ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

AN-9085

Smart Power Module, 600V Motion SPM®3 ver.5 Series User's Guide

Table of Contents

1.	Introduction	2
1.1.	Design Concept	
1.2.	Key Features	2
2.	Product Selections	3
2.1.	Ordering information	3
2.2.	Product Line-up	
2.3.	SPM3 Version Comparison	3
3.	Package	Δ
3.1.	Internal Circuit Diagram	
3.2.	Pin Description	
3.3.	Detailed Pin Definition and Notification	
3.4.	Package Structure	
3.5.	Package Outline	
3.6.	Marking Specification.	9
4.	Product Synopsis	10
4.1.	Absolute Maximum Ratings ($T_J = 25^{\circ}C$, unless otherwise specified)	10
4.2.	Electrical Characteristic (T _J = 25°C, unless otherwise specified)	12
4.3.	Recommended Operating Conditions	
4.4.	Mechanical Characteristics	15
5.	Operation Sequence for Protections	16
5.1.	Short-Circuit Current Protection (SCP)	16
5.2.	Under-Voltage Lockout Protection	
6.	Key Parameter Design Guidance	18
6.1.	Thermal Sensing Unit (TSU)	18
6.1.2.	Test method	
6.1.3.	Test results	20
6.2.	Selection of Shunt Resistor	
6.3.	Time Constant of Internal Delay	
6.4.	Soft Turn-Off	
6.5. 6.6.	Fault Output Circuit	
6.6.2.	Bootstrap Circuit Design	
6.6.3.	Selection of Bootstrap Capacitor Considering Operating	
6.6.4.	Built-in Bootstrap Diode	
-		
7. 7.1.	Print Circuit Board (PCB) Design	
7.1. 7.2.	PCB Layout Guidance	
	•	
8.	Packing Information	30

1. Introduction

This application note supports the 600V Motion SPM[®]3 version 5 series. It should be used in conjunction with Motion SPM 3 datasheets, Fairchild's Motion SPM design reference guidance (*RD-406*), and application note (*AN-9086 — Mounting Guidance*)

1.1. Design Concept

The SPM3 design objective is to provide a minimized package and a low power consumption module with improved reliability. This is achieved by applying new gatedriving high-voltage integrated circuit (HVIC), a new insulated-gate bipolar transistor (IGBT) of advanced silicon technology, and improved direct bonded copper (DBC) substrate base transfer mold package. Motion SPM 3 achieves reduced board size and improved reliability compared to existing discrete solutions. Target applications are inverterized motor drives for industrial use, such as air conditioners, general-purpose inverters and serve motors.

The temperature sensing function of SPM3 version 5 products is implemented in the LVIC to enhance the system reliability. An analog voltage proportional to the temperature of the LVIC is provided for monitoring the module temperature and necessary protections against overtemperature situations. Figure 1 show the package outline structure.

1.2. Key Features

- 600 V 15 A / 20 A / 30 A 3-Phase IGBT Inverter Including Control ICs for Gate Driving and Protections
- Very Low Thermal Resistance by Adopting DBC Substrate
- Easy PCB Layout due to Built-in Bootstrap Diodes
- Divided Negative DC-Link Terminals for Inverter Three-Leg Current Sensing
- Single-Grounded Power Supply due to Built-in HVICs and Bootstrap Operations
- Built-in Temperature Sensing Unit of IC
- Isolation Rating of 2500 V_{RMS}/min

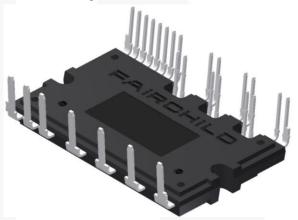


Figure 1. Package outline of Motion SPM3 series

Table 1. Product Line-up

Target Application	Fairchild Device	IGBT Rating	Motor Rating ⁽¹⁾	Isolation Voltage
Air conditioners,	FSBB15CH60D ⁽²⁾	15 A / 600 V	1.5 kW / 220 V _{AC}	$V_{\rm ISO} = 2500 \ V_{RMS}$
Industrial Motor, General-purpose inverters,	FSBB20CH60D ⁽²⁾	20 A / 600 V	2.0 kW / 220 V _{AC}	(Sine 60 Hz, 1-min All Shorted Pins Heat
Servo motors	FSBB30CH60D	30 A / 600 V	3.0 kW / 220 V _{AC}	Sink)

Notes:

- 1. These motor ratings are general ratings, so may be changed by conditions.
- 2. In development; not released to production as of this revision. Check www.fairchildsemi.com for availability

2. Product Selections

2.1. Ordering information

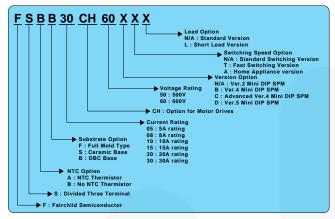


Figure 2. Ordering information of SPM®3 series

2.2. Product Line-up

Table 1 shows the basic line up without package variations. Online loss and temperature simulation tool, Motion Control Design Tool (Motion Control design Tool), is recommended to find out the right SPM product for the desired application.

2.3. SPM3 Version Comparison

As it can be seen from Table 2, Version 5 products have at least the same or lower $V_{\text{CESAT_MAX}}$ compared with the predecessors. Old version products were not released at the same time, and, therefore, there are differences even within the same version products. This version 5 product is the first version in which all the line-up was released at the same with consistent features.

The 600 V Motion SPM 3 version 5 products are much more rugged than previous versions in many aspects.

- V_{CC}-Com and Vb-Vs surge noise immunity level increased about 50%. In other words, when a single surge pulse comes in between these pins, Version 2 products can endure 50% higher level of surge voltage without malfunction.
- Destruction level against surge pulses consecutively coming in between Vb and Vs improved significantly

It should be noted that quiescent current of V_{CC} increased because of TSU function. It does not affect much on selecting the bootstrap capacitor value, but the stand-by power increased by about 2.1mW. There is no change in quiescent current of Vbs.

Table 2. SPM3 version comparison

		Version 2		Vers	ion 4	Version 5
Silicon Technology		Planar F	T IGBT	Planar N	PT IGBT	Trench NPT IGBT
Substrate		Ceramic	DBC	Full pack	DBC	Only DBC
	5 [A]	FSBS5CH60(F) / 2.3 [V]	-	FSBF5CH60B / 2.0 [V]	-	- /
	10 [A]	FSBS10CH60(F) / 2.3 [V]	-	FSBF10CH60B / 2.0 [V]	- /	- /
Current rating / V _{CESAT}	15 [A]	FSBS15CH60(F) / 2.3 [V]	FSBB15CH60(F) / 2.3 [V]	FSBF15CH60BT / 2.2 [V]	FSBB15CH60C / 2.0 [V]	FSBB15CH60D(A) / TBD
CLS/11	20 [A]	-	FSBB20CH60(F) / 2.3 [V]	-	FSBB20CH60C / 2.0 [V]	FSBB20CH60D(A) / TBD
	30 [A]	-	FSBB30CH60(F) / 2.75 [V]	-	FSBB30CH60C / 2.4 [V]	FSBB30CH60D(A) / 2.1 [V]
Vs-Oı	ıtput	Out-be	onding	Inner bonding		Inner bonding
Bootstra	p diode	2	Υ .	O		0
OC/UV protection		()		0	О
Thermal	sensing	2	X		X	0

3. Package

3.1. Internal Circuit Diagram

Major differences between SPM $^{\otimes}$ 3Version 5 and previous versions are colored in red in the internal circuit diagram as shown in Figure 3. Even though some old versions also have these features, Version 5 is the first version which widely adopts these features. Main difference was changed from CFOD to V_{TS} . The V_{TS} pin is from LVIC and gives out the temperature sensing signal

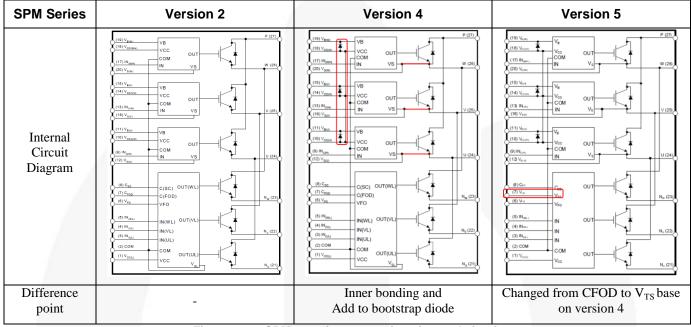


Figure 3. SPM3 version comparison internal circuit

3.2. Pin Description

Figure 4 shows the location of pins, the names and dummy pins of SPM3 version 5 series

Figure 4. Pin numbers, Names and Dummy pins

Figure 5 in the later section illustrates the internal structure of the module in more detail. The detail functional descriptions are provided in Table 3.

Table 3. Pin Description

Pin Number	Name	Description
1	VCC(L)	Low-Side Bias Voltage for IC and IGBT Driving
2	COM	Common Supply Ground
3	IN _(UL)	Signal Input for Low-Side U Phase
4	IN _(VL)	Signal Input for Low-Side V Phase
5	IN _(WL)	Signal Input for Low-Side W Phase
6	V_{FO}	Fault Output
7	V_{TS}	Output for LVIC Temperature Sensing Voltage
8	C_{SC}	Capacitor (Low-Pass Filter) for Short-Circuit Current Detection Input
9	$IN_{(UH)}$	Signal Input for High-Side U Phase
10	$V_{\rm CC(H)}$	High-Side Common Bias Voltage for IC and IGBT Driving
11	$V_{\mathrm{B(U)}}$	High-Side Bias Voltage for U Phase IGBT Driving
12	$V_{S(U)}$	High-Side Bias Voltage Ground for U Phase IGBT Driving
13	IN _(VH)	Signal Input for High-Side V Phase
14	$V_{CC(H)}$	High-Side Common Bias Voltage for IC and IGBT Driving
15	$V_{B(V)}$	High-Side Bias Voltage for V Phase IGBT Driving
16	$V_{S(V)}$	High-Side Bias Voltage Ground for V Phase IGBT Driving
17	IN _(WH)	Signal Input for High-Side W Phase
18	$V_{CC(H)}$	High-Side Common Bias Voltage for IC and IGBT Driving
19	$V_{B(W)}$	High-Side Bias Voltage for W Phase IGBT Driving
20	$V_{S(W)}$	High-Side Bias Voltage Ground for W Phase IGBT Driving
21	N_{U}	Negative DC Link Input for U Phase
22	N_{V}	Negative DC Link Input for V Phase
23	N_{W}	Negative DC Link Input for W Phase
24	U	Output for U Phase
25	V	Output for V Phase
26	W	Output for W Phase
27	P	Positive DC Link Input

3.3. Detailed Pin Definition and Notification

 High-side bias voltage pins for driving the IGBT / high-side bias voltage ground pins for driving the IGBTs

 $Pin: V_{B(U)}\text{--}V_{S(U)}, V_{B(V)}\text{--}V_{S(V)}, V_{B(W)}\text{--}V_{S(W)}$

- These are drive power supply pins for providing gate drive power to the high-side IGBTs.
- The virtue of the ability to bootstrap the circuit scheme is that no external power supplies are required for the high-side IGBTs.

- Each bootstrap capacitor is charged from the V_{CC} supply during ON state of the corresponding lowside IGBT.
- To prevent malfunctions caused by noise and ripple in the supply voltage, a low-ESR, low-ESL filter capacitor should be mounted very close to these pins.
- Low-side bias voltage pin / high-side bas voltage pins:

 $Pin : V_{CC(L)}, V_{CC(H)}$

- These are control supply pins for the built-in ICs.
- These four pins should be connected externally.
- To prevent malfunctions caused by noise and ripple in the supply voltage, a low-ESR, low-ESL filter capacitor should be mounted very close to these pins.
- Low-side common supply ground pins

Pin: COM

- These are supply ground pins for the built-in ICs.
- Important! To avoid noise influences, the main power circuit current should not be allowed to blow through this pin.
- Bootstrap diode cathode pins

 $Pin : V_{B(U)}, V_{B(V)}, V_{B(W)}$

- These are pins to connect internal bootstrap diode for each high-side bootstrapping.
- External resistor should be connected between these pins and each $V_{CC}(xH)$.
- Signal input pins

 $Pin: IN_{(UL)}, \, IN_{(VL)}, \, IN_{(WL)}, \, IN_{(UH)}, \, IN_{(VH)}, \, IN_{(WH)}$

- These pins control the operation of the built-in IGBTs.
- They are activated by voltage input signals. The terminals are internally connected to a Schmitt-trigger circuit composed of 5 V-class CMOS.
- The signal logic of these pins is active HIGH. The IGBT associated with each of these pins is turned
- ON when a sufficient logic voltage is applied to these pins.
- The wiring of each input should be as short as possible to protect the Motion SPM 3 against noise influences.
- To prevent signal oscillations, an RC coupling as illustrated in Figure 27 is recommended.
- Short-circuit and over-current detection input pin

 $Pin: C_{SC}$

• The current sensing shunt resistor should be connected between the pin C_{SC} and the low-side ground COM to detect short-current.

- The shunt resistor should be selected to meet the detection levels matched for the specific application.
 An RC filter should be connected to the CSC pin to eliminate noise.
- The connection length between the shunt resistor and CSC pin should be minimized.
- Fault output pin

 $Pin: V_{FO}$

- This is the fault output alarm pin. An active LOW output is given on this pin for a fault state condition in the SPM.
- The alarm conditions are: Short-Circuit Current Protection (SCP), and low-side bias Under-Voltage Lockout (UVLO).
- The VFO output is open drain configured. The V_{FO} signal line should be pulled to the 5 V logic power supply with approximately 4.7 k Ω resistance.
- Analog Temperature Sensing Output Pin

 $Pin : V_{TS}$

- This is to indicate the temperature of LVIC with analog voltage. LVIC itself creates some power loss, but mainly heat generated from the IGBTs will increase the temperature of the LVIC
- ullet V_{TS} versus temperature characteristics is illustrated in Figure 18.
- Positive DC-link pin

Pin: P

- This is the DC-link positive power supply pin of the inverter.
- It is internally connected to the collectors of the high-side IGBTs.
- To suppress surge voltage caused by the DC-link wiring or PCB pattern inductance, connect a smoothing filter capacitor close to this pin (tip: metal film capacitor is typically used).
- Negative DC-link pins

Pin: NU, NV, NW

- These are the DC-link negative power supply pins (power ground) of the inverter.
- These pins are connected to the low-side IGBT emitters of the each phase.
- These pins are used to one shunt or three shunt resistor
- Inverter power output pins

Pin: U, V, W

 Inverter output pins for connecting to the inverter load (e.g. motor).

3.4. Package Structure

Since heat dissipation is an important factor limiting the power module's current capability, the heat dissipation characteristics of a package are important in determining the performance. A trade-off exists among heat dissipation characteristics, package size, and isolation characteristics. The key to good package technology lies in the optimization package size while maintaining outstanding heat dissipation characteristics without compromising the isolation rating.

In 600 V Motion SPM®3, technology was developed with DBC substrate that resulted in good heat dissipation characteristics. Power chips are attached directly to the DBC substrate. This technology is applied 600 V Motion SPM 3, achieving improved reliability and heat dissipation.

Figure 5 show the package outline and the cross-sections of the 600 V Motion SPM 3 package.

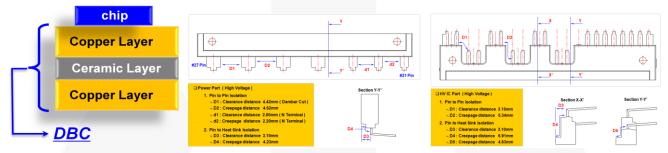


Figure 5. Vertical Structure for Heat Dissipation and Distance for Isolation

Figure 6 shows the internal package structure including the lead frame and boding wires. This design has been revise several times to further improve the manufacturability and the reliability to please the customers more.

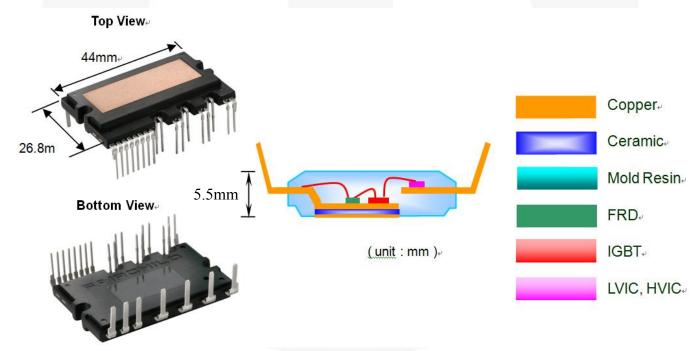
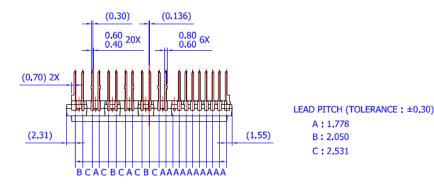
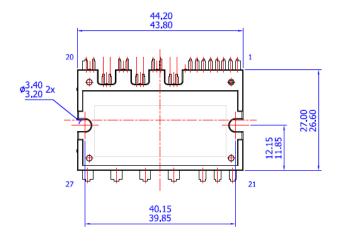
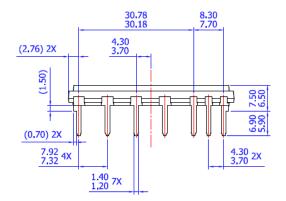
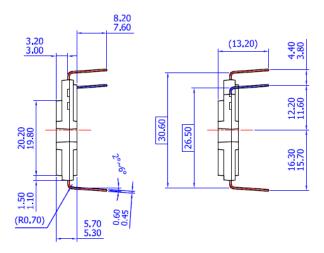
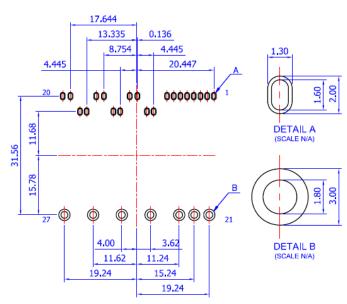





Figure 6. Package Structure and Cross section for SPMPA-027

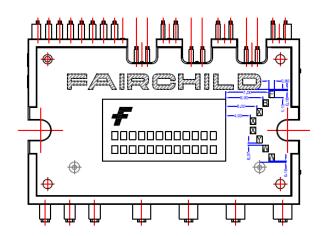
3.5. Package Outline

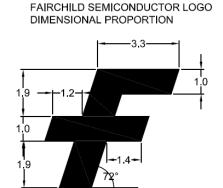




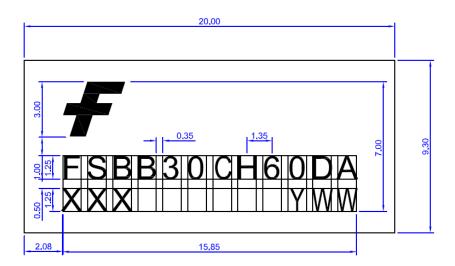
NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
- B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D) () IS REFERENCE
- E) [] IS ASS'Y QUALITY
- F) DRAWING FILENAME: MOD27BAREV2.0
- G) FAIRCHILD SEMICONDUCTOR





LAND PATTERN RECOMMENDATIONS


3.6. Marking Specification.

* MARKING LAY-OUT

* MARKING DIMENSION

- * NOTE
- 1. F: FAIRCHILD LOGO
- 2. XXX: LAST 3 DIGITS OF LOT NO(OPTION CODE)
- 3. YWW: WORK WEEK CODE ("Y" REFERS TO THE RIGHT ALPHABET CHARACTER TABLE)
- 4. Hole Side Marking:
 - -.FB:FSBB30CH60DA (Product name)
 - -. XXX: Last 3 digits of Lot No.
 - -. YWW: Work Week Code("Y" Refers to the right alphabet character table)

Χ	Alphabet
2010	Α
2011	В
2012	С
2013	D
2014	Е
2015	F
2016	G
2017	Н
2018	J
2019	K
2020	Α

4. Product Synopsis

This section discuss electrical specification, characteristics and mechanical characteristics

4.1. Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified)

Table 4. Inverter Part

Symbol	Parameter	Conditi	Conditions		
V _{PN}	Supply Voltage	Applied between P –NU,	Applied between P -NU, NV,NW		
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P – NU.	, NV, NW	500	V
V _{CES}	Collector – Emitter Voltage			600	V
			FSBB15CH60D ⁽⁴⁾	TBD	
±I _C	Each IGBT Collector Current	$T_{C}=25^{\circ}C, T_{J}\leq 150^{\circ}C^{(3)}$	FSBB20CH60D ⁽⁴⁾	TBD	A
			FSBB30CH60D	30	
//		$T_{C}=25^{\circ}C, T_{J}\leq 150^{\circ}C,$	FSBB15CH60D ⁽⁴⁾	TBD	
$\pm I_{CP}$	Each IGBT Collector Current (Peak)	Under 1 ms Pulse	FSBB20CH60D ⁽⁴⁾	TBD	A
	(1 can)	Width ⁽³⁾	FSBB30CH60D	60	
			FSBB15CH60D ⁽⁴⁾	TBD	
$P_{\rm C}$	Collector Dissipation	T _C =25°C per One Chip	FSBB20CH60D ⁽⁴⁾	TBD	W
			FSBB30CH60D	113	
T_{J}	Operating Junction Temperature ⁽⁵⁾			-40~150	°C

Note:

- 3. These values had been made on acquisition by the calculation considered to design factor
- 4. In development; not released to production as of this publication.
- 5. The maximum junction temperature rating of power chips integrated within the Motion SPM3 version 5 products are 150°C

Table 5. Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between $V_{CC(H)}$, $V_{CC(L)}$ - COM	20	V
V _{BS}	High-Side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$,	20	V
V _{IN}	Input Signal Voltage	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) , IN _(UL) , IN _(WL) , - COM	-0.3~V _{CC} +0.3	V
V_{FO}	Fault Output Supply Voltage	Applied between V _{FO} – COM	-0.3~V _{CC} +0.3	V
I_{FO}	Fault Output Current	Sink Current at V _{FO} Pin	2	mA
V_{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Table 6. Bootstrap Diode Part

Symbol	Parameter	Conditions	Rating	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		600	V
I_{F}	Forward Current	$T_{C}=25^{\circ}C, T_{J}\leq 150^{\circ}C$	0.5	A
I_{FP}	Forward Current (Peak)	T _C =25°C, T _J ≤150°C, Under 1 ms Pulse Width	2.0	A
T_{J}	Operating Junction Temperature		-40~150	°C

Table 7. Total System

Symbol	Parameter	Conditions	Rating	Unit
V _{PN(PROT)}	Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)	V_{CC}, V_{BS} =13.5~16.5 V, T_J =50°C, Non-Repetitive, < 2 μs	400	V
T_{C}	Module Case Operation Temperature	See Figure 7	-40~125	°C
T_{STG}	Storage Temperature		-40~125	°C
$ m V_{ISO}$	Isolation Voltage	60 Hz, Sinusoidal, 1-Minute, Connect Pins to Heat Sink	2500	V _{rms}

Table 8. Thermal Resistance

Symbol	Parameter	Conditi	Rating	Unit	
	Junction-to-Case Thermal Resistance ⁽⁶⁾		FSBB15CH60D	TBD	
$R_{\text{th(j-c)}Q}$		Inverter IGBT Part (per 1/6 Module)	FSBB20CH60D	TBD	
			FSBB30CH60D	1.10	0C/M
		Inverter FWD Part (per 1/6 Module)	FSBB15CH60D	TBD	°C/W
$R_{th(j-c)F}$			FSBB20CH60D	TBD	
		(F == =: 0 =:=0 duite)	FSBB30CH60D	2.10	

Note:

6. For the measurement point of case temperature (T_C), please refer to Figure 7.

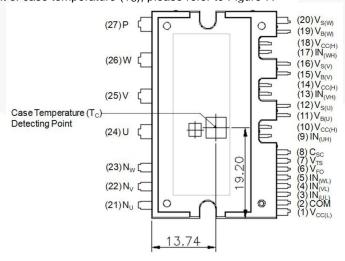


Figure 7. Case Temperature (T_C) Detecting Point

4.2. Electrical Characteristic (T_J = 25°C, unless otherwise specified)

Table 9. Inverter Part (Based on FSBB30CH60D)

Sy	mbol	Parameter	Condit	ions	Min.	Тур.	Max.	Unit
V _C	E(SAT)	Collector–Emitter Saturation Voltage	V _{CC} , V _{BS} =15 V, V _{IN} =5 V	I _C =30 A, T _J =25°C		1.50	2.10	V
	V_{F}	FWD Forward Voltage	V _{IN} =0 V	I _F =30 A, T _J =25°C		1.80	2.40	V
	t _{ON}				0.50	0.90	1.40	
	$t_{C(ON)}$					0.25	0.55	
HS	t _{OFF}	Switching Times				0.90	1.40	
	t _{C(OFF)}		V _{PN} =300 V, V _{CC} =15 V, V _{BS} =15 V, I _C =30 A T _J =25°C,		0.10	0.40		
	t _{rr}				0.10			
	t _{ON}		$V_{IN}=0 V \leftrightarrow 5 V$, Induc See Figure $8^{(7)}$	tive Load	0.40	0.80	1.30	μs
	t _{C(ON)}		See Figure 0			0.25	0.55	
LS	t_{OFF}					0.90	1.40	
	t _{C(OFF)}					0.15	0.45	
	t_{rr}					0.10		
I	CES	Collector – Emitter Leakage Current	V _{CE} =V _{CES}				5	mA

Note:

7. toN and toFF include the propagation delay time of the internal drive IC. tc(oN) and tc(oFF) are the switching time of IGBT itself under the given gate driving condition internally. For the detail information, please see Figure 8 and Figure 9.

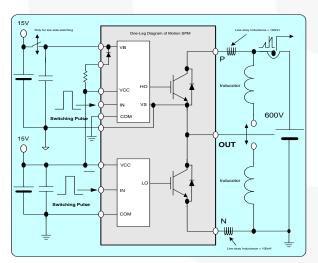


Figure 8. Switching Evaluation Circuit

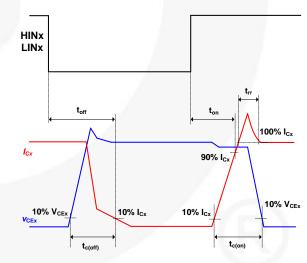


Figure 9. Switching Time Definition

Table 10. Bootstrap Diode Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{F}	Forward Voltage	$I_F = 0.1A, T_J = 25^{\circ}C$		2.5		V
t _{rr}	Reverse Recovery Time	$I_F = 0.1A$, $dI_F/dt = 50A/us$, $T_J = 25^{\circ}C$		80		ns

Table 11. Control Part

Symbol	Parameter	Condit	Min.	Тур.	Max.	Uni	
I_{QCCH}	Quiescent V _{CC} Supply	$V_{CC(H)}=15 \text{ V},$ $IN_{(UH,VH,WH)}=0 \text{ V}$	V _{CC(H)} - COM			0.50	A
I_{QCCL}	Current	$V_{CC(L)}=15 \text{ V},$ $IN_{(UL,VL,WL)}=0 \text{ V}$	V _{CC(L)} - COM			6.00	mA
I_{PCCH}		$V_{CC(H)}$ =15 V, f_{PWM} =20 kHz,	FSBB15CH60D		TBD	TBD	
		Duty=50%, Applied	FSBB20CH60D		TBD	TBD	mA
	Operating High-Side V _{CC}	to One PWM Signal Side V _{CC} Input for High Side FSBB30CH60D	FSBB30CH60D			0.50	
	Supply Current	VCC(L)=15 V,	FSBB15CH60D		TBD	TBD	
I_{PCCL}		f _{PWM} =20 kHz, Duty=50%, Applied	FSBB20CH60D		TBD	TBD	mA
		to One PWM Signal Input for Low Side	FSBB30CH60D			10.0	
I_{QBS}	Quiescent V _{BS} Supply Current	V _{BS} =15 V, IN _(UH,VH,WH) =0 V	$\begin{aligned} V_{B(U)} - V_{S(U)} \\ V_{B(V)} - V_{S(V)} \\ V_{B(W)} - V_{S(W)} \end{aligned}$			0.30	mA
7/1		$V_{CC}=V_{BS}=15 \text{ V},$	FSBB15CH60D		TBD	TBD	
I_{PBS}	I _{PBS} Operating V _{BS} Supply Duty=50%, Applied to One PWM Signal		FSBB20CH60D		TBD	TBD	mA
		FSBB30CH60D			4.50		
V_{FOH}	E. NO to tWilliam	V_{CC} =15 V, V_{SC} =0 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up		4.5			V
V_{FOL}	Fault Output Voltage	V _{CC} =15 V, V _{SC} =1 V, V to 5 V Pull-up	V _{FO} Circuit: 4.7 kΩ			0.5	V
V _{SC(ref)}	Short-Circuit Trip Level	V _{CC} =15 V ⁽⁸⁾	C _{SC} - COM	0.45	0.50	0.55	V
UV_{CCD}		Detection Level		9.8		13.3	
UV _{CCR}	Supply Circuit,	Reset Level		10.3		13.8	***
UV _{BSD}	Under-Voltage Protection	Detection Level		9.0	, V	12.5	V
UV _{BSR}		Reset Level		9.5		13.0	
t_{FOD}	Fault-Out Pulse Width			50			μS
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _{(UI}	u vu wu) - COM.		- 1	2.6	
V _{IN(OFF)}	OFF Threshold Voltage	IN _(UL,VL,WL) - COM	0.8			V	

Note

^{8.} Short-circuit current protection is functioning only at low-sides.

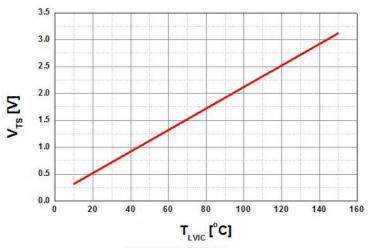


Figure 10. Temperature Profile of V_{TS} (Typical)

4.3. Recommended Operating Conditions

Symbol	Parameter	Conditions			Тур.	Max.	Unit
V_{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W			300	400	
V_{CC}	Control Supply Voltage	Applied between $V_{CC(UH,VH,WH)}$ - COM, $V_{CC(L)}$ - COM			15.0	16.5	V
V_{BS}	High-Side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$			15.0	18.5	V
dV _{CC} /dt, dV _{BS} /dt	Control Supply Variation			-1		+1	V/µs
	Blanking Time for Preventing Arm-Short	For Each Input Signal	FSBB15CH60D	TBD		3	
${ m t_{dead}}$			FSBB20CH60D	TBD			μs
		FSBB30CH60D		1.0			
$ m f_{PWM}$	PWM Input Signal	$-40^{\circ}\text{C} \le \text{T}_{\text{C}} \le 125^{\circ}\text{C}, -$			20	kHz	
$V_{ m SEN}$	Voltage for Current Sensing	Applied between N _U , I (Including Surge Volta	-5	/	5	V	
$P_{WIN(ON)} \\$	Minimum Input Pulse $V_{CC} = V_{BS} = 15 \text{ V}, I_C \le 60 \text{A}, V_{CC} = V_{BS} = 15 \text{ V}, I_{CC} \le 60 \text{ A}, V_{CC} = V_{CC} =$			2.0.	ν.		
P _{WIN(OFF)}	Width	$ \begin{array}{c c} Inductance \ between \ N \\ N < 10 nH^{(10)} \end{array} $	2.0		R	μs	
T_{J}	Junction Temperature			-40		150	°C

Note

^{9.} This product might not make response if input pulse with is lee than the recommended value.

4.4. Mechanical Characteristics

Parameter	Conditions			Value		
Farameter				Тур.	Max.	Unit
Device Flatness	See Figure 11				+200	μm
Mounting Torque	See Figure 12	Recommended 0.7 N·m	0.6	0.7	0.8	N·m
		Recommended 7.1 kg·cm	6.2	7.1	8.1	kg·cm
Terminal Pulling Strength	Load 19.6 N					S
Terminal Bending Strength	Load 9.8 N, 90° Bend					Times
Weight	Module weight		50		g	

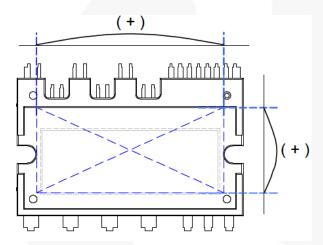


Figure 11. Flatness Measurement Position

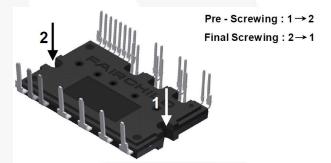


Figure 12. Mounting Screws Torque Order

5. Operation Sequence for Protections

5.1. Short-Circuit Current Protection (SCP)

600V Motion SPM®3 uses external shunt resistor for the short circuit current detection, as shown in Figure 13. LVIC has a built-in short-circuit current protection function. This protection function senses the voltage to the CSC pin. If this voltage exceeds the $V_{SC(ref)}$ (the threshold voltage trip level of the short-circuit) specified in the device datasheets($V_{SC(ref)}$, typ. is 0.5 V), a fault signal is asserted

and the all low side IGBTs are turned off. Typically, the maximum short-circuit current magnitude is gate-voltage dependent: higher gate voltage (V_{CC} and V_{BS}) results in larger short-circuit current. To avoid potential problems, the maximum short-circuit trip level is set below 1.5 times the nominal rated collector current. The LVIC short-circuit current protection-timing chart is shown in Figure 14.

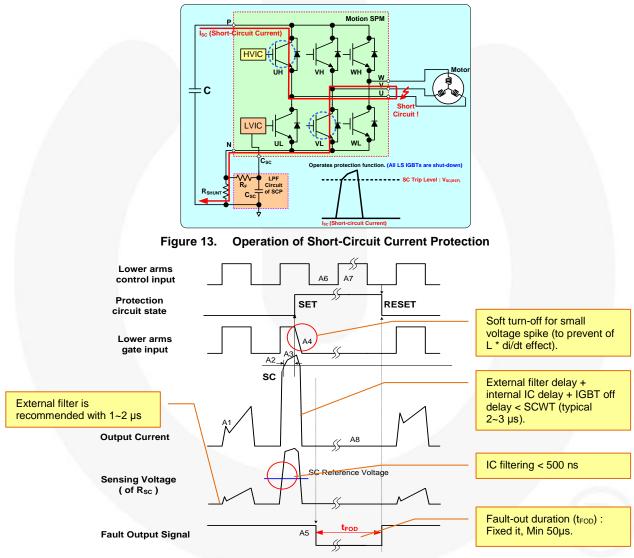


Figure 14. Timing Chart of Short-Circuit Current Protection Function

Notes:

- 10. A1-normal operation: IGBT on and carrying current.
- 11. A2-short-circuit current detection (SC trigger).
- 12. A3-hard IGBT gate interrupt.
- 13. A4-IGBT turns OFF by soft-off function.
- 14. A5-fault output timer operation start with internal delay (typ. 2.0 µs), Fault-out duration time is fix (Min 50 µs)
- 15. A6-input "L": IGBT OFF state.
- 16. A7-input "H": IGBT ON state, but during the active period of fault output the IGBT doesn't turn ON.
- 17. A8-IGBT keeps OFF state.

5.2. Under-Voltage Lockout Protection

The LVIC has an under-voltage lockout protection (UVLO) function to protect the low-side IGBTs from operation with insufficient gate driving voltage. A timing chart for this protection is shown in Figure 15.

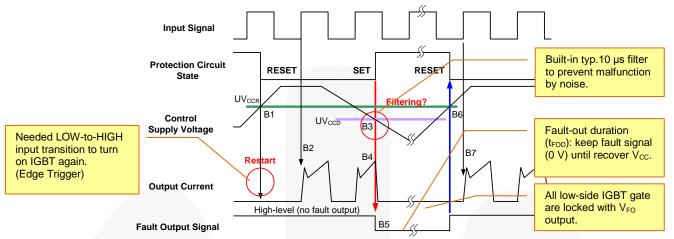


Figure 15. Timing Chart of Low-Side Under-Voltage Protection Function

Notes:

- 18. B1-control supply voltage rise: after the voltage rises UV_{CCR}, the circuits starts to operate when the next input is applied.
- 19. B2-normal operation: IGBT ON and carrying current.
- 20. B3-under-voltage detection (UV_{CCD}).
- 21. B4-IGBT OFF in spite of control input is alive and
- 22. B5-Fault output signal starts.
- 23. B6-under-voltage reset (UV_{CCR}).
- 24. B7-normal operation: IGBT ON and carrying current...

The HVIC has an under-voltage lockout function to protect the high-side IGBT from insufficient gate driving voltage. A timing chart for this protection is shown in Figure 16. A fault-out (FO) alarm is not given for low HVIC bias conditions.

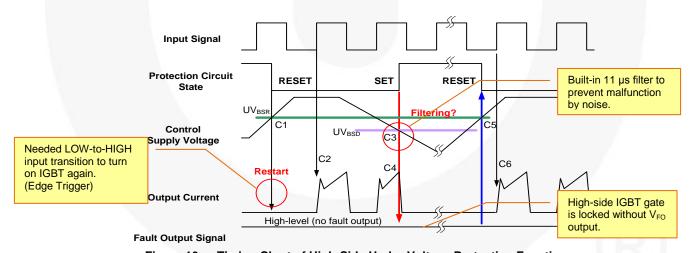


Figure 16. Timing Chart of High-Side Under-Voltage Protection Function

Notes:

- 25. C1-control supply voltage rises: after the voltage reaches UV_{BSR}, the circuit starts when the next input is applied.
- 26. C2-normal operation: IGBT ON and carrying current.
- 27. C3-under-voltage detection (UV_{BSD}).
- 28. C4-IGBT OFF in spite of control input is alive, but there is no fault output signal.
- 29. C5-under-voltage reset (UV_{BSR}).
- 30. C6-normal operation: IGBT ON and carrying current.

6. Key Parameter Design Guidance

For stable operation, there are recommended parameters for passive components and bias conditions, considering operating characteristics of the 600V Motion SPM[®]3 version 5 series.

6.1. Thermal Sensing Unit (TSU)

The junction temperature of power devices should not exceed the maximum junction temperature. Even though there is some margin between the Tjmax specified on the datasheet and the actual Tjmax at which power devices get destroyed, caution should be given to make sure the junction temperature stays well below the Tjmax. One of the inconveniences in using previous versions of SPM 3 series products was lack of temperature monitoring. An NTC had to be mounted on the heat sink or very close to the module if over-temperature protection is required in the application.

6.1.1. Basic concept

Thermal Sensing Unit uses technology based on the temperature dependency of transistor Vbe; Vbe decrease 2mV as temperature increase 1 °C.

The Thermal Sensing Unit analog voltage output reflects the temperature of the LVIC in 600V Motion SPM 3 version 5 series products. The relationship between V_{TS} voltage output and LVIC temperature is shown in Figure 18. It does not have any self-protection function, and, therefore, it should be used appropriately based on application requirement. It should be noted that there is a time lag from IGBT temperature to LVIC temperature. So it is very difficult to respond quickly when temperature rises sharply in a transient condition such as shoot-through event. Even though TSU has some limitation, it will be definitely useful in enhancing the system reliability.

Figure 17 shows the LVIC location of SPM3 version 5 series.

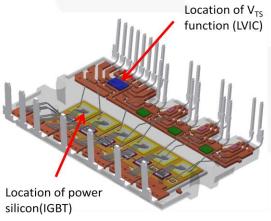


Figure 17. Location of V_{TS} function (LVIC)

Figure 18 shows the Temperature versus V_{TS} and Table 12 shows the raw data.

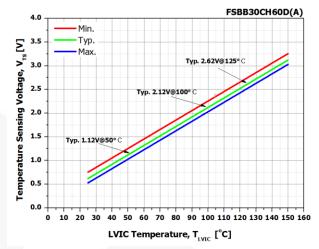


Figure 18. Temperature versus V_{TS}

Figure 19 shows the equivalent circuit diagram of TSU inside IC and a typical application diagram. This output voltage is clamped to 5.2V by an internal Zener diode, but in case the maximum input range of Analog to Digital converter of MCU is below 5.2V, an external Zener diode should be inserted between an A/D input pin and the analog ground pin of MCU. An amplifier can be used to change the range of voltage input to the Analog to Digital converter to have better resolution of the temperature. It is recommended to add a ceramic capacitor of 1000 pF between V_{TS} and Com (Ground) to make the V_{TS} more stable.

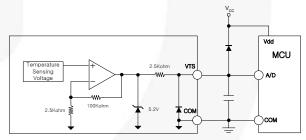
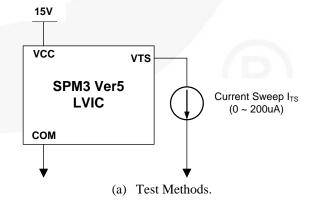



Figure 19. Internal block diagram and interface circuit of TSU

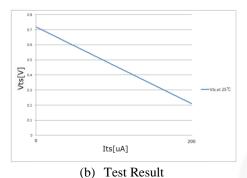


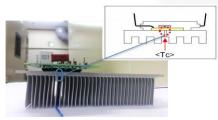
Figure 20. Load Variation of V_{TS}

Figure 20 shows the sourcing capability of V_{TS} pin at 25 °C and the test method. V_{TS} voltage decreases as the sourcing current increases. Therefore, the load connected to V_{TS} pin should be minimized to maintain the accurate voltage output level without degradation. Figure 18 shows that the relationship between V_{TS} voltage and LVIC temperature. It can be expressed as the following equation.

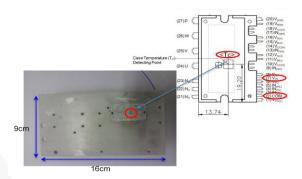
 $V_{TS,min} = 0.02*T_{LVIC} + 0.028 \text{ [V]}$

 $V_{TS,typ} = 0.02*T_{LVIC} + 0.119 [V]$

 $V_{TS,max} = 0.02*T_{LVIC} + 0.254 [V]$


The maximum variation of V_{TS} is 0.254 V, and the minimum variation of V_{TS} is 0.028 V due to process variation which are equivalent $\pm 5^{\circ} \text{C}$ approximately. This is regardless of the temperature because the slopes of three lines are identical. If the ambient temperature information is available, for example, through NTC in the system, V_{TS} can be measured to adjust the offset before the motor starts to operate.

As temperature decreases further below 0 $^{\circ}$ C, V_{TS} decreases linearly until it reaches zero volts. If the temperature of LVIC increases above 150 $^{\circ}$ C, which is above the maximum operating temperature, V_{TS} would increase theoretically up to 5.2V until it gets clamped by the internal Zener diode.


6.1.2. Test method

This test result shows correlation between V_{TS} and T_{C} , but this correlation will be changed each customer real application conditions.

Figure 21 shows temperature detection point and Figure 22 shows the test conditions; we have tested by servo dynamo systems.

(a) Test board

(b) Heat-sink size and detection point of T_C

Figure 21. Heat-sink Size and Detection Point of T_C

Figure 22. Real Load Dynamometer

We have compared between convection cooling and forced cooling mode. Figure 23 shows the cooling conditions

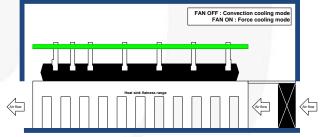


Figure 23. Cooling Conditions

To avoid external environment, we used the case, refer to Figure 24. Test conditions were V_{CC} =15 V, V_{DC} =300 V, Frequency =5 kHz and PWM method=SPWM.

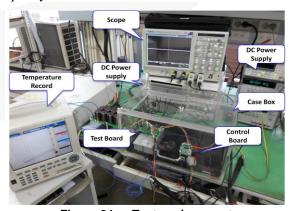


Figure 24. Test environment

6.1.3. Test results

Figure 24 and Figure 25 shows the test result. As the test results, T_C and V_{TS} temperatures have a variable gap by cooling conditions. Fragmentarily, this test result shows, V_{TS} value is depend on cooling conditions (Heat sink size, Fan speed and etc). Temperature gap has about 10 degree between T_{C} and V_{TS} in convection cooling mode. And gap has about 20 degree in force cooling mode.

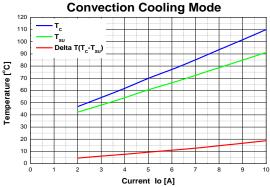


Figure 25. Convection cooling mode

Convection Cooling Mode

Table 12. V_{TS} Table of LVIC

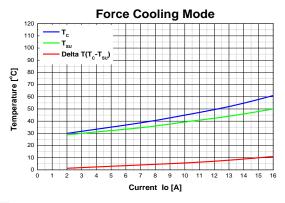


Figure 26. Force cooling mode

In conclusion, if the customer wants to use the thermal sensing unit, they should make adjustment in real operation conditions.

T _{LVIC} (°C)	V _{MIN} (V)	V _{TYP} (V)	V _{MAX} (V)	T _{LVIC} (°C)	V _{min} (V)	V _{typ} (V)	V _{max} (V)
25	0.528	0.619	0.754	56	1.148	1.239	1.374
26	0.548	0.639	0.774	57	1.168	1.259	1.394
27	0.568	0.659	0.794	58	1.188	1.279	1.414
28	0.588	0.679	0.814	59	1.208	1.299	1.434
29	0.608	0.699	0.834	60	1.228	1.319	1.454
30	0.628	0.719	0.854	61	1.248	1.339	1.474
31	0.648	0.739	0.874	62	1.268	1.359	1.494
32	0.668	0.759	0.894	63	1.288	1.379	1.514
33	0.688	0.779	0.914	64	1.308	1.399	1.534
34	0.708	0.799	0.934	65	1.328	1.419	1.554
35	0.728	0.819	0.954	66	1.348	1.439	1.574
36	0.748	0.839	0.974	67	1.368	1.459	1.594
37	0.768	0.859	0.994	68	1.388	1.479	1.614
38	0.788	0.879	1.014	69	1.408	1.499	1.634
39	0.808	0.899	1.034	70	1.428	1.519	1.654
40	0.828	0.919	1.054	71	1.448	1.539	1.674
41	0.848	0.939	1.074	72	1.468	1.559	1.694
42	0.868	0.959	1.094	73	1.488	1.579	1.714
43	0.888	0.979	1.114	74	1.508	1.599	1.734
44	0.908	0.999	1.134	75	1.528	1.619	1.754
45	0.928	1.019	1.154	76	1.548	1.639	1.774
46	0.948	1.039	1.174	77	1.568	1.659	1.794
47	0.968	1.059	1.194	78	1.588	1.679	1.814
48	0.988	1.079	1.214	79	1.608	1.699	1.834
49	1.008	1.099	1.234	80	1.628	1.719	1.854
50	1.028	1.119	1.254	81	1.648	1.739	1.874
51	1.048	1.139	1.274	82	1.668	1.759	1.894

T _{LVIC} (°C)	V _{MIN} (V)	V _{TYP} (V)	V _{MAX} (V)	T _{LVIC} (°C)	V _{min} (V)	V _{typ} (V)	V _{max} (V)
52	1.068	1.159	1.294	83	1.688	1.779	1.914
53	1.088	1.179	1.314	84	1.708	1.799	1.934
54	1.108	1.199	1.334	85	1.728	1.819	1.954
55	1.128	1.219	1.354	86	1.748	1.839	1.974
87	1.768	1.859	1.994	119	2.408	2.499	2.634
88	1.788	1.879	2.014	120	2.428	2.519	2.654
89	1.808	1.899	2.034	121	2.448	2.539	2.674
90	1.828	1.919	2.054	122	2.468	2.559	2.694
91	1.848	1.939	2.074	123	2.488	2.579	2.714
92	1.868	1.959	2.094	124	2.508	2.599	2.734
93	1.888	1.979	2.114	125	2.528	2.619	2.754
94	1.908	1.999	2.134	126	2.548	2.639	2.774
95	1.928	2.019	2.154	127	2.568	2.659	2.794
96	1.948	2.039	2.174	128	2.588	2.679	2.814
97	1.968	2.059	2.194	129	2.608	2.699	2.834
98	1.988	2.079	2.214	130	2.628	2.719	2.854
99	2.008	2.099	2.234	131	2.648	2.739	2.874
100	2.028	2.119	2.254	132	2.668	2.759	2.894
101	2.048	2.139	2.274	133	2.688	2.779	2.914
102	2.068	2.159	2.294	134	2.708	2.799	2.934
103	2.088	2.179	2.314	135	2.728	2.819	2.954
104	2.108	2.199	2.334	136	2.748	2.839	2.974
105	2.128	2.219	2.354	137	2.768	2.859	2.994
106	2.148	2.239	2.374	138	2.788	2.879	3.014
107	2.168	2.259	2.394	139	2.808	2.899	3.034
108	2.188	2.279	2.414	140	2.828	2.919	3.054
109	2.208	2.299	2.434	141	2.848	2.939	3.074
110	2.228	2.319	2.454	142	2.868	2.959	3.094
111	2.248	2.339	2.474	143	2.888	2.979	3.114
112	2.268	2.359	2.494	144	2.908	2.999	3.134
113	2.288	2.379	2.514	145	2.928	3.019	3.154
114	2.308	2.399	2.534	146	2.948	3.039	3.174
115	2.328	2.419	2.554	147	2.968	3.059	3.194
116	2.348	2.439	2.574	148	2.988	3.079	3.214
117	2.368	2.459	2.594	149	3.008	3.099	3.234
118	2.388	2.479	2.614	150	3.028	3.119	3.254

6.2. Selection of Shunt Resistor

Figure 27 shows an example circuit of the SC protection using 1-shunt resistor. The line current on the N side DC-ink is detected and the protective operation signal is passed through the RC filter. If the current exceeds the SC reference level, all the gates of the N-side three-phase IGBTs are switched to the OFF state and the $F_{\rm O}$ fault signal is transmitted to MCU. Since SC protection is non-repetitive, IGBT operation should be immediately halted when the $F_{\rm O}$ fault signal is given.

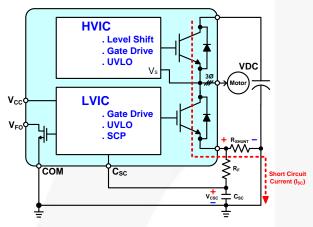


Figure 27. Short Circuit Current Protection Circuit with One Shunt Resistor

The value of shunt resistor is calculated by the following equation.

- Maximum SC current trip level : I_{SC(max)}=1.5 * I_C(rated current)
- SC trip referenced voltage: V_{SC}=min. 0.45 V, typ. 0.5 V, max. 0.55 V
- $\begin{array}{lll} \bullet & Shunt & resistance & : & I_{SC(max)} = V_{SC(max)} / R_{SHUNT(min)} \\ & \boldsymbol{\rightarrow} R_{SHUNT(min)} = V_{SC(max)} / I_{SC(max)} \\ \end{array}$
- If the deviation of shunt resistor should is limited below ±5%,

 $R_{SHUNT(typ)} = R_{SHUNT(min)}/0.95, R_{SHUNT(max)} = R_{SHUNT(typ)} *1.05$

• Actual SC trip current level becomes:

 $I_{SC(typ)}{=}V_{SC(typ)}$ / $R_{SHUNT(min)},$ $I_{SC(min)}$ = $V_{SC(min)}$ / $R_{SHUNT(max)}$

• Inverter output power:

$$P_{OUT} = \sqrt{3} \times VO, LL \times I_{O(RMS)} \times PF$$

where:

VO,LL=
$$\frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{v_{DC}}{2}$$

 $I_{(O)RMS}$ = Maximum load current of inverter; and

MI = Modulation Index;

 $V_{DC} = DC$ link voltage;

PF = Power Factor

Average DC current

$$I_{DC AVG} = V_{DC Link} / (P_{out} \times Eff)$$

where:

Eff = Inverter efficiency

 The power rating of shunt resistor is calculated by the following equation.

 $P_{SHUNT} = (I_{RMS}^2 * R_{SHUNT} * Margin) / Derating Ratio$

Where;

Shunt resistor typical value at T_C=25°C (R_{SHUNT})

Derating ratio of shunt resistor at T_{SHUNT}=100°C (From datasheet of shunt resistor)

Safety margin (Determine by customer)

The value of shunt Resistor calculation Examples:

- DUT: FSBB30CH60D
- Tolerance of shunt resistor: ±5%
- SC Trip Reference Voltage:
- $V_{SC(min)} = 0.45 \text{ V}, V_{SC(typ)} = 0.50 \text{ V}, V_{SC(max)} = 0.55 \text{ V}$
- Maximum Load Current of Inverter (I_{RMS}): 21 A_{rms}
- Maximum Peak Load Current of Inverter (I_{C(max)}): 45
 A
- Modulation Index(MI): 0.9
- DC Link Voltage(V_{DC Link}): 300V
- Power Factor(PF): 0.8
- Inverter Efficiency(Eff): 0.95
- Shunt Resistor Value at $T_C = 25^{\circ}\text{C}$ (R_{SHUNT}): 11.0 m Ω
- Derating Ration of Shunt Resistor at $T_{SHUNT} = 100$ °C: 70% (refer to Figure 28)
- Safety Margin: 20%

Calculation Results:

- $I_{SC(max)}$: 1.5 * $I_{C(max)}$ = 1.5 * 30 A = 45 A
- $R_{SHUNT(typ)}$: $V_{SC(typ)}$ / $I_{SC(max)}$ = 0.50 V / 45 A = 11.0 m Ω
- $R_{SHUNT(max)}$: $R_{SHUNT(typ)}$ * 1.05 = 11 m Ω *1.05 A = 11.55 m Ω
- $R_{SHUNT(min)}$: $R_{SHUNT(typ)}$ * 0.95 = 11 m Ω *0.95 A = 10.45 m Ω
- $I_{SC(min)}$: $V_{SC(min)}$ / $R_{SHUNT(max)}$ = 0.45 V / 11.55 m Ω = 38.96 A
- $I_{SC(max)}$: $V_{SC(typ)}$ / $R_{SHUNT(min)}$ = 0.55 V / 10.45 m Ω = 52.6 A
- $P_{OUT} = \sqrt{3} \times \left(\frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{V_{DC}}{2}\right) \times I_{(0)RMS} \times PF = \frac{3}{\sqrt{2}} \times 0.9 \times (300/2) \times 21 \times 0.8 = 4,811 \text{ W}$

- $I_{DC_AVG} = (P_{OUT}/Eff) / V_{DC_Link} = 16.88 A$
- $P_{SHUNT} = (I^2_{DC_AVG} \times R_{SHUNT} \times Margin) / Derating Ratio = (16.88^2 \times 0.012 \times 1.2) / 0.7 = 5.86 W$ (Therefore, the proper power rating of shunt resistor is over 6.0 W)

When over-current events are detected, the 600 V Motion SPM $^{\otimes}$ 3 version 5 series shuts down all low-side IGBTs and sends out the fault-out (F_O) signal. Fault-out pulse width is fixed; minimum value is 50 μ s.

To prevent malfunction, it is recommended that an RC filter be inserted at the C_{SC} pin. To shut down IGBTs within 3 μs when over-current situation occurs, a time constant of 1.5 ~ 2 μs is recommended.

Table 13 Shows the shunt resistance and typical short-circuit protection current.

Table 13. Over-Current(OC) Protection Trip Level

Device	R _{SHUNT}	OC Trip level	Remark
FSBB15CH60D	22 mΩ	22.5 A	It is turnical
FSBB20CH60D	16 mΩ	30 A	It is typical value
FSBB30CH60D	11 mΩ	45 A	value

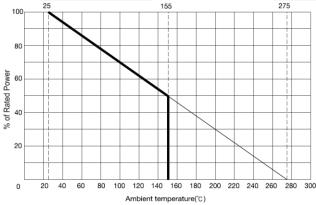


Figure 28. Derating Curve Example of Shunt Resistor (from RARA Elec.)

6.3. Time Constant of Internal Delay

An RC filter is prevents noise-related Short-Circuit Current Protection (SCP) circuit malfunction. The RC time constant is determined by the applied noise time and the Short-Circuit Current Withstanding Time (SCWT) of Motion SPM 3 version 5 series.

When the R_{SC} voltage exceeds the SCP level, this is applied to the CSC pin via the RC filter. The RC filter delay (T1) is the time required for the CSC pin voltage to rise to the referenced SCP level. The LVIC has an internal filter time (logic filter time for noise elimination: T2, about 0.5 μ s). Consider this filter time when designing the RC filter of V_{CSC} .

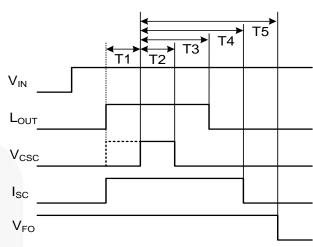


Figure 29. Timing Diagram

Notes:

- 31. V_{IN}: Voltage of input signal.
- 32. Lour: VGE of low-side IGBT.
- 33. V_{CSC}: Voltage of CSC pin.
- 34. I_{SC}: Short-circuit current.
- 35. V_{FO}: Voltage of VFO pin.
- 36. T1: filtering time of RC filter of V_{CSC}.
- T2: filtering time of CSC. If V_{CSC} width is less than T2, SCP does not operate.
- 38. T3: delay from CSC triggering to gate-voltage down.
- 39. T4: delay from CSC triggering to short-circuit current.
- 40. T5: delay from CSC triggering to fault-out signal

Figure 30 shows operating waveform of SCP (Short-circuit Current Protection) function. Normally, \mathbf{T} (time constant of RC filter of C_{SC}) don't accurately operate due to fast di/dt of I_{SC} (short-circuit current). Therefore, we should consider this kind of situation when decide time constant of RC filter of C_{SC} . (Normally, \mathbf{T} (time constant of RC filter of C_{SC}) accurately operate in OCP (Over Current Protection) operation.)

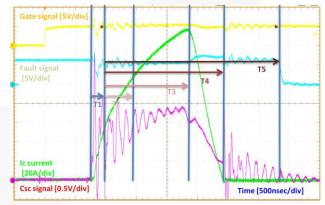


Figure 30. Short Circuit Waveform (FSBB30CH60D, Ref. Condition: V_{CC}=16.5 V, V_{DC}=400 V, T_J=25°C)

Table 14 shows actual real time at short circuit current protection. Each time sections have a distribution, so we have to consider of distribution.

Table 14. Time Table on Short Circuit Conditions; V_{CSC} to L_{OUT}, I_{SC}, V_{FO}

Device	Typ. at T _J =25°C	Typ. at T _J =150°C	Max. at T _J =25°C
	T2=0.50 µs	T2=0.52 µs	Considering
FSBB30CH60D	T3=1.35 µs	T3=1.23 µs	±20%
L2DD30CH00D	T4=1.95 µs	T4=1.81 µs	Distribution,
	T5=2.86 µs	T5=2.47 µs	T3 and T4

Notes:

- 41. To guarantee safe short-circuit protection under all operating conditions, C_{SC} should be triggered within 1.0 µs after short-circuit occurs. (Recommendation: SCWT < 3.0 µs, Conditions: V_{DC} =400 V, V_{CC} =16.5 V, T_{J} =150°C).
- 42. It is recommended that delay from short-circuit to C_{SC} triggering should be minimized.

6.4. Soft Turn-Off

An LVIC soft turn-off function protects the low side IGBTs from over voltage of V_{PN} (supply voltage) by "short-circuit hard off," which is when IGBTs are turned off by short input signal before the SCP function under short-circuit condition. In this case, V_{PN} rapidly rises by fast and big di/dt of I_{SC} (short-circuit current). This kind of rapid rise of V_{PN} can cause destruction of IGBT by over-voltage. Therefore, soft-off function prevents IGBT rapid turning off by slow discharging of V_{GE} (gate-to-emitter voltage of IGBT).

An internal block diagram of LVIC and operation sequence of soft turn-off function is shown in Figure 31 and Figure 32. This function operates by two internal protection functions (UVLO and SCP). When the IGBT is turned off in normal conditions, LVIC turns off the IGBT immediately by turn-off gate signal (IN(xL)) via gate driver block. Pre-driver turn-on output buffer of gate driver block, path 1. When the IGBT is turned off by a protection function, the gate driver is disabled by the protection function signal via output of protection circuit (disable output buffer, high-Z) and output of the protection circuit turn-on switch of the soft-off function. V_{GE} (IGBT gate-emitter voltage) is discharged slowly via circuit of soft-off (path 2).

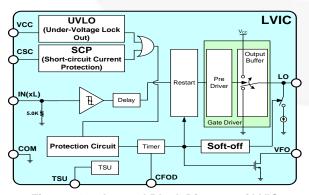


Figure 31. Internal Block Diagram of LVIC

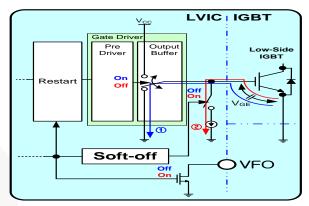


Figure 32. Operating Sequence of Soft Turn-Off

Figure 33 shows normal turn-off switching operations performed satisfactorily at a V_{DC} =300 V with the surge voltage between the P and N pins ($V_{PN(Surge)}$) limited to under 500 V. The difference between the hard and soft turn-off switching operation is also shown in Figure 34.

The hard turn-off of the IGBT creates a large overshoot (170V). The DC-link capacitor supply voltage should be limited to 500 V to safely protect the 600 V Motion SPM 3. A hard turn-off, with a duration of less than ~2 μs , may occur in the case of a short-circuit fault. For a normal short-circuit fault, the protection circuit becomes active and the IGBT is turned off softly to prevent excessive overshoot voltage. An overshoot voltage of <100 V occurs in this condition

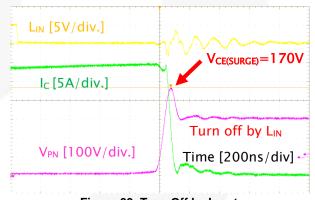


Figure 33. Turn-Off by Input (FSBB30CH60D, Ref. Condition: V_{DC}=300 V, T_J=25°C)

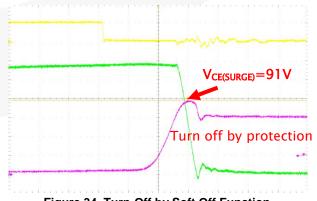


Figure 34. Turn-Off by Soft Off Function (FSBB30CH60D, Ref. Condition: V_{DC}=300 V, T_J=25°C)

6.5. Fault Output Circuit

Because V_{FO} terminal is an open-drain type; it should be pulled up via a pull-up resistor. The resistor must satisfy the above specifications.

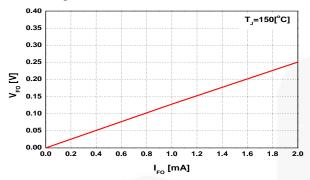


Figure 35. Voltage-Current Characteristics of V_{FO} Terminal

6.6. Bootstrap Circuit Design

6.6.1. Operation of Bootstrap Circuit

The V_{BS} voltage, which is the voltage difference between $V_{B(U,V,W)}$ and $V_{S(U,V,W)}$, provides the supply to the HVIC within the 600V motion SPM $^{\$}$ 3 series. This supply must be in the range of 13.0V~18.5V to ensure that the HVIC can fully drive the high-side IGBT. The SPM3 series includes an under-voltage lock out protection function for the V_{BS} to ensure that the HVIC does not drive the high-side IGBT, if the V_{BS} voltage drops below a specified voltage. This function prevents the IGBT from operating in a high dissipation mode.

There are a number of ways in which the V_{BS} floating supply can be generated. One of them is the bootstrap method described here (refer to Figure 36). This method has the advantage of being simples and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. The bootstrap to ground (either through the low-side or the load), the bootstrap capacitor (C_{BS}) is charged through the bootstrap diode (D_{BS}) and the resistor (R_{BS}) from the V_{CC} supply.

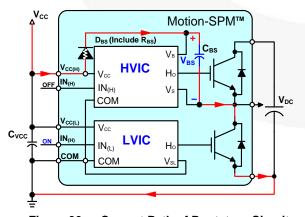


Figure 36. Current Path of Bootstrap Circuit

6.6.2. Selection of Bootstrap Capacitor Considering Initial Charging

Adequate on-time of the low-side IGBT to fully charge the bootstrap capacitor is required for initial bootstrap charging. The initial charging time (t_{charge}) can be calculated by:

$$t_{charge} = C_{BS} \times R_{BS} \times \frac{1}{\delta} \times \ln \frac{V_{CC}}{V_{CC} - V_{BS(min)} - V_{F} - V_{LS}}$$

where:

 V_F = Forward voltage drop across the bootstrap diode;

 $V_{BS(min)}$ =The minimum value of the bootstrap capacitor;

 V_{LS} = Voltage drop across the low-side IGBT or load; and

 Δ = Duty ratio of PWM.

When the bootstrap capacitor is charged initially; V_{CC} drop voltage is generated based on initial charging method, V_{CC} line SMPS output current, V_{CC} source capacitance, and bootstrap capacitance. If V_{CC} drop voltage reaches UV_{CCD} level, the low side is shut down and a fault signal is activated.

To avoid this malfunction, related parameter and initial charging method should be considered. To reduce V_{CC} voltage drop at initial charging, a large V_{CC} source capacitor and selection of optimized low-side turn-on method are recommended. Adequate on-time duration of the low-side IGBT to fully charge the bootstrap capacitor is initially required before normal operation of PWM starts.

Figure 37 shows an example of initial bootstrap charging sequence. Once $V_{\rm CC}$ establishes, $V_{\rm BS}$ needs to be charged by turning on the low-side IGBTs. PWM signals are typically generated by an interrupt triggered by a timer with a fixed interval, based on the switching carrier frequency.

Therefore, it is desired to maintain this structure without creating complementary high-side PWM signals. The capacitance of $V_{\rm CC}$ should be sufficient to supply necessary charge to $V_{\rm BS}$ capacitance in all three phases. If a normal PWM operation starts before $V_{\rm BS}$ reaches $V_{\rm UVLO}$ reset level, the high-side IGBTs cannot switch without creating a fault signal. It may lead to a failure of motor start in some applications. If three phases are charged synchronously, initial charging current through a single shunt resistor may exceed the over-current protection level.

Therefore, initial charging time for bootstrap capacitors should be separated, as shown in Figure 38. The effect of the bootstrap capacitance factor and charging method (low-side IGBT driving method) is shown in Figure 36.

Figure 37. Timing Chart of Initial Bootstrap Charging

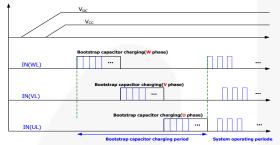
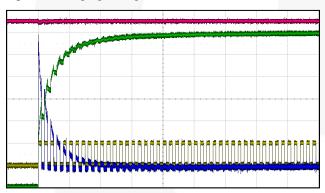



Figure 38. Recommended Initial Bootstrap Capacitors Charging Sequence

0 and Figure 39 shows waveform initial bootstrap capacitor charging voltage and current.

Each part initial operating waveform of bootstrap circuit (Conditions: V_{DC} =300V, V_{CC} =15V, C_{BS} =22 μ F, LS IGBT Turn-on Duty=200 μ sec)

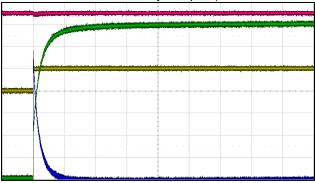


Figure 39. Each Part Operating Waveform of Bootstrap Circuit (Conditions: V_{DC} =300V, V_{CC} =15V, C_{BS} =22 μ F, LS IGBT Full Turn-on)

6.6.3. Selection of Bootstrap Capacitor Considering Operating

The bootstrap capacitance can be calculated by:

$$C_{BS} = \frac{I_{leak} \times \Delta t}{\Delta V_{BS}}$$

where:

 $\Delta t:$ maximum on pulse width of high-side IGBT; $\Delta V_{BS}\!:$ the allowable discharge voltage of the C_{BS} (voltage ripple); and

I_{Leak}: maximum discharge current of the C_{BS}.

Mainly via the following mechanisms:

- Gate charge for turning the high-side IGBT on
- Quiescent current to the high-side circuit in HVIC
- Level-shift charge required by level-shifters in HVIC
- Leakage current in the bootstrap diode
- C_{BS} capacitor leakage current (ignored for nonelectrolytic capacitors)
- Bootstrap diode reverse recovery charge

Practically, 4.5 mA of I_{Leak} is recommended for the 600V Motion SPM 3 version 5 series. By considering dispersion and reliability, the capacitance is generally selected to be 2~3 times the calculated one. The C_{BS} is only charged when the high-side IGBT is off and the $V_{S(x)}$ voltage is pulled down to ground.

The on-time of the low-side IGBT must be sufficient to for the charge drawn from the C_{BS} capacitor to be fully replenished. This creates an inherent minimum on-time of the low-side IGBT (or off-time of the high-side IGBT).

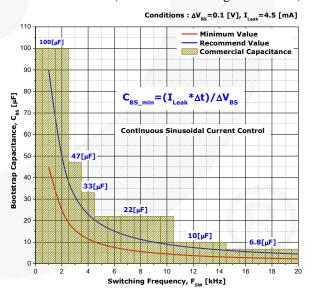


Figure 40. Capacitance of Bootstrap Capacitor on Variation of Switching Frequency

Based on switching frequency and recommended ΔV_{BS}

- I_{Leak}: circuit current = 4.5 mA (recommended value)
- \Delta V_{BS}: discharged voltage = 1.0 V (recommended value)
- At: maximum on pulse width of high-side IGBT = 0.2 ms (depends on application)

$$C_{BS_min} = \frac{I_{leak} \times \Delta t}{\Delta V_{BS}} = \frac{2mA \times 4.5ms}{1.0V} = 9.0 \times 10^{-6}$$

\rightarrow More than 2 times \rightarrow 18 μ F.

Note:

43. The capacitance value can be changed according to the switching frequency, the capacitor selected, and the recommended V_{BS} voltage of 13.0~18.5 V (from datasheet). The above result is just a calculation example. This value can be changed according to the actual control method and lifetime of the component.

6.6.4. Built-in Bootstrap Diode

When the high-side IGBT or diode conducts, the bootstrap diode (D_{BS}) supports the entire bus voltage. Hence, a diode with withstand voltage of more than 600 V is recommended. It is important that this diode has a fast recovery (recovery time < 100 ns) characteristic to minimize the amount of charge fed back from the bootstrap capacitor into the V_{CC} supply. The bootstrap resistor (R_{BS}) is to slow down the dV_{BS}/dt and limit initial charging current (I_{charge}) of bootstrap capacitor.

Normally, a bootstrap circuit consists of bootstrap diode (D_{BS}) , bootstrap resistor (R_{BS}) , and bootstrap capacitor (C_{BS}) . As shown in Figure 41, the built-in bootstrap diode of SPM $^{\oplus}$ 3 version 5 product has special V_F characteristics to be used without additional bootstrap resistor. Therefore, only external bootstrap capacitors are needed to make bootstrap circuit.



Figure 41. V-I characteristics of Bootstrap Diode in SPM3 V5 products

The characteristics of the built-in bootstrap diode in the SPM3 products are:

- Fast recovery diode: 600 V/0.5 A
- t_{rr} : 80 ns (typical)
- Resistive characteristic: equivalent resistor of approximately 15 Ω

Table 6 shows the absolute maximum ratings of bootstrap diode. Table 10 shows forward voltage drop and reverse recovery characteristic of the bootstrap diode.

7. Print Circuit Board (PCB) Design

7.1. General Application Circuit Example

Figure 42 shows a general application circuitry of interface schematic with control signals connected directly to a MCU. Figure 43 shows guidance of PCB layout for the 600V Motion SPM®3 version 5 series.

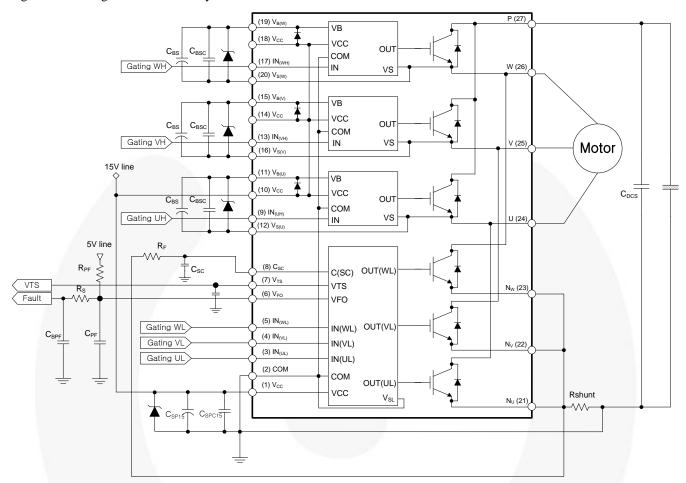


Figure 42. General Application Circuitry for Motion SPM 3

7.2. PCB Layout Guidance

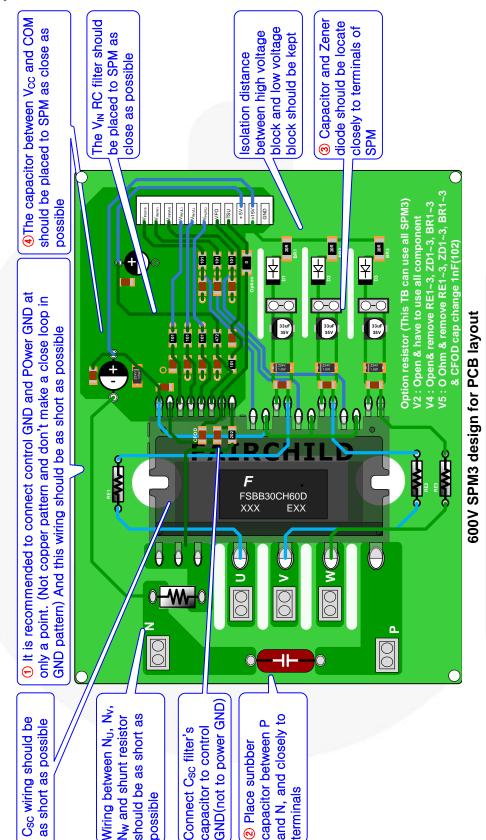
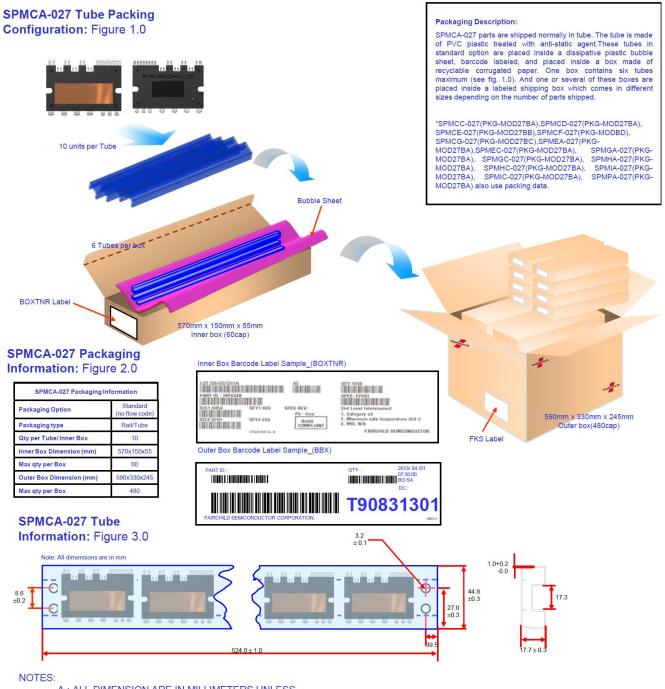



Figure 43. Print Circuit Board (PCB) Layout Guidance for the 600V Motion SPM®3

8. Packing Information

- A: ALL DIMENSION ARE IN MILLIMETERS UNLESS
 - OTHERWISE SPECIFIED
- B: DRAWING FIEL NAME: PKG-MOD27BAREV2

Figure 44. Packing Information

Related Resources

FSBB30CH60D Product Folder

AN-9086 — 600V Motion SPM®3 Series Mounting Guidance

RD-406 — Reference Design Guide

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative