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Abstract While fishery closures during the spawn-

ing season are commonplace, direct evidence for their

benefit is mainly restricted to species forming large

spawning aggregations. This paper analyses the con-

ditions under which spawning closures could contrib-

ute to sustainable fisheries management by reviewing

how fishing during spawning may affect the physiol-

ogy, behaviour and ecology of individuals and how

this may influence the dynamics and the genetics of the

population. We distinguish between the effects of

fishing activities in relation to mortality, disturbance

of spawning activity, and impact on spawning habitat.

Spawning closures may be of benefit it they: (1) reduce

the fishing mortality of the large and older spawners;

(2) avoid negative effects on spawning habitats; (3)

reduce the risk of over-exploitation in species which

form large spawning aggregations; (4) reduce the

evolutionary effects on maturation and reproductive

investment; and (5) reduce the risk of over-

exploitation of specific spawning components. The

contribution of spawning closures to sustainable

fisheries will differ among species and depends on

the complexity of the spawning system, the level of

aggregation during spawning and the vulnerability of

the spawning habitat. The importance of these closures

depends on the degree of population depletion but

does not cease when populations are ‘healthy’ (i.e. no

sign that recruitment is impaired).

Keywords Spawning closures � Fish � Invertebrates �
Reproduction � Spawning aggregations � Fisheries

Introduction

There is great concern internationally about the effects

of fisheries on populations of exploited species and the

ecosystem in which they live (Coleman and Williams

2002; Jackson et al. 2001; Pauly et al. 2002). Although

the exploitation rate has started to decline in some

well-studied ecosystems, the majority of the assessed

stocks worldwide still require rebuilding (Worm et al.

2009). In addition, fisheries may have an adverse

effect on the ecosystem due to the bycatch of

undersized fish or organisms of no commercial value,

by changing or adversely impacting habitats through

towed bottom gear, and evolutionary changes (Dayton

et al. 1995; Jennings and Kaiser 1998; Jørgensen et al.

2007).
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Fisheries management faces the difficult task of

developing scenarios for sustainable exploitation

while, at the same time, protecting biodiversity and

the livelihood of the fishing communities. Generally,

fisheries management applies a combination of mea-

sures such as landing quota, effort quota, gear

restrictions, size limits and closed areas or seasons.

The establishment of closed areas has gained support

as contributors to the protection of biodiversity

(Agardy 1994). Closed areas may also promote

sustainable exploitation through the protection of

spawning or nursery areas (Murawski et al. 2000;

Pastoors et al. 2000; Russ and Alcala 1996; Sadovy de

Mitcheson and Colin 2012).

Fishery closures during the spawning season are

commonplace. Table 1 presents a selection of spawn-

ing closures illustrating their wide-spread use in terms

of location and species, and the differences in

objectives. First, spawning closures have been estab-

lished successfully to reduce the fishing mortality in

fisheries targeting large spawning aggregations that

are particularly vulnerable to over-exploitation (Sa-

dovy de Mitcheson et al. 2013) (e.g. reef fish; Table 1,

#1–2). A review of spawning closures for spawning

aggregating reef fish is presented by Russell et al.

(2012). Secondly, spawning closures have been

implemented successfully in semelparous or short-

living species to allow a sufficient proportion of the

spawning stock to be able to shed their eggs before

dying (e.g. Southern calamary and Chokka squid;

Table 1, #3–4). Thirdly, spawning closures have been

put into place to protect spawning populations in order

to enhance the reproductive output of spawning fish

and hence improve the number of recruits in the

exploited stock (e.g. European spiny lobster, Pacific

halibut, cod, herring and haddock; Table 1, #5–10).

However, none of the latter studies provide compel-

ling evidence to demonstrate that spawning closures

are in fact achieving their stated objectives.

Opinions in the scientific community about the

usefulness of spawning closures are divided (Horwood

et al. 1998; Russell et al. 2012; Sadovy de Mitcheson

and Erisman 2012; Sauer 1995). Although the concept

of spawning closures may be appealing as it is easy to

understand, it is hard to study their effectiveness

because it is very difficult, if not impossible, to carry

out replicated experiments in real fisheries systems

(but see (Hamilton et al. 2011)). Therefore, alternative

approaches to study the effect of spawning closures on

the population dynamics and sustainable management

are used, such as studying the population dynamics

before and after the establishment of a spawning

closure (Russell et al. 2012), applying a comparative

approach across species or populations (Sadovy de

Mitcheson and Erisman 2012), or applying a simula-

tion approach (Grüss et al. 2014; Gwinn and Allen

2010).

Here we analyse the conditions under which

spawning closures could make a contribution to the

sustainable fisheries management of fish and inverte-

brate species. We apply a mechanistic approach in

which the effect of fishing during the spawning period

on the physiology, behaviour, population dynamics

and genetics is considered and compared to the effect

of fishing during the non-spawning period. We

distinguish between the primary effect of fishing on

the target species (mortality, disturbance of spawning)

and the secondary effect of fishing on the spawning

habitat. Thereafter, population biological conse-

quences of fishing during the spawning period are

discussed. Finally, implications for management are

considered by presenting a scoring system to infer the

vulnerability of species to fisheries during the spawn-

ing period and by discussing the ecosystem based

approach.

Fishing effects during the spawning period

versus the non-spawning period

To evaluate the effect of fishing during the spawning

period, we analyse the effect of (1) fishing mortality,

(2) spawning disturbance and (3) impact on spawning

habitat separately. As these factors are not restricted to

the spawning period, the effects of fishing during the

spawning period in comparison to the effect of fishing

during the non-spawning period are discussed

(Table 2).

Fishing mortality

Spawning is generally limited to specific areas and

times (Cushing 1990). Therefore, fishing during the

spawning period may target different components of

the population than during the non-spawning period.

The chance of catching the older (and larger) age

classes may be higher during the spawning period as

they gather on the spawning grounds, which are often
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more confined in space than the feeding grounds. For

example, in North Sea plaice (Pleuronectes platessa)

fishing mortality rates on the older adult age groups, in

particular for males, is higher in the spawning period

than in the non-spawning period (Fig. 1). Conse-

quently, the selection pattern, i.e. the relative mortality

imposed by fishing on the different age groups, sexes

or maturity stages, may differ between the spawning

period and the non-spawning period.

An extreme example are species which form large

aggregations during their spawning migration or

during spawning itself. Spawning aggregations have

been reported in a wide variety of fish and invertebrate

species in fresh water and marine ecosystems, such as

fresh water cyprinids (de Graaf et al. 2006; Tan et al.

2009), marine reef fish (Erisman et al. 2007; Sadovy

de Mitcheson et al. 2008), pelagic fish (Skaret et al.

2003; Zwolinski et al. 2006), demersal fish such as

gadoids (Large et al. 2010; Morgan and Trippel 1996;

Rose 1993), deep sea species (Gordon 2001; Pankhurst

1988), squid (Iwata et al. 2010; Sauer 1995) and

crustaceans (Sarda et al. 2003; Stevens 2003). Aggre-

gations may occur at scales varying between 0.01 to

hundreds of square kilometers (Baumberger et al.

2010; Kadison et al. 2009; Morato et al. 2006; Rose

1993).

Differences in behaviour between adult males and

females, or immature and mature fish, may further
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Table 2 Comparison of the possible effects of fishing during

and the non-spawning period

During spawning

period

During non-spawning

period

Fishing

mortality

Increased mortality

older (and larger)

mature individuals

Direct mortality

demersal eggs/egg

clusters

Increased mortality

spawning

aggregations

Mortality of

individuals

irrespective of

reproductive status

Spawning

disturbance

Affects reproductive

physiology

Affects growth

physiology

Affects reproductive

behaviour

Affects feeding

behaviour

Impact on

demersal

spawning

habitat

Probability spawning

habitat destruction

high

Probability spawning

habitat destruction

low–high
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affect the catchability of adults during the spawning

period. For example, in North Sea plaice, mature

males dominate the catches on the spawning grounds,

whereas the mature females are more abundant along

the borders of the spawning grounds and seem to make

successive visits to the spawning grounds to shed a

batch of eggs (Rijnsdorp 1989). In cod (Gadus

morhua), differences between the sexes have been

suggested (Robichaud and Rose 2003). Both male-

dominated and female-dominated shoals have been

reported during spawning (Fudge and Rose 2009;

Morgan and Trippel 1996). In pelagic species the

shoals depend on size or life stage and often share a

similar reproductive status (Axelsen et al. 2000; Eltink

1987). In capelin (Mallotus villosus), mixed-sex

shoals were observed close to the coastal spawning

grounds, while sex-specific shoals were observed in

deeper water off the coast (Davoren et al. 2006).

Differences in catchability between adult males and

females, or between immature and mature fish, will be

influenced by the duration of the spawning period. In

several species (e.g. Patagonian hake (Merluccius

hubbsi), North Sea plaice) males arrive at the spawn-

ing grounds before the females, and remain there for a

longer time (Pajaro et al. 2005; Rijnsdorp 1989).

Furthermore, in several species it has been shown that

older and larger females start spawning before the

younger and smaller females and therefore arrive at

the spawning ground earlier (Lambert 1987; Ridgway

et al. 1991; Rijnsdorp 1989). If fish synchronise their

spawning activity to certain times of the day or to

particular phases of the moon (Domeier and Colin

1997; Matos-Caraballo et al. 2006; Nemeth 2005;

Takemura et al. 2004) the time window for spawning

will be more narrow. Synchronisation of spawning is

of particular importance for a number of invertebrates

that do not show courtship behaviour (Bentley et al.

1999; Counihan et al. 2001).

Selective removal may alter the sex ratio or the

relative size distributions of the male and female

component of the spawning population (Rijnsdorp

et al. 2010; Rowe and Hutchings 2003). In non-

random mating fish, such changes could affect pair

formation by reducing the encounter probability of

potential mates of appropriate-size. This could, in turn,

reduce the reproductive output of an individual

(Bekkevold 2006; Hibberd and Peckl 2007; Rowe

and Hutchings 2003). For example, (Møller and

Legendre 2001) have suggested that females with

limited mate choice may have a lower reproductive

success in comparison to females with free choice.

Also, in protogynic hermaphroditic fish, show sex

reversal, the removal of large dominant males could

result in sperm limitation, which may lead to females

being unable to spawn (Beets and Friedlander 1998;

Levin and Grimes 2006; Shapiro et al. 1994).

Fig. 1 Relationship between the fishing mortality rate (year-1)

and age of male (grey lines) and female (black lines) North Sea

plaice (Pleuronectes platessa) during the spawning period (1st

quarter: a) and the non-spawning period (2nd–4th quarter: b).

The hatched lines in the left panel show the fishing mortality of

spawning fish (modified from Rijnsdorp 1993b)
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The selective removal of older age classes during

the spawning period will enhance the truncation of the

age and size structure (Lambert 1990; Marteinsdottir

and Thorarinsson 1998; Wright and Trippel 2009),

diminishing the proportion of big old fecund fish

(Boff) that produce more (Green 2008; Kjesbu 2009;

Trippel et al. 2005) and larger (Kennedy et al. 2007;

Kjesbu 1989; Raventos and Planes 2008) eggs per unit

body weight than smaller females. Larger eggs are

thought to have a survival advantage at the beginning

of their life as they result in larger hatchlings which are

physiologically more likely to survive (Kjesbu et al.

1996; Raventos and Macpherson 2005; Raventos and

Planes 2008).

The selective removal of older, more experienced

fish by a spawner fishery may disrupt spawning

migrations when inexperienced recruits can no longer

learn from experienced fish (Corten 2001; Levin and

Grimes 2006; McQuinn 1997). The persistence of a

number of migratory stocks (i.e. sardine Sardinops

sagax, Northern cod and herring Clupea harengus)

may rely on behavioural processes such as social

interactions, as severe reductions within such stocks

have often been associated with structural and social

disruption (Petitgas et al. 2010).

Fishing during the spawning period may also

directly impose mortality on the offspring. This

applies to species that spawn their eggs into larger

clusters (e.g. Lophius species or several Gastropoda),

attach their eggs to gravel beds or other benthic

features (e.g. herring, squid), or lay larger benthic egg

capsules (e.g. rays and sharks). Furthermore, fishing

during the spawning season may affect offspring of

species that exhibit external or internal (i.e. viviparity)

parental care; a brood will be lost when a parent is

caught while still taking care of its young.

Spawning disturbance

Though the main aim of fisheries is to catch fish, not all

fish that come into contact with the fishing gear will be

caught. Fishing activities may disturb the natural

behaviour of these fish during the spawning period and

adversely affect the quantity or quality of the offspring

produced by these disturbed fish (Sadovy de Mitche-

son and Erisman 2012).

The fish that may be disturbed are those that escape

through the meshes of the net, underneath the ground

rope or above the headline, or swim away from the

approaching gear (Albert et al. 2003; Godø and Walsh

1992). Furthermore, fish that are located at some

distance from the gear may be influenced by a variety

of stimuli generated by the vessel or the gear, or by the

fish caught in the net. It is, for example, known that

fish respond to the noise of a vessel by either

swimming away sideways or into deeper water (de

Robertis et al. 2010; Jørgensen et al. 2004). Moreover,

the noise that is produced by the vessel and/or gear

may interfere with the sounds produced by species

during courtship. The importance of sounds in court-

ship has been reported for a wide variety of fish

(Finstad and Nordeide 2004; Hawkins and Amorim

2000; Ladich 2007; Lindstrom and Lugli 2000;

Myrberg 1997; Rowe and Hutchings 2006; Ueng

et al. 2007). However, at present there is a lack of

scientific studies of the possible impact of noise

pollution on courting species.

It is plausible that fish exhibit a physiological

response towards spawning disturbance (Table 2).

During the spawning period this may have conse-

quences for reproduction (Morgan et al. 1997). For

example, escape behaviour in reaction to the fishing

gear could result in an oxygen deficit which needs to

be replenished before an individual can resume its

spawning behaviour. Spawning disturbance may also

induce a stress response that may negatively affect the

reproductive output. Laboratory studies have shown

that stressed cod display less and different courtship

behaviour and produce abnormal larvae more fre-

quently (Morgan et al. 1999). Such a response could

also be induced through stress hormones produced by

fish that are caught by the fishing gear. Furthermore,

spawning disturbance may cause a forced delay in

fertilization which again may negatively affect the

reproductive output. It has been shown that when

females are unable to shed their ovulated eggs, the

quality of the eggs deteriorate and the fertilization rate

declines, a process called overripening (Hay 1986;

McEvoy 1984; Mollah and Tan 1983; Springate et al.

1984). Since the natural spawning is generally

confined to a short window at a specific time (Domeier

and Colin 1997; Matos-Caraballo et al. 2006; Nemeth

2005; Takemura et al. 2004), disturbance may lead to a

missed opportunity to spawn. The rate of overripening

differs between species (Johnston et al. 2008). Hence,

species in which overripening sets in after a few hours

(e.g. turbot (Scophthalmus maximus) (McEvoy 1984))

will be more sensitive to spawning disturbance than
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species in which overripening occurs after several

days (e.g. Pacific herring (Clupea harengus pallasi)

(Hay 1986)). Moreover, it is possible that even though

eggs are fully ripened and ovulated, they are never

released; retaining eggs is thought to be caused by

unfavourable conditions during the spawning period

(Rideout et al. 2000).

Spawning disturbance during the spawning period

may also affect behavioural routines performed prior

to or during the spawning event and disrupt social

hierarchies (Levin and Grimes 2006; Rowe and

Hutchings 2003; Sadovy de Mitcheson and Erisman

2012). Dean et al. (2012), who studied the response of

cod in a spawning aggregation using acoustic tags,

showed that the spawning aggregation was completely

dispersed by the onset of the fishery. Such disrup-

tion(s) may, in turn, have negative consequences for

the reproductive success. As behavioural spawning

routines vary between species, we expect that the

degree of disturbance will vary with the complexity of

the behaviour.

The mechanisms described above suggest that

spawning disturbance during the spawning period

may reduce the reproductive output of the population.

Since no empirical studies are available, we can only

speculate about its potential effect based on the

knowledge reviewed above on how fishing may disturb

physiological processes and behavioural routines.

A first proxy of the potential effect is given by the

probability that a species is disturbed by a fishery

during the spawning period. This probability can be

estimated from data readily available for many

commercial fish species. Data required are the fishing

mortality by age group, the proportion of spawning

fish and an estimate of the catch efficiency of the gear.

For example, in North Sea plaice, the fishing mortality

during the spawning period that is imposed on

spawning fish is around F = 0.3 in males and around

F = 0.05 in females (Fig. 1). Assuming a catch

efficiency of the fisheries of 95 % (Piet et al. 2009),

the proportion of the fish that will be disturbed during

spawning will be around 1.4 % for males (i.e. ((1 -

exp-F) * ((1 - catch efficiency)/catch efficiency)))

and less than 0.26 % for females. However, since fish

is expected to swim away from the approaching gear

(Albert et al. 2003) the actual efficiency will be less

than the 95 % proposed by Piet et al. (2009). When

assuming an efficiency of 75 %, the percentage of

plaice disturbed by the gear will increase to 8.6 % for

males and 1.6 % for females. Such calculations

illustrate the sensitivity of the estimation for the catch

efficiency of the commercial gear. Overall, the

potential effect of spawning disturbance will be the

product of the estimated probability of disturbance and

the effect of the disturbance on the spawning individ-

ual which can only be qualitatively assessed.

The degree of spawning disturbance will depend on

the fishing technique. Overall, it is expected that active

fisheries (e.g. bottom trawls) will inflict a higher

degree of disturbance than passive fisheries (e.g.

gillnets or longlines). The noise disturbance from

active fisheries will, for example, be continuous while

the noise disturbance from passive fisheries will be

smaller as the gear is not moved and the vessel is not

continuously present at the fishing ground. Also,

active fishing gears, where the catching principle is

based on chasing fish, are expected to invoke a larger

physical disturbance in comparison to passive gears,

where the catching principle relies on the fish coming

to the gear voluntarily. Nevertheless, passive fisheries

may disturb spawning as showed by the disruption of a

cod spawning aggregation after the onset of a gill net

fishery (Dean et al. 2012).

Impact on spawning habitat

Although many marine fish and invertebrate species

release their eggs in the pelagic zone (Russell 1976)

and will not be exposed to fishing gear, several species

use spawning substrate to lay their eggs. In particular

inshore marine fish species and freshwater species,

produce benthic eggs to avoid advection (Gross and

Sargent 1985; Growns 2004; Russell 1976). For

example, herring deposits its eggs on gravel beds

(Geffen 2009) and many shark and ray species lay

larger benthic egg capsules, while perch (Perca

fluviatilis) attach their eggs in long threads on water

plants (Riehl and Patzner 1998). There are also fish

species that bury their eggs into the substratum (e.g.

Atlantic salmon (Salmo salar) (Fleming 1996; Peter-

son and Quinn 1996)) or build a nest (e.g. pikeperch

(Sander lucioperca) (Lappalainen et al. 2003)). These

latter two strategies are associated with parental care.

Spawning habitat structure may also play a role after

hatching. It may serve as refuge for predators for the

early life history stages, such as shown in coral reef

systems (Costello et al. 2005) and sea grass beds

(Hovel and Lipcius 2002). In addition, several
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invertebrate species, such as squid and whelks, also

produce benthic eggs (Himmelman and Hamel 1993;

Sauer et al. 1992).

Therefore, if a species spawns in habitats that are at

risk of being destroyed by specific fishing operations

(e.g. towed bottom gear), the reproductive success

may be affected and population persistence may be

threatened. It should be noted that spawning habitats

may also be altered by fisheries outside the spawning

period. However, as spawning and feeding areas are

often spatially segregated and fisheries follow the

distribution of fish, the chance of habitat destruction

will be higher during the spawning period (Table 2). It

has been shown that for fish species for which coral

reefs are important spawning habitat, the abundance

and diversity on damaged or destroyed reefs was lower

in comparison to intact habitat (Koenig et al. 2000).

Population biological consequences of fishing

during the spawning period

Fishing during the spawning period may have conse-

quences for (1) the number and quality of the eggs

produced which may affect the recruitment to the

population; (2) the genetics of the population due to the

selective effects on individuals and distinct stock

components.

Population egg production and recruitment

Above we argue that the selection pattern of fishing

during the spawning period may differ from the

selection pattern of fishing during the non-spawning

period (see also Table 2). How this will affect the

population egg production can best be illustrated with

a cohort simulation model of the population egg

production (PEP) as a function of the selection pattern

(Rijnsdorp et al. 2012). We apply the Yield per Recruit

model of Beverton and Holt (1957) to compare the

PEP under a spawning closure scenario for a popula-

tion spawning in either quarter 1, 2, 3 or 4 with the PEP

of a year-round fishing scenario over a range of fishing

mortality rates. For the baseline scenario we assume

that there is no difference in the condition factor or

catchability between the spawning and non-spawning

period, and an isometric fecundity—body size rela-

tionship. Next, we explore how the benefits of the

spawning closure are affected by a difference in body

condition or catchability of adult age groups during the

spawning period and an allometric fecundity—body

size relationship affect. Details of the model are

presented in the on-line supplementary material.

A spawning closure influences the maximum yield.

The baseline scenario shows that a spawning closure

in quarters 1 and 2 results in an increase of the

maximum yield, whereas a spawning closure in

quarters 3 and 4 results in a decrease of the maximum

yield (Fig. 2). The effect of a spawning closure on the

PEP depends on the level of fishing mortality and the

associated yield. If the population is over-exploited

(i.e. the part of the curve where PEP and yield are

positively related), PEP will be reduced by a spawning

closure in quarters 1 and 2, and enhanced by a

spawning closure in quarters 3 and 4. If the population

is under-exploited (i.e. the part of the curve where PEP

and yield are negatively related), the change in PEP

may be positive or negative (Fig. 2). The benefits

generated by a spawning closure are influenced by the

biological assumptions of the condition factor, adult

catchability and the assumption on the fecundity—

body size relationship (Table 3). The relative benefits

are evaluated for three levels of equilibrium yield in a

situation of over-exploitation and one level of equi-

librium yield in a situation of under-exploitation. In

Fig. 2 Population egg production (PEP in kg) as a function of

the equilibrium yield (kg) of a cohort that is exploited year-

round (thick black line) and a cohort that is exploited with a

spawning closure (red lines) in quarter 1 (full), 2 (dashed), 3

(small dashed) or 4 (points). Cohort simulations are fished over a

range of fishing mortality rates up to F = 0.5 and assume no

difference in condition or catchability during the spawning

period and an isometric relationship between egg production

and body size (baseline scenario). Parts of the curve that are

related to a situation of under-exploitation or over-exploitation

are indicated. The transition occurs at the maximum yield
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the situation of over-exploitation, a spawning closure

will enhance PEP, except when the body condition

during the spawning period is lower (quarters 1 and 3)

or equal (only quarter 1) than during the non-spawning

period. Furthermore, the benefits of a spawning

closure are highest when the body condition or adult

catchability during the spawning period is higher than

during the non-spawning period. An increase in

relative fecundity with body size (allometric scaling)

has only a small effect. In a population that is under-

exploited, the benefits of a spawning closure on PEP

are smaller and may even be negative (Table 3).

The simulation model thus shows that a spawning

closure will not always result in an increase in PEP, in

particular when the population is over-exploited and the

body condition of the fish during the spawning period is

lower than during the non-spawning period. If fish have

a higher condition factor or higher catchability (adults

only) during spawning, a spawning closure will enhance

PEP but only when the population is over-exploited. The

benefits of a spawning closure suggested by the

simulation model, although quantitatively dependent

on the parameter values chosen, will qualitatively apply

to species matching the model assumptions.

The next question is whether an increase in PEP

will enhance recruitment. This will depend on the state

of the spawning stock. The stock-recruitment rela-

tionship provides the background against which the
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Fig. 3 Stock—recruitment relationships for a species with high

(hatched line) and low (solid line) population growth rate. At

low levels of spawning stock, recruitment is impaired by

depensatory processes. The greyscales illustrate the contribution

of a spawning closure to sustainable management in terms of

(a) population egg production, (b) habitat structure and

(c) genetics, where white codes no importance and dark grey

codes high importance

Table 3 Population egg production (PEP) under a spawning

closure in quarter 1 or quarter 3 expressed relative to the PEP

for a year-round fishing scenario, evaluated at three different

levels of equilibrium yield (kg) in a situation of over-

exploitation and one level of equilibrium yield (kg) in a

situation of under-exploitation

Biological assumptions Population egg production relative to a year-round fishing scenario

Catchability adults

during spawning

Fecundity—body

size relationship

Condition during

spawning

Yield (kg) in a situation of over-exploitation Yield (kg) in a situation

of under-exploitation

0.26 0.29 0.32 0.32

Spawning closure in quarter 1

Equal Isometric -20 % 0.795 0.773 0.665 1.312

Equal Isometric Equal 0.912 0.926 0.893 1.082

Equal Isometric ?20 % 1.030 1.080 1.161 0.912

Equal Allometric ?20 % 1.029 1.080 1.163 0.910

?50 % Allometric ?20 % 1.223 1.288 1.438 0.834

Spawning closure in quarter 3

Equal Isometric -20 % 0.936 0.890 0.765 1.255

Equal Isometric Equal 1.099 1.075 1.075 0.987

Equal Isometric ?20 % 1.253 1.264 1.406 0.831

Equal Allometric ?20 % 1.257 1.269 1.415 0.828

?50 % Allometric ?20 % 1.482 1.499 1.726 0.764

The relative PEP is compared for different biological assumptions on the catchability of adults during spawning relative to the non-

spawning period (equal, ?50 %), the condition during the spawning period (-20 %, equal, ?20 %), and the relationship between

fecundity and body size (isometric b = 3, allometric b = 3.3)
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population dynamic consequences of a fishery can be

assessed (Beverton and Holt 1957; Ricker 1954).

Figure 3 shows an example of a stock-recruitment

relationship which applies to populations in which

pre-recruit mortality increases with stock size (Bever-

ton and Holt 1957). If adult stock size has a strong

negative effect on their young, for instance through

cannibalism, the stock-recruitment relationship is

dome-shaped (Ricker 1954).

In practice, the high inter-annual variability in

recruitment (Houde 2009) and the possibility of long-

term fluctuations in recruitment (Koster et al. 2005;

Mantzouni and MacKenzie 2010) hampers the study of

the processes that determine the stock-recruitment

relationship (Fogarty and O’Brien 2009; Iles 1994).

Nevertheless, a meta-analysis of 364 stock-recruitment

relationships shows that recruitment is related to spawner

abundance and that recruitment is reduced at high levels

of exploitation (Myers and Barrowman 1996). At very

low population levels, a positive relationship is expected

between the per capita population growth rate and

population density due to depensatory processes (Allee

effect: Stephens et al. 1999), though the statistical

evidence is thin (Myers et al. 1995). The Allee effect may

prevent depleted fish population from recovering despite

the strong compensatory population dynamics (Frank

and Brickman 2000; Rowe et al. 2004).

Against this background, we may infer how a

reduction in the number (PEP) and quality of the eggs

and their fertilisation probability caused by fishing

during the spawning period could affect recruitment

(Fig. 3). If the spawning stock is at a very low level,

fishing during the spawning period is expected to

increase the risk of stock collapse due to depensation.

When a stock is at a level where recruitment increases

with stock size, density-dependent processes will be

weak and a reduction in the number and quality of the

eggs or their fertilisation probability is expected to

lead to a decline in recruitment. When a stock is at the

level where an increase in egg production has no effect

on recruitment, fishing during the spawning period is

expected to have no effect on recruitment.

Population genetics

Stock structure

Within the distribution area of a fish species, distinct

spawning components may occur (Hauser and Carvalho

2008; Sinclair 1988). Though the stock structure may

not necessarily be expressed on the genetic level,

genetic differences have been observed within man-

agement areas in species such as cod (Beacham et al.

2002; Hutchinson et al. 2001; Pampoulie et al. 2006;

Ruzzante et al. 1999). The scale of the biological stock

structure may not match with the scale of the manage-

ment unit for which stock assessment is carried out, and

depletion of local spawning components may go

unnoticed when the stock assessment is carried out

for the total management unit (Reiss et al. 2009).

If a fishery is exploiting a stock comprising of

spawning components that spatially segregate during

spawning, fishing during the spawning period will

aggravate the risk of over-exploitation of stock compo-

nents and increase the risk of a loss of genetic diversity.

Fisheries-induced evolution

Theoretically it is argued that under increased mor-

tality due to fishing, individuals that mature at a

smaller size and/or younger age and invest more in

reproduction will be more successful than fish that

postpone reproduction (Heino and Godo 2002; Law

2000; Rijnsdorp 1993a). This hypothesis is supported

by a number of studies on various exploited fish

species (see reviews in (Jørgensen et al. 2007;

Kuparinen and Merila 2007) and experimental studies

(Conover and Munch 2002; Reznick et al. 1993; van

Wijk et al. 2013). In particular, the selective removal

of the larger (and older) individuals, who may be more

vulnerable to fishing during the spawning period than

outside the spawning period (see also fishing mortal-

ity), may induce evolutionary change. Simulation

studies have shown that a dome-shaped exploitation

pattern, where fishing pressure exerted on the older

age or size classes is reduced, will reduce the selection

pressure on reproductive traits (Jørgensen et al. 2009;

Laugen et al. 2012). How the differences in selection

between males and females, in particular in sex

dimorphic species, affect fisheries-induced evolution

remains to be studied. In the very specific case where

fishing is exclusively on the spawning grounds, fishing

may select for a delay in maturation as has been

suggested for Northeast Arctic cod (Jørgensen et al.

2009). Apparently, the direction of fisheries-induced

evolution depends on how a population is harvested; it

is advantageous either to grow and mature as late as

possible or to stay small and mature early.

Rev Fish Biol Fisheries

123

https://www.researchgate.net/publication/6083868_Population_Dynamics_of_Exploited_Fish_Stocks_at_Low_Population_Sizes?el=1_x_8&enrichId=rgreq-de8e573a-4367-4927-98ac-6e277ce4e18c&enrichSource=Y292ZXJQYWdlOzI3MTkxOTcyODtBUzoyMjEzNzY4MTc0Mzg3MjBAMTQyOTc5MTc1NDcxMw==
https://www.researchgate.net/publication/223836777_A_review_of_stock-recruitment_relationships_with_reference_to_flatfish_populations?el=1_x_8&enrichId=rgreq-de8e573a-4367-4927-98ac-6e277ce4e18c&enrichSource=Y292ZXJQYWdlOzI3MTkxOTcyODtBUzoyMjEzNzY4MTc0Mzg3MjBAMTQyOTc5MTc1NDcxMw==
https://www.researchgate.net/publication/255591156_What_Is_the_Allee_Effect?el=1_x_8&enrichId=rgreq-de8e573a-4367-4927-98ac-6e277ce4e18c&enrichSource=Y292ZXJQYWdlOzI3MTkxOTcyODtBUzoyMjEzNzY4MTc0Mzg3MjBAMTQyOTc5MTc1NDcxMw==
https://www.researchgate.net/publication/227623868_Genetic_population_structure_of_marine_fish_mismatch_between_biological_and_fisheries_management_units_Fish_Fish?el=1_x_8&enrichId=rgreq-de8e573a-4367-4927-98ac-6e277ce4e18c&enrichSource=Y292ZXJQYWdlOzI3MTkxOTcyODtBUzoyMjEzNzY4MTc0Mzg3MjBAMTQyOTc5MTc1NDcxMw==


Management

The contribution of a spawning closure to the sustain-

able management will depend on the status of the fish

stock and will differ among species given their

reproductive characteristics and type of fishing gear

used. Spawning closures may be particularly relevant in

over-exploited stocks where there is a risk that recruit-

ment is impaired. Any measure to protect the spawning

stock by restricting fishing on the spawning population

will warrant that all fish that survived until the start of

the spawning period will be allowed to spawn. As

recruitment increases with stock size, the benefit of a

spawning closure will reduce (Fig. 3). However, for

stocks for which there is no indication that recruitment

is impaired, spawning closures may still be relevant to

protect the older (and larger) individuals, protect

spawning habitat structure, or reduce genetic effects.

Scoring system

The potential vulnerability of a species to fishing

during the spawning period can be assessed by a

simple semi-quantitative scoring system. The scoring

system evaluates (1) the degree of aggregation during

the spawning period, (2) the complexity of the

spawning behaviour and (3) the vulnerability of the

spawning habitat to fishing (Table 4).

If a species aggregates in spawning schools prior to

and/or during spawning it will be more vulnerable to

the impact of fisheries (Sadovy de Mitchenson et al.

2012). The degree of aggregation of a species can be

estimated from seasonal variations in commercial

catch statistics, such as the landed catch, catch-per-

unit-effort, and timing and size of large catch anom-

alies (Tobin et al. 2013). This vulnerability may be

further enhanced due to a difference in spawning

behaviour affecting their catchability (Levin and

Grimes 2006; Solmundsson et al. 2003).

The impact of fishing on species during the

spawning period also depends on the complexity of

their spawning system. When a species exhibits a

broadcast spawning type that is triggered by environ-

mental cues or chemical signals (e.g. many inverte-

brate species), the effect of spawning disturbance will

not play a role. Species that perform more complicated

behavioural routines during spawning, such as court-

ship, pair formation, social hierarchies, size-assortive

mating and/or external or internal (i.e. viviparity)

parental care, will be more vulnerable to disturbance

during the spawning period. The degree of disturbance

will depend on the type of fishing gear that is used;

active gear will cause a higher degree of disturbance

than passive gear.

If species spawn in habitats that are at risk of being

destroyed by specific fishing operations during the

spawning season (e.g. towed bottom gear), the effect

on the reproductive potential will be high. Demersal

spawning habitats will be vulnerable, in particular if

species are highly selective and spawning habitats are

restricted to relatively small localities. Pelagic spawn-

ing habitats, on the other hand, will not be affected.

We have applied the scoring system on a selection

of commercially exploited invertebrate and fish spe-

cies (Table 5). According to the scoring system there

is no biological reason for a spawning closure for sea

cucumber or bivalves as they score 1 for the three

criteria. For crustaceans, that may carry their eggs

during incubation, specific measures to reduce fishing

on egg-bearing females may be relevant. There are

several examples where fishermen are indeed obliged

to release egg-bearing females (Comeau and Savoie

2002; Ennis 2011). For the semelparous Cephalopods

(e.g. chokka squid) that form dense spawning aggre-

gations, spawning closures may protect the spawning

Table 4 Semi-quantitative scoring system to classify the

potential vulnerability of aquatic species for the negative

impact of fishing during the spawning period

Characteristics Score

1 2 3

Aggregation

during

spawning

No

aggregation

Moderate

aggregation

Large

aggregation

Spawning

behaviour

complexity

Broadcast

spawner,

no

courtship

Simple

courtship

Social

hierarchy,

size-

assortive

mating, pair

bond, or

parental

care

Spawning

habitat

Pelagic Attached and

dispersed

Attached and

aggregated

The impact of fishing will differ between fishing gears: passive

gears such as gill nets or long lines will generally have less

impact than active gears such as bottom trawl (see text). Level

of aggregation during spawning is considered relative to the

aggregation during the non-spawning period
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population to allow for successful reproduction (Sauer

1995) and to reduce the impact of selective removals

of males (Hibberd and Peckl 2007; Moltschaniwskyj

et al. 2002). A spawning closure may also be an

effective measure to protect stocks that show large

spawning aggregations from over-exploitation such as

red hind (Sadovy de Mitchenson et al. 2012; Sadovy

de Mitcheson et al. 2008; Sadovy and Domeier 2005)

Among the fish species exploited in Lake Tana

(Ethiopia), only the Labeobarbus species that migrated

to the rivers to form large spawning aggregations,

showed signs of recruitment overfishing (de Graaf

et al. 2006). A spawning closure may also be beneficial

for species that show intermediate spawning aggrega-

tions, such as cod and plaice (Dean et al. 2012;

Rijnsdorp et al. 2012). Spawning closures are expected

to be less useful in fish species such as common skate,

lesser spotted dogfish or pike perch, which do not form

spawning aggregations and do not require a spawning

habitat that is highly vulnerable for fishing. Also for

pelagic fish species such as anchovy and herring,

spawning closures may not necessarily provide addi-

tional protection during spawning as these species

school throughout their life. Within the scoring system

each criterium stands individually. Therefore, it is not

possible to sum up the effects of the three criteria when

predicting the degree of vulnerability of a species to

fisheries during the spawning period.

Ecosystem based approach

Since fisheries management is embedded in a broader

ecosystem approach, the benefits of a spawning

closure for a particular species need to be traded-off

against the ecosystem effects of the effort re-allocation

(Jennings 2005; Rice 2008). The spawning closure to

protect North Sea cod that was imposed in 2001 by the

fisheries ministers of the European Union illustrates

the need to include ecosystem considerations. In this

specific case analysis of the response of the fisheries to

the spawning closure showed that the fishing fleet re-

allocated their activities to areas which were more

vulnerable with regard to trawling impacts on the

benthic ecosystem and the occurrence of threatened

fish species (Dinmore et al. 2003; Rijnsdorp et al.

2001).

If not designed properly spawning closures may

select for particular spawning components. For exam-

ple, (Loher 2011) showed that the spawning closure

for Pacific halibut (Hippoglossus stenolepsis) over the

past 20 years has been consistently too short. He noted

that failure to fully protect spawning migrations may

allow the selective removal of early and late spawners

which could result in changes in stock demographics,

restrict effective spawning, and influence long-term

stock productivity. Support for a genetic control of the

timing of spawning is suggested for cod (Otterå et al.

2012).

In addition to the biological arguments supporting

the use of spawning closures as a tool to enhance the

sustainable use of the aquatic resources, there are

economic consequences to consider. Spawning clo-

sures will result in the reallocation of the fisheries

catch over different seasons and different fishing

grounds. The establishment of a spawning closure will

result in a change in the cost and revenues of fishing. In

the case of a fisheries which utilises spawning

aggregations, the reallocation of fishing effort away

from the spawning grounds will likely result in a

decrease in revenue of fishing due to the lower catch

rate. The lower catch rate, however, may be compen-

sated to some degree by the higher market value of the

fish caught outside the spawning period. Figure 4

shows the seasonal variations in the fish price of four

different demersal fish species distinguishing between

Table 5 Semi-quantitative assessment of the potential vul-

nerability of a number of exploited aquatic species for the

negative impact of fishing during the spawning period

Species Aggregation

during

spawning

Spawning

behaviour

complexity

Spawning

habitat

Sea cucumber 1 1 1

Bivalves 1 1 1

Lobster 1 3 2

Chokka squid 3 3 2

Common skate 1 2 2

Lesser spotted

dogfish

1 2 2

Herring 2 2 3

Anchovy 2 2 1

Plaice 2 3 1

Red hind 3 3 2

Labeobarbus spp. 3 3 1

Pike perch 1 3 2

Cod 2 3 1

The scoring of the different criteria is given in Table 4
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the smallest size class (mainly juveniles) and the

largest size class (adult fish). Although these results

corroborate the effect of fish size on the ex-vessel price

(Zimmerman and Heino 2013), the price of the adult

fish shows seasonal variations that coincide with the

seasonal cycle in gonado-somatic index. These pat-

terns are expected to be applicable for fisheries

targeting species for their meat. However, fisheries

targeting roe, such as in sturgeon (caviar) and

lumpsucker, will show a different relationship with

the highest price expected just prior to and during the

spawning period.

In a first exploration of an integrated approach, the

implications of spawning closures in the North Sea

flatfish fishery (Rijnsdorp et al. 2012) were assessed in

terms of indicators of stock status (spawning stock

biomass) of the four main target species of the

fisheries, economic performance of the fishery (yield,

revenue) and ecosystem impact (discards of under-

sized fish, bycatch of sensitive species, seabed integ-

rity and fisheries-induced evolution). This study shows

that in a single species context, spawning closures may

be beneficial for plaice and sole, while in a mixed

fisheries and ecosystem context, negative effects may

occur. Tailor made solutions are required that need to

be developed in stakeholder consultation to trade-off

the ecological and economic objectives.

Conclusion

This review shows that empirical support for the

contribution of spawning closures to sustainable

fisheries management is mainly restricted to fish

species forming large spawning aggregations and also

provides insight about the conditions under which

spawning closures may be of benefit for other species.

The analysis of the processes by which fishing affects

the biology of a population suggests that spawning

closures may be beneficial if they: (1) reduce fishing

mortality on the older and larger individuals that are

most valuable for the reproductive output of the

population; (2) avoid negative effects of fishing on

spawning habitats; (3) reduce the risk of over-exploi-

tation in species which form large spawning aggrega-

tions; (4) reduce the evolutionary effects on

Fig. 4 Seasonal variation in first sale price of adults (solid black line) and juveniles (hatched black line) in relation to the gonado

somatic index (GSI, grey line) for a plaice, b sole, c turbot and d brill (adapted from (Rijnsdorp et al. 2012))
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maturation and reproductive investment; (5) reduce

the risk of over-exploitation of specific spawning

components.

Spawning closures may provide a useful component

in a management system aiming at a balance between

the profitable utilization of the productivity of the

aquatic system against a minimal cost in terms of

ecosystem effects. Since multiple objectives will differ

across ecosystem and fisheries systems, no general

recommendation can be given and the relevance should

be considered on a case by case basis. In order to assess

whether a spawning closure could make a valuable

contribution, research should focus on whether, and to

what extent, the five conditions specified above apply.

Suggestions for topics for future research are: (1)

studies on how fishing disturbs spawning and its

consequences for the production of viable offspring;

(2) studies on the selectivity of the fishery during the

spawning season in relation to the age structure, gender

and spawning stage of the fish and specific spawning

components; (3) modelling studies of the potential

effect of spawning closures for a variety of spawning

types. The latter may provide quantitative insight into

the contribution of spawning closures to sustainable

exploitation, and the relative importance of the various

mechanisms by which fishing may impact the popula-

tion, in relation to spawning type.
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