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Lagrange and steady-state 2D Euler flow (1781)

Joseph-Louis 
Lagrange 

1736-1813

@tv � v ⇥ ! = �rp?, r · v = 0

! := r⇥ v, p? := p+ (1/2)|v|2

@tv · dx� (v ⇥ !) · dx = �dp?, r · v = 0

Steady-state 2D case: v = (u, v, 0), ! = (0, 0, ⇣)

Seven years later in the introduction of his “Analytic Mechanics”, 
Lagrange writes: On ne trouvera point de Figures dans cet Ouvrage. 
Les méthodes que j’y expose ne demandent ni constructions, ni 
raisonnements géométriques ou méchaniques, mais seulement des 
opérations algébriques, assujetties à une marche régulière & 
uniforme. Ceux qui aiment l’Analyse, verront avec plaisir la 
Méchanique en devenir une nouvelle branche, & me sauront gré d’en 
avoir étendu ainsi le domaine.

⇣v? = �dp?, v? = d v? := (e3 ⇥ v) · dx (1-form)

Not just 2D

@tv + (v ·r)v = �rp, r · v = 0

Thus d⇣ ^ d = 0. Hence ⇣ = F ( ).

No figures will be found in this book. The methods 
here presented require neither constructions, nor 
geometrical or mechanical reasoning, but only 
algebraic operations, following a regular and uniform 
course. Those who love Analysis, will see with 
pleasure Mechanics become one of its new branches 
and will be grateful to me for having thus extended its 
domain.



Helmholtz’s Lagrangian vorticity flux invariance (1858)
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Tait’s 1867 English rendering in the 
Philosophical Magazine of Helmholtz’s 1858 
vorticity  results for 3D incompressible Euler 
flow driven by potential forces:

Hermann von 
Helmholtz 
1821-1894



Clebsch variables (1859)

•

•

•
Alfred Clebsch 

1833-1872

In 3D the velocity 1-form v := v · dx is usually not exact

v · dx = dF + � d , r · v = 0

Clebsch showed that (the Clebsch variables) � and  

can be chosen to be material invariants (Lie invariants):

• But first, we need to take a look at Lagrange’s and Cauchy’s work

on Lagrangian coordinates.

which implies for the vorticity vector the Pfa↵-

Darboux representation

The Clebsch derivation makes use of canonical transformations,

taken from Jacobi (1836-1837/1890). In 1861 Hankel found a

simple Lagrangian proof (see below).

but may be written, following Pfa↵ and Jacobi, as

n dimensions

! = r�⇥r 

(@t + v ·r)� = 0 (@t + v ·r) = 0.



Lagrangian-coordinates formulations 

•

• Lagrange’s 1788 formulation of the Euler equations made use of 
the map                         of the initial position      of a fluid 
particle to its current position    , solution of the characteristic 
equation                                              . Euler’s equations are 

aa 7! x(a, t)
x

ẋ = v(x, t), x(a, 0) = a

ẍ = �rp, r · ẋ = 0

• By a pull-back to (Lagrangian)  coordinates, Lagrange obtains: 
3X

k=1

ẍkrLxk = �rLp, det (rLx) = 1

rLx := rax

Cauchy (1815) takes the Lagrangian curl of Lagrange’s equation
which he then integrates in time, to obtain the Cauchy invariants 
equations

where                      is the initial vorticity vector.!0 = rL ⇥ v0

where                      is the Jacobian matrix of the map.

3X

k=1

rLẋk ⇥rLxk = rL ⇥
3X

k=1

ẋkrLxk = !0 ,



Hankel’s 1861 Preisschrift

•

Hermann  
Hankel 

1839-1873

set up a prize: The general equations for determining 
fluids motions may be displayed in two ways, one of  
which is due to Euler, the other one to Lagrange. The 
illustrious Dirichlet pointed out in the posthumous paper,

•

In 1860, two years after Helmholtz  gave his 
somewhat heuristic derivation of the Lagrangian 
invariance of the flux of the vorticity through an 
infinitesimal piece of surface, Göttingen University

Actually, Hankel gave Lagrangian derivations of : Helmholtz’s 
results, the “Kelvin” circulation theorem, the Clebsch variable 
representation and the least action formulation for elastic fluids. 
Riemann: mancherlei Gutes (all manner of good things).  Indeed!

titled “On a problem of hydrodynamics’', the hitherto almost totally neglected 
advantages of the Lagrangian approach; but he seems to have been prevented, 
by a fatal disease, from a deeper development thereof. So, this Faculty asks for a 
theory of fluids based on the equations of Lagrange, yielding, at least, the laws 
of vortex motion discovered otherwise by the illustrious Helmholtz.

Gott Giebet seinen Kindern auch hier mancherlei Gutes im Geistlichen und Leiblichen
Dein Feind is ja auch noch ein Mensch, er hat noch so mancherlei Gutes an sich...

Eur. Phys. J. 2017 42 4-5: Frisch-Grimberg-Villone; Villone-Rampf



Back to Clebsch: Hankel’s derivation

•

•

• Hankel (1861) uses the Cauchy invariants equations to give a 
simple “push-forward” derivation of the material (Lie) invariance 
of the Clebsch variables. He takes an initial vorticity that has a 
“Pfaff-Darboux” representation:

!0 = rL�0 ⇥rL 0 = rL ⇥
�
�0rL 0

�
.

Removing the (Lagrangian) curl - up to a gradient - he gets

The 2nd term on the rhs is independent of time, whereas the 
first and the lhs are time-dependent. Hankel performs a push-
forward to Eulerian coordinates, obtaining:                                         
where F (x, t) := FL(a(x, t), t), �(x, t) := �0(a(x, t)),  (x, t) :=  0(a(x, t))

and               is the inverse of the Lagrangian map. Obviously 
    and      remain constant along fluid particle trajectory. Thus

a(x, t)
�  

rL ⇥
3X

k=1

ẋkrLxk = !0

3X

k=1

ẋkrLxk = rLFL + �0rL 0.

v = rF + �r ,

@t�+ v ·r� = 0 and @t + v ·r = 0.



Hankel’s proof of the Helmholtz and circulation theorems
Hankel uses Cauchy’s 1815 invariants equations, in the form

In the Lagrangian space of initial fluid positions he  takes a finite 
piece of smooth surface     limited by a contour     and their 
images by the Lagrangian map from 0 to t, S and  C, respectively. 

rL ⇥
P3

k=1 ẋkrLxk = !0

He then applies the Kelvin-Stokes-Hankel theorem at time zero 
and at time t, to obtain 

3X

k=1

vkrLxk · da = v · dxwhere                and use has been made of 

S0 C0

! := r⇥ v

Hankel has thus not only proved Helmholtz’s theorem, but 
obtained an integral invariant (circulation theorem), which 
states that: 

Z

C0

v0 · da =

Z

S0

!0 · n0 d�0 =

Z

C0

⌃kvkrLxk · da =

Z

C
v · dx =

Z

S
! · n d�

Z

C0

v0 · da =

Z

C
v · dx .

circulation

vorticity flux



Integral invariants in (non-)relativistic fluid dynamics 
•

•

•

André 
Lichnerowicz 

1915-1998
John Lighton 

Synge 
1897-1995

William 
Thomson 
(Kelvin) 

1824-1907

In Nouvelles Méthodes de la Mécanique 
Céleste, vol. III (Integral invariants), 
Poincaré assigns the circulation theorem, 
not to Kelvin (whose derivation was 
widely known) nor to Hankel (whose 
Preisschrift book was unknown in France), 
but to Helmholtz. In a sense he was right: 
by “Stokes’s” theorem, the circulation 
along a closed curve equals the vorticity 
flux through a surface bordered by that 
curve.  Since Helmholtz proved the 
Lagrangian invariance of vorticity flux through infinitesimal surfaces, the 
circulation invariance follows by additivity. 

About twenty years after Einstein's introduction of GR, Synge extended Helmholtz’s 
results to hydrodynamics in a GR background and Lichnerowicz gave the 
interpretation, using Elie Cartan’s integral invariants, a time-dependent extension of 
Poincaré’s integral invariants, much better adapted to GR. The distinction between 
Helmholtz’s kinematic and dynamic invariants becomes then blurred.

Still, Hankel can be credited for making the transition from a differential (Lie) 
invariant to a global (Poincaré-Cartan) invariant, using the “Stokes” theorem and 
Cauchy’s Lagrangian formulation of the Euler eqations.



The infinite-dimensional geometrization of the 
Lagrangian approach: Arnold (1966)

Vladimir Arnold  
1937 - 2010

Sur la géométrie différentielle des groupes 
de Lie de dimension infinie et ses 
applications à l’hydrodynamique des 
fluides parfaits

Arnold (1966) (Ann. Inst. Fourier): The solutions of the incompressible
Euler equations extremize the action :

A =

Z T

0
dt

Z
d3a

1

2
|@x(a, t)/@t|2,

with the constraints J = 1, x(a, 0) = a and given x(a, T ).
In geometrical language, they are geodesics of SDi↵.

An elementary example

of geodesic on the sphere


