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Abstract 

 

Eighteen species of Rhamnaceae were collected from different geographical regions of Pakistan to resolve its 

controversial phylogenetic position using morphological and molecular analysis. The phylogenetic tree based on 71 different 

micro and macro-morphological characters using Paleontological and statistical software (PAST) with Dice’s coefficient 

showed an overall genetic diversity of 32%. Further, in each species the atpβ gene promoter was amplified, purified, 

sequenced and the dendrogram was constructed using Molecular evolutionary genetic analysis (MEGA7) tool which divided 

the sequences into two main clades showing a narrow genetic diversity of 0.05% with well supported bootstrap’s values (95-

100%). Pairwise’s distance ranged from 0.12 to 0.73 with a mean value of 0.396. The phylogenetic study confirmed the 

work done by earlier phylogeneticist with additional reports of some new species, Berchemia pakistanica, Berchemia 

edgworthii, Berchemia floribunda, Helinus lanceolatus and Rhamnella gilgitica which are indigenous to Pakistan. The 

analysis of Cis-regulatory elements  and its mapping via Plant cis-acting regulatory DNA element (PLACE) and Domain 

graph (DOG) revealed numerous elements including 50 common and 28 unique, showing variation in copy numbers and 

locations. It was observed that Berchemia pakistanica and Berchemia edgworthii have the unique features possessing 

diverse cis-regulatory elements with diverse functions. 
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Introduction 

 

The plant family Rhamnaceae Juss. comprises of 11 

tribes, 60 genera and 900 species, cosmopolitan in 

distribution mostly found in warm temperate regions, with 

an epicenter of its diversity in Southern hemisphere (Burge 

et al., 2011, Jehangir et al., 2018 ). The largest number of 

species (250 out of 950), represented by ~ 21 different 

genera are found in Australia. Pakistan is hosting six genera 

and 21 species, mostly found in Azad Jammu Kashmir, 

Balakot, Gilgit, Galyat, Abbottabad, Peshawar, Swat, 

Upper Dir, Waziristan, Kurram Agency, Rawalpindi and 

Salt range having most of the species still unexplored 

(Qaiser & Nazimuddin, 1981). The family is famous for its 

significant importance in pharmaceutical industry acting as 

a source of various biological compounds like 

carbohydrates, vitamins, starch, secondary metabolites with 

strong therapeutic potentials against cancer, hepatitis 

(HBV, HCV), diabetes, asthma, stomach ulcer and 

leishmaniasis (Parmar et al., 2012; Iqbal et al., 2017; Iqbal 

et al., 2018; Abbasi et al., 2018). The first phylogenetic 

relationship of Rhamnaceae using trnL-F and rbcL plastid 

DNA sequences demonstrated that Rhamnaceae is a 

monophyletic family closely related to Dirachmaceae and 

Barbeyaceae (Richardson et al., 2000a). Recent taxonomic 

revisions considered that Rhamnaceae is a monophyletic 

family and divided it into three major groups:  rhamnoid 

(300 species), ziziphoid (600 species) and ampelozizyphoid 

(10 species) (Hauenschild et al., 2016). Previously, 

different studies have significantly emphasized the 

systematics and taxonomy of Rhamnaceae by reporting 

some new insights about its classification (Niamat et al., 

2012). In past, chloroplast genome was used to study the 

phylogenetic relationship of Ziziphus (Mill.), Helinus, E. 

Mey. ex Endl. Sageretia, Brongn. Rhamnella, Miq. 

Rhamnus, L. and Berchemia, Neck. ex DC. (Richardson et 

al., 2000b), Ceanothus (Burge et al., 2011), Colletieae 

(Aagesen et al., 2005), Pomaderreae (Kellermann & 

Udovicic, 2007), Cryptandra (Kellermann & Rye, 2008), 

and Paliurus (Islam and Simmons, 2006). The above 

studies have provided some new insights into its 

classification, but due to the addition of new species and 

ecotypes from different geographical regions of the world 

need further studies. 

The discovery of new and advance markers provided 

an opportunity to study plant phylogeny at a whole new 

level which includes morphological, biochemical and 

molecular analysis (Zahra et al., 2016; Channa et al., 2018; 

Shah et al., 2018; Sohail et al., 2018; Akbar et al., 2019). 

However molecular markers are more reliable due to their 

stability, adaptability and less susceptibility to 

environmental changes, while others are potentially prone 

to environmental and developmental plasticity. Chloroplast 

DNA provides an excellent opportunity for studying 

phylogeny at intra- and inter-species level due to its high 

genetic potential and conserved nature as compared to 

nuclear genome (Rasheed et al., 2012). There are several 

studies wherein the cpDNA markers have been employed 

to resolve the phylogenetic and taxonomic issues 

(Shinwari, 1998; Shinwari, 2000; Shinwari, 2002; 

Mahmood et al., 2010; Zeb et al., 2011; Shinwari et al., 

2014; Zahra et al., 2016) The atpβ gene positioned on the 

chloroplast DNA codes the beta (β) subunit of ATP 

synthase enzyme and was used to elucidate phylogenetic 

relationship among different taxa due to its relatively slow 

rate of nucleotide substitution as compared to other genes 

in chloroplast genome (Magee et al., 2010). According to 

our knowledge no earlier study has been reported by any 

research group using atpβ gene promoter on any single 

molecular phylogenetic aspect for the members of 

Rhamnaceae. So keeping in view the importance of 

Rhamnaceae and its controversial phylogenetic position, 
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the present study was designed to find the phylogenetic 

relationship among its six genera using morphological as 

well as molecular (atpβ gene promoter) data and to 

investigate functionally important cis-regulatory elements 

present in these promoters. 
 

Materials and Methods 
 

Morphological data analysis: Young fresh and herbarium 
specimens of eighteen species of Rhamnaceae (from six 
different genera) were collected from different 
geographical regions of Pakistan and the voucher 
specimens were deposited in Plant Biochemistry and 
Molecular Biology Laboratory, Quaid-I-Azam University 
Islamabad (Table 1). Morphological study of 5 different 
Ziziphus and 3 Berchemia species was conducted by 
studying its different micro- and macro-morphological 
characters along with information taken from Flora of 
Pakistan and previous research papers. Detailed 
information about these characters along with their key is 
given in (Table 2). The data was arranged in Microsoft 
Excel Sheet by giving proper code to each character and 
similarity-based dendrogram was constructed with PAST 
(Ver. 3.11) (Hammer et al., 2001) using Dice’s coefficient, 
which divided the species into various clades and clusters. 
 

Molecular data analysis: For molecular analysis, DNA was 
extracted from 6 different species of Ziziphus and 2 
Berchemia species using Cetyltrimethylammonium bromide 
(CTAB) method (Richard, 1997) and PCR was carried out 
using atpβ gene promoter primers in a total volume of 25μL 
containing 16.2 μL of nano pure water, 2.5 μL of 10X PCR 
buffer, 1.5 μL of 2 mM dNTPs, 1.5 μL of 25 mM MgCl2, 1 
μL of each primer, 0.3 μL of Taq polymerase (5 U) and 1 μL 
of template DNA using PCR MultiGene Thermal Cycler 
(Labnet). Annealing temperature was optimized for each 
primer ranging from 56 to 61°C. The PCR cycling 
conditions were as follow: 5 min at 94 °C, 35 cycles of 30 s 
at 94 °C, 1 min at 60°C, 1 min at 72 C and final extension of 
20 min at 72 °C. The products were purified (GeneJET PCR 
Purification kit, Thermoscientific), sequenced (Macrogen, 
South Korea) and the sequences were deposited to GenBank, 
National Center for Biotechnology Information (NCBI) 

(Accession numbers mentioned in figure 2) 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic 
analysis was conducted using MEGA7 (Tamura et al., 
2013a) via neighbor-joining tree-making method with a 
bootstrap’s (BS) value of 100. Similarly, Tajma’s neutrality 
test of selection was performed to find nucleotide diversity 
(π) with the same software. 

 
Regulatory elements analysis: Cis-regulatory 
elements in atpβ gene promoter of each species were 
found on both strands (+ and -) using PLACE 
(http://www.dna.affrc.go.jp/PLACE) online server and 
their corresponding positions were mapped with the 
help of DOG2 (Domain Graph Ver. 2.0) software (van 
Dijk and Bonvin, 2009), searched for the most common 
and unique elements along with their putative roles in 
gene regulation. 
 

Results 

 

Morphological analysis: Phylogenetic analysis based on 71 
different micro- and macro-morphological characters given 
in table 2 divided the species into two main clades (Fig. 1). 
The species revealed an overall homology of 68% with 
morphological diversity of 32%. Clade 1 contained a single 
species of Helinus lanceolatus revealing a high divergence 
pattern while clade 2 contained the rest of 17 species 
showing an overall homology of 72%. Clade 2 was again 
divided into cluster 1 comprised of 15 species and cluster 2 
which consisted of 2 species (Sageretia thea and Sageretia 
thea var. brandrethiana). In cluster I Rhamnella gilgitica has 
made an out-group with the rest of species. In genus 
Rhamnus, Rhamnus purpurea has made an out group with 
the remaining species, indicating possible ancestral role of 
the genus Rhamnus. Generally, all the species falls into their 
respective genera. Similarly, the genus Berchemia (3 
species) and Ziziphus (5 species) revealed the same pattern 
by showing 77% and 84% similarity at morphological level. 
Overall, greater similarity was observed among Rhamnus 
and Berchemia’s species which form close relationship with 
Ziziphus species. However, the distant relationship was 
observed for genus Helinus and Sageretia (Fig. 1). 

 
Table 1. List of selected species along with their voucher numbers, geographic coordinates and area of collection. 

S. No. Species name Voucher number Location Geographic coordinates 

1. Ziziphus spina-christi (L.) Desf HPBMBL-16-064 Islamabad 33° 42' 0" North, 73° 10' 0" East 

2. Ziziphus jujuba Mill. HPBMBL-16-065 Mardan 34° 11' 54" North, 72° 2' 45" East 

3. Ziziphus nummularia (Burm.f.) Wight & Arn. HPBMBL-16-066 Islamabad 33° 42' 0" North, 73° 10' 0" East 

4. Ziziphus rugosa  Lam. HPBMBL-16-067 Hyderabad 25° 26' 0" North, 68° 32' 0 East 

5. Ziziphus mauritiana  Lam. HPBMBL-16-068 Peshawar 34° 0' 28" North, 71° 34' 24" East 

6. 
Ziziphus mauritiana var. spontanea (Edgew.) 

R.R. Stewart ex Qaiser & Nazim 

HPBMBL-16-069 
Peshawar 34° 0' 28" North, 71° 34' 24" East 

7. Berchemia edgworthii Lawson HPBMBL-16-070 Malakand 34° 37' 0" North, 71° 58' 17" East 

8. Berchemia pakistanica  Browicz HPBMBL-16-071 Waziristan 32° 59' 12" North, 70° 16' 24" East 

9. Rhamnus triquetra (Wall.)  Brandis HPBMBL-16-072 Upper Dir 35° 12' 21" North, 71° 52' 32" East 

10. Rhamnus purpurea  Edgew HPBMBL-16-073 Kashmir 33° 8' 35" North, 73° 44' 51" East. 

11. Rhamnus virgata Roxb. HPBMBL-16-074 Kashmir 33° 8' 35" North, 73° 44' 51" East. 

12. Rhamnus pentapomica  R. Parker HPBMBL-16-075 Balakot 34° 33' 0" North, 73° 21' 0" East 

13. Rhamnus prostrate Jacq. HPBMBL-16-076 Kashmir 33° 8' 35" North, 73° 44' 51" East. 

14. Rhamnus persica  P. Lawson HPBMBL-16-077 Quetta 30° 12' 0" North, 67° 0' 0" East 

15. Sageretia thea (Osbeck) M.C. Johnst. HPBMBL-16-078 Chitral 35° 50' 32" North, 71° 46' 55" East 

16. 
Sageretia thea var. brandrethiana (Aitch.)  

Qaiser & Nazim 

HPBMBL-16-079 
Islamabad 33.7444° North, 73.0417° East 

17. Helinus lanceolatus Brandis HPBMBL-16-080 Lehtar 33° 36' 0" North, 73° 4' 0" East 

18. Rhamnella gilgitica Mansf. & Melch. HPBMBL-16-081 Gilgit 35° 55' 0" North, 74° 18' 0" East 

http://www.dna.affrc.go.jp/PLACE
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Table 2. List of different micro- and macro-morphological characters used in morphological analysis along with characters’ 

key. S/N: serial number, Char. Studied: character studied. Different numbers represent the arbitrary scale  

used for data scoring in dendrogram construction. 

S. No. Char. studied Key 

1. Plant habit Tree (0), Shrub (1), Climber (2), Herb (3) 

2. Plant nature Evergreen (0), Deciduous (1) 

3. Stem Succulence Succulent (0), Non succulent (1) 

4. Stem nature Herbaceous (0), Woody (1), Herbaceous + woody (2) 

5. Stem indumentums Present (0), Absent (1) 

6. Xerophytic nature Absent (0), Present (1) 

7. Spines Present (0), Absent (1) 

8. Type of leaf Simple (0), Compound (1) 

9. Leaf orientation Palmate (0), Pinnately nerved (1), 

10. Leaf with lateral nerves 3-4 pairs (0), 3-5 pairs (1), 6-8 pairs (2), 7-8 pairs (3), 8-11 pairs (4), 6-10 pairs (5), 4-5 Pairs 

(6), 2-5; Pairs (7) 

11. Leaf arrangement  Alternate (0) ,Opposite to Sub-opposite (1), Opposite (2) 

12. Leaf disc Present (0), Absent (1) 

13. Leaf disc nature Fleshy (0), Nectariferous (1) Disc remnants (2) 

14. Leaf disc appearance Glabrous (0), Velutinous (1) 

15. Leaf Petiole Petiolate (0), Sessile (1) 

16. Petiole length 1-1.5 cm  (0), 1-2 mm  (1), 2-3 mm (2), 2-4 mm (3), 1-3 mm (4), 3-5 mm (5), 5-10 mm (6), 8-

15 mm (7), 5-6 mm (8), 4-8 mm (9), 3-12 mm (10), 0.8-1.5 cm (11) 8-20 mm (12), 1-2 cm 

(13), 0.5-2 cm (14), 3-4 mm (15), 3-5 mm (16), 

17. Leaf shape Cuneate (0),  Narrow oblong (1), Ovate (3), Elliptic lanceolate (4), Elliptic (5), Oblong-ovate 

(6), Oblanceote (7), Obvate oblong (8) Sub-orbicular (9) 

18. Leaf margin shape Ovate (0), Ovate-orbicular (1), Ovate-elliptic (2), Oblong-ovate (3), Ovate-lanceolate (4), 

Elliptic (5), Obovate (6), Elliptic-lanceolate (7), Sub-ovate (8) 

19. Leaf stipules Stipulate (0), Exstipulate (1) 

20. Stipule size 1.5-2 mm (0), 1-2 mm (1), 1-3 cm (2), 2 cm (3), 3 cm (4), 5-7 mm (5), 1 cm (6), 3-6 mm (7), 

5 mm (8), 2-3 mm (9) 

21. Stipules shape Traingular (0), Awl shaped (1), Triangular (2), Lanceolate (3), Long and straight (4) 

22. Stipules nature  Caduceus  (0),  persistent (1), 

23. Flower sex Unisexual (0), Bisexual (1) 

24. Flower symmetry 4-merous (0), 5-merous (1), 6-merous (2), 5-6 (3) 

25. Pedicel length 1-1.5 mm (0), 2-3 mm (1), 2-4 (2), 3-5 (3), 1-2 mm (4), 4-5  (5), 6-7 (6), 3-6  (7), 5-8 mm (8), 

3-6 mm (9) 

26. Flower diameter 2-3 mm (0), 3-4 mm (1), 4-6 mm (2), 2-4 mm (3), 4-5 mm (4), 2 mm (5), 5 mm (6), 3 mm 

(7), 12-15 cm (8), 2.5 3 mm (9), 2.5 mm (10) 

27. Flower color Greenish yellow (0), Yellowish (1), Rarely brightly colored (2) 

28. Flower axis Sessile (0), Sub-sessile (1), Pedunculate (2) Pedicellate (3) 

29. Floral Bracts Bracteates (0), Ebracteate (1) , Bracteoles (2) 

30. Sepals Present (0), Absent (1), 

31. Number of sepals 5 (0), 5-6 (1) 

32. Aestivation of sepals Valvate (0), Imbricate (1) 

33. Calyx keel Present (0), Absent (1) 

34. Petals Present (0), Absent (1 

35. Number of petals 5 (0), 6 (1), 0 (2), 4 (3) 

36. arrangement of floral parts Obhaplostemonous (0), Not obhaplostemonous (1) 
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Table 2. (Cont’d.) 

S. No. Char. studied Key 

37. Ovary position  

38. Number of locules per ovary 1 (0), 2 (1), 3 (2), 1-2 (3), 2-4 (4), 2-3 (5) 

39. Number of ovule per locule  1 (0), 2 (1), 3 (2), 2-4 (3), 2-3 (4) 

40. Ovary shape Globose (0), Glabrous (1), Completely immersed in disk (2) 

41. Fruit shape Globose (0), Globose-oblong (1), Obovoid (2), Obovate to oblong (3), Ovoid (4), Ovoid to 

globose (5), Ovate to globose (6) 

42. Fruit type Drupaceous (0), Capsule (1), fleshy (2), Samaroid  (3) 

 Mesocarp Fleshy (0), Without-fleshy (1) 

43. Endocarp Cartilaginous (0),  Woody (stony) or (Corky) (1), Fragile-crustaceous (2), Thickly leathery (3) 

44. Endosperm Copious (0),  Scanty (1), Fleshy (2), Absent (3) 

45. Fruit splitting dehiscent (0),  Indehiscent (1) 

46. Seed  Present (0), Absent (1) 

47. Seed shape Plano-convex (0), Globose (1), Ovoid (2), Obovoid (3), Heart shape (4) Oblong (5) 

48. Seed color Red brown (0), Reddish brown (1), Orange black (2), Dark brown (3), Yellow brown (4), 

Light brown (5) purple red (6), Purple black (7)  

49. Seed albumin Thin albumin (0), Oily albumin (1), Exalbuminous (2), Stoney albumen (3) 

50. Inflorescence Cymes (0),  Panicle (1), Racemes (2), Spikes (3), Tomentose (4), Fasciculate (5) 

51. Inflorescence Position Axillary (0), Terminal (1) 

52. Perianth Present (0), Absent (1) 

53. Involucre Present (0), Absent (1) 

54. Petiole size 8-20 mm  (0), 5-13 mm (1), 3-12 mm (2), 5-10 mm (3), 2-3 mm (4), 1-1.5 cm (5), 2-4 mm 

(6), 3-5 mm (7), 1-6 mm (8),1-2 cm (9), 0.5-2 mm (10), 5-6 mm (11), 4-8 mm (12) 

55. Leaf  blade Present (0), Absent (1) 

56. Leaf  blade shape Ovate (0) Elliptic (1) Rarely subrounded (2), Ovate or ovate-elliptic (3), Obovate-lanceolate 

(4), Obovate-oblong (5), Elliptic to oblong (6), Lanceolate (7)  

57. Leaf  blade length 2.5-6 cm (0), 1-2 cm (1) 2-6 cm (2), 8-11(3), 5-12 cm(4),3-7 cm (5), 10-30 mm (6),7-15 cm (7), 2-

10 cm (8), 1.8-6 cm (9),5-20 mm (10), 1-4 cm (11), 1.5-2.5 cm (12), 2.5-6 cm (13), 5-15 cm (14)  

58. Leaf  blade width 1.5-4.5 cm (0), 0.5-2 cm (1), 1-4 cm (2), 4.5-9.5 cm (3), 2.5-4 cm (4), 2-5 mm (5), 2-20 mm (6), 2-

8 cm (7), 1-6 cm (8), 1-4 cm(9), 4-8 cm (10), 5-2 cm (11), 8-12 (12) 

59. Tendrils Present (0), Absent (1) 

60. calyx keel Present (0), Absent (1) 

61. Arrangements of floral parts Obhaplostemonous (0), Not obhaplostemonous (1) 

62. Ovary position Superior (0), (1), Inferior (2)  

63. Pollen Presence (0), Absence (1) 

64. Pollen shape Sub-prolate (0),  Oblate-spheroidal (1),  Prolate (2) 

65. Pollen class Tricolporate (0), Non-Tricolporate (1) 

66. Aperture Long elliptic (0), Acute ends (1),  

67. Tectum Striate (0), Finally striate (1), Reticulate (2), Finally reticulate (3), Striate reticulate (4), Strio-

Rugulate (5), Regulate-striate(6), Regulate7 

68. P/E ratio Semi- erect to sub-transverse (0), Semi erect (1), Sub-transverse to semi- erect (2), Erect to 

semi- erect (3) 

69. Ornamentation Tectum medium to finely reticulate (0), Tectum psilate (1), Tectum striate – regulate (2) 

Tectum rugulate to rugulate-striate (3), Tectum striate (4) 

70. Exine  Sexine thicker than nexine (0), Sexine thinner than nexine (1), Sexine thicker than nexine or 

as thick as nexine (2) 

71. Exine thickness (µm) 1.25 µm (0), 3.94 µm (1), 2.6 -2.68 µm (2), 8.36 µm (3), 1.25 µm (4), 2.25 µm (5), 4.75 µm 

(6), 1.79 µm (7), 2.5 µm (8), 2.63 µm (9) 
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Fig. 1. Phylogenetic analysis of selected species of Rhmnaceae using 71 morphological characters. Tree was constructed using 

Paleontological and Statistical Software (PAST) (ver. 3.11) with Dice’s coefficient. Range of similarity is given as percentage. Each 

node is labeled which divide the species into various clusters, subclusters and groups etc. 

 
Molecular data analysis: Molecular analysis based on 
atpβ gene promoter divided the species into clade 1 having 
11 species and clade 2 containing 7 species with well 
supported BS values of 95-100% and 99-100% 
respectively, showing an overall genetic diversity of 0.05%. 
Clade 1 and 2 were again divided into species-based 
clusters showing similarity among members of the same 
genus. Overall, greater similarity was observed among 
member of Ziziphus, Sageretia and Berchemia genera, 
while Rhamnus form a separate group. However, 
Rhamnella form a sister group with cluster 1 and two 
species and Helinus form an out-group with Berchemia 
species. Similarly, two species of Ziziphus (Ziziphus jujuba 
Mill. Ziziphus nummularia Burm.f.) form close relationship 
with Rhamnus species instead of Ziziphus (Fig. 2). 
 
Regulatory elements analysis: Cis-regulatory elements 
analysis revealed large number of elements with diverse 
functions among which 50 were common and 28 were 
unique. Functionally, most of the reported elements in all 
species belong to flavonoid biosynthesis, light 
responsiveness and seed storage. The first five elements 
with highest copy numbers belong to flavonols biosynthesis 
(422), bacterial response regulator (356), seed storage 

(284), photosynthesis controlling elements (249) and Dof 
protein (230). Other elements with highest copy number 
were involved in guard-cell specific expression (136), 
pollen development and maturation (98), circadian rhythm 
(70) and elements related to various environmental stresses 
(30). However, elements with low copy numbers and 
important functions include auxin, gibberellin, abscisic acid 
(ABA), cold and wound-inducible elements. Overall, 
highest number of elements was found in Helinus 
lanceolatus (283) and Rhamnella gilgitica (272) while 
lowest were found in Ziziphus jujuba and Berchemia 
edgworthii (219). The name of each sequence, factor name 
(Fig. 3) copy number, different functions and associated 
reference are given in Table 3. Beside, 28 unique elements 
were also found which play significant role in various plant 
processes. Largest number of unique elements were found 
in Berchemia pakistanica (14), Berchemia edgworthii (13), 
Rhamnus triquetra (12) Helinus lanceolatus (12), Ziziphus 
mauritiana (11), Rhamnus pentapomica (11), Ziziphus 
mauritiana (10) Rhamnus virgata (10) Ziziphus rugosa (9), 
Sageretia thea var. brandrethiana (9) Ziziphus spina-christi 
(8) Ziziphus jujuba (8) Rhamnus persica (8) Ziziphus 
nummularia (6) and Rhamnus purpurea (5). Detailed 
information about these elements is given in Table 4. 
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Fig. 2. Phylogenetic analysis of selected species of family Rhamnaceae using atpβ gene promoter. The tree was constructed using 

Molecular and evolutionary genetic analysis (MEGA7) software with neighbor’s joining method. Each node is labeled with 

bootstrap’s value (in percentage) using 1000 replicate. Accession numbers are Rhamnus purpurea (KP121447), Berchemia 

pakistanica (KP121456), Rhamnus pentapomica (KP121448), Ziziphus mauritiana var. spontanea (KP121446), Ziziphus jujuba 

(KP121449), Rhamnella gilgitica (KP121457), Ziziphus mauritiana (KP121450), Sageretia thea var. brandrethiana (KP121458), 

Rhamnus virgata (KP121451), Sageretia filiformis (KP009593), Ziziphus spina-christi (KP121452), Sageretia thea  (KP009594), 

Berchemia edgworthii (KP121453), Rhamnus triquetra (KP009595), Helinus lanceolatus (KP121454), Rhamnus persica (KP009596), 

Ziziphus nummularia (KP121455), Ziziphus rugosa (KP009597) and showing a narrow genetic background of 0.5% with well 

supported bootstrap values. 

 

Discussion 

 

Morphological data analysis: Phylogenetic analysis based 

on morphological characters can be used as a useful 

strategy to find and analyze the relationship of selected taxa 

(Kellermann & Barker, 2012; Onstein et al., 2015). 

Previously, Islam & Guralnick (2015) studied 30 

morphological characters of Rhamnaceae species by 

examining the evolution of vegetative and reproductive 

characters. Presently, greater similarity was observed 

among studied genera using 71 characters which are due to 

similarity in their morphology largely governed by the 

same geographical and environmental conditions. The 

present study is similar to the phylogenetic reconstructions 

of Rhamnaceae by Richardson, (2000) and Onstein et al., 

(2015), which was based on molecular data including 

additional morphological, anatomical and geographical 

information by employing 20 and 15 morphological 

characters respectively. Similarly, Thulin et al., (1998) used 

22 morphological characters (also including anatomy) 

which divided the species into two main clades along with 

molecular study employing rbcL and trnL-F genes primers. 

However, in the present study Helinus showed a very 

distant relationship with other genera which may be due to 

variation in its morphology and genetic makeup through 

the course of evolution (Richardson et al., 2000, 

Richardson et al., 2004). Sageretia is the most primitive 

species serve as an ancestor for Rhamnus, Berchemia, 

Ziziphus and Rhamnella (Onstein et al., 2015; Hauenschild 

et al., 2016). The greater similarity of Ziziphus, Berchemia 

and Rhamnus may be contributed to the fact that most of 

these species have drupaceous fruits, and belong to the 

same geographical region, resulting similarities at their 

morphological level but the distant relationship of 
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Rhamnella may be due to its remote geographical position 

in the upper northern region (Gilgit) of Pakistan. 

Morphological characters are strongly affected by 

geographical and environmental gradient therefore, most 

species of the same region form close relationship with 

each other. In contrary, Rhamnus persica and Ziziphus 

rugosa occupied their respective position in dendrogram 

despite their remote location from the rest of the species 

which may be due to the fact that both of these species have 

recently migrated to these areas (Quetta and Hyderabad). 

The morphological differences of Rhamnus purpurea and 

Sageretia with the rest of species can again be explained by 

their distant position in a completely different environment. 

 

Molecular data analysis: Phylogenetic analysis of 18 

species of Rhamnaceae revealed a narrow genetic diversity 

(0.05%), suggesting higher similarity which is in 

accordance to the earlier revision by various phylogenetists 

who studied it with different molecular markers along with 

morphological, anatomical and geographical information. 

Previously, Rhamnaceae was studied using rbcL, trnL-F, 

ITS, 26S rDNA, Random amplified polymorphic DNA 

(RAPD), Amplified fragment length polymorphism 

(AFLPs), Sequence-related amplified polymorphism 

(SRAPs) and Simple sequence repeat (SSR) (Edwards et 

al., 2011; Wang et al., 2014) but no study was found 

regarding atpβ gene promoter . The present results are in 

accordance to the work done by Richardson et al., (2000b), 

who studied 42 genera of Rhamnaceae with a BS score of 

100 for genus Ziziphus, 96 for genus Rhamnus, 89 for 

genus Helinus, 64 for Sageretia, 65 for Berchemia and 57 

for Rhamnella, using rbcL and trnL-F markers. In another 

study, Islam and Simmons (2006) reported a BS score of 65 

for Ziziphus jujuba, 52 for Ziziphus rugosa, and 58 for 

Ziziphus mauritiana with overall BS score of 88% for the 

whole genus using 26S rDNA as a molecular marker. 

Hauenschild et al., (2016) examined genetic diversity 

(0.05%) and polyphyletic origin of Ziziphus based on the 

combined and separate study of ITS (nuclear) and trnL-trnF 

(plastid) marker. These results agree with previous studies 

in Rhamnaceae, when both markers were combined and 

compared while using maximum likelihood and Bayesian 

inference (Kellermann & Udovicic, 2008). However, 

lowest genetic diversity was found between Ziziphus jujuba 

and Ziziphus rugosa (With a BS score 52) which may be 

attributed to the use of different number of species and 

markers for analysis. This may also support that Ziziphus 

jujuba and Ziziphus rugosa were the initial progenitor of 

genus Ziziphus (Islam & Simmons, 2006; Onstein et al., 

2015). Overall, greater similarity was observed among 

members of the same genus which may be due to similarity 

in their morphology and genetic structure. 

 

 
 

Fig. 3. Map showing distribution of various cis-regulatory elements on minus strand of atpβ gene promoter of Rhamnus pentapomica. The 

map was built with Domain Graph (DOG) software. Each element is represented by a distinct color to make it more distinguishable. 

Starting and ending positions of each element is given relative to the 5’ end upstream to the transcriptional start site (ATG). 
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Several other molecular markers have been used to 

evaluate the phylogenetic relationship of the members of 

Rhamnaceae. Islam & Guralnick (2015) evaluated the 

degree of similarity and diversity among different genera 

of Rhamnaceae with two loci from the nuclear genome 

internal transcribed spacers (nrITS) and 26S rDNA and 

two loci from the chloroplast genome (trnL-trnF 

intergenic spacer (trnL-F), and trnQ-5′rps16 intergenic 

spacer (trnQ-rps16). They found relatively higher genetic 

homologies between members of Ziziphus (Ziziphus 

rugosa and Ziziphus jujuba) with a BS score of 100%. 

Furthermore, Onstein et al., (2015) worked on the 

molecular analysis of Rhamnaceae (280 species and 

seven subspecies) with reference to morphological 

studies. They examined the evolution of the vegetative 

and reproductive characters using six chloroplast markers 

matK, rbcL, trnL-F and intergenic spacer, psbA and 

psbA-trnH intergenic spacer, ndhF spacer, rpl16 gene and 

intron and one nuclear marker ITS gene marker have 

shown close relationships between taxa with more than 

80% BS support. However, no significant studies based 

on molecular markers have been carried out for the 

members of Rhamnaceae using cpDNA in Pakistan and 

many of these species are being studied and reported for 

the first time from Pakistan. 
 

Regulatory elements analysis: The presence of large 

number of regulatory elements in studied species represents 

its diverse function. Highest number of these elements are 

involved in the regulation of flavonols biosynthesis genes 

which are in accordance to the observed role of this family 

in diverse medicinal proposes (Hartmann et al., 2005). It 

may also be due the fact that Rhamnaceae play an 

important role against various diseases. The presence of 

these elements in all species may be contributed to its 

common evolutionary history and similar properties. Other 

important elements were related to light responsiveness and 

seed storage showing the important role of these promoters 

in related processes. Similarly, other elements like 

CACTFTPPCA1 play an important role in the 

photosynthesis of C4 plants (Gowik et al., 2004), 

CIACADIANLELHC in circadian expression (Piechulla et 

al., 1998), ROOTMOTIFTAPOX in the elongation of 

vascular tissues (Elmayan and Tepfer, 1995), 

GTGANTG10 in development of Pollen (Rogers et al., 

2001), MYBPZM code for flowers red colorations 

(Grotewold et al., 1994). Further, in silico analysis revealed 

the presence of several other functional elements like, 

NTBBF1ARROLB which regulate tissue specific 

expression (Baumann et al., 1999), WRKY710S in 

repression pathway of gibberellin (Eulgem et al., 1999), 

SOOO292 in ABA-signalling pathway (Lopez-Molina & 

Chua, 2000), IBOXCORE in light-regulated transcription 

(Terzaghi and Cashmore, 1995). Furthermore, four unique 

elements, including ANAERO1CONSENSUS is involved 

in the fermentation pathway (Mohanty et al., 2005), 

SITEIIATCYTC is required for oxidative phosphorylation 

(Welchen & Gonzalez, 2006), SEBFCONSSTPR10A a 

defense-specific regulatory element (Boyle & Brisson, 

2001), and CGCGBOXAT regulate ethylene, ABA and 

light signalling (Yang & Poovaiah, 2002) were identified. 

The highest number of these elements were found in 

Helinus lanceolatus and Rhamnella gilgitica promoter 

showed its importance regarding crop biotechnology. The 

presence of these unique elements showed its more diverse 

functions through the course of evolution during which 

nature accumulated more novel elements regarding their 

demanding function. A more detailed analysis is presented 

in table 3 and 4 which provides information about the 

possible regulatory role of these elements in different parts 

of the plant in response to various stresses. 

 

Conclusion 

 
The present study is the first to investigate 

phylogenetic relationships of the entire Rhamnaceae 
members from Pakistan using both morphological and 
molecular data. Many genera, particularly Rhamnella, 
Helinus and Berchemia are endemic to Pakistan and have 
been poorly sampled for evolutionary studies. Hence, 
species from this region will provide critical information on 
phylogenetic relationships and will allow for a 
comprehensive re-evaluation of the taxonomy of different 
taxa. Future studies can focus further on the examination of 
the morphology, anatomy, phytochemistry, genetics and 
evolution of this diverse family. Our atpβ gene promoter 
analysis also elucidated the occurrence of important novel 
cis-acting elements from the different species of 
Rhamnaceae which is helpful in various stresses and can 
have application in saving genetic resources and breeding. 
However, to determine the precise role of these cis-
regulatory elements, In vivo studies are needed. 
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