

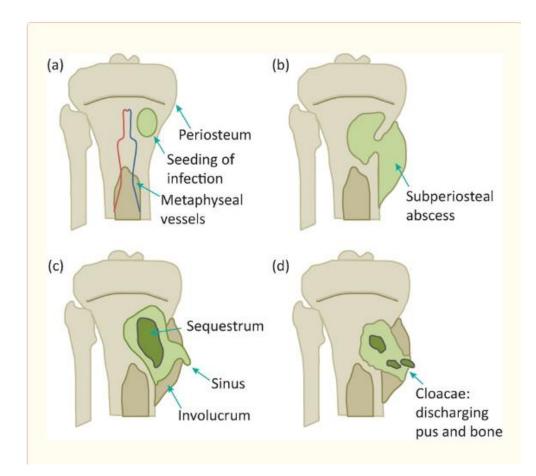
June 9, 2022 Monica Sikka, MD Associate Professor of Medicine Division of Infectious Diseases

Objectives

- Be familiar with factors that may lead to osteomyelitis
- Be familiar with complications of vertebral osteomyelitis
- Discuss diabetic foot infections
- Discuss osteomyelitis complicating sacral pressure ulcers
- Understand the role of biofilm in prosthetic joint infections (PJI)
- Briefly discuss DAPITO and OVIVA trials for duration and modality of treatment

How does it happen?

- Hematogenous seeding
 - Vertebral osteomyelitis, Long bones (kids)
- Continguous spread
 - Open wound; diabetic foot infection
- Direct Inoculation
 - Trauma or surgery



Classification by time of onset

- Acute: within 2 weeks of infection
- Subacute: within 1-2 months of infection
- Chronic: >2 months of infection

Pathogenesis of Osteomyelitis

Colston et al. Clinical Medicine, 2018.

Host factors for Osteomyelitis

- Poorly controlled Diabetes
 - Decreased response to infection and bacterial proliferation
- Peripheral vascular disease
 - Local ischemia
- Substance use disorder (injection drug use)
- Sickle cell disease
 - Impaired gut defense

Which of the following is most true about acute or subacute osteomyelitis?

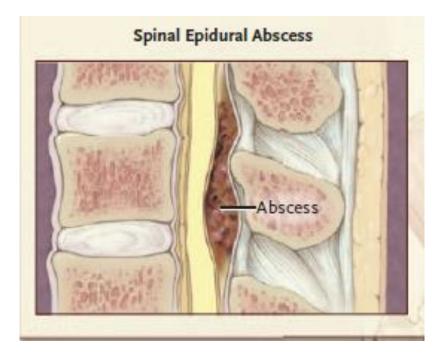
- a. It is typically treated with 4-weeks of antibiotics
- b. Diagnosis can be made by x-ray 7-14 days after infection
- c. Cure can only be achieved with IV antibiotics
- d. The most common bacterial cause is Staphylococcus aureus

Why is *S. aureus* the most common cause?

- Pathogenici ty
- Sticky

	6-week regimen (n=176)	12-week regimen (n=175)	Total (n=351
Microbiological diagnosis			
Blood culture	119 (68%)	121 (69%)	240 (68%)
CT-vertebral biopsy	67 (38%)	71 (41%)	138 (39%)
Perioperative surgical biopsy	9 (5%)	10 (6%)	19 (5%)
Microbiological identification			
Staphylococcus aureus†	69 (39%)	76 (43%)	145 (41%)
Coagulase-negative Staphyloccocus‡	29 (16%)	32 (18%)	61 (17%)
Streptococcus spp	32 (18%)	31 (18%)	63 (18%)
Enterococcus spp	11 (6%)	15 (9%)	26 (7%)
Enterobacterial spp	22 (13%)	16 (9%)	38 (11%)
Anaerobia	7 (4%)	6 (3%)	13 (4%)
Other Gram-negative bacteria	6 (3%)	4 (2%)	10 (3%)
Other Streptococcus	4 (2%)	4 (2%)	8 (2%)

Bernard et al. Lancet 2015.


In a patient with thoracic vertebral osteomyelitis

- a. CT scans are highly sensitive for diseases of the spinal cord
- b. If there is a history of back pain or injury, this decreases the likelihood of osteomyelitis as the diagnosis
- c. An epidural abscess is a medical emergency b/c the spinal cord may be irreversibly compressed and infarcted
- d. Complete paralysis for greater than 3 days is an indication for surgery

Spinal Epidural Abscess

- Often rupture posteriorly into epidural space
- Typically extend 3-4 vertebrae

Staging of symptom progression

- Back pain at affected spinal level
- Nerve root pain radiating from involved spinal areas
- Nerve dysfunction: weakness, lost sensation, bowel and bladder dysfunction
- Paralysis
 Davis et al. J Emer Med. 2004.

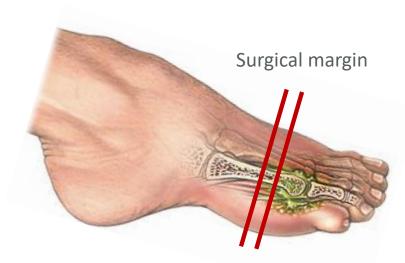
Staging of symptom progression

Table 6. Comparison Between Patients with an Neurologic Outcome	nd without Diagnostic Dela	y with Regard to Clinical Preser	ntation and
Parameter	Patients with Diagnostic Delay (n = 47)	Patient without Diagnostic Delay 68% in dx delay	Odds Ratio
% of all patients Multiple ED visits (%) Admission delay (%) Neurologic deterioration during "delay" (%)	75 68 66 57	group had h/o	N/A N/A N/A N/A
"Classic triad" present at admission (%) Residual weakness at discharge (%)	9 45	13 13	0.65 (0.11–3.95 5.7* (1.2–27.7)

Darouiche, NEJM. 2006. Davis et al. J Emer Med. 2004.

In patients with DM and chronic osteomyelitis of the foot, medical management with antibiotics alone is difficult b/c:

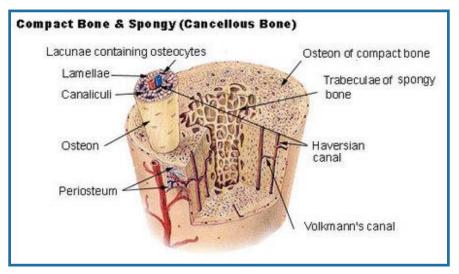
- a. It's likely caused by a highly resistant bacteria
- The infected tissue likely has impaired vascular supply and thus impaired antibiotics and immune cell delivery
- c. Patients with diabetes may not be able to complete full courses of treatment
- d. These infections are often polymicrobial so it is difficult to find antibiotics to cover all organisms that grow in culture

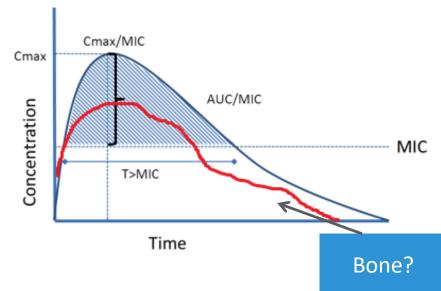

Diabetic foot infections

- Commonly through contiguous/local spread
- Metatarsal head and heel
- MRI most helpful imaging modality
- Culture yield is increased if off antibiotics at least
 48 hours

Importance of cultures

- Typically polymicrobial
 - Certain bacteria make difference in treatment
- Source control is critical for cure
 - Surgical margin cultures
 - Surgical pathology



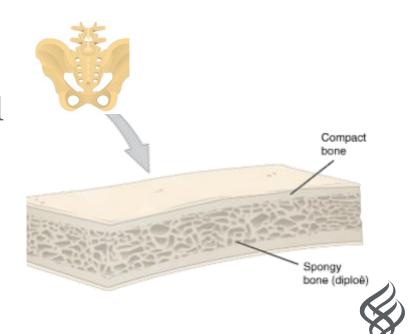


Lipsky et al. CID, 2012. Image: A.D.A.M.

Blood supply matters

In a patient with a sacral pressure ulcer, if bone is exposed:

- a. Empiric vancomycin + piperacillin/tazobactam should be initiated
- b. This is diagnostic of osteomyelitis
- c. MRI will be most helpful in diagnosis of osteomyelitis
- d. Bone biopsy after debridement would be necessary to establish a diagnosis of osteomyelitis


Osteomyelitis and Sacral Pressure Ulcers

- Exposed bone does not always mean osteomyelitis
 - Biopsy after debridement to make diagnosis
- Role of imaging limited by variable specificity
- If osteomyelitis, no data to support antibiotics without plan for covering wound

Osteomyelitis and Sacral Pressure Ulcers

- Duration of treatment:
 - Restricted to superficialbony cortex = 2 weeks
 - Medullary bone = 4-6weeks

62 y/o male w/progressive R hip pain 7 months after R THA. The pain started 4 wks after surgery. On exam, has pain on external rotation of the right hip. X-ray shows loosening of the prosthesis. CBC, ESR, & CRP are normal.

- a. The normal labs and lack of systemic symptoms rule out infection
- b. Coagulase negative *staphylococci* is the most likely cause of his pain
- c. The loosening on x-ray is diagnostic of a late infection
- d. A hip incision and drainage with prosthesis retention would provide optimal chance of cure

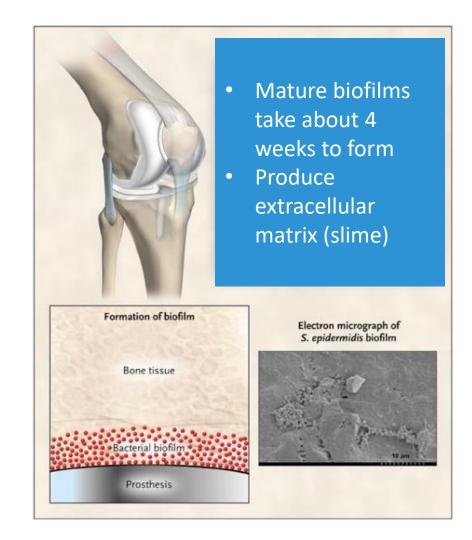
Prosthetic joint infection & Periprosthetic Osteomyelitis

Organism	All	Late PJI (> 12 months implant) (n=182)
S. aureus	21-43%	13.1%
Coag-neg staphylococci	17-39%	33.9%
Streptococci	7-12%	*Cutibacterium acnes makes
Enterobacteriaceae	5-12%	up 3% of hip/knee PJI, but 38%
Enterococci	1-8%	of shoulder PJI
Anaerobic bacteria	2-6%	17.6 %(<i>C. Acnes</i>)

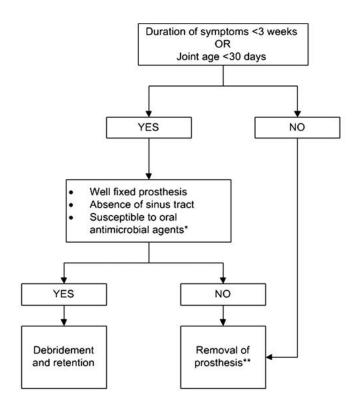
Mandell et al. 2015.
Triffault-Fillit et al. Clin Microbiol Inf 2019.

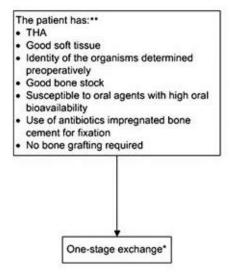
When to suspect PJI?

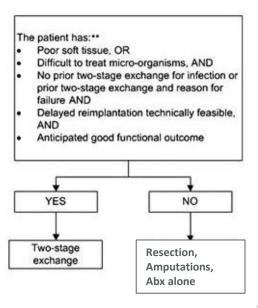
- Acute onset of pain of prosthetic joint
- Chronic painful prosthesis at any time after prosthesis implantation
- Sinus tract or persistent wound drainage
- History of prior wound healing problems or superficial or deep infection


Which is most true: In a patient with a prosthetic joint infection (PJI) that develops 6 months after surgery:

- a. The infection in the joint likely occurred in the prior 3-4 weeks
- b. Aspirate cultures are highly sensitive in making the diagnosis
- c. Cure rates are similar with hardware removal and retention, but antibiotic duration differs
- d. Cure is dependent on removing the bacteria in the biofilm




What is biofilm?


- Chronic hardware infections difficult to cure without removal/explant
- Need Source Control!

IDSA PJI Guidelines

DAIR - Risk factors for failure

- Successful in 52-65% of hip and knee PJI
- Increased failure:
 - Longer duration since primary arthroplasty
 - Increased CRP at diagnosis
 - S. aureus and Gram negative organisms

DATIPO Trial: Duration of Antibiotic Treatment in PJI

- Multicenter, open-label, randomized controlled noninferiority trial
- Primary end point: persistent infection within 2 yrs of end of abx
 - 6 weeks: 18.1% 12 weeks: 9.4%
- 8.7 difference in risk (95% CI, 1.8 to 15.6)
 - Did not meet criterion for non inferiority
- No significant difference in AEs: C.diff, Length of stay, Functional outcomes

Subgroup	6-Wk Therapy	12-Wk Therapy					Risk Di	fference (95% C	:1)
	no. of patients wil	th event/total no. (%)				per	centage po	oints	
All patients	32/190 (16.8)	15/188 (8.0)				4				8.9 (2.2 to 15.6)
Surgical procedure										
Débridement	23/75 (30.7)	11/76 (14.5)				-		-	-	16.2 (2.9 to 29.5)
Two-stage revision	6/40 (15.0)	2/41 (4.9)		H			-		-	10.1 (-3.1 to 23.3)
One-stage revision	3/75 (4.0)	2/71 (2.8)		-	-					1.2 (-4.8 to 7.1)
Affected joint										
Hip	19/122 (15.6)	9/117 (7.7)			-		•			7.9 (-0.2 to 16.0)
Knee	13/68 (19.1)	6/71 (8.5)			+		-		-	10.7 (-0.9 to 22.2)
Episode of prosthetic joint infection										
First	27/162 (16.7)	13/160 (8.1)			· -					8.5 (1.4 to 15.7)
At least the second	5/28 (17.9)	2/28 (7.1)	- 1			77%	-	9315	-	10.7 (-7.0 to 28.4)
		-	10	-5	ó	5	10	15	20	
		-		C. 27072		5456.7	9550.98	Walteroot	_	

Antibiotics and route

Table 1. Demographic and Clinical Characteristics of the Patients at Baseline and Antibiotic Treatments during the Trial.*					
Characteristic	6-Wk Therapy (N=203)	12-Wk Therapy (N=201)			
Antibiotic treatment					
Median duration of intravenous administration (IQR) — days $\P\P$	9 (5–15)	9 (5–15)			
≥1 Oral antibiotic agent — no./total no. (%)	191/203 (94.1)	189/201 (94.0)			
Rifampin	144/191 (75.4)	123/189 (65.1)			
Quinolone	137/191 (71.7)	123/189 (65.1)			
Clindamycin	35/191 (18.3)	52/189 (27.5)			
Trimethoprim–sulfamethoxazole	22/191 (11.5)	34/189 (18.0)			
Amoxicillin with or without clavulanic acid	19/191 (9.9)	21/189 (11.1)			

You are counseling a patient on treatment of their osteomyelitis, which is most true:

- a. After surgical debridement, IV antibiotics for 4-6 weeks are best to achieve cure
- b. 2-5 days of antibiotics is adequate after surgery
- c. A long acting injectable antibiotic like dalbavancin should not be considered in any situation
- d. Oral antibiotics may be a possible treatment option depending on the susceptibilities of the infecting organism and the bioavailability of the potential antibiotic

Oral V IV Antibiotics for Bone and Joint Infections: OVIVA

- *Inclusion criteria:*
 - Native osteomyelitis of extra-axial skeleton, Native joint infection requiring excision arthroplasty, PJI/Orthopedic fixed-device infection, Vertebral osteomyelitis with or without associated diskitis or soft tissue infection, Surgery and no surgery
- "Pragmatic": ID physician picked which antibiotic (IV or Oral) once assigned
- Treatment success at 1 year about 86% **irrespective of treatment route**

Surgical management common in OVIVA – Source control!

Characteristic		Intravenous Group (N = 527)	Oral Group (N = 527)	Total (N = 1054)
Age — yr				
Median (interquartile ra	0-1-7-60/ -1:1	1	70)	60 (49-70)
Range	Only 7.6% did not	nave some	sort	18-92
Male sex — no. (%)	of surgical in	tervention	7.9)	678 (64.3)
Baseline surgical procedure	or surficul III	CONTROLL		
No implant or device pr elitis performed	esent; débridement of chronic osteomy-	153 (29.0)	169 (32.1)	322 (30.6)
No implant or device pr elitis not performed	esent; débridement of chronic osteomy-	25 (4.7)	29 (5.5)	54 (5.1)
Débridement and impla	int retention	124 (23.5)	123 (23.3)	247 (23.4)
Removal of orthopedic	device for infection	89 (16.9)	78 (14.8)	167 (15.8)
Prosthetic joint implant	removed	68 (12.9)	67 (12.7)	135 (12.8)
Prosthetic joint implant	, one-stage revision	47 (8.9)	43 (8.2)	90 (8.5)
Surgery for diskitis, spir débridement perfor	nal osteomyelitis, or epidural abscess; med	8 (1.5)	5 (0.9)	13 (1.2)
Surgery for diskitis, spir débridement not pe	nal osteomyelitis, or epidural abscess; rformed	13 (2.5)	13 (2.5)	26 (2.5)

OVIVA: Antibiotics Selected

Oral antibiotics: known to have good bio- availability:

- Quinolones
- Clindamycin
- Tetracycline
- Combination (Cipro + doxy/clinda)

	Participants randomized to IV Antibiotic* (N = 521)	Participants randomized to PO Antibiotic* (N = 523)	Total* (N = 1044)
Glycopeptides ^a (IV)	214 (41.1%)	22 (4.2%)	236 (22.6%)
Penicillins (IV)	38 (7.3%)	11 (2.1%)	49 (4.7%)
Cephalosporins (IV)	173 (33.2%)	8 (1.5%)	181 (17.3%)
Carbapenems (IV)	41 (7.9%)	5 (1.0%)	46 (4.4%)
Other single IV antibiotic	35 (6.7%)	2 (0.4%)	37 (3.5%)
Combination IV antibiotics	35 (6.7%)	6 (1.1%)	41 (3.9%)
Penicillins (PO)	8 (1.5%)	83 (15.9%)	91 (8.7%)
Quinolones ^b (PO)	33 (6.3%)	191 (36.5%)	224 (21.5%)
Tetracyclines ^c (PO)	4 (0.8%)	57 (10.9%)	61 (5.8%)
Macrolides / Lincosamide d (PO)	10 (1.9%)	68 (13.0%)	78 (7.5%)
Other single PO antibiotic (PO)	10 (1.9%)	54 (10.3%)	64 (6.1%)
Combination PO antibiotics (PO)	13 (2.5%)	87 (16.6%)	100 (9.6%)

Take home points:

- Blood supply and source control are essential to treating osteomyelitis
- Most biofilms need surgical management
- Exposed bone in a sacral pressure ulcer does not automatically mean osteomyelitis
- Oral antibiotics can be used, especially in setting of good source control

Thank You

Sikka@ohsu.edu Twitter: @sikkamon