

Newtown Creek Combined Sewer Overflow Long Term Control Plan

Review of Alternatives

Location: Newtown Creek WWTP

Date: April 26, 2017

Agenda

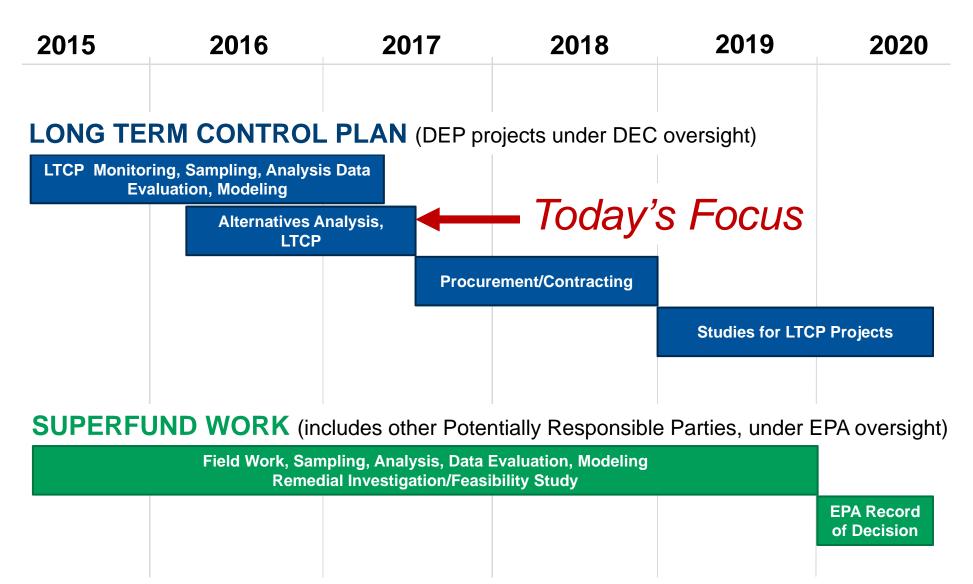
	Торіс	Speaker
1	Welcome and Overview	Angela Licata
2	Recap of LTCP Process	Mikelle Adgate
3	Water Quality, Baseline Conditions and Performance Gap	Keith Mahoney
4	Evaluation of Alternatives	James Mueller
5	Discussion and Q&A Session	All
6	Next Steps	Mikelle Adgate

Welcome and Overview

Angela Licata Deputy Commissioner, Sustainability DEP – BEPA

Concurrent Newtown Creek Programs

Clean Water Act (1972)


- Goal: "Water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water."
- Administered by DEC in the State of New York
- The goal of DEP's Long Term Control Plan is to bring water quality into compliance with DEC's water quality standards for pathogens and dissolved oxygen. It is due June 30, 2017.

Comprehensive Environmental Response, Compensation, and Liability Act (1980)

- Commonly known as **Superfund**, establishes prohibitions and requirements concerning the remediation of closed and abandoned hazardous waste sites
- Administered by USEPA
- Focus on **chemical contaminants** such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, metals, and oil wastes such as non-aqueous phase liquids (NAPLs).
- The goal of the **Remedial Investigation/Feasibility Study** is to define the extent and nature of contamination as well as the fate and transport of ongoing sources of contaminants to the Creek, including upland sites. Feasible alternatives to address contaminants and their sources are then evaluated. It is currently due 2019.

Concurrent Newtown Creek Programs

Water Quality Standards & LTCP Goals

CLASS SD

Fish Survival

The **best usage** of Class SD water is **fishing**. These waters shall be suitable for fish, shellfish, and wildlife survival. In addition, the water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

Parameter	Criteria*	DEC Water Quality Parameter Reference		
Fecal Coliform	Monthly Geometric Mean ≤ 200 col/100 mL	 New York Codes, Rules and Regulations (NYCRR Part 703.4) 		
Total Coliform	Monthly Geometric Mean ≤ 2,400 col/100 mL 80% ≤ 5,000 col/100 mL	 New York Codes, Rules and Regulations (NYCRR Part 703.4) 		
Dissolved Oxygen	≥ 3.0 mg/L (acute, never less than)	 New York Codes, Rules and Regulations (NYCRR Part 703.3) 		

* EPA has also proposed a potential future RWQC for enterococcus: 30-Day Rolling GM ≤ 30 col/100 mL.

CSO LTCP Goals and Targets:

- Seasonal Bacteria Compliance
- Annual Dissolved Oxygen Compliance
- > Time to Recovery for Bacteria of \leq 24 hours
- Floatables Control

Recap of LTCP Process

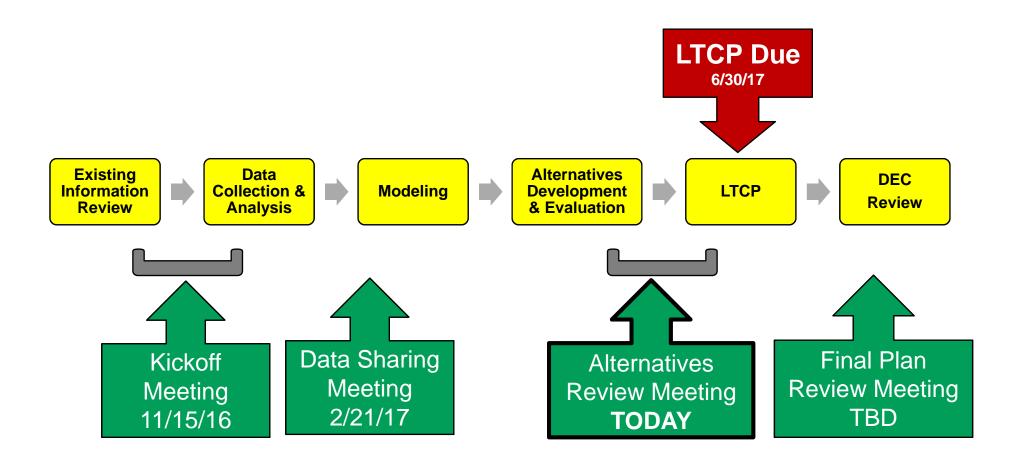
Mikelle Adgate Director of Stormwater Management Outreach DEP – BPA

NYC Long Term Control Plans (LTCPs)

>What is an LTCP?

 The goal of each LTCP is to identify appropriate CSO controls necessary to achieve waterbody specific water quality standards, consistent with the Federal CSO Policy and water quality goals of the CWA.

>The LTCP process:


- Builds off existing infrastructure investments (i.e. Waterbody/Watershed Plans)
- Assesses current waterbody and watershed characteristics
- Identifies and analyzes Grey-Green* infrastructure balance for different watersheds to meet applicable water quality standards
- The LTCP is subject to DEC review and approval
- Includes a public engagement process

*Definitions:

Grey = traditional practices such as tanks, pipes, and sewers

Green = sustainable pollution reducing practices that also provide other ecosystem benefits

LTCP Process and Public Involvement

ONGOING PUBLIC/STAKEHOLDER INPUT

Protection

Public Comments Received

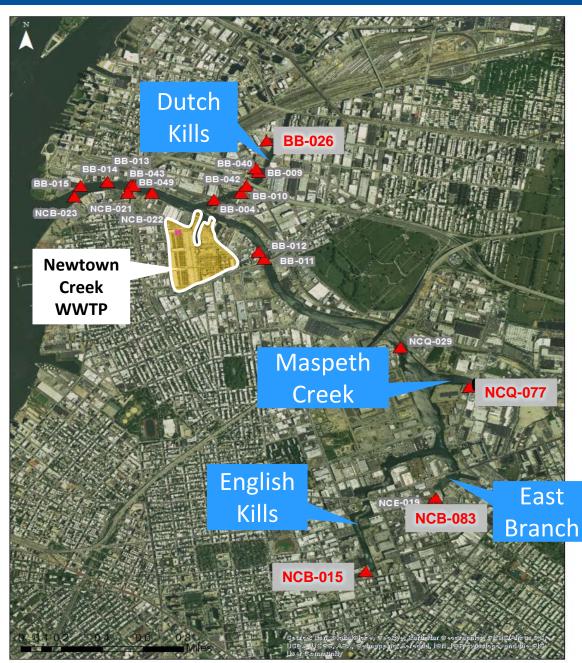
Assess Green Infrastructure in the vicinity of Newtown Creek

Evaluate alternatives beyond aeration system

Concerns about illegal dumping and discharges to the Creek

Consider wetlands restoration for Dutch Kills

Assess CSO storage options for Newtown Creek



Water Quality, Baseline Conditions and Performance Gap

Keith Mahoney, P.E. Director of Water Quality Planning DEP – BEDC

Overview of Newtown Creek

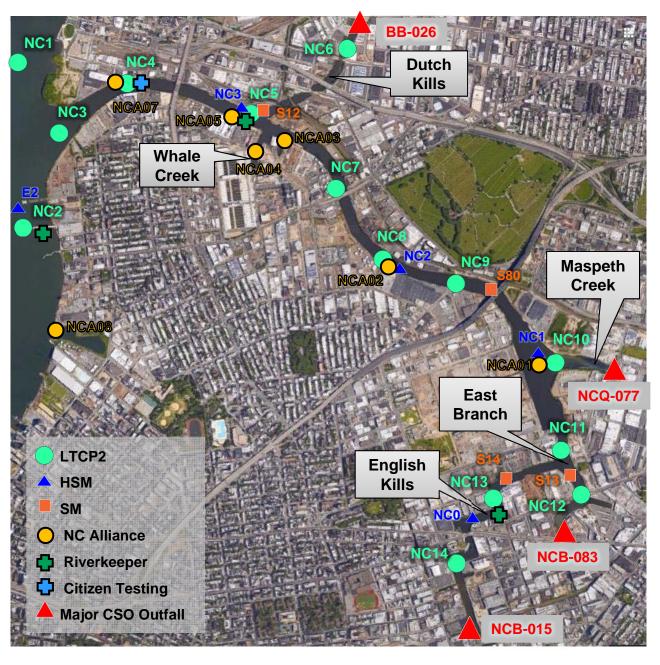
> 4 Urban CSO Tributaries

- Dutch Kills
- Maspeth Creek
- East Branch
- English Kills

> 4 CSO Outfalls account for 91% of Annual CSO Volume:

Outfall	Annual CSO Volume (MG)
BB-026	120
NCQ-077	300
NCB-083	315
NCB-015	321
All Other	105
Total	1,161

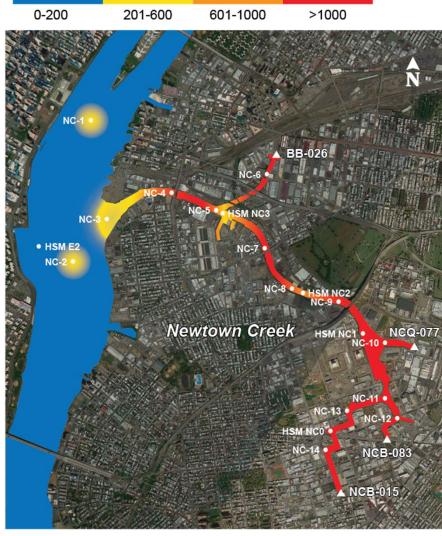
DEP's process for flow monitoring and modeling has been nationally peer reviewed and published


Fecal and Entero Sampling Locations

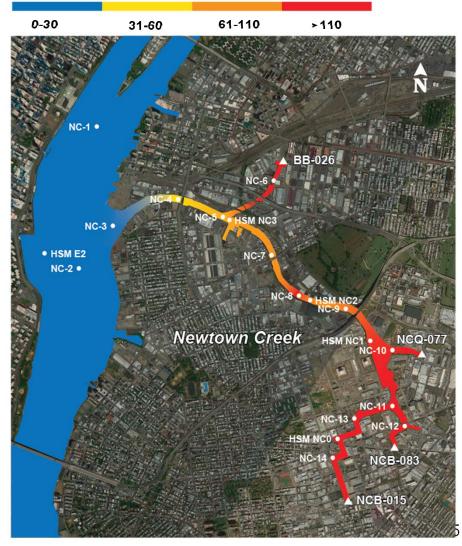
Conducted extensive sampling

Data indicates:

- elevated bacteria levels
- excursions below WQS for Dissolved Oxygen
- slow time to recovery
- Data is available online


Fecal and Entero Geomeans

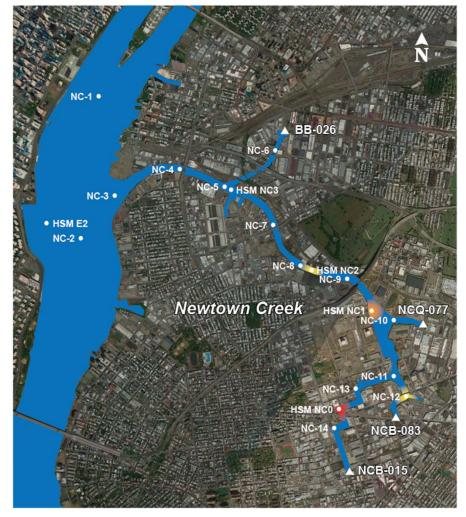
LTCP: ~77 Wet samples per location; Jul – Nov 2016 HSM: ~34 Wet samples per location; Jan – Nov 2016


Fecal – Wet Weather

Entero – Wet Weather

Scale (# col/100 mL)

Dissolved Oxygen 5th Percentile Values

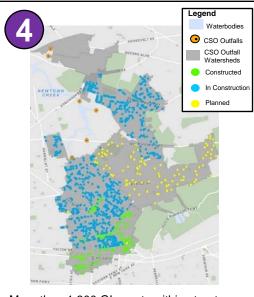


2016 YTD: January 1, 2016 - November 3, 2016

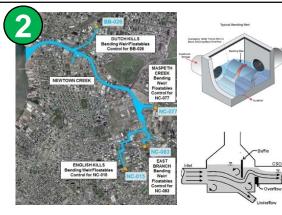
LTCP: ~14 Dry and 77 Wet samples per location; July – Nov 2016 HSM: ~18 Dry and 34 Wet samples per location; January – Nov 2016

Dry Weather

Wet Weather


Newtown Creek: CSO Mitigation Projects

	Recommended Project	Construction Cost	Status
1	Brooklyn/Queens Pump Station at Newtown Creek WWTP	\$300 M	Completed
2	Bending Weirs and Underflow Baffles	\$42 M	In-Construction thru 2017
3	In-Stream Aeration Projects	\$30 M ¹	In-Construction thru 2018
4	Built and Planned GI Projects	\$45 M ²	Ongoing Design and Construction
	Total	= \$417 M	


- PS Wet Weather Capacity = 400 MGD
- includes 5 new MSPs, headworks upgrade, In-line storage facility, odor control

- More than 1,300 GI assets within streets, parks, and schools
- 98% are ROW Raingardens (aka bioswales)
- Design resources for public onsite only in NCB-015 & NCB-083
- Other areas will be assessed in 2017 with design resources citywide available in 2018

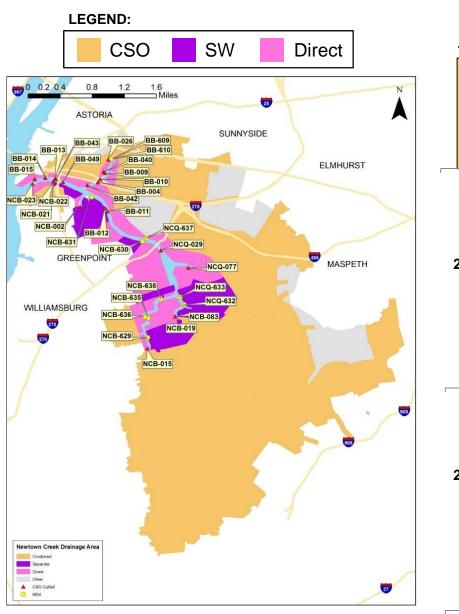
1) Includes Upper and Lower English Kills and East Branch Aeration

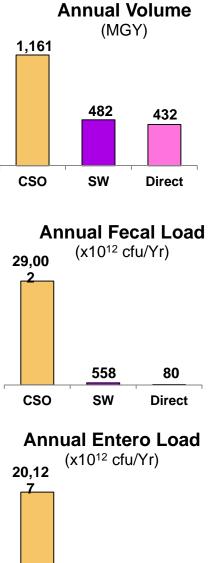
2) Cost to date, more GI projects may be pending.

- Construction Completion: Dec. 2017
- Volume Reduction: 62 MGY
- Provides Floatables Control
- Being installed at NCB-015, NCQ-077, NCB-083, BB-026

Contract	Aeration Location	Construction Completion	Cost			
EK-11	Upper English Kills	Dec. 2008	\$9 M			
CSO-NC-2	Lower English Kills	Jan. 2014	\$2.2 M			
CSO-NC-3	East Branch	Jun. 2018	\$18 M			
CSO-NC-4	Dutch Kills and Newtown Creek*	TBD	N/A			

*Dutch Kills aeration is not included in the Baseline Conditions; need for project will be evaluated in LTCP


Newtown Creek Baseline CSO Volumes/Loads



Bowery Bay WWTP (LL Interceptor)					
Outfall	Volume (MG)	Freq.			
BB-004	0	1			
BB-009	43	34			
BB-010	1	7			
BB-011	2	14			
BB-012	0	1			
BB-013	16	31			
BB-014	2	18			
BB-015	1	13			
BB-026	120	37			
BB-040	1	16			
BB-042	2	22			
BB-043	9	32			
BB-049	0	0			
Sub-Total	196	37			
Newtown Cro	eek WWTP				
Outfall	Volume (MG)	Freq.			
NCB-015	321	31			
NCB-019	3	21			
NCB-021	0	0			
NCB-022	7	29			
NCB-023	0	8			
NCQ-029	19	40			
NCQ-077	300	41			
NCB-083	315	42			

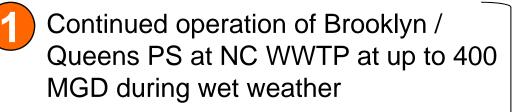
965

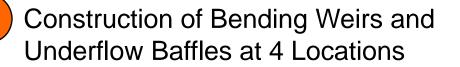
Sub-Total

1,778

SW

CSO

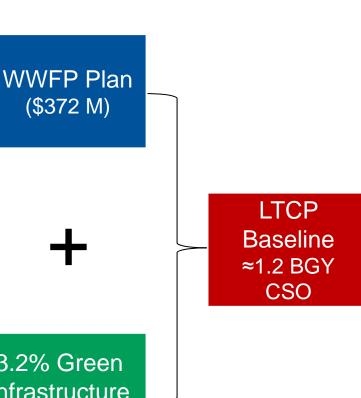

NCB-015 + NCB-083 + NCQ-077 + BB-026 = 91% of Total Annual Volume


42

120

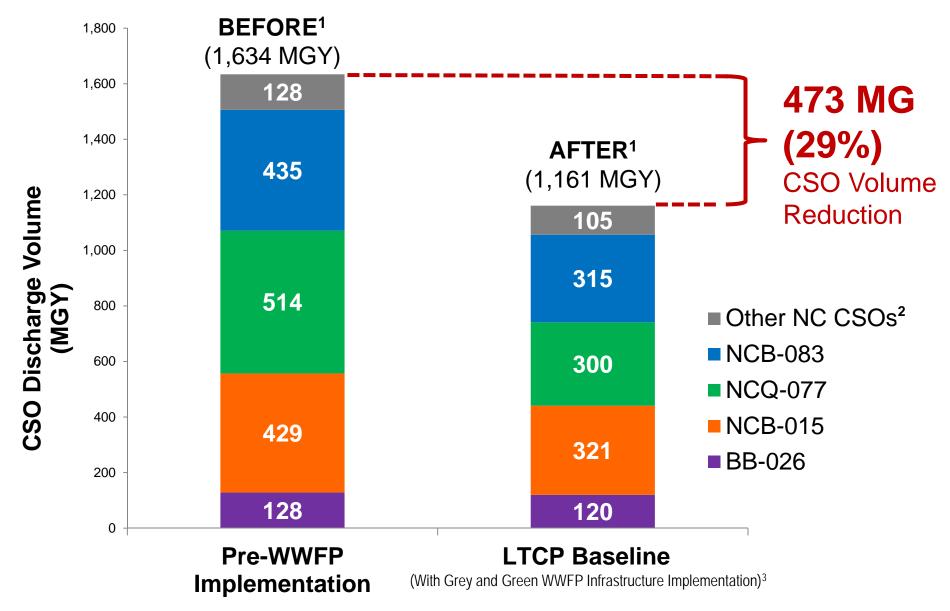
Direct

LTCP Baseline Conditions Modeling


Construction of East Branch and English Kills In-Stream Aeration

Committed Green Infrastructure in

Newtown Creek watershed


1) Cost to date, more GI projects may be pending.

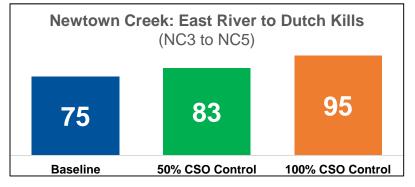
3.2% Green Infrastructure (\$45 M for 110 acres)¹

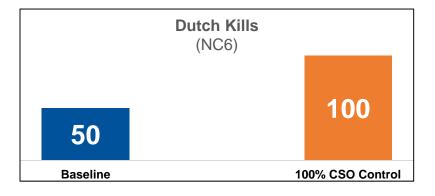
Modeled Baseline CSO Volumes

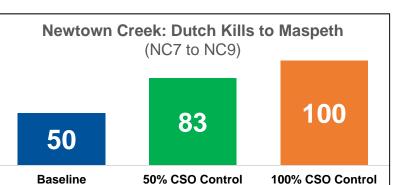
1) CSO Volumes have changed slightly since 2/21/2017 Public Data Review Meeting as a result of updated modeling 2) Other Newtown Creek CSOs include: BB-009, BB-010, BB-011, BB-013, BB-040, BB-042, NCB-019, NCB-022, NCQ-029

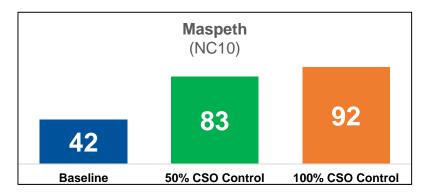
3) CSO Volumes are based on 1.5% Citywide GI application rate with 3% detention-based system on private property

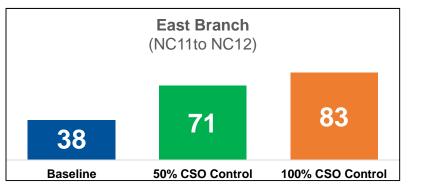
Gap Analysis Description

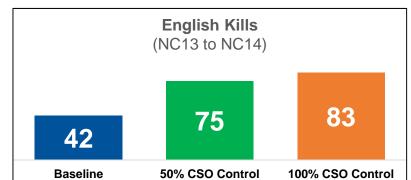

- Collection system and receiving water quality models are used to quantify the "Gap" in water quality standards attainment between baseline conditions and 100% CSO Control
- Provides an assessment of the maximum level of WQS attainment achievable through CSO controls

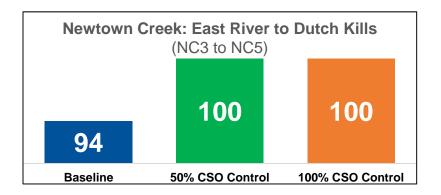

➤ Gap is evaluated for:

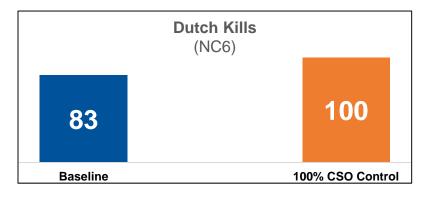

- Existing Class SD bacteria WQ criteria (fecal coliform)
- Time to recovery for fecal coliform
- Potential future primary contact WQ criteria (Enterococcus)
- Class SD Dissolved Oxygen criteria

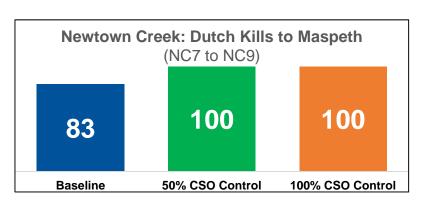

> Assessment is based on the Typical Year rainfall (JFK Airport 2008)

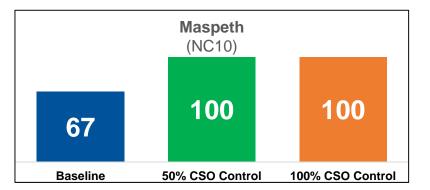

Annual Fecal Coliform – %Attainment







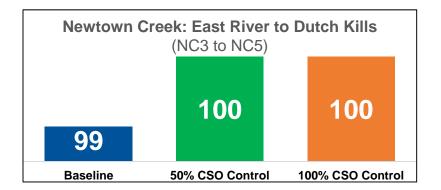


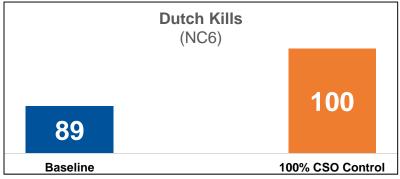


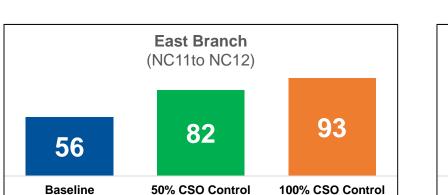
Recreational Fecal Coliform – %Attainment

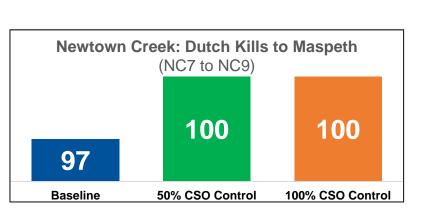
*50% CSO Control is based on control of the 3 largest CSO outfalls (NCQ-077, NCB-083 & NCB-015)

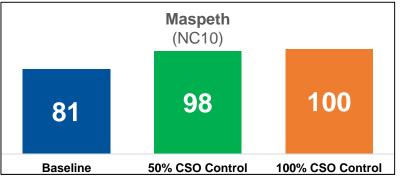
Protection

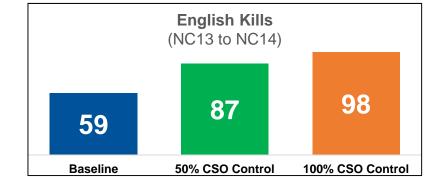

LTCP Gap Analysis – Time to Recovery

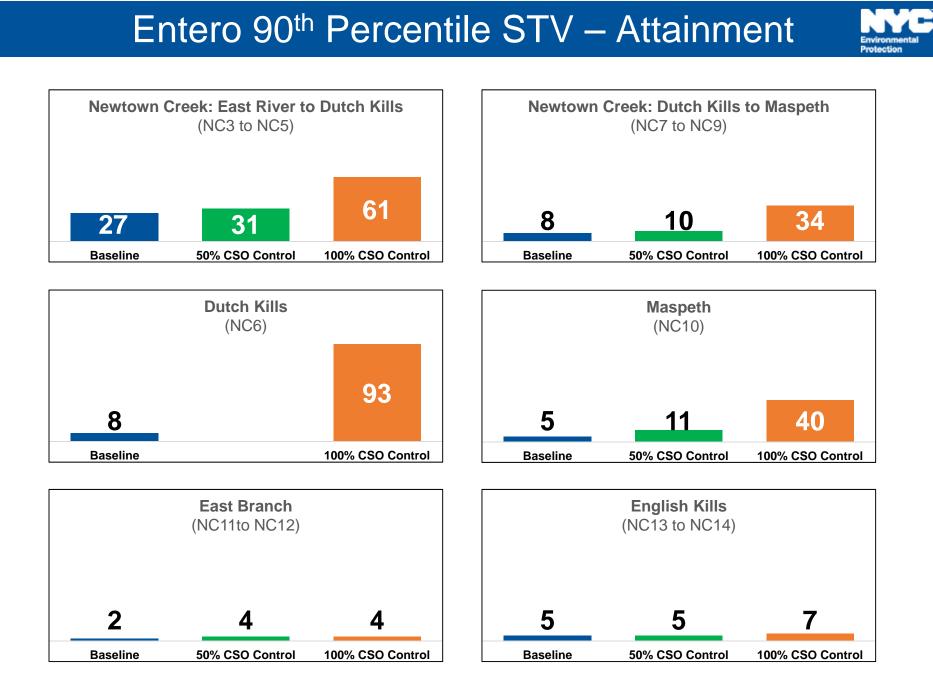



Red >24 hrs Green ≤24 hrs


	Location	Time to Reco 1,000 cfu/100mL Feca ocation Aug 15, 2008		
		Baseline (hrs)	100% CSO Control (hrs)	
East River	NC1	10	10	
	NC2	9	9	
	NC3 (at East River)	30	2	
	NC4	67	0	
	NC5 (at Dutch Kills)	68	0	
Main Trunk	NC7	69	0	
	NC8	79	0	
	NC9	80	0	
	NC10 (at Maspeth Creek)	94	0	
	NC11 (at East Branch)	105	7	
Dutch Kills	NC6	71	0	
East Branch	NC12	107	20	
English Kills	NC13	118	0	
-	NC14	130	9	


Entero GM 30-day – %Attainment





*50% CSO Control is based on control of the 3 largest CSO outfalls (NCQ-077, NCB-083 & NCB-015)

Protection

LTCP Gap Analysis – Dissolved Oxygen

Red <95% attainment		% Annual Attainment for Class SD (Average DO <u>></u> 3 mg/L)			
Green ≥95% attainment	Location	Baseline (%) Incl. Aeration*	100% CSO Control (%) Incl. Aeration*	100% CSO Control (%) No Aeration	
East River	NC1	100	100	100	
	NC2	100	100	100	
	NC3 (at East River)	100	100	100	
	NC4	100	100	100	
	NC5 (at Dutch Kills)	100	100	100	
Main Trunk	NC7	100	100	100	
	NC8	100	100	100	
	NC9	99	100	100	
	NC10 (at Maspeth Creek)	94	100	98	
	NC11 (at East Branch)	95	100	95	
Dutch Kills	NC6	98	100	100	
East Branch	NC12	94	100	92	
	NC13	93	100	92	
English Kills	NC14	88	100	79	

* Assumes seasonal operation of East Branch and English Kills aeration systems

Evaluation of Alternatives

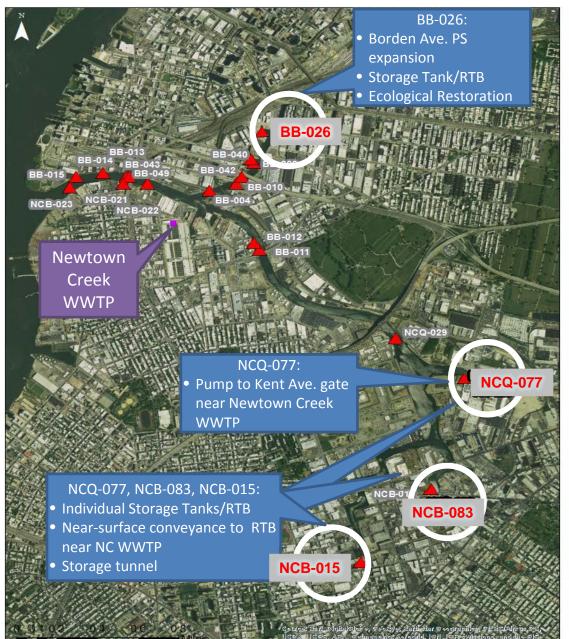

James Mueller, P.E. Acting Deputy Commissioner DEP – BEDC

CSO Control Evaluation Process

1. Bacteria Source Component Analysis

- CSO, stormwater and direct drainage
- 2. Gap Analysis for Water Quality Standard (WQS) Attainment
 - Calculate bacteria and dissolved oxygen for:
 - Baseline Conditions
 - 100% CSO Control Conditions
- 3. Assess Levels of CSO Control Necessary to Achieve WQS
- 4. Identify Technologies to Cost-Effectively Achieve the Required Level of CSO Control

Newtown Creek Alternatives Toolbox



INCREASING COMPLEXITY

Source Control	Existing GI	Additional GI	High Level Sew		er Separation	
System Optimization	Fixed Weir	Parallel Interceptor / Sewer	Bending Weirs Control Gates	Pum Stati Optimiz	on	Pump Station Expansion
CSO Relocation	Gravity Flow Tipping to Other Watersheds	Pumping Station Modification	Flow Tipping with Conduit/Tunnel and Pumping		nping	
Water Quality / Ecological Enhancement	Floatables Control	Environmental Restoration	Mechanical aeration Flushing		ng Tunnel	
Treatment Satellite:	Outfall Disinfection	Retention Treatment Basin (RTB)		^{•B)} C		h Rate ation (HRC)
Centralized:		WWTP Expansion				
Storage	In-System	Shaft	Tank		T	unnel
Completed or underway CSO Controls further evaluated						

Overview of Newtown Creek Alternatives

- Pumps Station Expansion and **Flow Tipping / Relocation**
 - Borden Ave. PS expansion + Force main to NC WWTP
 - NC-077 Wet Weather PS + Force main to NC WWTP

Parallel Interceptor / Sewers

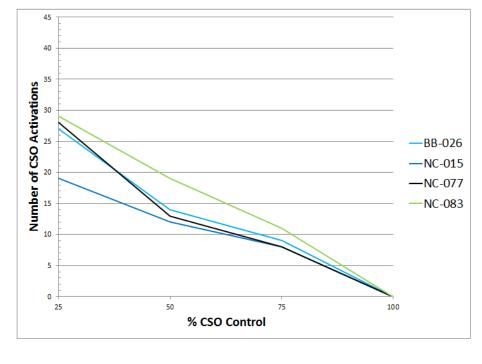
Parallel Interceptors from NCQ-• 077, NCB-083, & NCB-015

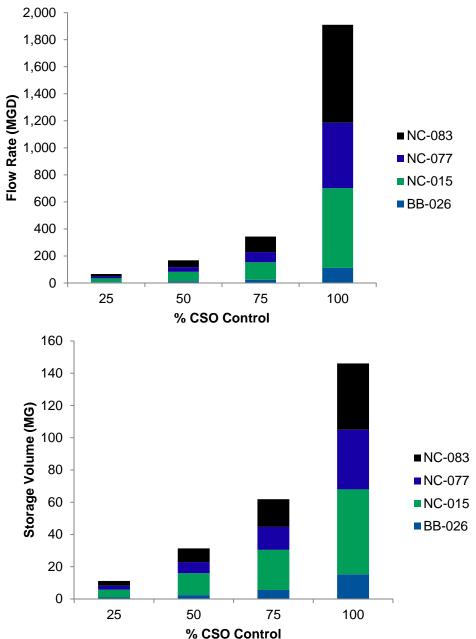
Ecological Restorations

- Dutch Kills (BB-026)
- **Dutch Kills Flushing System**

Individual Storage Tanks or RTBs:

 NCQ-077, NCB-083, NCB-015, & **BB-026**

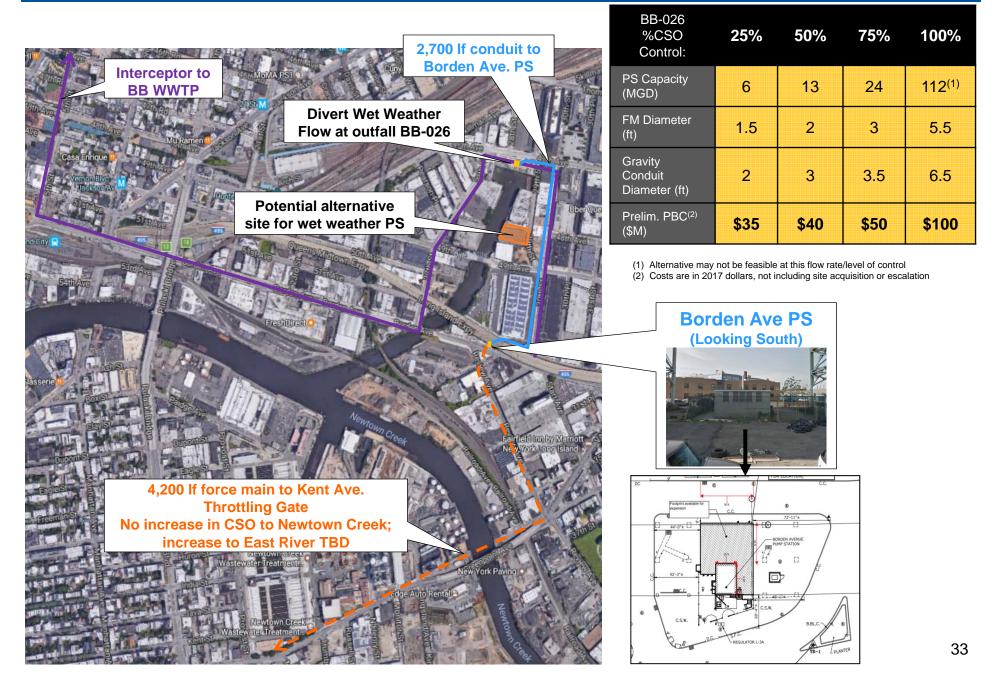

Combined Storage Tunnels


- NCQ-077, NCB-083, & NCB-015
- NCQ-077, NCB-083, NCB-015, & **BB-026**

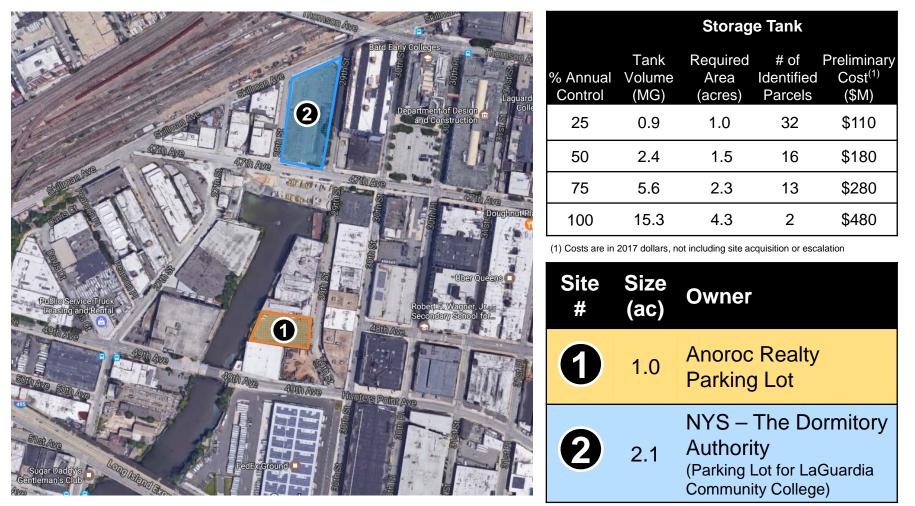
CSO Storage Volume, Peak Flow, and Activation vs. % Capture

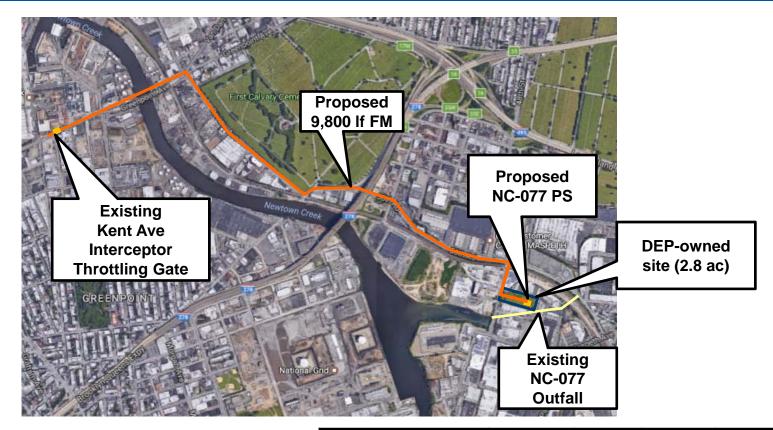
EPA CSO Policy:

- LTCP to consider a reasonable range of alternatives
- LTCP should evaluate a range of levels of control
- Selected controls should meet CWA requirements



Protection


BB-026: Borden Ave. PS Expansion to 13 MGD

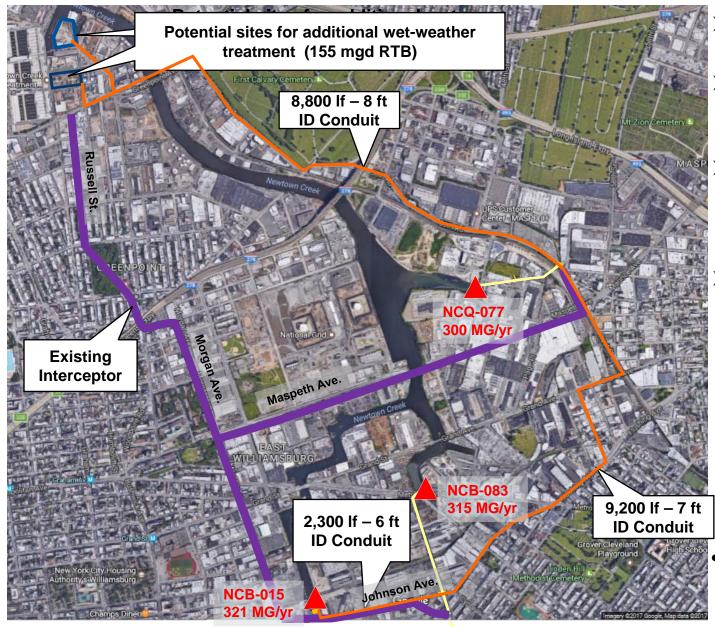

Potential Sites at Dutch Kills

- Site 1 could accommodate 25% CSO control storage tank or site for wet weather pump station
- Site 2 not considered feasible due to impacts on LaGuardia Community College

NC-077: New Wet Weather PS+ FM to Kent Ave Interceptor

Concept:

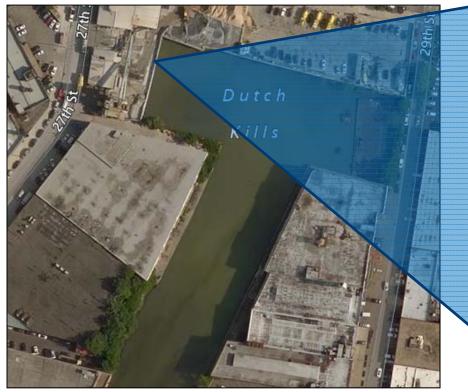
- Divert overflow from NCQ-077 to wet weather pump station
- Discharge from new force main to upstream of Kent Ave. gate
- Potentially throttle Kent Ave. gate to limit impacts to Morgan Ave. Interceptor


NCQ-077 %CSO Control:	25%	50%	75%	100%
PS Capacity (MGD)	14	35	75	484 ⁽¹⁾
FM Diameter (ft)	2.5	3.5	5	2 x 8
PBC ⁽²⁾ (\$M)	\$50	\$70	\$100	\$260

(1) Alternative may not be feasible at this flow rate/level of control

(2) Costs are in 2017 dollars, not including site acquisition or escalation

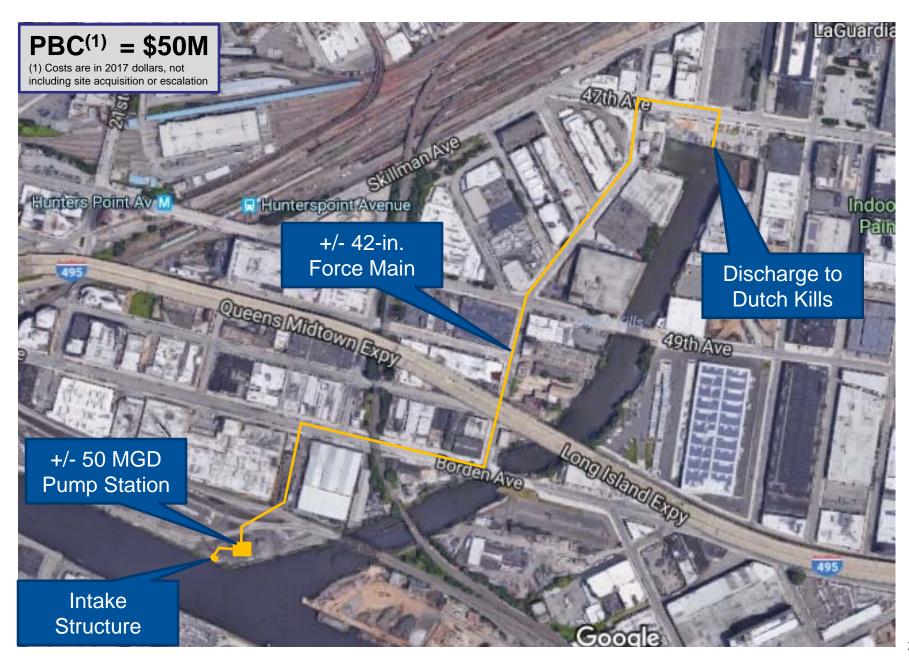
NCB-015,NCB-083 & NCQ-077: Parallel WW Interceptor



- 20,300 If of new conduit
- Provides 50% control of NCB-015, NCB-083 and NCQ-077
- 100% FC attainment in Rec. Season in Newtown Creek and upper tributaries
- Challenges:
 - Limited potential for future expansion for higher levels of CSO control.
 - Construction impacts/siting of multiple jacking/receiving shafts
 - Preliminary Est. Cost = \$530 M

(1) Costs are in 2017 dollars, not including site acquisition or escalation

Ecological Restorations


Existing Pilot Restoration Site in Dutch Kills

Examples of Other Ecological Restoration Projects:

Dutch Kills Flushing System Concept

Storage Tanks at Each Outfall

	25% Annual Control		50% Annual Control		75% Annual Control		100% Annual Control	
Outfall	Volume (MG)	Required Area (ac.)	Volume (MG)	Required Area (ac.)	Volume (MG)	Required Area (ac.)	Volume (MG)	Required Area (ac.)
BB-026	0.9	1.0	2.4	1.5	5.6	2.3	15.3	4.3
NCQ-077	2.4	1.5	6.9	2.4	14.2	3.7	37.0	N/A ⁽¹⁾
NCB-083	3.0	1.5	8.5	2.6	17.2	4.1	41.1	7.9
NCB-015	4.9	1.9	13.6	3.6	24.9	5.3	44.3	8.2
Prelim. PBC ⁽²⁾ (\$M)	\$640		\$1	,100	\$1	,600	\$2	,420

Sites would require relocation of existing uses/buildings

 Not feasible due to capacity limitation in interceptor for dewatering tank
 Costs are in 2017 dollars, not including site acquisition or escalation

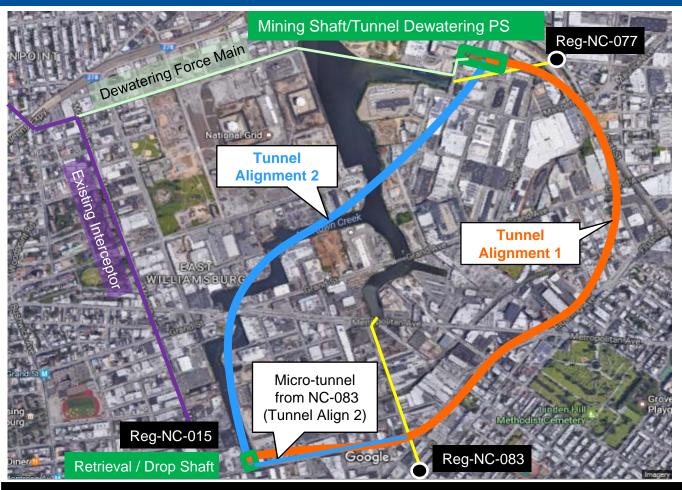


Vacant parcel of sufficient size identified

Retention/Treatment Basins at Each Outfall

	25% Annu	al Control	50% Annu	al Control	75% Annu	al Control	100% Anni	ual Control
Outfall	Peak Flow (MGD)	Required Area (ac.)						
BB-026	6	0.8	13	1.1	24	1.6	112	N/A ⁽¹⁾
NCQ-077	14	1.0	35	1.4	75	2.2	484	N/A ⁽¹⁾
NCB-083	18	1.0	50	1.5	115	2.5	724	N/A ⁽¹⁾
NCB-015	29	1.2	70	1.8	130	2.9	590	N/A ⁽¹⁾
Prelim. PBC ⁽²⁾ (\$M)	\$4	80	\$7	60	\$1,	090	N//	Ą ⁽¹⁾

Sites would require relocation of existing uses/buildings


Vacant parcel of sufficient size identified

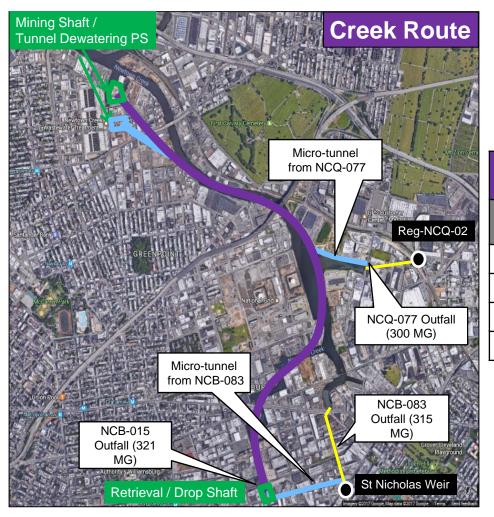
 Seasonal operation of RTB disinfection cannot achieve 100 % control
 Costs are in 2017 dollars, not including site acquisition or escalation

Environment Protection

Tunnel Alternative A

50% capture at NCB-015, NCB-083 and NCQ-077 results in 100% FC attainment in Recreational Season in Newtown Creek and upper tributaries

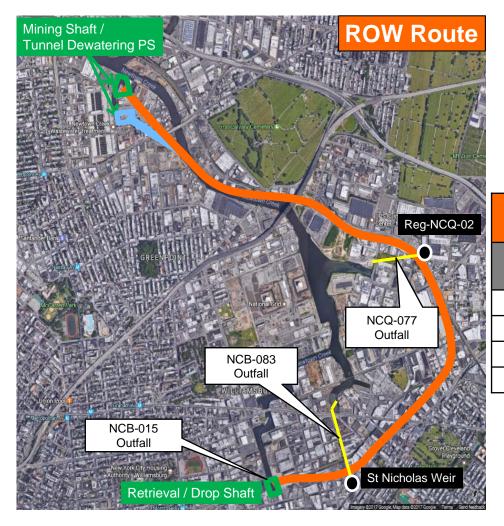
Notes:


(1) Costs are in 2017 dollars; does not include site acquisition or escalation.

(2) Tunnel diameter required for 100% control approaching limit of feasibility for rock tunnel

%CSO Control:	25%		50% 7		75	%	100%	
	Align1	Align2	Align1	Align2	Align1	Align2	Align1	Align2
Length (lf)	9,800	7,300	9,800	7,300	9,800	7,300	9,800	7,300
Diameter (ft)	16	16	23	26	32	36	48	56
Volume (MG)	15	11	30	29	59	56	133	134
Prelim. PBC ⁽¹⁾ (\$M)	\$360	\$350	\$460	\$430	\$590	\$560	N/A ⁽²⁾	N/A ⁽²⁾

Tunnel Alternative B


Creek Route, Capture NCB-015, NCB-083, NCQ-077 – Microtunnel Branches to NCB-083, NCQ-077

CSO Capture	Diam. (ft)	Length (If)	Volume (MG)	Prelim. PBC ⁽¹⁾ (\$M)
25%	11	13,700	10	\$330
50%	19	13,700	28	\$450
75%	26	13,700	55	\$590
100%	40	13,700	130	\$910

(1) Costs are in 2017 dollars, not including site acquisition or escalation

Tunnel Alternative B

ROW Route, Capture NCB-015, NCB-083, NCQ-077								
CSO Capture	Diam. (ft)	Length (If)	Volume (MG)	Prelim. PBC ⁽¹⁾ (\$M)				
25%	10	18,800	11	\$335				
50%	16	18,800	28	\$460				
75%	23	18,800	58	\$640				
100%	35	18,800	135	\$980				

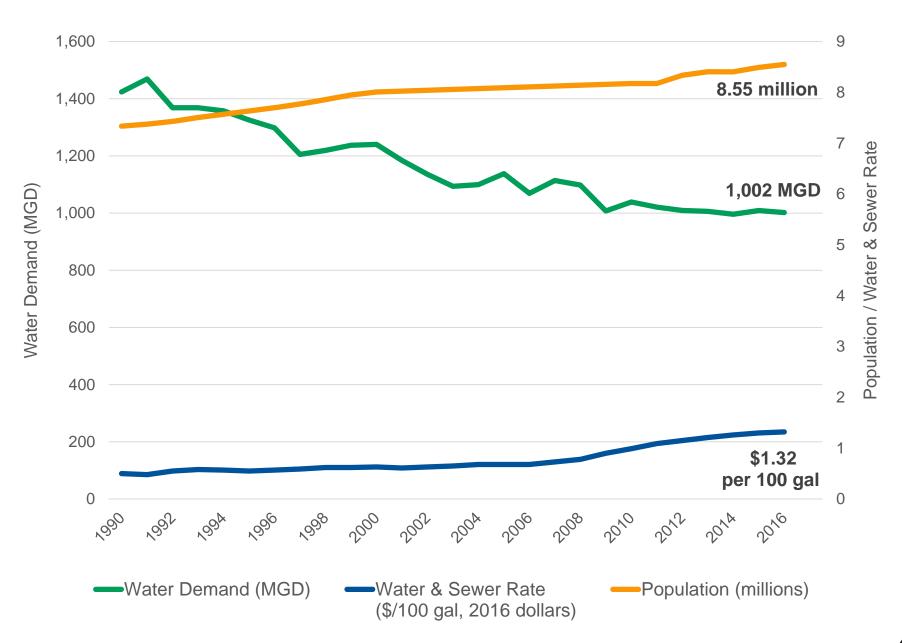
(1) Costs are in 2017 dollars, not including site acquisition or escalation

Alternatives Summary – 2017 Costs

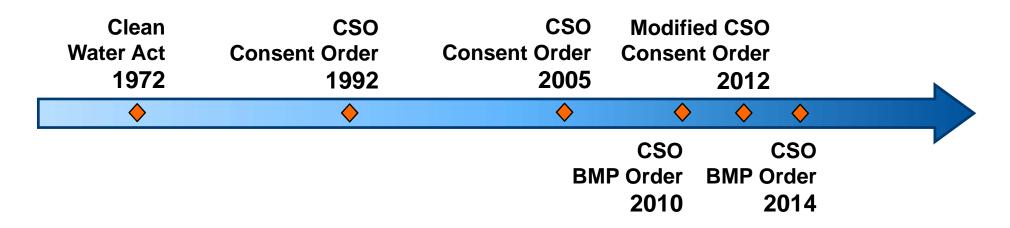
		Prelim. PBC (\$M), 2017 Dollars				
Outfall	Alternative	25% Control	50% Control	75% Control	100% Control	
BB-026	Expand Borden Ave. PS	\$35	\$40	\$50	\$100	
NCQ-077	Pump NCQ-077 to Kent Ave.	\$50	\$70	\$100	\$260	
NCQ-077, NCB-083, NCB-015	Wet Weather Interceptor to RTB	\$320	\$530	N/A	N/A	
BB-026, NCQ-077, NCB-083, NCB-015	Storage Tanks at BB-026, NCB-083, NCB-015	\$640	\$1,120	\$1,590	\$2,420	
BB-026, NCQ-077, NCB-083, NCB-015	RTBs at BB-026, NCB-083, NCB-015, NCQ-077	\$480	\$760	\$1,090	N/A	
NCQ-077, NCB-083, NCB-015	Storage Tunnel Option A	\$360	\$460	\$590	N/A	
NCQ-077, NCB-083, NCB-015	Storage Tunnel Option B w/out Microtunnel to BB-026	\$330	\$450	\$590	\$910	
BB-026, NCQ-077, NCB-083, NCB-015	Storage Tunnel Option B w/ Microtunnel to BB-026	\$390	\$520	\$680	\$1,040	

Dutch Kills Flushing System: \$50M Dutch Kills Ecological Restoration: \$TBD

Alternatives Summary – Escalated Costs



		Including Soft Costs, Escalated 15 Yrs. (
Outfall	Alternative	25% Control	50% Control	75% Control	100% Control		
BB-026	Expand Borden Ave. PS	\$70	\$80	\$100	\$200		
NCQ-077	Pump NCQ-077 to Kent Ave.	\$100	\$140	\$200	\$515		
NCQ-077, NCB-083, NCB-015	Wet Weather Interceptor to RTB	\$630	\$1,050	N/A	N/A		
BB-026, NCQ-077, NCB-083, NCB-015	Storage Tanks at BB-026, NCB-083, NCB-015	\$1,270	\$2,220	\$3,150	\$4,790		
BB-026, NCQ-077, NCB-083, NCB-015	RTBs at BB-026, NCB-083, NCB-015, NCQ-077	\$950	\$1,500	\$2,160	N/A		
NCQ-077, NCB-083, NCB-015	Storage Tunnel Option A	\$710	\$910	\$1,170	N/A		
NCQ-077, NCB-083, NCB-015	Storage Tunnel Option B w/out Microtunnel to BB-026	\$650	\$890	\$1,170	\$1,800		
BB-026, NCQ-077, NCB-083, NCB-015	Storage Tunnel Option B w/ Microtunnel to BB-026	\$770	\$1,030	\$1,350	\$2,060		


Dutch Kills Flushing System: \$100 M Dutch Kills Ecological Restoration: \$TBD

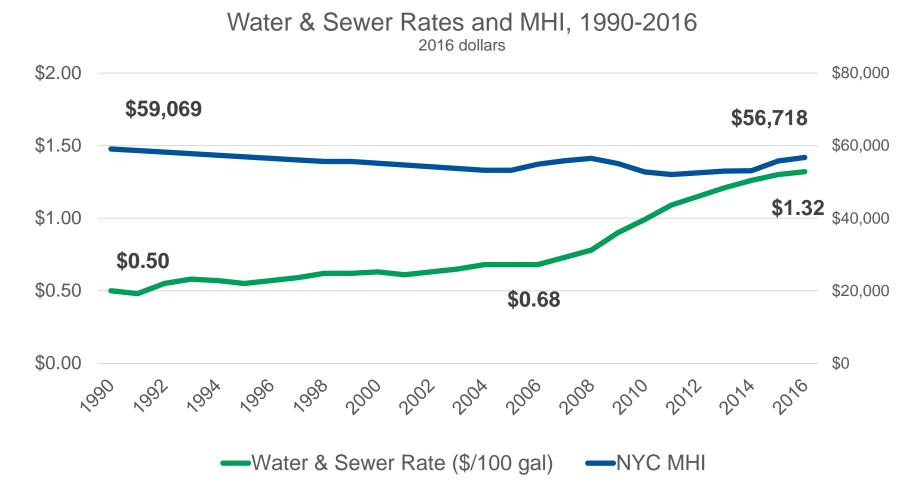
Population / Demand

Major Historical Timeline for Wastewater Infrastructure

\$40 Billion ---OMB Records & 10-yr Capital Plan **1973 – 2011:** Upgraded 12 WWTPs to Secondary **Treatment and built two new Wastewater Treatment Plants**

\$1.1 Billion

OMB Records & 10-yr Capital Plan


1999 – 2020 Upgrade Biological Nitrogen Removal at 70% of WWTPs

\$4.2 Billion

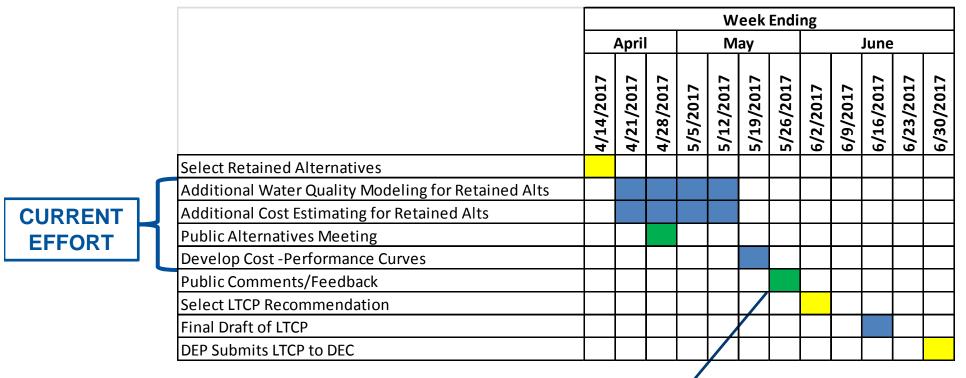
OMB Records & 10-yr Capital Plan Grey (1995 – 2022, \$2.7 B) Green (2012 – 2030, \$1.5 B) **1995 – 2030** Construct Grey / Green Infrastructure to mitigate CSOs

Protection

Income and Rate increases over Time

- NYC MHI declined by over \$2,300/year, adjusted for inflation
- Rates rose 160%, adjusted for inflation

Questions and Discussion


Next Steps

Mikelle Adgate Director of Stormwater Outreach DEP – BPA

LTCP Delivery Schedule

Ongoing LTCP Activities: Additional WQ runs for retained alternatives, cost estimating, cost-performance curves, selection of LTCP Recommendation in late May

PUBLIC COMMENTS/ FEEDBACK IN 30 DAYS (5/26)

Next Steps

➤ LTCP Submittal to NYSDEC by June 30, 2017

- Public Comments will be accepted for Newtown Creek through May 31, 2017
 - There will be subsequent comment periods following the Final Plan Review Meeting.
- Comments can also be submitted to:
 - New York City DEP at: ltcp@dep.nyc.gov

Additional Information & Resources

- Visit the informational tables tonight for handouts and poster boards with detailed information
- ➢ Go to <u>www.nyc.gov/dep/ltcp</u> to access:
 - LTCP Public Participation Plan
 - Presentation, handouts and poster boards from this meeting
 - Links to Waterbody/Watershed Facility Plans
 - CSO Order including LTCP Goal Statement
 - NYC's Green Infrastructure Plan
 - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
 - NYC Waterbody Advisory Program
 - Upcoming meeting announcements
 - Other LTCP updates