Novel methods for early detection of the bloody red shrimp, *Hemimysis anomala*

Meghan Brown, Hobart and William Smith Colleges
Brent Boscarino & Sonomi Oyagi, Poughkeepsie Day School
Mike Tibbetts & Carla Sanchez, Bard College

HOBART AND WILLIAM SMITH

An emerging invader: The Bloody Red Shrimp, Hemimysis anomala

Hemimysis is an omnivore with high consumption rates.

And, a prey item for fish.

Light-based traps are an effective detection method

Contents lists available at ScienceDirect

Journal of Great Lakes Research

journal homepage: www.elsevier.com/locate/jglr

The light at the end of the funnel?: Using light-based traps for the detection and collection of a nearshore aquatic, invasive invertebrate, *Hemimysis anomala*

Meghan Brown a,*, Jamila Roth b, Bruce Smith c, Brent Boscarino d

- ^a Hobart and William Smith Colleges, Department of Biology, 300 Pulteney Street, Geneva, NY 14456, USA
- b Skidmore College, Departments of Biology and Environmental Science, 815 N Broadway, Saratoga Springs, NY 12833, USA
- c Ithaca College, Biology Department, 953 Danby Rd., Ithaca, NY 14850, USA
- d Poughkeepsie Day School, 260 Boardman Road, Poughkeepsie, NY 12603, USA

eDNA as a potential early-detection tool

DNA extraction and qPCR methods

Field studies to compare

- habitat types,
- times of day, and
- locations in the water column.

Lab experiments to compare

- Hemimysis density and
- incubation time.

What are the most suitable primer for qPCR detection of *Hemimysis*?

mt-DNA, subunit I of cytochrome oxidase gene

HAco1-4AF & HAco1-4BF (two variants)

- 35 thermal cycles, most reliable time frame and avoided primer dimers
- 54 -55°C ideal for annealing

```
HA -----Gqqttaqtaqqttcttctttqaqaattttaatt
MD ctctattttqtqttttqqqqcttqqqataqttqqatcttctttaaqaqttttaatt
HA cqacttqaattqqqtcaqccqqtaqqttaattqqqqatqatcaqatttataacqtqatt
MD qttactqcqcatqcttttqttataattttctttataqttatacctattacaqttqqtqqq
HA ttcqqcaactqqttaqttcctttaataattqqqqccccaqatataqcqtttcctcqaata
MD tttggaaattggttagtaccgttgatattaggagctcctgatatagcttttcctcgtata
  HA aataatataaqattttqattattacctccatcqttaaqattqcttttaqctaqaqqqtta
MD aataatataaqqttttqacttttqccaccttctttaqctcttatactaataaqaqqqata
  MD qtaqaqaqqqqtaqqqactqqttqaaccqtttatccaccattqqcttcaaacattqct
  HA cacatgggtgcagctgtggatataggaattttttcttttgcatttagctggcgcctcttct
MD catgcaggggcagcagtagatataggaattttttctttacatttagctggggcttcttca
      ** **** ** ** *********** ** ****** **
HA attttaggtgctgttaattttatttctacagttattaatatacgtgctgtaggaataggg
MD attttaggtgctgtaaattttatttcaactgttattaatatacgggcacctggggtaggt
HA tttgacagtataccactatttgtttggtctgtgtttattactgctattttactacttctg
MD atagatagactacctctttttgtgtggtcaatttttattacagcaattcttttattactt
   HA tctttacctgttttagcaggggctattactatgctt-----
MD tctttaccagtgttagcagggctattacaatacttttaacagaccgtaatttaaatact
  ****** ** ********** ** ***
MD tctttctttqaccctqtaqqtqqqqqtqacccta
```

What densities and consequent concentration of eDNA are detectable?

Dilutions of pure Hemimysis DNA

1/10

1/100

1/1000

What volume of water is needed for reliable detection?

Water volumes from aquaria holding moderate density of *Hemimysis*10-1000 mL

Field experiments

Sites: Seneca Lake (established by 2010)

Erie Canal Lock #5 (established by 2014)

Location: Water and sediment surface

Time mid-day and midnight

Controls: Skaneateles Lake, field and lab controls

Preliminary Results!

# reps with cq < 35		Seneca Lake		NYS Canal	Controls	
		Filter size (μm)			Skaneateles Lake	Field controls
Night	Deep	0.45	3/3		0/3	
		0.65	3/3			0/3
		1.2	3/3			
	Shallow	0.45	1/3		0/3	
		0.65	2/3			
		1.2	1/3			
Day	Deep	0.45	2/3			0/3
	Shallow	0.45	2/3			

Methods:

Triplicate 250 mL water samples filtered (0.45 µm pore-diameter acetate filter paper)

Filters preserved in 70% ethanol

Equipment cleaned between replicates (50% bleach and DI rinse)

Field controls were deionized water transferred to sample bottles in the field and processed the same as field samples

Lab experiments

Questions?

