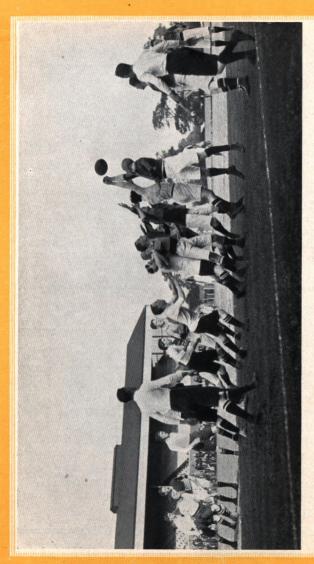
ZEISS LENSES

PALMOS CAMERAS BÉBÉ CAMERAS POLYSCOPE CAMERAS ETC.

CARL ZEISS (LONDON) LTD. 13-14, Great Castle Street, Oxford Circus

LONDON W.

Telephone: Central 4007 and City 5460. Telegraphic Address: Zeisswerk Wesdo London. ABC Code 5th edition.



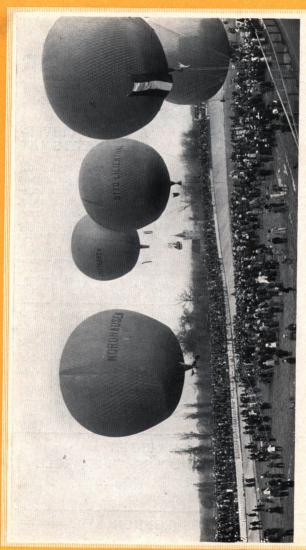
TESSARS

F:3.5 and F:4.5 Series Ic

These lenses are of a simple formula and yield negatives that are surprisingly sharp and brilliant. The F:3.5 Lenses are specially suitable for Portraiture, Cinematography and Projection, while for Reflex, Folding Focal Plane and all High Speed Instantaneous work the F:4.5 Tessars are the finest lenses obtainable. They are the Ideal Lenses for Press Photography. For Autochrome and Three-colour work the Tessars claim special attention on account of their perfect colour correction.

	recom-	Price in Sta mount	in Compound Shutter	in Ibso Shutter	
in.	mended	Codeword	£	£	£
1		TESSAR F:3.5			
2	$1 \times \frac{3}{4}$	Adecenar	4. 0.0		_
	$1\frac{1}{4} \times 1\frac{1}{8}$	Adeceno	5. 0.0	- 1	_
4	$1\frac{3}{4} \times 1\frac{3}{4}$	Cabanal	6. 0.0	10 ac	\equiv
81/4	$3\frac{1}{2} \times 2\frac{1}{2}$	Adedebant	15. 0.0	_	
10	5><4	Adedendum	20. 0.0	_	_
12	$6\frac{1}{2} \times 4\frac{3}{4}$	Adederent	25. 0.0		_
		TESSAR F:4.5			
3	$2\frac{3}{8} \times 2\frac{3}{8}$	Azolitmine	4.10.0		-
31	$3\frac{1}{4} \times 2\frac{1}{4}$	Azolotli	4.10.0	6. 5.0	5.14.0
$4\frac{3}{4}$	$3\frac{1}{2} \times 2\frac{1}{2}$	Adedisti	5. 0.0	7. 0.0	6. 5.0
51	$4\frac{1}{4} \times 3\frac{1}{4}$	Azogando	5.13.0	7.18.0	
6	5×4	Adefaghi	6.10.0	8-15-0	
61/2	$5\frac{1}{9} \times 3\frac{1}{4}$	Bacchiollo	7. 5.0	10. 0.0	
7			8. 0.0	10-15-0	_
81			10. 0.0	12-15-0	
			16. 0.0	19. 0.0	
			22-10-0	<u></u> -	<u> </u>
14	9×7		29. 0.0		
	THE RESERVE OF THE PERSON OF T		35. 0.0	<u> </u>	
20	12×10				
	$8\frac{1}{4}$ 10 12 3 $3\frac{1}{2}\frac{3}{4}\frac{4}{4}$ $5\frac{1}{4}$ 6 $6\frac{1}{2}$ 7 7 $8\frac{1}{4}$ 10 12 14 16 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Taken with ZEISS TESSAR F:4.5


THE TESSAR

F:6·3 Series IIB

FOR INSTANTANEOUS AND GENERAL WORK

This is a lens of perfect quality and as it can be fitted in a short mount is specially suited to small folding cameras with single extension. Like the other series of Tessars it produces negatives of extraordinary brilliancy and crispness which will bear a considerable amount of enlargement. Its colour correction being of the same high standard as that of the Tessars series Ic it is equally suitable for Autochrome and Three colour work.

		Eq. Focus	Size of plate recom-	Price in Sta mount		in Compound Shutter	in Ibso Shutter
		in.	mended	ded Codeword		£	£
IIB	1a	3	$2\frac{3}{8} \times 2\frac{3}{8}$	Adescando	4. 0.0	_	_
"	2	$3\frac{1}{2}$	$3_4^1 \times 2_4^1$	Adescantis	4. 0.0	5.15.0	5. 4.0
"	3	434	$3\frac{1}{2} \times 2\frac{1}{2}$	Adescarent	4.10.0	6. 5.0	5.14.0
"	4	$5\frac{1}{4}$	$4\frac{1}{4} \times 3\frac{1}{4}$	Adescassi	4.15.0	6-10-0	5-19-0
"	5	6	5×4	Adescaturo	5. 0.0	6-15-0	6. 4.0
"	5b	$6\frac{1}{2}$	$5\frac{1}{2} \times 3\frac{1}{4}$	Babbaccio	6. 0.0	8. 0.0	7. 6.0
"	5a	7	$6\frac{1}{2}\times4\frac{3}{4}$	Adeschero	7. 0.0	9. 5.0	_
,,	6	$8\frac{1}{4}$	$7\frac{1}{2} \times 5$	Adesco	8-10-0	10-15-0	-
"	7	10	8×5	Adesivo	11-10-0	14. 5.0	
,,	8	12	$8\frac{1}{2} \times 6\frac{1}{2}$	Adesmie	17. 0.0	20. 0.0	
"	9	14	10×8	Adesurae	22. 0.0	25. 0.0	_
"	10	191	12×10	Adesurarum	35. 0.0		10
"	11	231	15×12	Adesuries	45. 0.0	_	

Taken with ZEISS TESSAR F:6-3

DOUBLE AMATAR

F:6·8 (Single lenses F:13·5) Series IX

A RAPID UNIVER-SAL ANASTIGMAT

The rapidity of the Double Amatar suffices for all instantaneous work in good light. The single lenses have a focal length of about double that of the complete lens and form excellent lenses for Landscapes, Outdoor Portraits &c. The Double Amatar also forms a wide-angle lens embracing an angle of 85°. It is an excellent lens for use on small Folding cameras with double entension.

Series and No.	Trucus recom-		Price in Starmount Codeword	ndard ${\mathscr L}$	in Compound Shutter £	in Ibso Shutter	
IX 2	31/2	$3\frac{1}{9} \times 2\frac{1}{9}$	Baadster	4.15.0	6.10.0	5.19.0	
, 3	43/4	$4\frac{1}{2} \times 3\frac{1}{4}$	Baaiwinkel	5. 0.0	6.15.0	6. 4.0	
, 4	51/4	$4\frac{1}{2} \times 3\frac{1}{2}$	Baalbek	5. 5.0	7. 0.0	6. 9.0	
" 5	6	5×4	Baalism	5-10-0	7. 5.0	6.14.0	
, 6	$6\frac{1}{2}$	$5\frac{1}{2} \times 3\frac{1}{4}$	Baanbreker	6. 5.0	8. 5.0	7.10.0	
, 7	7	6×4	Baaras	7. 5.0	9. 5.0		
, 8	$7\frac{3}{4}$	$6\frac{1}{2} \times 4\frac{3}{4}$	Baardgier	8. 0.0	10. 5.0	_	
" 9	81/4	7×5	Baardje	8-15-0	11. 0.0	-	

SPECIAL LENSES

FOR COPYING, PROCESS, WIDE-ANGLE
THREE COLOUR WORK &c.
Full list on application.

PROTAR LENSES

F:12.5

DOUBLE PROTARS

F:6.3-7.7

THE PERFECT CONVERTIBLE

The single Protar Lens F:12.5 is remarkable for its anastigmatic flatness of field and is suitable for Instantaneous Photographs in good light also for Landscapes, Large Portraits and Groups.

The Double Protar is a Universal Lens in every sense of the word and is in this respect unapproached by any other lens.

SINGLE PROTAR LENSES F:12.5

Series and No.	Eq. Focus	ize of ate re- com-	Price in Sta mount	in Compound Shutter	in Ibso Shutter	
and No.	in.	Size plate cor men	Codeword	£	£	£
VII 1	7	$6\frac{1}{9} \times 4\frac{3}{4}$	Aproches	3-15-0		
" 2	$8\frac{3}{4}$	7×5	Aproctome	4. 5.0		
" 3	$11\frac{1}{9}$	$8\frac{1}{9} \times 6\frac{1}{9}$	Aprontamos	5. 0.0	5	
, 4	14	10×8	Aprontas	6. 0.0		
, 5	16	12×10	Apronto	7.15.0		
, 6	19	14×11	Apropiado	10.15.0		
, 7	23	15×12	Apropiar	13.15.0		
, 8	27		Apropieis	18. 0.0		

D.	ouble	Sing	le	DOUBLE PI	ROTARS	F:6.3	
VII 1.1	4	7	$3\frac{1}{4} \times 3\frac{1}{4}$	Appoggiare	6.15.0	8. 5.0	7.14.0
. 2.2	5	83	5><4	Appollaia	7.15.0	9.10.0	8.15.0
, 3.3	$6\frac{3}{4}$	111	7×5	Apponeva	9. 4.0	10.18.0	_
, 4.4	8	14	8×5	Appoppando	11. 3.0	13. 1.0	-
, 5.5	$9\frac{1}{2}$	16	$8\frac{1}{2} \times 6\frac{1}{2}$	Apporre		17. 1.0	
, 6.6	11	19	9×7			22.15.0	-
, 7.7	$13\frac{1}{2}$	23	10><8	Apportes	25.17.0	_	-

Double Protars F:7 to F:7.7 are also supplied.

Full and detailed list on application.

THE ZEISS MAGNAR F:10

A complete Telephoto lens of 18 in. Focus, Requiring an extension of 6 in. only (4 Plate only)

Price £ 10.0.0 in focussing mount

FOR TELEPHOTO SNAPSHOTS

NATURAL HISTORY WORK &c.

Invaluable to press photographers

The Zeiss "MAGNAR" Camera ¹/₄ Plate with "MAGNAR" Lens F/10 of 32 in. Focus, 3 D.D. slides and prismatic monocular telescope ×4 View finder. Price £ 45.0.0

TELEPHOTO ATTACHMENTS (consisting of negative lens and tube)

AND CAL	4.5				ED EX	TENSION	1700
,,		or	6.2			LILIASION	
A Secretary of the second			0.3	5 %	in.	×3	3. 5.0
	"		,,	6	in.	×2½	3-15-0
D CAME	RAS	WI	TH V	ARIE	ABLE	EXTENSIO	
Tessar				58	in.	×3	3-15-0
,,	,,		,,	6	in.	×2½	4. 5.0
FO	R ST	ANI		MER	AS		
Tessar	4.5	or	6.3	6	in.	×21	5-10-0
"			,,	7	in.	×31	5-10.0
"				81	in.	×2 ³ / ₄	7. 5.0
	4.5	or	-				14. 5.0
	,,	,, 4.5	" 4.5 or	,, 4.5 or 6.3	,, 4.5 or 6.3 12		" 4.5 or 6.3 12 in. ×3

ZEISS DUCAR FILTERS

FOR

AUTOCHROME WORK

The Ducar Filter consists of two optically worked discs of colourless glass enclosing a film which is identical with that supplied by Messrs Lumiere for their Autochrome process. It has, however, the distinctive property that when used on the front of the lens it displaces the focal plane by 1\frac{3}{3} mm away from the lens thus compensating for the reversal of the Autochrome Plate. The DUCAR FILTER is therefore invaluable for use on hand Cameras since Autochrome pictures may be secured without the slightest alteration to the Camera, the picture being focussed on the screen (without the filter) and the filter placed in position. If a focussing scale is used the filter should be placed in position and the camera set to the required distance in the usual way.

Prices of the Filters for Zeiss Tessars.

	Adapted for Tessa		e Dia- of hood			Adapt for Tessa		e Dia- of hood	
No.	Aperture	Focus	Inside meter o	111	No.	Aper-	Focus	Inside	
		in	in	£s.d.			in	in	£s.d.
00/5.5	F/4.5 & F/6.3	21/4	$\frac{3}{4}$	12.0	II/15	F/6.3	6	11/8	15.0
I/6.5	F/4.5	21	$\frac{15}{16}$	12.0	IV/15	F/4.5	6	$1\frac{1}{2}$	1.0.0
I/7.5	F/4.5 & F/6.3	3	15	12.0	III/16.5	F/6.3	61	$1\frac{5}{16}$	18-0
I/9	F/4.5 & F/6.3	31	$\frac{15}{16}$	12.0	VI/16.5	F/4.5	61	17	1.5.0
I/12	F/6.3	43	15	12.0	IV/18	F/6.3	7	11/2	1.0.0
II/12	F/4.5	43	11/8	15.0	the second second second	F/4.5	7	17	1.5.0
II/13.5	F/6.3	51/4	11	15.0	IV/21	F/6.3	81	11	1.0.0
IV/13.5	F/4.5	51	11	1.0.0		F/4.5		21	1.12.0

Ducar Filters are also supplied for other types of Zeiss Lenses.
Full Particulars on Application.

THE BÉBÉ CAMERA

 $2\frac{5}{16}$ "× $1\frac{3}{4}$ "

and 3½″×2½″

This little instrument has rapidly attained great

popularity with all Photographers.

Both models are fitted with the well known Compound shutter which is built into the front of the Camera giving exposures from 1 second to $\frac{1}{200}$ sec. in the larger model & to $\frac{1}{250}$ sec. in the smaller. Time and Bulb exposures may also be given.

Plates may be used in single metal slides or changing box and for films a Film Pack Adapter is supplied.

The Bébé is in every way a PRACTICAL and EFFI-CIENT camera, it is fitted with ZEISS "TESSAR" LENS F 4.5 so that pictures can be subsequently enlarged to Any Reasonable Size without apparent loss of definition.

The Focussing arrangement is simple and convenient the Camera remaining quite rigid even when

fully extended.

The $3\frac{1}{2} \times 2\frac{1}{2}$ model has rising and cross front.

	$2\frac{5}{16} \times 1\frac{3}{4}$	$3\frac{1}{2} \times 2\frac{1}{2}$
Price complete with TESSARLENSF:4.5	£	£
6 single nickelled slides and cases	10-10-0	14.14.0
Automatic Changing Box for 12 plates	2.15.0	3.15.0
Film Pack Adapter	15.0	1. 1.0
6 Extra Slides in purse	12.0	16.6
Single Slides each	2.0	2.9
Autochrome Slides each	2.0	2.9
8 Autochrome Sheaths for Changing box	5.6	7.6
Zeiss Ducar Filter for Autochromes.	14.0	15.0
High Aluminium Stand	1.10.0	1.10.0
" (Leather covered)	1.17.6	1.17.6
Antinous release	3.0	3.0
- CARL ZEISS (LONDON)	TD -	

THE POLYSCOPE

A perfect Camera for Stereoscopic Photography For plates or films $4\frac{1}{2} \times 1\frac{3}{4}$ in.

Strongly constructed of light metal the Polyscope is adapted for use with plates in single nickelled slides or an automatic changing box. For films a film pack adapter is supplied.

Each model is fitted with Reflecting & Direct-Vision

finders.

An accurate and reliable shutter giving exposures from $\frac{1}{3}$ to $\frac{1}{2^{\frac{1}{5}0}}$ of a second & time is fitted and on the focussing model objects as near as three feet can be focussed.

Prices including.	Changing Box and	
Model III Rigid pattern Focussing	Case	
model with rising front	£ 23. 0.0	£ 20. 0.0
Model IV Collapsible, focussing		
model	£ 22.10.0	£ 19.10.0
Adapter for single slides		£ 6.6
o Single nickelled metal slides in	case	£ 15.0
Single slides each		£ 2.6
for Autochromes		£ 2.6
Film Pack adapter		£ 17.0
Changing box for 12 plates		£ 3.15.0
8 Autochrome sheaths for changin	ng box	£ 6.6
Zeiss 'Ducar' Filters for Autochrom	ies (p.pair)	£ 1. 4.0
Antinous release		£ 3.0
High Aluminium Stand	· · · · · · · ·	£ 1.10.0
Box Form Stereoscope	overeu).	£ 1.17.6
Box form Stereoscope		£ 15.0

THE POLYSCOPE

For Plates or Films $5\frac{1}{4}" \times 2\frac{3}{8}"$

This model is constructed in the rigid pattern only.

It is fitted with rising front.

Like the smaller model it is available for use with Single Slides, Changing Box, or Film Pack Adapter all of which are interchangeable.

The Shutter is practical and reliable. It is speeded from $\frac{1}{3}$ to $\frac{1}{200}$ of a second and is available for time and

bulb exposures.

Panoram pictures can be taken with this Camera by sliding the front until one lens becomes central. The stereoscopic division is automatically displaced.

Price with ZEISS TESSAR LENSES F 4.5 and	£
Changing Box in Case	26. 0.0
With 6 Single Slides in Case	22-10-0
6 Single Slides in Case	1. 1.0
Single Metal Slides each	2.9
Film Pack Adapter	1. 1.0
Changing Box for 12 plates	5. 0.0
8 Autochrome Sheaths for Changing Box	7.6
Zeiss Ducar Filter for Autochromes (per pair)	1. 8.0
Antinous release	3.0
High Aluminium Stand	1.10.0
" " " (Leather covered)	1.17.6
Box form Stereoscope	1. 1.0

ŧ

THE MINIMUM PALMOS

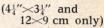
Made of light metal and fitted with Reliable and Accurate Focal plane shutter which is adjusted entirely from the outside — FOR HAND OR STAND USE.

For Plates


or Films

PRICES COMPLETE with TESSAR F 4.5 and 3D.D. slides

				10×15cm	
Camera with	$3\frac{1}{2} \times 2\frac{1}{2}$	$4\frac{1}{4}><3\frac{1}{4}$	5×4	(6×4in)	$6\frac{3}{4} \times 3\frac{1}{4}*$
Tessar F:4.5 and 3D.D. slides	14. 5.0	£ 16.10.0	17·15·0	19. 0.0	24. 0·0
D.D. Slides each	14.0	15.0	15.0	16.0	18-0
Adapter for single slides . Single metal	1. 0.0	1. 0.0	1. 0.0	_	-
slides each	1.3	1.4	1.6		_
Film Pack Adapter	17.0	1.0.0	1. 3.0	1. 6.6	_
Leather case for Camera and 3 slides Leather case for				1· 1·0 1· 6·0	
Camera and 6 slides	18.0	1. 0.0	1 .2.0	1. 0.0	1. 0.0
Telephoto Attachment Neg. lens and tube	3. 5.0	3-15-0	3-15-0		-
Ducar Filter					
(for Autochromes)	15.0	1. 0.0			1.10.0+
Aluminium Stand	1.10.0	1.10.0	1.10.0	1.10.0	
Do. Leather covered	1.17.6	1.17.6	1.17.6	1.17.6	1.17.6
* With paired F 6.3	Toccare		+ Per n	air	


^{*} With paired F 6.3 Tessars

⁺ Per pair

THE MINIMUM PALMOS

- Modell II

Similar in construction to the standard model but fitted with folding base - board which affords adequate protection to the lens.

Consequently it can be carried loose in the hand without fear of injury.

The shutter is self-capping and all adjustments are made from the outside.

Price with TES-SAR F:4.5, Eq. Focus 6" including 3 D. D. slides and case £17.6.0

STEREO PALMOS 44"×34" or 12×9 cm

Similar in construction to the Minimum Palmos but with folding base board permitting the use of lenses of various foci

Price with TESSARS F:6·3, Eq. Focus $3\frac{1}{2}$ in. including 3 D. D. slides & case £ 22·5·0

Set as above but with TESSAR F:4.5
£ 23.5.0

ATTACHMENT FOR STEREOGRAMS
AT SHORT RANGE

The correct separation being obtained automatically with the correct focussing of the image Price £ 5.5.0

Accessories for these cameras as for $\frac{1}{4}$ Minimum Palmos (Page 124)