

Sistema autónomo ocular Fisiología del Iris. Reflejos pupilares Fisiología del cuerpo ciliar y de la Coroides

Lucía Ocaña Molinero MIR 2 Oftalmología

Sistema autónomo ocular

- Muy importante para el normal funcionamiento del sistema visual
- PS: papel en la función lagrimal
- Tamaño pupilar: controlado por un equilibrio entre la inervación de las fibras simpáticas a los músculos dilatadores del iris y las fibras parasimpáticas a los músculos del esfínter
- Los músculos retractores, incluyendo el músculo Muller, reciben

inervación simpática

TRES NEURONAS:

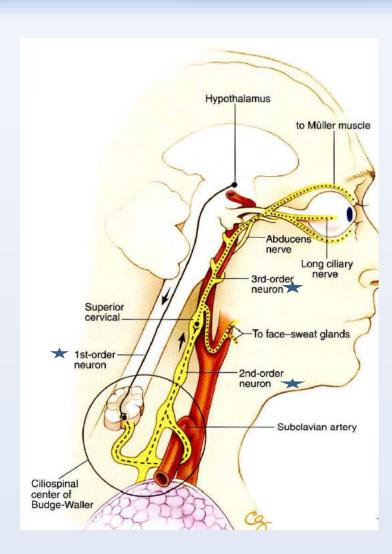
1. PRIMERA:

- i. Hipotálamo posterior
- ii. Centro cilioespinal de Budge

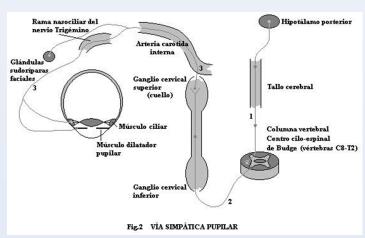
2. SEGUNDA

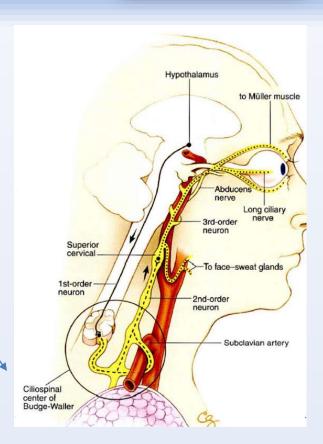
- i. Budge
- ii. Ganglio cervical superior

3. TERCERA


- i. G. Cervical
- ii. Va
- iii. G. ciliar
- iv. N. ciliares largos
- v. Ms dilatador del iris

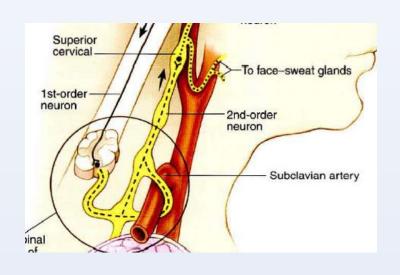
- Se origina en la región posterolateral del hipotálamo
- Las fibras S destinadas a la órbita se dividen en segmentos de PRIMER, SEGUNDO Y TERCER ORDEN





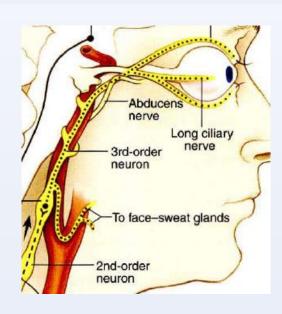
Segmento de Primer Orden:

- Los axones destinados a Ms dilatadores de la pupila y Ms Muller descienden por este segmento, superficialanteromedial desde TE hasta ME
- ❖ Médula cervical: fibras S en columna intermedio-lateral
- ❖ C8-T2: sinapsis en NÚCLEO CILIOESPINAL DE BUDGE-WALLER



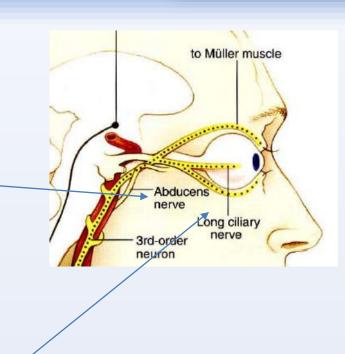
Fibras de Segundo Orden

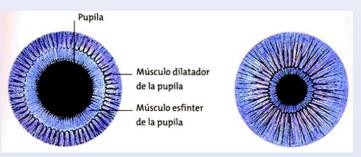
- Salen de la ME a través de ramas ventrales de C8 y T1-T2 antes de unirse al plexo simpático paravertebral.
- Ascienden y pasan por el bucle anterior de la A.subclavia encima del vértice de pulmón.
- Ganglio cervical inferior, medio y terminan en G.
 Superior (nivel C2, bifurcación de la A. Carótida)



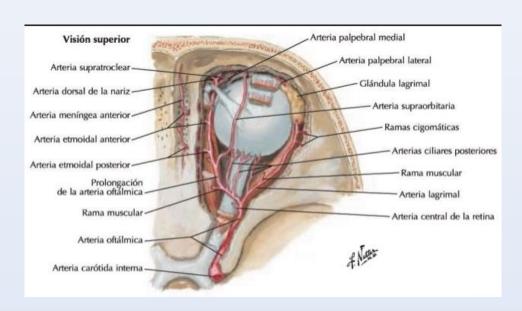
Fibras de tercer orden:

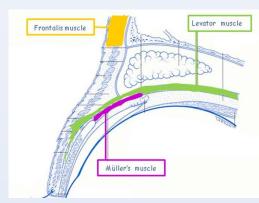
- Siguen la bifurcación de la Carótida
- Fibras S que inervan las Gl. Sudoríparas faciales inferiores siguen la ACE
- Fibras S destinadas a la pupila continúan a lo largo de la ACI hasta entrar en el cráneo por el canal carotídeo



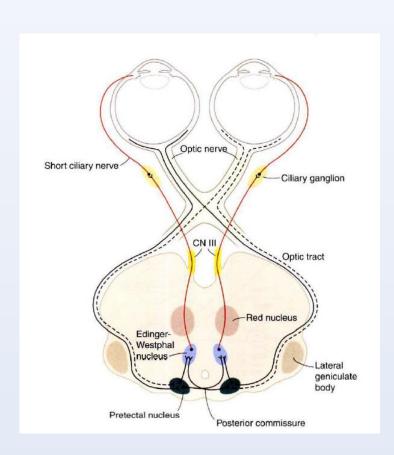


- Dentro del seno cavernoso, fibras S destinadas a los ms. dilatadores salen de la carótida junto con VI pc
- En la parte anterior del seno cavernoso, las fibras S se unen a la rama nasociliar
- En el vértice de la órbita , las fibras pasan a través del ganglio ciliar (sin sinapsis) .
- Junto con la rama nasociliar, el <u>S alcanza el</u> globo y viaja con los nervios ciliares largos a los músculos dilatadores de la pupila



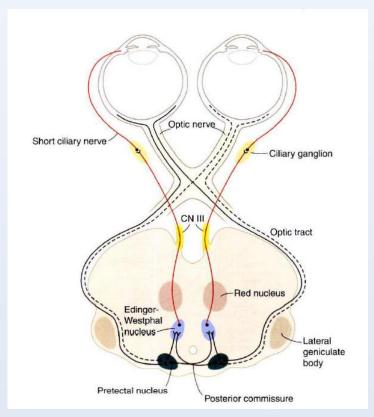


- Las **fibras S** con destino al **músculo Muller** viajan a lo largo de la arteria oftálmica y sus ramas. Las fibras S orbitales superiores también inervan las **glándulas sudoríparas de la frente**.
 - Alteración de estas fibras simpáticas es responsable tanto de ptosis leve como de anhidrosis frontal.



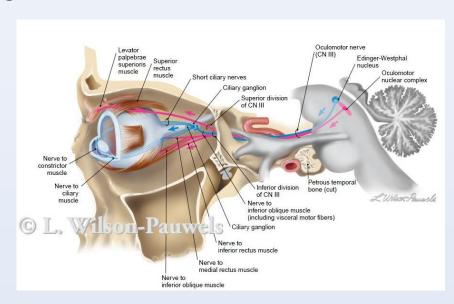
- 1. VÍA AFERENTE
 - i. Primera Neurona:
 - i. Retina
 - ii. NO
 - iii. Quiasma
 - iv. Núcleo pretectal del mesencéfalo
- 2. VÍA EFERENTE
 - i. Segunda neurona:
 - i. Pretectal
 - ii. Ambos núcleos EW
 - ii. Tercera neurona
 - i. EW
 - ii. IIIpc
 - iii. Ganglio ciliar
 - iii. Cuarta neurona
 - i. G. ciliar
 - ii. N. ciliares cortos
 - iii. Esfinter pupilar.

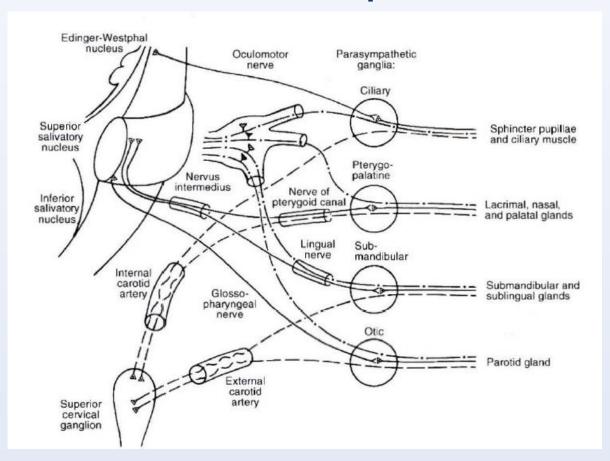
 Los núcleos pretectales reciben información directamente de las vías aferentes visuales a través del tracto pupilar, y sale por el tracto óptico en el brazo del colículo superior (Anterior al cuerpo geniculado lateral)

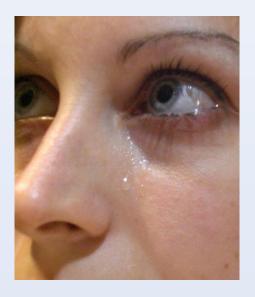


- Originada en varias áreas del tronco del encéfalo
- Las fibras que controlan los ms. del esfínter pupila se originan en los núcleos de **Edinger-Westphal** (IIIpc) en el mesencéfalo
 - La entrada principal al núcleo EW procede del N. Pretectal tanto directamente como a través de la comisura posterior

- Corteza, hipotálamo, S. reticular activado aportan señales inhibitorias al EW
 - Durante el sueño, la pupila se vuelve pequeña, debido a la pérdida de esta actividad




- Fibras PS y IIIpc salen del núcleo del IIIpc
- En el espacio subaracnoideo , las fibras Ps discurren en la superficie medial del III par. Cuando éste se bifurca en el seno cavernoso, el PS discurre en su división inferior
- En vértive orbitario: sinapsis en ganglio ciliar
- Las fibras postsinápticas van con la rama del Oblicuo inferior para unirse a los nervios ciliares posteriores y llegar al segmento anterior y ms. esfínter del iris.



- La inervación PS de Gl. Lagrimal se origina en el N. salivar superior.
- Las fibras postganglionares viajan superiormente a través de la fisura orbital inferior y luego con el nervio lagrimal para llegar a la glándula.
 - Fibras parasimpáticas son responsables de lagrimeo reflejo

FUNCIONES DEL IRIS

El iris actúa como un diafragma para regular la cantidad de luz que entra al ojo.

Los dos músculos del iris están inervados por separado:

El parasimpático inerva al músculo del esfínter es responsable de la constricción de la pupila

El Simpático inerva al músculo dilatador causando el agrandamiento de la pupila

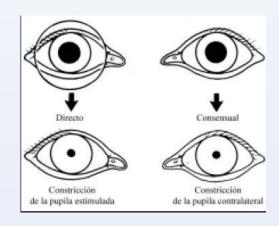
TAMAÑO DE LA PUPILA EN CONDICIONES NORMALES: 2-6 mm

- Asimetrías pupilares <0.3 mm en 20-30% población
- Con la edad el tamaño pupilar disminuye

PRINCIPAL FACTOR QUE INFLUYE EN EL TAMAÑO PUPILAR: INTENSIDAD DE LUZ QUE LLEGA A LA RETINA

<u>EQUILIBRIO ENTRE FIBRAS PUPILOCONSTRICTORAS (PS) Y</u> <u>PUPILODILATADORAS (S)</u>

- 1. Reflejo Fotomotor Directo
- 2. Reflejo Fotomotor Consensual
- 3. Reflejo de Acomodación y Convergencia
- 4. Otros reflejos



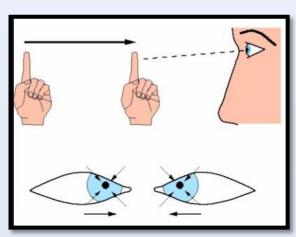
1. Reflejo Fotomotor Directo:

• Estímulo luminoso a la retina: contracción de pupila homolateral.

2. Reflejo Fotomotor Consensual:

 La estimulación de la retina con la luz produce una contracción de la pupila del ojo opuesto

Debido a la decusación de las fibras tanto a nivel del quiasma como en la región pretectal



3. Reflejo de acomodación y convergencia

- Sincinesia
- Se activa cuando la mirada cambia de un objeto distante a uno cercano
- Acomodación-convergencia-miosis
- Centro del reflejo mal definido (vías finales = reflejo luminoso)
 - Influencias lóbulos frontal y occipital

4. Reflejo cilioespinal:

 Dilatación pupilar con estímulo doloroso de la piel del cuello del mismo lado

5. Reflejo oculosensitivo:

 Contracción de la pupila, o dilatación seguida de contracción en respuesta a una estimulación dolorosa de los ojos o de los anejos de los mismos

6. Reflejo orbicular:

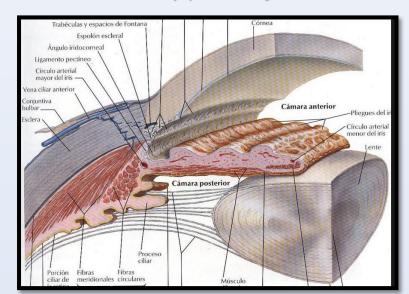
 Contracción pupilar al cerrar un ojo con fuerza o los dos durante el sueño o al desviar la mirada hacia arriba

7. Hippus:

- Atetosis pupilar
- Ensanchamiento y constricción alternados consecuencia de los cambios en el equilibrio entre inervación S y PS

Pupila amaúrótica:

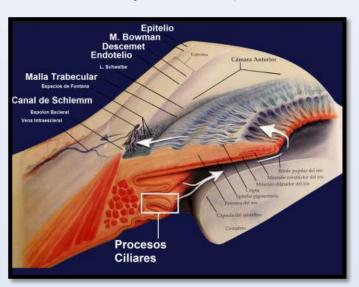
- No fotomotor directo ni consensuado de ojo contralateral
- Ojo contralateral: sí fotomotor directo y consensual de ojo ciego (decusación de fibras)



El cuerpo ciliar produce y secreta el humor acuoso

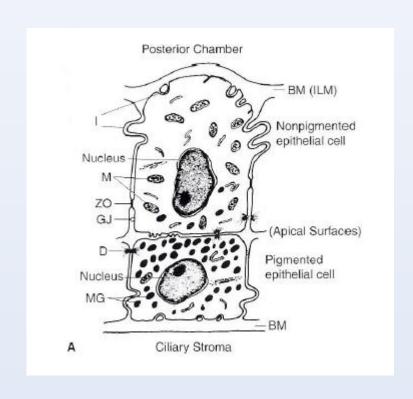
Su musculatura causa acomodación y puede afectar a la salida del humor

acuoso



Producción de Humor Acuoso:

- Se forma en los procesos ciliares
 - i. Doble capa de epitelio sobre núcleo de estroma con abundantes capilares fenestrados: gran área de superficie para la secreción en la cámara posterior
 - ii. 80
 - iii. Gran número de capilares (círculo arterial mayor del iris)



Producción de Humor Acuoso:

 Las superficies apicales epiteliales de la capa pigmentada (E) y no pigmentada (I) están ENFRENTADAS y con uniones intercelulares estrechas (Barrera Hemato-Acuosa)

Células EPITELIALES NO PIGMENTADAS: se cree *localización real* de producción de humor acuoso (mitocondrias, vellosidades)

Producción de Humor Acuoso:

3 mecanismos de producción y secreción:

- 1. Difusión
- 2. Ultrafiltración
- 3. Secreción activa

Difusión:

Movimiento pasivo de iones a través de una mb en función de carga y concentración

Secreción activa:

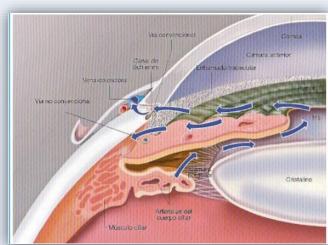
- Las moléculas son transportadas a través de la mb contra gradiente electroquímico utilizando energía (indep presión): participan Na, Cl, HCO3
- Implica Anhidrasa Carbónica y ATPasa

Representa el 80 % a 90 % de produccion acuosa!

Ultrafiltración:

Movimiento dependiente de gradiente de presión

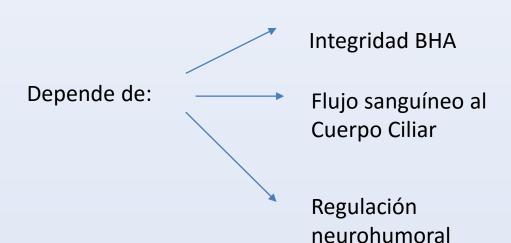
- Desplazamiento de líquido al interior del ojo
 - Favorecido dif Ph entre capilares y PIO
 - Dificultado por el grad. Oncótico

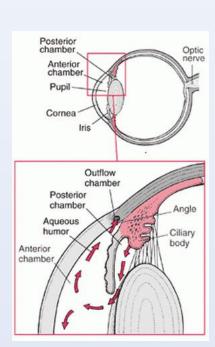


Producción de Humor Acuoso:

Humor acuoso:

- Exceso de Hidrógeno, Cloro, Ascorbato
- Déficit de Bicarbonato
- Carece de proteínas (1/200-1/500 de la concentración en plasma). Albúmina ½ proteínas totales
- Factores de crecimiento, anhidrasa carbónica, lisozima, PGs, AMPc,
 Catecolaminas, ácido hialurónico,...

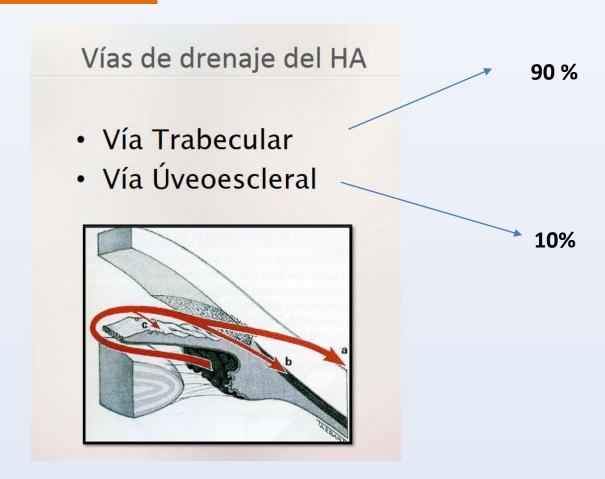




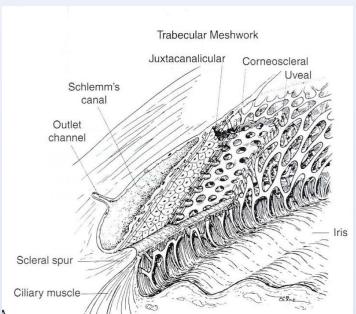
Producción de Humor Acuoso:

Humor acuoso:

- Su composición cambia a medida que pasa de la CP a la CA (vasos sanguíneos del iris, endotelio corneal, superf hialoidea vítrea, cristalino)
- Velocidad de formación:
 - > 2-2.5microl/min
 - > Recambio vol total: 1% minuto
 - Disminuye durante el sueño, edad, traumatismos, inflamaciones, oclusión carotídea, Fármacos



Drenaje de Humor Acuoso:

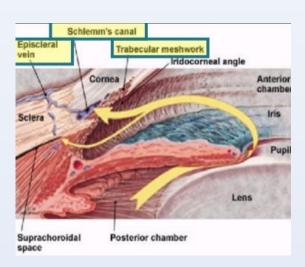


Drenaje de Humor Acuoso:

- 1. DRENAJE TRABECULAR
 - Dependiente de presión
 - Complejo MALLA TRABECULAR- CANAL SCHLEMM-SISTEMA VENOSO

Malla trabecular:

- i. <u>Tres zonas</u>: uveal, corneoescleral,yuxtacanalicular
- ii. Válvula unidireccional (sin gasto E)



Drenaje de Humor Acuoso:

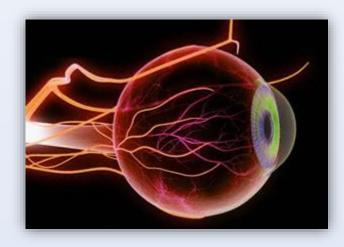
- 2. DRENAJE ÚVEOESCLERAL
- Independiente de Presión
- Paso de HA desde CA hacia el Ms. Ciliar, espacios supraciliar y supracoroideo
 - HA sale esclerótica intacta, nervios y vasos que la atraviesan
- Influido por la edad
- Aumenta con Cicloplejia, F adrenérgicos y análogos PG, ciclodiálisis
- Disminuye por acción de mióticos

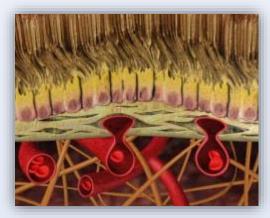
Barrera hemato-acuosa:

- Uniones estrechas de las células endoteliales de los vasos uveales (capilares fenestrados)
- Barrera efectiva para moléculas de alto peso molecular (albúmina)
- En traumatismos, inflamaciones, drogas,...: ruptura de la BHA y entrada de componentes del plasma en CA

Producción vítreo

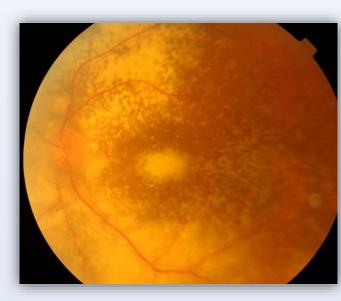
Los investigadores han sugerido recientemente que procesos similares pueden ocurrir en el epitelio de la pars plana y tienen un papel significativo en la producción y secreción de diversas macromoléculas del tejido conectivo ubicado en el cuerpo vítreo





FUNCIONES DE LA COROIDES:

- Proporciona nutrientes a la retina
- Elimina catabolitos de la retina
- Absorbe el exceso de luz
- El espacio supracoroidal proporciona una vía para los vasos y nervios posteriores que suministran el segmento anterior.


FUNCIONES DE LA COROIDES:

• En jóvenes:

- Metabolitos pasan desde la coroides a través de la Mb de Bruch y EPR hasta la retina neural
- El agua se mueve predominantemente desde la retina neural a la coroides
- Los productos de desecho se eliminan vía coroides

Conforme avanza la edad:

- ❖ Acúmulos de lipofucsina en EPR
- Desechos lipídicos empiezan a acumularse en la Mb de Bruch
- Puede inhibir la entrada metabólica a la retina neural
- La presencia de una barrera hidrófoba dentro de la membrana de Bruch impide el paso del agua y puede resultar en el desprendimiento de EPR.

BIBLIOGRAFÍA

- Oftalmología Clínica. Jack J. Kanski
- AAO. Neuro-ophthalmology
- Clinical Anatomy and Physiology Lee Ann Remington 3 Ed
- http://www.neurowikia.es/content/semiologia-de-los-trastornosoculares-en-la-disfuncion-autonomica

¡Muchas Gracias!