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Virtual m-c-k  Turbulence stimulation 
Galloping vs. VIV  Flow transition  
PTC to FIM map  Multiple cylinders 
CFD  Fish-tail 

I.         Concept 

II.  Development of VIVACE 

III.  Research Advances 

Outline 

Enhancement of flow induced motions:  
 VIV, galloping, buffeting 

Stage 1: Channel – scale 2  Scales   
Stage 2: Towing tank – scale 3      Stage 3: Open-water - scale 3 
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I.1.  Concept: Enhance flow induced motions 

VIV (Vortex Induced Vibration) 

Galloping 

 Soft 
 Hard 
 Wake galloping 
 Proximity galloping 
 Interference galloping 

Flutter 

Buffeting 
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I.2.  VIV 
Stationary cylinder 

Features 
•  Vortex synchronization 
•  Synchronization lock-in  

  at fn +/- 50%-60% 
•  Self - limiting  amplitude 

  (forced oscillations) 
•  Initial, upper,  and  lower   

 synchronization  branches  
•  Vortex  structures 
•  Hysteresis 
•  Correlation length 

Vortex Induced Vibration 

•  Elastic cylindrical body 
•  Rigid cylinder on elastic 

support 

Lab picture animation by Williamson 

Forced oscillation 
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 Typical VIV tests are: 

•  Lab based with low Re  
 and low damping 

•  Field based with high Re 
trying to suppress VIV 

Few of these results are relevant 
to energy harness through VIV 

I.3.  High damping VIV at  8×103<Re<1.5×105  

Am
ax

/D
 

Skop-Griffin Plot 

VIVACE tests 

* A/D=1.9 Smooth cylinder results 
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I.4.  Oscillators: Linear and nonlinear   

VIV, low-Re oscillator 

Linear oscillator VIVACE, VIV high-Re oscillator 

VIVACE, VIV+galloping oscillator 
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II.1.  Development  of  VIVACE 
• Stage 1: The  concept 
• Scales 
• Stage 2: Proof of concept, channel tests 

• Stage 3: Field tests 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
Tidal-current 

energy conversion 
concept 

Subsystem testing 
at intermediate 

scale 

Subsystem testing 
at large scale 

Full scale 
prototype testing 

Commercial 
demonstrator 

testing 

U of Michigan U of Michigan St. Clair River St. Clair River TBD 
2005 to 2009 2009 to Present Summer 2010 Summer 2011 Summer 2011 



 

1940: Tacoma Narrows bridge collapsed 
due to wind-induced vibrations 

1965: Ferrybridge cooling towers 
collapsed due to VIV 

II.2.  Stage 1: The  concept  

FIM can be controlled to generate energy! 
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Current 

Bluff Body 

Flow Lines 

Vortices Shedding 

Movement Shedding 

Movement 

II.3.  How  VIVACE  works 

Approach:  Develop technology that mimics and enhances natural 
 phenomena: VIV, galloping 

   VIV:  Enhance vortex shedding, Harness VIV energy 

    Galloping: Enhance instability, Harness VIV energy 

   Fish biomimetics: Surface roughness; cylinder proximity; passive fish tail    

Objective:   Capture the abundant hydro-kinetic energy in even low- 
   speed ocean/river currents without using dams or turbines

Concept:  FIM converts hydrokinetic energy to transverse   
 mechanical motion. 

VIV concept 
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Flow 
Velocity 
U= 
1.6knots 
(0.8m/s) 

II.4.  Stage 2:  Proof of concept lab tests 

Synchronization 
U=[0.56-1.05]m/s 
at high damping, 
K=2*518 N/m, 
m*=1.45 10/40 



Small  Scale Large  Scale 

Lab  Scale 

II.5.  VIVACE  scalability  &  modularity 

Farm  Scale 

Water flow 

Alternating Vortices 
Object: Cross-
section of a cylinder 
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VIVACE  scales 

Scale 1: P≤10W 

Scale 2: P≤200W 

Scale 3: P≤5kw 

Scale 4: P≤100kw 

4-cylinder VIVACE module 

1,000≤Re≤20,000 

20,000≤Re≤150,000 

150,000≤Re≤500,000 

500,000≤Re 
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II.6.  Enhance VIV & galloping        

Fish biomimetics:  
 Passive turbulence  
 control A/D vs. U* 
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II.7.   Stage 3:  Prototype  testing 
Univ. of Michigan towing tank:  
Sept. 2009  

       St. Clair river:  Summer 2010 
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Lab tests: 1 cylinder, 1.9 knots   
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Lab tests: 1 cylinder with PTC,  2kn   
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Lab tests: 1 cylinder with PTC, 2 knots   
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Lab tests: 2 cylinders with PTC, 2 kn   
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II.8.  River deployment: 2 cylinders with PTC 
The St. Clair River, Blue Water Bridge.  Beta 1 Prototype at dock  

Beta 1 being tested in St. Clair River  Underwater view of VIVACE cylinders  
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River deployment: 2 cylinders with PTC 

Open-water 2-cylinder testing  
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III.  Research: Vision and goals 
research goals 

G1    Function like a school of fish, i.e. a 3-D device with component   
synergy stemming only from hydrodynamic interaction 

G2    Operate efficiently at four scales with speeds as low as 0.5knots 
G3    Be environmentally compatible.  
G4    Generate electricity at a competitive cost. 
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Objective #1:   Integrated PTO & Vmck 

1 

2 3 

4 

5 

LTFSW channel 

Virtual m-c-k model 
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23 

Schematic of physical VIVACE converter Schematic of virtual VIVACE converter 

Physical  &  Virtual  VIVACE 

 
my + cbearing y = f fluid (t) + Fmotor
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Expand the high lift regime  TrSL3 

Drag and lift coefficient vs. Re (Zdravkovich 1997) 

Reynolds number 
lower limit range < Re < upper limit range 

Name of 
the 

regime 
Characteristic feature 

1×l03- 2×l03 < Re < 2×l04- 4×l04 TrSL2 Formation of transition vortices in free shear layer 

2×l04- 4×l04 < Re < l×l05- 2×l05 TrSL3 Fully turbulent shear layer 

1×l05 - 2×l05< Re < 3.5×l05- 6×l06 TrBL 

Objective #2:   Hydrokinetic to Mechanical 
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Expand synchronization range Ur=Ucur/(fn,wD) 
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U* 

P60 @ ±10°~
±26°  
P60 @ ±15°~
±31° 
P60 @ ±20°~
±36° 
P60 @ ±30°~
±46° 
P60 @ ±40°~
±56° 
P60 @ ±50°~
±66° 

VIV GLP 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

3 4 5 6 7 8 9 10 11 12 13 14 15 

f os
c/f

n,
w

 

P60 @ 
±10°~±26°  
P60 @ 
±15°~±31° 
P60 @ 
±20°~±36° 

U
* 

25/40 



Maintain VIV in the transition region 

26/40 



Major Parameters of PTC 
•  αPTC, placement angle.  
•  Area coverage.  
•  k, Roughness grit size. 
•  T=k+p, PTC total height. 

Mechanics of PTC   

•   Trip the boundary layer.  
•   Set the correlation length. 
•   Introduce turbulence. 

Placement 
angle (αPTC) 

Coverage Area 
(width of strip)  

PTC 
(Roughness) 

Cylinder (Front) 

p 

k

P T C  

C y l i n d e r  S u r f a c e  

T 

Stagnation 
point 

Double-sided 
tape 

Objective #3:  Passive turbulence control  
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Map  of  PTC  to  FIM (P180) 

  Half inch width, P180 
  6 Zones –WS1, HG1, 

SG, HG2, SS, WS2 
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Objective #4:  Enhance vorticity or instability? 
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Four in the  
channel 

Two in the towing tank 

Objective #5:  Improve  cylinder  interaction 

Two in the St. Clair River 30/40 



Improve  cylinder  interaction (cont.)  

Four cylinders in the channel 
Center to Center distances: 

 1 to 2:  1.95 Diameters 
 2 to 3:  3.95 Diameters 
 3 to 4:  1.63 Diameters 

Cylinder spacing robustness 
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Improve  cylinder  interaction (cont.)  

Four cylinders in the channel 32/40 



Smooth cylinder 
Lee (2009) 

PTC 

Smooth 

From:  51   W/m3    at 3 knots   5˝    cylinder 
To:  239 W/m3    at 3 knots   5˝     cylinder 

To:  341 W/m3      at 3 knots   3.5˝  cylinder 
To:    2,728 W/m3      at 6 knots   3.5˝  cylinder 
Diesel engines:   25,000 W/m3  

Objective #6:  Increase  power  density 
This is a hydrodynamic design issue: complexity vs. power density 
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 Footprint Volume = Footprint * water depth 

Current Velocity 
= 3knots 

Benchmark: Power density 

VIVACE 
Wind 

   > 14,600 

Power
Buoy 

Energetech Verdant Lunar 
Power 

MCT New 
VIVACE 

Pelamis Early 
VIVACE 34/40 



Passive fish tail 
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ReD 

3.5" cylinder with k=413 N/m (A/D vs ReD) 

K=413N/m 
1,5D tail(-) 

Objective #7:  Fish-tail kinematics 

Tails and splitter plates 

Powerful but not a research priority of MRELab 
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Objective #8:  Improve research tools 
Measurements: 

 •Channel  •Towing tank  •St. Clair River 
      To identify new phenomena and their parametric dependence 
      Increase test section depth from 80cm to 120+25cm 

  Increase A/D limit from 3 to 5.5 for D=3.5” 

Flow visualization: Large FOV (von Karman-scale)   
      To describe new phenomena and their wake/vortex structures. 
     To identify source of oscillatory forces.     

Flow visualization: Small FOV (Boundary layer-scale)   
     To understand the formation of the vortex structures and shear  

 layers that cause these new phenomena. 

CFD simulations: 
     For comparison and possibly complementary data only. 
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Visualization:  Large FOV 

Single-body with broad-
wake FOV: about 6*D; 
magnified on the right.  

Multi-body with broad-
wake FOV: about 15*D 

Wake-structure scale with 32 frames/sec 37/40 



Visualization:  Small FOV 

Boundary layer scale with 1,000 frames/sec for PIV  
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CFD simulations  
Cylinder with PTC in FIM at high Reynolds numbers 

2P: initial branch Re=50,000  P+S+S+P+S+S: upper branch Re=95,000  

2P+8S: galloping Re=130,000  
S+P+S+S+P+S: transition upper 
branch to galloping Re=110,000  



THANK  YOU  for your attention 
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