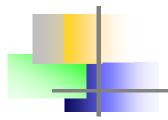

Jon Jui MD, MPH

The Literature Favors Scoop and Run


Aeromedical Literature

Aeromedical vs Ground Transport

Year	Author	Type of Study	Details	Number of patients	Conclusions
2007	Mitchell	Retrospective, Trauma Regisry Nova Scotia, Canada	1998-2002	823	Better outcomes in helicopter patients ISS > 12
2012	Galvango	Retrsopective Study, US	National Trauma databank 2007- 2009	223,475	Improved survival in patients transported by Helicopter
2013	Hesselfeldt	Retrospective Study, Denmark	PS-HEMS service, Eastern Denmark 2009-2011	1788	Improved survival 30 days in helicopter patients
2018	Michaels	Retrospective study, US	National Trauma Databank 2014	469,407	Helicopter patients 57% less likely to die

Police VS EMS Transport

Police VS EMS Transport

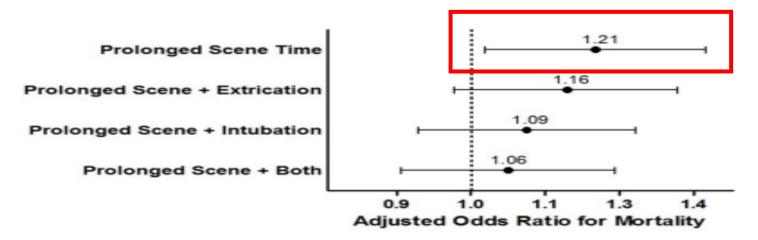
Year	Author	Type of Study	Details	Number of Patients	Conclusions
2010	Band	Retrospective	Trauma Registry	2127	Unadjusted mortality higher in police transport
2014	Band	Retrospective	Trauma Registry	4122	Patients with severe injury (ISS > 15) with GSW and stab wounds more likely to survive if transported by police
2016	Wandlin g	Retrospective	National Trauma Databank 2010 to 2012	88,564	For TSE, patients with penetrating injury hve similar mortality for police and EMS transports
2021	Colnaric	Retrospective	National Trauma Databank 2015	2394	Factors associated with survival include comorbidity, durg use, cut or pierce, mechanism, fractures
2022	Arbid	Retrospective	National Trauma Databank 2015	733	Police transported patients had similar outcomes as EMS Tx
2022	Taghavi	Prospective observational	Multicentered 25 trauma centers	1618	Police transport of penetrating trauma patients in urban locations results in similar outcomes compared to ALS Tx

Published in final edited form as:

J Trauma Acute Care Surg. 2016 July ; 81(1): 93-100. doi:10.1097/TA.00000000000999.

Not All Prehospital Time is Equal: Influence of Scene Time on Mortality

Joshua B. Brown, MD, MSc¹, Matthew R. Rosengart, MD, MPH¹, Raquel M. Forsythe, MD¹, Benjamin R. Reynolds, MPAS, PA-C¹, Mark L. Gestring, MD², William M. Hallinan, RN, MS, EMT-P², Andrew B. Peitzman, MD¹, Timothy R. Billiar, MD¹, and Jason L. Sperry, MD, MPH¹


Joshua B. Brown: brownjb@upmc.edu; Matthew R. Rosengart: rosengartmr@upmc.edu; Raquel M. Forsythe: forsytherm@upmc.edu; Benjamin R. Reynolds: reynoldsbr@upmc.edu; Mark L. Gestring: mark_gestring@urmc.rochester.edu; William M. Hallinan: william_hallinan@urmc.rochester.edu; Andrew B. Peitzman: peitzmanab@upmc.edu; Timothy R. Billiar: billiartr@upmc.edu; Jason L. Sperry: sperryjl@upmc.edu

¹Division of Trauma and General Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213

²Division of Acute Care Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York 14642

Prolonged Scene Time

Figure 2.

Adjusted odds ratio of in-hospital mortality for prolonged scene time compared to no prolonged scene time under several risk-adjustment modeling scenarios for mediation testing. The top row represents the effect of prolonged scene time in the study population using the original risk-adjustment model without controlling for extrication or prehospital intubation. The second and third rows represent the association between prolonged scene time and mortality when controlling for extrication or prehospital intubation respectively in the study population. The bottom row represents association between prolonged scene time and mortality when controlling for both extrication and prehospital intubation in study population.

Results

 Increased response time does not increase patient mortality and increased scene time for extrication does not increase patient mortality

 Prolonged EMS treatment scene time was directly associated with increased patient mortality

Analysis of Scene Time vs Patient Outcomes

The American Journal of Surgery 220 (2020) 240-244

Contents lists available at ScienceDirect

The American Journal of Surgery

journal homepage: www.americanjournalofsurgery.com

Every minute counts: The impact of pre-hospital response time and scene time on mortality of penetrating trauma patients

Ahmed A.H. Nasser, Charlie Nederpelt, Majed El Hechi, April Mendoza, Noelle Saillant, Peter Fagenholz, George Velmahos, Haytham M.A. Kaafarani^{*}

Division of Trauma, Emergency Surgery, and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Results

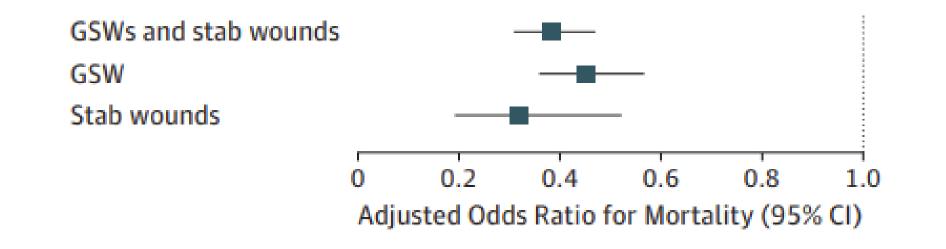
Source: 43,467/1,403,470 patients from TQIP database 2010 to 2016.

- Every minute increase in Prehospital Response Time independently correlates with a 2% increase in mortality (OR 1.02, p < 0.0001)
- Every minute increase in Scene Time independently correlates with a 1% increase in mortality (OR 1.01, p = 0.001).

Conclusion

 In the penetrating injury trauma patient, Prehospital Response Time and Scene Time independently correlate with hospital mortality.

 This data suggests that a faster Prehospital Response Time and a "scoop and run" strategy may be more beneficial in this population


JAMA Surgery | Original Investigation

Association of Prehospital Mode of Transport With Mortality in Penetrating Trauma A Trauma System-Level Assessment of Private Vehicle Transportation vs Ground Emergency Medical Services

Michael W. Wandling, MD, MS; Avery B. Nathens, MD, PhD; Michael B. Shapiro, MD; Elliott R. Haut, MD, PhD

Figure 2. Risk-Adjusted Odds Ratios for Mortality for Private Vehicle Transport When Compared With Ground Emergency Medical Services Transport

GSW indicates gunshot wound.

The impact of prehospital time intervals on mortality in moderately and severely injured patients

Job F. Waalwijk, MD, Rogier van der Sluijs, MD, PhD, Robin D. Lokerman, MD, Audrey A.A. Fiddelers, PhD, Falco Hietbrink, MD, PhD, Luke P.H. Leenen, MD, PhD, Martijn Poeze, MD, PhD, Mark van Heijl, MD, PhD, and the Pre-hospital Trauma Triage Research Collaborative (PTTRC), Utrecht, the Netherlands

Conclusion

- A prolonged on-scene time is associated with mortality in moderately and severely injured patients, which suggests that a reduced onscene time may be favorable for these patients.
- In addition, transport time was found not to be associated with mortality

Changing the Paradigm of EMS Treatment of Trauma Patients

Scoop and Run & Resuscitate Enroute

What EMS interventions are needed

Control of hemorrhage

- External
- Torso
 - Pelvic Splint
- Airway
- Pneumothorax
- Circulation (as per protocol)

What do the hospitals have that EMS does not

- Trauma Surgeons
- Critical care nurses
- Pharmacists
- Respiratory therapist

Hospital Logistics

- Blood
- Medications
- Imaging
- Advanced monitoring
 - Arterial lines
 - Central lines

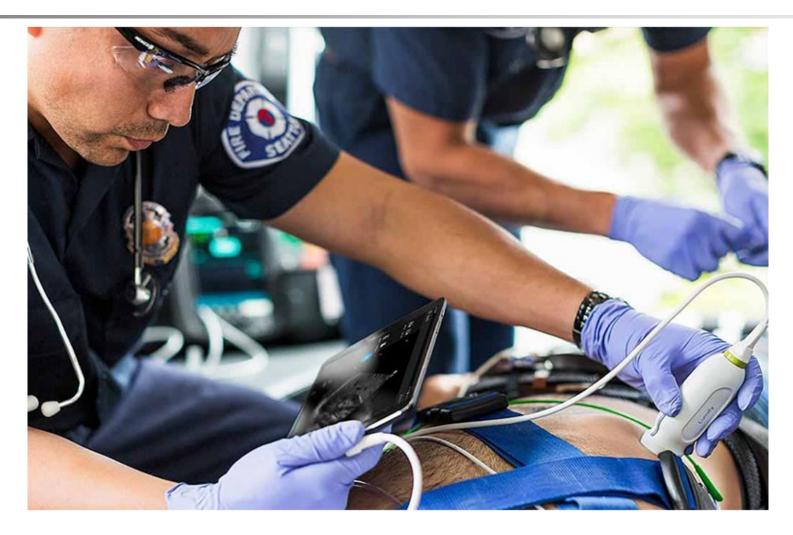
Where / When does stay and play makes sense

Mass Casualty Incident

- 2004 Madrid train boming
- Boston Marathon

EMS Technology Advances

EMS Technologic Advances



Airway Management

Ultrasound in the Field

MCEMS Trauma Airway Management

MCEMS Intubation Patients NOT in cardiac arrest VL Success Trauma Patients

	Number	Percent
Success	77	89%
Unsuccessf ul	6	11%
Total	83	100

EMS Fluid Administration in Trauma Patients

Published in final edited form as: Crit Care Clin. 2017 January ; 33(1): 15–36. doi:10.1016/j.ccc.2016.08.007.

Optimal Fluid Therapy for Traumatic Hemorrhagic Shock

Ronald Chang, MD^{1,2,3} and John B. Holcomb, MD^{1,2}

¹Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX

²Department of Surgery, University of Texas Health Science Center, Houston, TX

Brown J Trauma Acute Care Surg. 2013;74

Summary: Controlled Resuscitation

Date	Investigator	PH Fluid Outcomes	Comments
	1985 Smith	No difference	
	1990 Kaweski	No difference	
	1994 Bickell	Worsened	Penetrating trauma
	2002 Dutton	No difference	
	2002 Dula	No difference	
	2011 Morrison	No difference	Increased post operative bleeding complications
	2013 Hampton	YES, but in head injury	NO change in BP noted
	2013 Brown	YES, but in head injury	Fluid restriction in normotensive patients lead to better outcomes
	2015 Schreiber	No difference	CR may offer survival benefit in blunt injury patients

Summary Conclusions

- For specified patient populations, controlled resuscitation is a viable concept and may improve outcomes.
 - Penetrating
 - Blunt
- Contraindications
 - Head injury
 - Severely hypotensive
 - Prolonged severe hypotension
 - Elderly

Whole Blood in Civilian EMS 2022

Mortality in Trauma: Timing of Critical Interventions

Transport Time and Preoperating Room Hemostatic Interventions Are Important: Improving Outcomes After Severe Truncal Injury

John B. Holcomb, MD, FACS

Critical Care Medicine

www.ccmjournal.org 447

Copyright © 2018 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

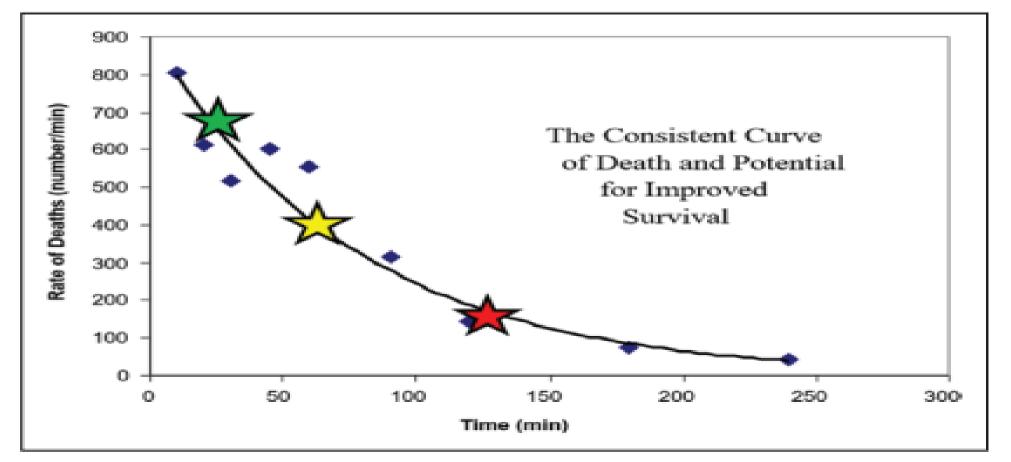


Figure 3. Death versus time: U.S. vehicle-related fatalities from 2003 to 2005. n = 55,537. Modified from Champion et al (23). The Prehospital intervention, the emergency department intervention, the operating room definitive hemostasis.

Timing and Location of Interventions vs Survival

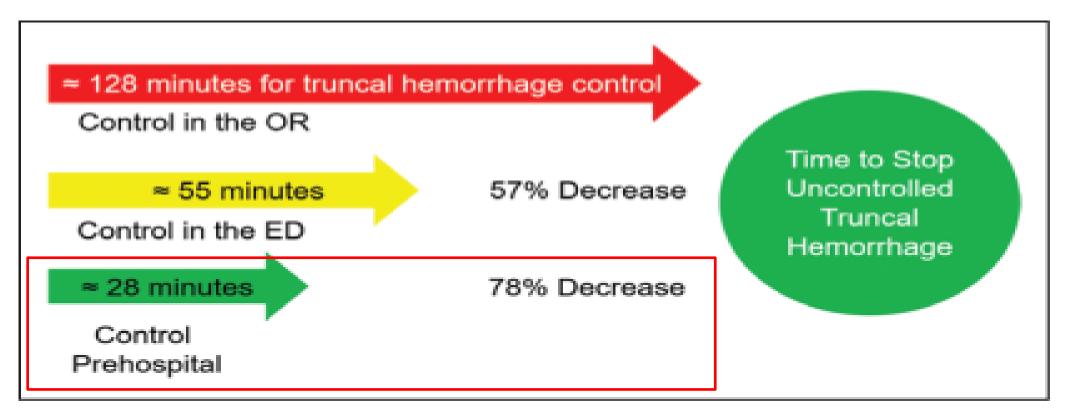


Figure 4. Timeline of truncal hemorrhage control. ED = emergency department, OR = operating room.

Published in final edited form as: Lancet. 2018 July 28; 392(10144): 283–291. doi:10.1016/S0140-6736(18)31553-8.

COMBAT

VOL. 379 NO. 4

Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial

The NEW ENGLAND JOURNAL of MEDICINE

¹⁸¹² JULY 26, 2018

ESTABLISHED II

2018

Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock

J.L. Sperry, F.X. Guyette, J.B. Brown, M.H. Yazer, D.J. Triulzi, B.J. Early-Young, P.W. Adams, B.J. Daley, R.S. Miller, B.G. Harbrecht, J.A. Claridge, H.A. Phelan, W.R. Witham, A.T. Putnam, T.M. Duane, L.H. Alarcon, C.W. Callaway, B.S. Zuckerbraun, M.D. Neal, M.R. Rosengart, R.M. Forsythe, T.R. Billiar, D.M. Yealy, A.B. Peitzman, and M.S. Zenati, for the PAMPer Study Group*

Original Investigation

February 3, 2015

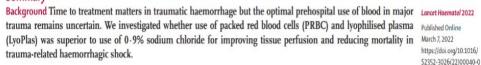
Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma The PROPPR Randomized Clinical Trial

John B. Holcomb, MD¹; Barbara C. Tilley, PhD²; Sarah Baraniuk, PhD²; <u>et al</u>

» Author Affiliations | Article Information JAMA. 2015;313(5):471-482. doi:10.1001/jama.2015.12

FREE

MATTERS


Resuscitation with blood products in patients with trauma-related haemorrhagic shock receiving prehospital care (RePHILL): a multicentre, open-label, randomised, controlled, phase 3 trial

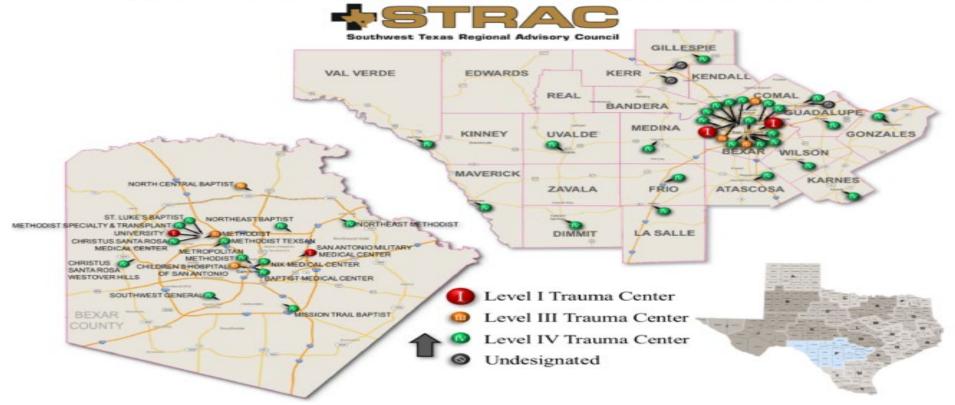
oa

Nicholas Crombie, Heidi A Doughty, Jonathan R B Bishop, Amisha Desai, Emily F Dixon, James M Hancox, Mike J Herbert, Caroline Leech, Simon J Lewis, Mark R Nash, David N Naumann, Gemma Slinn, Hazel Smith, Iain M Smith, Rebekah K Wale, Alastair Wilson, Natalie Ives, Gavin D Perkins, on behalf of the RePHILL collaborative group*

Summary

Whole Blood in the Field

SAFD Paramedic Matt Bowers removes whole blood from a cooler that can keep it cold for up to 50 hours. Credit: Roseanna Garza / San Antonio Report



STRAC Regional Trauma and EMS System

SEZ TRANSFUSION-

BRAVERMAN ET AL.

REGIONAL TRAUMA & EMERGENCY HEALTHCARE SYSTEM

Scoop and Run vs Stay and Play Discussion

Disclaimer

Urban vs Rural

Trauma System Components

- Ground vs Air
- Providers
- Weather
- Trauma Hospitals

Logic and Common Sense

If it were you, where would you prefer to be resuscitated?

Resources Needed for Effective Resuscitation in Severely Injured Trauma Patients

Scoop and Run vs Stay and Play Advantages

SCOOP AND RUN

- Scalability
- Weather
- Multiple Patients
- Medical Logistics
- Penetrating vs Blunt Trauma
- Imaging, Blood Bank
- Cost
- Integrated teams
 - Anesthesia, surgical subspecialities
 - OR
 - Lab / Blood bank
 - Imaging
 - IR

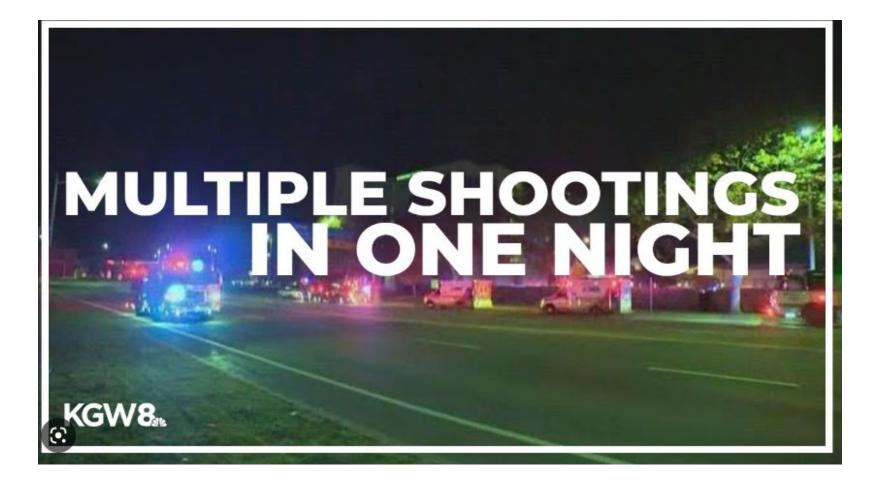
TRAUMA SURGEON AT SCENE

- Time to "definitive care"
- Enhanced care at scene
- Quicker access to intervention(s)

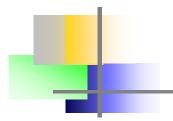
Air vs Ground

Aeromedical Transport Nuances at Scene

Activation vs Landing Preparing the landing zone Loading the patient and handoff Landing the helicopter at the hospital



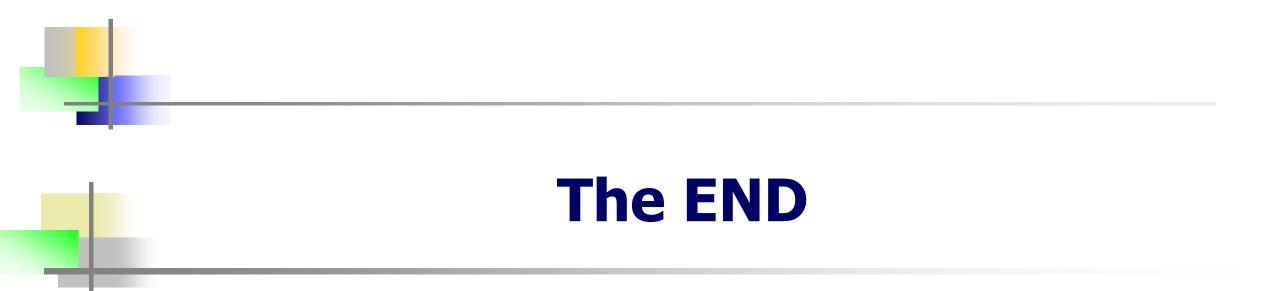
Trauma U.S. vs Rest of World



London Air Ambulance

Summary

ONE SIZE DOESN'T FIT ALL



Different Solutions for Different Events

