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Lagrange and steady-state 2D Euler flow (1781)

Ov + (v-V)v = —Vp, V-v=0
0 —v X w = —Vp,, V-v=0
w:=V X, Dx 3:]7"_(1/2)‘1)‘2

Opv - dx — (v X w) - dx = —dp,, V.v =0 Joseph-Louis
LLagrange

Steady-state 2D case: v = (u,v,0), w = (0,0,() 1736-1813
(v, = —dpy, v, =dy v, :=(e3xwv) -dx (1-form)

Thus d¢ A dy = 0. Hence ¢ = F(v).

Seven years later in the introduction of his “Analytic Mechanics”, <‘>_
Lagrange writes: On ne trouvera point de Figures dans cet Ouvrage. (= e G g e
Les methodes que j'y expose ne demandent ni constructions, ni
raisonnements géométriques ou méchaniques, mais seulement des
opérations algebriques, assujetties a une marche réguliere &
uniforme. Ceux qui aiment [’Analyse, verront avec plaisir la

Méchanique en devenir une nouvelle branche, & me sauront gré d’en e ot i el v b

algebraic operations, following a regular and uniform

° /4 b ° b . Th ho love Analysis, will ith
avoir étendu ainsi le domaine. e e s i s
and will be grateful to me for having thus extended its

domain.




Helmholtz’s Lagrangian vorticity flux invariance (1858)

Tait’s 1867 English rendering 1in the
Philosophical Magazine of Helmholtz’s 1858
vorticity results for 3D incompressible Euler
flow driven by potential forces:

The following investigation shows that when there is a velo-
city-potential the elements of the fluid have no rotation, but

that there is at least a portion of the fluid elements in rotation Hermann von
when there 1s no velocity-potential. Helmholtz
By vortea-lines (Wirbellinien) 1 denote lines drawn through 1821-1894

the fluid so as at every point to coincide with the instantaneous
axis of rotation of the corresponding fluid element,

By vortex-filaments (Wirbelfiden) I denote portions of the fluid
hounded by vortex-lines drawn through every point of the boun-
dary of an infinitely small closed curve.

The investigation shows that, if all the forces which act on the

fluid have a potential,—
T . . . . . A PHILOSOPHIC:iL MAGAZINE
1. No element of the fluid which was not originally 1n rota- S N
ti Orl iS n] a d e t 0 l‘ Ot at c. SUPPLEMENT:o iou XXXIII. FOURTH SERIES.
. . . LXIIL On Integrals of the H.p/drodylyﬁmlt{[ia[{ lﬁggﬂzg which
2. The elements which at any time belong to one vortex-line, el

however they may be translated, remain on one vortex-line.

3. The product of the section and the angular velocity of an
infinitely thin vortex-filament is constant throughout its whole
length, and retains the same value during all displacements of the
filament. Hence vortex-filaments must either be closed curves,
or must have their ends in the bounding surface of the fluid.




Clebsch variables (1859)

® In 3D the velocity 1-form v := v - do is usually not exact
but may be written, following Pfaff and Jacobi, as

v-dx =dF + ¢odiy, V-v=0
which implies for the vorticity vector the Pfafi-

Darboux representation w = V¢ X V1 Alfred Clebsch

. 1833-1872
® Clebsch showed that (the Clebsch variables) ¢ and

can be chosen to be material invariants (Lie invariants):

(O +v-V)p=0 (0y+v-V)y=0.
® The Clebsch derivation makes use of canonical transformations,
taken from Jacobi (1836-1837/1890). In 1861 Hankel found a

simple Lagrangian proof (see below).

® DBut first, we need to take a look at Lagrange’s and Cauchy’s work

on Lagrangian coordinates.



Lagrangian-coordinates formulations

® Lagrange’s 1788 formulation of the Euler equations made use of
the map a — x(a, t) of the initial position a of a fluid
particle to its current position ax, solution of the characteristic

equation & = v(x, t), x(a,0) = a.Euler’s equations are
r = —Vp, V.-x=0
® Bya pull—bagck to (Lagrangian) coordinates, Lagrange obtains:
ZikVka = —Vhp, det(Vix) =1
k=1

where V'z := V,z is the Jacobian matrix of the map.

® Cauchy (1815) takes the Lagrangian curl of Lagrange’s equation
which he then integrates 1n time, to obtain the Cauchy invariants

equations 5 3
ZVLik X VL$k = VL X Zkaka — Wy ,
k=1 k=1
where w, = VL x v, 1S the 1mnitial vorticity vector.



Hankel’s 1861 Preisschrift
Fur. Phys. J. 2017 42 4-5: Frisch-Grimberg-Villone; Villone-Rampft

® In 1860, two years after Helmholtz gave his
somewhat heuristic derivation of the Lagrangian
invariance of the flux of the vorticity through an
infinitesimal piece of surface, Gottingen University
set up a prize: The general equations for determining

fluids motions may be displayed in two ways, one of Hermann
which is due to Euler, the other one to Lagrange. The Hankel
illustrious Dirichlet pointed out in the posthumous paper, 1839-1873

titled “On a problem of hydrodynamics’', the hitherto almost totally neglected
advantages of the Lagrangian approach; but he seems to have been prevented,
by a fatal disease, from a deeper development thereof. So, this Faculty asks for a
theory of fluids based on the equations of Lagrange, yielding, at least, the laws
of vortex motion discovered otherwise by the illustrious Helmholtz.

® Actually, Hankel gave Lagrangian derivations of : Helmholtz’s
results, the “Kelvin” circulation theorem, the Clebsch variable
representation and the least action formulation for elastic fluids.

Riemann: mancherlei Gutes (all. manner of good things). Indeed!




Back to Clebsch: Hankel’s derivation
® Hankel (1861) uses the Cauchy invariants equations to give a
simple “push-forward” derivation of the material (Lie) invariance
of the Clebsch variables. He takes an 1nitial vorticity that has a
“Pfatf-Darboux” representation:

wo = V"o x VEhg = V& x (poV ™ 1o) -
® Rcmoving the (Lagrangian) curl - up to a gradient - he gets
3
VZVw > @, Vi = VEFY 4 6oV 0.
k=1
® The 2nd term on the rhs is independent of time, whereas the

first and the lhs are time-dependent. Hankel performs a push-
forward to Eulerian coordinates, obtaining: v = VI + ¢V,

where F(x,t) ;== Ft(a(z,t),t), o¢(x,t) = dolal(z,t)), U(x,t):=1(a(x,t))
and a(x,t) is the inverse of the Lagrangian map. Obviously
¢ and 1 remain constant along fluid particle trajectory. Thus

8t¢—|—’0v¢20 and (9t¢+vV¢:O



Hankel’s proof of the Helmholtz and circulation theorems

Hankel uses Cauchy’s 1815 invariants equations, 1n the form
VE xS0 ik Vi, = wo

In the Lagrangian space of 1nitial fluid positions he takes a finite
piece of smooth surface S, limited by a contour ¢, and their
images by the Lagrangian map from 0 to ¢, S and C, respectively.

He then applies the Kelvin-Stokes-Hankel theorem at time zero
and at time t, to Obtain circulation
v-dxr = / w - ndo
S}

e = e 7 _ A R NSRS SNG4 4

where w := V x v and use has been made of N Vi - da=wv-de

ZkkaLZEk -da = /

k=1
Hankel has thus not only proved Helmholtz’s theorem, but
obtained an integral invariant (circulation theorem), which

states that:
/ fvo-da:/v-dm.
Co C



® In Nouvelles Méthodes de la Mécanique

Integral invariants in (non-)relativistic fluid dynamlcs

Céleste, vol. 111 (Integral invariants),
Poincar¢ assigns the circulation theorem,

not to Kelvin (whose derivation was ' R
widely known) nor to Hankel (whose Andre
Preisschrift book was unknown in France) SSi John Lighton Lichnerowicz
but to Helmholtz. In a sense he was right: William 1915-1998

by “Stokes’s” th h 1 Th Synge
y “Stokes’s” theorem, the circulation omson 1897-1995

along a closed curve equals the vorticity  (Kelvin)
flux through a surface bordered by that  1824-1907
curve. Since Helmholtz proved the

Lagrangian invariance of vorticity flux through infinitesimal surfaces, the
circulation invariance follows by additivity.

Still, Hankel can be credited for making the transition from a differential (Lie)
invariant to a global (Poincar¢-Cartan) invariant, using the “Stokes” theorem and
Cauchy’s Lagrangian formulation of the Euler eqations.

About twenty years after Einstein's introduction of GR, Synge extended Helmholtz’s
results to hydrodynamics in a GR background and Lichnerowicz gave the
interpretation, using Elie Cartan’s integral invariants, a time-dependent extension of
Poincar¢’s integral invariants, much better adapted to GR. The distinction between
Helmholtz’s kinematic and dynamic invariants becomes then blurred.



The infinite-dimensional geometrization of the
Lagrangian approach: Arnold (1966)

Arnold (1966) (Ann. Inst. Fourier): The solutions of the incompressible g

Euler equations extremize the action : Sur la géométrie différentielle des groupes
de Lie de dimension infinie et ses
applications a ’hydrodynamique des
dt dS |8aj a t) / at’2 fluides parfaits
Vladimir Arnold
with the constraints J x(a,0) = a and given x(a,T). 1937 - 2010

In geometrical language, they are geodesics of SDiff.

An elementary example — T

of geodesic on the sphere

A

Conclusion. The geometry that Lagrange rejected in 1788 was that of the Greeks.
He loved playing with differential forms, which for him had no geometrical content.
Thanks to Helmholtz, Riemann, Hankel, Poincaré, Cartan, Arnold and many more,
we now realise that fluid dynamicists never stopped doing geometry.



