
Approach to a baby with cyanosis

Cyanosis

- Greek word "*kuaneos*" meaning dark blue
- Bluish discolouration of skin, nail beds, and mucous membranes.
- Depends on absolute concentration of reduced haemoglobin (> 3 g/dl in arterial blood and >5 g/dl in capillary blood)

Types of cyanosis

ACROCYANOSIS

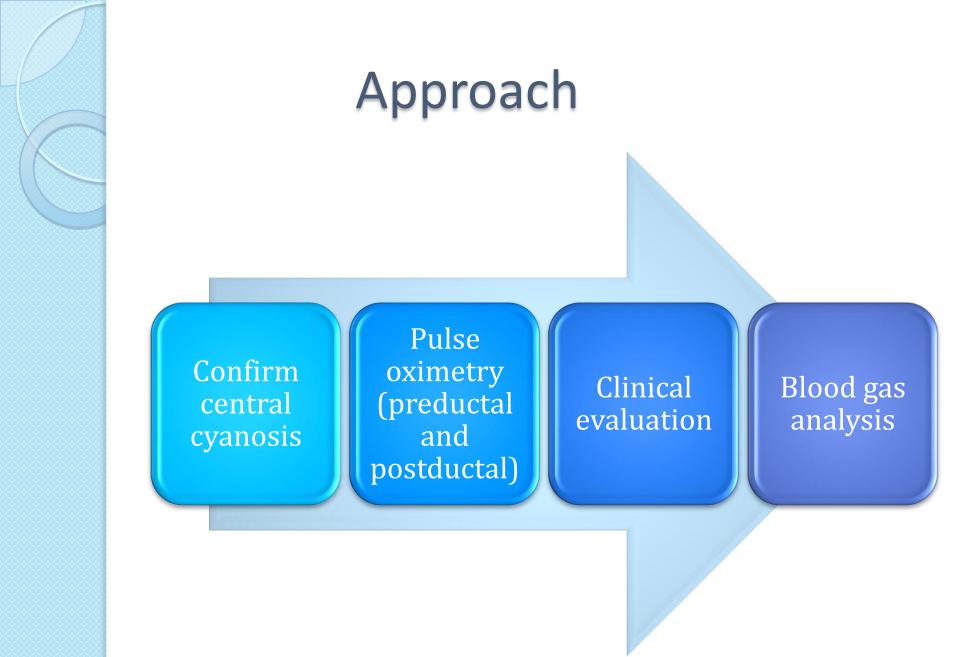
Physiological upto 72 hrs Large arteriovenous oxygen difference

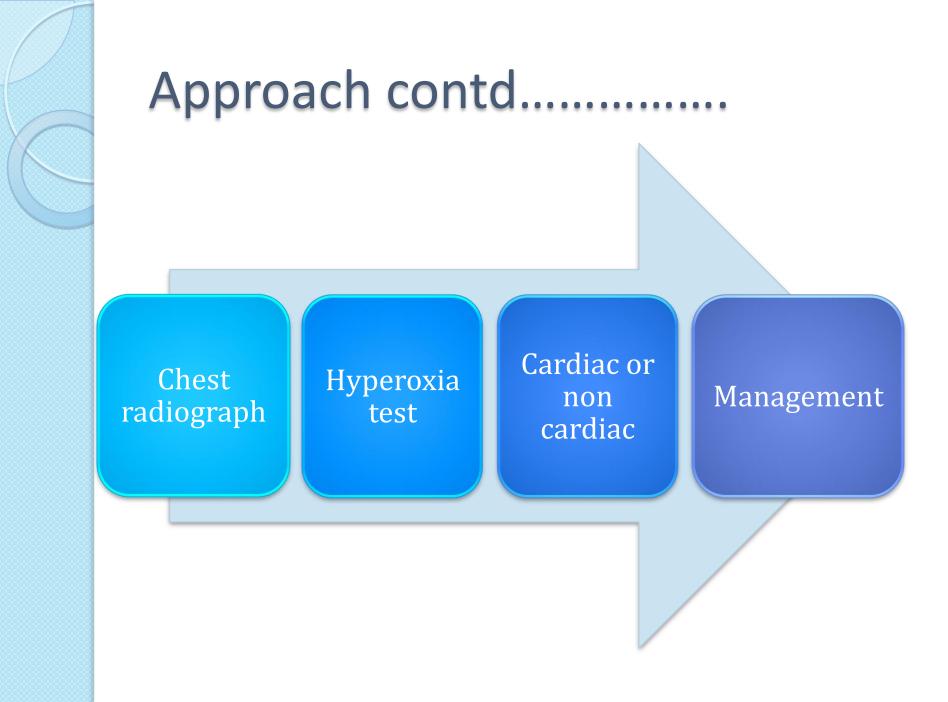
CENTRAL CYANOSIS

Pathological Requires immediate evaluation

DIFFERENTIAL CYANOSIS

Definitive congenital heart anomalies (rightto-left shunt through PDA)


Differentials


Cyanotic heart disease

- Decreased pulmonary blood flow
- Increased pulmonary blood flow
- Severe pulmonary venous congestion

Non cardiac causes

- Respiratory disorders
- Persistent fetal circulation
- Central nervous system disorders
- Miscellaneous

Approach contd...... Age at presentation of cyanosis

0-7 days	7-28 days	>28 days
TGA	Truncus arteriosus	TOF like physiology
PS +IVS	TAPVC	TGA, ASD
HLHS	TGA,VSD	Truncus Arteriosus
Severe Ebstein Anomaly	TOF	PPHN group
TAPVC (obstructed)		

Approach contd...... Pulse oximetry

- Simultaneous measurements from the right hand and a foot: flow patterns through the ductus arteriosus.
- Avoid left hand.
- Confirms/ rejects central cyanosis
- $R \rightarrow L$ ductal shunting if differential cyanosis

Clinical evaluation: some pointers

- Tachypnea with distress
- Crepitations +
- Cyanosis mild/uniform
- Responsive to oxygen
- Improves with crying
- Age: usually at birth

- Tachypnea, no/ less distress
- Crepts -, except with PVH
- Cyanosis variable/ uniform
- No/ minimal response to oxygen, Worsens with crying
- Usually after 24 hrs

What next? Hyperoxia Test

Pulse ox reading <85% in room air

Right radial artery ABG in room air

Repeat radial artery ABG

100% oxygen by hood for 15 min.

Jones, 1976

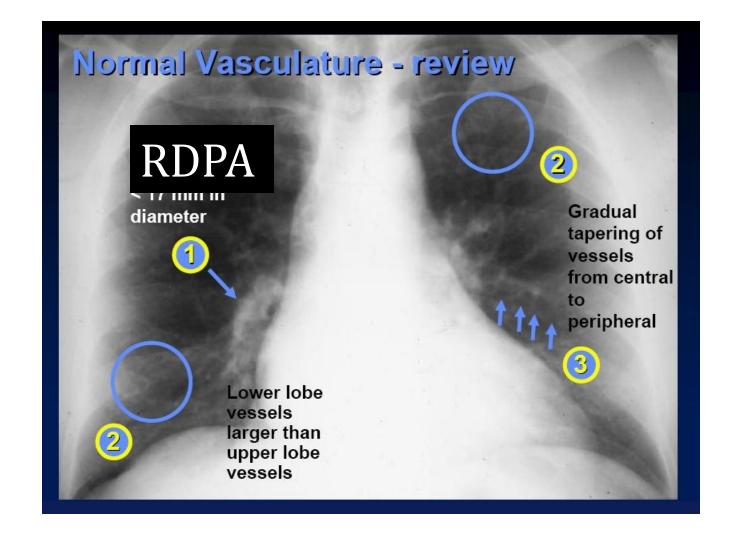
Interpret? Blood gas analysis

• Low pH

- Elevated PaCO2
- PaO2 >250 mm Hg after hyperoxia test (passed hyperoxia test)
- Respiratory acidosis predominantly

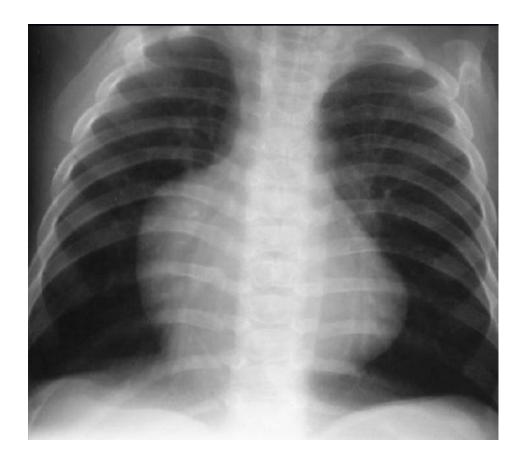
• Low pH

- Normal or low PaCO2
- PaO₂ < 100 mm Hg/ Rise
 <10-30 mm Hg (failed hyperoxia test)
- Metabolic acidosis predominantly


If still in dilemma? Hyperoxia Hyperventilation Test

Intubation & hyperventilation

Rationale: Pulmonary vasodilation, decreases right to left shunt at atrial or ductal level


Approach contd..... (X Ray) Pulmonary vasculature (Normal)

X-Ray: Decreased vascularity

- Dark Lung Field
 Thin peripheral vessels
- •Small Hila

Cyanotic heart defects with decreased vascularity (examples)

Critical Pulmonary stenosis/pulmonary atresia with intact ventricular Septum Tetralogy of Fallot physiology

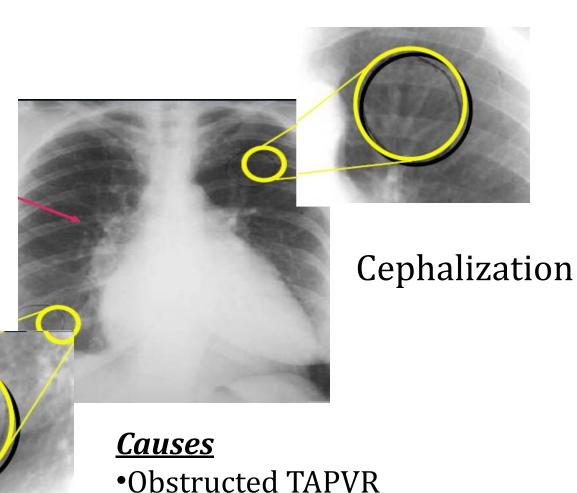
- TOF (VSD/ PS)
- DORV/VSD/PS
- AVSD/PS
- TGA/ VSD/ PS
- Single ventricle/ PS
- Tricuspid atresia with restrictive VSD and/ or PS

Increased vascularity

Right des. PA dilated Prominent hilar vessels Pulm. vasculature traced till lateral 3rd of lung field End on vessels >4 in one lung field

Cyanotic heart defects with increased vascularity (examples)

Transposition physiology


Complete TGA DORV/ subpulmonic VSD (Taussig Bing)

Admixture physiology without PS

- At systemic or right atrial level: TAPVR, Mitral/ Aortic atresia with IVS
- At left atrial level: Tricuspid atresia
- At ventricle/ great artery level: Single ventricle, Complete AVSD with straddling AV valve, DORV/ subaortic or inlet VSD, Persistent truncus arteriosus

Pulmonary venous hypertension

- •Perihilar Haze
- •Fluid in fissures •Kerley's Lines

•HLHS/ Mitral atresia with restrictive ASD

Questions which need to be answered

- Is there an imminent risk of death?
- What group of cardiac lesion?
- What further investigations?
- When to intervene?

Making an exact diagnosis may not always be possible.

ECG: INTERPRETATION

- Axis : Leads I and aVF are used
 - 1. P axis:P wave must be upright in leads I and aVF. 0 to +90 degree = normal +90 to +180 degree = Atrial inversion 0 to -90 degree = Ectopic atrial pacemaker/ AV junctional rhythm

2. QRS axis: QRS axis is perpendicular to lead with equiphasic QRS complex (R=S)

3. T axis: T waves must be upright in lead I and aVF

Normal QRS axis

Age	Mean (Range)
<1 wk	ard +135
1week -1 month	+110 (+30 to +180)
1-3 months	+70 (+10 to+125)
3 month- 3 years	+60 (+10 to 110)
>3 years	+60 (+20 to 120)
Adult	+50 (-30 to +105)

Abnormal QRS axis

 LAD –QRS axis is less then lower limit of normal for age.

(a) LVH (b) LBBB

(c) Left anterior hemiblock

 RAD –QRS axis is greater then upper limit of normal for age.

(a) RVH (b) RBBB

Superior QRS axis: S>R in aVF
 (a) Endocardial cushion defect (ECD)
 (b) Tricuspid atresia
 (c) RBBB

Further Evaluation

- Echocardiography: To confirm the type of lesion
- Cardiac catheterisation studies
- Angiography: confirmation, haemodynamics, oxygenation, intervention
- MRI: diagnostic for anomalies in pulmonary arteries, aorta, and vena cava

Mangement: Role of PG E1

Indications:

- Cyanotic newborn suspected to have duct dependent lesion
- Echo proven duct dependent cardiac lesions

Dose: 0.01mcg/kg/min to 0.1 mcg/kg/min; gradually dec. to 0.025 mcg/kg/min before stopping (Neofax 2010)

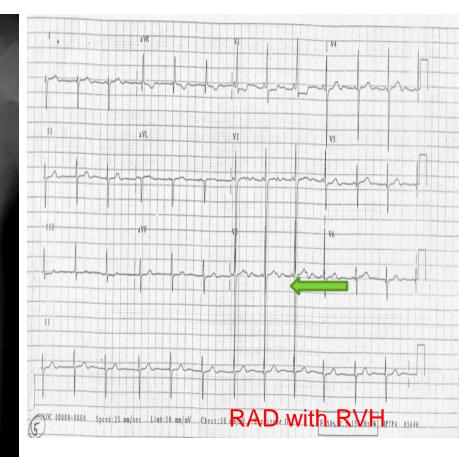
Side effects: Apnea, pulmonary congestion, fever, hypotension, seizures, and diarrhea

Case 1

A neonate is profoundly cyanosed and lethargic in his cot at 22 hours of life.

- Clinical examination reveals a soft systolic murmur heard at the left sternal edge and a single second heart sound
- Blood gas: unavailable
- ECG :normal neonatal pattern
- Chest X ray: available

Cardiomegaly with typical egg on side appearance, increased pulmonary blood flow


Transposition of great arteries

CASE 2

A 3 mo infant presented with bluish discoloration of lips on crying since past 2 weeks

- No H/o suck-rest –suck cycle/ sweating/ cough or breathlessness
- Clinical examination reveals HR:110/min, RR:28/min. Central cyanosis+ worsening on crying. Apex beat in 4th ICS inside MCL . ESM Grade 3/6 best heard in Pulmonary area. S1 N S2 single
- ECG and chest X ray is available

Boot shaped heart with right sided aortic arch

Tetralogy of Fallot

Case 3

Preterm (34 wks) neonate born by normal vaginal delivery with mild respiratory distress and cyanosis

- Put on CPAP
- Spo2 decreased from 95% on room air to 78% on 45% Fio2
- RR=60/min with Intercostal recession with decreased air entry on the left
- CVS: S1 S2 normal. No murmur

Air fluid levels in chest with defect in diaphragm

Congenital diaphragmatic hernia