038

3.0374 .297





DATE	$11 / 01 / 78-11 / 02 / 78$
NOE OF SAMPLES	8
WATER TEMPERATURE (C)	$13.5-14.5$
OISSOLVED OXYGEN (MG/L)	$7.9-9.5$
PH	$99.9-$
SALINITY (PPT)	$6.0-8.0$
PUMPS OPERATING	2
TOTAL VOLUME FILTERED (M3)	485.0


		Numbersicubic meter	$\begin{aligned} & 95 \% \\ & \text { CONFIDENCE LIMIT } \end{aligned}$
-	TOTAL EGGS		
1	total larvae	0.003	0.006
$\stackrel{\sim}{\sim}$	IOIAL YOUNG	0.075	0.083
の	total adult	0.002	0.005
	EGGS:		
	LARVAE:		
	G. bOSCI	0.003	0.006
	YOUNG:		
	A. AESTIVALIS	0.003	0.006
	A. Nitchillei	0.068	0.082
	C. REGALIS	0.002	0.005
	T. maculatus	0.003	0.006
	ADULT:		
	t. maculatus	0.002	0.005

*     - indicates below reportable

TAELE 3.1.8-8 CONTIMUED

```
 DATE
 11/21/78-11/22/78
NO. Of SAMPLES
 12
wATER TEMPERATURE (C)
DISSOLVED OXYGEN (MG/L)
PH
 8.5-12.5
 5.9-8.4
6.8-7.1
SALINITY (PPT)
PUMPS OPERATING
TOTAL VOLUME FILTERED (M3) 807.0
```

$\angle 9 \nabla-\tau \cdot \varepsilon$
IOTAL EGGS
total larvae
IOTAL YOUNG
total auuly
EGGS:
LARVAE:
M. UNOULATUS
BOTHIDAE
YOUNG:
a. rositata
A. AESIIVALIS
A. MJICHILLI
M. MENIDIA
G. BOSCI
0.001
U. 001
0.003
0.005
0.033
0.002
0.002

ADULT:

*     - indicayes below reportable

$$
\begin{aligned}
& 0.003 \\
& 0.022
\end{aligned}
$$

0.002
0.002
0.0155
0.006
0.023
0.004
0.004

# TABLE 3.1.8-8 

 CONIINUED

[^8]TABLE 3.1.8-9
NUMBER AND PERCENT VIABIE OF FISH EGGS SUMMARIZED BY SPECIES AND DATE - 1978

Date	No. of eggs	Percent viable	Mean   salinity
Bay anchovy, Anchoa mitchilli			
June 28-29	523	7.3	5.9
July 12-13	15,083	7.4	7.7
July 27-28	92	12.0	7.7
August 10-11	1,822	2.0	7.0
Total	17,520	6.8	7.0
Silversides, Membras sp./Menidia spp.			
July 12-13	4	75.0	7.7
July 27-28	2	100.0	7.7
Total	6	83.3	7.7

IA SALEM EN 1978

TABLE 3.1.8-10
SUMMARY BY DATE OF INITIAL AND LATENT MEAN PERCENT SURVIVAL OF IChthyoplankton-1978


Month/day/year
No. of intake-discharge samples
Range in ambient water temperatures (C)
Range in ambient wate
Range in ambient D .0 .
Range in ambient dalinity
Range ambient salinit
Range in amblent BH
Range in condenser delta ${ }_{3}$ ?

06/28-29/78
21.0-26.8
6.6-8.4
$6.6-8.4$
$4.0-6.0$
6.5-7.1
3.8-6.1
42.0

2 Hours After Collection





## Intake

Larvae:							66.7	11.1	0.0	88.9	11.1	0.0	88.9	11.1	0.0	88.9
A. mitchill	9	55.6	0.0	44.4	${ }^{33.3}$	0.0		100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
$\overline{\mathrm{M}}$. martinlca	1	100.0	0.0	0.0	100.0	0.0	68.3	131.7	0.0	68.3	31.7	0.0	68.3	30.2	1.6	63.3
C. Tegalis	63	30.2	1.6	68.3	30.2	1.6	68.3 0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
L. xanthurus	1	100.0	0.0	0.0	100.0	0.0	100.0	10.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0
G. boscl	1	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0							
Young:							100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0
S. fuscus	3	0.0	0.0			0.0	44.1	55.9	0.0	44.1	55.9	0.0	44.1	52.9	0.0	47.1
c. regalis	34	58.8	0.0	41.2	55.9											
Discharge																
Larvae:										50.0	50.0	0.0	50.0	50.0	0.0	50.0
A. mitchilli	2	50.0	0.0	50.0	50.0	0.0	50.0			12.3	63.2	0.0	36.8	63.2	0.0	36.8
C. Fegalis	57	89.5	0.0	10.5	87.7	0.0	12.3	87.7	0.0	12.3 100.0	6.2 0.0	0.0	100.0	0.0	0.0	100.0
G. bosci	1	0.0	0.0	100.0	0.0	0.0	100.0									
Young:									0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
N. ${ }_{\text {analostanus }}$	1	100.0	0.0 16.3		81.6	14.3	4.1	83.7	10.2	4.1	73.5	10.2	16.3	73.5	10.2	16.3
C. regalis	49	79.6	16.3	4.1	100.0	14.3 0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
L. xanthurus	1	100.0	0.0	0.0	100.0	0.0	0.0	100.0								

Month/day/year
No. of tncale-discharge samples ;
Range in ambient water temperature (C)
Range in ambient D.0. (mg/l)
Range in ambient salinity (ppt)
Range in ambient ph
Ramge in condenser delta ${ }^{T}$ (C)
Total volume filtered (m)

09/13-14/78

$$
\begin{gathered}
11 \\
21.2-23.5 \\
6.4-7.9 \\
6.0-9.0 \\
6.8-7.0 \\
7.5-11.4 \\
82.0
\end{gathered}
$$

Hours After Collection


3.1-473



PUBLIC SERVICE ELECTRIC AND GAS COMPANY
SALEA NUCLEAR GENERATING STATION


| PUbilic service electric and gas company |  |
| :---: | :---: | :---: |
| salem nuclear generating station | Làrval table collection box- 1978 |

### 3.2 TERRESTRIAL (ETS Section 3.1.2.1.2)

This program studies the abundance and distribution of vascular plants and nonfish vertebrates on and near Artificial Island. Emphasis is on species of economic or ecological importance or species classified as rare or endangered (U.S.D.I., 1973).

Research in 1978 included bird surveys, and surveys of bald eagle occurrence, and osprey nesting, and study of diamondback terrapin nesting.

### 3.2.1 Diamondback Terrapin Nesting Study

(ETS Section 3.1.2.1.2.1)

The objectives are to monitor nesting activity and success of the northern diamondback terrapin, llalaclemys terrapin terrapin. Northern diamondback terrapin inhabit brackish Water along the Atlantic coast from Cape cod to Cape Hatteras. Burger and Monteveechi (1975) stated that most nests were found above the high tide level in flat areas on sand dunes or beaches that have about 20 percent vegetative cover. Generally, it takes the female less than an hour to select a site, dig a flask shaped hole, lay and cover her eggs, and return to the water. Nesting begins in mid-June. Hatching usually begins from mid to late August and may continue into November. Cold weather may cause the young to hibernate in or near the nest and emerge the following spring (Carr, 1952; Lawler and Musick, 1972).

### 3.2.1.1 Summary

Diamondback terrapin nesting was monitored at three beaches on the Delaware River within 4.8 km of Salem. Nesting was recorded from June 10 through late July, with three activity peaks observed. Degree of activity varied greatly between sites. A total of 127 females was tagged during 1978 , with eight recaptures. Estimated number of females utilizing a beach ranged from 30 to 682. Carapace length ranged from 15.3 to 20.6 cm , and age ranged from 12 to $22+$ years. Major nest predators were mink, Norway rats, and crows. Blackbacked gulls and great blue herons may have preyed on hatched young both in and out of the nest. Hatching was
observed from late August through mid-September. Evidence indicated a total of only 88 young, but this number is highly convervative. Cool spring and summer weather delayed nesting by many females and subsequent hatching of eggs.

### 3.2.1.2 Study Area

Observations were made from June 10 through November 9, 1978 at suitable nesting beaches at Sunken Ship Cove and near the mouth of Hope Creek, New Jersey, and Liston Point, Delaware (Fig. 3.2.l-l). For description and discussion of these three locations see Volume 2 of the 1977 Annual Environmental Operating Report.

### 3.2.1.3 Materials and Methods

The three sites were searched during daylight from June into November as required by the ETS. Weekly searches for evidence of nesting were conducted in early June. After first evidence of nesting (June 10), the beaches were monitored three to five times a week through July. Searches for depredated nests and emerging hatchlings were made one to three times a week from August through September. Two searches were conducted during October, and one in November. Each visit consisted of walking the beach and counting turtles, crawl tracks, depredated nests, and eggs. For further description of the study methods see Volume 2 of the 1977 Annual Environmental Operating Report.

In 1978, nests containing unbroken eggs were marked with a numbered stake, and the number of eggs and date recorded. These nests were located by following tracks, finding females on the nest, and random searching. Located nests were monitored for predation. If depredaied, the date and number of eggs predated were recorded.

### 3.2.1. 4 Data Reduction

The following formula was developed to provide a rough relative estimate of the number of nesting females utilizing each study area

$$
N=\left(\frac{\sum \frac{T_{S}+T_{r}}{V}}{3}\right)_{D}
$$

where $T$ is the number of turtles sighted, $T$ is the number of tracks counted, $V$ is the number of times fhe study area was visited over the study period, $D$ is the known number of days of nesting activity, and 3 is the estimated mean number of nests laid per female during the nesting season.

### 3.2.1.5 Results and Discussion

NESTING ACTIVITY AND EFFORT

Nesting in 1978 began on June 10 and continued through late July. The last dates of observed nesting activity were July 14, 20, and 27 for Sunken Ship Cove, Hope Creek beach, and Liston Point, respectively. Nesting activity varied between sites (Fig. 3.2.1-2, 3.2.1-3). Activity appeared to have three peaks at Liston point, with the first on June 19 and the second, and highest, on July 6. The third peak occurred four days later on July 10. It is probable the second and third peaks reflected many renesting females. Hildebrand (1932) reported that cultured terrapin may lay from one to five nests per year, but that most lay from one to three nests. Hope Creek also appeared to have three peaks of activity, with the highest observed on June 20. Activity at Sunken Ship Cove slight, but appeared to have two peaks. Nesting activity at this site was greatly affected by heavy usage of the beach by fisherman throughout the summer. Fishermen were present on 23 ( 85 percent) of the 27 visits made during the active nesting period.

The activity peaks in 1978 did not exhibit the strong cyclic pattern of nesting observed in 1977. In order for cyclic nesting to occur, two criteria must be met (Worth and Smith, 1976). First, there must be no significant immigrant increase in the rookery once seasonal nesting has begun. Second, hormonal synchrony within the nesting population is implied. All three sites had some activity peaks occurring within one day of each other indicating these three nesting populations may belong to one large population. However, many females were probably still immigrating into the rookery areas after nesting had begun. Terrapin appeared to be several weeks behind in their normal seasonal cycle due to the cold spring weather. Terrapin are generally first observed in the spring from early to mid-April, but in 1978 were not observed until mid-May. Therefore, most females
were probably not physiologically ready for nesting until late June or early July.

Liston Point had the most nesting activity followed by Hope Creek and Sunken Ship Cove (Table 3.2.1-1). The mean number of combined individuals and tracks observed during nesting was 42.6 at Liston Point, 15.4 at Hope Creek, and 2.6 at Sunken Ship Cove. The estimated number of females utilizing each beach was 30 for Sunken Ship Cove, 211 for Hope Creek, 682 for Liston Point.

Nesting activity on a daily basis appears related to tide and weather. The highest mean number of sightings was during late flood tide under a clear cloud cover (Table 3.2.1-2). More turtles were generally seen during periods of high tide and clear to partly cloudy skies. Burger and Montevecchi (1975) reported a high positive correlation between activity and tidal stage.

A total of 5,653 eggs from 776 nests were recorded during 1978. Most nests were found at Liston Point (505 nests, 4,071 eggs). Hope Creek had 266 nests (l,546 eggs), while only five nests ( 36 eggs) were located at Sunken Ship Cove. Most of the recorded nests were depredated; 88.3 percent at Liston Point, 87.9 percent at Hope Creek, and 60.0 percent at Sunken Ship Cove.

## PREDATION

Marked nests were monitored over the season to determine predation pressure. A total of 63 non-depredated nests were located; 43 at Liston Point, 18 at Hope Creek, and 2 at Sunken Ship Cove. The two nests at Sunken Ship Cove were lost when fishermen removed the stakes. A total of 37 (61.1 percent) of the marked nests were depredated by the end of September; 31 ( 72.1 percent) at Liston Point and 6 (33 percent) at Hope Creek. Burger (1976) reported that 60 percent of the marked nests in her study were destroyed by raccoons, Procyon lotor, and foxes.

The only predator tracks observed at Sunken Ship Cove were of the norway rat, Rattus norvegicus. Tracks of mink, Mustela vision; norway rat: and crow, Corvus brachyrhynchos, were observed at depredated nests on Hope Creek beach. Mink and.rat tracks were commonly observed at Liston Point. Raccoon tracks were also occasionally sighted. Track evidence indicated that mink, raccoon, norway rats, crows, great black-backed gulls; Larus marinus,
and occasionally great blue heron, Ardea herodias, preyed on hatchlings both in and out of the nest.

## TAGGED FEMATES

A total of 127 terrapin was tagged during 1978; 56 at Liston Point and 71 at Hope Creek beach. No terrapin were captured at Sunken Ship Cove. Eight tagged terrapin were recaptured in 1978. Six of these were recaptured where originally tagged: three at Liston Point and three at Hope Creek beach. The remaining two had lost their tags.

Mean plastron length and width of the tagged specimens was 16.9 cm (range: $14.9-18.6$ ) and $9.1 \mathrm{~cm}(8.2-9.1)$, respectively, at Liston Point and $16.1 \mathrm{~cm} \mathrm{(14.1-18.4)} \mathrm{and}$ $9.0 \mathrm{~cm}(7.9-9.8)$ at Hope Creek. Mean carapace length and width was 18.3 cm (range: $16.1-20.6$ ) and $14.0 \mathrm{~cm} \mathrm{(12.2-}$ 15.6), respectively, at Liston Point and 17.3 (15.3-19.2) and $13.3 \mathrm{~cm}(12.2-14.7)$ at Hope Creek.

Age of nesting females ranged from 12 to $22 \div$ years. Some of the females captured had completely smooth shells which may indicate they were up to $40+$ years (Hildebrand 1932). Mean age at Liston Point was 15.9 years (range: 12-22+), and 15.4 years (13-22+) at Hope Creek.

## HATCHLING ABUNDANCE AND ACTIVITY

Hatchlings were first observed August 23, with observations continuing into September. Tracks of 25 young were found at Liston Point, and 19 hatched nests containing 150 eggs were located. Twenty-nine young were observed. No hatchlings were found at Hope Creek and only one track was sighted. Ten hatched nests containing remnants of 45 eggs were found. At Sunken Ship Cove only 33 tracks of young were recorded.

Hatchling activity was greatest during the first two weeks of hatching (Fig. 3.2.1-4). Activity dropped off quickly in September, with the last evidence of hatching observed on September 21. The apparent decrease in hatchling numbers observed in 1978 compared to previous years is felt to be really only a decrease in the number of emerged young. The delay in nesting by many females, coupled with a cooler, wetter incubation period than normal (NOAA, 1978), appeared to delay most hatching to the point where hatchlings did not
emerge from the nest but immediately went into hibernation. Carr (1952) reported that overwintering in the nest is common for turtles both by unhatched eggs and by hatchlings.

Area	table 3.2.1-1   SUMMARY OF NESTING AND HATCHING   data for diamondback terrapin - 1978							
	Period	No. of Visits	No. of Nondepredated Nests	No. of   Depredated Nests	No. of Nondepredated Eggs	No. of Depredated Eggs	No. of Turtles In Area	No. of Tracks observed
Sunken Ship Cove	$\begin{aligned} & 10-15 \text { June } \\ & 16-30 \text { June } \end{aligned}$	$\begin{array}{r} 4 \\ 12 \end{array}$	1		10	.	2	24
	June	16	1		10		2	24
	$\begin{aligned} & 1-15 \text { July } \\ & 16-31 \text { July } \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	1		10		10	14
	July	12	1		10		10	14
Subtotal (Adults)		28	2		20		12	38
	$\begin{aligned} & 1-15 \text { Aug. } \\ & 16-31 \text { Aug. } \end{aligned}$	$\frac{1}{5}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$		10 6		20
	August	6		3		16		20
	$\begin{array}{r} 1-15 \text { Sept. } \\ 16-30 \text { Sept. } \end{array}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$						13
	September	5						13
	October	2						
	November	1						
Subtotal (Young)		14		3		16		33
rotal		42	2	3	20	16	12	71
	.						ia sale	т 1978

TABLE $3.2 .1-1$

Area	Period	No. of Visits	No. of Nondepredated Nests	No. of Depredated Nest3	No. of Nondepredated Eggs	No. of Depredated $\qquad$	No. of Turtles In Area	No. of Tracks Observed
Hope Creek Beach	10-15 June	5	2	3	26	24	8	8
	16-30 June	13	12	66	67	364	44	178
	June	18	14	69	93	388	52	186
	1-15 July	9	7	52	54	322	31	84
	16-31 July	4		31		184	6	10
	July	13	7	83	54	506	37	94
Subtotal (Adults)	.	31	21	152	147	894	89	280
	1-15 Aug.	1		23		162		
	16-31 Aug.	4	5	30	17	133		1
	August	5	5	53	17	295		1
	1-15 Sept. 16-30 sept.	3 2	5	25	28	$\begin{array}{r} 136 \\ 29 \end{array}$		
	September	5	5	30	28	165		
	October	2	.					
	November	1						.
Subtotal (Young)		13	10	83	45	460		1.
Total		44	31	. 235	192	1,354	89	281

TABLE 3.2.1-1 CONTINUED

Area	Period	No. of Visits	No. of Nondepredated Nests	No. of   Depredated   Nests	No. of Nondepredated Eggs	No. of   Depredated   Eggs	No. of Turtles In Area	No. of Tracks observed
Liston Point	10-15 June	5	12	5	121	55	5	23
	16-30 June	13	17	- 65	190	492	35	488
	June	18	29	70	311	547	40	511
	1-15 July	10	12	209	145	1,637	40	499
	16-31 July		1	57	10	436	2	58
	July	14	13	266	155	2,073	42	557
Subtotai (Adults)		32	42	336	466	2,620	82	1,068
	$\begin{aligned} & 1-15 \text { Aug. } \\ & 16-31 \text { Aug. } \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	8	$\begin{array}{r} 8 \\ 54 \end{array}$	71	$\begin{array}{r} 66 \\ 424 \end{array}$	29	22
	August	6	8	62	71	490	29	22
	$\begin{aligned} & 1-15 \text { sept. } \\ & 16-30 \text { sept. } \end{aligned}$	3 2	$\begin{aligned} & 7 \\ & 4 \end{aligned}$	43 3	51 28	319 26		$\begin{aligned} & 2 \\ & 1 \end{aligned}$
	September	5	11	46	79	345		3
	October	2						
	November	1	.					
Subtotal (Young)		14	19	108	150	835	29	25
Total		46	61	4.4	616	3,455	111	1,093

TABLE 3.2.1-2
DIAMONDBACK TERRAPIN SIGHTINGS RELATED TO TIDE AND CLOUD COVER* - 1978

Tide	Cloud Cover (0-10)			
	$\begin{aligned} & \hline \text { Clear } \\ & (0-3) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Partly cloudy } \\ & (4-6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Overcast } \\ & (7-10) \\ & \hline \end{aligned}$	Total
Flood 1	1.6	2.8	0.0	4.4
Flood 2	7.0	2.4	4.2	13.6
Ebb 1	3.3	5.0	5.0	13.3
Ebb 2	0.2	2.7	0.1	3.0
Total	12.1	12.9	9.3	

[^9]
public semice lemetmic and cas company
Diamondback terrapin study sites, osprey nests, and bald eagle sightings - 1978

Figure 3.2.1-1




Bird surveys were conducted during March through December to provide a quantitative assessment of species composition, seasonal abundance, and local distribution within 4.8 to 8.0 km of Salem. Surveys were not conducted during January and February due to weather conditions.

### 3.2.2.1 Summary

The greatest numbers of individuals and species were sighted during migrations. The abundant species sighted on the river were the Canada goose, laughing gull, great blackbacked gull, Bonaparte's gull, and herring gull. Herons were common from late spring through mid-summer. Abundant waterfowl were the Canada goose, green-winged teal, black duck, and mallard. Black ducks and mallards were the only confirmed year-round residents. Green-winged teal, and Canada geese were commonly observed migrants; Canada geese also wintered in the area.

### 3.2.2.2 Study Area

The study area was described in Clark (1976). The bird survey covered approximately 11 km of the river and 43 km of tidal creeks. This was divided into six zones to enable correlation of sightings with community type (Fig. 3.2.1-1).

Zone 1 ( 864 ha or 2,136 acres) includes all of Artificial Island and is composed of pasture, freshwater potholes, tidal marsh, sandy beach, disturbed area, and open water communities.

Zone 2 ( 1,219 ha or 3,013 acres) is predominantly saltmarsh cordgrass and includes tidal marsh and tidal mud flats on both sides of Alloway Creek. Reed, trees, and shrubs occur along the creek banks.

Zone 3 ( 226 ha or 558 acres) includes the town of Hancocks Bridge, a part of Alloway Creek west of Salem-Hancocks Bridge Road, and an impounded freshwater marsh vegetated primarily by reed.

Zone 4 (1,193 ha or 2,949 acres) includes the tidal marsh surrounding Halfway Creek and Hope Creek downstream from Solters Creek. Reed marsh and low cordgrass marsh are the predominant associations, with reed occupying most of the tidal marsh adjacent to Halfway Creek and lining the banks of most of Hope Creek.

Zone 5 ( 1,097 ha or 2,710 ) includes low tidal marsh, tidal mud flats, and farmland surrounding the uppermost region of Hope Creek and all of Solters Creek. Saltmarsh cordgrass is the predominant species.

Zone 6 (497 ha or 1,227 acres) is predominantly low tidal marsh adjacent to Fishing Creek. Saltmarsh cordgrass is the predominant species, but reed occupies much of the creek banks.

### 3.2.2.3 Materials and Methods

All ETS required samples were collected in 1978. Surveys were made weekly to monthly (weather permitting) throughout the year in areas regularly accessible by boat or foot.

The data are presented as two separate surveys: the river bird survey, including all bird species observed on the survey route on the Delaware River; and the waterfowl survey, including only waterfowl and osprey observed on the river and creeks. Detailed description of the survey methods and route can be found in Volume 2 of the 1977 Annual Environmental Operating Report.

The American coot, Fulica americana, was recorded as a waterfowl species due to similarity of habits and habitat.

### 3.2.2.4 Results and Discussion

RIVER SURVEY

Approximately 80 percent of the species observed on the river were summer or winter residents, the rest occurred only during migration. About half are known to breed in the general region.

The most sightings were during April ( $\bar{X}=1,169$ individuals), probably the peak month of spring migration (Table 3.2.2-1). March ( $\bar{X}=1,020$ individuals) also had high migratory activity. The fewest sightings were in June ( $X=136$ individuals).

The most species (26) occurred during April and the fewest (10) in October (Table 3.2.2-1). A total of 58 species was recorded on the river in 1978.

Abundant species on the river in 1978 were the Canada goose, Branta canadensis; laughing gull, Larus atricilla; great black-oacked gull, Larus marinus; and herring gull, Larus argentatus. Gulls were usually common but were most abundant during May, July, and August. The laughing gull was the common gull from August through November. Waterfowl, especially Canada geese, were most abundant during March through April. Herons and egrets (Ardeidae) were common during May through July.

Distribution correlated with habitat requirements. Gulls were often sighted where perching was available, e.g., Hope Creek Jetty, Sunken Ship Cove, and the pilings along the west shore of Artificial Island. Dabbling ducks were most often sighted in Sunken Ship Cove, along the west shore of Artificial island, and in the region of the cove off the northeast side of the island. A flock of 200 to 900 Canada geese was common in this cove during late winter and early spring. These areas offer some shelter from wind and waves. Diving ducks were generally found offshore although small groups were often observed in Sunken Ship Cove. Herons and egrets were usually in quiet, shallow waters along the shore, e.g., the beach at Sunken Ship Cove and behind the pilings on the west shore of Artificial Island.

WATERFOWL SURVEY

Most species occur as winter residents or during migration; only a few breed in the area. Sightings were highest in March $(\bar{X}=1,385$ individuals) and April (1,133) (Table 3.2.22). This reflected the many Canada geese in the area. Sightings were lowest in July $(\bar{X}=10$ individuals). The most species occurred in March (13) and the fewest in July (2). Migration was most active from March through April and September through December.

The most abundant waterfowl were Canada geese; green-winged teal, Anas carolinensis; black ducks, Anas rubripes; and mallards, Anas platyrhynchos. Canada geese occurred from March through June and October through December. Black ducks and mallards were the only annual residents regularly observed. Green-winged teal were observed March through May and August through December

Most sightings were in Zones 1,5 , and 6 (Table.3.2.2-3). The most sightings were recorded on the river (Zone l). Canada geese, black ducks, and mallards were common. Most sightings were of Canada geese.

Zone 5 contains a large area which is mostly open water at high tide and mud flat at low tide. Large numbers of Canada geese; black ducks; pintails, Anas acuta; mallards; and green-winged teal used this area, especially during migration. This zone also contains many narrow streams and ditches lined primarily with saltmarsh cordgrass and very little reed. Saltmarsh cordgrass is an important food and cover plant for waterfowl in this region (Clark, 1976), while reed is of relatively little value for either food or cover. Black ducks and occasionally mallards were flushed from these streams and ditches, especially at high tide.

Zone 6 is predominantly low marsh with many small streams and ditches. Birds often use this area for shelter during high winds. Most sightings were of green-winged teal during migration. Black ducks and mallards were also common.

MONTHLY MEAN NUMBER OF BIRD OBSERVATIONS - 1978

Number of Survey Nean Number of
Individual Sightings percent by Month

Species
Red-throated loon
Double-crested cormorant
Canada goose
Snow goos
Mallard
Black duck
Black or mallard
Pintall
Blue-winged teal
Green-winged teal
Canvasback
Greater scaup
Common goldeneye
Bufflehead
Red-breasted merganser
Unidentified duck
Sharp-shinned hawk
Narsh hawk
Red-tailed haw
Eastern merlin
American kestrel
ing-necked pheasant
Snowy egret
Cattle egret
Great-blue heron
Black-crowned night heron
Glassy ibis
Glossy ibis
American coot
Killdeer
Spotted sandpiper
Spotted sandpiper
Greater yellowle
Least sandpiper
Semipalmated sandpipe Semipalmated
Common snipe
Great black-backed gull
Herring gull
Rerring gull
Ring-binled gut
Laughing guli
Bonaparte's gull
Least tern
Common tern
Mourning dove
Belted kingfisher


Number of Surveys
Mean Number of
Indiviaul Sightings
Scecies
Yellow-shafted flicker Kingbira
Barn swallow
Tree swallow
Rough-winged swallow
Common Crow
Fish crow
Starling
Meadowlark
Red-winged blackbird
Cowbird
Common grackle
Unidentified blackbirds Song sparrow


IA SALEM T 1978


TABLE 3.2.2-2
MONTHLY MEAN NUMBER OF SIGHTINGS OF WATERFOWL AND OSPREY - 1978


IA SALEM T 1978

TABLE 3．2．2－3
SUMMARY BY ZONE OF WATERFOWL SIGHTINGS－ 1978
Zone
Number of species．
Number of
Individual Sightings
Percent by zone

Species

Canada goose	4545	13	131		1102		5791
Snow goose	36						36
Mallard	130	91	194	10	220	100	745
Black duck	85	72	119	38	291	207	812
Black or mallard	1	1		2		45	49
Pintail	4	46	77	5	287	9	428
Gadwall			4		1		5
Blue－winged teal	4				7	3	14
Green－winged teal	14	60	238	1	273	733	1319
wood duck			4		4	4	12
Canvasback	21						21
Greater scaup	219						219
Common goldeneye	32						32
Bufflehead	7						7
Red－breasted merganser	3						3
Unidentified duck	20			2			22
American coot	2.	1	2		1		6

3.2-23

PUBLIC SERMCE ELECTRIC AND GAS COMPANY
SALEU NUCLEAR GENERATMS STATION

### 3.2.3 BALD EAGLE AND OSPREY MONITORING STUDY

(ETS Section 3.1.2.1.2.3)

The study objectives are to record the occurrence of osprey and bald eagle and to monitor nesting of osprey in the vicinity of Artificial Island. The southern bald eagle, Haliaeetus 1 . leucocephalus, is classified as "endangered" (U.S.D.I., 1974 ); and the North American osprey, Pandion haliaetus carolinensis, as "status undetermined" (J.S.D.I., 1973).

### 3.2.3.1 Summary

Osprey were observed in the study area from March 15 through October 6 . Eleven osprey nests were monitored by helicopter in 1978. Nine nests were located on transmission towers, l on pilings, and 1 on a nesting platform. Seven nests contained eggs and were considered active. These nests produced 10 fledged birds for a nesting success of 67 percent, with a mean of 1.11 young/active nest.

Bald eagle were observed once in the study area during 1978. Two birds were sighted May 28 near Taylors Bridge, Delaware.

### 3.2.3.2 Study Area

The study area extends 16.1 km north, 12.9 km south, and 8.0 km east and west from Salem. The northern boundary is near Finns Point, New Jersey and the southern boundary is just north of Woodland Beach, Delaware (Fig. 3.2.l-1).

The area features riverine, bay, upland field, and wooded habitats. Pilings, range towers, and powerline towers are common.

### 3.2.3.3 Materials and Methods

Known osprey nests were checked by helicopter about every two weeks during April through August. During flights the region was searched for additional osprey nests and for bald
eagle. The number of adults, eggs, nestlings, and fledglings in each nest were recorded. Bald eagle sighted by IA personnel were recorded to location, activity, and age (adult or immature).

### 3.2.3.4 Results and Discussion

Adult osprey were sighted from March 15 through October 6. Most sightings were made during the bird survey. The most sightings were in July (Table 3.2.2-2). Sightings were of possibly eight adults.

Eleven nests were located and monitored in 1978 (Table 3.2.3-1才. Nine nests were located on transmission towers, $l$ on pilings, and $l$ on a nesting platform. Four nests were known to be inactive or were destroyed early in the season. Seven nests contained a total of 10 young, all of which fledged. The number of eggs and newly hatched young was not recorded for all nests. Most females at the active nests remained on the nest while the helicopter was near. Considering only the seven possible active nests, nesting success in 1978 was 67 percent. The mean number of young fledged per active nest was l.11. This is well within the 0.95 to 1.30 immatures per adult female that Henny and wight (1969) estimated is needed each year to ensure population stability.

Two adult bald eagles were sighted flying north over Delaware Route 9 east of Taylors Bridge on May 28 by IA personnel.

TABLE 3.2.3-1
OSPREY NESTING AND SUCCESS - 1978

Location of Nests	No. of Eggs Observed	No. of Young Observed	No. of Fledglings Observed
River piling east of Getty			
Oil Refinery, Delaware City	**	0	0
Nesting platform, Reedy			
Island Jetty*	2		
Nests on Transmission Line Towers			
Salem - Keeny 3/1*	0	-	
Salem - Keeny 4/3	1	1	1
Salem - Keeny 8/4	**	0	0
Salem - North 2/3	**	1	1
Salem - North 3/4	**	3	3
Salem - North 4/l	*	1	1
Salem - North 6/l	2	0	0
Salem - South 2/4	1	1	1
Salem - South 5/1	**	3	3
Total		10	10

[^10]
### 3.3 REFERENCES

Arndt, R. G. 1974. The biology and economics of the blue crab, Callinectes sapidus, in the Delaware River near Artificial Island, 1971. Pages 604-705 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1971. Ichthyological Associates. 709 pp.

Browne, M. E., L. B. DeLancey, D. A. Randle, and W. H. Whitmore. 1976. A study of zooplankton in the Delaware River in the vicinity of Artificial Island in 1974. Pages l-152 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1974. Vol. II. Ichthyological Associates. 517 pp .

Burger, J., and W. A. Montevecchi. 1975. Nest site selection in the terrapin Malaclemys terrapin. Copeia 1975:113-119.

Burger, J. 1976. Behavior of hatchling diamondback. terrapins (Malaclemys terrapin) in the field. Copeia 1976 (4):742-748.

Carr, A. 1952. Handbook of turtles. Comstock Publishing Assoc., Cornell Univ. Press, Ithaca, NY 542 pp.

Clark, R. S. 1976. Studies of the marsh and terrestrial ecology in the vicinity of Artificial Island, Salem County, New Jersey. Pages 409-456 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January-December 1974. Vol. II. Ichthylolgical Associates. 517 pp.

Connelly, R. A., G. A. Hayes, T. S. Kartachak, and R. A. Tudor. 1976. A quantitative study of benthic macroinvertebrates of the Delaware River in the vicinity of Artificial. Island in 1973 and 1974. Pages 183-366 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress Report for the period January through December 1974. Vol. II. Ichthylolgical Associates. 517 pp .

Cronin, L. E., J. C. Daiber, and E. M. Hulburt. 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary. Ches. Sci. 3(2):63-93.

Dixon, W. J. (ed.). 1975. BMDP: Biomedical Computer Programs. University of California Press, Los Angeles. 792 pp .

Harmic, J. L. 1958. Some aspects of the development and the ecology of the pelagic phase of the gray Squeteague, Cynoscion regalis (Bloch and Schneider) in the Delaware estuary. Ph.D. Thesis (unpubl). Univ. of Del. 80 pp .

Henny, C. J., and H. M. Wight. 1969. An endangered osprey population: estimates of mortality and production. Auk 86(2):188-198.

Hildebrand, S. F., and L. E. Cable. 1930. Development and life history of fourteen teleostean fishes at Beaufort, NC. Bull. Bur. Fish., 46 (1930). Bur. Fish. Doc. l,093:383-488.

Hildebrand, S. F. 1932. Growth of diamondback terrapins, size attained, sex ratios, and longevity. zoologica 9(15):551-563.

Hopkins, T. L. 1965. Mysid shrimp abundance in surface waters of Indian River Inlet, Delaware. Ches. Sci. 6(2):86-91.

Hulburt, E. M. 1957. The distribution of Neomysis. americana in the estuary of the Delaware River. Limnol. Oceanogr. 2(1):1-11.

Kuntz, A. 1914. The embryology and larval development of Bairdiella chrysura and Anchoa mitchilli. U.S. Bur. Fish., Bull. 33:l-19.

Laver, G. T., W. T. Waller, D. W. Bath, W. Meeks, R. Heffner, T. Ginn, L. Zubarik, P. Bibko, and P. C. Storm. 1974. Entrainment studies on Hudson River organisms. Pages $37-82$ in Proceedings of the second workshop on entrainment and intake screening. Rep. No. 15. The John Hopkins Univ., Baltimore, MD. 347 pp .

Lawler, $A$. R., añ J. A. Musick. 1972. Sanc beach hibernation by a northern diamondback terrapin, Malaclemys terrapin terrapin (Schoepff). Copeia 1972(3):389-390.

Linasay, J.A., and N. J. Morrisson. 1974. A study of zooplankton in the Delaware River in the vicinity of Artificial Island in 1973. Pages 342-417 in An ecological study of the Delaware River in the vicinity
of Artificial Island. Progress Report for the period January-December 1973. Ichthyological Associates. 517 pp.

Marriott, $F$. H. C. 1974. The Interpretation of Multiple Observations. Academic Press, New York. 117 pp.

National oceanic and Atmospheric Administration. 1977. Tides tables - 1978, East Coast of North and South America. National Ocean Survey, Rockville, MD.

National Oceanic and Atmospheric Administration. 1978. Local Climatological data - Wilmington, Delaware. National Climatic Center, Asheville, NC.

National Oceanic and Atmospheric Administration. 1972. C\&GS Chart 294. Delaware River, Smyrna River to Wilmington. National Ocean Survey, Washington, DC.

Nelson, T. C. 1928. On the association of the common goby (Gobiosoma bosci) with the oyster, including a case of parasitism, Nat. Hist. 28(1):78-84.
-Pielou, E. C. 1977. Mathematical Ecology. Wiley Interscience, New York. 385 pp.

Pubiic Service Electric \& Gas Company. 1978a. Biotic Environmental Surveillance. Volume 2 of 3 in 1977 Annual Environmental Operating Report, Salem Nuclear Generating Station - Unit No. 1 , January 1 through December 31, 1977. 679 pp.

Public Service Electric \& Gas Company. l978b. Summary Assessment of Weakfish Impingement: Summer 1978. Salem Nuclear Generating Station - Unit 1.

Shannon, C.E., and w. Weaver. 1963. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 117 pp.

United States Department of Interior. 1973. Threatened wildlife of the United States. Bur. Sport Fish. and Wildl. Resource Pub. ll4. 289 pp.

United States Department of Interior. 1974. United states list of endangered fauna. U.S. Fish and wildl. Serv. 22 pp .

Worth, D. F., and J. B. Smith. 1976. Marine turtle nesting on Hutchinson Island, Florida, in l973. Florida Dept. Nat. Resource, Florida Mar. Res. Pub. No. 18. 17 pp.

Weber, C. I. (ed.). 1973. Macroinvertebrates. 38 pp. in Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. EPA-670/4-73-001. U.S.E.P.A. Cincinnati, Ohio.

Welsh, B. L. 1975. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56(3):513530 .


[^0]:    * From Final Environmental Statement, April 1973.
    ** After dilution with circulating and service water only; no mixing with river water assumed.

[^1]:    * = Belun heporiagle level

[^2]:    - Dascriptive nasa
    undetermined

[^3]:    * beloa reportable level

[^4]:    Public service labctric and gas combany SALBM NUCLEAR GENERATING STATION

[^5]:    3.1-330

[^6]:    CF m catch frequency (number of samples in which the species appeared)
    $+\ldots$ less than 0.1 kg

    - survival: $L$ a live; $D=$ dead; $D^{*}$ ( damaged

[^7]:    *     - Indicates below refortagle

[^8]:    *     - INDICATES BELOW REPORTABLE

[^9]:    * Information for tide and cloud cover is from NOAA (1977) and NOAA (1978), respectively.

[^10]:    * = Disappearance of nest.
    ** $=$ Unable to determine.

